51
|
Nyasae LK, Schell MJ, Hubbard AL. Copper directs ATP7B to the apical domain of hepatic cells via basolateral endosomes. Traffic 2014; 15:1344-65. [PMID: 25243755 DOI: 10.1111/tra.12229] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/16/2014] [Indexed: 01/01/2023]
Abstract
Physiologic Cu levels regulate the intracellular location of the Cu ATPase ATP7B. Here, we determined the routes of Cu-directed trafficking of endogenous ATP7B in the polarized hepatic cell line WIF-B and in the liver in vivo. Copper (10 µm) caused ATP7B to exit the trans-Golgi network (TGN) in vesicles, which trafficked via large basolateral endosomes to the apical domain within 1 h. Although perturbants of luminal acidification had little effect on the TGN localization of ATP7B in low Cu, they blocked delivery to the apical membrane in elevated Cu. If the vesicular proton-pump inhibitor bafilomycin-A1 (Baf) was present with Cu, ATP7B still exited the TGN, but accumulated in large endosomes located near the coverslip, in the basolateral region. Baf washout restored ATP7B trafficking to the apical domain. If ATP7B was staged apically in high Cu, Baf addition promoted the accumulation of ATP7B in subapical endosomes, indicating a blockade of apical recycling, with concomitant loss of ATP7B at the apical membrane. The retrograde pathway to the TGN, induced by Cu removal, was far less affected by Baf than the anterograde (Cu-stimulated) case. Overall, loss of acidification-impaired Cu-regulated trafficking of ATP7B at two main sites: (i) sorting and exit from large basolateral endosomes and (ii) recycling via endosomes near the apical membrane.
Collapse
Affiliation(s)
- Lydia K Nyasae
- Department of Cell Biology, The Johns Hopkins School of Medicine, 725 N. Wolfe Street, Baltimore, MD, 20184, USA
| | | | | |
Collapse
|
52
|
Padman BS, Bach M, Lucarelli G, Prescott M, Ramm G. The protonophore CCCP interferes with lysosomal degradation of autophagic cargo in yeast and mammalian cells. Autophagy 2014; 9:1862-75. [DOI: 10.4161/auto.26557] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
53
|
Gidon A, Al-Bataineh MM, Jean-Alphonse FG, Stevenson H, Watanabe T, Louet C, Khatri A, Calero G, Pastor-Soler NM, Gardella TJ, Vilardaga JP. Endosomal GPCR signaling turned off by negative feedback actions of PKA and v-ATPase. Nat Chem Biol 2014; 10:707-9. [PMID: 25064832 PMCID: PMC4138287 DOI: 10.1038/nchembio.1589] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/13/2014] [Indexed: 12/13/2022]
Abstract
The PTH receptor is to our knowledge one of the first G protein-coupled receptor (GPCR) found to sustain cAMP signaling after internalization of the ligand-receptor complex in endosomes. This unexpected model is adding a new dimension on how we think about GPCR signaling, but its mechanism is incompletely understood. We report here that endosomal acidification mediated by the PKA action on the v-ATPase provides a negative feedback mechanism by which endosomal receptor signaling is turned off.
Collapse
Affiliation(s)
- Alexandre Gidon
- Laboratory for GPCR Biology, Department of Pharmacology & Chemical Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261, USA
| | - Mohammad M. Al-Bataineh
- Renal-Electrolyte Division, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261, USA
| | - Frederic G. Jean-Alphonse
- Laboratory for GPCR Biology, Department of Pharmacology & Chemical Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261, USA
| | - Hilary Stevenson
- Department of Structural Biology Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261, USA
| | - Tomoyuki Watanabe
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 0114, USA
| | - Claire Louet
- Laboratory for GPCR Biology, Department of Pharmacology & Chemical Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261, USA
| | - Ashok Khatri
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 0114, USA
| | - Guillermo Calero
- Department of Structural Biology Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261, USA
| | - Núria M. Pastor-Soler
- Renal-Electrolyte Division, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261, USA
| | - Thomas J. Gardella
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 0114, USA
| | - Jean-Pierre Vilardaga
- Laboratory for GPCR Biology, Department of Pharmacology & Chemical Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
54
|
Maintenance of luminal pH and protease activity in lysosomes/late endosomes by vacuolar ATPase in chlorpromazine-treated RAW264 cells accumulating phospholipids. Cell Biol Toxicol 2014; 30:67-77. [DOI: 10.1007/s10565-014-9269-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/13/2014] [Indexed: 11/26/2022]
|
55
|
V-ATPase-dependent luminal acidification is required for endocytic recycling of a yeast cell wall stress sensor, Wsc1p. Biochem Biophys Res Commun 2014; 443:549-55. [DOI: 10.1016/j.bbrc.2013.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/02/2013] [Indexed: 11/15/2022]
|
56
|
Diering GH, Numata Y, Fan S, Church J, Numata M. Endosomal acidification by Na+/H+ exchanger NHE5 regulates TrkA cell-surface targeting and NGF-induced PI3K signaling. Mol Biol Cell 2013; 24:3435-48. [PMID: 24006492 PMCID: PMC3814139 DOI: 10.1091/mbc.e12-06-0445] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/21/2013] [Accepted: 08/28/2013] [Indexed: 01/19/2023] Open
Abstract
To facilitate polarized vesicular trafficking and signal transduction, neuronal endosomes have evolved sophisticated mechanisms for pH homeostasis. NHE5 is a member of the Na(+)/H(+) exchanger family and is abundantly expressed in neurons and associates with recycling endosomes. Here we show that NHE5 potently acidifies recycling endosomes in PC12 cells. NHE5 depletion by plasmid-based short hairpin RNA significantly reduces cell surface abundance of TrkA, an effect similar to that observed after treatment with the V-ATPase inhibitor bafilomycin. A series of cell-surface biotinylation experiments suggests that anterograde trafficking of TrkA from recycling endosomes to plasma membrane is the likeliest target affected by NHE5 depletion. NHE5 knockdown reduces phosphorylation of Akt and Erk1/2 and impairs neurite outgrowth in response to nerve growth factor (NGF) treatment. Of interest, although both phosphoinositide 3-kinase-Akt and Erk signaling are activated by NGF-TrkA, NGF-induced Akt-phosphorylation appears to be more sensitively affected by perturbed endosomal pH. Furthermore, NHE5 depletion in rat cortical neurons in primary culture also inhibits neurite formation. These results collectively suggest that endosomal pH modulates trafficking of Trk-family receptor tyrosine kinases, neurotrophin signaling, and possibly neuronal differentiation.
Collapse
Affiliation(s)
- Graham H. Diering
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Yuka Numata
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Steven Fan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - John Church
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Masayuki Numata
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
57
|
Sillence DJ. Glucosylceramide modulates endolysosomal pH in Gaucher disease. Mol Genet Metab 2013; 109:194-200. [PMID: 23628459 DOI: 10.1016/j.ymgme.2013.03.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/25/2013] [Accepted: 03/25/2013] [Indexed: 10/27/2022]
Abstract
GlcCer accumulation causes Gaucher disease where GlcCer breakdown is inhibited due to a hereditary deficiency in glucocerebrosidase. Glycolipids are endocytosed and targeted to the Golgi apparatus in normal cells but in Gaucher disease they are mistargeted to lysosomes. To better understand the role of GlcCer in endocytic sorting RAW macrophages were treated with Conduritol B-epoxide to inhibit GlcCer breakdown. Lipid analysis found increases in GlcCer led to accumulation of both triacylglycerol and cholesterol consistent with increased lysosomal pH. Ratio imaging of macrophages using both acridine orange and lysosensor yellow/blue to measure endolysosomal pH revealed increases in Conduritol B-epoxide treated RAW macrophages and Gaucher patient lymphoblasts. Increased endolysosomal pH was restricted to Gaucher lymphoblasts as no significant increases in pH were seen in Fabry, Krabbe, Tay-Sachs and GM1-gangliosidosis lymphoblasts. Substrate reduction therapy utilises inhibitors of GlcCer synthase to reduce storage in Gaucher disease. The addition of inhibitors of GlcCer synthesis to RAW macrophages also led to increases in cholesterol and triacylglycerol and an endolysosomal pH increase of up to 1 pH unit. GlcCer modulation appears specific since glucosylsphingosine but not galactosylsphingosine reversed the effects of GlcCer depletion. Although no acute effects on glycolipid trafficking were observed using bafilomycin A the results are consistent with a multistep model whereby increases in pH lead to altered trafficking via cholesterol accumulation. GlcCer modulates endolysosomal pH in lymphocytes suggesting an important role in normal lysosomes which may be disrupted in Gaucher disease.
Collapse
Affiliation(s)
- Dan J Sillence
- Cell Signalling Lab. Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH, UK.
| |
Collapse
|
58
|
Development and validation of a flow cytometric method to evaluate phagocytosis of pHrodo™ BioParticles® by granulocytes in multiple species. J Immunol Methods 2013; 390:9-17. [DOI: 10.1016/j.jim.2011.06.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 06/24/2011] [Accepted: 06/24/2011] [Indexed: 12/21/2022]
|
59
|
Sharma C, Rabinovitz I, Hemler ME. Palmitoylation by DHHC3 is critical for the function, expression, and stability of integrin α6β4. Cell Mol Life Sci 2012; 69:2233-44. [PMID: 22314500 DOI: 10.1007/s00018-012-0924-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/05/2012] [Accepted: 01/19/2012] [Indexed: 12/14/2022]
Abstract
The laminin-binding integrin α6β4 plays key roles in both normal epithelial and endothelial cells and during tumor cell progression, metastasis, and angiogenesis. Previous cysteine mutagenesis studies have suggested that palmitoylation of α6β4 protein supports a few integrin-dependent functions and molecular associations. Here we took another approach and obtained strikingly different results. We used overexpression and RNAi knockdown in multiple cell types to identify protein acyl transferase DHHC3 as the enzyme responsible for integrin β4 and α6 palmitoylation. Ablation of DHHC3 markedly diminished integrin-dependent cellular cable formation on Matrigel, integrin signaling through Src, and β4 phosphorylation on key diagnostic amino acids (S1356 and 1424). However, unexpectedly, and in sharp contrast to prior α6β4 mutagenesis results, knockdown of DHHC3 accelerated the degradation of α6β4, likely due to an increase in endosomal exposure to cathepsin D. When proteolytic degradation was inhibited (by Pepstatin A), rescued α6β4 accumulated intracellularly, but was unable to reach the cell surface. DHHC3 ablation effects were strongly selective for α6β4. Cell-surface levels of ~10 other proteins (including α3β1) were not diminished, and the appearance of hundreds of other palmitoylated proteins was not altered. Results obtained here demonstrate a new substrate for the DHHC3 enzyme and provide novel opportunities for modulating α6β4 expression, distribution, and function.
Collapse
Affiliation(s)
- Chandan Sharma
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | | |
Collapse
|
60
|
Live Cells as Dynamic Laboratories: Time Lapse Raman Spectral Microscopy of Nanoparticles with Both IgE Targeting and pH-Sensing Functions. Int J Anal Chem 2012; 2012:390182. [PMID: 22778738 PMCID: PMC3388588 DOI: 10.1155/2012/390182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/01/2012] [Indexed: 11/27/2022] Open
Abstract
This review captures the use of live cells as dynamic microlaboratories through implementation of labeled nanoparticles (nanosensors) that have both sensing and targeting functions. The addition of 2,4-ε-dinitrophenol-L-lysine (DNP) as a FcεRI targeting ligand and 4-mercaptopyridine (4-MPy) as a pH-sensing ligand enables spatial and temporal monitoring of FcεRI receptors and their pH environment within the endocytic pathway. To ensure reliability, the sensor is calibrated in vivo using the ionophore nigericin and standard buffer solutions to equilibrate the external [H+]
concentration with that of the cell compartments. This review highlights the nanosensors, ability to traffic and respond to pH of receptor-bound nanosensors (1) at physiological temperature (37°C)
versus room temperature (25°C), (2) after pharmacological treatment with bafilomycin, an H+ ATPase pump inhibitor, or amiloride, an inhibitor of Na+/H+ exchange, and (3) in response to both temperature and pharmacological treatment. Whole-cell, time lapse images are demonstrated to show the ability to transform live cells into dynamic laboratories to monitor temporal and spatial endosomal pH. The versatility of these probes shows promise for future applications relevant to intracellular trafficking and intelligent drug design.
Collapse
|
61
|
Moore FB, Baleja JD. Molecular remodeling mechanisms of the neural somatodendritic compartment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1720-30. [PMID: 22705351 DOI: 10.1016/j.bbamcr.2012.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/06/2012] [Accepted: 06/07/2012] [Indexed: 12/28/2022]
Abstract
Neuronal cells use the process of vesicle trafficking to manipulate the populations of neurotransmitter receptors and other membrane proteins. Long term potentiation (LTP) is a long-lived increase in synaptic strength between neurons and increases postsynaptic dendritic spine size and the concentration of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate-type glutamate receptor (AMPAR) located in the postsynaptic density. AMPAR is removed from the cell surface via clathrin-mediated endocytosis. While the adaptor protein 2 (AP2) complex of endocytosis seems to have the components needed to allow temporal and spatial regulations of internalization, many accessory proteins are involved, such as epidermal growth factor receptor phosphorylation substrate 15 (Eps15). A sequence of repeats in the Eps15 protein is known as the Eps15 homology (EH) domain. It has affinity for asparagine-proline-phenylalanine (NPF) sequences that are contained within vesicle trafficking proteins such as epsin, Rab11 family interacting protein 2 (Rab11-FIP2), and Numb. After endocytosis, a pool of AMPAR is stored in the endosomal recycling compartment that can be transported to the dendritic spine surface upon stimulation during LTP for lateral diffusion into the postsynaptic density. Rab11 and the Eps15 homologue EHD1 are involved in receptor recycling. EHD family members are also involved in transcytosis of the neuronal cell adhesion molecule neuron-glia cell adhesion molecule (NgCAM) from the somatodendritic compartment to the axon. Neurons have a unique morphology comprising many projections of membrane that is constructed in part by the effects of the Eps15 homologue, intersectin. Morphogenesis in the somatodendritic compartment is becoming better understood, but there is still much exciting territory to explore, especially regarding the roles of various EH domain-NPF interactions in endocytic and recycling processes.
Collapse
Affiliation(s)
- Fletcher B Moore
- Department of Biochemistry, Tufts University School of Medicine, Boston, MA 02111, USA
| | | |
Collapse
|
62
|
Toyofuku T, Nojima S, Ishikawa T, Takamatsu H, Tsujimura T, Uemura A, Matsuda J, Seki T, Kumanogoh A. Endosomal sorting by Semaphorin 4A in retinal pigment epithelium supports photoreceptor survival. Genes Dev 2012; 26:816-29. [PMID: 22465952 DOI: 10.1101/gad.184481.111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Photoreceptor cell death is the hallmark of a group of human inherited retinal degeneration. Although the causative genetic mutations are often known, the mechanisms leading to photoreceptor degeneration remain poorly defined. Here, we show that Semaphorin 4A (Sema4A), a member of axonal guidance molecule semaphorin, plays a role in Rab11/FIP2-mediated endosomal sorting in retinal pigment epithelial cells to support photoreceptor function. In response to oxidative stress, Sema4A switches the endosomal sorting of the lysosomal precursor protein prosaposin from the lysosome to the exosomal release, which prevents light-induced photoreceptor apoptosis. In the absence of oxidative stress, Sema4A sorts retinoid-binding proteins with retinoids between the cell surface and endoplasmic reticulum, by which 11-cis-retinal, a chromophore for phototransduction, is regenerated and transported back to photoreceptors. Owing to defects in these processes, Sema4A-deficient mice exhibit marked photoreceptor degeneration. Our findings therefore indicate that Sema4A regulates two distinct endosomal-sorting pathways that are critical for photoreceptor survival and phototransduction during the transition between daylight and darkness.
Collapse
Affiliation(s)
- Toshihiko Toyofuku
- World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Brown D, Wagner CA. Molecular mechanisms of acid-base sensing by the kidney. J Am Soc Nephrol 2012; 23:774-80. [PMID: 22362904 DOI: 10.1681/asn.2012010029] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A major function of the kidney is to collaborate with the respiratory system to maintain systemic acid-base status within limits compatible with normal cell and organ function. It achieves this by regulating the excretion and recovery of bicarbonate (mainly in the proximal tubule) and the secretion of buffered protons (mainly in the distal tubule and collecting duct). How proximal tubular cells and distal professional proton transporting (intercalated) cells sense and respond to changes in pH, bicarbonate, and CO(2) status is a question that has intrigued many generations of renal physiologists. Over the past few years, however, some candidate molecular pH sensors have been identified, including acid/alkali-sensing receptors (GPR4, InsR-RR), kinases (Pyk2, ErbB1/2), pH-sensitive ion channels (ASICs, TASK, ROMK), and the bicarbonate-stimulated adenylyl cyclase (sAC). Some acid-sensing mechanisms in other tissues, such as CAII-PDK2L1 in taste buds, might also have similar roles to play in the kidney. Finally, the function of a variety of additional membrane channels and transporters is altered by pH variations both within and outside the cell, and the expression of several metabolic enzymes are altered by acid-base status in parts of the nephron. Thus, it is possible that a master pH sensor will never be identified. Rather, the kidney seems equipped with a battery of molecules that scan the epithelial cell environment to mount a coordinated physiologic response that maintains acid-base homeostasis. This review collates current knowledge on renal acid-base sensing in the context of a whole organ sensing and response process.
Collapse
Affiliation(s)
- Dennis Brown
- MGH Center for Systems Biology, Program in Membrane Biology, Boston, MA, USA.
| | | |
Collapse
|
64
|
Dyve Lingelem AB, Bergan J, Sandvig K. Inhibitors of intravesicular acidification protect against Shiga toxin in a pH-independent manner. Traffic 2011; 13:443-54. [PMID: 22132807 DOI: 10.1111/j.1600-0854.2011.01319.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 11/28/2011] [Accepted: 12/01/2011] [Indexed: 01/01/2023]
Abstract
Shiga toxin inhibits protein synthesis after being transported from the cell surface to endosomes and retrogradely through the Golgi apparatus to the endoplasmic reticulum (ER) and into the cytosol. In this study, we have abolished proton gradients across internal membranes in different ways and investigated the effect on the various transport steps of Shiga toxin. Although inhibitors of the proton pump such as bafilomycin A1 and concanamycin A as well as some ionophores and chloroquine all protect against Shiga toxin, they mediate protection by inhibiting different transport steps. For instance, chloroquine protects the cells, although the toxin is transported to the ER. Importantly, our data indicate that proton pump activity is required for efficient endosome-to-Golgi transport of Shiga toxin, although acidification as such does not seem to be required.
Collapse
Affiliation(s)
- Anne Berit Dyve Lingelem
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
| | | | | |
Collapse
|
65
|
Phagosomal proteolysis in dendritic cells is modulated by NADPH oxidase in a pH-independent manner. EMBO J 2011; 31:932-44. [PMID: 22157818 DOI: 10.1038/emboj.2011.440] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 11/04/2011] [Indexed: 12/23/2022] Open
Abstract
The level of proteolysis within phagosomes of dendritic cells (DCs) is thought to be tightly regulated, as it directly impacts the cell's efficiency to process antigen. Activity of the antimicrobial effector NADPH oxidase (NOX2) has been shown to reduce levels of proteolysis within phagosomes of both macrophages and DCs. However, the proposed mechanisms underlying these observations in these two myeloid cell lineages are dissimilar. Using real-time analysis of lumenal microenvironmental parameters within phagosomes in live bone marrow-derived DCs, we show that the levels of phagosomal proteolysis are diminished in the presence of NOX2 activity, but in contrast to previous reports, the acidification of the phagosome is largely unaffected. As found in macrophages, we show that NOX2 controls phagosomal proteolysis in DCs through redox modulation of local cysteine cathepsins. Aspartic cathepsins were unaffected by redox conditions, indicating that NOX2 skews the relative protease activities in these antigen processing compartments. The ability of DC phagosomes to reduce disulphides was also compromised by NOX2 activity, implicating this oxidase in the control of an additional antigen processing chemistry of DCs.
Collapse
|
66
|
Zhang LW, Bäumer W, Monteiro-Riviere NA. Cellular uptake mechanisms and toxicity of quantum dots in dendritic cells. Nanomedicine (Lond) 2011; 6:777-91. [PMID: 21793671 DOI: 10.2217/nnm.11.73] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Quantum dots (QDs) are nanoparticles with strong fluorescent emission and are novel tools used in biomedical applications, but the toxicity and mechanism of cellular uptake are poorly understood. QD655-COOH (negative charge, 18 nm) consist of a cadmium/selenide core and a zinc sulfide shell with a carboxylic acid coating with an emission wavelength of 655 nm. MATERIALS & METHODS Peripheral blood mononuclear cells were isolated from porcine blood by gradient centrifugation, and monocytes, which are CD14 positive, were purified. Monocytes were differentiated into dendritic cells (DCs) with GM-CSF and IL-4. RESULTS Monocytes showed cellular uptake of QD655-COOH, while lymphocytes did not. Monocyte differentiation into DCs increased the cellular uptake by sixfold when dosed with 2 nM of QD655-COOH. Transmission electron microscopy depicted QD655-COOH in the cytoplasmic vacuoles of DCs. Twelve endocytic inhibitors demonstrated QD655-COOH endocytosis in DCs, which was recognized by clathrin and scavenger receptors and regulated by F-actin and phospholipase C. In addition, DC maturation with lipopolysaccharide (LPS) caused an increase in QD655-COOH uptake compared with DCs without LPS stimulation. Viability assays, including 96AQ, CCK-8, alamar blue and ApoTox, exhibited minimal toxicity in DCs dosed with QD655-COOH at 24 h. However, glutathione levels showed a significant decrease with 10 nM of QD655-COOH. Finally, QD655-COOH exposure was associated with a decrease in CD80/CD86 expression after LPS stimulation, suggesting suppression with DC maturation. CONCLUSION These findings shed light on the mechanism of QD655-COOH uptake in DCs and that cellular uptake pathways are dependent on cell type and cell differentiation.
Collapse
Affiliation(s)
- Leshuai W Zhang
- Center for Chemical Toxicology Research & Pharmacokinetics, North Carolina State University, Raleigh, NC 27606, USA
| | | | | |
Collapse
|
67
|
Zaki NM, Nasti A, Tirelli N. Nanocarriers for cytoplasmic delivery: cellular uptake and intracellular fate of chitosan and hyaluronic acid-coated chitosan nanoparticles in a phagocytic cell model. Macromol Biosci 2011; 11:1747-60. [PMID: 21954171 DOI: 10.1002/mabi.201100156] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/10/2011] [Indexed: 11/07/2022]
Abstract
The cellular uptake of hyaluronic-acid-coated, negatively charged chitosan/triphosphate nanoparticles and that of uncoated, positively charged ones is investigated by studying cellular localization, uptake kinetics and mechanism of internalization in J774.2 macrophages, using non-phagocytic L929 fibroblasts as a control for uncoated nanoparticles. Both kinds of nanoparticles undergo endosomal escape and adopt a similar clathrin-based endocytic mechanism. The surface decoration with HA profoundly influences the kinetics of cellular uptake, with an at least two orders of magnitude slower kinetics, but also the nature of the binding on the cellular surface.
Collapse
Affiliation(s)
- Noha M Zaki
- Department of Pharmaceutics, Faculty of Pharmacy, Ain Shams University, Monazamet El Wehda El Afrikia St., El Abbassia, Cairo, Egypt
| | | | | |
Collapse
|
68
|
Abstract
Being deeply connected to signalling, cell dynamics, growth, regulation, and defence, endocytic processes are linked to almost all aspects of cell life and disease. In this review, we focus on endosomes in the classical endocytic pathway, and on the programme of changes that lead to the formation and maturation of late endosomes/multivesicular bodies. The maturation programme entails a dramatic transformation of these dynamic organelles disconnecting them functionally and spatially from early endosomes and preparing them for their unidirectional role as a feeder pathway to lysosomes.
Collapse
|
69
|
Benjaminsen RV, Sun H, Henriksen JR, Christensen NM, Almdal K, Andresen TL. Evaluating nanoparticle sensor design for intracellular pH measurements. ACS NANO 2011; 5:5864-5873. [PMID: 21707035 DOI: 10.1021/nn201643f] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Particle-based nanosensors have over the past decade been designed for optical fluorescent-based ratiometric measurements of pH in living cells. However, quantitative and time-resolved intracellular measurements of pH in endosomes and lysosomes using particle nanosensors are challenging, and there is a need to improve measurement methodology. In the present paper, we have successfully carried out time-resolved pH measurements in endosomes and lyosomes in living cells using nanoparticle sensors and show the importance of sensor choice for successful quantification. We have studied two nanoparticle-based sensor systems that are internalized by endocytosis and elucidated important factors in nanosensor design that should be considered in future development of new sensors. From our experiments it is clear that it is highly important to use sensors that have a broad measurement range, as erroneous quantification of pH is an unfortunate result when measuring pH too close to the limit of the sensitive range of the sensors. Triple-labeled nanosensors with a pH measurement range of 3.2-7.0, which was synthesized by adding two pH-sensitive fluorophores with different pK(a) to each sensor, seem to be a solution to some of the earlier problems found when measuring pH in the endosome-lysosome pathway.
Collapse
Affiliation(s)
- Rikke V Benjaminsen
- DTU Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, Building 423, 2800 Lyngby, Denmark
| | | | | | | | | | | |
Collapse
|
70
|
Arf6-dependent intracellular trafficking of Pasteurella multocida toxin and pH-dependent translocation from late endosomes. Toxins (Basel) 2011; 3:218-41. [PMID: 22053287 PMCID: PMC3202820 DOI: 10.3390/toxins3030218] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 02/20/2011] [Accepted: 03/08/2011] [Indexed: 02/07/2023] Open
Abstract
The potent mitogenic toxin from Pasteurella multocida (PMT) is the major virulence factor associated with a number of epizootic and zoonotic diseases caused by infection with this respiratory pathogen. PMT is a glutamine-specific protein deamidase that acts on its intracellular G-protein targets to increase intracellular calcium, cytoskeletal, and mitogenic signaling. PMT enters cells through receptor-mediated endocytosis and then translocates into the cytosol through a pH-dependent process that is inhibited by NH4Cl or bafilomycin A1. However, the detailed mechanisms that govern cellular entry, trafficking, and translocation of PMT remain unclear. Co-localization studies described herein revealed that while PMT shares an initial entry pathway with transferrin (Tfn) and cholera toxin (CT), the trafficking pathways of Tfn, CT, and PMT subsequently diverge, as Tfn is trafficked to recycling endosomes, CT is trafficked retrograde to the ER, and PMT is trafficked to late endosomes. Our studies implicate the small regulatory GTPase Arf6 in the endocytic trafficking of PMT. Translocation of PMT from the endocytic vesicle occurs through a pH-dependent process that is also dependent on both microtubule and actin dynamics, as evidenced by inhibition of PMT activity in our SRE-based reporter assay, with nocodazole and cytochalasin D, respectively, suggesting that membrane translocation and cytotoxicity of PMT is dependent on its transfer to late endosomal compartments. In contrast, disruption of Golgi-ER trafficking with brefeldin A increased PMT activity, suggesting that inhibiting PMT trafficking to non-productive compartments that do not lead to translocation, while promoting formation of an acidic tubulovesicle system more conducive to translocation, enhances PMT translocation and activity.
Collapse
|
71
|
Abstract
After binding to its cell surface receptor ganglioside GM1, simian virus 40 (SV40) is endocytosed by lipid raft-mediated endocytosis and slowly transported to the endoplasmic reticulum, where partial uncoating occurs. We analyzed the intracellular pathway taken by the virus in HeLa and CV-1 cells by using a targeted small interfering RNA (siRNA) silencing screen, electron microscopy, and live-cell imaging as well as by testing a variety of cellular inhibitors and other perturbants. We found that the virus entered early endosomes, late endosomes, and probably endolysosomes before reaching the endoplasmic reticulum and that this pathway was part of the infectious route. The virus was especially sensitive to a variety of perturbations that inhibited endosome acidification and maturation. Contrary to our previous models, which postulated the passage of the virus through caveolin-rich organelles that we called caveosomes, we conclude that SV40 depends on the classical endocytic pathway for infectious entry.
Collapse
|
72
|
Nowak-Lovato KL, Wilson BS, Rector KD. SERS nanosensors that report pH of endocytic compartments during FcεRI transit. Anal Bioanal Chem 2010; 398:2019-29. [PMID: 20842349 DOI: 10.1007/s00216-010-4176-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 08/25/2010] [Accepted: 08/29/2010] [Indexed: 02/02/2023]
Abstract
Recently, the development of an IgE receptor (FcεRI)-targeted, pH-sensitive, surface-enhanced Raman spectroscopy (SERS) nanosensor has been demonstrated by Nowak-Lovato and Rector (Appl Spectrosc 63:387-395, 2009). The targeted nanosensor enables spatial and temporal pH measurements as internalized receptors progress through endosomal compartments in live cells. Trafficking of receptor-bound nanosensors was compared at physiological temperature (37 °C) versus room temperature (25 °C). As expected, we observed markedly slower progression of receptors through low-pH endocytic compartments at the lower temperature. We also demonstrate the utility of the nanosensors to measure directly changes in the pH of intracellular compartments after treatment with bafilomycin or amiloride. We report an increase in endosome compartment pH after treatment with bafilomycin, an H(+) ATPase pump inhibitor. Decreased endosomal luminal pH was measured in cells treated with amiloride, an inhibitor of Na(+)/H(+) exchange. The decrease in amiloride-treated cells was transient, followed by a recovery period of approximately 15-20 min to restore endosomal pH. These experiments demonstrate the novel application of Raman spectroscopy to monitor local pH environment in live cells with the use of targeted SERS nanosensors.
Collapse
Affiliation(s)
- K L Nowak-Lovato
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | |
Collapse
|
73
|
Marques-Pinheiro A, Marduel M, Rabès JP, Devillers M, Villéger L, Allard D, Weissenbach J, Guerin M, Zair Y, Erlich D, Junien C, Munnich A, Krempf M, Abifadel M, Jaïs JP, Boileau C, Varret M. A fourth locus for autosomal dominant hypercholesterolemia maps at 16q22.1. Eur J Hum Genet 2010; 18:1236-42. [PMID: 20571503 DOI: 10.1038/ejhg.2010.94] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Autosomal dominant hypercholesterolemia (ADH) is characterized by isolated increase in plasmatic low-density lipoprotein (LDL) cholesterol levels associated with high risk of premature cardiovascular disease. Mutations in LDLR, APOB, and PCSK9 genes have been shown to cause ADH. We now report further genetic heterogeneity of ADH through the study of a large French family in which the involvement of these three genes was excluded. A genome-wide scan mapped the disease-causing gene, named HCHOLA4, at 16q22.1 in a 7.89-Mb interval containing 154 genes with a maximum LOD score of 3.9. To reduce the linked region, we genotyped 18 smaller non-LDLR/non-APOB/non-PCSK9-ADH families at the HCHOLA4 locus. Six families did not exclude linkage to the locus, but none allowed reduction of the disease interval. The 154 regional genes were sorted according to the function of the encoded protein and tissue expression profiles, and 57 genes were analyzed through sequencing of their coding region and close flanking intronic parts. No disease-causing mutation was identified in these families, particularly in the LCAT gene. Finally, our results also show the existence of other ADH genes as nine families were neither linked to LDLR, APOB, and PCSK9 genes nor to the new HCHOLA4 locus.
Collapse
|
74
|
te Vruchte D, Jeans A, Platt FM, Sillence DJ. Glycosphingolipid storage leads to the enhanced degradation of the B cell receptor in Sandhoff disease mice. J Inherit Metab Dis 2010; 33:261-70. [PMID: 20458542 PMCID: PMC3779831 DOI: 10.1007/s10545-010-9109-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/29/2010] [Accepted: 04/12/2010] [Indexed: 12/11/2022]
Abstract
Glycosphingolipid storage diseases are a group of inherited metabolic diseases in which glycosphingolipids accumulate due to their impaired lysosomal breakdown. Splenic B cells isolated from NPC1, Sandhoff, GM1-gangliosidosis and Fabry disease mouse models showed large (20- to 30-fold) increases in disease specific glycosphingolipids and up to a 4-fold increase in cholesterol. The magnitude of glycosphingolipid storage was in the order NPC1 > Sandhoff approximately GM1 gangliosidosis > Fabry. Except for Fabry disease, glycosphingolipid storage led to an increase in the lysosomal compartment and altered glycosphingolipid trafficking. In order to investigate the consequences of storage on B cell function, the levels of surface expression of B cell IgM receptor and its associated components were quantitated in Sandhoff B cells, since they are all raft-associated on activation. Both the B cell receptor, CD21 and CD19 had decreased cell surface expression. In contrast, CD40 and MHC II, surface receptors that do not associate with lipid rafts, were unchanged. Using a pulse chase biotinylation procedure, surface B cell receptors on a Sandhoff lymphoblast cell line were found to have a significantly decreased half-life. Increased co-localization of fluorescently conjugated cholera toxin and lysosomes was also observed in Sandhoff B cells. Glycosphingolipid storage leads to the enhanced formation of lysosomal lipid rafts, altered endocytic trafficking and increased degradation of the B cell receptor.
Collapse
Affiliation(s)
- Danielle te Vruchte
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, UK
| | | | | | | |
Collapse
|
75
|
Pluth MD, McQuade LE, Lippard SJ. Cell-trappable fluorescent probes for nitric oxide visualization in living cells. Org Lett 2010; 12:2318-21. [PMID: 20405852 PMCID: PMC2871341 DOI: 10.1021/ol1006289] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two new cell-trappable fluorescent probes for nitric oxide (NO) are reported based on either incorporation of hydrolyzable esters or conjugation to aminodextran polymers. Both probes are highly selective for NO over other reactive oxygen and nitrogen species (RONS). The efficacy of these probes for the fluorescence imaging of nitric oxide produced endogenously in Raw 264.7 cells is demonstrated.
Collapse
Affiliation(s)
- Michael D. Pluth
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Lindsey E. McQuade
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
76
|
Bruns AF, Herbert SP, Odell AF, Jopling HM, Hooper NM, Zachary IC, Walker JH, Ponnambalam S. Ligand-stimulated VEGFR2 signaling is regulated by co-ordinated trafficking and proteolysis. Traffic 2010; 11:161-74. [PMID: 19883397 DOI: 10.1111/j.1600-0854.2009.01001.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vascular endothelial growth factor A (VEGF-A)-induced signaling through VEGF receptor 2 (VEGFR2) regulates both physiological and pathological angiogenesis in mammals. However, the temporal and spatial mechanism underlying VEGFR2-mediated intracellular signaling is not clear. Here, we define a pathway for VEGFR2 trafficking and proteolysis that regulates VEGF-A-stimulated signaling and endothelial cell migration. Ligand-stimulated VEGFR2 activation and ubiquitination preceded proteolysis and cytoplasmic domain removal associated with endosomes. A soluble VEGFR2 cytoplasmic domain fragment displayed tyrosine phosphorylation and activation of downstream intracellular signaling. Perturbation of endocytosis by the depletion of either clathrin heavy chain or an ESCRT-0 subunit caused differential effects on ligand-stimulated VEGFR2 proteolysis and signaling. This novel VEGFR2 proteolysis was blocked by the inhibitors of 26S proteasome activity. Inhibition of proteasome activity prolonged VEGF-A-induced intracellular signaling to c-Akt and endothelial nitric oxide synthase (eNOS). VEGF-A-stimulated endothelial cell migration was dependent on VEGFR2 and VEGFR tyrosine kinase activity. Inhibition of proteasome activity in this assay stimulated VEGF-A-mediated endothelial cell migration. VEGFR2 endocytosis, ubiquitination and proteolysis could also be stimulated by a protein kinase C-dependent pathway. Thus, removal of the VEGFR2 carboxyl terminus linked to phosphorylation, ubiquitination and trafficking is necessary for VEGF-stimulated endothelial signaling and cell migration.
Collapse
Affiliation(s)
- Alexander F Bruns
- Endothelial Cell Biology Unit, Institute of Molecular and Cellular Biology, LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Pallaoro A, Braun GB, Reich NO, Moskovits M. Mapping local pH in live cells using encapsulated fluorescent SERS nanotags. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:618-622. [PMID: 20183812 DOI: 10.1002/smll.200901893] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Affiliation(s)
- Alessia Pallaoro
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | | | | | | |
Collapse
|
78
|
Safhi MMA, Rutherford C, Ledent C, Sands WA, Palmer TM. Priming of Signal Transducer and Activator of Transcription Proteins for Cytokine-Triggered Polyubiquitylation and Degradation by the A2A Adenosine Receptor. Mol Pharmacol 2010; 77:968-78. [DOI: 10.1124/mol.109.062455] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
79
|
Parrish CR. Structures and functions of parvovirus capsids and the process of cell infection. Curr Top Microbiol Immunol 2010; 343:149-76. [PMID: 20397069 DOI: 10.1007/82_2010_33] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To infect a cell, the parvovirus or adeno-associated virus (AAV) genome must be delivered from outside the plasma membrane to the nucleus, and in the process, the capsid must follow a series of binding and trafficking steps and also undergo necessary changes that result in exposure or release the ssDNA genome at the appropriate time and place within the cell. The 25 nm parvovirus capsid is comprised of two or three forms of a single protein, and although it is robust and stable, it is still sufficiently flexible to allow the exposure of several internal components at appropriate times during cell infection. The capsid can also accommodate insertion of peptides into surface loops, and capsid proteins from different viral serotypes can be shuffled to create novel functional variants. The capsids of the different viruses bind to one or more cell receptors, and for at least some viruses, the insertion of additional or alternative receptor binding sequences or structures into the capsid can expand or redirect its tropism. The infection process after cell binding involves receptor-mediated endocytosis followed by viral trafficking through the endosomal systems. That endosomal trafficking may be complex and prolonged for hours or be relatively brief. Generally only a small proportion of the particles taken up enter the cytoplasm after altering the endosomal membrane through the activity of a VP1-encoded phospholipase A2 domain that becomes released to the outside of the viral particle. Modifications to the capsid that can occur within the endosome or cytoplasm include structural changes to expose internal components, ubiquination and proteosomal processing, and possible trafficking of particles on molecular motors. It is still not clear how the genomes enter the nucleus, but nuclear pore-dependent entry of particles or permeabilization of nuclear membranes have been proposed. Those processes control the infection, pathogenesis, and host ranges of the autonomous viruses and determine the effectiveness of gene therapy using AAV capsids.
Collapse
Affiliation(s)
- Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
80
|
ten Broeke T, de Graaff A, van't Veld EM, Wauben MHM, Stoorvogel W, Wubbolts R. Trafficking of MHC class II in dendritic cells is dependent on but not regulated by degradation of its associated invariant chain. Traffic 2009; 11:324-31. [PMID: 20051049 DOI: 10.1111/j.1600-0854.2009.01024.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In dendritic cells (DC), newly synthesized MHCII is directed to endosomes by its associated invariant chain (Ii). Here, Ii is degraded after which MHCII is loaded with peptides. In immature DC, ubiquitination of peptide-loaded MHCII drives its sorting to lysosomes for degradation. Ubiquitination of MHCII is strongly reduced in response to inflammatory stimuli, resulting in increased expression of MHCII at the plasma membrane. Whether surface exposure of MHCII is also regulated during DC maturation by changing the rate of Ii degradation remained unresolved by conflicting results in the literature. We here pinpoint experimental problems that have contributed to these controversies and demonstrate that immature and mature DC degrade Ii equally efficient at proper culture conditions. Only when DC were cultured in glutamine containing media, endosome acidification and Ii degradation were restricted in immature DC and enhanced in response to lipopolysaccharide (LPS). These effects are caused by ammonia, a glutamine decomposition product. This artificial behavior could be prevented by culturing DC in media containing a stable dipeptide as glutamine source. We conclude that Ii degradation is a prerequisite for but not a rate limiting step in MHCII processing.
Collapse
Affiliation(s)
- Toine ten Broeke
- Department of Biochemistry and Cell Biology, Utrecht University, PO Box 80.176, NL-3508 TD Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
81
|
Yuan L, Morales CR. A stretch of 17 amino acids in the prosaposin C terminus is critical for its binding to sortilin and targeting to lysosomes. J Histochem Cytochem 2009; 58:287-300. [PMID: 19934382 DOI: 10.1369/jhc.2009.955203] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prosaposin, the precursor of four lysosomal cofactors required for the hydrolysis of sphingolipids, is transported to the lysosomes via the alternative receptor, sortilin. In this study, we identified a specific domain of 17 amino acids within the C terminus of prosaposin involved in binding to this sorting receptor. We generated six prosaposin deletion constructs and examined the effect of truncation by coimmunoprecipitation and confocal microscopy. The experiments revealed that the first half of the prosaposin C terminus (aa 524-540), containing a saposin-like motif, was required and necessary to bind sortilin and to transport it to the lysosomes. Based on this result, we introduced twelve site-directed point mutations within the first half of the C terminus. Although the interaction of prosaposin with sortilin was pH dependent, the mutation of hydrophilic amino acids that usually modulate pH-dependent protein interactions did not affect the binding of prosaposin to sortilin. Conversely, a tryptophan (W530) and two cysteines (C528 and C536) were essential for its interaction with sortilin and for its transport to the lysosomes. In conclusion, our investigation demonstrates that a saposin-like motif within the first half of the prosaposin C terminus contains the sortilin recognition site.
Collapse
Affiliation(s)
- Libin Yuan
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
82
|
Yan Y, Denef N, Schüpbach T. The vacuolar proton pump, V-ATPase, is required for notch signaling and endosomal trafficking in Drosophila. Dev Cell 2009; 17:387-402. [PMID: 19758563 DOI: 10.1016/j.devcel.2009.07.001] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 05/31/2009] [Accepted: 07/01/2009] [Indexed: 11/17/2022]
Abstract
We have identified Rabconnectin-3alpha and beta (Rbcn-3A and B) as two regulators of Notch signaling in Drosophila. We found that, in addition to disrupting Notch signaling, mutations in Rbcn-3A and B cause defects in endocytic trafficking, where Notch and other membrane proteins accumulate in late endosomal compartments. We show that Notch is transported to the surface of mutant cells and that signaling is disrupted after the S2 cleavage. Interestingly, the yeast homolog of Rbcn-3A, Rav1, regulates the V-ATPase proton pump responsible for acidifying intracellular organelles. We found that, similarly, Rbcn-3A and B appear to regulate V-ATPase function. Moreover, we identified mutants in VhaAC39, a V-ATPase subunit, and showed that they phenocopy Rbcn-3A and Rbcn-3B mutants. Our results demonstrate that Rbcn-3 affects Notch signaling and trafficking through regulating V-ATPase function, which implies that the acidification of an intracellular compartment in the receiving cells is crucial for signaling.
Collapse
Affiliation(s)
- Yan Yan
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
83
|
Hasebe R, Sasaki M, Sawa H, Wada R, Umemura T, Kimura T. Infectious entry of equine herpesvirus-1 into host cells through different endocytic pathways. Virology 2009; 393:198-209. [PMID: 19720389 PMCID: PMC7111996 DOI: 10.1016/j.virol.2009.07.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Revised: 07/21/2009] [Accepted: 07/25/2009] [Indexed: 11/29/2022]
Abstract
We investigated the mechanism by which equine herpesvirus-1 (EHV-1) enters primary cultured equine brain microvascular endothelial cells (EBMECs) and equine dermis (E. Derm) cells. EHV-1 colocalized with caveolin in EBMECs and the infection was greatly reduced by the expression of a dominant negative form of equine caveolin-1 (ecavY14F), suggesting that EHV-1 enters EBMECs via caveolar endocytosis. EHV-1 entry into E. Derm cells was significantly reduced by ATP depletion and treatments with lysosomotropic agents. Enveloped virions were detected from E. Derm cells by infectious virus recovery assay after viral internalization, suggesting that EHV-1 enters E. Derm cells via energy- and pH-dependent endocytosis. These results suggest that EHV-1 utilizes multiple endocytic pathways in different cell types to establish productive infection.
Collapse
Affiliation(s)
- Rie Hasebe
- Laboratory of Prion Diseases, Graduate School of Veterinary Medicine, Hokkaido University, West 9 North 18, Kita-ku, Sapporo 060-0818, Japan.
| | | | | | | | | | | |
Collapse
|
84
|
Wartosch L, Fuhrmann JC, Schweizer M, Stauber T, Jentsch TJ. Lysosomal degradation of endocytosed proteins depends on the chloride transport protein ClC-7. FASEB J 2009; 23:4056-68. [PMID: 19661288 DOI: 10.1096/fj.09-130880] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mutations in either ClC-7, a late endosomal/lysosomal member of the CLC family of chloride channels and transporters, or in its beta-subunit Ostm1 cause osteopetrosis and lysosomal storage disease in mice and humans. The severe phenotype of mice globally deleted for ClC-7 or Ostm1 and the absence of storage material in cultured cells hampered investigations of the mechanism leading to lysosomal pathology in the absence of functional ClC-7/Ostm1 transporters. Tissue-specific ClC-7-knockout mice now reveal that accumulation of storage material occurs cell-autonomously in neurons or renal proximal tubular cells lacking ClC-7. Almost all ClC-7-deficient neurons die. The activation of glia is restricted to brain regions where ClC-7 has been inactivated. The effect of ClC-7 disruption on lysosomal function was investigated in renal proximal tubular cells, which display high endocytotic activity. Pulse-chase endocytosis experiments in vivo with mice carrying chimeric deletion of ClC-7 in proximal tubules allowed a direct comparison of the handling of endocytosed protein between cells expressing or lacking ClC-7. Whereas protein was endocytosed similarly in cells of either genotype, its half-life increased significantly in ClC-7-deficient cells. These experiments demonstrate that lysosomal pathology is a cell-autonomous consequence of ClC-7 disruption and that ClC-7 is important for lysosomal protein degradation.
Collapse
Affiliation(s)
- Lena Wartosch
- Leibniz-Institut für Molekulare Pharmakologie and Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Str. 10, D-13125 Berlin, Germany
| | | | | | | | | |
Collapse
|
85
|
Guo Y, Su M, McNutt MA, Gu J. Expression and distribution of cystic fibrosis transmembrane conductance regulator in neurons of the human brain. J Histochem Cytochem 2009; 57:1113-20. [PMID: 19654104 DOI: 10.1369/jhc.2009.953455] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The importance of the molecule cystic fibrosis transmembrane conductance regulator (CFTR) is reflected in the many physiological functions it regulates. It is known to be present in epithelial cells of the lungs, pancreas, sweat glands, gut, and other tissues, and gene mutations of CFTR cause cystic fibrosis (CF). We studied the expression and distribution of CFTR in the human brain with reverse transcriptase polymerase chain reaction, in situ hybridization, and immunohistochemistry. This study demonstrates widespread and abundant expression of CFTR in neurons of the human brain. Techniques of double labeling and evaluation of consecutive tissue sections localized CFTR protein and mRNA signals to the cytoplasm of neurons in all regions of the brain studied, but not to glial cells. The presence of CFTR in central neurons not only provides a possible explanation for the neural symptoms observed in CF patients, but also may lead to a better understanding of the functions of CFTR in the human brain.
Collapse
Affiliation(s)
- Yong Guo
- Department of Pathology, School of Basic Medical Sciences, Peking (Beijing) University Health Science Center, Beijing, China
| | | | | | | |
Collapse
|
86
|
Molecular mechanism of BST2/tetherin downregulation by K5/MIR2 of Kaposi's sarcoma-associated herpesvirus. J Virol 2009; 83:9672-81. [PMID: 19605472 DOI: 10.1128/jvi.00597-09] [Citation(s) in RCA: 215] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
K3/MIR1 and K5/MIR2 of Kaposi's sarcoma-associated herpesvirus (KSHV) are viral members of the membrane-associated RING-CH (MARCH) ubiquitin ligase family and contribute to viral immune evasion by directing the conjugation of ubiquitin to immunostimulatory transmembrane proteins. In a quantitative proteomic screen for novel host cell proteins downregulated by viral immunomodulators, we previously observed that K5, as well as the human immunodeficiency virus type 1 (HIV-1) immunomodulator VPU, reduced steady-state levels of bone marrow stromal cell antigen 2 (BST2; also called CD317 or tetherin), suggesting that BST2 might be a novel substrate of K5 and VPU. Recent work revealed that in the absence of VPU, HIV-1 virions are tethered to the plasma membrane in BST2-expressing HeLa cells. By targeting BST2, K5 might thus similarly overcome an innate antiviral host defense mechanism. Here we establish that despite its type II transmembrane topology and carboxy-terminal glycosylphosphatidylinositol (GPI) anchor, BST2 represents a bona fide target of K5 that is downregulated during primary infection by and reactivation of KSHV. Upon exit of the protein from the endoplasmic reticulum, lysines in the short amino-terminal domain of BST2 are ubiquitinated by K5, resulting in rapid degradation of BST2. Ubiquitination of BST2 is required for degradation, since BST2 lacking cytosolic lysines was K5 resistant and ubiquitin depletion by proteasome inhibitors restored BST2 surface expression. Thus, BST2 represents the first type II transmembrane protein targeted by K5 and the first example of a protein that is both ubiquitinated and GPI linked. We further demonstrate that KSHV release is decreased in the absence of K5 in a BST2-dependent manner, suggesting that K5 contributes to the evasion of intracellular antiviral defense programs.
Collapse
|
87
|
Vpu antagonizes BST-2-mediated restriction of HIV-1 release via beta-TrCP and endo-lysosomal trafficking. PLoS Pathog 2009; 5:e1000450. [PMID: 19478868 PMCID: PMC2679223 DOI: 10.1371/journal.ppat.1000450] [Citation(s) in RCA: 267] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 04/27/2009] [Indexed: 12/19/2022] Open
Abstract
The interferon-induced transmembrane protein BST-2/CD317 (tetherin) restricts the release of diverse enveloped viruses from infected cells. The HIV-1 accessory protein Vpu antagonizes this restriction by an unknown mechanism that likely involves the down-regulation of BST-2 from the cell surface. Here, we show that the optimal removal of BST-2 from the plasma membrane by Vpu requires the cellular protein β-TrCP, a substrate adaptor for a multi-subunit SCF E3 ubiquitin ligase complex and a known Vpu-interacting protein. β-TrCP is also required for the optimal enhancement of virion-release by Vpu. Mutations in the DSGxxS β-TrCP binding-motif of Vpu impair both the down-regulation of BST-2 and the enhancement of virion-release. Such mutations also confer dominant-negative activity, consistent with a model in which Vpu links BST-2 to β-TrCP. Optimal down-regulation of BST-2 from the cell surface by Vpu also requires the endocytic clathrin adaptor AP-2, although the rate of endocytosis is not increased; these data suggest that Vpu induces post-endocytic membrane trafficking events whose net effect is the removal of BST-2 from the cell surface. In addition to its marked effect on cell-surface levels, Vpu modestly decreases the total cellular levels of BST-2. The decreases in cell-surface and intracellular BST-2 are inhibited by bafilomycin A1, an inhibitor of endosomal acidification; these data suggest that Vpu induces late endosomal targeting and partial degradation of BST-2 in lysosomes. The Vpu-mediated decrease in surface expression is associated with reduced co-localization of BST-2 and the virion protein Gag along the plasma membrane. Together, the data support a model in which Vpu co-opts the β-TrCP/SCF E3 ubiquitin ligase complex to induce endosomal trafficking events that remove BST-2 from its site of action as a virion-tethering factor. The cellular protein BST-2 prevents newly formed particles of HIV-1 and other enveloped viruses from escaping the infected cell. HIV-1 encodes the protein Vpu to counteract this host defense, but the mechanism of this antagonism is currently unknown. Here, the data suggest that Vpu recruits the cellular protein β-TrCP to modulate the trafficking of BST-2 within internal cellular membranes, removing BST-2 from its apparent site of action at the cell surface. These results add a new example to the growing paradigm of viral counteraction of so-called “restriction factors,” proteins that provide an innate defense against viruses, by co-option of cellular regulatory assemblies known as multi-subunit ubiquitin ligases.
Collapse
|
88
|
Broussas M, Dupont J, Gonzalez A, Blaecke A, Fournier M, Corvaïa N, Goetsch L. Molecular mechanisms involved in activity of h7C10, a humanized monoclonal antibody, to IGF-1 receptor. Int J Cancer 2009; 124:2281-93. [PMID: 19165858 DOI: 10.1002/ijc.24186] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
IGF-1 receptor (IGF-1R) plays a key role in the development of numerous tumors. Blockade of IGF-1R axis using monoclonal antibodies constitutes an interesting approach to inhibit tumor growth. We have previously shown that h7C10, a humanized anti-IGF-1R Mab, exhibited potent antitumor activity in vivo. However, mechanisms of action of h7C10 are still unknown. Here, we showed that h7C10 inhibited IGF-1-induced IGF-1R phosphorylation in a dose-dependent manner. Also, h7C10 abolished IGF-1-induced activation of PI3K/AKT and MAPK pathways. Cell cycle progression and colony formation were affected in the presence of h7C10 probably because of the inhibition of IGF-1-induced cyclin D1 and E expression. In addition, we demonstrated that h7C10 induced a rapid IGF-1R internalization leading to an accumulation into cytoplasm resulting in receptor degradation. Using lysosome and proteasome inhibitors, we observed that the IGF-1R alpha- and beta-chains could follow different degradation routes. Thus, we demonstrated that antitumoral properties of h7C10 are the result of IGF-1-induced cell signaling inhibition and down-regulation of IGF-1R level suggesting that h7C10 could be a candidate for therapeutic applications.
Collapse
Affiliation(s)
- Matthieu Broussas
- Centre d'Immunologie Pierre Fabre, 5 Avenue Napoléon III, BP 60497, Saint-Julien-en-Genevois, France.
| | | | | | | | | | | | | |
Collapse
|
89
|
The assembly of CD1e is controlled by an N-terminal propeptide which is processed in endosomal compartments. Biochem J 2009; 419:661-8. [PMID: 19196239 DOI: 10.1042/bj20082204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CD1e displays unique features in comparison with other CD1 proteins. CD1e accumulates in Golgi compartments of immature dendritic cells and is transported directly to lysosomes, where it is cleaved into a soluble form. In these latter compartments, CD1e participates in the processing of glycolipid antigens. In the present study, we show that the N-terminal end of the membrane-associated molecule begins at amino acid 20, whereas the soluble molecule consists of amino acids 32–333. Thus immature CD1e includes an N-terminal propeptide which is cleaved in acidic compartments and so is absent from its mature endosomal form. Mutagenesis experiments demonstrated that the propeptide controls the assembly of the CD1e α-chain with β2-microglobulin, whereas propeptide-deleted CD1e molecules are immunologically active. Comparison of CD1e cDNAs from different mammalian species indicates that the CD1e propeptide is conserved during evolution, suggesting that it may also optimize the generation of CD1e molecules in other species.
Collapse
|
90
|
Lu A, Tebar F, Alvarez-Moya B, López-Alcalá C, Calvo M, Enrich C, Agell N, Nakamura T, Matsuda M, Bachs O. A clathrin-dependent pathway leads to KRas signaling on late endosomes en route to lysosomes. ACTA ACUST UNITED AC 2009; 184:863-79. [PMID: 19289794 PMCID: PMC2699148 DOI: 10.1083/jcb.200807186] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ras proteins are small guanosine triphosphatases involved in the regulation of important cellular functions such as proliferation, differentiation, and apoptosis. Understanding the intracellular trafficking of Ras proteins is crucial to identify novel Ras signaling platforms. In this study, we report that epidermal growth factor triggers Kirsten Ras (KRas) translocation onto endosomal membranes (independently of calmodulin and protein kinase C phosphorylation) through a clathrin-dependent pathway. From early endosomes, KRas but not Harvey Ras or neuroblastoma Ras is sorted and transported to late endosomes (LEs) and lysosomes. Using yellow fluorescent protein-Raf1 and the Raichu-KRas probe, we identified for the first time in vivo-active KRas on Rab7 LEs, eliciting a signal output through Raf1. On these LEs, we also identified the p14-MP1 scaffolding complex and activated extracellular signal-regulated kinase 1/2. Abrogation of lysosomal function leads to a sustained late endosomal mitogen-activated protein kinase signal output. Altogether, this study reveals novel aspects about KRas intracellular trafficking and signaling, shedding new light on the mechanisms controlling Ras regulation in the cell.
Collapse
Affiliation(s)
- Albert Lu
- Departament de Biologia Cellular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Serveis Cientificotècnics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Francisella tularensis phagosomal escape does not require acidification of the phagosome. Infect Immun 2009; 77:1757-73. [PMID: 19237528 DOI: 10.1128/iai.01485-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Following uptake, Francisella tularensis enters a phagosome that acquires limited amounts of lysosome-associated membrane glycoproteins and does not acquire cathepsin D or markers of secondary lysosomes. With additional time after uptake, F. tularensis disrupts its phagosomal membrane and escapes into the cytoplasm. To assess the role of phagosome acidification in phagosome escape, we followed acidification using the vital stain LysoTracker red and acquisition of the proton vacuolar ATPase (vATPase) using immunofluorescence within the first 3 h after uptake of live or killed F. tularensis subsp. holarctica live vaccine strain (LVS) by human macrophages. Whereas 90% of the phagosomes containing killed LVS stained intensely for the vATPase and were acidified, only 20 to 30% of phagosomes containing live LVS stained intensely for the vATPase and were acidified. To determine whether transient acidification might be required for phagosome escape, we assessed the impact on phagosome permeabilization of the proton pump inhibitor bafilomycin A. Using electron microscopy and an adenylate cyclase reporter system, we found that bafilomycin A did not prevent phagosomal permeabilization by F. tularensis LVS or virulent type A strains (F. tularensis subsp. tularensis strain Schu S4 and a recent clinical isolate) or by "F. tularensis subsp. novicida," indicating that F. tularensis disrupts its phagosomal membrane by a mechanism that does not require acidification.
Collapse
|
92
|
Ulmasov B, Bruno J, Gordon N, Hartnett ME, Edwards JC. Chloride intracellular channel protein-4 functions in angiogenesis by supporting acidification of vacuoles along the intracellular tubulogenic pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1084-96. [PMID: 19197003 DOI: 10.2353/ajpath.2009.080625] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Endothelial cells form capillary tubes through the process of intracellular tubulogenesis. Chloride intracellular channel (CLIC) family proteins have been previously implicated in intracellular tubulogenesis, but their specific role has not been defined. In this study, we show that disruption of the Clic4 gene in mice results in defective angiogenesis in vivo as reflected in a Matrigel plug angiogenesis assay. An angiogenesis defect is also apparent in the retina, both in the decreased spontaneous development of retinal vasculature of unstressed mice and in the dramatically decreased angiogenic response of retinal vessels to an oxygen toxicity challenge. We found that endothelial cells derived from Clic4(-/-) mice demonstrated impaired tubulogenesis in three-dimensional fibrin gels compared with cells derived from wild-type mice. Furthermore, we found that tubulogenesis of wild-type cells in culture was inhibited by both an inhibitor of CLICs and an inhibitor of the vacuolar proton ATPase. Finally, we showed that vacuoles along the endothelial tubulogenesis pathway are acidic in wild-type cells, and that vacuolar acidification is impaired in Clic4(-/-) cells while lysosomal acidification is intact. We conclude that CLIC4 plays a critical role in angiogenesis by supporting acidification of vacuoles along the cell-hollowing tubulogenic pathway.
Collapse
Affiliation(s)
- Barbara Ulmasov
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27514-7155, USA
| | | | | | | | | |
Collapse
|
93
|
Lugo-Martínez VH, Petit CS, Fouquet S, Le Beyec J, Chambaz J, Pinçon-Raymond M, Cardot P, Thenet S. Epidermal growth factor receptor is involved in enterocyte anoikis through the dismantling of E-cadherin-mediated junctions. Am J Physiol Gastrointest Liver Physiol 2009; 296:G235-44. [PMID: 19056766 DOI: 10.1152/ajpgi.90313.2008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Enterocytes of the intestinal epithelium are continually regenerated. They arise from precursor cells in crypts, migrate along villi, and finally die, 3-4 days later, when they reach the villus apex. Their death is thought to occur by anoikis, a form of apoptosis induced by cell detachment, but the mechanism of this process remains poorly understood. We have previously shown that a key event in the onset of anoikis in normal enterocytes detached from the basal lamina is the disruption of adherens junctions mediated by E-cadherin (Fouquet S, Lugo-Martinez VH, Faussat AM, Renaud F, Cardot P, Chambaz J, Pincon-Raymond M, Thenet S. J Biol Chem 279: 43061-43069, 2004). Here we have further investigated the mechanisms underlying this disassembly of the adherens junctions. We show that disruption of the junctions occurs through endocytosis of E-cadherin and that this process depends on the tyrosine-kinase activity of the epidermal growth factor receptor (EGFR). Activation of EGFR was detected in detached enterocytes before E-cadherin disappearance. Specific inhibition of EGFR by tyrphostin AG-1478 maintained E-cadherin and its cytoplasmic partners beta- and alpha-catenin at cell-cell contacts and decreased anoikis. Finally, EGFR activation was evidenced in the intestinal epithelium in vivo, in rare individual cells, which were shown to lose their interactions with the basal lamina. We conclude that EGFR is activated as enterocytes become detached from the basal lamina, and that this mechanism contributes to the disruption of E-cadherin-dependent junctions leading to anoikis. This suggests that EGFR participates in the physiological elimination of the enterocytes.
Collapse
|
94
|
Abstract
TRPML1, TRPML2 and TRPML3 belong to the mucolipin family of the TRP superfamily of ion channels. The founding member of this family, TRPML1, was cloned during the search for the genetic determinants of the lysosomal storage disease mucolipidosis type IV (MLIV). Mucolipins are predominantly expressed within the endocytic pathway, where they appear to regulate membrane traffic and/or degradation. The physiology of mucolipins raises some of the most interesting questions of modern cell biology. Their traffic and localization is a multistep process involving a system of adaptor proteins, while their ion channel activity possibly exemplifies the rare cases of regulation of endocytic traffic and hydrolysis by ion channels. Finally, dysregulation of mucolipins results in cell death leading to neurodegenerative phenotypes of MLIV and of the varitint-waddler mouse model of familial deafness. The present review discusses current knowledge and questions regarding this novel family of disease-relevant ion channels with a specific focus on mucolipin regulation and their role in membrane traffic and cell death. Since mucolipins are ubiquitously expressed, this review may be useful for a wide audience of basic biologists and clinicians.
Collapse
Affiliation(s)
- Rosa Puertollano
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
95
|
Volcy K, Dewhurst S. Proteasome inhibitors enhance bacteriophage lambda (lambda) mediated gene transfer in mammalian cells. Virology 2008; 384:77-87. [PMID: 19064273 PMCID: PMC2654414 DOI: 10.1016/j.virol.2008.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 09/10/2008] [Accepted: 11/11/2008] [Indexed: 11/05/2022]
Abstract
Bacteriophage lambda vectors can transfer their genomes into mammalian cells, resulting in expression of phage-encoded genes. However, this process is inefficient. Experiments were therefore conducted to delineate the rate limiting step(s) involved, using a phage vector that contains a mammalian luciferase reporter gene cassette. The efficiency of phage-mediated gene transfer in mammalian cells was quantitated, in the presence or absence of pharmacologic inhibitors of cell uptake and degradation pathways. Inhibitors of lysosomal proteases and proteasome inhibitors strongly enhanced phage-mediated luciferase expression, suggesting that these pathways contribute to the destruction of intracellular phage particles. In contrast, inhibition of endosome acidification had no effect on phage-mediated gene transfer, presumably because phage lambda is tolerant to extended exposure to low pH. These findings provide insights into the pathways by which phage vectors enter and transduce mammalian cells, and suggest that it may be possible to pharmacologically enhance the efficiency of phage-mediated gene transfer in mammalian cells. Finally, the data also suggest that the proteasome complex may serve as an innate defense mechanism that restricts the infection of mammalian cells by diverse viral agents.
Collapse
Affiliation(s)
- Ketna Volcy
- Department of Microbiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | |
Collapse
|
96
|
Burkholderia cenocepacia-induced delay of acidification and phagolysosomal fusion in cystic fibrosis transmembrane conductance regulator (CFTR)-defective macrophages. Microbiology (Reading) 2008; 154:3825-3834. [DOI: 10.1099/mic.0.2008/023200-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
97
|
Goebl NA, Babbey CM, Datta-Mannan A, Witcher DR, Wroblewski VJ, Dunn KW. Neonatal Fc receptor mediates internalization of Fc in transfected human endothelial cells. Mol Biol Cell 2008; 19:5490-505. [PMID: 18843053 DOI: 10.1091/mbc.e07-02-0101] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The neonatal Fc receptor, FcRn mediates an endocytic salvage pathway that prevents degradation of IgG, thus contributing to the homeostasis of circulating IgG. Based on the low affinity of IgG for FcRn at neutral pH, internalization of IgG by endothelial cells is generally believed to occur via fluid-phase endocytosis. To investigate the role of FcRn in IgG internalization, we used quantitative confocal microscopy to characterize internalization of fluorescent Fc molecules by HULEC-5A lung microvascular endothelia transfected with GFP fusion proteins of human or mouse FcRn. In these studies, cells transfected with FcRn accumulated significantly more intracellular Fc than untransfected cells. Internalization of FcRn-binding forms of Fc was proportional to FcRn expression level, was enriched relative to dextran internalization in proportion to FcRn expression level, and was blocked by incubation with excess unlabeled Fc. Because we were unable to detect either surface expression of FcRn or surface binding of Fc, these results suggest that FcRn-dependent internalization of Fc may occur through sequestration of Fc by FcRn in early endosomes. These studies indicate that FcRn-dependent internalization of IgG may be important not only in cells taking up IgG from an extracellular acidic space, but also in endothelial cells participating in homeostatic regulation of circulating IgG levels.
Collapse
Affiliation(s)
- Nancy A Goebl
- Department of Drug Disposition Development/Commercialization, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | | | | | | |
Collapse
|
98
|
Dynamics of photoinduced endosomal release of polyplexes. J Control Release 2008; 130:175-82. [PMID: 18585413 DOI: 10.1016/j.jconrel.2008.06.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 05/29/2008] [Accepted: 06/02/2008] [Indexed: 11/24/2022]
Abstract
Endosomal escape is a well-known bottleneck for successful delivery of macromolecular drugs and genes. Photochemical disruption of endosomal membranes is an approach to overcome this bottleneck. In this study, we used the photosensitizer disulphonated meso-tetraphenylporphine with sulfonate groups on adjacent phenyl rings (TPPS(2a)) to investigate photoinduced endosomal release in living cells with high resolution fluorescence wide-field microscopy in real time. We studied the release dynamics of 10 kDa dextran and polyplexes consisting of DNA condensed with the cationic polymers linear polyethyleneimine (LPEI), poly-(L)-lysine (PLL) or poly-(D)-lysine (PDL). By means of dual-color microscopy and the use of double-labeled polyplexes DNA and polymer were imaged simultaneously. We show that the characteristics of the cationic polymer significantly influence the release behavior of the polyplexes. The release of dextran occurred within 100 ms. For LPEI/DNA particles, LPEI quickly spread throughout the cytosol similar to dextran, whereas DNA was released slowly (within 4 s) and remained immobile thereafter. In case of PLL particles, both DNA and polymer showed quick release. PDL particles remained condensed upon photosensitizer activation. In addition, we demonstrate that TPPS(2a) has biological side effects. Besides stop of microtubule dynamics in the dark, the movement of endosomes ceased after photosensitizer activation.
Collapse
|
99
|
Harbison CE, Chiorini JA, Parrish CR. The parvovirus capsid odyssey: from the cell surface to the nucleus. Trends Microbiol 2008; 16:208-14. [DOI: 10.1016/j.tim.2008.01.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 01/14/2008] [Accepted: 01/25/2008] [Indexed: 12/21/2022]
|
100
|
Maître B, Angénieux C, Salamero J, Hanau D, Fricker D, Signorino F, Proamer F, Cazenave JP, Goud B, Tourne S, de la Salle H. Control of the intracellular pathway of CD1e. Traffic 2008; 9:431-45. [PMID: 18208508 DOI: 10.1111/j.1600-0854.2008.00707.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CD1e is a membrane-associated protein predominantly detected in the Golgi compartments of immature human dendritic cells. Without transiting through the plasma membrane, it is targeted to lysosomes (Ls) where it remains as a cleaved and soluble form and participates in the processing of glycolipidic antigens. The role of the cytoplasmic tail of CD1e in the control of its intracellular pathway was studied. Experiments with chimeric molecules demonstrated that the cytoplasmic domain determines a cellular pathway that conditions the endosomal cleavage of these molecules. Other experiments showed that the C-terminal half of the cytoplasmic tail mediates the accumulation of CD1e in Golgi compartments. The cytoplasmic domain of CD1e undergoes monoubiquitinations, and its ubiquitination profile is maintained when its N- or C-terminal half is deleted. Replacement of the eight cytoplasmic lysines by arginines results in a marked accumulation of CD1e in trans Golgi network 46+ compartments, its expression on the plasma membrane and a moderate slowing of its transport to Ls. Fusion of this mutated form with ubiquitin abolishes the accumulation of CD1e molecules in the Golgi compartments and restores the kinetics of their transport to Ls. Thus, ubiquitination of CD1e appears to trigger its exit from Golgi compartments and its transport to endosomes. This ubiquitin-dependent pathway may explain several features of the very particular intracellular traffic of CD1e in dendritic cells compared with other CD1 molecules.
Collapse
Affiliation(s)
- Blandine Maître
- INSERM, U725, Etablissement Français du Sang-Alsace, Strasbourg 67065, France, and Université Louis-Pasteur, Strasbourg 67000, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|