51
|
Ratheesh A, Priya R, Yap AS. Coordinating Rho and Rac: the regulation of Rho GTPase signaling and cadherin junctions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:49-68. [PMID: 23481190 DOI: 10.1016/b978-0-12-394311-8.00003-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cadherin-based cell-cell adhesions are dynamic structures that mediate tissue organization and morphogenesis. They link cells together, mediate cell-cell recognition, and influence cell shape, motility, proliferation, and differentiation. At the cellular level, operation of classical cadherin adhesion systems is coordinated with cytoskeletal dynamics, contractility, and membrane trafficking to support productive interactions. Cadherin-based cell signaling is critical for the coordination of these many cellular processes. Here, we discuss the role of Rho family GTPases in cadherin signaling. We focus on understanding the pathways that utilize Rac and Rho in junctional biology, aiming to identify the mechanisms of upstream regulation and define how the effects of these activated GTPases might regulate the actin cytoskeleton to modulate the cellular processes involved in cadherin-based cell-cell interactions.
Collapse
Affiliation(s)
- Aparna Ratheesh
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia
| | | | | |
Collapse
|
52
|
Src family kinase inhibitor PP2 accelerates differentiation in human intestinal epithelial cells. Biochem Biophys Res Commun 2012; 430:1195-200. [PMID: 23274493 DOI: 10.1016/j.bbrc.2012.12.085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 12/20/2012] [Indexed: 12/17/2022]
Abstract
The proto-oncogene Src is an important protein tyrosine kinase involved in signaling pathways that control cell adhesion, growth, migration and survival. Here, we investigated the involvement of Src family kinases (SFKs) in human intestinal cell differentiation. We first observed that Src activity peaked in early stages of Caco-2/15 cell differentiation. Inhibition of SFKs with PP2, a selective SFK inhibitor, accelerated the overall differentiation program. Interestingly, all polarization and terminal differentiation markers tested, including sucrase-isomaltase, lactase-phlorizin hydrolase and E and Li-cadherins were found to be significantly up-regulated after only 3 days of treatment in the newly differentiating cells. Further investigation of the effects of PP2 revealed a significant up-regulation of the two main intestinal epithelial cell-specific transcription factors Cdx2 and HNF1α and a reduction of polycomb PRC2-related epigenetic repressing activity as measured by a decrease in H3K27me3, two events closely related to the control of cell terminal differentiation in the intestine. Taken together, these data suggest that SFKs play a key role in the control of intestinal epithelial cell terminal differentiation.
Collapse
|
53
|
Ngok SP, Geyer R, Liu M, Kourtidis A, Agrawal S, Wu C, Seerapu HR, Lewis-Tuffin LJ, Moodie KL, Huveldt D, Marx R, Baraban JM, Storz P, Horowitz A, Anastasiadis PZ. VEGF and Angiopoietin-1 exert opposing effects on cell junctions by regulating the Rho GEF Syx. ACTA ACUST UNITED AC 2012; 199:1103-15. [PMID: 23253477 PMCID: PMC3529520 DOI: 10.1083/jcb.201207009] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
VEGF causes translocation of Syx from endothelial cell junctions, promoting junction disassembly, whereas Angtiopoietin-1 maintains Syx at the junctions and stabilizes them. Vascular endothelial growth factor (VEGF) and Ang1 (Angiopoietin-1) have opposing effects on vascular permeability, but the molecular basis of these effects is not fully known. We report in this paper that VEGF and Ang1 regulate endothelial cell (EC) junctions by determining the localization of the RhoA-specific guanine nucleotide exchange factor Syx. Syx was recruited to junctions by members of the Crumbs polarity complex and promoted junction integrity by activating Diaphanous. VEGF caused translocation of Syx from cell junctions, promoting junction disassembly, whereas Ang1 maintained Syx at the junctions, inducing junction stabilization. The VEGF-induced translocation of Syx from EC junctions was caused by PKD1 (protein kinase D1)-mediated phosphorylation of Syx at Ser806, which reduced Syx association to its junctional anchors. In support of the pivotal role of Syx in regulating EC junctions, syx−/− mice had defective junctions, resulting in vascular leakiness, edema, and impaired heart function.
Collapse
Affiliation(s)
- Siu P Ngok
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL 32224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
The ability of cells to invade into the dermis is a critical event in the development of cutaneous melanoma and ultimately an indicator of poor prognosis. However, the molecular events surrounding the acquisition of this invasive phenotype remain incompletely understood. Mutations in B-RAF are frequent in melanoma and are known to regulate the invasive phenotype. In this study, we sought to determine the molecular mechanisms controlling melanoma invasion. We found that mutant B-RAF signaling regulates a cadherin switch. In melanoma cells expressing mutant B-RAF we observed high levels of N-cadherin and low levels of E-cadherin. Depletion of mutant B-RAF, by siRNA, caused a decrease in the levels of N-cadherin and an increase in the levels of E-cadherin. Mechanistically, we found that this cadherin switch required the activity of Rac1 and its GEF, Tiam1, both of which show suppressed activity in the presence of mutant B-RAF. Consistent with the work of others, we found that depletion of mutant B-RAF decreased the invasive capacity of the melanoma cells. However, simultaneous depletion of B-RAF and Rac or Tiam1 resulted in invasive capacity similar to that of control cells. Taken together, our results suggest that mutant B-RAF signaling downregulates Tiam1/Rac activity resulting in an increase in N-cadherin levels and a decrease in E-cadherin levels and ultimately enhanced invasion.
Collapse
|
55
|
Lin ML, Lu YC, Chen HY, Lee CC, Chung JG, Chen SS. Suppressing the formation of lipid raft-associated Rac1/PI3K/Akt signaling complexes by curcumin inhibits SDF-1α-induced invasion of human esophageal carcinoma cells. Mol Carcinog 2012. [PMID: 23192861 DOI: 10.1002/mc.21984] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stromal cell-derived factor-1α (SDF-1α) is a ligand for C-X-C chemokine receptor type 4 (CXCR4), which contributes to the metastasis of cancer cells by promoting cell migration. Here, we show that the SDF-1α/CXCR4 axis can significantly increase invasion of esophageal carcinoma (EC) cells. We accomplished this by examining the effects of CXCR4 knockdown as well as treatment with a CXCR4-neutralizing antibody and the CXCR4-specific inhibitor AMD3100. Curcumin suppressed SDF-1α-induced cell invasion and matrix metalloproteinase-2 (MMP-2) promoter activity, cell surface localization of CXCR4 at lipid rafts, and lipid raft-associated ras-related C3 botulinum toxin substrate 1 (Rac1)/phosphatidylinositol 3-kinase (PI3K) p85α/Akt signaling. Curcumin inhibited SDF-1α-induced cell invasion by suppressing the Rac1-PI3K signaling complex at lipid rafts but did not abrogate lipid raft formation. We further demonstrate that the attenuation of lipid raft-associated Rac1 activity by curcumin was critical for the inhibition of SDF-1α-induced PI3K/Akt/NF-κB activation, cell surface localization of CXCR4 at lipid rafts, MMP-2 promoter activity, and cell invasion. Collectively, our results indicate that curcumin inhibits SDF-1α-induced EC cell invasion by suppressing the formation of the lipid raft-associated Rac1-PI3K-Akt signaling complex, the localization of CXCR4 with lipid rafts at the cell surface, and MMP-2 promoter activity, likely through the inhibition of Rac1 activity.
Collapse
Affiliation(s)
- Meng-Liang Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
56
|
de Toledo M, Anguille C, Roger L, Roux P, Gadea G. Cooperative anti-invasive effect of Cdc42/Rac1 activation and ROCK inhibition in SW620 colorectal cancer cells with elevated blebbing activity. PLoS One 2012; 7:e48344. [PMID: 23144867 PMCID: PMC3492328 DOI: 10.1371/journal.pone.0048344] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 09/24/2012] [Indexed: 12/18/2022] Open
Abstract
Rho GTPases are key regulators of tumour cell invasion and therefore constitute attractive targets for the design of anticancer agents. Several strategies have been developed to modulate their increased activities during cancer progression. Interestingly, none of these approaches took into account the existence of the well-known antagonistic relationship between RhoA and Rac1. In this study, we first compared the invasiveness of a collection of colorectal cancer cell lines with their RhoA, Rac1 and Cdc42 activities. A marked decrease of active Cdc42 and Rac1 correlated with the high invasive potential of the cell lines established from metastatic sites of colorectal adenocarcinoma (LoVo, SKCo1, SW620 and CoLo205). Conversely, no correlation between RhoA activity and invasiveness was detected, whereas the activity of its kinase effector ROCK was higher in cancer cell lines with a more invasive phenotype. In addition, invasiveness in these colon cancer cell lines was correlated with a typical round and blebbing morphology. We then tested whether treatment with PDGF to restore Cdc42 and Rac1 activities and/or with Y27632, a chemical inhibitor of ROCK, could decrease the invasiveness of SW620 cells. The association of both treatments substantially decreased the invasive potential of SW620 cells and this effect was accompanied by loss of membrane blebbing, restoration of a more elongated cell morphology and re-establishment of E-cadherin-dependent adherens junctions. This study paves the road to the development of therapeutic strategies in which different Rho GTPase modulators are combined to modulate the cross-talk between Rho GTPases and their specific input in metastatic progression.
Collapse
Affiliation(s)
- Marion de Toledo
- Institut de Génétique Moléculaire de Montpellier, Centre national de la recherche scientifique UMR 5535, Montpellier, France
| | - Christelle Anguille
- Centre de Recherche en Biochimie Macromoléculaire, Centre national de la recherche scientifique UMR 5237, Montpellier, France
| | - Laureline Roger
- Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Pierre Roux
- Centre de Recherche en Biochimie Macromoléculaire, Centre national de la recherche scientifique UMR 5237, Montpellier, France
| | - Gilles Gadea
- Centre de Recherche en Biochimie Macromoléculaire, Centre national de la recherche scientifique UMR 5237, Montpellier, France
- * E-mail:
| |
Collapse
|
57
|
Small GTPase Rho regulates R-cadherin through Dia1/profilin-1. Cell Signal 2012; 24:2102-10. [DOI: 10.1016/j.cellsig.2012.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 07/12/2012] [Accepted: 07/16/2012] [Indexed: 12/20/2022]
|
58
|
Ben-Chetrit N, Tarcic G, Yarden Y. ERK-ERF-EGR1, a novel switch underlying acquisition of a motile phenotype. Cell Adh Migr 2012; 7:33-7. [PMID: 23076209 DOI: 10.4161/cam.22263] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Unlike the well-characterized checkpoints of the cell cycle, which establish commitment to cell division, signaling pathways and gene expression programs that commit cells to migration are incompletely understood. Apparently, several molecular switches are activated in response to an extracellular cue, such as the epidermal growth factor (EGF), and they simultaneously confer distinct features of an integrated motile phenotype. Here we review such early (transcription-independent) and late switches, in light of a novel ERK-ERF-EGR1 switch we recently reported in the FASEB Journal. The study employed human mammary cells and two stimuli: EGF, which induced mammary cell migration, and serum factors, which stimulated cell growth. By contrasting the underlying pathways we unveiled a cascade that allows the active form of the ERK mitogen-activated protein kinase (MAPK) cascade to export the ERF repressor from the nucleus, thereby permitting tightly balanced stimulation of an EGR1-centered gene expression program.
Collapse
Affiliation(s)
- Nir Ben-Chetrit
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
59
|
Irie K, Shimizu K, Sakisaka T, Ikeda W, Takai Y. Roles of nectins in cell adhesion, signaling and polarization. Handb Exp Pharmacol 2012:343-72. [PMID: 20455098 DOI: 10.1007/978-3-540-68170-0_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Nectins are Ca(2+)-independent immunoglobulin-like cell-cell adhesion molecules which constitute a family of four members. Nectins homophilically and heterophilically trans-interact and cause cell-cell adhesion. This nectin-based cell-cell adhesion plays roles in the organization of adherens junctions in epithelial cells and fibroblasts and synaptic junctions in neurons in cooperation with cadherins. The nectin-based cell-cell adhesion plays roles in the contacts between commissural axons and floor plate cells and in the organization of Sertoli cell-spermatid junctions in the testis, independently of cadherins. Nectins furthermore regulate intracellular signaling through Cdc42 and Rac small G proteins and cell polarization through cell polarity proteins. Pathologically, nectins serve as entry and cell-cell spread mediators of herpes simplex viruses.
Collapse
Affiliation(s)
- K Irie
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | |
Collapse
|
60
|
Oishi A, Makita N, Sato J, Iiri T. Regulation of RhoA signaling by the cAMP-dependent phosphorylation of RhoGDIα. J Biol Chem 2012; 287:38705-15. [PMID: 23012358 DOI: 10.1074/jbc.m112.401547] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RhoA plays a pivotal role in regulating cell shape and movement. Protein kinase A (PKA) inhibits RhoA signaling and thereby induces a characteristic morphological change, cell rounding. This has been considered to result from cAMP-induced phosphorylation of RhoA at Ser-188, which induces a stable RhoA-GTP-RhoGDIα complex and sequesters RhoA to the cytosol. However, few groups have shown RhoA phosphorylation in intact cells. Here we show that phosphorylation of RhoGDIα but not RhoA plays an essential role in the PKA-induced inhibition of RhoA signaling and in the morphological changes using cardiac fibroblasts. The knockdown of RhoGDIα by siRNA blocks cAMP-induced cell rounding, which is recovered by RhoGDIα-WT expression but not when a RhoGDIα-S174A mutant is expressed. PKA phosphorylates RhoGDIα at Ser-174 and the phosphorylation of RhoGDIα is likely to induce the formation of a active RhoA-RhoGDIα complex. Our present results thus reveal a principal molecular mechanism underlying G(s)/cAMP-induced cross-talk with G(q)/G(13)/RhoA signaling.
Collapse
Affiliation(s)
- Atsuro Oishi
- Department of Endocrinology and Nephrology, The University of Tokyo School of Medicine, Tokyo 113-8655, Japan
| | | | | | | |
Collapse
|
61
|
Tabdili H, Barry AK, Langer MD, Chien YH, Shi Q, Lee KJ, Lu S, Leckband DE. Cadherin point mutations alter cell sorting and modulate GTPase signaling. J Cell Sci 2012; 125:3299-309. [PMID: 22505612 PMCID: PMC3516376 DOI: 10.1242/jcs.087395] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2012] [Indexed: 01/18/2023] Open
Abstract
This study investigated the impact of cadherin binding differences on both cell sorting and GTPase activation. The use of N-terminal domain point mutants of Xenopus C-cadherin enabled us to quantify binding differences and determine their effects on cadherin-dependent functions without any potential complications arising as a result of differences in cytodomain interactions. Dynamic cell-cell binding measurements carried out with the micropipette manipulation technique quantified the impact of these mutations on the two-dimensional binding affinities and dissociation rates of cadherins in the native context of the cell membrane. Pairwise binding affinities were compared with in vitro cell-sorting specificity and ligation-dependent GTPase signaling. Two-dimensional affinity differences greater than five-fold correlated with cadherin-dependent in vitro cell segregation, but smaller differences failed to induce cell sorting. Comparison of the binding affinities with GTPase signaling amplitudes further demonstrated that differential binding also proportionally modulates intracellular signaling. These results show that differential cadherin affinities have broader functional consequences than merely controlling cell-cell cohesion.
Collapse
Affiliation(s)
- Hamid Tabdili
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Adrienne K. Barry
- Department of Biochemistry, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Matthew D. Langer
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Yuan-Hung Chien
- Department of Biochemistry, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Quanming Shi
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Keng Jin Lee
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Shaoying Lu
- Department of Bioengineering, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Deborah E. Leckband
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana-Champaign, IL 61801, USA
- Department of Biochemistry, University of Illinois, Urbana-Champaign, IL 61801, USA
- Department of Chemistry, University of Illinois, Urbana-Champaign, IL 61801, USA
| |
Collapse
|
62
|
Centralspindlin and α-catenin regulate Rho signalling at the epithelial zonula adherens. Nat Cell Biol 2012; 14:818-828. [PMID: 22750944 DOI: 10.1038/ncb2532] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 05/25/2012] [Indexed: 12/17/2022]
Abstract
The biological impact of Rho depends critically on the precise subcellular localization of its active, GTP-loaded form. This can potentially be determined by the balance between molecules that promote nucleotide exchange or GTP hydrolysis. However, how these activities may be coordinated is poorly understood. We now report a molecular pathway that achieves exactly this coordination at the epithelial zonula adherens. We identify an extramitotic activity of the centralspindlin complex, better understood as a cytokinetic regulator, which localizes to the interphase zonula adherens by interacting with the cadherin-associated protein, α-catenin. Centralspindlin recruits the RhoGEF, ECT2, to activate Rho and support junctional integrity through myosin IIA. Centralspindlin also inhibits the junctional localization of p190 B RhoGAP, which can inactivate Rho. Thus, a conserved molecular ensemble that governs Rho activation during cytokinesis is used in interphase cells to control the Rho GTPase cycle at the zonula adherens.
Collapse
|
63
|
Krishnan S, Fernandez GE, Sacks DB, Prasadarao NV. IQGAP1 mediates the disruption of adherens junctions to promote Escherichia coli K1 invasion of brain endothelial cells. Cell Microbiol 2012; 14:1415-33. [PMID: 22519731 DOI: 10.1111/j.1462-5822.2012.01805.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 04/09/2012] [Accepted: 04/16/2012] [Indexed: 12/17/2022]
Abstract
The transcellular entry of Escherichia coli K1 through human brain microvascular endothelial cells (HBMEC) is responsible for tight junction disruption, leading to brain oedema in neonatal meningitis. Previous studies demonstrated that outer membrane protein A (OmpA) of E. coli K1 interacts with its receptor, Ecgp96, to induce PKC-α phosphorylation, adherens junction (AJ) disassembly (by dislodging β-catenin from VE-cadherin), and remodelling of actin in HBMEC. We report here that IQGAP1 mediates β-catenin dissociation from AJs to promote actin polymerization required for E. coli K1 invasion of HBMEC. Overexpression of C-terminal truncated IQGAP1 (IQΔC) that cannot bind β-catenin prevents both AJ disruption and E. coli K1 entry. Of note, phospho-PKC-α interacts with the C-terminal portion of Ecgp96 as well as with VE-cadherin after IQGAP1-mediated AJ disassembly. HBMEC overexpressing either C-terminal truncated Ecgp96 (Ecgp96Δ200) or IQΔC upon infection with E. coli showed no interaction of phospho-PKC-α with Ecgp96. These data indicate that the binding of OmpA to Ecgp96 induces PKC-α phosphorylation and association of phospho-PKC-α with Ecgp96, and then signals IQGAP1 to detach β-catenin from AJs. Subsequently, IQGAP1/β-catenin bound actin translocates to the site of E. coli K1 attachment to promote invasion.
Collapse
Affiliation(s)
- Subramanian Krishnan
- Division of Infectious Diseases, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California School of Medicine, Los Angeles, CA 90027, USA
| | | | | | | |
Collapse
|
64
|
Regulation of adherens junctions by Rho GTPases and p120-catenin. Arch Biochem Biophys 2012; 524:48-55. [PMID: 22583808 DOI: 10.1016/j.abb.2012.04.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/10/2012] [Accepted: 04/23/2012] [Indexed: 01/05/2023]
Abstract
The molecular mechanisms leading to tumor progression and acquisition of a metastatic phenotype are highly complex and only partially understood. The spatiotemporal regulation of E-cadherin-mediated adherens junctions is essential for normal epithelia function and tissue integrity. Perturbation of the E-cadherin complex assembly is a key event in epithelial-mesenchymal transition and is directed by a huge number of mechanisms that differ greatly with regard to cell types and tissues. The reduction in intercellular adhesion interferes with tissue integrity and allows cancer cells to disseminate from the primary tumor thereby initiating cancer metastasis. In the present review we will summarize the current findings about the influence of Rho GTPases on the formation and maintenance of adherens junction and will then proceed to discuss the involvement of p120-catenin on cell-cell adhesion and tumor cell migration.
Collapse
|
65
|
Nethe M, de Kreuk BJ, Tauriello DVF, Anthony EC, Snoek B, Stumpel T, Salinas PC, Maurice MM, Geerts D, Deelder AM, Hensbergen PJ, Hordijk PL. Rac1 acts in conjunction with Nedd4 and dishevelled-1 to promote maturation of cell-cell contacts. J Cell Sci 2012; 125:3430-42. [PMID: 22467858 DOI: 10.1242/jcs.100925] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Rho-GTPase Rac1 promotes actin polymerization and membrane protrusion that mediate initial contact and subsequent maturation of cell-cell junctions. Here we report that Rac1 associates with the ubiquitin-protein ligase neural precursor cell expressed developmentally down-regulated 4 (Nedd4). This interaction requires the hypervariable C-terminal domain of Rac1 and the WW domains of Nedd4. Activated Rac1 colocalises with endogenous Nedd4 at epithelial cell-cell contacts. Reduction of Nedd4 expression by shRNA results in reduced transepithelial electrical resistance (TER) and concomitant changes in the distribution of adherens and tight junction markers. Conversely, expression of Nedd4 promotes TER, suggesting that Nedd4 cooperates with Rac1 in the induction of junctional maturation. We found that Nedd4, but not Nedd4-2, mediates the ubiquitylation and degradation of the adapter protein dishevelled-1 (Dvl1), the expression of which negatively regulates cell-cell contact. Nedd4-mediated ubiquitylation requires its binding to the C-terminal domain of Dvl1, comprising the DEP domain, and targets an N-terminal lysine-rich region upstream of the Dvl1 DIX domain. We found that endogenous Rac1 colocalises with endogenous Dvl1 in intracellular puncta as well as on cell-cell junctions. Finally, activated Rac1 was found to stimulate Nedd4 activity, resulting in increased ubiquitylation of Dvl1. Together, these data reveal a novel Rac1-dependent signalling pathway that, through Nedd4-mediated ubiquitylation of Dvl1, stimulates the maturation of epithelial cell-cell contacts.
Collapse
Affiliation(s)
- Micha Nethe
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Dawson JC, Bruche S, Spence HJ, Braga VMM, Machesky LM. Mtss1 promotes cell-cell junction assembly and stability through the small GTPase Rac1. PLoS One 2012; 7:e31141. [PMID: 22479308 PMCID: PMC3313965 DOI: 10.1371/journal.pone.0031141] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 01/03/2012] [Indexed: 11/19/2022] Open
Abstract
Cell-cell junctions are an integral part of epithelia and are often disrupted in cancer cells during epithelial-to-mesenchymal transition (EMT), which is a main driver of metastatic spread. We show here that Metastasis suppressor-1 (Mtss1; Missing in Metastasis, MIM), a member of the IMD-family of proteins, inhibits cell-cell junction disassembly in wound healing or HGF-induced scatter assays by enhancing cell-cell junction strength. Mtss1 not only makes cells more resistant to cell-cell junction disassembly, but also accelerates the kinetics of adherens junction assembly. Mtss1 drives enhanced junction formation specifically by elevating Rac-GTP. Lastly, we show that Mtss1 depletion reduces recruitment of F-actin at cell-cell junctions. We thus propose that Mtss1 promotes Rac1 activation and actin recruitment driving junction maintenance. We suggest that the observed loss of Mtss1 in cancers may compromise junction stability and thus promote EMT and metastasis.
Collapse
Affiliation(s)
- John C. Dawson
- Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Susann Bruche
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Vania M. M. Braga
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | |
Collapse
|
67
|
Yagi S, Matsuda M, Kiyokawa E. Suppression of Rac1 activity at the apical membrane of MDCK cells is essential for cyst structure maintenance. EMBO Rep 2012; 13:237-43. [PMID: 22261715 DOI: 10.1038/embor.2011.249] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 12/21/2022] Open
Abstract
Using MDCK cells that constitutively express a Förster resonance energy transfer biosensor, we found that Rac1 activity is homogenous at the entire plasma membrane in early stages of cystogenesis, whereas in later stages Rac1 activity is higher at the lateral membrane than at the apical plasma membrane. If Rac1 is activated at the apical membrane in later stages, however, the monolayer cells move into the luminal space. In these cells, tight junctions are disrupted, accompanied by mislocalization of polarization markers and disorientation of cell division. These observations indicate that Rac1 suppression at the apical membrane is essential for the maintenance of cyst structure.
Collapse
Affiliation(s)
- Shunsuke Yagi
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
68
|
Behrendt K, Klatte J, Pofahl R, Bloch W, Smyth N, Tscharntke M, Krieg T, Paus R, Niessen C, Niemann C, Brakebusch C, Haase I. A function for Rac1 in the terminal differentiation and pigmentation of hair. J Cell Sci 2012; 125:896-905. [PMID: 22275433 DOI: 10.1242/jcs.091868] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The small GTPase Rac1 is ubiquitously expressed in proliferating and differentiating layers of the epidermis and hair follicles. Previously, Rac1 was shown to regulate stem cell behaviour in these compartments. We have asked whether Rac1 has, in addition, a specific, stem-cell-independent function in the regulation of terminal hair follicle differentiation. To address this, we have expressed a constitutively active mutant of Rac1, L61Rac1, only in the basal epidermal layer and outer root sheath of mice possessing an epidermis-specific deletion of endogenous Rac1, which experience severe hair loss. The resulting 'rescue' mice exhibited a hair coat throughout their lives. Therefore, expression of Rac1 activity in the keratin-14-positive compartment of the skin is sufficient for the formation of hair follicles and hair in normal quantities. The quality of hair formed in rescue mice was, however, not normal. Rescue mice showed a grey, dull hair coat, whereas that of wild-type and L61Rac1-transgenic mice was black and shiny. Hair analysis in rescue mice revealed altered structures of the hair shaft and the cuticle and disturbed organization of medulla cells and pigment distribution. Disorganization of medulla cells correlates with the absence of cortical, keratin-filled spikes that normally protrude from the cortex into the medulla. The desmosomal cadherin Dsc2, which normally decorates these protrusions, was found to be reduced or absent in the hair of rescue mice. Our study demonstrates regulatory functions for Rac1 in the formation of hair structure and pigmentation and thereby identifies, for the first time, a role for Rac1 in terminal differentiation.
Collapse
Affiliation(s)
- Kristina Behrendt
- Department of Dermatology, University of Cologne, Kerpener Strasse 62, D-50924 Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Comunale F, Causeret M, Favard C, Cau J, Taulet N, Charrasse S, Gauthier-Rouvière C. Rac1 and RhoA GTPases have antagonistic functions during N-cadherin-dependent cell-cell contact formation in C2C12 myoblasts. Biol Cell 2012; 99:503-17. [PMID: 17459003 DOI: 10.1042/bc20070011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND INFORMATION N-cadherin, a member of the Ca(2+)-dependent cell-cell adhesion molecule family, plays an essential role in the induction of the skeletal muscle differentiation programme. However, the molecular mechanisms which govern the formation of N-cadherin-dependent cell-cell contacts in myoblasts remain unexplored. RESULTS In the present study, we show that N-cadherin-dependent cell contact formation in myoblasts is defined by two stages. In the first phase, N-cadherin is highly mobile in the lamellipodia extensions between the contacting cells. The second stage corresponds to the formation of mature N-cadherin-dependent cell contacts, characterized by the immobilization of a pool of N-cadherin which appears to be clustered in the interdigitated membrane structures that are also membrane attachment sites for F-actin filaments. We also demonstrated that the formation of N-cadherin-dependent cell-cell contacts requires a co-ordinated and sequential activity of Rac1 and RhoA. Rac1 is involved in the first stage and facilitates N-cadherin-dependent cell-cell contact formation, but it is not absolutely required. Conversely, RhoA is necessary for N-cadherin-dependent cell contact formation, since, via ROCK (Rho-associated kinase) signalling and myosin 2 activation, it allows the stabilization of N-cadherin at the cell-cell contact sites. CONCLUSIONS We have shown that Rac1 and RhoA have opposite effects on N-cadherin-dependent cell-cell contact formation in C2C12 myoblasts and act sequentially to allow its formation.
Collapse
|
70
|
Nola S, Daigaku R, Smolarczyk K, Carstens M, Martin-Martin B, Longmore G, Bailly M, Braga VMM. Ajuba is required for Rac activation and maintenance of E-cadherin adhesion. ACTA ACUST UNITED AC 2011; 195:855-71. [PMID: 22105346 PMCID: PMC3257575 DOI: 10.1083/jcb.201107162] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A Rac–PAK1–Ajuba feedback loop stabilizes cadherin complexes via coordination of spatiotemporal signaling with actin remodeling at cell–cell contacts. Maintenance of stable E-cadherin–dependent adhesion is essential for epithelial function. The small GTPase Rac is activated by initial cadherin clustering, but the precise mechanisms underlying Rac-dependent junction stabilization are not well understood. Ajuba, a LIM domain protein, colocalizes with cadherins, yet Ajuba function at junctions is unknown. We show that, in Ajuba-depleted cells, Rac activation and actin accumulation at cadherin receptors was impaired, and junctions did not sustain mechanical stress. The Rac effector PAK1 was also transiently activated upon cell–cell adhesion and directly phosphorylated Ajuba (Thr172). Interestingly, similar to Ajuba depletion, blocking PAK1 activation perturbed junction maintenance and actin recruitment. Expression of phosphomimetic Ajuba rescued the effects of PAK1 inhibition. Ajuba bound directly to Rac·GDP or Rac·GTP, but phosphorylated Ajuba interacted preferentially with active Rac. Rather than facilitating Rac recruitment to junctions, Ajuba modulated Rac dynamics at contacts depending on its phosphorylation status. Thus, a Rac–PAK1–Ajuba feedback loop integrates spatiotemporal signaling with actin remodeling at cell–cell contacts and stabilizes preassembled cadherin complexes.
Collapse
Affiliation(s)
- Sébastien Nola
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, England, UK
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Tetraspanin CD151 maintains vascular stability by balancing the forces of cell adhesion and cytoskeletal tension. Blood 2011; 118:4274-84. [PMID: 21832275 DOI: 10.1182/blood-2011-03-339531] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tetraspanin CD151 is highly expressed in endothelial cells and regulates pathologic angiogenesis. However, the mechanism by which CD151 promotes vascular morphogenesis and whether CD151 engages other vascular functions are unclear. Here we report that CD151 is required for maintaining endothelial capillary-like structures formed in vitro and the integrity of endothelial cell-cell and cell-matrix contacts in vivo. In addition, vascular permeability is markedly enhanced in the absence of CD151. As a global regulator of endothelial cell-cell and cell-matrix adhesions, CD151 is needed for the optimal functions of various cell adhesion proteins. The loss of CD151 elevates actin cytoskeletal traction by up-regulating RhoA signaling and diminishes actin cortical meshwork by down-regulating Rac1 activity. The inhibition of RhoA or activation of cAMP signaling stabilizes CD151-silenced or -null endothelial structure in vascular morphogenesis. Together, our data demonstrate that CD151 maintains vascular stability by promoting endothelial cell adhesions, especially cell-cell adhesion, and confining cytoskeletal tension.
Collapse
|
72
|
Citi S, Spadaro D, Schneider Y, Stutz J, Pulimeno P. Regulation of small GTPases at epithelial cell-cell junctions. Mol Membr Biol 2011; 28:427-44. [DOI: 10.3109/09687688.2011.603101] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
73
|
Ezrin-mediated apical integrity is required for intestinal homeostasis. Proc Natl Acad Sci U S A 2011; 108:11924-9. [PMID: 21730140 DOI: 10.1073/pnas.1103418108] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Individual cell types are defined by architecturally and functionally specialized cortical domains. The Ezrin, Radixin, and Moesin (ERM) proteins play a major role in organizing cortical domains by assembling membrane protein complexes and linking them to the cortical actin cytoskeleton. Many studies have focused on the individual roles of the ERM proteins in stabilizing the membrane-cytoskeleton interface, controlling the distribution and function of apical membrane complexes, regulating the small GTPase Rho, or establishing cell-cell junctions. We previously found that deletion of the mouse Ezrin gene yields severe defects in apical integrity throughout the developing intestinal epithelium, resulting in incomplete villus morphogenesis and neonatal death. However, the molecular function of Ezrin in building the apical surface of the intestinal epithelium was not clear. By deleting Ezrin in the adult mouse intestinal epithelium, we provide evidence that Ezrin performs multiple molecular functions that collaborate to build the functional apical surface of the intestinal epithelium in vivo. The loss of Ezrin-mediated apical integrity in the adult intestine yields severe morphological consequences during intestinal homeostasis, including defects in cell geometry, extrusion, junctional remodeling, and spindle orientation. Surprisingly, deletion of Ezrin either before or after villus morphogenesis yields villus fusion, revealing a previously unrecognized step in intestinal homeostasis. Our studies indicate that the function of Ezrin in building and maintaining the apical domain is essential not only for intestinal morphogenesis but also for homeostasis in the mature intestine.
Collapse
|
74
|
Wendt MK, Tian M, Schiemann WP. Deconstructing the mechanisms and consequences of TGF-β-induced EMT during cancer progression. Cell Tissue Res 2011; 347:85-101. [PMID: 21691718 DOI: 10.1007/s00441-011-1199-1] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 06/01/2011] [Indexed: 12/14/2022]
Abstract
Transforming growth factor-β (TGF-β) is a potent pleiotropic cytokine that regulates mammalian development, differentiation, and homeostasis in essentially all cell types and tissues. TGF-β normally exerts anticancer activities by prohibiting cell proliferation and by creating cell microenvironments that inhibit cell motility, invasion, and metastasis. However, accumulating evidence indicates that the process of tumorigenesis, particularly that associated with metastatic progression, confers TGF-β with oncogenic activities, a functional switch known as the "TGF-β paradox." The molecular determinants governing the TGF-β paradox are complex and represent an intense area of investigation by researchers in academic and industrial settings. Recent findings link genetic and epigenetic events in mediating the acquisition of oncogenic activity by TGF-β, as do aberrant alterations within tumor microenvironments. These events coalesce to enable TGF-β to direct metastatic progression via the stimulation of epithelial-mesenchymal transition (EMT), which permits carcinoma cells to abandon polarized epithelial phenotypes in favor of apolar mesenchymal-like phenotypes. Attempts to deconstruct the EMT process induced by TGF-β have identified numerous signaling molecules, transcription factors, and microRNAs operant in mediating the initiation and resolution of this complex transdifferentiation event. In addition to its ability to enhance carcinoma cell invasion and metastasis, EMT also endows transitioned cells with stem-like properties, including the acquisition of self-renewal and tumor-initiating capabilities coupled to chemoresistance. Here, we review recent findings that delineate the pathophysiological mechanisms whereby EMT stimulated by TGF-β promotes metastatic progression and disease recurrence in human carcinomas.
Collapse
Affiliation(s)
- Michael K Wendt
- Case Comprehensive Cancer Center, Division of General Medical Sciences-Oncology, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
75
|
Raptis L, Arulanandam R, Geletu M, Turkson J. The R(h)oads to Stat3: Stat3 activation by the Rho GTPases. Exp Cell Res 2011; 317:1787-95. [PMID: 21619876 DOI: 10.1016/j.yexcr.2011.05.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 02/09/2023]
Abstract
The signal transducer and activator of transcription-3 (Stat3) is a member of the STAT family of cytoplasmic transcription factors. Overactivation of Stat3 is detected with high frequency in human cancer and is considered a molecular abnormality that supports the tumor phenotype. Despite concerted investigative efforts, the molecular mechanisms leading to the aberrant Stat3 activation and Stat3-mediated transformation and tumorigenesis are still not clearly defined. Recent evidence reveals a crosstalk close relationship between Stat3 signaling and members of the Rho family of small GTPases, including Rac1, Cdc42 and RhoA. Specifically, Rac1, acting in a complex with the MgcRacGAP (male germ cell RacGAP), promotes tyrosine phosphorylation of Stat3 by the IL6-receptor family/Jak kinase complex, as well as its translocation to the nucleus. Studies have further revealed that the mutational activation of Rac1 and Cdc42 results in Stat3 activation, which occurs in part through the upregulation of IL6 family cytokines that in turn stimulates Stat3 through the Jak kinases. Interestingly, evidence also shows that the engagement of cadherins, cell to cell adhesion molecules, specifically induces a striking increase in Rac1 and Cdc42 protein levels and activity, which in turn results in Stat3 activation. In this review we integrate recent findings clarifying the role of the Rho family GTPases in Stat3 activation in the context of malignant progression.
Collapse
Affiliation(s)
- Leda Raptis
- Department of Microbiology and Immunology and Pathology, Queen's University, Kingston, Ontario, Canada.
| | | | | | | |
Collapse
|
76
|
Baum B, Georgiou M. Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling. ACTA ACUST UNITED AC 2011; 192:907-17. [PMID: 21422226 PMCID: PMC3063136 DOI: 10.1083/jcb.201009141] [Citation(s) in RCA: 370] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The epithelial cadherin (E-cadherin)–catenin complex binds to cytoskeletal components and regulatory and signaling molecules to form a mature adherens junction (AJ). This dynamic structure physically connects neighboring epithelial cells, couples intercellular adhesive contacts to the cytoskeleton, and helps define each cell’s apical–basal axis. Together these activities coordinate the form, polarity, and function of all cells in an epithelium. Several molecules regulate AJ formation and integrity, including Rho family GTPases and Par polarity proteins. However, only recently, with the development of live-cell imaging, has the extent to which E-cadherin is actively turned over at junctions begun to be appreciated. This turnover contributes to junction formation and to the maintenance of epithelial integrity during tissue homeostasis and remodeling.
Collapse
Affiliation(s)
- Buzz Baum
- University College London, London WC1E 6BT, England, UK
| | | |
Collapse
|
77
|
Jia L, Liu F, Hansen SH, Ter Beest MBA, Zegers MMP. Distinct roles of cadherin-6 and E-cadherin in tubulogenesis and lumen formation. Mol Biol Cell 2011; 22:2031-41. [PMID: 21508319 PMCID: PMC3113768 DOI: 10.1091/mbc.e11-01-0038] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Classic cadherins are important regulators of tissue morphogenesis. The predominant cadherin in epithelial cells, E-cadherin, has been extensively studied because of its critical role in normal epithelial development and carcinogenesis. Epithelial cells may also coexpress other cadherins, but their roles are less clear. The Madin Darby canine kidney (MDCK) cell line has been a popular mammalian model to investigate the role of E-cadherin in epithelial polarization and tubulogenesis. However, MDCK cells also express relatively high levels of cadherin-6, and it is unclear whether the functions of this cadherin are redundant to those of E-cadherin. We investigate the specific roles of both cadherins using a knockdown approach. Although we find that both cadherins are able to form adherens junctions at the basolateral surface, we show that they have specific and mutually exclusive roles in epithelial morphogenesis. Specifically, we find that cadherin-6 functions as an inhibitor of tubulogenesis, whereas E-cadherin is required for lumen formation. Ablation of cadherin-6 leads to the spontaneous formation of tubules, which depends on increased phosphoinositide 3-kinase (PI3K) activity. In contrast, loss of E-cadherin inhibits lumen formation by a mechanism independent of PI3K.
Collapse
Affiliation(s)
- Liwei Jia
- Department of Surgery, Committee on Cancer Biology, University of Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
78
|
Chartier NT, Lainé MG, Ducarouge B, Oddou C, Bonaz B, Albiges-Rizo C, Jacquier-Sarlin MR. Enterocytic differentiation is modulated by lipid rafts-dependent assembly of adherens junctions. Exp Cell Res 2011; 317:1422-36. [PMID: 21419117 DOI: 10.1016/j.yexcr.2011.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 02/18/2011] [Accepted: 03/09/2011] [Indexed: 01/29/2023]
Abstract
Integrity of the epithelial barrier is determined by apical junctional complexes which also participate in the signalling pathways inducing intestinal cell differentiation. Lipid rafts (LR) have been proposed to play a role in the organization and the function of these intercellular complexes. This study investigated potential mechanisms by which LR could participate in the establishment of adherens junctions (AJ) and the initiation of enterocytic differentiation. We showed that the differentiation of epithelial cells in rat colons correlates with the emergence of LR. Using HT-29 cells we demonstrated that during the differentiation process, LR are required for the recruitment and the association of p120ctn to E-cadherin. Silencing of flotillin-1, a LR component, alters the recruitment of AJ proteins in LR and delays the expression of differentiation markers. Furthermore, the ability of p120ctn/E-cadherin complexes to support cell differentiation is altered in HT-29 Rac1N17 cells. These results show a contributory role of LR in the enterocytic differentiation process, which serve as signalling platforms for Rac1-mediated organization of AJ. A better understanding of the mechanism involved in the establishment of junctional complex and their role in enterocytic differentiation provides new insights into the regulation of intestinal homeostasis.
Collapse
Affiliation(s)
- Nicolas T Chartier
- Centre de Recherche Inserm U823, Institut Albert Bonniot, Equipe de Dynamique des Systèmes d'Adhérence et de Différenciation, Site Santé BP 170 La Tronche F-38042 Grenoble Cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
79
|
Popoff MR, Geny B. Rho/Ras-GTPase-dependent and -independent activity of clostridial glucosylating toxins. J Med Microbiol 2011; 60:1057-1069. [PMID: 21349986 DOI: 10.1099/jmm.0.029314-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Clostridial glucosylating toxins are the main virulence factors of clostridia responsible for gangrene and/or colitis. These toxins have been well characterized to inactivate Rho/Ras-GTPases through glucosylation. However, the signalling pathways downstream of Rho/Ras-GTPases leading to the intracellular effects of these toxins are only partially known. Rac-dependent modification of focal adhesion complexes and phosphoinositide metabolism seem to be key processes involved in actin filament depolymerization and disorganization of intercellular junctions. In addition, clostridial glucosylating toxins induce Rho/Ras-independent intracellular effects such as activation of mitogen-activated protein kinase pathways, which are used by some of these toxins to trigger an inflammatory response.
Collapse
Affiliation(s)
- Michel R Popoff
- Institut Pasteur, Unité des Bactéries Anaérobies et Toxines, 25 rue du Dr Roux, 75724 Paris cedex 15, France
| | - Bladine Geny
- Institut Pasteur, Unité des Bactéries Anaérobies et Toxines, 25 rue du Dr Roux, 75724 Paris cedex 15, France
| |
Collapse
|
80
|
p70 S6 kinase in the control of actin cytoskeleton dynamics and directed migration of ovarian cancer cells. Oncogene 2011; 30:2420-32. [PMID: 21258406 DOI: 10.1038/onc.2010.615] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ovarian cancer is highly metastatic with a poor prognosis. The serine/threonine kinase, p70 S6 kinase (p70(S6K)), which is a downstream effector of phosphatidylinositol 3-kinase/Akt pathway, is frequently activated in ovarian cancer. Here, we show that p70(S6K) is a critical regulator of the actin cytoskeleton in the acquisition of the metastatic phenotype. This regulation is through two important activities: p70(S6K) acts as an actin filament cross-linking protein and as a Rho family GTPase-activating protein. Ectopic expression of constitutively active p70(S6K) in ovarian cancer cells induced a marked reorganization of the actin cytoskeleton and promoted directional cell migration. Using cosedimentation and differential sedimentation assays, p70(S6K) was found to directly bind to and cross-link actin filaments. Immunofluorescence studies showed p70(S6K) colocalized with cytochalasin D-sensitive actin at the leading edge of motile cells. The p70(S6K) did not affect the kinetics of spontaneous actin polymerization, but could stabilize actin filaments by the inhibition of cofilin-induced actin depolymerization. In addition, we showed that p70(S6K) stimulated the rapid activation of both Rac1 and Cdc42, and their downstream effector p21-activated kinase (PAK1), but not RhoA. Depletion of p70(S6K) expression or inhibition of its activity resulted in significant inhibition of actin cytoskeleton reorganization and reduced migration, with a concomitant reduction in Rac1, Cdc42 and PAK1 activation, confirming that the effect was p70(S6K) specific. Similarly, the actin cytoskeleton reorganization/migratory phenotype could be reversed by expression of dominant negative Rac1 and Cdc42, or inhibition of PAK1. These results reveal a new direction for understanding the oncogenic roles of p70(S6K) in tumor progression.
Collapse
|
81
|
Abstract
Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine that functions to inhibit mammary tumorigenesis by directly inducing mammary epithelial cells (MECs) to undergo cell cycle arrest or apoptosis, and to secrete a variety of cytokines, growth factors, and extracellular matrix proteins that maintain cell and tissue homeostasis. Genetic and epigenetic events that transpire during mammary tumorigenesis typically inactivate the tumor suppressing activities of TGF-beta and ultimately confer this cytokine with tumor promoting activities, including the ability to stimulate breast cancer invasion, metastasis, angiogenesis, and evasion from the immune system. This dramatic conversion in TGF-beta function is known as the "TGF-beta paradox" and reflects a variety of dynamic alterations that occur not only within the developing mammary carcinoma, but also within the cellular and structural composition of its accompanying tumor microenvironment. Recent studies have begun to elucidate the critical importance of mammary tumor microenvironments in manifesting the TGF-beta paradox and influencing the response of developing mammary carcinomas to TGF-beta. Here we highlight recent findings demonstrating the essential function of tumor microenvironments in regulating the oncogenic activities of TGF-beta and its stimulation of metastatic progression during mammary tumorigenesis.
Collapse
Affiliation(s)
- Molly A. Taylor
- Case Comprehensive Cancer Center, Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH, USA
| | - Yong-Hun Lee
- Case Comprehensive Cancer Center, Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH, USA
| | - William P. Schiemann
- Case Comprehensive Cancer Center, Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
82
|
Tervonen TA, Partanen JI, Saarikoski ST, Myllynen M, Marques E, Paasonen K, Moilanen A, Wohlfahrt G, Kovanen PE, Klefstrom J. Faulty epithelial polarity genes and cancer. Adv Cancer Res 2011; 111:97-161. [PMID: 21704831 DOI: 10.1016/b978-0-12-385524-4.00003-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Epithelial architecture is formed in tissues and organs when groups of epithelial cells are organized into polarized structures. The epithelial function and integrity as well as signaling across the epithelial layer is orchestrated by apical junctional complexes (AJCs), which are landmarks for PAR/CRUMBS and lateral SCRIB polarity modules and by dynamic interactions of the cells with underlying basement membrane (BM). These highly organized epithelial architectures are demolished in cancer. In all advanced epithelial cancers, malignant cells have lost polarity and connections to the basement membrane and they have become proliferative, motile, and invasive. Clearly, loss of epithelial integrity associates with tumor progression but does it contribute to tumor development? Evidence from studies in Drosophila and recently also in vertebrate models have suggested that even the oncogene-driven enforced cell proliferation can be conditional, dependant on the influence of cell-cell or cell-microenvironment contacts. Therefore, loss of epithelial integrity may not only be an obligate consequence of unscheduled proliferation of malignant cells but instead, malignant epithelial cells may need to acquire capacity to break free from the constraints of integrity to freely and autonomously proliferate. We discuss how epithelial polarity complexes form and regulate epithelial integrity, highlighting the roles of enzymes Rho GTPases, aPKCs, PI3K, and type II transmembrane serine proteases (TTSPs). We also discuss relevance of these pathways to cancer in light of genetic alterations found in human cancers and review molecular pathways and potential pharmacological strategies to revert or selectively eradicate disorganized tumor epithelium.
Collapse
|
83
|
Greenberg L, Hatini V. Systematic expression and loss-of-function analysis defines spatially restricted requirements for Drosophila RhoGEFs and RhoGAPs in leg morphogenesis. Mech Dev 2011; 128:5-17. [PMID: 20851182 PMCID: PMC3029487 DOI: 10.1016/j.mod.2010.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 09/10/2010] [Accepted: 09/13/2010] [Indexed: 01/13/2023]
Abstract
The Drosophila leg imaginal disc consists of a peripheral region that contributes to adult body wall, and a central region that forms the leg proper. While the patterning signals and transcription factors that determine the identity of adult structures have been identified, the mechanisms that determine the shape of these structures remain largely unknown. The family of Rho GTPases, which consists of seven members in flies, modulates cell adhesion, actomyosin contractility, protrusive membrane activity, and cell-matrix adhesion to generate mechanical forces that shape adult structures. The Rho GTPases are ubiquitously expressed and it remains unclear how they orchestrate morphogenetic events. The Rho guanine nucleotide exchange factors (RhoGEFs) and Rho GTPase activating proteins (RhoGAPs), which respectively activate and deactivate corresponding Rho GTPases, have been proposed to regulate the activity of Rho signaling cascades in specific spatiotemporal patterns to orchestrate morphogenetic events. Here we identify restricted expression of 12 of the 20 RhoGEFs and 10 of the 22 Rho RhoGAPs encoded in Drosophila during metamorphosis. Expression of a subset of each family of RhoGTPase regulators was restricted to motile cell populations including tendon, muscle, trachea, and peripodial stalk cells. A second subset was restricted either to all presumptive joints or only to presumptive tarsal joints. Depletion of individual RhoGEFs and RhoGAPs in the epithelium of the disc proper identified several joint-specific genes, which act downstream of segmental patterning signals to control epithelial morphogenesis. Our studies provide a framework with which to understand how Rho signaling cascades orchestrate complex morphogenetic events in multi-cellular organisms, and evidence that patterning signals regulate these cascades to control apical constriction and epithelial invagination at presumptive joints.
Collapse
Affiliation(s)
- Lina Greenberg
- Department of Anatomy and Cellular Biology, Program in Cell, Molecular and Developmental Biology
| | - Victor Hatini
- Department of Anatomy and Cellular Biology, Program in Cell, Molecular and Developmental Biology
- Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston MA 02111
| |
Collapse
|
84
|
Rac1 modulation of the apical domain is negatively regulated by β (Heavy)-spectrin. Mech Dev 2010; 128:116-28. [PMID: 21111816 DOI: 10.1016/j.mod.2010.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 11/17/2010] [Accepted: 11/18/2010] [Indexed: 12/21/2022]
Abstract
Epithelial polarity and morphogenesis require the careful coordination of signaling and cytoskeletal elements. In this paper, we describe multiple genetic interactions between the apical cytoskeletal protein β(H) and Rac1 signaling in Drosophila: activation of Rac1 signaling by expression of the exchange factor Trio, is strongly enhanced by reducing β(H) levels, and such reductions in β(H) levels alone are shown to cause an increase in GTP-Rac1 levels. In contrast, co-expression of a C-terminal fragment of β(H) (βH33) suppresses the Trio expression phenotype. In addition, sustained expression of βH33 alone in the eye induces a strong dominant phenotype that is similar to the expression of dominant negative Rac1(N17), and this phenotype is also suppressed by the co-expression of Trio or by knockdown of RacGAP50C. We further demonstrate that a loss-of-function allele in pak, a Rac1 effector and negative regulator of β(H)' dominantly suppresses larval lethality arising loss-of-function karst (β(H)) alleles. Furthermore, expression of constitutively active Pak(myr) in the larval salivary gland induces expansion of the apical membrane and destabilization of the apical polarity determinants Crumbs and aPKC. These effects resemble a Rac1 activation phenotype and are suppressed by βH33. Together, our data suggest that apical proteins including β(H) are negatively regulated by Rac1 activation, but that Rac1 signaling is also suppressed by β(H) through its C-terminal domain. Such a system would be bistable with either Rac1 or β(H) predominant. We suggest a model for apical domain maintenance wherein Rac1 down-regulation of β(H) (via Pak) is opposed by β(H)-mediated down-regulation of Rac1 signaling.
Collapse
|
85
|
The Rho target PRK2 regulates apical junction formation in human bronchial epithelial cells. Mol Cell Biol 2010; 31:81-91. [PMID: 20974804 DOI: 10.1128/mcb.01001-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rho GTPases regulate multiple signaling pathways to control a number of cellular processes during epithelial morphogenesis. To investigate the downstream pathways through which Rho regulates epithelial apical junction formation, we screened a small interfering RNA (siRNA) library targeting 28 known Rho target proteins in 16HBE human bronchial epithelial cells. This led to the identification of the serine-threonine kinase PRK2 (protein kinase C-related kinase 2, also called PKN2). Depletion of PRK2 does not block the initial formation of primordial junctions at nascent cell-cell contacts but does prevent their maturation into apical junctions. PRK2 is recruited to primordial junctions, and this localization depends on its C2-like domain. Rho binding is essential for PRK2 function and also facilitates PRK2 recruitment to junctions. Kinase-dead PRK2 acts as a dominant-negative mutant and prevents apical junction formation. We conclude that PRK2 is recruited to nascent cell-cell contacts through its C2-like and Rho-binding domains and promotes junctional maturation through a kinase-dependent pathway.
Collapse
|
86
|
Zhang Z, Chometon G, Wen T, Qu H, Mauch C, Krieg T, Aumailley M. Migration of epithelial cells on laminins: RhoA antagonizes directionally persistent migration. Eur J Cell Biol 2010; 90:1-12. [PMID: 20971525 DOI: 10.1016/j.ejcb.2010.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 09/01/2010] [Accepted: 09/01/2010] [Indexed: 11/15/2022] Open
Abstract
Spatial and temporal expression of laminin isoforms is assumed to provide specific local information to neighboring cells. Here, we report the remarkably selective presence of LM-111 at the very tip of hair follicles where LM-332 is absent, suggesting that epithelial cells lining the dermal-epidermal junction at this location may receive different signals from the two laminins. This hypothesis was tested in vitro by characterizing with functional and molecular assays the comportment of keratinocytes exposed to LM-111 and LM-332. The two laminins induced morphologically distinct focal adhesions, and LM-332, but not LM-111, elicited persistent migration of keratinocytes. The different impact on cellular behavior was associated with distinct activation patterns of Rho GTPases and other signaling intermediates. In particular, while LM-111 triggered a robust activation of Cdc42, LM-332 provoked a strong and sustained activation of FAK. Interestingly, activation of Rac1 was necessary but not sufficient to promote migration because there was no directed migration on LM-111 despite Rac1 activation. In contrast, RhoA antagonized directional migration, since silencing of RhoA by RNA interference boosted unidirectional migration on LM-332. Molecular analysis of the role of RhoA strongly suggested that the mechanisms involve disassembly of cell-cell contacts, loss of the cortical actin network, mobilization of α6β4 integrin out of stable adhesions, and displacement of the integrin from its association with the insoluble pool of intermediate filaments.
Collapse
Affiliation(s)
- Zhigang Zhang
- Center for Biochemistry, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
87
|
Ray A, Liu J, Ayoubi P, Pope C. Dose-related gene expression changes in forebrain following acute, low-level chlorpyrifos exposure in neonatal rats. Toxicol Appl Pharmacol 2010; 248:144-55. [PMID: 20691718 PMCID: PMC2946483 DOI: 10.1016/j.taap.2010.07.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/16/2010] [Accepted: 07/27/2010] [Indexed: 12/27/2022]
Abstract
Chlorpyrifos (CPF) is a widely used organophosphorus insecticide (OP) and putative developmental neurotoxicant in humans. The acute toxicity of CPF is elicited by acetylcholinesterase (AChE) inhibition. We characterized dose-related (0.1, 0.5, 1 and 2mg/kg) gene expression profiles and changes in cell signaling pathways 24h following acute CPF exposure in 7-day-old rats. Microarray experiments indicated that approximately 9% of the 44,000 genes were differentially expressed following either one of the four CPF dosages studied (546, 505, 522, and 3,066 genes with 0.1, 0.5, 1.0 and 2.0mg/kg CPF). Genes were grouped according to dose-related expression patterns using K-means clustering while gene networks and canonical pathways were evaluated using Ingenuity Pathway Analysis®. Twenty clusters were identified and differential expression of selected genes was verified by RT-PCR. The four largest clusters (each containing from 276 to 905 genes) constituted over 50% of all differentially expressed genes and exhibited up-regulation following exposure to the highest dosage (2mg/kg CPF). The total number of gene networks affected by CPF also rose sharply with the highest dosage of CPF (18, 16, 18 and 50 with 0.1, 0.5, 1 and 2mg/kg CPF). Forebrain cholinesterase (ChE) activity was significantly reduced (26%) only in the highest dosage group. Based on magnitude of dose-related changes in differentially expressed genes, relative numbers of gene clusters and signaling networks affected, and forebrain ChE inhibition only at 2mg/kg CPF, we focused subsequent analyses on this treatment group. Six canonical pathways were identified that were significantly affected by 2mg/kg CPF (MAPK, oxidative stress, NFΚB, mitochondrial dysfunction, arylhydrocarbon receptor and adrenergic receptor signaling). Evaluation of different cellular functions of the differentially expressed genes suggested changes related to olfactory receptors, cell adhesion/migration, synapse/synaptic transmission and transcription/translation. Nine genes were differentially affected in all four CPF dosing groups. We conclude that the most robust, consistent changes in differential gene expression in neonatal forebrain across a range of acute CPF dosages occurred at an exposure level associated with the classical marker of OP toxicity, AChE inhibition. Disruption of multiple cellular pathways, in particular cell adhesion, may contribute to the developmental neurotoxicity potential of this pesticide.
Collapse
Affiliation(s)
- Anamika Ray
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74075, USA
| | | | | | | |
Collapse
|
88
|
Abstract
Wiskott-Aldrich syndrome protein (WASP) and WASP family verprolin-homologous protein (WAVE) family proteins activate cells' major actin nucleating machinery, the actin-related protein 2/3 (Arp2/3) complex, leading to the formation and remodeling of cortical actin filament networks. Cortical actin regulation is critical in many aspects of cell physiology including cell-cell adhesion and cell motility, whose dysregulation is directly associated with cancer invasion and metastasis. In line with this association, the WASP and WAVE family proteins have been reported to be involved in cancer malignancies. What is puzzling, however, is that they can act as either enhancers or suppressors of cancer malignancies depending on the type of cancer and its pathological stage. We are still far from understanding the roles of the WASP and WAVE family proteins in cancer progression. Here, we summarize the recent advances of studies of the WASP and WAVE family proteins with respect to cancer invasion and we offer a model that can account for the diverse outcomes originating from dysregulated WASP and WAVE family proteins in cancer development.
Collapse
Affiliation(s)
- Shusaku Kurisu
- Division of Lipid Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | | |
Collapse
|
89
|
Watanabe T, Sato K, Kaibuchi K. Cadherin-mediated intercellular adhesion and signaling cascades involving small GTPases. Cold Spring Harb Perspect Biol 2010; 1:a003020. [PMID: 20066109 DOI: 10.1101/cshperspect.a003020] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epithelia form physical barriers that separate the internal milieu of the body from its external environment. The biogenesis of functional epithelia requires the precise coordination of many cellular processes. One of the key events in epithelial biogenesis is the establishment of cadherin-dependent cell-cell contacts, which initiate morphological changes and the formation of other adhesive structures. Cadherin-mediated adhesions generate intracellular signals that control cytoskeletal reorganization, polarity, and vesicle trafficking. Among such signaling pathways, those involving small GTPases play critical roles in epithelial biogenesis. Assembly of E-cadherin activates several small GTPases and, in turn, the activated small GTPases control the effects of E-cadherin-mediated adhesions on epithelial biogenesis. Here, we focus on small GTPase signaling at E-cadherin-mediated epithelial junctions.
Collapse
Affiliation(s)
- Takashi Watanabe
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | | | | |
Collapse
|
90
|
Allen C, Srivastava K, Bayraktutan U. Small GTPase RhoA and Its Effector Rho Kinase Mediate Oxygen Glucose Deprivation-Evoked In Vitro Cerebral Barrier Dysfunction. Stroke 2010; 41:2056-63. [DOI: 10.1161/strokeaha.109.574939] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background and Purpose—
Enhanced vascular permeability attributable to disruption of blood–brain barrier results in the development of cerebral edema after stroke. Using an in vitro model of the brain barrier composed of human brain microvascular endothelial cells and human astrocytes, this study explored whether small GTPase RhoA and its effector protein Rho kinase were involved in permeability changes mediated by oxygen-glucose deprivation (OGD), key pathological phenomena during ischemic stroke.
Methods and Results—
OGD increased RhoA and Rho kinase protein expressions in human brain microvascular endothelial cells and human astrocytes while increasing or unaffecting that of endothelial nitric oxide synthase in respective cells. Reperfusion attenuated the expression and activity of RhoA and Rho kinase in both cell types compared to their counterparts exposed to equal periods of OGD alone while selectively increasing human brain microvascular endothelial cells endothelial nitric oxide synthase protein levels. OGD compromised the barrier integrity as confirmed by decreases in transendothelial electric resistance and concomitant increases in flux of permeability markers sodium fluorescein and Evan’s blue albumin across cocultures. Transfection of cells with constitutively active RhoA also increased flux and reduced transendothelial electric resistance, whereas inactivation of RhoA by anti-RhoA Ig electroporation exerted opposite effects. In vitro cerebral barrier dysfunction was accompanied by myosin light chain overphosphorylation and stress fiber formation. Reperfusion and treatments with a Rho kinase inhibitor Y-27632 significantly attenuated barrier breakdown without profoundly altering actin structure.
Conclusions—
Increased RhoA/Rho kinase/myosin light chain pathway activity coupled with changes in actin cytoskeleton account for OGD-induced endothelial barrier breakdown.
Collapse
Affiliation(s)
- Claire Allen
- From the Division of Stroke, University of Nottingham, Nottingham, UK
| | | | - Ulvi Bayraktutan
- From the Division of Stroke, University of Nottingham, Nottingham, UK
| |
Collapse
|
91
|
Wallace SW, Durgan J, Jin D, Hall A. Cdc42 regulates apical junction formation in human bronchial epithelial cells through PAK4 and Par6B. Mol Biol Cell 2010; 21:2996-3006. [PMID: 20631255 PMCID: PMC2929993 DOI: 10.1091/mbc.e10-05-0429] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A systematic screen of Cdc42 targets was carried out in human bronchial epithelial cells. Two kinases, PAK4 and Par6B/aPKC, were identified and are required for maturation of primordial junctions into apical junctions. PAK4 recruitment to primordial junctions is Cdc42-dependent, but maintenance at junctions during maturation is Par6B-dependent. Cdc42 has been implicated in numerous biochemical pathways during epithelial morphogenesis, including the control of spindle orientation during mitosis, the establishment of apical-basal polarity, the formation of apical cell–cell junctions, and polarized secretion. To investigate the signaling pathways through which Cdc42 mediates these diverse effects, we have screened an siRNA library corresponding to the 36 known Cdc42 target proteins, in a human bronchial epithelial cell line. Two targets, PAK4 and Par6B, were identified as necessary for the formation of apical junctions. PAK4 is recruited to nascent cell–cell contacts in a Cdc42-dependent manner, where it is required for the maturation of primordial junctions into apical junctions. PAK4 kinase activity is essential for junction maturation, but overexpression of an activated PAK4 mutant disrupts this process. Par6B, together with its binding partner aPKC, is necessary both for junction maturation and for the retention of PAK4 at sites of cell–cell contact. This study demonstrates that controlled regulation of PAK4 is required for apical junction formation in lung epithelial cells and highlights potential cross-talk between two Cdc42 targets, PAK4 and Par6B.
Collapse
Affiliation(s)
- Sean W Wallace
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | |
Collapse
|
92
|
Gao L, McBeath R, Chen CS. Stem cell shape regulates a chondrogenic versus myogenic fate through Rac1 and N-cadherin. Stem Cells 2010; 28:564-72. [PMID: 20082286 DOI: 10.1002/stem.308] [Citation(s) in RCA: 273] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human mesenchymal stem cells (hMSCs) are multipotent cells that can differentiate into many cell types. Chondrogenesis is induced in hMSCs cultured as a micromass pellet to mimic cellular condensation during cartilage development, and exposed to transforming growth factor beta (TGFbeta). Interestingly, TGFbeta can also induce hMSC differentiation to smooth-muscle-like cell types, but it remains unclear what directs commitment between these two lineages. Our previous work revealed that cell shape regulates hMSC commitment between osteoblasts and adipocytes through RhoA signaling. Here we show that cell shape also confers a switch between chondrogenic and smooth muscle cell (SMC) fates. Adherent and well-spread hMSCs stimulated with TGF beta 3 upregulated SMC genes, whereas cells allowed to attach onto micropatterned substrates, but prevented from spreading and flattening, upregulated chondrogenic genes. Interestingly, cells undergoing SMC differentiation exhibited little change in RhoA, but significantly higher Rac1 activity than chondrogenic cells. Rac1 activation inhibited chondrogenesis and was necessary and sufficient for inducing SMC differentiation. Furthermore, TGF beta 3 and Rac1 signaling upregulated N-cadherin, which was required for SMC differentiation. These results demonstrate a chondrogenic-SMC fate decision mediated by cell shape, Rac1, and N-cadherin, and highlight the tight coupling between lineage commitment and the many changes in cell shape, cell-matrix adhesion, and cell-cell adhesion that occur during morphogenesis.
Collapse
Affiliation(s)
- Lin Gao
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
93
|
Taylor MA, Parvani JG, Schiemann WP. The pathophysiology of epithelial-mesenchymal transition induced by transforming growth factor-beta in normal and malignant mammary epithelial cells. J Mammary Gland Biol Neoplasia 2010; 15:169-90. [PMID: 20467795 PMCID: PMC3721368 DOI: 10.1007/s10911-010-9181-1] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Accepted: 04/22/2010] [Indexed: 12/14/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is an essential process that drives polarized, immotile mammary epithelial cells (MECs) to acquire apolar, highly migratory fibroblastoid-like features. EMT is an indispensable process that is associated with normal tissue development and organogenesis, as well as with tissue remodeling and wound healing. In stark contrast, inappropriate reactivation of EMT readily contributes to the development of a variety of human pathologies, particularly those associated with tissue fibrosis and cancer cell invasion and metastasis, including that by breast cancer cells. Although metastasis is unequivocally the most lethal aspect of breast cancer and the most prominent feature associated with disease recurrence, the molecular mechanisms whereby EMT mediates the initiation and resolution of breast cancer metastasis remains poorly understood. Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine that is intimately involved in regulating numerous physiological processes, including cellular differentiation, homeostasis, and EMT. In addition, TGF-beta also functions as a powerful tumor suppressor in MECs, whose neoplastic development ultimately converts TGF-beta into an oncogenic cytokine in aggressive late-stage mammary tumors. Recent findings have implicated the process of EMT in mediating the functional conversion of TGF-beta during breast cancer progression, suggesting that the chemotherapeutic targeting of EMT induced by TGF-beta may offer new inroads in ameliorating metastatic disease in breast cancer patients. Here we review the molecular, cellular, and microenvironmental factors that contribute to the pathophysiological activities of TGF-beta during its regulation of EMT in normal and malignant MECs.
Collapse
Affiliation(s)
- Molly A Taylor
- Case Comprehensive Cancer Center, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
94
|
Ratheesh A, Yap AS. Doing cell biology in embryos: regulated membrane traffic and its implications for cadherin biology. F1000 BIOLOGY REPORTS 2010; 2. [PMID: 20948802 PMCID: PMC2948373 DOI: 10.3410/b2-30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Regulated trafficking of cadherin adhesion molecules is often invoked as a mechanism to generate dynamic adhesive cell-cell contacts for tissue modeling and morphogenesis. The past 2-3 years have seen several important papers that tackle the cell biology of cadherin trafficking in organismal systems to provide new insights into both mechanism and morphogenetic impact.
Collapse
Affiliation(s)
- Aparna Ratheesh
- Institute for Molecular Bioscience and Division of Molecular Cell Biology, The University of Queensland St Lucia, Brisbane, Queensland 4072 Australia
| | | |
Collapse
|
95
|
Terry S, Nie M, Matter K, Balda MS. Rho signaling and tight junction functions. Physiology (Bethesda) 2010; 25:16-26. [PMID: 20134025 DOI: 10.1152/physiol.00034.2009] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tight junctions are heteromeric protein complexes that act as signaling centers by mediating the bidirectional transmission of information between the environment and the cell interior to control paracellular permeability and differentiation. Insight into tight junction-associated signaling mechanisms is of fundamental importance for our understanding of the physiology of epithelia and endothelia in health and disease.
Collapse
Affiliation(s)
- Steve Terry
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
96
|
Tay HG, Ng YW, Manser E. A vertebrate-specific Chp-PAK-PIX pathway maintains E-cadherin at adherens junctions during zebrafish epiboly. PLoS One 2010; 5:e10125. [PMID: 20405038 PMCID: PMC2853574 DOI: 10.1371/journal.pone.0010125] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 03/13/2010] [Indexed: 11/25/2022] Open
Abstract
Background In early vertebrate development, embryonic tissues modulate cell adhesiveness and acto-myosin contractility to correctly orchestrate the complex processes of gastrulation. E-cadherin (E-cadh) is the earliest expressed cadherin and is needed in the mesendodermal progenitors for efficient migration [1], [2]. Regulatory mechanisms involving directed E-cadh trafficking have been invoked downstream of Wnt11/5 signaling [3]. This non-canonical Wnt pathway regulates RhoA-ROK/DAAM1 to control the acto-myosin network. However, in this context nothing is known of the intracellular signals that participate in the correct localization of E-cadh, other than a need for Rab5c signaling [3]. Methodology/Principal Findings By studying loss of Chp induced by morpholino-oligonucleotide injection in zebrafish, we find that the vertebrate atypical Rho-GTPase Chp is essential for the proper disposition of cells in the early embryo. The underlying defect is not leading edge F-actin assembly (prominent in the cells of the envelope layer), but rather the failure to localize E-cadh and β-catenin at the adherens junctions. Loss of Chp results in delayed epiboly that can be rescued by mRNA co-injection, and phenocopies zebrafish E-cadh mutants [4], [5]. This new signaling pathway involves activation of an effector kinase PAK, and involvement of the adaptor PAK-interacting exchange factor PIX. Loss of signaling by any of the three components results in similar underlying defects, which is most prominent in the epithelial-like envelope layer. Conclusions/Significance Our current study uncovers a developmental pathway involving Chp/PAK/PIX signaling, which helps co-ordinate E-cadh disposition to promote proper cell adhesiveness, and coordinate movements of the three major cell layers in epiboly. Our data shows that without Chp signaling, E-cadh shifts to intracellular vesicles rather than the adhesive contacts needed for directed cell movement. These events may mirror the requirement for PAK2 signaling essential for the proper formation of the blood-brain barrier [6], [7].
Collapse
Affiliation(s)
- Hwee Goon Tay
- RGS (Rho GTPases in Stem Cells) Group, Institute of Medical Biology (IMB), Singapore, Singapore
| | - Yuen Wai Ng
- sGSK (Small G-Protein Signaling and Kinases) Group, Institute of Molecular and Cell Biology (IMCB), Neuroscience Research Partnership, Singapore, Singapore
| | - Ed Manser
- RGS (Rho GTPases in Stem Cells) Group, Institute of Medical Biology (IMB), Singapore, Singapore
- sGSK (Small G-Protein Signaling and Kinases) Group, Institute of Molecular and Cell Biology (IMCB), Neuroscience Research Partnership, Singapore, Singapore
- * E-mail:
| |
Collapse
|
97
|
Eswaramoorthy R, Wang CK, Chen WC, Tang MJ, Ho ML, Hwang CC, Wang HM, Wang CZ. DDR1 regulates the stabilization of cell surface E-cadherin and E-cadherin-mediated cell aggregation. J Cell Physiol 2010; 224:387-97. [PMID: 20432435 DOI: 10.1002/jcp.22134] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
98
|
Wendt MK, Allington TM, Schiemann WP. Mechanisms of the epithelial-mesenchymal transition by TGF-beta. Future Oncol 2010; 5:1145-68. [PMID: 19852727 DOI: 10.2217/fon.09.90] [Citation(s) in RCA: 252] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The formation of epithelial cell barriers results from the defined spatiotemporal differentiation of stem cells into a specialized and polarized epithelium, a process termed mesenchymal-epithelial transition. The reverse process, epithelial-mesenchymal transition (EMT), is a metastable process that enables polarized epithelial cells to acquire a motile fibroblastoid phenotype. Physiological EMT also plays an essential role in promoting tissue healing, remodeling or repair in response to a variety of pathological insults. On the other hand, pathophysiological EMT is a critical step in mediating the acquisition of metastatic phenotypes by localized carcinomas. Although metastasis clearly is the most lethal aspect of cancer, our knowledge of the molecular events that govern its development, including those underlying EMT, remain relatively undefined. Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine that oversees and directs all aspects of cell development, differentiation and homeostasis, as well as suppresses their uncontrolled proliferation and transformation. Quite dichotomously, tumorigenesis subverts the tumor suppressing function of TGF-beta, and in doing so, converts TGF-beta to a tumor promoter that stimulates pathophysiological EMT and metastasis. It therefore stands to reason that determining how TGF-beta induces EMT in developing neoplasms will enable science and medicine to produce novel pharmacological agents capable of preventing its ability to do so, thereby improving the clinical course of cancer patients. Here we review the cellular, molecular and microenvironmental mechanisms used by TGF-beta to mediate its stimulation of EMT in normal and malignant cells.
Collapse
Affiliation(s)
- Michael K Wendt
- Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
99
|
Shinto O, Yashiro M, Kawajiri H, Shimizu K, Shimizu T, Miwa A, Hirakawa K. Inhibitory effect of a TGFbeta receptor type-I inhibitor, Ki26894, on invasiveness of scirrhous gastric cancer cells. Br J Cancer 2010; 102:844-51. [PMID: 20145621 PMCID: PMC2833252 DOI: 10.1038/sj.bjc.6605561] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background: Gastric cancer cells frequently metastasise, partly because of their highly invasive nature. Transforming growth factor-β (TGF-β) receptor signalling is closely associated with the invasion of cancer cells. The aim of this study was to clarify the effect of a TGF-β receptor (TβR) phosphorylation inhibitor on the invasiveness of gastric cancer cells. Methods: Four gastric cancer cell lines, including two scirrhous-type cell lines and two non-scirrhous-type cell lines, were used. A TβR type I (TβR-I) kinase inhibitor, Ki26894, inhibits the phosphorylation of Smad2 at an ATP-binding site of TβR-I. We investigated the expression levels of TβR and phospho-Smad2, and the effects of TGF-β in the presence or absence of Ki26894 on Smad2 phosphorylation, invasion, migration, epithelial-to-mesenchymal transition (EMT), Ras homologue gene family member A (RhoA), ZO-2, myosin, and E-cadherin expression of gastric cancer cells. Results: TβR-I, TβR-II, and phospho-Smad2 expressions were found in scirrhous gastric cancer cells, but not in non-scirrhous gastric cancer cells. Ki26894 decreased Smad2 phosphorylation induced by TGF-β1 in scirrhous gastric cancer cells. Transforming growth factor-β1 upregulated the invasion, migration, and EMT ability of scirrhous gastric cancer cells. Transforming growth factor-β1 significantly upregulated the activity of RhoA and myosin phosphorylation, whereas TGF-β1 decreased ZO-2 and E-cadherin expression in scirrhous gastric cancer cells. Interestingly, Ki26894 inhibited these characteristics in scirrhous gastric cancer cells. In contrast, non-scirrhous gastric cancer cells were not affected by TGF-β1 or Ki26894 treatment. Conclusion: A TβR-I kinase inhibitor decreases the invasiveness and EMT of scirrhous gastric cancer cells. Ki26894 is therefore considered to be a promising therapeutic compound for the metastasis of scirrhous gastric carcinoma.
Collapse
Affiliation(s)
- O Shinto
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
100
|
Affiliation(s)
- C.B. SHUSTER
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - I.M. HERMAN
- Department of Physiology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|