51
|
Zhao X, Ye Y, Ge S, Sun P, Yu P. Cellular and Molecular Targeted Drug Delivery in Central Nervous System Cancers: Advances in Targeting Strategies. Curr Top Med Chem 2021; 20:2762-2776. [PMID: 32851962 DOI: 10.2174/1568026620666200826122402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
Abstract
Central nervous system (CNS) cancers are among the most common and treatment-resistant diseases. The main reason for the low treatment efficiency of the disorders is the barriers against targeted delivery of anticancer agents to the site of interest, including the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB). BBB is a strong biological barrier separating circulating blood from brain extracellular fluid that selectively and actively prevents cytotoxic agents and majority of anticancer drugs from entering the brain. BBB and BBTB are the major impediments against targeted drug delivery into CNS tumors. Nanotechnology and its allied modalities offer interesting and effective delivery strategies to transport drugs across BBB to reach brain tissue. Integrating anticancer drugs into different nanocarriers improves the delivery performance of the resultant compounds across BBB. Surface engineering of nanovehicles using specific ligands, antibodies and proteins enhances the BBB crossing efficacy as well as selective and specific targeting to the target cancerous tissues in CNS tumors. Multifunctional nanoparticles (NPs) have brought revolutionary advances in targeted drug delivery to brain tumors. This study reviews the main anatomical, physiological and biological features of BBB and BBTB in drug delivery and the recent advances in targeting strategies in NPs-based drug delivery for CNS tumors. Moreover, we discuss advances in using specific ligands, antibodies, and surface proteins for designing and engineering of nanocarriers for targeted delivery of anticancer drugs to CNS tumors. Finally, the current clinical applications and the perspectives in the targeted delivery of therapeutic molecules and genes to CNS tumors are discussed.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Pharmacy, Beilun People's Hospital, Ningbo 315800, Zhejiang Province, China
| | - Yun Ye
- Department of Pharmacy, Beilun People's Hospital, Ningbo 315800, Zhejiang Province, China
| | - Shuyu Ge
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China
| | - Pingping Sun
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China
| | - Ping Yu
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China
| |
Collapse
|
52
|
Kouhi A, Pachipulusu V, Kapenstein T, Hu P, Epstein AL, Khawli LA. Brain Disposition of Antibody-Based Therapeutics: Dogma, Approaches and Perspectives. Int J Mol Sci 2021; 22:ijms22126442. [PMID: 34208575 PMCID: PMC8235515 DOI: 10.3390/ijms22126442] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
Due to their high specificity, monoclonal antibodies have been widely investigated for their application in drug delivery to the central nervous system (CNS) for the treatment of neurological diseases such as stroke, Alzheimer’s, and Parkinson’s disease. Research in the past few decades has revealed that one of the biggest challenges in the development of antibodies for drug delivery to the CNS is the presence of blood–brain barrier (BBB), which acts to restrict drug delivery and contributes to the limited uptake (0.1–0.2% of injected dose) of circulating antibodies into the brain. This article reviews the various methods currently used for antibody delivery to the CNS at the preclinical stage of development and the underlying mechanisms of BBB penetration. It also describes efforts to improve or modulate the physicochemical and biochemical properties of antibodies (e.g., charge, Fc receptor binding affinity, and target affinity), to adapt their pharmacokinetics (PK), and to influence their distribution and disposition into the brain. Finally, a distinction is made between approaches that seek to modify BBB permeability and those that use a physiological approach or antibody engineering to increase uptake in the CNS. Although there are currently inherent difficulties in developing safe and efficacious antibodies that will cross the BBB, the future prospects of brain-targeted delivery of antibody-based agents are believed to be excellent.
Collapse
|
53
|
Luiz MT, Delello Di Filippo L, Tofani LB, de Araújo JTC, Dutra JAP, Marchetti JM, Chorilli M. Highlights in targeted nanoparticles as a delivery strategy for glioma treatment. Int J Pharm 2021; 604:120758. [PMID: 34090991 DOI: 10.1016/j.ijpharm.2021.120758] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022]
Abstract
Glioma is the most common type of Central Nervous System (CNS) neoplasia and it arises from glial cells. As glial cells are formed by different types of cells, glioma can be classified according to the cells that originate it or the malignancy grade. Glioblastoma multiforme is the most common and aggressive glioma. The high lethality of this tumor is related to the difficulty in performing surgical removal, chemotherapy, and radiotherapy in the CNS. To improve glioma treatment, a wide range of chemotherapeutics have been encapsulated in nanosystems to increase their ability to overcome the blood-brain barrier (BBB) and specifically reach the tumoral cells, reducing side effects and improving drug concentration in the tumor microenvironment. Several studies have investigated nanosystems covered with targeting ligands (e.g., proteins, peptides, aptamers, folate, and glucose) to increase the ability of drugs to cross the BBB and enhance their specificity to glioma through specific recognition by receptors on BBB and glioma cells. This review addresses the main targeting ligands used in nanosystems to overcome the BBB and promote the active targeting of drugs for glioma. Furthermore, the advantages of using these molecules in glioma treatment are discussed.
Collapse
Affiliation(s)
- Marcela Tavares Luiz
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, São Paulo, Brazil
| | | | - Larissa Bueno Tofani
- School of Pharmaceutical Science of Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| | | | | | - Juliana Maldonado Marchetti
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Science of Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil.
| |
Collapse
|
54
|
Singh AV, Chandrasekar V, Janapareddy P, Mathews DE, Laux P, Luch A, Yang Y, Garcia-Canibano B, Balakrishnan S, Abinahed J, Al Ansari A, Dakua SP. Emerging Application of Nanorobotics and Artificial Intelligence To Cross the BBB: Advances in Design, Controlled Maneuvering, and Targeting of the Barriers. ACS Chem Neurosci 2021; 12:1835-1853. [PMID: 34008957 DOI: 10.1021/acschemneuro.1c00087] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The blood-brain barrier (BBB) is a prime focus for clinicians to maintain the homeostatic function in health and deliver the theranostics in brain cancer and number of neurological diseases. The structural hierarchy and in situ biochemical signaling of BBB neurovascular unit have been primary targets to recapitulate into the in vitro modules. The microengineered perfusion systems and development in 3D cellular and organoid culture have given a major thrust to BBB research for neuropharmacology. In this review, we focus on revisiting the nanoparticles based bimolecular engineering to enable them to maneuver, control, target, and deliver the theranostic payloads across cellular BBB as nanorobots or nanobots. Subsequently we provide a brief outline of specific case studies addressing the payload delivery in brain tumor and neurological disorders (e.g., Alzheimer's disease, Parkinson's disease, multiple sclerosis, etc.). In addition, we also address the opportunities and challenges across the nanorobots' development and design. Finally, we address how computationally powered machine learning (ML) tools and artificial intelligence (AI) can be partnered with robotics to predict and design the next generation nanorobots to interact and deliver across the BBB without causing damage, toxicity, or malfunctions. The content of this review could be references to multidisciplinary science to clinicians, roboticists, chemists, and bioengineers involved in cutting-edge pharmaceutical design and BBB research.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | | | - Poonam Janapareddy
- Department of Surgery, Hamad Medical Corporation (HMC), 3050 Doha, Qatar
| | - Divya Elsa Mathews
- Department of Surgery, Hamad Medical Corporation (HMC), 3050 Doha, Qatar
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Yin Yang
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), 24404 Doha, Qatar
| | | | | | - Julien Abinahed
- Department of Surgery, Hamad Medical Corporation (HMC), 3050 Doha, Qatar
| | - Abdulla Al Ansari
- Department of Surgery, Hamad Medical Corporation (HMC), 3050 Doha, Qatar
| | | |
Collapse
|
55
|
When Good Kinases Go Rogue: GSK3, p38 MAPK and CDKs as Therapeutic Targets for Alzheimer's and Huntington's Disease. Int J Mol Sci 2021; 22:ijms22115911. [PMID: 34072862 PMCID: PMC8199025 DOI: 10.3390/ijms22115911] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a mostly sporadic brain disorder characterized by cognitive decline resulting from selective neurodegeneration in the hippocampus and cerebral cortex whereas Huntington's disease (HD) is a monogenic inherited disorder characterized by motor abnormalities and psychiatric disturbances resulting from selective neurodegeneration in the striatum. Although there have been numerous clinical trials for these diseases, they have been unsuccessful. Research conducted over the past three decades by a large number of laboratories has demonstrated that abnormal actions of common kinases play a key role in the pathogenesis of both AD and HD as well as several other neurodegenerative diseases. Prominent among these kinases are glycogen synthase kinase (GSK3), p38 mitogen-activated protein kinase (MAPK) and some of the cyclin-dependent kinases (CDKs). After a brief summary of the molecular and cell biology of AD and HD this review covers what is known about the role of these three groups of kinases in the brain and in the pathogenesis of the two neurodegenerative disorders. The potential of targeting GSK3, p38 MAPK and CDKS as effective therapeutics is also discussed as is a brief discussion on the utilization of recently developed drugs that simultaneously target two or all three of these groups of kinases. Multi-kinase inhibitors either by themselves or in combination with strategies currently being used such as immunotherapy or secretase inhibitors for AD and knockdown for HD could represent a more effective therapeutic approach for these fatal neurodegenerative diseases.
Collapse
|
56
|
Mursaleen L, Noble B, Somavarapu S, Zariwala MG. Micellar Nanocarriers of Hydroxytyrosol Are Protective against Parkinson's Related Oxidative Stress in an In Vitro hCMEC/D3-SH-SY5Y Co-Culture System. Antioxidants (Basel) 2021; 10:antiox10060887. [PMID: 34073115 PMCID: PMC8226543 DOI: 10.3390/antiox10060887] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/21/2022] Open
Abstract
Hydroxytyrosol (HT) is a natural phenolic antioxidant which has neuroprotective effects in models of Parkinson’s disease (PD). Due to issues such as rapid metabolism, HT is unlikely to reach the brain at therapeutic concentrations required for a clinical effect. We have previously developed micellar nanocarriers from Pluronic F68® (P68) and dequalinium (DQA) which have suitable characteristics for brain delivery of antioxidants and iron chelators. The aim of this study was to utilise the P68 + DQA nanocarriers for HT alone, or in combination with the iron chelator deferoxamine (DFO), and assess their physical characteristics and ability to pass the blood–brain barrier and protect against rotenone in a cellular hCMEC/D3-SH-SY5Y co-culture system. Both HT and HT + DFO formulations were less than 170 nm in size and demonstrated high encapsulation efficiencies (up to 97%). P68 + DQA nanoformulation enhanced the mean blood–brain barrier (BBB) passage of HT by 50% (p < 0.0001, n = 6). This resulted in increased protection against rotenone induced cytotoxicity and oxidative stress by up to 12% and 9%, respectively, compared to the corresponding free drug treatments (p < 0.01, n = 6). This study demonstrates for the first time the incorporation of HT and HT + DFO into P68 + DQA nanocarriers and successful delivery of these nanocarriers across a BBB model to protect against PD-related oxidative stress. These nanocarriers warrant further investigation to evaluate whether this enhanced neuroprotection is exhibited in in vivo PD models.
Collapse
Affiliation(s)
- Leah Mursaleen
- Centre for Nutraceuticals, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (L.M.); (B.N.)
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
- Cure Parkinson’s, 120 New Cavendish Street, Fitzrovia, London W1W 6XX, UK
| | - Brendon Noble
- Centre for Nutraceuticals, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (L.M.); (B.N.)
| | - Satyanarayana Somavarapu
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
- Correspondence: (S.S.); (M.G.Z.)
| | - Mohammed Gulrez Zariwala
- Centre for Nutraceuticals, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (L.M.); (B.N.)
- Correspondence: (S.S.); (M.G.Z.)
| |
Collapse
|
57
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
58
|
Reddy S, Tatiparti K, Sau S, Iyer AK. Recent advances in nano delivery systems for blood-brain barrier (BBB) penetration and targeting of brain tumors. Drug Discov Today 2021; 26:1944-1952. [PMID: 33865978 DOI: 10.1016/j.drudis.2021.04.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/24/2021] [Accepted: 04/08/2021] [Indexed: 02/09/2023]
Abstract
Gliomas constitute about 80% of brain tumors and have a meager two-year survival rate. The treatment options available are very few because of poor prognosis and a lack of targeted nanodelivery systems that can cross the blood-brain barrier (BBB) and the blood-tumor barrier. This short review attempts to clarify the challenges for delivery systems designed to cross the BBB, and provides a brief description of the different types of targeted nanodelivery system that have shown potential for success in delivering drugs to the brain. Further, this review describes the most recent studies that have developed nanoparticles for brain delivery in the past five years. We also provide an insight into the most recent clinical trials designed to assess the efficacy of these nanodelivery systems for glioma.
Collapse
Affiliation(s)
- Shriya Reddy
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; Northville High School, Northville, MI 48168, USA
| | - Katyayani Tatiparti
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Samaresh Sau
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
59
|
Böhmer VI, Szymanski W, Feringa BL, Elsinga PH. Multivalent Probes in Molecular Imaging: Reality or Future? Trends Mol Med 2021; 27:379-393. [PMID: 33436332 DOI: 10.1016/j.molmed.2020.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/17/2020] [Accepted: 12/08/2020] [Indexed: 01/25/2023]
Abstract
The rapidly developing field of molecular medical imaging focuses on specific visualization of (patho)physiological processes through the application of imaging agents (IAs) in multiple clinical modalities. Although our understanding of the principles underlying efficient IAs design has increased tremendously, many IAs still show poor in vivo imaging performance because of low binding affinity and/or specificity. These limitations can be addressed by taking advantage of multivalency, in which multiple copies of a ligand are employed to strengthen the interaction. We critically address specific challenges associated with the application of multivalent compounds in molecular imaging, and we give directions for a stepwise approach to the design of multivalent imaging probes to improve their target binding and pharmacokinetics (PK) for improved diagnostic potential.
Collapse
Affiliation(s)
- Verena I Böhmer
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, The Netherlands; Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AF, Groningen, The Netherlands
| | - Wiktor Szymanski
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AF, Groningen, The Netherlands; Department of Radiology, Medical Imaging Center, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AF, Groningen, The Netherlands
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, The Netherlands.
| |
Collapse
|
60
|
Rong J, He Y, Tang J, Qiao R, Lin S. "Fishing" nano-bio interactions at the key biological barriers. NANOSCALE 2021; 13:5954-5964. [PMID: 33734277 DOI: 10.1039/d1nr00328c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding nano-bio interactions is pivotal to the safe implementation of nanotechnology for both biological and environmental applications. Zebrafish as a model organism provides unique opportunities to dissect nano-bio interactions occurring at different biological barriers. In this review, we focus on four key biological barriers, namely cell membrane, blood-brain barrier (BBB), skin and gill epithelia, and gastrointestinal tract (GIT), and highlight recent advancement achieved by using zebrafish to conduct both visualized observations and mechanistic investigations on a diversity of nano-bio interactions.
Collapse
Affiliation(s)
- Jinyu Rong
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China.
| | | | | | | | | |
Collapse
|
61
|
Ben Mihoub A, Acherar S, Frochot C, Malaplate C, Yen FT, Arab-Tehrany E. Synthesis of New Water Soluble β-Cyclodextrin@Curcumin Conjugates and In Vitro Safety Evaluation in Primary Cultures of Rat Cortical Neurons. Int J Mol Sci 2021; 22:ijms22063255. [PMID: 33806807 PMCID: PMC8004725 DOI: 10.3390/ijms22063255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/01/2023] Open
Abstract
Self-aggregation of Curcumin (Cur) in aqueous biological environment decreases its bioavailability and in vivo therapeutic efficacy, which hampers its clinical use as candidate for reducing risk of neurodegenerative diseases. Here, we focused on the design of new Cur- β-Cyclodextrin nanoconjugates to improve the solubility and reduce cell toxicity of Cur. In this study, we described the synthesis, structural characterization, photophysical properties and neuron cell toxicity of two new water soluble β-CD/Cur nanoconjugates as new strategy for reducing risks of neurodegenerative diseases. Cur was coupled to one or two β-CD molecules via triazole rings using CuAAC click chemistry strategy to yield β-CD@Cur and (β-CD)2@Cur nanoconjugates, respectively. The synthesized nanoconjugates were found to be able to self-assemble in aqueous condition and form nano-aggregates of an average diameter size of around 35 and 120 nm for β-CD@Cur and (β-CD)2@Cur, respectively. The photophysical properties, water solubility and cell toxicity on rat embryonic cortical neurons of the designed nanoconjugates were investigated and compared to that of Cur alone. The findings revealed that both new nanoconjugates displayed better water solubility and in vitro biocompatibility than Cur alone, thus making it possible to envisage their use as future nano-systems for the prevention or risk reduction of neurodegenerative diseases.
Collapse
Affiliation(s)
- Amina Ben Mihoub
- LIBio Laboratory, Université de Lorraine, F-54000 Nancy, France
- LCPM, CNRS, Université de Lorraine, F-54000 Nancy, France
- LRGP, CNRS, Université de Lorraine, F-54000 Nancy, France;
- Correspondence: (A.B.M.); (S.A.); (E.A.-T.)
| | - Samir Acherar
- LCPM, CNRS, Université de Lorraine, F-54000 Nancy, France
- Correspondence: (A.B.M.); (S.A.); (E.A.-T.)
| | - Céline Frochot
- LRGP, CNRS, Université de Lorraine, F-54000 Nancy, France;
| | - Catherine Malaplate
- URAFPA, INRAE, Université de Lorraine, F-54000 Nancy, France; (C.M.); (F.T.Y.)
| | - Frances T. Yen
- URAFPA, INRAE, Université de Lorraine, F-54000 Nancy, France; (C.M.); (F.T.Y.)
| | - Elmira Arab-Tehrany
- LIBio Laboratory, Université de Lorraine, F-54000 Nancy, France
- Correspondence: (A.B.M.); (S.A.); (E.A.-T.)
| |
Collapse
|
62
|
Khatoon R, Alam MA, Sharma PK. Current approaches and prospective drug targeting to brain. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
63
|
Mathew SA, Prakash PA, Jaabir MM, Dhanavel S, Manikandan R, Stephen A. Dopamine-conjugated CuS/chitosan nanocomposite for targeted photothermal drug delivery: In vitro cytotoxicity study to establish bio-compatibility. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102193] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
64
|
Wang Z, Zhang C, Huang F, Liu X, Wang Z, Yan B. Breakthrough of ZrO 2 nanoparticles into fetal brains depends on developmental stage of maternal placental barrier and fetal blood-brain-barrier. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123563. [PMID: 32745876 DOI: 10.1016/j.jhazmat.2020.123563] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/02/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Ingestion of nanoparticles may cause various damages to human body. However, how such ingestion by pregnant mother influences fetal development is not known because, presumably, ingested nanoparticles have to cross multiple biological barriers (such as intestinal and placental) to reach fetus. To answer this crucial question, here we investigated how a relatively biocompatible zirconia nanoparticles (ZrO2 NPs, 16 nm) were translocated to fetal brains in three exposure models of pregnant mice: Model 1, oral exposure of nanoparticles before maternal blood-placental barrier (BPB) was fully developed; Model 2, exposures after BPB was developed, but before fetal blood-brain-barrier (BBB) was fully developed; Model 3, exposures after both maternal BPB and fetal BBB were fully developed. Our experimental results showed that translocation of ZrO2 NPs into fetal brains was 55 % higher in Model 2 and 96 % higher in Model 1 compared with that in Model 3 after nanoparticles (50 mg/kg) were orally exposed to pregnant mice. Therefore, nanoparticles are able to cross multiple biological barriers and nanotoxicity to fetus is highly dependent on stages of pregnancy and fetal development or the maturity of multiple biological barriers. Oral exposures to nanoparticles during pregnancy are dangerous to fetal brain development, especially in early pregnancy.
Collapse
Affiliation(s)
- Zengjin Wang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Congcong Zhang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China
| | - Fengyan Huang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Xiaojing Liu
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Zhiping Wang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
65
|
Curcumin and Its Derivatives as Theranostic Agents in Alzheimer's Disease: The Implication of Nanotechnology. Int J Mol Sci 2020; 22:ijms22010196. [PMID: 33375513 PMCID: PMC7795367 DOI: 10.3390/ijms22010196] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/15/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Curcumin is a polyphenolic natural compound with diverse and attractive biological properties, which may prevent or ameliorate pathological processes underlying age-related cognitive decline, Alzheimer's disease (AD), dementia, or mode disorders. AD is a chronic neurodegenerative disorder that is known as one of the rapidly growing diseases, especially in the elderly population. Moreover, being the eminent cause of dementia, posing problems for families, societies as well a severe burden on the economy. There are no effective drugs to cure AD. Although curcumin and its derivatives have shown properties that can be considered useful in inhibiting the hallmarks of AD, however, they have low bioavailability. Furthermore, to combat diagnostic and therapeutic limitations, various nanoformulations have also been recognized as theranostic agents that can also enhance the pharmacokinetic properties of curcumin and other bioactive compounds. Nanocarriers have shown beneficial properties to deliver curcumin and other nutritional compounds against the blood-brain barrier to efficiently distribute them in the brain. This review spotlights the role and effectiveness of curcumin and its derivatives in AD. Besides, the gut metabolism of curcumin and the effects of nanoparticles and their possible activity as diagnostic and therapeutic agents in AD also discussed.
Collapse
|
66
|
Akhter MH, Rizwanullah M, Ahmad J, Amin S, Ahmad MZ, Minhaj MA, Mujtaba MA, Ali J. Molecular Targets and Nanoparticulate Systems Designed for the Improved Therapeutic Intervention in Glioblastoma Multiforme. Drug Res (Stuttg) 2020; 71:122-137. [DOI: 10.1055/a-1296-7870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractGlioblastoma multiforme (GBM) is the most aggressive and fatal CNS related tumors, which is responsible for about 4% of cancer-related deaths. Current GBM therapy includes surgery, radiation, and chemotherapy. The effective chemotherapy of GBM is compromised by two barriers, i. e., the blood-brain barrier (BBB) and the blood tumor barrier (BTB). Therefore, novel therapeutic approaches are needed. Nanoparticles are one of the highly efficient drug delivery systems for a variety of chemotherapeutics that have gained massive attention from the last three decades. Perfectly designed nanoparticles have the ability to cross BBB and BTB and precisely deliver the chemotherapeutics to GBM tissue/cells. Nanoparticles can encapsulate both hydrophilic and lipophilic drugs, genes, proteins, and peptides, increase the stability of drugs by protecting them from degradation, improve plasma half-life, reduce adverse effects and control the release of drugs/genes at the desired site. This review focussed on the different signaling pathways altered in GBM cells to understand the rationale behind selecting new therapeutic targets, challenges in the drug delivery to the GBM, various transport routes in brain delivery, and recent advances in targeted delivery of different drug and gene loaded various lipidic, polymeric and inorganic nanoparticles in the effective management of GBM.
Collapse
Affiliation(s)
- Md. Habban Akhter
- Department of Pharmaceutics, Faculty of Pharmacy, DIT University, Dehradun, India
| | - Md. Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Kingdom of Saudi Arabia (KSA)
| | - Saima Amin
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Kingdom of Saudi Arabia (KSA)
| | - Md. Akram Minhaj
- Department of Pharmacology, Maulana Azad Medical College and Hospital, New Delhi, India
| | - Md. Ali Mujtaba
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha, Kingdom of Saudi Arabia (KSA)
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
67
|
Helmbrecht H, Joseph A, McKenna M, Zhang M, Nance E. Governing Transport Principles for Nanotherapeutic Application in the Brain. Curr Opin Chem Eng 2020; 30:112-119. [PMID: 33304774 DOI: 10.1016/j.coche.2020.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neurological diseases account for a significant portion of the global disease burden. While research efforts have identified potential drugs or drug targets for neurological diseases, most therapeutic platforms are still ineffective at reaching the target location selectively and with high yield. Restricted transport, including passage across the blood-brain barrier, through the brain parenchyma, and into specific cells, is a major cause of ineffective therapeutic delivery. However, nanotechnology is a promising, tailorable platform for overcoming these transport barriers and improving therapeutic delivery to the brain. We provide a transport-oriented analysis of nanotechnology's ability to navigate these transport barriers in the brain. We also provide an opinion on the need for technology development for increasing our capacity to characterize and quantify nanoparticle passage through each transport barrier. Finally, we highlight the importance of incorporating the effect of disease, metabolic state, and regional dependencies to better understand transport of nanotherapeutics in the brain.
Collapse
Affiliation(s)
- Hawley Helmbrecht
- Department of Chemical Engineering, University of Washington, Seattle WA 98195
| | - Andrea Joseph
- Department of Chemical Engineering, University of Washington, Seattle WA 98195
| | - Michael McKenna
- Department of Chemical Engineering, University of Washington, Seattle WA 98195
| | - Mengying Zhang
- Molecular Engineering and Sciences Institute, University of Washington, Seattle WA 98105
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle WA 98195.,Molecular Engineering and Sciences Institute, University of Washington, Seattle WA 98105.,Department of Radiology, University of Washington, Seattle WA 98195.,eScience Institute, University of Washington, Seattle WA 98195
| |
Collapse
|
68
|
Liang T, Qian ZM, Mu MD, Yung WH, Ke Y. Brain Hepcidin Suppresses Major Pathologies in Experimental Parkinsonism. iScience 2020; 23:101284. [PMID: 32623334 PMCID: PMC7334576 DOI: 10.1016/j.isci.2020.101284] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/26/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
Abstract
Despite intensive research on Parkinson disease (PD) for decades, this common neurodegenerative disease remains incurable. We hypothesize that abnormal iron accumulation is a common thread underlying the emergence of the hallmarks of PD, namely mitochondrial dysfunction and α-synuclein accumulation. We investigated the powerful action of the main iron regulator hepcidin in the brain. In both the rotenone and 6-hydroxydopamine models of PD, overexpression of hepcidin by means of a virus-based strategy prevented dopamine neuronal loss and suppressed major pathologies of Parkinsonism as well as motor deficits. Hepcidin protected rotenone-induced mitochondrial deficits by reducing cellular and mitochondrial iron accumulation. In addition, hepcidin decreased α-synuclein accumulation and promoted clearance of α-synuclein through decreasing iron content that leads to activation of autophagy. Our results not only pinpoint a critical role of iron-overload in the pathogenesis of PD but also demonstrate that targeting brain iron levels through hepcidin is a promising therapeutic direction.
Collapse
Affiliation(s)
- Tuo Liang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zhong-Ming Qian
- Institute of Translational and Precision Medicine, Nantong University, Nantong 226001, China
| | - Ming-Dao Mu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
69
|
N-Acetylcysteine Nanocarriers Protect against Oxidative Stress in a Cellular Model of Parkinson's Disease. Antioxidants (Basel) 2020; 9:antiox9070600. [PMID: 32660079 PMCID: PMC7402157 DOI: 10.3390/antiox9070600] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress is a key mediator in the development and progression of Parkinson's disease (PD). The antioxidant n-acetylcysteine (NAC) has generated interest as a disease-modifying therapy for PD but is limited due to poor bioavailability, a short half-life, and limited access to the brain. The aim of this study was to formulate and utilise mitochondria-targeted nanocarriers for delivery of NAC alone and in combination with the iron chelator deferoxamine (DFO), and assess their ability to protect against oxidative stress in a cellular rotenone PD model. Pluronic F68 (P68) and dequalinium (DQA) nanocarriers were prepared by a modified thin-film hydration method. An MTT assay assessed cell viability and iron status was measured using a ferrozine assay and ferritin immunoassay. For oxidative stress, a modified cellular antioxidant activity assay and the thiobarbituric acid-reactive substances assay and mitochondrial hydroxyl assay were utilised. Overall, this study demonstrates, for the first time, successful formulation of NAC and NAC + DFO into P68 + DQA nanocarriers for neuronal delivery. The results indicate that NAC and NAC + DFO nanocarriers have the potential characteristics to access the brain and that 1000 μM P68 + DQA NAC exhibited the strongest ability to protect against reduced cell viability (p = 0.0001), increased iron (p = 0.0033) and oxidative stress (p ≤ 0.0003). These NAC nanocarriers therefore demonstrate significant potential to be transitioned for further preclinical testing for PD.
Collapse
|
70
|
Liu W, Lin Q, Fu Y, Huang S, Guo C, Li L, Wang L, Zhang Z, Zhang L. Target delivering paclitaxel by ferritin heavy chain nanocages for glioma treatment. J Control Release 2020; 323:191-202. [DOI: 10.1016/j.jconrel.2019.12.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 01/01/2023]
|
71
|
Huang Q, Zhang J, Zhang Y, Timashev P, Ma X, Liang XJ. Adaptive changes induced by noble-metal nanostructures in vitro and in vivo. Theranostics 2020; 10:5649-5670. [PMID: 32483410 PMCID: PMC7254997 DOI: 10.7150/thno.42569] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/01/2020] [Indexed: 12/26/2022] Open
Abstract
The unique features of noble-metal nanostructures (NMNs) are leading to unprecedented expansion of research and exploration of their application in therapeutics, diagnostics and bioimaging fields. With the ever-growing applications of NMNs, both therapeutic and environmental NMNs are likely to be exposed to tissues and organs, requiring careful studies towards their biological effects in vitro and in vivo. Upon NMNs exposure, tissues and cells may undergo a series of adaptive changes both in morphology and function. At the cellular level, the accumulation of NMNs in various subcellular organelles including lysosomes, endoplasmic reticulum, Golgi apparatus, mitochondria, and nucleus may interfere with their functions, causing changes in a variety of cellular functions, such as digestion, protein synthesis and secretion, energy metabolism, mitochondrial respiration, and proliferation. In animals, retention of NMNs in metabolic-, respiratory-, immune-related, and other organs can trigger significant physiological and pathological changes to these organs and influence their functions. Exploring how NMNs interact with tissues and cells and the underlying mechanisms are of vital importance for their future applications. Here, we illustrate the characteristics of NMNs-induced adaptive changes both in vitro and in vivo. Potential strategies in the design of NMNs are also discussed to take advantage of beneficial adaptive changes and avoid unfavorable changes for the proper implementation of these nanoplatforms.
Collapse
Affiliation(s)
- Qianqian Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish Center for Education and Research, Sino-Danish College of University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Xiaowei Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish Center for Education and Research, Sino-Danish College of University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
72
|
Jin GZ, Chakraborty A, Lee JH, Knowles JC, Kim HW. Targeting with nanoparticles for the therapeutic treatment of brain diseases. J Tissue Eng 2020; 11:2041731419897460. [PMID: 32180936 PMCID: PMC7057401 DOI: 10.1177/2041731419897460] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
Brain diseases including neurodegenerative disorders and tumours are among the most serious health problems, degrading the quality of life and causing massive economic cost. Nanoparticles that load and deliver drugs and genes have been intensively studied for the treatment of brain diseases, and have demonstrated some biological effects in various animal models. Among other efforts taken in the nanoparticle development, targeting of blood brain barrier, specific cell type or local intra-/extra-cellular space is an important strategy to enhance the therapeutic efficacy of the nanoparticle delivery systems. This review underlies the targeting issue in the nanoparticle development for the treatment of brain diseases, taking key exemplar studies carried out in various in vivo models.
Collapse
Affiliation(s)
- Guang-Zhen Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Atanu Chakraborty
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
| | - Jonathan C Knowles
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea.,Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
73
|
Wang G, Rayner S, Chung R, Shi B, Liang X. Advances in nanotechnology-based strategies for the treatments of amyotrophic lateral sclerosis. Mater Today Bio 2020; 6:100055. [PMID: 32529183 PMCID: PMC7280770 DOI: 10.1016/j.mtbio.2020.100055] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/09/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND), is a progressive neurodegenerative disease that affects both upper and lower motor neurons, which results in loss of muscle control and eventual paralysis [1]. Currently, there are as yet unresolved challenges regarding efficient drug delivery into the central nervous system (CNS). These challenges can be attributed to multiple factors including the presence of the blood-brain barrier (BBB), blood-spinal cord barrier (BSCB), as well as the inherent characteristics of the drugs themselves (e.g. low solubility, insufficient bioavailability/bio-stability, 'off-target' effects) etc. As a result, conventional drug delivery systems may not facilitate adequate dosage of the required drugs for functional recovery in ALS patients. Nanotechnology-based strategies, however, employ engineered nanostructures that show great potential in delivering single or combined therapeutic agents to overcome the biological barriers, enhance interaction with targeted sites, improve drug bioavailability/bio-stability and achieve real-time tracking while minimizing the systemic side-effects. This review provides a concise discussion of recent advances in nanotechnology-based strategies in relation to combating specific pathophysiology relevant to ALS disease progression and investigates the future scope of using nanotechnology to develop innovative treatments for ALS patients.
Collapse
Affiliation(s)
- G.Y. Wang
- Huaihe Hospital, Henan University, Kaifeng, Henan, 475004, China
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - S.L. Rayner
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - R. Chung
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - B.Y. Shi
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - X.J. Liang
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
74
|
Tapia-Guerrero YS, Del Prado-Audelo ML, Borbolla-Jiménez FV, Giraldo Gomez DM, García-Aguirre I, Colín-Castro CA, Morales-González JA, Leyva-Gómez G, Magaña JJ. Effect of UV and Gamma Irradiation Sterilization Processes in the Properties of Different Polymeric Nanoparticles for Biomedical Applications. MATERIALS 2020; 13:ma13051090. [PMID: 32121529 PMCID: PMC7084644 DOI: 10.3390/ma13051090] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
The sterilization processes of nanoparticles (NP) by autoclaving and filtration are two of the most utilized methods in the pharmaceutical industry but are not always a viable option. For this reason, the search for alternative options such as UV and gamma radiation is of interest. In this work, we evaluated both types of sterilization on two types of NP in solid state widely employed in the literature for biomedical applications, poly-(ε-caprolactone) and poly(D, L-lactide-co-glycolide) acid NP stabilized with polyvinyl alcohol. Physicochemical properties and cell viability were studied pre- and post-sterilization. The efficiency of irradiation sterilization was performed by a test of sterility using 1 × 108 CFU/mL of Escherichia coli, Staphylococcus aureus, and Candida albicans. Microbiological monitoring revealed that both methods were sufficient for sterilization. After the UV irradiation sterilization (100 µJ/cm2), no substantial changes were observed in the physicochemical properties of the NP or in the interaction or morphology of human glial cells, though 5 and 10 kGy of gamma irradiation showed slight changes of NP size as well as a decrease in cell viability (from 100 µg/mL of NP). At 5 kGy of radiation doses, the presence of trehalose as cryoprotectant reduces the cell damage with high concentrations of NP, but this did not occur at 10 kGy. Therefore, these methods could be highly effective and low-processing-time options for sterilizing NP for medical purposes. However, we suggest validating each NP system because these generally are of different polymer-composition systems.
Collapse
Affiliation(s)
- Y. S. Tapia-Guerrero
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (Y.S.T.-G.); (J.A.M.-G.)
- Laboratorio de Medicina Genómica, Departamento de Genética (CENIAQ), Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México 14389, Mexico; (F.V.B.-J.); (C.A.C.-C.)
| | - M. L. Del Prado-Audelo
- Laboratorio de Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Edo. de México 54740, Mexico;
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - F. V. Borbolla-Jiménez
- Laboratorio de Medicina Genómica, Departamento de Genética (CENIAQ), Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México 14389, Mexico; (F.V.B.-J.); (C.A.C.-C.)
- Programa de Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - D. M. Giraldo Gomez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Edificio “A” 3er piso, Circuito Interior, Avenida Universidad 3000, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
- Unidad de Microscopía, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Edificio “A” planta baja, Circuito Interior, Avenida Universidad 3000, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - I. García-Aguirre
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Ciudad de México 07360, Mexico
| | - C. A. Colín-Castro
- Laboratorio de Medicina Genómica, Departamento de Genética (CENIAQ), Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México 14389, Mexico; (F.V.B.-J.); (C.A.C.-C.)
- Departamento de Infectología, (CENIAQ), Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Ciudad de México (CDMX) 14389, Mexico
| | - J. A. Morales-González
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (Y.S.T.-G.); (J.A.M.-G.)
| | - G. Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico
- Correspondence: (G.L.-G.); or (J.J.M.); Tel.: +52-(55)-5622-3899 (G.L.-G.); +52-(55)-5999-1000 (J.J.M.)
| | - J. J. Magaña
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (Y.S.T.-G.); (J.A.M.-G.)
- Laboratorio de Medicina Genómica, Departamento de Genética (CENIAQ), Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México 14389, Mexico; (F.V.B.-J.); (C.A.C.-C.)
- Escuela de Ingeniería, Departamento de Biotecnología, Instituto Tecnológico y de Estudios Superiores de Monterrey-Campus, Ciudad de México 14380, Mexico
- Correspondence: (G.L.-G.); or (J.J.M.); Tel.: +52-(55)-5622-3899 (G.L.-G.); +52-(55)-5999-1000 (J.J.M.)
| |
Collapse
|
75
|
Teixeira MI, Lopes CM, Amaral MH, Costa PC. Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases. Eur J Pharm Biopharm 2020; 149:192-217. [PMID: 31982574 DOI: 10.1016/j.ejpb.2020.01.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/16/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022]
Abstract
The central nervous system (CNS) is vulnerable to pathologic processes that lead to the development of neurodegenerative disorders like Alzheimer's, Parkinson's and Huntington's diseases, Multiple sclerosis or Amyotrophic lateral sclerosis. These are chronic and progressive pathologies characterized by the loss of neurons and the formation of misfolded proteins. Additionally, neurodegenerative diseases are accompanied by a structural and functional dysfunction of the blood-brain barrier (BBB). Although serving as a protection for the CNS, the existence of physiological barriers, especially the BBB, limits the access of several therapeutic agents to the brain, constituting a major hindrance in neurotherapeutics advancement. In this regard, nanotechnology-based approaches have arisen as a promising strategy to not only improve drug targeting to the brain, but also to increase bioavailability. Lipid nanocarriers such as liposomes, solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), microemulsions and nanoemulsions, have already proven their potential for enhancing brain transport, crossing more easily into the CNS and allowing the administration of medicines that could benefit the treatment of neurological pathologies. Given the socioeconomic impact of such conditions and the advent of nanotechnology that inevitably leads to more effective and superior therapeutics for their management, it is imperative to constantly update on the current knowledge of these topics. Herein, we provide insight on the BBB and the pathophysiology of the main neurodegenerative disorders. Moreover, this review seeks to highlight the several approaches that can be used to improve the delivery of therapeutic agents to the CNS, while also offering an extensive overview of the latest efforts regarding the use of lipid-based nanocarriers in the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- M I Teixeira
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - C M Lopes
- FP-ENAS/CEBIMED, Fernando Pessoa Energy, Environment and Health Research Unit/Biomedical Research Centre, Faculty of Health Sciences, Fernando Pessoa University, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| | - M H Amaral
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - P C Costa
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
76
|
Mursaleen L, Somavarapu S, Zariwala MG. Deferoxamine and Curcumin Loaded Nanocarriers Protect Against Rotenone-Induced Neurotoxicity. JOURNAL OF PARKINSONS DISEASE 2020; 10:99-111. [DOI: 10.3233/jpd-191754] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Leah Mursaleen
- School of Life Sciences, University of Westminster, London, UK
- Department of Pharmaceutics, UCL School of Pharmacy, London, UK
- The Cure Parkinson’s Trust, London, UK
| | | | | |
Collapse
|
77
|
Mulvihill JJ, Cunnane EM, Ross AM, Duskey JT, Tosi G, Grabrucker AM. Drug delivery across the blood-brain barrier: recent advances in the use of nanocarriers. Nanomedicine (Lond) 2020; 15:205-214. [PMID: 31916480 DOI: 10.2217/nnm-2019-0367] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The blood-brain barrier (BBB) has a significant contribution to homeostasis and protection of the CNS. However, it also limits the crossing of therapeutics and thereby complicates the treatment of CNS disorders. To overcome this limitation, the use of nanocarriers for drug delivery across the BBB has recently been exploited. Nanocarriers can utilize different physiological mechanisms for drug delivery across the BBB and can be modified to achieve the desired kinetics and efficacy. Consequentially, several nanocarriers have been reported to act as functional nanomedicines in preclinical studies using animal models for human diseases. Given the rapid development of novel nanocarriers, this review provides a comprehensive insight into the most recent advancements made in nanocarrier-based drug delivery to the CNS, such as the development of multifunctional nanomedicines and theranostics.
Collapse
Affiliation(s)
- John Je Mulvihill
- Bernal Institute, University of Limerick, Limerick, V94T9PX, Ireland.,Health Research Institute (HRI) of University of Limerick, Limerick, V94T9PX, Ireland.,Synthesis & Solid State Pharmaceutical Centre, University of Limerick, Limerick, V94T9PX, Ireland.,School of Engineering, University of Limerick, Limerick, V94T9PX, Ireland
| | - Eoghan M Cunnane
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Aisling M Ross
- Bernal Institute, University of Limerick, Limerick, V94T9PX, Ireland.,School of Engineering, University of Limerick, Limerick, V94T9PX, Ireland
| | - Jason T Duskey
- Department of Life Sciences, NanoTech Lab, University of Modena & Reggio Emilia, Modena, 41124, Italy
| | - Giovanni Tosi
- Department of Life Sciences, NanoTech Lab, University of Modena & Reggio Emilia, Modena, 41124, Italy
| | - Andreas M Grabrucker
- Bernal Institute, University of Limerick, Limerick, V94T9PX, Ireland.,Health Research Institute (HRI) of University of Limerick, Limerick, V94T9PX, Ireland.,Synthesis & Solid State Pharmaceutical Centre, University of Limerick, Limerick, V94T9PX, Ireland.,Department of Biological Sciences, University of Limerick, Limerick, V94T9PX, Ireland
| |
Collapse
|
78
|
Malachowski T, Hassel A. Engineering nanoparticles to overcome immunological barriers for enhanced drug delivery. ENGINEERED REGENERATION 2020. [DOI: 10.1016/j.engreg.2020.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
79
|
Glyco-nanoparticles: New drug delivery systems in cancer therapy. Semin Cancer Biol 2019; 69:24-42. [PMID: 31870939 DOI: 10.1016/j.semcancer.2019.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/24/2022]
Abstract
Cancer is known as one of the most common diseases that are associated with high mobility and mortality in the world. Despite several efforts, current cancer treatment modalities often are highly toxic and lack efficacy and specificity. However, the application of nanotechnology has led to the development of effective nanosized drug delivery systems which are highly selective for tumors and allow a slow release of active anticancer agents. Different Nanoparticles (NPs) such as the silicon-based nano-materials, polymers, liposomes and metal NPs have been designed to deliver anti-cancer drugs to tumor sites. Among different drug delivery systems, carbohydrate-functionalized nanomaterials, specially based on their multi-valent binding capacities and desirable bio-compatibility, have attracted considerable attention as an excellent candidate for controlled release of therapeutic agents. In addition, these carbohydrate functionalized nano-carriers are more compatible with construction of the intracellular delivery platforms like the carbohydrate-modified metal NPs, quantum dots, and magnetic nano-materials. In this review, we discuss recent research in the field of multifunctional glycol-nanoparticles (GNPs) intended for cancer drug delivery applications.
Collapse
|
80
|
Mangini V, Maggi V, Trianni A, Melle F, De Luca E, Pennetta A, Del Sole R, Ventura G, Cataldi TRI, Fiammengo R. Directional Immobilization of Proteins on Gold Nanoparticles Is Essential for Their Biological Activity: Leptin as a Case Study. Bioconjug Chem 2019; 31:74-81. [PMID: 31851492 DOI: 10.1021/acs.bioconjchem.9b00748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Gold nanomaterials hold great potential for biomedical applications. While this field is evolving rapidly, little attention has been paid to precise nanoparticle design and functionalization. Here, we show that when using proteins as targeting moieties, it is fundamental to immobilize them directionally to preserve their biological activity. Using full-length leptin as a case study, we have developed two alternative conjugation strategies for protein immobilization based on either a site-selective or a nonselective derivatization approach. We show that only nanoparticles with leptin immobilized site-selectively fully retain the ability to interact with the cognate leptin receptor. These results demonstrate the importance of a specified molecular design when preparing nanoparticles labeled with proteins.
Collapse
Affiliation(s)
- Vincenzo Mangini
- Center for Biomolecular Nanotechnologies@UniLe , Istituto Italiano di Tecnologia (IIT) , Via Barsanti , 73010 Arnesano, Lecce , Italy
| | - Vito Maggi
- Center for Biomolecular Nanotechnologies@UniLe , Istituto Italiano di Tecnologia (IIT) , Via Barsanti , 73010 Arnesano, Lecce , Italy.,Dipartimento di Ingegneria dell'Innovazione , Università del Salento , Via per Monteroni Km 1 , 73100 Lecce , Italy
| | - Alberta Trianni
- Center for Biomolecular Nanotechnologies@UniLe , Istituto Italiano di Tecnologia (IIT) , Via Barsanti , 73010 Arnesano, Lecce , Italy
| | - Francesca Melle
- Center for Biomolecular Nanotechnologies@UniLe , Istituto Italiano di Tecnologia (IIT) , Via Barsanti , 73010 Arnesano, Lecce , Italy
| | - Elisa De Luca
- Center for Biomolecular Nanotechnologies@UniLe , Istituto Italiano di Tecnologia (IIT) , Via Barsanti , 73010 Arnesano, Lecce , Italy
| | - Antonio Pennetta
- Dipartimento di Ingegneria dell'Innovazione , Università del Salento , Via per Monteroni Km 1 , 73100 Lecce , Italy.,Dipartimento di Beni Culturali , Università del Salento , Via Dalmazio Birago 64 , 73100 Lecce , Italy
| | - Roberta Del Sole
- Dipartimento di Ingegneria dell'Innovazione , Università del Salento , Via per Monteroni Km 1 , 73100 Lecce , Italy
| | - Giovanni Ventura
- Dipartimento di Chimica , Università degli Studi di Bari Aldo Moro , via Orabona 4 , 70126 Bari , Italy
| | - Tommaso R I Cataldi
- Dipartimento di Chimica , Università degli Studi di Bari Aldo Moro , via Orabona 4 , 70126 Bari , Italy.,Centro Interdipartimentale SMART , Università degli Studi di Bari Aldo Moro , via Orabona 4 , 70126 Bari , Italy
| | - Roberto Fiammengo
- Center for Biomolecular Nanotechnologies@UniLe , Istituto Italiano di Tecnologia (IIT) , Via Barsanti , 73010 Arnesano, Lecce , Italy
| |
Collapse
|
81
|
Ghosh S, Lalani R, Patel V, Bhowmick S, Misra A. Surface engineered liposomal delivery of therapeutics across the blood brain barrier: recent advances, challenges and opportunities. Expert Opin Drug Deliv 2019; 16:1287-1311. [DOI: 10.1080/17425247.2019.1676721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Saikat Ghosh
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
- Formulation Development Department-Novel Drug Delivery Systems, Sun Pharmaceutical Industries Ltd, Vadodara, India
| | - Rohan Lalani
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
- Formulation Development Department-Novel Drug Delivery Systems, Sun Pharmaceutical Industries Ltd, Vadodara, India
| | - Vivek Patel
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Subhas Bhowmick
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
- Formulation Development Department-Novel Drug Delivery Systems, Sun Pharmaceutical Industries Ltd, Vadodara, India
| | - Ambikanandan Misra
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
82
|
Tosi G, Duskey JT, Kreuter J. Nanoparticles as carriers for drug delivery of macromolecules across the blood-brain barrier. Expert Opin Drug Deliv 2019; 17:23-32. [PMID: 31774000 DOI: 10.1080/17425247.2020.1698544] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Current therapies of neurodegenerative or neurometabolic diseases are, to a large extent, hampered by the inability of drugs to cross the blood-brain barrier (BBB). This very tight barrier severely restricts the entrance of molecules from the blood into the brain, especially macromolecular substances (i.e. neurotrophic factors, enzymes, proteins, as well as genetic materials). Due to their size, physicochemical properties, and instability, the delivery of these materials is particularly difficult.Areas covered: Recent research showed that biocompatible and biodegradable nanoparticles possessing tailored surface properties can enable a delivery of drugs and specifically of macromolecules across the blood-brain barrier by using carrier systems of the brain capillary endothelium (Trojan Horse strategy). In the present review, the state-of-art of nanoparticle-mediated drug delivery of different macromolecular substances into the brain following intravenous injection is summarized, and different nanomedicines that are used to enable the transport of neurotrophic factors and enzymes across the blood-brain barrier into the CNS are critically analyzed.Expert opinion: Brain delivery of macromolecules by an intravenous application using nanomedicines is now a growing area of interest which could be really translated into clinical application if dedicated effort will be given to industrial scale-up production.
Collapse
Affiliation(s)
- Giovanni Tosi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italia
| | - J T Duskey
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italia
| | - Jörg Kreuter
- Laboratory of Drug Delivery Systems, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Institute for Pharmaceutical Technology, Goethe-University Frankfurt, Germany
| |
Collapse
|
83
|
Abstract
Cancer remains one of the most difficult to manage healthcare problems. The last two decades have been considered the golden age of cancer research, with major breakthroughs being announced on a regular basis. However, the major problem regarding cancer treatment is the incapability to selectively target cancer cells, with certain populations of tumors still remaining alive after treatment. The main focus of researchers is to develop treatments that are both effective and selective in targeting malignant cells. In this regard, bioavailability can be increased by overcoming the biological barriers encountered in the active agent’s pathway, creating carrier vehicles that have the ability to target malignant cells and effectively release the active agent. Since its appearance, nanomedicine has provided many answers to these challenges, but still, some expectations were not satisfied. In this review, we focused on the most recent developments in targeted drug delivery. Furthermore, a summary of different types of nanoparticles used to deliver active therapeutic agents in oncology is presented, along with details on the nanodrugs that were clinically approved by the Food and Drug Administration (FDA), until April 2019.
Collapse
|
84
|
Del Prado-Audelo M, Magaña J, Mejía-Contreras B, Borbolla-Jiménez F, Giraldo-Gomez D, Piña-Barba M, Quintanar-Guerrero D, Leyva-Gómez G. In vitro cell uptake evaluation of curcumin-loaded PCL/F68 nanoparticles for potential application in neuronal diseases. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
85
|
Kevadiya BD, Ottemann BM, Thomas MB, Mukadam I, Nigam S, McMillan J, Gorantla S, Bronich TK, Edagwa B, Gendelman HE. Neurotheranostics as personalized medicines. Adv Drug Deliv Rev 2019; 148:252-289. [PMID: 30421721 PMCID: PMC6486471 DOI: 10.1016/j.addr.2018.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022]
Abstract
The discipline of neurotheranostics was forged to improve diagnostic and therapeutic clinical outcomes for neurological disorders. Research was facilitated, in largest measure, by the creation of pharmacologically effective multimodal pharmaceutical formulations. Deployment of neurotheranostic agents could revolutionize staging and improve nervous system disease therapeutic outcomes. However, obstacles in formulation design, drug loading and payload delivery still remain. These will certainly be aided by multidisciplinary basic research and clinical teams with pharmacology, nanotechnology, neuroscience and pharmaceutic expertise. When successful the end results will provide "optimal" therapeutic delivery platforms. The current report reviews an extensive body of knowledge of the natural history, epidemiology, pathogenesis and therapeutics of neurologic disease with an eye on how, when and under what circumstances neurotheranostics will soon be used as personalized medicines for a broad range of neurodegenerative, neuroinflammatory and neuroinfectious diseases.
Collapse
Affiliation(s)
- Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brendan M Ottemann
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Midhun Ben Thomas
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Insiya Mukadam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Saumya Nigam
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
86
|
Lei C, Davoodi P, Zhan W, Chow PKH, Wang CH. Development of Nanoparticles for Drug Delivery to Brain Tumor: The Effect of Surface Materials on Penetration Into Brain Tissue. J Pharm Sci 2019; 108:1736-1745. [DOI: 10.1016/j.xphs.2018.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/01/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
|
87
|
Bai L, Liu Y, Guo K, Zhang K, Liu Q, Wang P, Wang X. Ultrasound Facilitates Naturally Equipped Exosomes Derived from Macrophages and Blood Serum for Orthotopic Glioma Treatment. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14576-14587. [PMID: 30900870 DOI: 10.1021/acsami.9b00893] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Exosomes (Exos) are endogenous nanocarriers that have utility as novel delivery systems for the treatment of brain cancers. However, in general, natural Exos show limited BBB-crossing capacity and lack specific targeting. Further modifications including targeting peptides and genetic engineering approaches can circumvent these issues, but the process is time-consuming. Focused ultrasound (FUS) has been approved by the Food and Drug Administration for the diagnosis and treatment of brain diseases due to its noninvasive nature, reversibility, and instantaneous local opening of the BBB. In this study, we developed a natural and safe transportation system using FUS to increase the targeted delivery of Exos for glioma therapy. We also compared the advantages of macrophage-derived Exos (R-Exos) and blood serum-derived Exos (B-Exos) to screen for an improved platform with scope for clinical transformation. In vitro, both R-Exos and B-Exos were transported through BBB models and accumulated in glioma cells with the assistance of ultrasound exposure. R-Exos and B-Exos displayed no obvious differences in physical characteristics, drug release, tumor targeting, and cytotoxicity when combined with FUS. In vivo animal imaging studies suggested that the fluorescence intensity of B-Exos plus single FUS in brains was 4.45-fold higher than that of B-Exos alone. Furthermore, B-Exos plus twice FUS treatment efficiently suppressed glioma growth with no obvious side effects. We therefore demonstrate that the combination of FUS and naturally abundant B-Exos is a potent strategy for brain cancer therapeutics.
Collapse
Affiliation(s)
- Lianmei Bai
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences , Shaanxi Normal University , Xi'an , Shaanxi 710119 , China
| | - Yichen Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences , Shaanxi Normal University , Xi'an , Shaanxi 710119 , China
| | - Kaili Guo
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences , Shaanxi Normal University , Xi'an , Shaanxi 710119 , China
| | - Kun Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences , Shaanxi Normal University , Xi'an , Shaanxi 710119 , China
| | - Quanhong Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences , Shaanxi Normal University , Xi'an , Shaanxi 710119 , China
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences , Shaanxi Normal University , Xi'an , Shaanxi 710119 , China
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences , Shaanxi Normal University , Xi'an , Shaanxi 710119 , China
| |
Collapse
|
88
|
Targeting Brain Disease in MPSII: Preclinical Evaluation of IDS-Loaded PLGA Nanoparticles. Int J Mol Sci 2019; 20:ijms20082014. [PMID: 31022913 PMCID: PMC6514713 DOI: 10.3390/ijms20082014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 12/17/2022] Open
Abstract
Mucopolysaccharidosis type II (MPSII) is a lysosomal storage disorder due to the deficit of the enzyme iduronate 2-sulfatase (IDS), which leads to the accumulation of glycosaminoglycans in most organ-systems, including the brain, and resulting in neurological involvement in about two-thirds of the patients. The main treatment is represented by a weekly infusion of the functional enzyme, which cannot cross the blood-brain barrier and reach the central nervous system. In this study, a tailored nanomedicine approach based on brain-targeted polymeric nanoparticles (g7-NPs), loaded with the therapeutic enzyme, was exploited. Fibroblasts from MPSII patients were treated for 7 days with NPs loaded with the IDS enzyme; an induced IDS activity like the one detected in healthy cells was measured, together with a reduction of GAG content to non-pathological levels. An in vivo short-term study in MPSII mice was performed by weekly administration of g7-NPs-IDS. Biochemical, histological, and immunohistochemical evaluations of liver and brain were performed. The 6-weeks treatment produced a significant reduction of GAG deposits in liver and brain tissues, as well as a reduction of some neurological and inflammatory markers (i.e., LAMP2, CD68, GFAP), highlighting a general improvement of the brain pathology. The g7-NPs-IDS approach allowed a brain-targeted enzyme replacement therapy. Based on these positive results, the future aim will be to optimize NP formulation further to gain a higher efficacy of the proposed approach.
Collapse
|
89
|
Henrich-Noack P, Nikitovic D, Neagu M, Docea AO, Engin AB, Gelperina S, Shtilman M, Mitsias P, Tzanakakis G, Gozes I, Tsatsakis A. The blood–brain barrier and beyond: Nano-based neuropharmacology and the role of extracellular matrix. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 17:359-379. [DOI: 10.1016/j.nano.2019.01.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/11/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
|
90
|
Martins NRB, Angelica A, Chakravarthy K, Svidinenko Y, Boehm FJ, Opris I, Lebedev MA, Swan M, Garan SA, Rosenfeld JV, Hogg T, Freitas RA. Human Brain/Cloud Interface. Front Neurosci 2019; 13:112. [PMID: 30983948 PMCID: PMC6450227 DOI: 10.3389/fnins.2019.00112] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/30/2019] [Indexed: 12/25/2022] Open
Abstract
The Internet comprises a decentralized global system that serves humanity's collective effort to generate, process, and store data, most of which is handled by the rapidly expanding cloud. A stable, secure, real-time system may allow for interfacing the cloud with the human brain. One promising strategy for enabling such a system, denoted here as a "human brain/cloud interface" ("B/CI"), would be based on technologies referred to here as "neuralnanorobotics." Future neuralnanorobotics technologies are anticipated to facilitate accurate diagnoses and eventual cures for the ∼400 conditions that affect the human brain. Neuralnanorobotics may also enable a B/CI with controlled connectivity between neural activity and external data storage and processing, via the direct monitoring of the brain's ∼86 × 109 neurons and ∼2 × 1014 synapses. Subsequent to navigating the human vasculature, three species of neuralnanorobots (endoneurobots, gliabots, and synaptobots) could traverse the blood-brain barrier (BBB), enter the brain parenchyma, ingress into individual human brain cells, and autoposition themselves at the axon initial segments of neurons (endoneurobots), within glial cells (gliabots), and in intimate proximity to synapses (synaptobots). They would then wirelessly transmit up to ∼6 × 1016 bits per second of synaptically processed and encoded human-brain electrical information via auxiliary nanorobotic fiber optics (30 cm3) with the capacity to handle up to 1018 bits/sec and provide rapid data transfer to a cloud based supercomputer for real-time brain-state monitoring and data extraction. A neuralnanorobotically enabled human B/CI might serve as a personalized conduit, allowing persons to obtain direct, instantaneous access to virtually any facet of cumulative human knowledge. Other anticipated applications include myriad opportunities to improve education, intelligence, entertainment, traveling, and other interactive experiences. A specialized application might be the capacity to engage in fully immersive experiential/sensory experiences, including what is referred to here as "transparent shadowing" (TS). Through TS, individuals might experience episodic segments of the lives of other willing participants (locally or remote) to, hopefully, encourage and inspire improved understanding and tolerance among all members of the human family.
Collapse
Affiliation(s)
- Nuno R. B. Martins
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Center for Research and Education on Aging (CREA), University of California, Berkeley and LBNL, Berkeley, CA, United States
| | | | - Krishnan Chakravarthy
- UC San Diego Health Science, San Diego, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| | | | | | - Ioan Opris
- Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Mikhail A. Lebedev
- Center for Neuroengineering, Duke University, Durham, NC, United States
- Center for Bioelectric Interfaces of the Institute for Cognitive Neuroscience of the National Research University Higher School of Economics, Moscow, Russia
- Department of Information and Internet Technologies of Digital Health Institute, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Melanie Swan
- Department of Philosophy, Purdue University, West Lafayette, IN, United States
| | - Steven A. Garan
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Center for Research and Education on Aging (CREA), University of California, Berkeley and LBNL, Berkeley, CA, United States
| | - Jeffrey V. Rosenfeld
- Monash Institute of Medical Engineering, Monash University, Clayton, VIC, Australia
- Department of Neurosurgery, Alfred Hospital, Melbourne, VIC, Australia
- Department of Surgery, Monash University, Clayton, VIC, Australia
- Department of Surgery, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Tad Hogg
- Institute for Molecular Manufacturing, Palo Alto, CA, United States
| | | |
Collapse
|
91
|
Liu Y, Wei C, Huang L, Liu W, Lin J, Chen L, Yang Y, Hu P, Liu A, Wang X. Loquat-Inspired Janus Drug Delivery System for Flexible and Robust Tumor Targeting Therapy. ACS Biomater Sci Eng 2019; 5:740-747. [PMID: 33405835 DOI: 10.1021/acsbiomaterials.8b01138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the inspiration of the shape of the loquat fruit, here, we developed a similarly shaped Janus carrier. This peculiar gold rod-partially exposed structure not only significantly increased the drug loading capability but also improved its infrared response efficiency. A better effect of drug-photothermal treatment thus could be realized. With the aid of an external 3D printed drug guiding device, this carrier could accurately reach different affected areas. The subsequent infrared triggered multiple tumor therapy, thus, could be conducted in the designated location. The corresponding experimental results demonstrated the reliability, flexibility, and biocompatibility of the proposed drug delivery system for two different tumor targeting treatments.
Collapse
Affiliation(s)
- Yu Liu
- The Second Affiliated Hospital of Nanchang University, NanChang, No. 1 minde Road, Donghu District 330006, China
| | - Chaochao Wei
- College of Chemistry, NanChang University, Hong Gu Tan New District, 1299 XueFu Road, NanChang, 330088, China
| | - Long Huang
- The Second Affiliated Hospital of Nanchang University, NanChang, No. 1 minde Road, Donghu District 330006, China
| | - Weizhu Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, NanChang University, Hong Gu Tan New District, 1299 XueFu Road, NanChang, 330088, China
| | - Jiaqi Lin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, NanChang University, Hong Gu Tan New District, 1299 XueFu Road, NanChang, 330088, China
| | - Leifeng Chen
- The Second Affiliated Hospital of Nanchang University, NanChang, No. 1 minde Road, Donghu District 330006, China
| | - Yalan Yang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, NanChang University, Hong Gu Tan New District, 1299 XueFu Road, NanChang, 330088, China
| | - Ping Hu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, NanChang University, Hong Gu Tan New District, 1299 XueFu Road, NanChang, 330088, China
| | - Anwen Liu
- The Second Affiliated Hospital of Nanchang University, NanChang, No. 1 minde Road, Donghu District 330006, China
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, NanChang University, Hong Gu Tan New District, 1299 XueFu Road, NanChang, 330088, China.,College of Chemistry, NanChang University, Hong Gu Tan New District, 1299 XueFu Road, NanChang, 330088, China
| |
Collapse
|
92
|
Abstract
The objective of this article is to propose a re-visiting of the paradigms of nano-carriers based drug routeing from an industrial viewpoint. The accumulation of drugs in specific body compartments after intravenous administration and the improvement of the oral bioavailability of peptides were taken as examples to propose an update of the translational framework preceding industrialisation. In addition to the recent advances on the biopharmacy of nano-carriers, the evolution of adjacent disciplines such as the biology of diseases, the chemistry of polymers, lipids and conjugates, the physico-chemistry of colloids and the assembling of materials at the nanoscale (referred to as microfluidics) are taken into account to consider new avenues in the applications of drug nano-carriers. The deeper integration of the properties of the drug and of the nano-carrier, in the specific context of the disease, advocates for product oriented programmes. At the same time, the advent of powerful collaborative digital tools makes possible the extension of the expertise spectrum. In this open-innovation framework, the Technology Readiness Levels (TRLs) of nano-carriers are proposed as a roadmap for the translational process from the Research stage to the Proof-of-Concept in human.
Collapse
Affiliation(s)
- Harivardhan Reddy Lakkireddy
- a Pre-Development Sciences, Pharmaceutical Development Platform , Sanofi Research & Development , Paris , France
| | - Didier V Bazile
- b Integrated CMC External Innovation , Sanofi Research & Development , Paris , France
| |
Collapse
|
93
|
Kovács E, Deme J, Turczel G, Nagy T, Farkas V, Trif L, Kéki S, Huszthy P, Tuba R. Synthesis and supramolecular assembly of fluorinated biogenic amine recognition host polymers. Polym Chem 2019. [DOI: 10.1039/c9py00929a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorine functionalized biogenic amine carrier polymers.
Collapse
Affiliation(s)
- Ervin Kovács
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- H-1519 Budapest
- Hungary
| | - János Deme
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- H-1519 Budapest
- Hungary
| | - Gábor Turczel
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- H-1519 Budapest
- Hungary
| | - Tibor Nagy
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- H-1519 Budapest
- Hungary
| | - Vajk Farkas
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- H-1519 Budapest
- Hungary
| | - László Trif
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- H-1519 Budapest
- Hungary
| | - Sándor Kéki
- Department of Applied Chemistry
- University of Debrecen
- H-4032 Debrecen
- Hungary
| | - Péter Huszthy
- Department of Organic Chemistry and Technology
- Budapest University of Technology and Economics
- H-1111 Budapest
- Hungary
| | - Robert Tuba
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- H-1519 Budapest
- Hungary
| |
Collapse
|
94
|
Kim JH, Thao NP, Han YK, Lee YS, Luyen BTT, Oanh HV, Kim YH, Yang SY. The insight of in vitro and in silico studies on cholinesterase inhibitors from the roots of Cimicifuga dahurica (Turcz.) Maxim. J Enzyme Inhib Med Chem 2018; 33:1174-1180. [PMID: 30286669 PMCID: PMC6179041 DOI: 10.1080/14756366.2018.1491847] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/16/2018] [Accepted: 06/19/2018] [Indexed: 02/06/2023] Open
Abstract
Cholinesterases (ChEs) are enzymes that break down neurotransmitters associated with cognitive function and memory. We isolated cinnamic acids (1 and 2), indolinones (3 and 4), and cycloartane triterpenoid derivatives (5-19) from the roots of Cimicifuga dahurica (Turcz.) Maxim. by chromatography. These compounds were evaluated for their inhibitory activity toward ChEs. Compound 1 was determined to have an IC50 value of 16.7 ± 1.9 μM, and to act as a competitive inhibitor of acetylcholinesterase (AChE). Compounds 3, 4 and 14 were found to be noncompetitive with IC50 values of 13.8 ± 1.5 and 6.5 ± 2.5 μM, and competitive with an IC50 value of 22.6 ± 0.4 μM, respectively, against butyrylcholinesterase (BuChE). Our molecular simulation suggested each key amino acid, Tyr337 of AChE and Asn228 of BuChE, which were corresponded with potential inhibitors 1, and 3 and 4, respectively. Compounds 1 and 4 were revealed to be promising compounds for inhibition of AChEs and BuChEs, respectively.
Collapse
Affiliation(s)
- Jang Hoon Kim
- Radiation Breeding Research Center, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeoungeup, Jeollabuk-do, Republic of Korea
| | - Nguyen Phuong Thao
- Institute of Marine Biochemistry (IMBC), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Yoo Kyong Han
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Young Suk Lee
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Bui Thi Thuy Luyen
- Department of Pharmaceutical Industry, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Ha Van Oanh
- Department of Pharmaceutical Industry, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
95
|
De Jong E, Williams DS, Abdelmohsen LK, Van Hest JC, Zuhorn IS. A filter-free blood-brain barrier model to quantitatively study transendothelial delivery of nanoparticles by fluorescence spectroscopy. J Control Release 2018; 289:14-22. [DOI: 10.1016/j.jconrel.2018.09.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/15/2018] [Accepted: 09/18/2018] [Indexed: 01/21/2023]
|
96
|
Lu Q, Cai X, Zhang X, Li S, Song Y, Du D, Dutta P, Lin Y. Synthetic Polymer Nanoparticles Functionalized with Different Ligands for Receptor-mediated Transcytosis across Blood-Brain Barrier. ACS APPLIED BIO MATERIALS 2018; 1:1687-1694. [PMID: 31815251 DOI: 10.1021/acsabm.8b00502] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polymeric nanoparticles have been investigated as biocompatible and promising nano-carriers to deliver drugs across the blood-brain barrier (BBB). However, most of the polymeric nanoparticles cannot be observed without attaching them with fluorescent dyes. Generally complex synthesis process is required to attach fluorescent dye tracing molecules with drug carrier nanoparticles. In this paper, we synthesized a novel fluorescent polymer based on poly [Triphenylamine-4-vinyl-(P-methoxy-benzene)] (TEB). This polymer was prepared from TEB polymer through coprecipitation. Furthermore, three types of ligands, transferrin (TfR), lactoferrin (LfR) and lipoprotein (LRP), were covalently attached on the nanoparticle surface to improve the BBB transport efficiency. All of prepared TEB-based nanoparticles were biocompatible, exhibited excellent fluorescence properties and could be observed in vivo. The transcellular transportation of these TEB-based nanoparticles across the BBB was evaluated by observing the fluorescent intensity. The translocation study was performed in an in vitro BBB model that were constructed based on mouse cerebral endothelial cells (bEnd.3). The results showed that ligand-coated TEB nanoparticles can be transported across BBB with high efficiencies (up to 29.02%). This is the first time that the fluorescent TEB nanoparticles were applied as nano-carriers for transport across the BBB. Such fluorescent polymeric nanoparticles have the potential applications in brain imaging or drug delivery.
Collapse
Affiliation(s)
- Qian Lu
- School of Mechanical and Material Engineering, Washington State University, Pullman, Washington 99163, United States
| | - Xiaoli Cai
- School of Mechanical and Material Engineering, Washington State University, Pullman, Washington 99163, United States
| | - Xian Zhang
- School of Mechanical and Material Engineering, Washington State University, Pullman, Washington 99163, United States
| | - Suiqiong Li
- School of Mechanical and Material Engineering, Washington State University, Pullman, Washington 99163, United States
| | - Yang Song
- School of Mechanical and Material Engineering, Washington State University, Pullman, Washington 99163, United States
| | - Dan Du
- School of Mechanical and Material Engineering, Washington State University, Pullman, Washington 99163, United States
| | - Prashanta Dutta
- School of Mechanical and Material Engineering, Washington State University, Pullman, Washington 99163, United States
| | - Yuehe Lin
- School of Mechanical and Material Engineering, Washington State University, Pullman, Washington 99163, United States
| |
Collapse
|
97
|
Dos Santos Rodrigues B, Oue H, Banerjee A, Kanekiyo T, Singh J. Dual functionalized liposome-mediated gene delivery across triple co-culture blood brain barrier model and specific in vivo neuronal transfection. J Control Release 2018; 286:264-278. [PMID: 30071253 PMCID: PMC6138570 DOI: 10.1016/j.jconrel.2018.07.043] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/12/2018] [Accepted: 07/27/2018] [Indexed: 12/19/2022]
Abstract
Gene therapy has become a promising approach for neurodegenerative disease treatment, however there is an urgent need to develop an efficient gene carrier to transport gene across the blood brain barrier (BBB). In this study, we strategically designed dual functionalized liposomes for efficient neuronal transfection by combining transferrin (Tf) receptor targeting and enhanced cell penetration utilizing penetratin (Pen). A triple cell co-culture model of BBB confirmed the ability of the liposomes to cross the barrier layer and transfect primary neuronal cells. In vivo quantification of PenTf-liposomes demonstrated expressive accumulation in the brain (12%), without any detectable cellular damage or morphological change. The efficacy of these nanoparticles containing plasmid β-galactosidase in modulating transfection was assessed by β-galactosidase expression in vivo. As a consequence of accumulation in the brain, PenTf-liposomes significantly induced gene expression in mice. Immunofluorescence studies of brain sections of mice after tail vein injection of liposomes encapsulating pDNA encoding GFP (pGFP) illustrate the superior ability of dual-functionalized liposomes to accumulate in the brain and transfect neurons. Taken together, the multifunctional liposomes provide an excellent gene delivery platform for neurodegenerative diseases.
Collapse
Affiliation(s)
- Bruna Dos Santos Rodrigues
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Hiroshi Oue
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Amrita Banerjee
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA.
| |
Collapse
|
98
|
Silva-Abreu M, Calpena AC, Andrés-Benito P, Aso E, Romero IA, Roig-Carles D, Gromnicova R, Espina M, Ferrer I, García ML, Male D. PPARγ agonist-loaded PLGA-PEG nanocarriers as a potential treatment for Alzheimer's disease: in vitro and in vivo studies. Int J Nanomedicine 2018; 13:5577-5590. [PMID: 30271148 PMCID: PMC6154713 DOI: 10.2147/ijn.s171490] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The first aim of this study was to develop a nanocarrier that could transport the peroxisome proliferator-activated receptor agonist, pioglitazone (PGZ) across brain endothelium and examine the mechanism of nanoparticle transcytosis. The second aim was to determine whether these nanocarriers could successfully treat a mouse model of Alzheimer's disease (AD). METHODS PGZ-loaded nanoparticles (PGZ-NPs) were synthesized by the solvent displacement technique, following a factorial design using poly (lactic-co-glycolic acid) polyethylene glycol (PLGA-PEG). The transport of the carriers was assessed in vitro, using a human brain endothelial cell line, cytotoxicity assays, fluorescence-tagged nanocarriers, fluorescence-activated cell sorting, confocal and transmission electron microscopy. The effectiveness of the treatment was assessed in APP/PS1 mice in a behavioral assay and by measuring the cortical deposition of β-amyloid. RESULTS Incorporation of PGZ into the carriers promoted a 50x greater uptake into brain endothelium compared with the free drug and the carriers showed a delayed release profile of PGZ in vitro. In the doses used, the nanocarriers were not toxic for the endothelial cells, nor did they alter the permeability of the blood-brain barrier model. Electron microscopy indicated that the nanocarriers were transported from the apical to the basal surface of the endothelium by vesicular transcytosis. An efficacy test carried out in APP/PS1 transgenic mice showed a reduction of memory deficit in mice chronically treated with PGZ-NPs. Deposition of β-amyloid in the cerebral cortex, measured by immunohistochemistry and image analysis, was correspondingly reduced. CONCLUSION PLGA-PEG nanocarriers cross brain endothelium by transcytosis and can be loaded with a pharmaceutical agent to effectively treat a mouse model of AD.
Collapse
Affiliation(s)
- Marcelle Silva-Abreu
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Pol Andrés-Benito
- Servei d'Anatomia Patològica, Institut d'Investigació Biomèdica de Bellvitge-Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Ester Aso
- Servei d'Anatomia Patològica, Institut d'Investigació Biomèdica de Bellvitge-Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Ignacio A Romero
- School of Life, Health and Chemical Sciences, Faculty of Science, The Open University, Walton Hall, Milton Keynes, UK,
| | - David Roig-Carles
- School of Life, Health and Chemical Sciences, Faculty of Science, The Open University, Walton Hall, Milton Keynes, UK,
| | - Radka Gromnicova
- School of Life, Health and Chemical Sciences, Faculty of Science, The Open University, Walton Hall, Milton Keynes, UK,
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Isidre Ferrer
- Servei d'Anatomia Patològica, Institut d'Investigació Biomèdica de Bellvitge-Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - María Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - David Male
- School of Life, Health and Chemical Sciences, Faculty of Science, The Open University, Walton Hall, Milton Keynes, UK,
| |
Collapse
|
99
|
Teow SY, Wong MMT, Yap HY, Peh SC, Shameli K. Bactericidal Properties of Plants-Derived Metal and Metal Oxide Nanoparticles (NPs). Molecules 2018; 23:molecules23061366. [PMID: 29882775 PMCID: PMC6100366 DOI: 10.3390/molecules23061366] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 11/25/2022] Open
Abstract
Nanoparticles (NPs) are nano-sized particles (generally 1–100 nm) that can be synthesized through various methods. The wide range of physicochemical characteristics of NPs permit them to have diverse biological functions. These particles are versatile and can be adopted into various applications, particularly in biomedical field. In the past five years, NPs’ roles in biomedical applications have drawn considerable attentions, and novel NPs with improved functions and reduced toxicity are continuously increasing. Extensive studies have been carried out in evaluating antibacterial potentials of NPs. The promising antibacterial effects exhibited by NPs highlight the potential of developing them into future generation of antimicrobial agents. There are various methods to synthesize NPs, and each of the method has significant implication on the biological action of NPs. Among all synthetic methods, green technology is the least toxic biological route, which is particularly suitable for biomedical applications. This mini-review provides current update on the antibacterial effects of NPs synthesized by green technology using plants. Underlying challenges in developing NPs into future antibacterials in clinics are also discussed at the present review.
Collapse
Affiliation(s)
- Sin-Yeang Teow
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia.
| | - Magdelyn Mei-Theng Wong
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia.
| | - Hooi-Yeen Yap
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia.
| | - Suat-Cheng Peh
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia.
- Anatomical Pathology Department, Sunway Medical Centre, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia.
| | - Kamyar Shameli
- Department of Environment and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia.
| |
Collapse
|
100
|
Fan K, Jia X, Zhou M, Wang K, Conde J, He J, Tian J, Yan X. Ferritin Nanocarrier Traverses the Blood Brain Barrier and Kills Glioma. ACS NANO 2018; 12:4105-4115. [PMID: 29608290 DOI: 10.1021/acsnano.7b06969] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Over the last decades, considerable efforts have been put into developing active nanocarrier systems that cross the blood brain barrier (BBB) to treat brain-related diseases such as glioma tumors. However, to date none have been approved for clinical usage. Here, we show that a human H-ferritin (HFn) nanocarrier both successfully crosses the BBB and kills glioma tumor cells. Its principle point of entry is the HFn receptor (transferrin receptor 1), which is overexpressed in both BBB endothelial cells (ECs) and glioma cells. Importantly, we found that HFn enters and exits the BBB via the endosome compartment. In contrast, upon specifically targeting and entering glioma cells, nearly all of the HFn accumulated in the lysosomal compartment, resulting in the killing of glioma tumor cells, with no HFn accumulation in the surrounding healthy brain tissue. Thus, HFn is an ideal nanocarrier for glioma therapy and possesses the potential to serve as a therapeutic approach against a broad range of central nervous system diseases.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/chemistry
- Antibiotics, Antineoplastic/pharmacology
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/metabolism
- Disease Models, Animal
- Doxorubicin/administration & dosage
- Doxorubicin/chemistry
- Doxorubicin/pharmacology
- Drug Carriers/pharmacokinetics
- Drug Carriers/therapeutic use
- Drug Screening Assays, Antitumor
- Ferritins/pharmacokinetics
- Ferritins/therapeutic use
- Glioma/drug therapy
- Glioma/pathology
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Nanoparticles/metabolism
- Nanoparticles/therapeutic use
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Kelong Fan
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology , Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101 , China
| | - Xiaohua Jia
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences , Institute of Automation, Chinese Academy of Sciences , Beijing 100190 , China
| | - Meng Zhou
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology , Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101 , China
- University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Kun Wang
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences , Institute of Automation, Chinese Academy of Sciences , Beijing 100190 , China
| | - João Conde
- School of Engineering and Materials Science , Queen Mary University of London , London E1 4NS , U.K
| | - Jiuyang He
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology , Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101 , China
| | - Jie Tian
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences , Institute of Automation, Chinese Academy of Sciences , Beijing 100190 , China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology , Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101 , China
- University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| |
Collapse
|