51
|
Peric-Hupkes D, Meuleman W, Pagie L, Bruggeman SWM, Solovei I, Brugman W, Gräf S, Flicek P, Kerkhoven RM, van Lohuizen M, Reinders M, Wessels L, van Steensel B. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol Cell 2010; 38:603-13. [PMID: 20513434 DOI: 10.1016/j.molcel.2010.03.016] [Citation(s) in RCA: 787] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/08/2010] [Accepted: 03/10/2010] [Indexed: 11/15/2022]
Abstract
The three-dimensional organization of chromosomes within the nucleus and its dynamics during differentiation are largely unknown. To visualize this process in molecular detail, we generated high-resolution maps of genome-nuclear lamina interactions during subsequent differentiation of mouse embryonic stem cells via lineage-committed neural precursor cells into terminally differentiated astrocytes. This reveals that a basal chromosome architecture present in embryonic stem cells is cumulatively altered at hundreds of sites during lineage commitment and subsequent terminal differentiation. This remodeling involves both individual transcription units and multigene regions and affects many genes that determine cellular identity. Often, genes that move away from the lamina are concomitantly activated; many others, however, remain inactive yet become unlocked for activation in a next differentiation step. These results suggest that lamina-genome interactions are widely involved in the control of gene expression programs during lineage commitment and terminal differentiation.
Collapse
Affiliation(s)
- Daan Peric-Hupkes
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Genome-nuclear lamina interactions and gene regulation. Curr Opin Cell Biol 2010; 22:320-5. [PMID: 20444586 DOI: 10.1016/j.ceb.2010.04.002] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 04/01/2010] [Accepted: 04/05/2010] [Indexed: 11/23/2022]
Abstract
The nuclear lamina, a filamentous protein network that coats the inner nuclear membrane, has long been thought to interact with specific genomic loci and regulate their expression. Molecular mapping studies have now identified large genomic domains that are in contact with the lamina. Genes in these domains are typically repressed, and artificial tethering experiments indicate that the lamina can actively contribute to this repression. Furthermore, the lamina indirectly controls gene expression in the nuclear interior by sequestration of certain transcription factors. A variety of DNA-binding and chromatin proteins may anchor specific loci to the lamina, while histone-modifying enzymes partly mediate the local repressive effect of the lamina. Experimental tools are now available to begin to unravel the underlying molecular mechanisms.
Collapse
|
53
|
Prokocimer M, Davidovich M, Nissim-Rafinia M, Wiesel-Motiuk N, Bar DZ, Barkan R, Meshorer E, Gruenbaum Y. Nuclear lamins: key regulators of nuclear structure and activities. J Cell Mol Med 2009; 13:1059-85. [PMID: 19210577 PMCID: PMC4496104 DOI: 10.1111/j.1582-4934.2008.00676.x] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 01/19/2009] [Indexed: 11/27/2022] Open
Abstract
The nuclear lamina is a proteinaceous structure located underneath the inner nuclear membrane (INM), where it associates with the peripheral chromatin. It contains lamins and lamin-associated proteins, including many integral proteins of the INM, chromatin modifying proteins, transcriptional repressors and structural proteins. A fraction of lamins is also present in the nucleoplasm, where it forms stable complexes and is associated with specific nucleoplasmic proteins. The lamins and their associated proteins are required for most nuclear activities, mitosis and for linking the nucleoplasm to all major cytoskeletal networks in the cytoplasm. Mutations in nuclear lamins and their associated proteins cause about 20 different diseases that are collectively called laminopathies'. This review concentrates mainly on lamins, their structure and their roles in DNA replication, chromatin organization, adult stem cell differentiation, aging, tumorogenesis and the lamin mutations leading to laminopathic diseases.
Collapse
Affiliation(s)
- Miron Prokocimer
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Maya Davidovich
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Malka Nissim-Rafinia
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Naama Wiesel-Motiuk
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Daniel Z Bar
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Rachel Barkan
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Eran Meshorer
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Yosef Gruenbaum
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| |
Collapse
|
54
|
Akita H, Kudo A, Minoura A, Yamaguti M, Khalil IA, Moriguchi R, Masuda T, Danev R, Nagayama K, Kogure K, Harashima H. Multi-layered nanoparticles for penetrating the endosome and nuclear membrane via a step-wise membrane fusion process. Biomaterials 2009; 30:2940-9. [PMID: 19261326 DOI: 10.1016/j.biomaterials.2009.02.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Accepted: 02/09/2009] [Indexed: 11/19/2022]
Abstract
Efficient targeting of DNA to the nucleus is a prerequisite for effective gene therapy. The gene-delivery vehicle must penetrate through the plasma membrane, and the DNA-impermeable double-membraned nuclear envelope, and deposit its DNA cargo in a form ready for transcription. Here we introduce a concept for overcoming intracellular membrane barriers that involves step-wise membrane fusion. To achieve this, a nanotechnology was developed that creates a multi-layered nanoparticle, which we refer to as a Tetra-lamellar Multi-functional Envelope-type Nano Device (T-MEND). The critical structural elements of the T-MEND are a DNA-polycation condensed core coated with two nuclear membrane-fusogenic inner envelopes and two endosome-fusogenic outer envelopes, which are shed in stepwise fashion. A double-lamellar membrane structure is required for nuclear delivery via the stepwise fusion of double layered nuclear membrane structure. Intracellular membrane fusions to endosomes and nuclear membranes were verified by spectral imaging of fluorescence resonance energy transfer (FRET) between donor and acceptor fluorophores that had been dually labeled on the liposome surface. Coating the core with the minimum number of nucleus-fusogenic lipid envelopes (i.e., 2) is essential to facilitate transcription. As a result, the T-MEND achieves dramatic levels of transgene expression in non-dividing cells.
Collapse
|
55
|
Dechat T, Adam SA, Goldman RD. Nuclear lamins and chromatin: when structure meets function. ADVANCES IN ENZYME REGULATION 2008; 49:157-66. [PMID: 19154754 PMCID: PMC3253622 DOI: 10.1016/j.advenzreg.2008.12.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Thomas Dechat
- Northwestern University Medical School, Department of Cell and Molecular Biology, Chicago, Illinois 60611, USA
| | - Stephen A. Adam
- Northwestern University Medical School, Department of Cell and Molecular Biology, Chicago, Illinois 60611, USA
| | - Robert D. Goldman
- Northwestern University Medical School, Department of Cell and Molecular Biology, Chicago, Illinois 60611, USA
| |
Collapse
|
56
|
Schirmer EC. The epigenetics of nuclear envelope organization and disease. Mutat Res 2008; 647:112-21. [PMID: 18722388 DOI: 10.1016/j.mrfmmm.2008.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 07/16/2008] [Accepted: 07/23/2008] [Indexed: 01/09/2023]
Abstract
Mammalian chromosomes and some specific genes have non-random positions within the nucleus that are tissue-specific and heritable. Work in many organisms has shown that genes at the nuclear periphery tend to be inactive and altering their partitioning to the interior results in their activation. Proteins of the nuclear envelope can recruit chromatin with specific epigenetic marks and can also recruit silencing factors that add new epigenetic modifications to chromatin sequestered at the periphery. Together these findings indicate that the nuclear envelope is a significant epigenetic regulator. The importance of this function is emphasized by observations of aberrant distribution of peripheral heterochromatin in several human diseases linked to mutations in NE proteins. These debilitating inherited diseases range from muscular dystrophies to the premature aging progeroid syndromes and the heterochromatin changes are just one early clue for understanding the molecular details of how they work. The architecture of the nuclear envelope provides a unique environment for epigenetic regulation and as such a great deal of research will be required before we can ascertain the full range of its contributions to epigenetics.
Collapse
Affiliation(s)
- Eric C Schirmer
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK.
| |
Collapse
|
57
|
Rowat AC, Lammerding J, Herrmann H, Aebi U. Towards an integrated understanding of the structure and mechanics of the cell nucleus. Bioessays 2008; 30:226-36. [PMID: 18293361 DOI: 10.1002/bies.20720] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Changes in the shape and structural organization of the cell nucleus occur during many fundamental processes including development, differentiation and aging. In many of these processes, the cell responds to physical forces by altering gene expression within the nucleus. How the nucleus itself senses and responds to such mechanical cues is not well understood. In addition to these external forces, epigenetic modifications of chromatin structure inside the nucleus could also alter its physical properties. To achieve a better understanding, we need to elucidate the relationship between nuclear structure and material properties. Recently, new approaches have been developed to systematically investigate nuclear mechanical properties. These experiments provide important new insights into the disease mechanism of a growing class of tissue-specific disorders termed 'nuclear envelopathies'. Here we review our current understanding of what determines the shape and mechanical properties of the cell nucleus.
Collapse
Affiliation(s)
- Amy C Rowat
- Department of Physics/School of Engineering and Applied Science, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | |
Collapse
|
58
|
Kalverda B, Röling MD, Fornerod M. Chromatin organization in relation to the nuclear periphery. FEBS Lett 2008; 582:2017-22. [PMID: 18435921 DOI: 10.1016/j.febslet.2008.04.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 04/11/2008] [Indexed: 11/15/2022]
Abstract
In the limited space of the nucleus, chromatin is organized in a dynamic and non-random manner. Three ways of chromatin organization are compaction, formation of loops and localization within the nucleus. To study chromatin localization it is most convenient to use the nuclear envelope as a fixed viewpoint. Peripheral chromatin has both been described as silent chromatin, interacting with the nuclear lamina, and active chromatin, interacting with nuclear pore proteins. Current data indicate that the nuclear envelope is a reader as well as a writer of chromatin state, and that its influence is not limited to the nuclear periphery.
Collapse
Affiliation(s)
- Bernike Kalverda
- Department of Tumor Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
59
|
Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, Goldman RD. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 2008; 22:832-53. [PMID: 18381888 PMCID: PMC2732390 DOI: 10.1101/gad.1652708] [Citation(s) in RCA: 742] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the past few years it has become evident that the intermediate filament proteins, the types A and B nuclear lamins, not only provide a structural framework for the nucleus, but are also essential for many aspects of normal nuclear function. Insights into lamin-related functions have been derived from studies of the remarkably large number of disease-causing mutations in the human lamin A gene. This review provides an up-to-date overview of the functions of nuclear lamins, emphasizing their roles in epigenetics, chromatin organization, DNA replication, transcription, and DNA repair. In addition, we discuss recent evidence supporting the importance of lamins in viral infections.
Collapse
Affiliation(s)
- Thomas Dechat
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Katrin Pfleghaar
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Kaushik Sengupta
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Takeshi Shimi
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Dale K. Shumaker
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Liliana Solimando
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Robert D. Goldman
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| |
Collapse
|
60
|
Kumaran RI, Spector DL. A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. ACTA ACUST UNITED AC 2008; 180:51-65. [PMID: 18195101 PMCID: PMC2213611 DOI: 10.1083/jcb.200706060] [Citation(s) in RCA: 297] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The peripheral nuclear lamina, which is largely but not entirely associated with inactive chromatin, is considered to be an important determinant of nuclear structure and gene expression. We present here an inducible system to target a genetic locus to the nuclear lamina in living mammalian cells. Using three-dimensional time-lapse microscopy, we determined that targeting of the locus requires passage through mitosis. Once targeted, the locus remains anchored to the nuclear periphery in interphase as well as in daughter cells after passage through a subsequent mitosis. Upon transcriptional induction, components of the gene expression machinery are recruited to the targeted locus, and we visualized nascent transcripts at the nuclear periphery. The kinetics of transcriptional induction at the nuclear lamina is similar to that observed at an internal nuclear region. This new cell system provides a powerful approach to study the dynamics of gene function at the nuclear periphery in living cells.
Collapse
Affiliation(s)
- R Ileng Kumaran
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
61
|
Mattout A, Goldberg M, Tzur Y, Margalit A, Gruenbaum Y. Specific and conserved sequences in D. melanogaster and C. elegans lamins and histone H2A mediate the attachment of lamins to chromosomes. J Cell Sci 2006; 120:77-85. [PMID: 17148572 DOI: 10.1242/jcs.03325] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The intimate association between nuclear lamins and chromatin is thought to regulate higher order chromatin organization. Previous studies have mapped a region between the rod domain and the Ig fold in the tail domain of Drosophila melanogaster lamin Dm0, which binds chromatin in vitro via the histone H2A/H2B dimer. This region contains an evolutionarily conserved nuclear localization signal (NLS) KRKR, and a sequence composed of the amino acids TRAT. Here we show that binding of lamin Dm0 to chromatin requires both NLS and TRAT sequences. Substituting either of the threonine residues in the TRAT sequence with negatively charged residues decreases the binding of lamin Dm0 to chromatin, indicating that this binding could be regulated by phosphorylation. Both lamin Dm0 and C. elegans Ce-lamin bind directly to histone H2A in vitro and this binding requires the NLS. The amino and carboxyl tail domains of histone H2A are each essential, but not sufficient, for binding to lamin Dm0; only a polypeptide containing both histone H2A tail domains binds efficiently to lamin Dm0. Taken together, these results suggest that specific residues in lamin Dm0 and histone H2A mediate the attachment of the nuclear lamina to chromosomes in vivo, which could have implications on the understanding of laminopathic diseases.
Collapse
Affiliation(s)
- Anna Mattout
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904 Israel
| | | | | | | | | |
Collapse
|
62
|
Pickersgill H, Kalverda B, de Wit E, Talhout W, Fornerod M, van Steensel B. Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat Genet 2006; 38:1005-14. [PMID: 16878134 DOI: 10.1038/ng1852] [Citation(s) in RCA: 432] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 06/30/2006] [Indexed: 01/18/2023]
Abstract
The nuclear lamina binds chromatin in vitro and is thought to function in its organization, but genes that interact with it are unknown. Using an in vivo approach, we identified approximately 500 Drosophila melanogaster genes that interact with B-type lamin (Lam). These genes are transcriptionally silent and late replicating, lack active histone marks and are widely spaced. These factors collectively predict lamin binding behavior, indicating that the nuclear lamina integrates variant and invariant chromatin features. Consistently, proximity of genomic regions to the nuclear lamina is partly conserved between cell types, and induction of gene expression or active histone marks reduces Lam binding. Lam target genes cluster in the genome, and these clusters are coordinately expressed during development. This genome-wide analysis gives clear insight into the nature and dynamic behavior of the genome at the nuclear lamina, and implies that intergenic DNA functions in the global organization of chromatin in the nucleus.
Collapse
Affiliation(s)
- Helen Pickersgill
- Department of Tumor Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
63
|
Yamaguchi A, Katsu Y, Matsuyama M, Yoshikuni M, Nagahama Y. Phosphorylation of the p34(cdc2) target site on goldfish germinal vesicle lamin B3 before oocyte maturation. Eur J Cell Biol 2006; 85:501-17. [PMID: 16600424 DOI: 10.1016/j.ejcb.2006.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 02/07/2006] [Accepted: 02/08/2006] [Indexed: 10/24/2022] Open
Abstract
The nuclear membranes surrounding fish and frog oocyte germinal vesicles (GVs) are supported by the lamina, an internal, mesh-like structure that consists of the protein lamin B3. The mechanisms by which lamin B3 is transported into GVs and is assembled to form the nuclear lamina are not well understood. In this study, we developed a heterogeneous microinjection system in which wild-type or mutated goldfish GV lamin B3 (GFLB3) was expressed in Escherichia coli, biotinylated, and microinjected into Xenopus oocytes. The localization of the biotinylated GFLB3 was visualized by fluorescence confocal microscopy. The results of these experiments indicated that the N-terminal domain plays important roles in both nuclear transport and assembly of lamin B3 to form the nuclear lamina. The N-terminal domain includes a major consensus phosphoacceptor site for the p34(cdc2) kinase at amino acid residue Ser-28. To investigate nuclear lamin phosphorylation, we generated a monoclonal antibody (C7B8D) against Ser-28-phosphorylated GFLB3. Two-dimensional (2-D) electrophoresis of GV protein revealed two major spots of lamin B3 with different isoelectric points (5.9 and 6.1). The C7B8D antibody recognized the pI-5.9 spot but not the pI-6.1 spot. The former spot disappeared when the native lamina was incubated with lambda phage protein phosphatase (lambda-PP), indicating that a portion of the lamin protein was already phosphorylated in the goldfish GV-stage oocytes. GFLB3 that had been microinjected into Xenopus oocytes was also phosphorylated in Xenopus GV lamina, as judged by Western blotting with C7B8D. Thus, lamin phosphorylation appears to occur prior to oocyte maturation in vivo in both these species. Taken together, our results suggest that the balance between phosphorylation by interphase lamin kinases and dephosphorylation by phosphatases regulates the conformational changes in the lamin B3 N-terminal head domain that in turn regulates the continual in vivo rearrangement and remodeling of the oocyte lamina.
Collapse
Affiliation(s)
- Akihiko Yamaguchi
- Laboratory of Marine Biology, Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-Ku, Fukuoka 812-8581, Japan.
| | | | | | | | | |
Collapse
|
64
|
Yang Q, Riblet R, Schildkraut CL. Sites that direct nuclear compartmentalization are near the 5' end of the mouse immunoglobulin heavy-chain locus. Mol Cell Biol 2005; 25:6021-30. [PMID: 15988016 PMCID: PMC1168801 DOI: 10.1128/mcb.25.14.6021-6030.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
VDJ rearrangement in the mouse immunoglobulin heavy chain (Igh) locus involves a combination of events, including a large change in its nuclear compartmentalization. Prior to rearrangement, Igh moves from its default peripheral location near the nuclear envelope to an interior compartment, and after rearrangement it returns to the periphery. To identify any sites in Igh responsible for its association with the periphery, we systematically analyzed the nuclear positions of the Igh locus in mouse non-B- and B-cell lines and, importantly, in primary splenic lipopolysaccharide-stimulated B cells and plasmablasts. We found that a broad approximately 1-Mb region in the 5' half of the variable-gene region heavy-chain (Vh) locus regularly colocalizes with the nuclear lamina. The 3' half of the Vh gene region is less frequently colocalized with the periphery, while sequences flanking the Vh gene region are infrequently so. Importantly, in plasmacytomas, VDJ rearrangements that delete most of the Vh locus, including part of the 5' half of the Vh gene region, result in loss of peripheral compartmentalization, while deletion of only the proximal half of the Vh gene region does not. In addition, when Igh-Myc translocations move the Vh genes to a new chromosome, the distal Vh gene region is still associated with the nuclear periphery. Thus, the Igh region that interacts with the nuclear periphery is localized but is likely comprised of multiple sites that are distributed over approximately 1 Mb in the 5' half of the Vh gene region. This 5' Vh gene region that produces peripheral compartmentalization is the same region that is distinguished by requirements for interleukin-7, Pax5, and Ezh2 for rearrangement of the Vh genes.
Collapse
Affiliation(s)
- Qiaoxin Yang
- Department of Cell Biology (CH 416), Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, USA
| | | | | |
Collapse
|
65
|
Arikawa M, Saito A, Omura G, Mostafa Kamal Khan SM, Suetomo Y, Kakuta S, Suzaki T. Ca2+-dependent nuclear contraction in the heliozoon Actinophrys sol. Cell Calcium 2005; 38:447-55. [PMID: 16099499 DOI: 10.1016/j.ceca.2005.06.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 06/25/2005] [Accepted: 06/27/2005] [Indexed: 11/26/2022]
Abstract
Ca2+-dependent contractility was found to exist in the nucleus of the heliozoon protozoan Actinophrys sol. Upon addition of Ca2+ ([Ca2+]free = 2.0 x 10(-3) M), diameters of isolated and detergent-extracted nuclei became reduced from 16.5+/-1.7 microm to 11.0+/-1.3 microm. The threshold level of [Ca2+]free for the nuclear contraction was 2.9 x 10(-7) M. The nuclear contraction was not induced by Mg2+, and was not inhibited by colchicine or cytochalasin B. Contracted nuclei became expanded when Ca2+ was removed by EGTA; thus cycles of contraction and expansion could be repeated many times by alternating addition of Ca2+ and EGTA. The Ca2+-dependent nuclear contractility remained even after high salt treatment, suggesting a possible involvement of nucleoskeletal components in the nuclear contraction. Electron microscopy showed that, in the relaxed state, filamentous structures were observed to spread in the nucleus to form a network. After addition of Ca2+, they became aggregated and constructed a mass of thicker filaments, followed by re-distribution of the filaments spread around inside of the nucleus when Ca2+ was removed. These results suggest that the nuclear contraction is induced by Ca2+-dependent transformation of the filamentous structures in the nucleus.
Collapse
Affiliation(s)
- Mikihiko Arikawa
- Department of Biological Sciences, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan.
| | | | | | | | | | | | | |
Collapse
|
66
|
Kireeva N, Lakonishok M, Kireev I, Hirano T, Belmont AS. Visualization of early chromosome condensation: a hierarchical folding, axial glue model of chromosome structure. ACTA ACUST UNITED AC 2004; 166:775-85. [PMID: 15353545 PMCID: PMC2172117 DOI: 10.1083/jcb.200406049] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Current models of mitotic chromosome structure are based largely on the examination of maximally condensed metaphase chromosomes. Here, we test these models by correlating the distribution of two scaffold components with the appearance of prophase chromosome folding intermediates. We confirm an axial distribution of topoisomerase IIα and the condensin subunit, structural maintenance of chromosomes 2 (SMC2), in unextracted metaphase chromosomes, with SMC2 localizing to a 150–200-nm-diameter central core. In contrast to predictions of radial loop/scaffold models, this axial distribution does not appear until late prophase, after formation of uniformly condensed middle prophase chromosomes. Instead, SMC2 associates throughout early and middle prophase chromatids, frequently forming foci over the chromosome exterior. Early prophase condensation occurs through folding of large-scale chromatin fibers into condensed masses. These resolve into linear, 200–300-nm-diameter middle prophase chromatids that double in diameter by late prophase. We propose a unified model of chromosome structure in which hierarchical levels of chromatin folding are stabilized late in mitosis by an axial “glue.”
Collapse
Affiliation(s)
- Natashe Kireeva
- Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
67
|
Gruenbaum Y, Goldman RD, Meyuhas R, Mills E, Margalit A, Fridkin A, Dayani Y, Prokocimer M, Enosh A. The nuclear lamina and its functions in the nucleus. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 226:1-62. [PMID: 12921235 DOI: 10.1016/s0074-7696(03)01001-5] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nuclear lamina is a structure near the inner nuclear membrane and the peripheral chromatin. It is composed of lamins, which are also present in the nuclear interior, and lamin-associated proteins. The increasing number of proteins that interact with lamins and the compound interactions between these proteins and chromatin-associated proteins make the nuclear lamina a highly complex but also a very exciting structure. The nuclear lamina is an essential component of metazoan cells. It is involved in most nuclear activities including DNA replication, RNA transcription, nuclear and chromatin organization, cell cycle regulation, cell development and differentiation, nuclear migration, and apoptosis. Specific mutations in nuclear lamina genes cause a wide range of heritable human diseases. These diseases include Emery-Dreifuss muscular dystrophy, limb girdle muscular dystrophy, dilated cardiomyopathy (DCM) with conduction system disease, familial partial lipodystrophy (FPLD), autosomal recessive axonal neuropathy (Charcot-Marie-Tooth disorder type 2, CMT2), mandibuloacral dysplasia (MAD), Hutchison Gilford Progeria syndrome (HGS), Greenberg Skeletal Dysplasia, and Pelger-Huet anomaly (PHA). Genetic analyses in Caenorhabditis elegans, Drosophila, and mice show new insights into the functions of the nuclear lamina, and recent structural analyses have begun to unravel the molecular structure and assembly of lamins and their associated proteins.
Collapse
Affiliation(s)
- Yosef Gruenbaum
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Maske CP, Hollinshead MS, Higbee NC, Bergo MO, Young SG, Vaux DJ. A carboxyl-terminal interaction of lamin B1 is dependent on the CAAX endoprotease Rce1 and carboxymethylation. J Cell Biol 2003; 162:1223-32. [PMID: 14504265 PMCID: PMC2173957 DOI: 10.1083/jcb.200303113] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2003] [Accepted: 08/13/2003] [Indexed: 11/24/2022] Open
Abstract
The mammalian nuclear lamina protein lamin B1 is posttranslationally modified by farnesylation, endoproteolysis, and carboxymethylation at a carboxyl-terminal CAAX motif. In this work, we demonstrate that the CAAX endoprotease Rce1 is required for lamin B1 endoproteolysis, demonstrate an independent pool of proteolyzed but nonmethylated lamin B1, as well as fully processed lamin B1, in interphase nuclei, and show a role for methylation in the organization of lamin B1 into domains of the nuclear lamina. Deficiency in the endoproteolysis or methylation of lamin B1 results in loss of integrity and deformity of the nuclear lamina. These data show that the organization of the nuclear envelope and lamina is dependent on a mechanism involving the methylation of lamin B1, and they identify a potential mechanism of laminopathy involving a B-type lamin.
Collapse
Affiliation(s)
- Christopher P Maske
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | | | | | | | | | | |
Collapse
|
69
|
Vignon X, Zhou Q, Renard JP. Chromatin as a regulative architecture of the early developmental functions of mammalian embryos after fertilization or nuclear transfer. CLONING AND STEM CELLS 2003; 4:363-77. [PMID: 12626100 DOI: 10.1089/153623002321025041] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nuclear transfer of a somatic nucleus into an enucleated oocyte has demonstrated in several mammalian species that the chromatin of a differentiated nucleus can be reprogrammed so as to be able to direct the full development of the reconstructed embryo. This review focus on the timing of the early events that allow the return of somatic chromatin to a totipotent state. Our understanding of the modifications associated with chromatin remodeling is limited by the low amount of biological material available in mammals at early developmental stages and the fact that very few genetic studies have been conducted with nuclear transfer embryos. However, the importance of several factors such as the covalent modifications of DNA through the methylation of CpG dinucleotides, the exchange of histones through a reorganized nuclear membrane, and the interaction between cytoplasmic oocyte components and nuclear complexes in the context of nuclear transfer is becoming clear. A better characterization of the changes in somatic chromatin after nuclear transfer and the identification of oocyte factors or structures that govern the formation of a functional nucleus will help us to understand the relationship between chromatin structure and cellular totipotency.
Collapse
Affiliation(s)
- Xavier Vignon
- UMR Biologie du Développement et Biotechnologie, INRA 78352, Jouy en Josas, France
| | | | | |
Collapse
|
70
|
Falloon EA, Dynlacht JR. Reversible changes in the nuclear lamina induced by hyperthermia. J Cell Biochem 2003; 86:451-60. [PMID: 12210752 DOI: 10.1002/jcb.10241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The nuclear matrix (NM) has been identified as a potential target for heat-induced cell killing. Previous studies have shown that heat-shock may significantly modulate lamin B content. Since changes in NM structure have often been accompanied by changes in protein composition, we investigated whether hyperthermia induced changes in nuclear lamina (NL) structure in non-tolerant and thermotolerant cells, and the implications of these changes on cell survival. Using indirect immunofluorescence techniques and confocal microscopy, we found that heating cells at 42 or 45.5 degrees C caused invaginations and other distortions of the peripheral NL. While hyperthermia did not alter the number or structure of internal lamin B foci, heat-induced alterations to the peripheral NL were dose-dependent. Interestingly, NL structure recovered with time after heating in cells that were destined to live or die. Thermotolerant cells heated at 45.5 degrees C showed similar initial changes in the NL compared to non-tolerant cells, but recovery occurred much faster. Taken together, these results suggest that the amount of initial damage to the peripheral NL is not correlated with heat-induced cell killing. However, the possibility that an increased rate of recovery might confer a survival advantage cannot be discounted.
Collapse
Affiliation(s)
- Elizabeth A Falloon
- Department of Radiation Oncology, Indiana University School of Medicine, Indiana Cancer Pavilion, RT 041, 535 Barnhill Drive, Indianapolis, Indiana 46202, USA
| | | |
Collapse
|
71
|
Kondo Y, Kondoh J, Hayashi D, Ban T, Takagi M, Kamei Y, Tsuji L, Kim J, Yoneda Y. Molecular cloning of one isotype of human lamina-associated polypeptide 1s and a topological analysis using its deletion mutants. Biochem Biophys Res Commun 2002; 294:770-8. [PMID: 12061773 DOI: 10.1016/s0006-291x(02)00563-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
LAP1s (lamina-associated polypeptide 1s) are type 2 integral membrane proteins with a single membrane-spanning region of the inner nuclear membrane. We report here on the cloning of the full-length cDNA of human LAP1B (huLAP1B) that encodes 584 amino acids. The sequence homology between the predicted rat LAP1B and huLAP1B was found to be 73.6%. A topological analysis was carried out by transiently expressing N-terminal GFP fused deletion mutants of huLAP1B in cells. The transmembrane (TM) domain (aa 346-368) is required for the localization of the nuclear and endoplasmic reticulum membrane and that the TM domain and the C-terminal half of the nucleoplasmic domain (aa 190-331) are sufficient for the proper localization of LAP1B. In contrast, the well-conserved lumenal domain of the nuclear membrane is not required for its topological function. Biochemical analysis showed that huLAP1B is retained within the nucleus via interactions of the nucleoplasmic portion with nuclear components.
Collapse
Affiliation(s)
- Yukihiro Kondo
- Depertment of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Tolstonog GV, Sabasch M, Traub P. Cytoplasmic intermediate filaments are stably associated with nuclear matrices and potentially modulate their DNA-binding function. DNA Cell Biol 2002; 21:213-39. [PMID: 12015898 DOI: 10.1089/10445490252925459] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The tight association of cytoplasmic intermediate filaments (cIFs) with the nucleus and the isolation of crosslinkage products of vimentin with genomic DNA fragments, including nuclear matrix attachment regions (MARs) from proliferating fibroblasts, point to a participation of cIFs in nuclear activities. To test the possibility that cIFs are complementary nuclear matrix elements, the nuclei of a series of cultured cells were subjected to the Li-diiodosalicylate (LIS) extraction protocol developed for the preparation of nuclear matrices and analyzed by immunofluorescence microscopy and immunoblotting with antibodies directed against lamin B and cIF proteins. When nuclei released from hypotonically swollen L929 suspension cells in the presence of digitonin or Triton X-100 were exposed to such strong shearing forces that a considerable number were totally disrupted, a thin, discontinuous layer of vimentin IFs remained tenaciously adhering to still intact nuclei, in apparent coalignment with the nuclear lamina. Even in broken nuclei, the distribution of vimentin followed that of lamin B in areas where the lamina still appeared intact. The same retention of vimentin together with desmin and glial IFs was observed on the nuclei isolated from differentiating C2C12 myoblast and U333 glioma cells, respectively. Nuclei from epithelial cells shed their residual perinuclear IF layers as coherent cytoskeletal ghosts, except for small fractions of vimentin and cytokeratin IFs, which remained in a dot-to cap-like arrangement on the nuclear surface, in apparent codistribution with lamin B. LIS extraction did not bring about a reduction in the cIF protein contents of such nuclei upon their transformation into nuclear matrices. Moreover, in whole mount preparations of mouse embryo fibroblasts, DNA/chromatin emerging from nuclei during LIS extraction mechanically and chemically cleaned the nuclear surface and perinuclear area from loosely anchored cytoplasmic material with the production of broad, IF-free annular spaces, but left substantial fractions of the vimentin IFs in tight association with the nuclear surface. Accordingly, double-immunogold electron microscopy of fixed and permeabilized fibroblasts disclosed a close neighborhood of vimentin IFs and lamin B, with a minimal distance between the nanogold particles of ca. 30 nm. These data indicate an extremely solid interconnection of cIFs with structural elements of the nuclear matrix, and make them, together with their susceptibility to crosslinkage to MARs and other genomic DNA sequences under native conditions, complementary or even integral constituents of the karyoskeleton.
Collapse
|
73
|
Goldman RD, Gruenbaum Y, Moir RD, Shumaker DK, Spann TP. Nuclear lamins: building blocks of nuclear architecture. Genes Dev 2002; 16:533-47. [PMID: 11877373 DOI: 10.1101/gad.960502] [Citation(s) in RCA: 452] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Robert D Goldman
- Northwestern University Medical School, Department of Cell and Molecular Biology, Chicago, Illinois 60611, USA.
| | | | | | | | | |
Collapse
|
74
|
Carvalho C, Pereira HM, Ferreira J, Pina C, Mendonça D, Rosa AC, Carmo-Fonseca M. Chromosomal G-dark bands determine the spatial organization of centromeric heterochromatin in the nucleus. Mol Biol Cell 2001; 12:3563-72. [PMID: 11694589 PMCID: PMC60276 DOI: 10.1091/mbc.12.11.3563] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Gene expression can be silenced by proximity to heterochromatin blocks containing centromeric alpha-satellite DNA. This has been shown experimentally through cis-acting chromosome rearrangements resulting in linear genomic proximity, or through trans-acting changes resulting in intranuclear spatial proximity. Although it has long been been established that centromeres are nonrandomly distributed during interphase, little is known of what determines the three-dimensional organization of these silencing domains in the nucleus. Here, we propose a model that predicts the intranuclear positioning of centromeric heterochromatin for each individual chromosome. With the use of fluorescence in situ hybridization and confocal microscopy, we show that the distribution of centromeric alpha-satellite DNA in human lymphoid cells synchronized at G(0)/G(1) is unique for most individual chromosomes. Regression analysis reveals a tight correlation between nuclear distribution of centromeric alpha-satellite DNA and the presence of G-dark bands in the corresponding chromosome. Centromeres surrounded by G-dark bands are preferentially located at the nuclear periphery, whereas centromeres of chromosomes with a lower content of G-dark bands tend to be localized at the nucleolus. Consistent with the model, a t(11; 14) translocation that removes G-dark bands from chromosome 11 causes a repositioning of the centromere, which becomes less frequently localized at the nuclear periphery and more frequently associated with the nucleolus. The data suggest that "chromosomal environment" plays a key role in the intranuclear organization of centromeric heterochromatin. Our model further predicts that facultative heterochromatinization of distinct genomic regions may contribute to cell-type specific patterns of centromere localization.
Collapse
Affiliation(s)
- C Carvalho
- Instituto de Histologia e Embriologia, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | | | | | | | | | | | | |
Collapse
|
75
|
Scott ES, O'Hare P. Fate of the inner nuclear membrane protein lamin B receptor and nuclear lamins in herpes simplex virus type 1 infection. J Virol 2001; 75:8818-30. [PMID: 11507226 PMCID: PMC115126 DOI: 10.1128/jvi.75.18.8818-8830.2001] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2001] [Accepted: 06/11/2001] [Indexed: 11/20/2022] Open
Abstract
During herpesvirus egress, capsids bud through the inner nuclear membrane. Underlying this membrane is the nuclear lamina, a meshwork of intermediate filaments with which it is tightly associated. Details of alterations to the lamina and the inner nuclear membrane during infection and the mechanisms involved in capsid transport across these structures remain unclear. Here we describe the fate of key protein components of the nuclear envelope and lamina during herpes simplex virus type 1 (HSV-1) infection. We followed the distribution of the inner nuclear membrane protein lamin B receptor (LBR) and lamins A and B(2) tagged with green fluorescent protein (GFP) in live infected cells. Together with additional results from indirect immunofluorescence, our studies reveal major morphologic distortion of nuclear-rim LBR and lamins A/C, B(1), and B(2). By 8 h p.i., we also observed a significant redistribution of LBR-GFP to the endoplasmic reticulum, where it colocalized with a subpopulation of cytoplasmic glycoprotein B by immunofluorescence. In addition, analysis by fluorescence recovery after photobleaching reveals that LBR-GFP exhibited increased diffusional mobility within the nuclear membrane of infected cells. This is consistent with the disruption of interactions between LBR and the underlying lamina. In addition to studying stably expressed GFP-lamins by fluorescence microscopy, we studied endogenous A- and B-type lamins in infected cells by Western blotting. Both approaches reveal a loss of lamins associated with virus infection. These data indicate major disruption of the nuclear envelope and lamina of HSV-1-infected cells and are consistent with a virus-induced dismantling of the nuclear lamina, possibly in order to gain access to the inner nuclear membrane.
Collapse
Affiliation(s)
- E S Scott
- Marie Curie Research Institute, The Chart, Oxted, Surrey, RH8 0TL, United Kingdom
| | | |
Collapse
|
76
|
Liu J, Rolef Ben-Shahar T, Riemer D, Treinin M, Spann P, Weber K, Fire A, Gruenbaum Y. Essential roles for Caenorhabditis elegans lamin gene in nuclear organization, cell cycle progression, and spatial organization of nuclear pore complexes. Mol Biol Cell 2000; 11:3937-47. [PMID: 11071918 PMCID: PMC15048 DOI: 10.1091/mbc.11.11.3937] [Citation(s) in RCA: 320] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Caenorhabditis elegans has a single lamin gene, designated lmn-1 (previously termed CeLam-1). Antibodies raised against the lmn-1 product (Ce-lamin) detected a 64-kDa nuclear envelope protein. Ce-lamin was detected in the nuclear periphery of all cells except sperm and was found in the nuclear interior in embryonic cells and in a fraction of adult cells. Reductions in the amount of Ce-lamin protein produce embryonic lethality. Although the majority of affected embryos survive to produce several hundred nuclei, defects can be detected as early as the first nuclear divisions. Abnormalities include rapid changes in nuclear morphology during interphase, loss of chromosomes, unequal separation of chromosomes into daughter nuclei, abnormal condensation of chromatin, an increase in DNA content, and abnormal distribution of nuclear pore complexes (NPCs). Under conditions of incomplete RNA interference, a fraction of embryos escaped embryonic arrest and continue to develop through larval life. These animals exhibit additional phenotypes including sterility and defective segregation of chromosomes in germ cells. Our observations show that lmn-1 is an essential gene in C. elegans, and that the nuclear lamins are involved in chromatin organization, cell cycle progression, chromosome segregation, and correct spacing of NPCs.
Collapse
Affiliation(s)
- J Liu
- Department of Embryology, Carnegie Institution of Washington, Baltimore, Maryland 21210, USA
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Dechat T, Korbei B, Vaughan OA, Vlcek S, Hutchison CJ, Foisner R. Lamina-associated polypeptide 2alpha binds intranuclear A-type lamins. J Cell Sci 2000; 113 Pt 19:3473-84. [PMID: 10984438 DOI: 10.1242/jcs.113.19.3473] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleoskeletal protein lamina-associated polypeptide 2(α) (LAP2*) contains a large, unique C terminus and differs significantly from its alternatively spliced, mostly membrane-integrated isoforms, such as LAP2beta. Unlike lamin B-binding LAP2beta, LAP2alpha was found by confocal immunofluorescence microscopy to colocalize preferentially with A-type lamins in the newly formed nuclei assembled after mitosis. While only a subfraction of lamins A and C (lamin A/C) was associated with the predominantly nuclear LAP2alpha in telophase, the majority of lamin A/C colocalized with LAP2alpha in G(1)-phase nuclei. Furthermore, selective disruption of A-type lamin structures by overexpression of lamin mutants in HeLa cells caused a redistribution of LAP2alpha. Coimmunoprecipitation experiments revealed that a fraction of lamin A/C formed a stable, SDS-resistant complex with LAP2alpha in interphase cells and in postmetaphase cell extracts. Blot overlay binding studies revealed a direct binding of LAP2alpha to exclusively A-type lamins and located the interaction domains to the C-terminal 78 amino acids of LAP2alpha and to residues 319–566 in lamin A/C, which include the C terminus of the rod and the entire tail common to lamin A/C. These findings suggest that LAP2alpha and A-type lamins cooperate in the organization of internal nuclear structures.
Collapse
Affiliation(s)
- T Dechat
- Department of Biochemistry and Molecular Cell Biology, Vienna Biocenter, University of Vienna, A-1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
78
|
Dynamics of chromatin position in the interphase nucleus volume. Russ J Dev Biol 2000. [DOI: 10.1007/bf02758828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
79
|
Moir RD, Spann TP, Lopez-Soler RI, Yoon M, Goldman AE, Khuon S, Goldman RD. Review: the dynamics of the nuclear lamins during the cell cycle-- relationship between structure and function. J Struct Biol 2000; 129:324-34. [PMID: 10806083 DOI: 10.1006/jsbi.2000.4251] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The nuclear lamins are members of the intermediate filament (IF) family of proteins. The lamins have an essential role in maintaining nuclear integrity, as do the other IF family members in the cytoplasm. Also like cytoplasmic IFs, the organization of lamins is dynamic. The lamins are found not only at the nuclear periphery but also in the interior of the nucleus, as distinct nucleoplasmic foci and possibly as a network throughout the nucleus. Nuclear processes such as DNA replication may be organized around these structures. In this review, we discuss changes in the structure and organization of the nuclear lamins during the cell cycle and during cell differentiation. These changes are correlated with changes in nuclear structure and function. For example, the interactions of lamins with chromatin and nuclear envelope components occur very early during nuclear assembly following mitosis. During S-phase, the lamins colocalize with markers of DNA replication, and proper lamin organization must be maintained for replication to proceed. When cells differentiate, the expression pattern of lamin isotypes changes. In addition, changes in lamin organization and expression patterns accompany the nuclear alterations observed in transformed cells. These lamin structures may modulate nuclear function in each of these processes.
Collapse
Affiliation(s)
- R D Moir
- Department of Cell and Molecular Biology, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, Illinois, 60611, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Okumura K, Nakamachi K, Hosoe Y, Nakajima N. Identification of a novel retinoic acid-responsive element within the lamin A/C promoter. Biochem Biophys Res Commun 2000; 269:197-202. [PMID: 10694499 DOI: 10.1006/bbrc.2000.2242] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A-type lamins are not present in either early embryos or the embryonal carcinoma (EC) cell line. P19 cells, which are EC cell line, are able to express A-type lamins upon retinoic acid (RA) treatment. Here we report that a novel RA-responsive element, termed lamin A/C-RA-responsive element (L-RARE), is located within the lamin A/C promoter. RA activated the luciferase activity of the reporter which had four tandem repeats of the wild-type L-RARE, while a loss of function mutant, which altered CACCCCC to CACtatC within L-RARE, did not respond. Four specific binding complexes of L-RARE, Complexes-A, -B, -C, and -D, were detected in protein extracts obtained from P19 cells treated with and without RA. Specific antibodies revealed that Sp1 and Sp3 were included in Complex-A and Complexes-B and -C, respectively. Thus, L-RARE was important in the RA-mediated activation of the lamin A/C promoter and was recognized by DNA binding proteins.
Collapse
Affiliation(s)
- K Okumura
- Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan.
| | | | | | | |
Collapse
|
81
|
Alsheimer M, von Glasenapp E, Hock R, Benavente R. Architecture of the nuclear periphery of rat pachytene spermatocytes: distribution of nuclear envelope proteins in relation to synaptonemal complex attachment sites. Mol Biol Cell 1999; 10:1235-45. [PMID: 10198069 PMCID: PMC25260 DOI: 10.1091/mbc.10.4.1235] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/1998] [Accepted: 02/01/1999] [Indexed: 11/11/2022] Open
Abstract
The nucleus of spermatocytes provides during the first meiotic prophase an interesting model for investigating relationships of the nuclear envelope (NE) with components of the nuclear interior. During the pachytene stage, meiotic chromosomes are synapsed via synaptonemal complexes (SCs) and attached through both ends to the nuclear periphery. This association is dynamic because chromosomes move during the process of synapsis and desynapsis that takes place during meiotic prophase. The NE of spermatocytes possesses some peculiarities (e.g., lower stability than in somatic cells, expression of short meiosis-specific lamin isoforms called C2 and B3) that could be critically involved in this process. For better understanding of the association of chromosomes with the nuclear periphery, in the present study we have investigated the distribution of NE proteins in relation to SC attachment sites. A major outcome was the finding that lamin C2 is distributed in the form of discontinuous domains at the NE of spermatocytes and that SC attachment sites are embedded in these domains. Lamin C2 appears to form part of larger structures as suggested by cell fractionation experiments. According to these results, we propose that the C2-containing domains represent local reinforcements of the NE that are involved in the proper attachment of SCs.
Collapse
Affiliation(s)
- M Alsheimer
- Department of Cell and Developmental Biology, Theodor-Boveri-Institute (Biocenter), University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | |
Collapse
|
82
|
Goldberg M, Harel A, Brandeis M, Rechsteiner T, Richmond TJ, Weiss AM, Gruenbaum Y. The tail domain of lamin Dm0 binds histones H2A and H2B. Proc Natl Acad Sci U S A 1999; 96:2852-7. [PMID: 10077600 PMCID: PMC15858 DOI: 10.1073/pnas.96.6.2852] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In multicellular organisms, the higher order organization of chromatin during interphase and the reassembly of the nuclear envelope during mitosis are thought to involve an interaction between the nuclear lamina and chromatin. The nuclear distribution of lamins and of peripheral chromatin is highly correlated in vivo, and lamins bind specifically to chromatin in vitro. Deletion mutants of Drosophila lamin Dm0 were expressed to map regions of the protein that are required for its binding to chromosomes. The binding activity requires two regions in the lamin Dm0 tail domain. The apparent Kd of binding of the lamin Dm0 tail domain was found to be approximately 1 microM. Chromatin subfractions were examined to search for possible target molecules for the binding of lamin Dm0. Isolated polynucleosomes, nucleosomes, histone octamer, histone H2A/H2B dimer, and histones H2A or H2B displaced the binding of lamin Dm0 tail to chromosomes. This displacement was specific, because polyamines or proteins such as histones H1, H3, or H4 did not displace the binding of the lamin Dm0 tail to chromosomes. In addition, DNA sequences, including M/SARs, did not interfere with the binding of lamin Dm0 tail domain to chromosomes. Taken together, these results suggest that the interaction between the tail domain of lamin Dm0 and histones H2A and H2B may mediate the attachment of the nuclear lamina to chromosomes in vivo.
Collapse
Affiliation(s)
- M Goldberg
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
The cellular response to hyperthermia involves the increased synthesis of heat shock proteins (HSPs) within several hours after treatment. In addition, a subset of proteins has been shown to be increased immediately after heating. These "prompt" HSPs are predominantly found in the nuclear matrix-intermediate filament fraction and are not present or detectable in unheated cells. Since the nuclear matrix has been suggested to be a target for heat-induced cell killing, prompt HSPs may play a prominent role in the heat shock response. Using Western blotting and flow cytometry, we found that an increase in the synthesis of lamin B, one of the major proteins of the nuclear lamina, is induced during heating at 45.5 degrees C but not during heating at 42 degrees C. Since it is an abundant protein which is constitutively expressed in mammalian cells, lamin B appears to be a unique member of the prompt HSP family. The kinetics of induction of lamin B during 45.5 degrees C heating did not correlate with the dose-dependent reduction in cell survival. While increased levels of lamin B during 45.5 degrees C heating do not appear to confer a survival advantage directly, a possible role for lamin B in cellular recovery after heat shock cannot be discounted.
Collapse
Affiliation(s)
- J R Dynlacht
- Department of Radiological Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, USA.
| | | | | | | |
Collapse
|
84
|
Abstract
Nuclear lamins are intermediate filament-type proteins that are the major building blocks of the nuclear lamina, a fibrous proteinaceous meshwork underlying the inner nuclear membrane. Lamins can also be localized in the nuclear interior, in a diffuse or spotted pattern. Nuclei assembled in vitro in the absence of lamins are fragile, indicating that lamins mechanically stabilize the cell nucleus. Available evidence also indicates a role for lamins in DNA replication, chromatin organization, spatial arrangement of nuclear pore complexes, nuclear growth, and anchorage of nuclear envelope proteins. In this review we summarize the current state of knowledge on the structure, assembly, and possible functional roles of nuclear lamins, emphasizing the information concerning the ability of nuclear lamins to self-assemble into distinct oligomers and polymers.
Collapse
Affiliation(s)
- N Stuurman
- M. E. Müller-Institute for Microscopy at the Biozentrum, University of Basel, Basel, CH-4056, Switzerland
| | | | | |
Collapse
|
85
|
Dechat T, Gotzmann J, Stockinger A, Harris CA, Talle MA, Siekierka JJ, Foisner R. Detergent-salt resistance of LAP2alpha in interphase nuclei and phosphorylation-dependent association with chromosomes early in nuclear assembly implies functions in nuclear structure dynamics. EMBO J 1998; 17:4887-902. [PMID: 9707448 PMCID: PMC1170818 DOI: 10.1093/emboj/17.16.4887] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lamina-associated polypeptide (LAP) 2 of the inner nuclear membrane (now LAP2beta) and LAP2alpha are related proteins produced by alternative splicing, and contain a common 187 amino acid N-terminal domain. We show here that, unlike LAP2beta, LAP2alpha behaved like a nuclear non-membrane protein in subcellular fractionation studies and was localized throughout the nuclear interior in interphase cells. It co-fractionated with LAP2beta in nuclear lamina/matrix-enriched fractions upon extraction of nuclei with detergent, salt and nucleases. During metaphase LAP2alpha dissociated from chromosomes and became concentrated around the spindle poles. Furthermore, LAP2alpha was mitotically phosphorylated, and phosphorylation correlated with increased LAP2alpha solubility upon extraction of cells in physiological buffers. LAP2alpha relocated to distinct sites around chromosomes at early stages of nuclear reassembly and intermediarily co-localized with peripheral lamin B and intranuclear lamin A structures at telophase. During in vitro nuclear assembly LAP2alpha was dephosphorylated and assembled into insoluble chromatin-associated structures, and recombinant LAP2alpha was found to interact with chromosomes in vitro. Some LAP2alpha may also associate with membranes prior to chromatin attachment. Altogether the data suggest a role of LAP2alpha in post-mitotic nuclear assembly and in the dynamic structural organization of the nucleus.
Collapse
Affiliation(s)
- T Dechat
- nstitute of Biochemistry and Molecular Cell Biology, Biocenter and Institute of Tumor Biology-Cancer Research, University of Vienna, A-1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
86
|
Goldberg M, Lu H, Stuurman N, Ashery-Padan R, Weiss AM, Yu J, Bhattacharyya D, Fisher PA, Gruenbaum Y, Wolfner MF. Interactions among Drosophila nuclear envelope proteins lamin, otefin, and YA. Mol Cell Biol 1998; 18:4315-23. [PMID: 9632815 PMCID: PMC109015 DOI: 10.1128/mcb.18.7.4315] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The nuclear envelope plays many roles, including organizing nuclear structure and regulating nuclear events. Molecular associations of nuclear envelope proteins may contribute to the implementation of these functions. Lamin, otefin, and YA are the three Drosophila nuclear envelope proteins known in early embryos. We used the yeast two-hybrid system to explore the interactions between pairs of these proteins. The ubiquitous major lamina protein, lamin Dm, interacts with both otefin, a peripheral protein of the inner nuclear membrane, and YA, an essential, developmentally regulated protein of the nuclear lamina. In agreement with this interaction, lamin and otefin can be coimmunoprecipitated from the vesicle fraction of Drosophila embryos and colocalize in nuclear envelopes of Drosophila larval salivary gland nuclei. The two-hybrid system was further used to map the domains of interaction among lamin, otefin, and YA. Lamin's rod domain interacts with the complete otefin protein, with otefin's hydrophilic NH2-terminal domain, and with two different fragments derived from this domain. Analogous probing of the interaction between lamin and YA showed that the lamin rod and tail plus part of its head domain are needed for interaction with full-length YA in the two-hybrid system. YA's COOH-terminal region is necessary and sufficient for interaction with lamin. Our results suggest that interactions with lamin might mediate or stabilize the localization of otefin and YA in the nuclear lamina. They also suggest that the need for both otefin and lamin in mediating association of vesicles with chromatin might reflect the function of a protein complex that includes these two proteins.
Collapse
Affiliation(s)
- M Goldberg
- Department of Genetics, The Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Bridger JM, Herrmann H, Münkel C, Lichter P. Identification of an interchromosomal compartment by polymerization of nuclear-targeted vimentin. J Cell Sci 1998; 111 ( Pt 9):1241-53. [PMID: 9547300 DOI: 10.1242/jcs.111.9.1241] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of structural and functional subnuclear compartments have been described, including regions exclusive of chromosomes previously hypothesized to form a reactive nuclear space. We have now explored this accessible nuclear space and interchromosomal nucleoplasmic domains experimentally using Xenopus vimentin engineered to contain a nuclear localization signal (NLS-vimentin). In stably transfected human cells incubated at 37 degrees C, the NLS-vimentin formed a restricted number of intranuclear speckles. At 28 degrees C, the optimal temperature for assembly of the amphibian protein, NLS-vimentin progressively extended with time out from the speckles into strictly orientated intranuclear filamentous arrays. This enabled us to observe the development of a system of interconnecting channel-like areas. Quantitative analysis based on 3-D imaging microscopy revealed that these arrays were localized almost exclusively outside of chromosome territories. During mitosis the filaments disassembled and dispersed throughout the cytoplasm, while in anaphase-telophase the vimentin was recruited back into the nucleus and reassembled into filaments at the chromosome surfaces, in distributions virtually identical to those observed in the previous interphase. The filaments also colocalized with specific nuclear RNAs, coiled bodies and PML bodies, all situated outside of chromosome territories, thereby interlinking these structures. This strongly implies that these nuclear entities coexist in the same interconnected nuclear compartment. The assembling NLS-vimentin is restricted to and can be used to delineate, at least in part, the formerly proposed reticular interchromosomal domain compartment (ICD). The properties of NLS-vimentin make it an excellent tool for performing structural and functional studies on this compartment.
Collapse
Affiliation(s)
- J M Bridger
- Organization of Complex Genomes, German Cancer Research Center, Heidelberg, Germany
| | | | | | | |
Collapse
|
88
|
Fields AP, Thompson LJ. The regulation of mitotic nuclear envelope breakdown: a role for multiple lamin kinases. PROGRESS IN CELL CYCLE RESEARCH 1998; 1:271-86. [PMID: 9552370 DOI: 10.1007/978-1-4615-1809-9_22] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The chapter reviews the structure and function of the nuclear envelope and describes its dynamic structural changes during cell cycle. Particular emphasis is placed on the regulation of mitotic nuclear envelope breakdown (NEBD), the process by which the physical barrier between cytoplasm and nucleus is dissolved to allow for cell division. The literature suggesting the involvement of multiple protein kinases in NEBD is reviewed and evidence is presented that multiple mitotic lamin kinases, including p34cdc2/cyclin B kinase and protein kinase C, play key roles in mitotic nuclear lamina disassembly. Finally, a model for regulation of mitotic nuclear lamina disassembly by multi-site phosphorylation is described.
Collapse
Affiliation(s)
- A P Fields
- Sealy Center for Oncology, University of Texas Medical Branch, Galveston 77555-1048, USA
| | | |
Collapse
|
89
|
Abstract
The nuclear lamina formed by lamins is localized between the inner nuclear membrane and chromatin. Lamins are thought to be implicated in the higher order chromatin structure. Interactions of lamins with chromatin have been described but the molecular components directly involved in these interactions remain to be identified. Using a GST-C-terminal domain of lamin A fusion protein to probe cellular extracts for interacting proteins, we have found that this domain of lamin A binds to nuclear actin. This result suggests that an actin-based molecular motor linked to the lamina could be involved in the movement of chromatin domains.
Collapse
Affiliation(s)
- A M Sasseville
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal and Institut du Cancer de Montréal, Qué., Canada
| | | |
Collapse
|
90
|
Li G, Sudlow G, Belmont AS. Interphase cell cycle dynamics of a late-replicating, heterochromatic homogeneously staining region: precise choreography of condensation/decondensation and nuclear positioning. J Cell Biol 1998; 140:975-89. [PMID: 9490713 PMCID: PMC2132695 DOI: 10.1083/jcb.140.5.975] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recently we described a new method for in situ localization of specific DNA sequences, based on lac operator/repressor recognition (Robinett, C.C., A. Straight, G. Li, C. Willhelm, G. Sudlow, A. Murray, and A.S. Belmont. 1996. J. Cell Biol. 135:1685-1700). We have applied this methodology to visualize the cell cycle dynamics of an approximately 90 Mbp, late-replicating, heterochromatic homogeneously staining region (HSR) in CHO cells, combining immunostaining with direct in vivo observations. Between anaphase and early G1, the HSR extends approximately twofold to a linear, approximately 0.3-mum-diam chromatid, and then recondenses to a compact mass adjacent to the nuclear envelope. No further changes in HSR conformation or position are seen through mid-S phase. However, HSR DNA replication is preceded by a decondensation and movement of the HSR into the nuclear interior 4-6 h into S phase. During DNA replication the HSR resolves into linear chromatids and then recondenses into a compact mass; this is followed by a third extension of the HSR during G2/ prophase. Surprisingly, compaction of the HSR is extremely high at all stages of interphase. Preliminary ultrastructural analysis of the HSR suggests at least three levels of large-scale chromatin organization above the 30-nm fiber.
Collapse
Affiliation(s)
- G Li
- Department of Cell and Structural Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
91
|
Affiliation(s)
- A S Belmont
- Department of Cell and Structural Biology, University of Illinois, Urbana-Champaign 61801, USA
| |
Collapse
|
92
|
Ferreira J, Paolella G, Ramos C, Lamond AI. Spatial organization of large-scale chromatin domains in the nucleus: a magnified view of single chromosome territories. J Cell Biol 1997; 139:1597-610. [PMID: 9412456 PMCID: PMC2132633 DOI: 10.1083/jcb.139.7.1597] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have analyzed the spatial organization of large scale chromatin domains in chinese hamster fibroblast, human lymphoid (IM-9), and marsupial kidney epithelial (PtK) cells by labeling DNA at defined stages of S phase via pulsed incorporation of halogenated deoxynucleosides. Most, if not all, chromosomes contribute multiple chromatin domains to both peripheral and internal nucleoplasmic compartments. The peripheral compartment contains predominantly late replicating G/Q bands, whereas early replicating R bands preferentially localize to the internal nucleoplasmic compartment. During mitosis, the labeled chromatin domains that were separated in interphase form a pattern of intercalated bands along the length of each metaphase chromosome. The transition from a banded (mitotic) to a compartmentalized (interphasic) organization of chromatin domains occurs during the late telophase/early G1 stage and is independent of transcriptional activation of the genome. Interestingly, generation of micronuclei with a few chromosomes showed that the spatial separation of early and late replicating chromatin compartments is recapitulated independently of chromosome number, even in micronuclei containing only a single chromosome. Our data strongly support the notion that the compartmentalization of large-scale (band size) chromatin domains seen in the intact nucleus is a magnified image of a similar compartmentalization occurring in individual chromosome territories.
Collapse
Affiliation(s)
- J Ferreira
- Institute of Histology, Faculty of Medicine, 1699 Lisboa codex, Portugal
| | | | | | | |
Collapse
|
93
|
Imai S, Nishibayashi S, Takao K, Tomifuji M, Fujino T, Hasegawa M, Takano T. Dissociation of Oct-1 from the nuclear peripheral structure induces the cellular aging-associated collagenase gene expression. Mol Biol Cell 1997; 8:2407-19. [PMID: 9398664 PMCID: PMC25716 DOI: 10.1091/mbc.8.12.2407] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The cellular aging-associated transcriptional repressor that we previously named as Orpheus was identical to Oct-1, a member of the POU domain family. Oct-1 represses the collagenase gene, one of the cellular aging-associated genes, by interacting with an AT-rich cis-element in the upstream of the gene in preimmortalized cells at earlier population-doubling levels and in immortalized cells. In these stages of cells, considerable fractions of the Oct-1 protein were prominently localized in the nuclear periphery and colocalized with lamin B. During the cellular aging process, however, this subspecies of Oct-1 disappeared from the nuclear periphery. The cells lacking the nuclear peripheral Oct-1 protein exhibited strong collagenase expression and carried typical senescent morphologies. Concomitantly, the binding activity and the amount of nuclear Oct-1 protein were reduced in the aging process and resumed after immortalization. However, the whole cellular amounts of Oct-1 protein were not significantly changed during either process. Thus, the cellular aging-associated genes including the collagenase gene seemed to be derepressed by the dissociation of Oct-1 protein from the nuclear peripheral structure. Oct-1 may form a transcriptional repressive apparatus by anchoring nuclear matrix attachment regions onto the nuclear lamina in the nuclear periphery.
Collapse
Affiliation(s)
- S Imai
- Department of Microbiology, Keio University School of Medicine, Shinjuku-ku, Tokyo-160, Japan
| | | | | | | | | | | | | |
Collapse
|
94
|
Abstract
Upon fertilization, the sperm nucleus undergoes reactivation. The poreless sperm nuclear envelope is replaced by a functional male pronuclear envelope and the highly compact male chromatin decondenses. Here some recent evidence is examined: that disassembly of the sperm lamina is required for chromatin decondensation, that remnant portions of the sperm nuclear envelope target the binding of egg membrane vesicles that form the male pronuclear envelope, that functional male pronuclear envelopes containing lamin B receptor assemble prior to lamin import and lamina formation, and that lamina assembly drives male pronuclear swelling. Several unresolved issues are discussed.
Collapse
Affiliation(s)
- D Poccia
- Department of Biology, Amherst College, MA 01002, USA
| | | |
Collapse
|
95
|
Affiliation(s)
- J Liu
- Section of Genetics and Development, Cornell University, Ithaca, NY 14853-2703, USA
| | | | | |
Collapse
|
96
|
Lenz-Böhme B, Wismar J, Fuchs S, Reifegerste R, Buchner E, Betz H, Schmitt B. Insertional mutation of the Drosophila nuclear lamin Dm0 gene results in defective nuclear envelopes, clustering of nuclear pore complexes, and accumulation of annulate lamellae. J Cell Biol 1997; 137:1001-16. [PMID: 9166402 PMCID: PMC2136230 DOI: 10.1083/jcb.137.5.1001] [Citation(s) in RCA: 190] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nuclear lamins are thought to play an important role in disassembly and reassembly of the nucleus during mitosis. Here, we describe a Drosophila lamin Dm0 mutant resulting from a P element insertion into the first intron of the Dm0 gene. Homozygous mutant animals showed a severe phenotype including retardation in development, reduced viability, sterility, and impaired locomotion. Immunocytochemical and ultrastructural analysis revealed that reduced lamin Dm0 expression caused an enrichment of nuclear pore complexes in cytoplasmic annulate lamellae and in nuclear envelope clusters. In several cells, particularly the densely packed somata of the central nervous system, defective nuclear envelopes were observed in addition. All aspects of the mutant phenotype were rescued upon P element-mediated germline transformation with a lamin Dm0 transgene. These data constitute the first genetic proof that lamins are essential for the structural organization of the cell nucleus.
Collapse
Affiliation(s)
- B Lenz-Böhme
- Max-Planck-Institut für Hirnforschung, Abteilung Neurochemie, D-60528 Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
97
|
Foisner R. Dynamic organisation of intermediate filaments and associated proteins during the cell cycle. Bioessays 1997; 19:297-305. [PMID: 9136627 DOI: 10.1002/bies.950190407] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Intermediate filaments, which form the structural framework of both the cytoskeleton and the nuclear lamina in most eukaryotic cells, have been found to be highly dynamic structures. A continuous exchange of subunit proteins at the filament surface and a stabilisation of soluble subunits by chaperone-type proteins may modulate filament structure and plasticity. Recent studies on the cell cycle-dependent interaction of intermediate filaments with associated proteins, and a detailed analysis of intermediate filament phosphorylation in defined subcellular locations at various stages of mitosis, have brought new insights into the molecular mechanisms involved in the mitotic reorganisation of intermediate filaments. Some of these studies have allowed new speculations about the possible cellular functions of cytoplasmic intermediate filaments, and increased our understanding of the specific functions of the lamins and the lamina-associated membrane proteins in the post-mitotic reassembly of the nucleus.
Collapse
Affiliation(s)
- R Foisner
- Institute of Biochemistry and Molecular Cell Biology, University of Vienna, Austria.
| |
Collapse
|
98
|
Spann TP, Moir RD, Goldman AE, Stick R, Goldman RD. Disruption of nuclear lamin organization alters the distribution of replication factors and inhibits DNA synthesis. J Cell Biol 1997; 136:1201-12. [PMID: 9087437 PMCID: PMC2132512 DOI: 10.1083/jcb.136.6.1201] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/1996] [Revised: 01/29/1997] [Indexed: 02/04/2023] Open
Abstract
The nuclear lamina is a fibrous structure that lies at the interface between the nuclear envelope and the nucleoplasm. The major proteins comprising the lamina, the nuclear lamins, are also found in foci in the nucleoplasm, distinct from the peripheral lamina. The nuclear lamins have been associated with a number of processes in the nucleus, including DNA replication. To further characterize the specific role of lamins in DNA replication, we have used a truncated human lamin as a dominant negative mutant to perturb lamin organization. This protein disrupts the lamin organization of nuclei when microinjected into mammalian cells and also disrupts the lamin organization of in vitro assembled nuclei when added to Xenopus laevis interphase egg extracts. In both cases, the lamina appears to be completely absent, and instead the endogenous lamins and the mutant lamin protein are found in nucleoplasmic aggregates. Coincident with the disruption of lamin organization, there is a dramatic reduction in DNA replication. As a consequence of this disruption, the distributions of PCNA and the large subunit of the RFC complex, proteins required for the elongation phase of DNA replication, are altered such that they are found within the intranucleoplasmic lamin aggregates. In contrast, the distribution of XMCM3, XORC2, and DNA polymerase alpha, proteins required for the initiation stage of DNA replication, remains unaltered. The data presented demonstrate that the nuclear lamins may be required for the elongation phase of DNA replication.
Collapse
Affiliation(s)
- T P Spann
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
99
|
Lopez JM, Wolfner MF. The developmentally regulated Drosophila embryonic nuclear lamina protein ‘Young Arrest’ (fs(1)Ya) is capable of associating with chromatin. J Cell Sci 1997; 110 ( Pt 5):643-51. [PMID: 9092946 DOI: 10.1242/jcs.110.5.643] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Drosophila fs(1)Ya protein (YA) is an essential component of the early embryonic nuclear lamina. Mutant zygotes lacking functional YA arrest in the first division cycles following fertilization, hence having a ‘Young Arrest’ of their development. The nuclear lamina is thought to act as the structural backbone for the nucleus and to provide anchoring sites for interphase chromosomes. Here, we demonstrate in vitro that YA is not required for the de novo formation of nuclear structures. Since YA's sequence predicts potential DNA binding motifs, this protein may instead function to connect the lamina and chromosomes, and thus aid in organizing the nucleus. We ectopically expressed YA in polytene cells and demonstrated its association with polytene chromosomes, preferentially at interbands. Furthermore, our in vitro studies indicate that embryonic YA protein is capable of associating with decondensed chromatin. These observations suggest that YA may be required for the interaction between chromatin and the nuclear envelope during early embryogenesis.
Collapse
Affiliation(s)
- J M Lopez
- Section of Genetics and Development, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
100
|
Fricker M, Hollinshead M, White N, Vaux D. Interphase nuclei of many mammalian cell types contain deep, dynamic, tubular membrane-bound invaginations of the nuclear envelope. J Cell Biol 1997; 136:531-44. [PMID: 9024685 PMCID: PMC2134289 DOI: 10.1083/jcb.136.3.531] [Citation(s) in RCA: 303] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/1996] [Revised: 11/15/1996] [Indexed: 02/07/2023] Open
Abstract
The nuclear envelope consists of a double-membraned extension of the rough endoplasmic reticulum. In this report we describe long, dynamic tubular channels, derived from the nuclear envelope, that extend deep into the nucleoplasm. These channels show cell-type specific morphologies ranging from single short stubs to multiple, complex, branched structures. Some channels transect the nucleus entirely, opening at two separate points on the nuclear surface, while others terminate at or close to nucleoli. These channels are distinct from other topological features of the nuclear envelope, such as lobes or folds. The channel wall consists of two membranes continuous with the nuclear envelope, studded with features indistinguishable from nuclear pore complexes, and decorated on the nucleoplasmic surface with lamins. The enclosed core is continuous with the cytoplasm, and the lumenal space between the membranes contains soluble ER-resident proteins (protein disulphide isomerase and glucose-6-phosphatase). Nuclear channels are also found in live cells labeled with the lipophilic dye DiOC6. Time-lapse imaging of DiOC6-labeled cells shows that the channels undergo changes in morphology and spatial distribution within the interphase nucleus on a timescale of minutes. The presence of a cytoplasmic core and nuclear pore complexes in the channel walls suggests a possible role for these structures in nucleo-cytoplasmic transport. The clear association of a subset of these structures with nucleoli would also be consistent with such a transport role.
Collapse
Affiliation(s)
- M Fricker
- Department of Plant Sciences, Oxford, United Kingdom
| | | | | | | |
Collapse
|