51
|
Padmanabhan P, Bademosi AT, Kasula R, Lauwers E, Verstreken P, Meunier FA. Need for speed: Super-resolving the dynamic nanoclustering of syntaxin-1 at exocytic fusion sites. Neuropharmacology 2019; 169:107554. [PMID: 30826343 DOI: 10.1016/j.neuropharm.2019.02.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 01/08/2023]
Abstract
Communication between cells relies on regulated exocytosis, a multi-step process that involves the docking, priming and fusion of vesicles with the plasma membrane, culminating in the release of neurotransmitters and hormones. Key proteins and lipids involved in exocytosis are subjected to Brownian movement and constantly switch between distinct motion states which are governed by short-lived molecular interactions. Critical biochemical reactions between exocytic proteins that occur in the confinement of nanodomains underpin the precise sequence of priming steps which leads to the fusion of vesicles. The advent of super-resolution microscopy techniques has provided the means to visualize individual molecules on the plasma membrane with high spatiotemporal resolution in live cells. These techniques are revealing a highly dynamic nature of the nanoscale organization of the exocytic machinery. In this review, we focus on soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) syntaxin-1, which mediates vesicular fusion. Syntaxin-1 is highly mobile at the plasma membrane, and its inherent speed allows fast assembly and disassembly of syntaxin-1 nanoclusters which are associated with exocytosis. We reflect on recent studies which have revealed the mechanisms regulating syntaxin-1 nanoclustering on the plasma membrane and draw inferences on the effect of synaptic activity, phosphoinositides, N-ethylmaleimide-sensitive factor (NSF), α-soluble NSF attachment protein (α-SNAP) and SNARE complex assembly on the dynamic nanoscale organization of syntaxin-1. This article is part of the special issue entitled 'Mobility and trafficking of neuronal membrane proteins'.
Collapse
Affiliation(s)
- Pranesh Padmanabhan
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Adekunle T Bademosi
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Ravikiran Kasula
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Elsa Lauwers
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland, Australia.
| |
Collapse
|
52
|
Sapoń K, Janas T, Sikorski AF, Janas T. Polysialic acid chains exhibit enhanced affinity for ordered regions of membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:245-255. [DOI: 10.1016/j.bbamem.2018.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/25/2018] [Accepted: 07/19/2018] [Indexed: 12/28/2022]
|
53
|
Schlam D, Grinstein S, Freeman SA. Screening for Rho GTPase Modulators in Actin-Dependent Processes Exemplified by Phagocytosis. Methods Mol Biol 2018; 1821:107-127. [PMID: 30062408 DOI: 10.1007/978-1-4939-8612-5_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Rho GTPases, a family of molecular switches, are essential for the assembly and rearrangement of the cellular actin network. Actin remodeling is a central component of many important biological phenomena including chemotaxis, immunological synapse formation, and phagocytosis. Proper execution of these processes requires careful modulation of Rho GTPase activity in space and time. This is accomplished by delicate coordination of Rho GTPase activation and inactivation by Rho guanine nucleotide exchange factors (RhoGEFs) and Rho GTPase-activating proteins (RhoGAPs), respectively. Elucidating the function of these Rho GTPase modulators is complicated by their diversity, varied expression across different tissues, and multiplicity of substrates. To overcome some of these hurdles, we describe here a systematic and unbiased screening approach consisting of three sequential steps: (1) monitoring the subcellular localization of a library of Rho GTPase modulators; (2) assessing endogenous levels of expression of the suitably localized candidates in the cell type of interest; and (3) validating the functional relevance of the identified candidates by siRNA, followed by determining the effects of gene silencing on Rho GTPase activity and actin polymerization. To this end, we describe the expression and visualization of fluorescent Rho GTPase modulators, and the use of genetically encoded biosensors for active Rac/Cdc42 and of fluorescent probes of polymerized actin. Phagocytosis by macrophages is used in this chapter as an experimental paradigm, but the methods described herein can be easily extended to other cells and actin-dependent processes.
Collapse
Affiliation(s)
- Daniel Schlam
- Division of Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sergio Grinstein
- Division of Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.
| | - Spencer A Freeman
- Division of Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
54
|
González de San Román E, Bidmon HJ, Malisic M, Susnea I, Küppers A, Hübbers R, Wree A, Nischwitz V, Amunts K, Huesgen PF. Molecular composition of the human primary visual cortex profiled by multimodal mass spectrometry imaging. Brain Struct Funct 2018; 223:2767-2783. [PMID: 29633039 PMCID: PMC5995978 DOI: 10.1007/s00429-018-1660-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 03/29/2018] [Indexed: 12/14/2022]
Abstract
The primary visual cortex (area V1) is an extensively studied part of the cerebral cortex with well-characterized connectivity, cellular and molecular architecture and functions (for recent reviews see Amunts and Zilles, Neuron 88:1086-1107, 2015; Casagrande and Xu, Parallel visual pathways: a comparative perspective. The visual neurosciences, MIT Press, Cambridge, pp 494-506, 2004). In humans, V1 is defined by heavily myelinated fibers arriving from the radiatio optica that form the Gennari stripe in cortical layer IV, which is further subdivided into laminae IVa, IVb, IVcα and IVcβ. Due to this unique laminar pattern, V1 represents an excellent region to test whether multimodal mass spectrometric imaging could reveal novel biomolecular markers for a functionally relevant parcellation of the human cerebral cortex. Here we analyzed histological sections of three post-mortem brains with matrix-assisted laser desorption/ionization mass spectrometry imaging and laser ablation inductively coupled plasma mass spectrometry imaging to investigate the distribution of lipids, proteins and metals in human V1. We identified 71 peptides of 13 different proteins by in situ tandem mass spectrometry, of which 5 proteins show a differential laminar distribution pattern revealing the border between V1 and V2. High-accuracy mass measurements identified 123 lipid species, including glycerolipids, glycerophospholipids and sphingolipids, of which at least 20 showed differential distribution within V1 and V2. Specific lipids labeled not only myelinated layer IVb, but also IVa and especially IVc in a layer-specific manner, but also and clearly separated V1 from V2. Elemental imaging further showed a specific accumulation of copper in layer IV. In conclusion, multimodal mass spectrometry imaging identified novel biomolecular and elemental markers with specific laminar and inter-areal differences. We conclude that mass spectrometry imaging provides a promising new approach toward multimodal, molecule-based cortical parcellation.
Collapse
Affiliation(s)
- Estibaliz González de San Román
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hans-Jürgen Bidmon
- Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Milena Malisic
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Iuliana Susnea
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Astrid Küppers
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Rene Hübbers
- Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, INM-1, Forschungszentrum Jülich, Jülich, Germany
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Volker Nischwitz
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Katrin Amunts
- Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Institute of Neuroscience and Medicine, INM-1, Forschungszentrum Jülich, Jülich, Germany.
| | - Pitter F Huesgen
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
55
|
El Amri M, Fitzgerald U, Schlosser G. MARCKS and MARCKS-like proteins in development and regeneration. J Biomed Sci 2018; 25:43. [PMID: 29788979 PMCID: PMC5964646 DOI: 10.1186/s12929-018-0445-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/07/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Myristoylated Alanine-Rich C-kinase Substrate (MARCKS) and MARCKS-like protein 1 (MARCKSL1) have a wide range of functions, ranging from roles in embryonic development to adult brain plasticity and the inflammatory response. Recently, both proteins have also been identified as important players in regeneration. Upon phosphorylation by protein kinase C (PKC) or calcium-dependent calmodulin-binding, MARCKS and MARCKSL1 translocate from the membrane into the cytosol, modulating cytoskeletal actin dynamics and vesicular trafficking and activating various signal transduction pathways. As a consequence, the two proteins are involved in the regulation of cell migration, secretion, proliferation and differentiation in many different tissues. MAIN BODY Throughout vertebrate development, MARCKS and MARCKSL1 are widely expressed in tissues derived from all germ layers, with particularly strong expression in the nervous system. They have been implicated in the regulation of gastrulation, myogenesis, brain development, and other developmental processes. Mice carrying loss of function mutations in either Marcks or Marcksl1 genes die shortly after birth due to multiple deficiencies including detrimental neural tube closure defects. In adult vertebrates, MARCKS and MARCKL1 continue to be important for multiple regenerative processes including peripheral nerve, appendage, and tail regeneration, making them promising targets for regenerative medicine. CONCLUSION This review briefly summarizes the molecular interactions and cellular functions of MARCKS and MARCKSL1 proteins and outlines their vital roles in development and regeneration.
Collapse
Affiliation(s)
- Mohamed El Amri
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Biomedical Sciences Building, Newcastle Road, Galway, Ireland
| | - Una Fitzgerald
- Galway Neuroscience Centre, School of Natural Sciences, Biomedical Sciences Building, National University of Ireland, Newcastle Road, Galway, Ireland
| | - Gerhard Schlosser
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Biomedical Sciences Building, Newcastle Road, Galway, Ireland. .,School of Natural Sciences and Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Biomedical Sciences Building, Newcastle Road, Galway, Ireland.
| |
Collapse
|
56
|
Dubový P, Klusáková I, Hradilová-Svíženská I, Joukal M. Expression of Regeneration-Associated Proteins in Primary Sensory Neurons and Regenerating Axons After Nerve Injury-An Overview. Anat Rec (Hoboken) 2018; 301:1618-1627. [PMID: 29740961 DOI: 10.1002/ar.23843] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/09/2017] [Accepted: 12/08/2017] [Indexed: 12/20/2022]
Abstract
Peripheral nerve injury results in profound alterations of the affected neurons resulting from the interplay between intrinsic and extrinsic molecular events. Restarting the neuronal regenerative program is an important prerequisite for functional recovery of the injured peripheral nerve. The primary sensory neurons with their cell bodies in the dorsal root ganglia provide a useful in vivo and in vitro model for studying the mechanisms that regulate intrinsic neuronal regeneration capacity following axotomy. These studies frequently need to indicate the regenerative status of the corresponding neurons. We summarize the critical issues regarding immunohistochemical detection of several regeneration-associated proteins as markers for the initiation of the regeneration program in rat primary sensory neurons and indicators of axon regeneration in the peripheral nerves. This overview also includes our own results of GAP43 and SCG10 expression in different DRG neurons following double immunostaining with molecular markers of neuronal subpopulations (NF200, CGRP, and IB4) as well as transcription factors (ATF3 and activated STAT3) following unilateral sciatic nerve injury. Anat Rec, 301:1618-1627, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Petr Dubový
- Department of Anatomy, Cellular and Molecular Research Group, Masaryk University, Brno, Czechia, Czech Republic
| | - Ilona Klusáková
- Department of Anatomy, Cellular and Molecular Research Group, Masaryk University, Brno, Czechia, Czech Republic
| | - Ivana Hradilová-Svíženská
- Department of Anatomy, Cellular and Molecular Research Group, Masaryk University, Brno, Czechia, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Research Group, Masaryk University, Brno, Czechia, Czech Republic
| |
Collapse
|
57
|
Maruyama Y, Ueno S, Morita M, Hayashi F, Maekawa S. Inhibitory effect of several sphingolipid metabolites on calcineurin. Neurosci Lett 2018. [PMID: 29524645 DOI: 10.1016/j.neulet.2018.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Neurons have well-developed membrane microdomains called "rafts" that are recovered as a detergent-resistant membrane microdomain fraction (DRM). NAP-22 is one of the major protein components of neuronal DRM. In a previous study, we showed that DRM-derived NAP-22 binds ganglioside and the inhibitory effect of ganglioside to calcineurin (CaN), a neuron-enriched calmodulin-regulated phosphoprotein phosphatase. Considering the important roles of CaN in neurons, identification of other cellular regulators of CaN could be a good clue to understand the molecular background of neuronal function. In this study, we screened the effect of several membrane lipid-derived molecules on the CaN activity and found sphingosine and some sphingosine-derived metabolites such as sphingosylphosphorylcholine, galactosylsphingosine (psychosine), and glucosylsphingosine, have inhibitory effect on CaN through the interaction with calmodulin.
Collapse
Affiliation(s)
- Yoko Maruyama
- Department of Biology, Graduate School of Science, Kobe-University, Kobe 657-8501, Japan
| | - Satoko Ueno
- Department of Biology, Graduate School of Science, Kobe-University, Kobe 657-8501, Japan
| | - Mitsuhiro Morita
- Department of Biology, Graduate School of Science, Kobe-University, Kobe 657-8501, Japan
| | - Fumio Hayashi
- Department of Biology, Graduate School of Science, Kobe-University, Kobe 657-8501, Japan
| | - Shohei Maekawa
- Department of Biology, Graduate School of Science, Kobe-University, Kobe 657-8501, Japan.
| |
Collapse
|
58
|
Fong LWR, Yang DC, Chen CH. Myristoylated alanine-rich C kinase substrate (MARCKS): a multirole signaling protein in cancers. Cancer Metastasis Rev 2018; 36:737-747. [PMID: 29039083 DOI: 10.1007/s10555-017-9709-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Emerging evidence implicates myristoylated alanine-rich C-kinase substrate (MARCKS), a major substrate of protein kinase C (PKC), in a critical role for cancer development and progression. MARCKS is tethered to the plasma membrane but can shuttle between the cytosol and plasma membrane via the myristoyl-electrostatic switch. Phosphorylation of MARCKS by PKC leads to its translocation from the plasma membrane to the cytosol where it functions in actin cytoskeletal remodeling, Ca2+ signaling through binding to calmodulin, and regulation of exocytic vesicle release in secretory cells such as neurons and airway goblet cells. Although the contribution of MARCKS to various cellular processes has been extensively studied, its roles in neoplastic disease have been conflicting. This review highlights the molecular and functional differences of MARCKS that exist between normal and tumor cells. We also discuss the recent advances in the potential roles of MARCKS in tumorigenesis, metastasis, and resistance to anti-cancer therapies, with a focus on addressing the inconsistent results regarding the function of MARCKS as a promoter or inhibitor of oncogenesis.
Collapse
Affiliation(s)
- Lon Wolf R Fong
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David C Yang
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine and Center for Comparative Respiratory Biology and Medicine, University of California Davis, Davis, CA, USA.,Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Ching-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, CA, 95616, USA. .,Comprehensive Cancer Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
59
|
de Jong APH, Roggero CM, Ho MR, Wong MY, Brautigam CA, Rizo J, Kaeser PS. RIM C 2B Domains Target Presynaptic Active Zone Functions to PIP 2-Containing Membranes. Neuron 2018; 98:335-349.e7. [PMID: 29606581 DOI: 10.1016/j.neuron.2018.03.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/01/2018] [Accepted: 03/05/2018] [Indexed: 11/16/2022]
Abstract
Rapid and efficient synaptic vesicle fusion requires a pool of primed vesicles, the nearby tethering of Ca2+ channels, and the presence of the phospholipid PIP2 in the target membrane. Although the presynaptic active zone mediates the first two requirements, it is unclear how fusion is targeted to membranes with high PIP2 content. Here we find that the C2B domain of the active zone scaffold RIM is critical for action potential-triggered fusion. Remarkably, the known RIM functions in vesicle priming and Ca2+ influx do not require RIM C2B domains. Instead, biophysical experiments reveal that RIM C2 domains, which lack Ca2+ binding, specifically bind to PIP2. Mutational analyses establish that PIP2 binding to RIM C2B and its tethering to the other RIM domains are crucial for efficient exocytosis. We propose that RIM C2B domains are constitutive PIP2-binding modules that couple mechanisms for vesicle priming and Ca2+ channel tethering to PIP2-containing target membranes.
Collapse
Affiliation(s)
- Arthur P H de Jong
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Carlos M Roggero
- Departments of Biophysics, Biochemistry, and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Meng-Ru Ho
- Departments of Biophysics, Biochemistry, and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Man Yan Wong
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Chad A Brautigam
- Departments of Biophysics and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Josep Rizo
- Departments of Biophysics, Biochemistry, and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
60
|
Chouaki Benmansour N, Ruminski K, Sartre AM, Phelipot MC, Salles A, Bergot E, Wu A, Chicanne G, Fallet M, Brustlein S, Billaudeau C, Formisano A, Mailfert S, Payrastre B, Marguet D, Brasselet S, Hamon Y, He HT. Phosphoinositides regulate the TCR/CD3 complex membrane dynamics and activation. Sci Rep 2018; 8:4966. [PMID: 29563576 PMCID: PMC5862878 DOI: 10.1038/s41598-018-23109-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/05/2018] [Indexed: 01/06/2023] Open
Abstract
Phosphoinositides (PIs) play important roles in numerous membrane-based cellular activities. However, their involvement in the mechanism of T cell receptor (TCR) signal transduction across the plasma membrane (PM) is poorly defined. Here, we investigate their role, and in particular that of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] in TCR PM dynamics and activity in a mouse T-cell hybridoma upon ectopic expression of a PM-localized inositol polyphosphate-5-phosphatase (Inp54p). We observed that dephosphorylation of PI(4,5)P2 by the phosphatase increased the TCR/CD3 complex PM lateral mobility prior stimulation. The constitutive and antigen-elicited CD3 phosphorylation as well as the antigen-stimulated early signaling pathways were all found to be significantly augmented in cells expressing the phosphatase. Using state-of-the-art biophotonic approaches, we further showed that PI(4,5)P2 dephosphorylation strongly promoted the CD3ε cytoplasmic domain unbinding from the PM inner leaflet in living cells, thus resulting in an increased CD3 availability for interactions with Lck kinase. This could significantly account for the observed effects of PI(4,5)P2 dephosphorylation on the CD3 phosphorylation. Our data thus suggest that PIs play a key role in the regulation of the TCR/CD3 complex dynamics and activation at the PM.
Collapse
Affiliation(s)
| | - Kilian Ruminski
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Anne-Marie Sartre
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Marie-Claire Phelipot
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Audrey Salles
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France.,UTechS Photonic BioImaging (Imagopole) Citech, Institut Pasteur, Paris, 75724, France
| | - Elise Bergot
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Ambroise Wu
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Gaëtan Chicanne
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm U1048, Université Toulouse 3, Toulouse, France
| | - Mathieu Fallet
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Sophie Brustlein
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Cyrille Billaudeau
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France.,Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Anthony Formisano
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Sébastien Mailfert
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Bernard Payrastre
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm U1048, Université Toulouse 3, Toulouse, France.,Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Didier Marguet
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Sophie Brasselet
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, UMR 7249, 13397, Marseille, France
| | - Yannick Hamon
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| | - Hai-Tao He
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| |
Collapse
|
61
|
Franke NE, Kaspers GL, Assaraf YG, van Meerloo J, Niewerth D, Kessler FL, Poddighe PJ, Kole J, Smeets SJ, Ylstra B, Bi C, Chng WJ, Horton TM, Menezes RX, Musters RJP, Zweegman S, Jansen G, Cloos J. Exocytosis of polyubiquitinated proteins in bortezomib-resistant leukemia cells: a role for MARCKS in acquired resistance to proteasome inhibitors. Oncotarget 2018; 7:74779-74796. [PMID: 27542283 PMCID: PMC5342701 DOI: 10.18632/oncotarget.11340] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 07/26/2016] [Indexed: 12/11/2022] Open
Abstract
PSMB5 mutations and upregulation of the β5 subunit of the proteasome represent key determinants of acquired resistance to the proteasome inhibitor bortezomib (BTZ) in leukemic cells in vitro. We here undertook a multi-modality (DNA, mRNA, miRNA) array-based analysis of human CCRF-CEM leukemia cells and BTZ-resistant subclones to determine whether or not complementary mechanisms contribute to BTZ resistance. These studies revealed signatures of markedly reduced expression of proteolytic stress related genes in drug resistant cells over a broad range of BTZ concentrations along with a high upregulation of myristoylated alanine-rich C-kinase substrate (MARCKS) gene expression. MARCKS upregulation was confirmed on protein level and also observed in other BTZ-resistant tumor cell lines as well as in leukemia cells with acquired resistance to other proteasome inhibitors. Moreover, when MARCKS protein expression was demonstrated in specimens derived from therapy-refractory pediatric leukemia patients (n = 44), higher MARCKS protein expression trended (p = 0.073) towards a dismal response to BTZ-containing chemotherapy. Mechanistically, we show a BTZ concentration-dependent association of MARCKS protein levels with the emergence of ubiquitin-containing vesicles in BTZ-resistant CEM cells. These vesicles were found to be extruded and taken up in co-cultures with proteasome-proficient acceptor cells. Consistent with these observations, MARCKS protein associated with ubiquitin-containing vesicles was also more prominent in clinical leukemic specimen with ex vivo BTZ resistance compared to BTZ-sensitive leukemia cells. Collectively, we propose a role for MARCKS in a novel mechanism of BTZ resistance via exocytosis of ubiquitinated proteins in BTZ-resistant cells leading to quenching of proteolytic stress.
Collapse
Affiliation(s)
- Niels E Franke
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Gertjan L Kaspers
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
| | - Johan van Meerloo
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Denise Niewerth
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Floortje L Kessler
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Pino J Poddighe
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Jeroen Kole
- Department of Physiology, VU University, Amsterdam, The Netherlands
| | - Serge J Smeets
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Bauke Ylstra
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Chonglei Bi
- Department of Experimental Therapeutics, Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Current address: BGI-Shenzhen, Shenzhen, China
| | - Wee Joo Chng
- Department of Experimental Therapeutics, Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Terzah M Horton
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Rene X Menezes
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Sonja Zweegman
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Gerrit Jansen
- Department of Rheumatology, Amsterdam Rheumatology and immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
62
|
Maysinger D, Ji J, Moquin A, Hossain S, Hancock MA, Zhang I, Chang PK, Rigby M, Anthonisen M, Grütter P, Breitner J, McKinney RA, Reimann S, Haag R, Multhaup G. Dendritic Polyglycerol Sulfates in the Prevention of Synaptic Loss and Mechanism of Action on Glia. ACS Chem Neurosci 2018; 9:260-271. [PMID: 29078046 DOI: 10.1021/acschemneuro.7b00301] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dendritic polyglycerols (dPG), particularly dendritic polyglycerol sulfates (dPGS), have been intensively studied due to their intrinsic anti-inflammatory activity. As related to brain pathologies involving neuroinflammation, the current study examined if dPG and dPGS can (i) regulate neuroglial activation, and (ii) normalize the morphology and function of excitatory postsynaptic dendritic spines adversely affected by the neurotoxic 42 amino acid amyloid-β (Aβ42) peptide of Alzheimer disease (AD). The exact role of neuroglia, such as microglia and astrocytes, remains controversial especially their positive and negative impact on inflammatory processes in AD. To test dPGS effectiveness in AD models we used primary neuroglia and organotypic hippocampal slice cultures exposed to Aβ42 peptide. Overall, our data indicate that dPGS is taken up by both microglia and astrocytes in a concentration- and time-dependent manner. The mechanism of action of dPGS involves binding to Aβ42, i.e., a direct interaction between dPGS and Aβ42 species interfered with Aβ fibril formation and reduced the production of the neuroinflammagen lipocalin-2 (LCN2) mainly in astrocytes. Moreover, dPGS normalized the impairment of neuroglia and prevented the loss of dendritic spines at excitatory synapses in the hippocampus. In summary, dPGS has desirable therapeutic properties that may help reduce amyloid-induced neuroinflammation and neurotoxicity in AD.
Collapse
Affiliation(s)
- Dusica Maysinger
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| | - Jeff Ji
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| | - Alexandre Moquin
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| | - Shireen Hossain
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| | - Mark A. Hancock
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| | - Issan Zhang
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| | - Philip K.Y. Chang
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| | - Matthew Rigby
- Department
of Physics, McGill University, Montreal, Canada H3A 2T8
| | | | - Peter Grütter
- Department
of Physics, McGill University, Montreal, Canada H3A 2T8
| | - John Breitner
- Douglas
Hospital Research Centre, McGill University, Montreal, Canada H4H 1R3
| | - R. Anne McKinney
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| | - Sabine Reimann
- Institut
für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Rainer Haag
- Institut
für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Gerhard Multhaup
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| |
Collapse
|
63
|
Sarmento MJ, Coutinho A, Fedorov A, Prieto M, Fernandes F. Membrane Order Is a Key Regulator of Divalent Cation-Induced Clustering of PI(3,5)P 2 and PI(4,5)P 2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12463-12477. [PMID: 28961003 DOI: 10.1021/acs.langmuir.7b00666] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Although the evidence for the presence of functionally important nanosized phosphorylated phosphoinositide (PIP)-rich domains within cellular membranes has accumulated, very limited information is available regarding the structural determinants for compartmentalization of these phospholipids. Here, we used a combination of fluorescence spectroscopy and microscopy techniques to characterize differences in divalent cation-induced clustering of PI(4,5)P2 and PI(3,5)P2. Through these methodologies we were able to detect differences in divalent cation-induced clustering efficiency and cluster size. Ca2+-induced PI(4,5)P2 clusters are shown to be significantly larger than the ones observed for PI(3,5)P2. Clustering of PI(4,5)P2 is also detected at physiological concentrations of Mg2+, suggesting that in cellular membranes, these molecules are constitutively driven to clustering by the high intracellular concentration of divalent cations. Importantly, it is shown that lipid membrane order is a key factor in the regulation of clustering for both PIP isoforms, with a major impact on cluster sizes. Clustered PI(4,5)P2 and PI(3,5)P2 are observed to present considerably higher affinity for more ordered lipid phases than the monomeric species or than PI(4)P, possibly reflecting a more general tendency of clustered lipids for insertion into ordered domains. These results support a model for the description of the lateral organization of PIPs in cellular membranes, where both divalent cation interaction and membrane order are key modulators defining the lateral organization of these lipids.
Collapse
Affiliation(s)
- Maria J Sarmento
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon , 1649-004 Lisbon, Portugal
- J. Heyrovský Inst. Physical Chemistry of the A.S.C.R. v.v.i. , 182 23 Prague, Czech Republic
| | - Ana Coutinho
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon , 1649-004 Lisbon, Portugal
- Departamento de Química e Bioquímica, FCUL, University of Lisbon , 1649-004 Lisbon, Portugal
| | - Aleksander Fedorov
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon , 1649-004 Lisbon, Portugal
| | - Manuel Prieto
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon , 1649-004 Lisbon, Portugal
| | - Fábio Fernandes
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon , 1649-004 Lisbon, Portugal
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , Campus da Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
64
|
Choy CH, Han BK, Botelho RJ. Phosphoinositide Diversity, Distribution, and Effector Function: Stepping Out of the Box. Bioessays 2017; 39. [PMID: 28977683 DOI: 10.1002/bies.201700121] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/31/2017] [Indexed: 12/26/2022]
Abstract
Phosphoinositides (PtdInsPs) modulate a plethora of functions including signal transduction and membrane trafficking. PtdInsPs are thought to consist of seven interconvertible species that localize to a specific organelle, to which they recruit a set of cognate effector proteins. Here, in reviewing the literature, we argue that this model needs revision. First, PtdInsPs can carry a variety of acyl chains, greatly boosting their molecular diversity. Second, PtdInsPs are more promiscuous in their localization than is usually acknowledged. Third, PtdInsP interconversion is likely achieved through kinase-phosphatase enzyme complexes that coordinate their activities and channel substrates without affecting bulk substrate population. Additionally, we contend that despite hundreds of PtdInsP effectors, our attention is biased toward few proteins. Lastly, we recognize that PtdInsPs can act to nucleate coincidence detection at the effector level, as in PDK1 and Akt. Overall, better integrated models of PtdInsP regulation and function are not only possible but needed.
Collapse
Affiliation(s)
- Christopher H Choy
- Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada M5B2K3.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada M5B2K3
| | - Bong-Kwan Han
- The Intelligent Synthetic Biology Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Roberto J Botelho
- Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada M5B2K3.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada M5B2K3
| |
Collapse
|
65
|
Houyoux N, Wattiez R, Ris L. A proteomic analysis of contextual fear conditioned rats reveals dynamic modifications in neuron and oligodendrocyte protein expression in the dentate gyrus. Eur J Neurosci 2017; 46:2177-2189. [PMID: 28833751 DOI: 10.1111/ejn.13664] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 11/30/2022]
Abstract
Contextual memory is an intricate process involving synaptic plasticity and network rearrangement. Both are governed by many molecular processes including phosphorylation and modulation of protein expression. However, little is known about the molecules involved in it. Here, we exploited the advantages of a quantitative proteomic approach to identify a great number of molecules in the rat dentate gyrus after a contextual fear conditioning session. Our results allowed us to highlight protein expression patterns, not only related to neuroplasticity, but also to myelin structure, such as myelin basic protein and myelin proteolipid protein showing a decrease in expression. Validation of the modification in protein expression reveals a dynamic profile during the 48 h following the fear conditioning session. The expression of proteins involved in neurite outgrowth, such as BASP-1 and calcineurin B1, and in synaptic structure and function, VAMP2 and RAB3C, was increased in the dentate gyrus of rats submitted to fear conditioning compared to controls. We showed that the increase in BASP-1 protein was specific to fear conditioning learning as it was not present in immediate-shock rats, neither in rats exposed to a novel environment without being shocked. As myelin is known to stabilise synaptic network, the decrease in myelin proteins suggests a neuroglia interactive process taking place in the dentate gyrus in the 24 h following contextual fear learning, which has never been demonstrated before. These results therefore open the way to the study of new plasticity mechanisms underlying learning and memory.
Collapse
Affiliation(s)
- Nicolas Houyoux
- Proteomics and Microbiology Department, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Department, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Laurence Ris
- Department of Neuroscience, Research Institute for Biosciences, University of Mons, 20 Place du Parc, 7000, Mons, Belgium
| |
Collapse
|
66
|
Holahan MR. A Shift from a Pivotal to Supporting Role for the Growth-Associated Protein (GAP-43) in the Coordination of Axonal Structural and Functional Plasticity. Front Cell Neurosci 2017; 11:266. [PMID: 28912688 PMCID: PMC5583208 DOI: 10.3389/fncel.2017.00266] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/18/2017] [Indexed: 11/14/2022] Open
Abstract
In a number of animal species, the growth-associated protein (GAP), GAP-43 (aka: F1, neuromodulin, B-50, G50, pp46), has been implicated in the regulation of presynaptic vesicular function and axonal growth and plasticity via its own biochemical properties and interactions with a number of other presynaptic proteins. Changes in the expression of GAP-43 mRNA or distribution of the protein coincide with axonal outgrowth as a consequence of neuronal damage and presynaptic rearrangement that would occur following instances of elevated patterned neural activity including memory formation and development. While functional enhancement in GAP-43 mRNA and/or protein activity has historically been hypothesized as a central mediator of axonal neuroplastic and regenerative responses in the central nervous system, it does not appear to be the crucial substrate sufficient for driving these responses. This review explores the historical discovery of GAP-43 (and associated monikers), its transcriptional, post-transcriptional and post-translational regulation and current understanding of protein interactions and regulation with respect to its role in axonal function. While GAP-43 itself appears to have moved from a pivotal to a supporting factor, there is no doubt that investigations into its functions have provided a clearer understanding of the biochemical underpinnings of axonal plasticity.
Collapse
|
67
|
Chang CH, Lee HH, Lee CH. Substrate properties modulate cell membrane roughness by way of actin filaments. Sci Rep 2017; 7:9068. [PMID: 28831175 PMCID: PMC5567215 DOI: 10.1038/s41598-017-09618-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/24/2017] [Indexed: 01/09/2023] Open
Abstract
Cell membrane roughness has been proposed as a sensitive feature to reflect cellular physiological conditions. In order to know whether membrane roughness is associated with the substrate properties, we employed the non-interferometric wide-field optical profilometry (NIWOP) technique to measure the membrane roughness of living mouse embryonic fibroblasts with different conditions of the culture substrate. By controlling the surface density of fibronectin (FN) coated on the substrate, we found that cells exhibited higher membrane roughness as the FN density increased in company with larger focal adhesion (FA) sizes. The examination of membrane roughness was also confirmed with atomic force microscopy. Using reagents altering actin or microtubule cytoskeletons, we provided evidence that the dynamics of actin filaments rather than that of microtubules plays a crucial role for the regulation of membrane roughness. By changing the substrate rigidity, we further demonstrated that the cells seeded on compliant gels exhibited significantly lower membrane roughness and smaller FAs than the cells on rigid substrate. Taken together, our data suggest that the magnitude of membrane roughness is modulated by way of actin dynamics in cells responding to substrate properties.
Collapse
Affiliation(s)
- Chao-Hung Chang
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsiao-Hui Lee
- Department of Life Sciences & Institute of Genome Sciences, National Yang-Ming University, Taipei, 11221, Taiwan.
| | - Chau-Hwang Lee
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan. .,Institute of Biophotonics, National Yang-Ming University, Taipei, 11221, Taiwan. .,Department of Physics, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
68
|
Abstract
Oligodendrocyte precursor cell (OPC) development into myelinated oligodendrocytes demands vigorous membrane addition. Since myristoylated alanine-rich C-kinase substrate (MARCKS) reportedly contributes to Ras-associated protein (Rab)-10-associated vesicle insertion into neuronal membranes, we investigated the role of MARCKS in OPC maturation. We found that either knockdown of MARCKS or interruption of its interaction with Rab10 would cause a decrease of the cell membrane area during OPC development. Enhanced MARCKS phosphorylation by Nogo66 or myelin debris treatment inhibited OPC maturation, while its dephosphorylation by protein phosphatase 2 A activator D-erythro-sphingosine promoted OPC development in the presence of myelin debris. Our results demonstrated that MARCKS is involved in OPC maturation by interacting with Rab10.
Collapse
|
69
|
Zakharova FM, Zakharov VV. Identification of brain proteins BASP1 and GAP-43 in mouse oocytes and zygotes. Russ J Dev Biol 2017. [DOI: 10.1134/s1062360417030110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
70
|
Callender J, Newton A. Conventional protein kinase C in the brain: 40 years later. Neuronal Signal 2017; 1:NS20160005. [PMID: 32714576 PMCID: PMC7373245 DOI: 10.1042/ns20160005] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 12/16/2022] Open
Abstract
Protein kinase C (PKC) is a family of enzymes whose members transduce a large variety of cellular signals instigated by the receptor-mediated hydrolysis of membrane phospholipids. While PKC has been widely implicated in the pathology of diseases affecting all areas of physiology including cancer, diabetes, and heart disease-it was discovered, and initially characterized, in the brain. PKC plays a key role in controlling the balance between cell survival and cell death. Its loss of function is generally associated with cancer, whereas its enhanced activity is associated with neurodegeneration. This review presents an overview of signaling by diacylglycerol (DG)-dependent PKC isozymes in the brain, and focuses on the role of the Ca2+-sensitive conventional PKC isozymes in neurodegeneration.
Collapse
Affiliation(s)
- Julia A. Callender
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0721, U.S.A
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093-0721, U.S.A
| | - Alexandra C. Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0721, U.S.A
| |
Collapse
|
71
|
Holland SM, Thomas GM. Roles of palmitoylation in axon growth, degeneration and regeneration. J Neurosci Res 2017; 95:1528-1539. [PMID: 28150429 DOI: 10.1002/jnr.24003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/09/2016] [Accepted: 11/28/2016] [Indexed: 12/11/2022]
Abstract
The protein-lipid modification palmitoylation plays important roles in neurons, but most attention has focused on roles of this modification in the regulation of mature pre- and post-synapses. However, exciting recent findings suggest that palmitoylation is also critical for both the growth and integrity of neuronal axons and plays previously unappreciated roles in conveying axonal anterograde and retrograde signals. Here we review these emerging roles for palmitoylation in the regulation of axons in health and disease. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sabrina M Holland
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair)
| | - Gareth M Thomas
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair).,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140
| |
Collapse
|
72
|
Ji C, Lou X. Single-molecule Super-resolution Imaging of Phosphatidylinositol 4,5-bisphosphate in the Plasma Membrane with Novel Fluorescent Probes. J Vis Exp 2016. [PMID: 27805608 PMCID: PMC5092206 DOI: 10.3791/54466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Phosphoinositides in the cell membrane are signaling lipids with multiple cellular functions. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a determinant phosphoinositide of the plasma membrane (PM), and it is required to modulate ion channels, actin dynamics, exocytosis, endocytosis, intracellular signaling, and many other cellular processes. However, the spatial organization of PI(4,5)P2 in the PM is controversial, and its nanoscale distribution is poorly understood due to the technical limitations of research approaches. Here by utilizing single molecule localization microscopy and the Pleckstrin Homology (PH) domain based dual color fluorescent probes, we describe a novel method to visualize the nanoscale distribution of PI(4,5)P2 in the PM in fixed membrane sheets as well as live cells.
Collapse
Affiliation(s)
- Chen Ji
- Department of Neuroscience, University of Wisconsin-Madison
| | - Xuelin Lou
- Department of Neuroscience, University of Wisconsin-Madison;
| |
Collapse
|
73
|
Lee-Liu D, Méndez-Olivos EE, Muñoz R, Larraín J. The African clawed frog Xenopus laevis: A model organism to study regeneration of the central nervous system. Neurosci Lett 2016; 652:82-93. [PMID: 27693567 DOI: 10.1016/j.neulet.2016.09.054] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/18/2016] [Accepted: 09/28/2016] [Indexed: 12/20/2022]
Abstract
While an injury to the central nervous system (CNS) in humans and mammals is irreversible, amphibians and teleost fish have the capacity to fully regenerate after severe injury to the CNS. Xenopus laevis has a high potential to regenerate the brain and spinal cord during larval stages (47-54), and loses this capacity during metamorphosis. The optic nerve has the capacity to regenerate throughout the frog's lifespan. Here, we review CNS regeneration in frogs, with a focus in X. laevis, but also provide some information about X. tropicalis and other frogs. We start with an overview of the anatomy of the Xenopus CNS, including the main supraspinal tracts that emerge from the brain stem, which play a key role in motor control and are highly conserved across vertebrates. We follow with the advantages of using Xenopus, a classical laboratory model organism, with increasing availability of genetic tools like transgenesis and genome editing, and genomic sequences for both X. laevis and X. tropicalis. Most importantly, Xenopus provides the possibility to perform intra-species comparative experiments between regenerative and non-regenerative stages that allow the identification of which factors are permissive for neural regeneration, and/or which are inhibitory. We aim to provide sufficient evidence supporting how useful Xenopus can be to obtain insights into our understanding of CNS regeneration, which, complemented with studies in mammalian vertebrate model systems, can provide a collaborative road towards finding novel therapeutic approaches for injuries to the CNS.
Collapse
Affiliation(s)
- Dasfne Lee-Liu
- Center for Aging and Regeneration, Millennium Nucleus in Regenerative Biology, Faculty of Biological Sciences, P. Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| | - Emilio E Méndez-Olivos
- Center for Aging and Regeneration, Millennium Nucleus in Regenerative Biology, Faculty of Biological Sciences, P. Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Rosana Muñoz
- Center for Aging and Regeneration, Millennium Nucleus in Regenerative Biology, Faculty of Biological Sciences, P. Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Juan Larraín
- Center for Aging and Regeneration, Millennium Nucleus in Regenerative Biology, Faculty of Biological Sciences, P. Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| |
Collapse
|
74
|
Mehrabian M, Brethour D, Williams D, Wang H, Arnould H, Schneider B, Schmitt-Ulms G. Prion Protein Deficiency Causes Diverse Proteome Shifts in Cell Models That Escape Detection in Brain Tissue. PLoS One 2016; 11:e0156779. [PMID: 27327609 PMCID: PMC4915660 DOI: 10.1371/journal.pone.0156779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/19/2016] [Indexed: 12/13/2022] Open
Abstract
A popular method for studying the function of a given protein is to generate and characterize a suitable model deficient for its expression. For the prion protein (PrP), best known for its role in several invariably fatal neurodegenerative diseases, a natural choice, therefore, would be to undertake such studies with brain samples. We recently documented the surprising observation that PrP deficiency caused a loss or enhancement of NCAM1 polysialylation, dependent on the cell model used. To identify possible causes for this disparity, we set out to systematically investigate the consequence of PrP deficiency on the global proteome in brain tissue and in four distinct cell models. Here we report that PrP deficiency causes robust but surprisingly divergent changes to the global proteomes of cell models but has no discernible impact on the global brain proteome. Amongst >1,500 proteins whose levels were compared in wild-type and PrP-deficient models, members of the MARCKS protein family exhibited pronounced, yet cell model-dependent changes to their steady-state levels. Follow-up experiments revealed that PrP collaborates with members of the MARCKS protein family in its control of NCAM1 polysialylation. We conclude that the physiological function of PrP may be masked in analyses of complex brain samples but its cell-type specific influence on a lipid raft-based NCAM1-related cell biology comes to the fore in investigations of specific cell types.
Collapse
Affiliation(s)
- Mohadeseh Mehrabian
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
- Departments of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
| | - Dylan Brethour
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
- Departments of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
- Departments of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
| | - Hansen Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Hélène Arnould
- French Institute of Health and Medical Research (INSERM), Paris, France, and University Paris Descartes, Paris, France
| | - Benoit Schneider
- French Institute of Health and Medical Research (INSERM), Paris, France, and University Paris Descartes, Paris, France
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
- Departments of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
75
|
Flamm AG, Żerko S, Zawadzka-Kazimierczuk A, Koźmiński W, Konrat R, Coudevylle N. 1H, 15N, 13C resonance assignment of human GAP-43. BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:171-174. [PMID: 26748655 PMCID: PMC4788685 DOI: 10.1007/s12104-015-9660-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/28/2015] [Indexed: 05/31/2023]
Abstract
GAP-43 is a 25 kDa neuronal intrinsically disordered protein, highly abundant in the neuronal growth cone during development and regeneration. The exact molecular function(s) of GAP-43 remains unclear but it appears to be involved in growth cone guidance and actin cytoskeleton organization. Therefore, GAP-43 seems to play an important role in neurotransmitter vesicle fusion and recycling, long-term potentiation, spatial memory formation and learning. Here we report the nearly complete assignment of recombinant human GAP-43.
Collapse
Affiliation(s)
- Andrea Gabriele Flamm
- Department of Computational and Structural Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Szymon Żerko
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Anna Zawadzka-Kazimierczuk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Wiktor Koźmiński
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Robert Konrat
- Department of Computational and Structural Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Nicolas Coudevylle
- Department of Computational and Structural Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria.
| |
Collapse
|
76
|
Picas L, Gaits-Iacovoni F, Goud B. The emerging role of phosphoinositide clustering in intracellular trafficking and signal transduction. F1000Res 2016; 5. [PMID: 27092250 PMCID: PMC4821294 DOI: 10.12688/f1000research.7537.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2016] [Indexed: 01/03/2023] Open
Abstract
Phosphoinositides are master regulators of multiple cellular processes: from vesicular trafficking to signaling, cytoskeleton dynamics, and cell growth. They are synthesized by the spatiotemporal regulated activity of phosphoinositide-metabolizing enzymes. The recent observation that some protein modules are able to cluster phosphoinositides suggests that alternative or complementary mechanisms might operate to stabilize the different phosphoinositide pools within cellular compartments. Herein, we discuss the different known and potential molecular players that are prone to engage phosphoinositide clustering and elaborate on how such a mechanism might take part in the regulation of intracellular trafficking and signal transduction.
Collapse
Affiliation(s)
- Laura Picas
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, Montpellier, France
| | - Frederique Gaits-Iacovoni
- INSERM, UMR1048, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Bruno Goud
- Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| |
Collapse
|
77
|
Satoh K, Narita T, Katsumata-Kato O, Sugiya H, Seo Y. Involvement of myristoylated alanine-rich C kinase substrate phosphorylation and translocation in cholecystokinin-induced amylase release in rat pancreatic acini. Am J Physiol Gastrointest Liver Physiol 2016; 310:G399-409. [PMID: 26744470 DOI: 10.1152/ajpgi.00198.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 01/05/2016] [Indexed: 01/31/2023]
Abstract
Cholecystokinin (CCK) is a gastrointestinal hormone that induces exocytotic amylase release in pancreatic acinar cells. The activation of protein kinase C (PKC) is involved in the CCK-induced pancreatic amylase release. Myristoylated alanine-rich C kinase substrate (MARCKS) is a ubiquitously expressed substrate of PKC. MARCKS has been implicated in membrane trafficking in several cell types. The phosphorylation of MARCKS by PKC results in the translocation of MARCKS from the membrane to the cytosol. Here, we studied the involvement of MARCKS in the CCK-induced amylase release in rat pancreatic acini. Employing Western blotting, we detected MARCKS protein in the rat pancreatic acini. CCK induced MARCKS phosphorylation. A PKC-δ inhibitor, rottlerin, inhibited the CCK-induced MARCKS phosphorylation and amylase release. In the translocation assay, we also observed CCK-induced PKC-δ activation. An immunohistochemistry study showed that CCK induced MARCKS translocation from the membrane to the cytosol. When acini were lysed by a detergent, Triton X-100, CCK partially induced displacement of the MARCKS from the GM1a-rich detergent-resistant membrane fractions (DRMs) in which Syntaxin2 is distributed. A MARCKS-related peptide inhibited the CCK-induced amylase release. These findings suggest that MARCKS phosphorylation by PKC-δ and then MARCKS translocation from the GM1a-rich DRMs to the cytosol are involved in the CCK-induced amylase release in pancreatic acinar cells.
Collapse
Affiliation(s)
- Keitaro Satoh
- Department of Regulatory Physiology, Dokkyo Medical University School of Medicine, Tochigi, Japan;
| | - Takanori Narita
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kanagawa, Japan
| | - Osamu Katsumata-Kato
- Department of Physiology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Hiroshi Sugiya
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kanagawa, Japan
| | - Yoshiteru Seo
- Department of Regulatory Physiology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
78
|
Forsova OS, Zakharov VV. High-order oligomers of intrinsically disordered brain proteins BASP1 and GAP-43 preserve the structural disorder. FEBS J 2016; 283:1550-69. [PMID: 26918762 DOI: 10.1111/febs.13692] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/26/2016] [Accepted: 02/23/2016] [Indexed: 11/30/2022]
Abstract
Brain acid-soluble protein-1 (BASP1) and growth-associated protein-43 (GAP-43) are presynaptic membrane proteins participating in axon guidance, neuroregeneration and synaptic plasticity. They are presumed to sequester phosphatidylinositol-4,5-bisphosphate (PIP2 ) in lipid rafts. Previously we have shown that the proteins form heterogeneously sized oligomers in the presence of anionic phospholipids or SDS at submicellar concentration. BASP1 and GAP-43 are intrinsically disordered proteins (IDPs). In light of this, we investigated the structure of their oligomers. Using partial cross-linking of the oligomers with glutaraldehyde, the aggregation numbers of BASP1 and GAP-43 were estimated as 10-14 and 6-7 monomer subunits, respectively. The cross-linking pattern indicated that the subunits are circularly arranged. The circular dichroism (CD) spectra of the monomers were characteristic of coil-like IDPs showing unordered structure with a high population of polyproline-II conformation. The oligomerization was accompanied by a minor CD spectral change attributable to formation of a small amount of α-helix. The number of residues in the α-helical conformation was estimated as 13 in BASP1 and 18 in GAP-43. However, the overall structure of the oligomers remained disordered, indicating a high degree of 'fuzziness'. This was confirmed by measuring the hydrodynamic dimensions of the oligomers using polyacrylamide gradient gel electrophoresis and size-exclusion chromatography, and by assaying their sensitivity to proteolytic digestion. There is evidence that the observed α-helical folding occurs within the basic effector domains, which are presumably tethered together via anionic molecules of SDS or PIP2 . We conclude that BASP1 and GAP-43 oligomers preserve a mostly disordered structure, which may be of great importance for their function in PIP2 signaling pathway.
Collapse
Affiliation(s)
- Oksana S Forsova
- Molecular and Radiation Biophysics Division, B. P. Konstantinov Petersburg Nuclear Physics Institute, National Research Centre 'Kurchatov Institute', Gatchina, Russia.,Laboratory of Natural Polymers, Institute of Macromolecular Compounds, Russian Academy of Sciences, St Petersburg, Russia
| | - Vladislav V Zakharov
- Molecular and Radiation Biophysics Division, B. P. Konstantinov Petersburg Nuclear Physics Institute, National Research Centre 'Kurchatov Institute', Gatchina, Russia.,Laboratory of Natural Polymers, Institute of Macromolecular Compounds, Russian Academy of Sciences, St Petersburg, Russia.,Department of Biophysics, Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St Petersburg Polytechnic University, Russia
| |
Collapse
|
79
|
In situ quantification of protein binding to the plasma membrane. Biophys J 2016; 108:2648-57. [PMID: 26039166 DOI: 10.1016/j.bpj.2015.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/24/2015] [Accepted: 04/20/2015] [Indexed: 11/21/2022] Open
Abstract
This study presents a fluorescence-based assay that allows for direct measurement of protein binding to the plasma membrane inside living cells. An axial scan through the cell generates a fluorescence intensity profile that is analyzed to determine the membrane-bound and cytoplasmic concentrations of a peripheral membrane protein labeled by the enhanced green fluorescent protein (EGFP). The membrane binding curve is constructed by mapping those concentrations for a population of cells with a wide range of protein expression levels, and a fit of the binding curve determines the number of binding sites and the dissociation coefficient. We experimentally verified the technique, using myosin-1C-EGFP as a model system and fit its binding curve. Furthermore, we studied the protein-lipid interactions of the membrane binding domains from lactadherin and phospholipase C-δ1 to evaluate the feasibility of using competition binding experiments to identify specific lipid-protein interactions in living cells. Finally, we applied the technique to determine the lipid specificity, the number of binding sites, and the dissociation coefficient of membrane binding for the Gag matrix domain of human T-lymphotropic virus type 1, which provides insight into early assembly steps of the retrovirus.
Collapse
|
80
|
In Vitro Neutrophil Migration Requires Protein Kinase C-Delta (δ-PKC)-Mediated Myristoylated Alanine-Rich C-Kinase Substrate (MARCKS) Phosphorylation. Inflammation 2016; 38:1126-41. [PMID: 25515270 DOI: 10.1007/s10753-014-0078-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dysregulated release of neutrophil reactive oxygen species and proteolytic enzymes contributes to both acute and chronic inflammatory diseases. Therefore, molecular regulators of these processes are potential targets for new anti-inflammatory therapies. We have shown previously that myristoylated alanine-rich C-kinase substrate (MARCKS), a well-known actin binding protein and protein kinase C (PKC) substrate, is a key regulator of neutrophil functions. In the current study, we investigate the role of PKC-mediated MARCKS phosphorylation in neutrophil migration and adhesion in vitro. We report that treatment of human neutrophils with the δ-PKC inhibitor rottlerin significantly attenuates f-Met-Leu-Phe (fMLF)-induced MARCKS phosphorylation (IC50=5.709 μM), adhesion (IC50=8.4 μM), and migration (IC50=6.7 μM), while α-, β-, and ζ-PKC inhibitors had no significant effect. We conclude that δ-PKC-mediated MARCKS phosphorylation is essential for human neutrophil migration and adhesion in vitro. These results implicate δ-PKC-mediated MARCKS phosphorylation as a key step in the inflammatory response of neutrophils.
Collapse
|
81
|
Krieger C, Wang SJH, Yoo SH, Harden N. Adducin at the Neuromuscular Junction in Amyotrophic Lateral Sclerosis: Hanging on for Dear Life. Front Cell Neurosci 2016; 10:11. [PMID: 26858605 PMCID: PMC4731495 DOI: 10.3389/fncel.2016.00011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/13/2016] [Indexed: 12/11/2022] Open
Abstract
The neurological dysfunction in amyotrophic lateral sclerosis (ALS)/motor neurone disease (MND) is associated with defective nerve-muscle contacts early in the disease suggesting that perturbations of cell adhesion molecules (CAMs) linking the pre- and post-synaptic components of the neuromuscular junction (NMJ) are involved. To search for candidate proteins implicated in this degenerative process, researchers have studied the Drosophila larval NMJ and find that the cytoskeleton-associated protein, adducin, is ideally placed to regulate synaptic contacts. By controlling the levels of synaptic proteins, adducin can de-stabilize synaptic contacts. Interestingly, elevated levels of phosphorylated adducin have been reported in ALS patients and in a mouse model of the disease. Adducin is regulated by phosphorylation through protein kinase C (PKC), some isoforms of which exhibit Ca2+-dependence, raising the possibility that changes in intracellular Ca2+ might alter PKC activation and secondarily influence adducin phosphorylation. Furthermore, adducin has interactions with the alpha subunit of the Na+/K+-ATPase. Thus, the phosphorylation of adducin may secondarily influence synaptic stability at the NMJ and so influence pre- and post-synaptic integrity at the NMJ in ALS.
Collapse
Affiliation(s)
- Charles Krieger
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University Burnaby, BC, Canada
| | - Simon Ji Hau Wang
- Department of Biomedical Physiology and Kinesiology, Simon Fraser UniversityBurnaby, BC, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser UniversityBurnaby, BC, Canada
| | - Soo Hyun Yoo
- Department of Biomedical Physiology and Kinesiology, Simon Fraser UniversityBurnaby, BC, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser UniversityBurnaby, BC, Canada
| | - Nicholas Harden
- Department of Molecular Biology and Biochemistry, Simon Fraser University Burnaby, BC, Canada
| |
Collapse
|
82
|
Synthesis and dephosphorylation of MARCKS in the late stages of megakaryocyte maturation drive proplatelet formation. Blood 2016; 127:1468-80. [PMID: 26744461 DOI: 10.1182/blood-2015-08-663146] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/23/2015] [Indexed: 12/12/2022] Open
Abstract
Platelets are essential for hemostasis, and thrombocytopenia is a major clinical problem. Megakaryocytes (MKs) generate platelets by extending long processes, proplatelets, into sinusoidal blood vessels. However, very little is known about what regulates proplatelet formation. To uncover which proteins were dynamically changing during this process, we compared the proteome and transcriptome of round vs proplatelet-producing MKs by 2D difference gel electrophoresis (DIGE) and polysome profiling, respectively. Our data revealed a significant increase in a poorly-characterized MK protein, myristoylated alanine-rich C-kinase substrate (MARCKS), which was upregulated 3.4- and 5.7-fold in proplatelet-producing MKs in 2D DIGE and polysome profiling analyses, respectively. MARCKS is a protein kinase C (PKC) substrate that binds PIP2. In MKs, it localized to both the plasma and demarcation membranes. MARCKS inhibition by peptide significantly decreased proplatelet formation 53%. To examine the role of MARCKS in the PKC pathway, we treated MKs with polymethacrylate (PMA), which markedly increased MARCKS phosphorylation while significantly inhibiting proplatelet formation 84%, suggesting that MARCKS phosphorylation reduces proplatelet formation. We hypothesized that MARCKS phosphorylation promotes Arp2/3 phosphorylation, which subsequently downregulates proplatelet formation; both MARCKS and Arp2 were dephosphorylated in MKs making proplatelets, and Arp2 inhibition enhanced proplatelet formation. Finally, we used MARCKS knockout (KO) mice to probe the direct role of MARCKS in proplatelet formation; MARCKS KO MKs displayed significantly decreased proplatelet levels. MARCKS expression and signaling in primary MKs is a novel finding. We propose that MARCKS acts as a "molecular switch," binding to and regulating PIP2 signaling to regulate processes like proplatelet extension (microtubule-driven) vs proplatelet branching (Arp2/3 and actin polymerization-driven).
Collapse
|
83
|
Williams KR, McAninch DS, Stefanovic S, Xing L, Allen M, Li W, Feng Y, Mihailescu MR, Bassell GJ. hnRNP-Q1 represses nascent axon growth in cortical neurons by inhibiting Gap-43 mRNA translation. Mol Biol Cell 2015; 27:518-34. [PMID: 26658614 PMCID: PMC4751602 DOI: 10.1091/mbc.e15-07-0504] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/01/2015] [Indexed: 11/11/2022] Open
Abstract
A novel posttranscriptional mechanism for regulating the neuronal protein GAP-43 is reported. The mRNA-binding protein hnRNP-Q1 represses Gap-43 mRNA translation by a mechanism involving a 5′ untranslated region G-quadruplex structure, which affects GAP-43 function, as demonstrated by a GAP-43–dependent increase in neurite length and number with hnRNP-Q1 knockdown. Posttranscriptional regulation of gene expression by mRNA-binding proteins is critical for neuronal development and function. hnRNP-Q1 is an mRNA-binding protein that regulates mRNA processing events, including translational repression. hnRNP-Q1 is highly expressed in brain tissue, suggesting a function in regulating genes critical for neuronal development. In this study, we have identified Growth-associated protein 43 (Gap-43) mRNA as a novel target of hnRNP-Q1 and have demonstrated that hnRNP-Q1 represses Gap-43 mRNA translation and consequently GAP-43 function. GAP-43 is a neuronal protein that regulates actin dynamics in growth cones and facilitates axonal growth. Previous studies have identified factors that regulate Gap-43 mRNA stability and localization, but it remains unclear whether Gap-43 mRNA translation is also regulated. Our results reveal that hnRNP-Q1 knockdown increased nascent axon length, total neurite length, and neurite number in mouse embryonic cortical neurons and enhanced Neuro2a cell process extension; these phenotypes were rescued by GAP-43 knockdown. Additionally, we have identified a G-quadruplex structure in the 5′ untranslated region of Gap-43 mRNA that directly interacts with hnRNP-Q1 as a means to inhibit Gap-43 mRNA translation. Therefore hnRNP-Q1–mediated repression of Gap-43 mRNA translation provides an additional mechanism for regulating GAP-43 expression and function and may be critical for neuronal development.
Collapse
Affiliation(s)
- Kathryn R Williams
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Damian S McAninch
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282
| | - Snezana Stefanovic
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282
| | - Lei Xing
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Megan Allen
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322
| | - Wenqi Li
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322
| | - Yue Feng
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322
| | | | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
84
|
Gordon T, Tetzlaff W. Regeneration-associated genes decline in chronically injured rat sciatic motoneurons. Eur J Neurosci 2015; 42:2783-91. [DOI: 10.1111/ejn.13070] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Tessa Gordon
- Neuroscience and Mental Health Institute; Faculty of Medicine and Dentistry; University of Alberta; Edmonton AB T6G 2S2 Canada
- Department of Surgery; Division of Plastic Reconstructive Surgery; 5549A The Hospital for Sick Children; 555 University Avenue Toronto ON M5G 1X8 Canada
| | - Wolfram Tetzlaff
- ICORD (International Collaboration on Repair Discoveries); Blusson Spinal Cord Centre; 818 W. 10th Avenue Vancouver BC V5Z 1M9 Canada
- Departments of Zoology and Surgery; University of British Columbia; Vancouver BC Canada
| |
Collapse
|
85
|
PIP2Clustering: From model membranes to cells. Chem Phys Lipids 2015; 192:33-40. [DOI: 10.1016/j.chemphyslip.2015.07.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/26/2015] [Accepted: 07/27/2015] [Indexed: 11/23/2022]
|
86
|
Efimova SS, Malev VV, Ostroumova OS. Effects of Dipole Potential Modifiers on Heterogenic Lipid Bilayers. J Membr Biol 2015; 249:97-106. [PMID: 26454655 DOI: 10.1007/s00232-015-9852-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/29/2015] [Indexed: 01/29/2023]
Abstract
In this work, we examine the ability of dipole modifiers, flavonoids, and RH dyes to affect the dipole potential (φ d) and phase separation in membranes composed of ternary mixtures of POPC with different sphingolipids and sterols. Changes in the steady-state conductance induced by cation-ionophore complexes have been measured to evaluate the changes in dipole potential of planar lipid bilayers. Confocal fluorescence microscopy has been employed to investigate lipid segregation in giant unilamellar vesicles. The effects of flavonoids on φ d depend on lipid composition and dipole modifier type. The effectiveness of RH dyes to increase φ d depends on sphingolipid type but is not influenced by sterol content. Tested modifiers lead to partial or complete disruption of gel domains in bilayers composed of POPC, sphingomyelin, and cholesterol. Substitution of cholesterol to ergosterol or 7-dehydrocholesterol leads to a loss of fluidizing effects of modifiers except phloretin. This may be due to various compositions of gel domains. The lack of influence of modifiers on phase scenario in vesicles composed of ternary mixtures of POPC, cholesterol, and phytosphingosine or sphinganine is related to an absence of gel-like phase. It was concluded that the membrane lateral heterogeneity affects the dipole-modifying abilities of the agents that influence the magnitude of φ d by intercalation into the bilayer and orientation of its own large dipole moments (phloretin and RH dyes). The efficacy of modifiers that do not penetrate deeply and affect φ d through water adsorption (phlorizin, quercetin, and myricetin) is not influenced by lateral heterogeneity of membrane.
Collapse
Affiliation(s)
- Svetlana S Efimova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky ave. 4, St. Petersburg, Russia, 194064.
| | - Valery V Malev
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky ave. 4, St. Petersburg, Russia, 194064.,St. Petersburg State University, Petergof, Russia, 198504
| | - Olga S Ostroumova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky ave. 4, St. Petersburg, Russia, 194064
| |
Collapse
|
87
|
Płóciennikowska A, Zdioruk MI, Traczyk G, Świątkowska A, Kwiatkowska K. LPS-induced clustering of CD14 triggers generation of PI(4,5)P2. J Cell Sci 2015; 128:4096-111. [PMID: 26446256 DOI: 10.1242/jcs.173104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 09/30/2015] [Indexed: 01/08/2023] Open
Abstract
Bacterial lipopolysaccharide (LPS) induces strong pro-inflammatory reactions after sequential binding to CD14 protein and TLR4 receptor. Here, we show that CD14 controls generation of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] in response to LPS binding. In J774 cells and HEK293 cells expressing CD14 exposed to 10-100 ng/ml LPS, the level of PI(4,5)P2 rose in a biphasic manner with peaks at 5-10 min and 60 min. After 5-10 min of LPS stimulation, CD14 underwent prominent clustering in the plasma membrane, accompanied by accumulation of PI(4,5)P2 and type-I phosphatidylinositol 4-phosphate 5-kinase (PIP5K) isoforms Iα and Iγ (encoded by Pip5k1a and Pip5k1c, respectively) in the CD14 region. Clustering of CD14 with antibodies, without LPS and TLR4 participation, was sufficient to trigger PI(4,5)P2 elevation. The newly generated PI(4,5)P2 accumulated in rafts, which also accommodated CD14 and a large portion of PIP5K Iα and PIP5K Iγ. Silencing of PIP5K Iα and PIP5K Iγ, or application of drugs interfering with PI(4,5)P2 synthesis and availability, abolished the LPS-induced PI(4,5)P2 elevation and inhibited downstream pro-inflammatory reactions. Taken together, these data indicate that LPS induces clustering of CD14, which triggers PI(4,5)P2 generation in rafts that is required for maximal pro-inflammatory signaling of TLR4.
Collapse
Affiliation(s)
- Agnieszka Płóciennikowska
- Nencki Institute of Experimental Biology, Laboratory of Molecular Membrane Biology, 3 Pasteur St., Warsaw 02-093, Poland
| | - Mykola I Zdioruk
- Nencki Institute of Experimental Biology, Laboratory of Molecular Membrane Biology, 3 Pasteur St., Warsaw 02-093, Poland
| | - Gabriela Traczyk
- Nencki Institute of Experimental Biology, Laboratory of Molecular Membrane Biology, 3 Pasteur St., Warsaw 02-093, Poland
| | - Anna Świątkowska
- Nencki Institute of Experimental Biology, Laboratory of Molecular Membrane Biology, 3 Pasteur St., Warsaw 02-093, Poland
| | - Katarzyna Kwiatkowska
- Nencki Institute of Experimental Biology, Laboratory of Molecular Membrane Biology, 3 Pasteur St., Warsaw 02-093, Poland
| |
Collapse
|
88
|
Garren SB, Kondaveeti Y, Duff MO, Carmichael GG. Global Analysis of Mouse Polyomavirus Infection Reveals Dynamic Regulation of Viral and Host Gene Expression and Promiscuous Viral RNA Editing. PLoS Pathog 2015; 11:e1005166. [PMID: 26407100 PMCID: PMC4583464 DOI: 10.1371/journal.ppat.1005166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/24/2015] [Indexed: 12/15/2022] Open
Abstract
Mouse polyomavirus (MPyV) lytically infects mouse cells, transforms rat cells in culture, and is highly oncogenic in rodents. We have used deep sequencing to follow MPyV infection of mouse NIH3T6 cells at various times after infection and analyzed both the viral and cellular transcriptomes. Alignment of sequencing reads to the viral genome illustrated the transcriptional profile of the early-to-late switch with both early-strand and late-strand RNAs being transcribed at all time points. A number of novel insights into viral gene expression emerged from these studies, including the demonstration of widespread RNA editing of viral transcripts at late times in infection. By late times in infection, 359 host genes were seen to be significantly upregulated and 857 were downregulated. Gene ontology analysis indicated transcripts involved in translation, metabolism, RNA processing, DNA methylation, and protein turnover were upregulated while transcripts involved in extracellular adhesion, cytoskeleton, zinc finger binding, SH3 domain, and GTPase activation were downregulated. The levels of a number of long noncoding RNAs were also altered. The long noncoding RNA MALAT1, which is involved in splicing speckles and used as a marker in many late-stage cancers, was noticeably downregulated, while several other abundant noncoding RNAs were strongly upregulated. We discuss these results in light of what is currently known about the MPyV life cycle and its effects on host cell growth and metabolism. Mouse polyomavirus (MPyV) is a small 5.3kb circular double-stranded DNA virus capable of causing tumors in a variety of tissues in immunocompromised mice. It has been a subject of study for over 60 years, yielding insights into a number of processes including tumorigenesis, cell cycle signaling, and transformation. This study serves to provide a global view of the MPyV infection by utilizing Illumina sequencing to observe changes in total RNA from both the virus and the host cell as well as applying new methods to more directly confirm the extent of A-to-I editing of viral RNA by host ADAR enzymes. This allows for a simultaneous observation of both host and viral transcriptional changes that occur as a result of early gene expression and the viral switch from early to late genes that occurs coincident with the initiation of DNA replication.
Collapse
Affiliation(s)
- Seth B. Garren
- Department of Genetics and Genome Sciences, UCONN Health, Farmington, Connecticut, United States of America
| | - Yuvabharath Kondaveeti
- Department of Genetics and Genome Sciences, UCONN Health, Farmington, Connecticut, United States of America
| | - Michael O. Duff
- Department of Genetics and Genome Sciences, UCONN Health, Farmington, Connecticut, United States of America
| | - Gordon G. Carmichael
- Department of Genetics and Genome Sciences, UCONN Health, Farmington, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
89
|
Ji C, Zhang Y, Xu P, Xu T, Lou X. Nanoscale Landscape of Phosphoinositides Revealed by Specific Pleckstrin Homology (PH) Domains Using Single-molecule Superresolution Imaging in the Plasma Membrane. J Biol Chem 2015; 290:26978-26993. [PMID: 26396197 DOI: 10.1074/jbc.m115.663013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Indexed: 11/06/2022] Open
Abstract
Both phosphatidylinositol 4-phosphate (PI4P) and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) are independent plasma membrane (PM) determinant lipids that are essential for multiple cellular functions. However, their nanoscale spatial organization in the PM remains elusive. Using single-molecule superresolution microscopy and new photoactivatable fluorescence probes on the basis of pleckstrin homology domains that specifically recognize phosphatidylinositides in insulin-secreting INS-1 cells, we report that the PI(4,5)P2 probes exhibited a remarkably uniform distribution in the major regions of the PM, with some sparse PI(4,5)P2-enriched membrane patches/domains of diverse sizes (383 ± 14 nm on average). Quantitative analysis revealed a modest concentration gradient that was much less steep than previously thought, and no densely packed PI(4,5)P2 nanodomains were observed. Live-cell superresolution imaging further demonstrated the dynamic structural changes of those domains in the flat PM and membrane protrusions. PI4P and phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) showed similar spatial distributions as PI(4,5)P2. These data reveal the nanoscale landscape of key inositol phospholipids in the native PM and imply a framework for local cellular signaling and lipid-protein interactions at a nanometer scale.
Collapse
Affiliation(s)
- Chen Ji
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705 and
| | - Yongdeng Zhang
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Pingyong Xu
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Xu
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuelin Lou
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705 and.
| |
Collapse
|
90
|
Maekawa S, Kobayashi Y, Morita M, Suzaki T. Tight binding of NAP-22 with acidic membrane lipids. Neurosci Lett 2015; 600:244-8. [PMID: 26101831 DOI: 10.1016/j.neulet.2015.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 05/31/2015] [Accepted: 06/15/2015] [Indexed: 10/23/2022]
Abstract
Recovery of various signal transduction molecules in the detergent-resistant membrane microdomain (DRM) fraction suggests the importance of this region in cellular functions. Insolubility of the outer leaflet of DRM to the non-ionic detergent is ascribed to the tight association of cholesterol and sphingolipid. Since, poor localization of sphingolipid is observed in the inner leaflet, the physicochemical background of the insolubility of the inner leaflet is hence still an enigma. NAP-22 (also called BASP1 or CAP-23) is a neuron-enriched calmodulin-binding protein and one of the major proteins in the DRM of the neuronal cell membrane. A previous study showed the presence of several lipids in a NAP-22 fraction after the process of extraction and column chromatography. In this study, the effect of lipid extraction on NAP-22 was studied through native-gel electrophoresis, ultracentrifugation, and electron microscopic observation. The mobility of NAP-22 in native-PAGE was shifted from low to high after delipidation. Delipidated NAP-22 bound phosphatidylserine (PS), phosphatidylinosotol, and ganglioside. Some part of the mixture of PS and NAP-22 was recovered in the insoluble fraction after Triton X-100 treatment and the addition of cholesterol enhanced the amount of NAP-22 in the insoluble fraction.
Collapse
Affiliation(s)
- Shohei Maekawa
- Divison of Biology, Graduate School of Science, Kobe-University, Kobe 657-8501, Japan.
| | - Yuumi Kobayashi
- Divison of Biology, Graduate School of Science, Kobe-University, Kobe 657-8501, Japan
| | - Mitsuhiro Morita
- Divison of Biology, Graduate School of Science, Kobe-University, Kobe 657-8501, Japan
| | - Toshinobu Suzaki
- Divison of Biology, Graduate School of Science, Kobe-University, Kobe 657-8501, Japan
| |
Collapse
|
91
|
Kobayashi Y, da Silva R, Kumanogoh H, Miyata S, Sato C, Kitajima K, Nakamura S, Morita M, Hayashi F, Maekawa S. Ganglioside contained in the neuronal tissue-enriched acidic protein of 22 kDa (NAP-22) fraction prepared from the detergent-resistant membrane microdomain of rat brain inhibits the phosphatase activity of calcineurin. J Neurosci Res 2015; 93:1462-70. [PMID: 25981177 DOI: 10.1002/jnr.23599] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 11/05/2022]
Abstract
Neurons have well-developed membrane microdomains called "rafts" that are recovered as a detergent-resistant membrane microdomain fraction (DRM). Neuronal tissue-enriched acidic protein of 22 kDa (NAP-22) is one of the major protein components of neuronal DRM. To determine the cellular function of NAP-22, interacting proteins were screened with an immunoprecipitation assay, and calcineurin (CaN) was detected. Further studies with NAP-22 prepared from DRM and CaN expressed in bacteria showed the binding of these proteins and a dose-dependent inhibitory effect of the NAP-22 fraction on the phosphatase activity of CaN. On the other hand, NAP-22 expressed in bacteria showed low binding to CaN and a weak inhibitory effect on phosphatase activity. To solve this discrepancy, identification of a nonprotein component that modulates CaN activity in the DRM-derived NAP-22 fraction was attempted. After lyophilization, a lipid fraction was extracted with chloroform/methanol. The lipid fraction showed an inhibitory effect on CaN without NAP-22, and further fractionation of the extract with thin-layer chromatography showed the presence of several lipid bands having an inhibitory effect on CaN. The mobility of these bands coincided with that of authentic ganglioside (GM1a, GD1a, GD1b, and GT1b), and authentic ganglioside showed an inhibitory effect on CaN. Treatment of lipid with endoglycoceramidase, which degrades ganglioside to glycochain and ceramide, caused a diminution of the inhibitory effect. These results show that DRM-derived NAP-22 binds several lipids, including ganglioside, and that ganglioside inhibits the phosphatase activity of CaN.
Collapse
Affiliation(s)
- Yuumi Kobayashi
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Ronan da Silva
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Haruko Kumanogoh
- Division of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Shinji Miyata
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Chihiro Sato
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Ken Kitajima
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Shun Nakamura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Mistuhiro Morita
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Fumio Hayashi
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Shohei Maekawa
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| |
Collapse
|
92
|
The Tomato Defensin TPP3 Binds Phosphatidylinositol (4,5)-Bisphosphate via a Conserved Dimeric Cationic Grip Conformation To Mediate Cell Lysis. Mol Cell Biol 2015; 35:1964-78. [PMID: 25802281 DOI: 10.1128/mcb.00282-15] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 03/17/2015] [Indexed: 12/27/2022] Open
Abstract
Defensins are a class of ubiquitously expressed cationic antimicrobial peptides (CAPs) that play an important role in innate defense. Plant defensins are active against a broad range of microbial pathogens and act via multiple mechanisms, including cell membrane permeabilization. The cytolytic activity of defensins has been proposed to involve interaction with specific lipid components in the target cell wall or membrane and defensin oligomerization. Indeed, the defensin Nicotiana alata defensin 1 (NaD1) binds to a broad range of membrane phosphatidylinositol phosphates and forms an oligomeric complex with phosphatidylinositol (4,5)-bisphosphate (PIP2) that facilitates membrane lysis of both mammalian tumor and fungal cells. Here, we report that the tomato defensin TPP3 has a unique lipid binding profile that is specific for PIP2 with which it forms an oligomeric complex that is critical for cytolytic activity. Structural characterization of TPP3 by X-ray crystallography and site-directed mutagenesis demonstrated that it forms a dimer in a "cationic grip" conformation that specifically accommodates the head group of PIP2 to mediate cooperative higher-order oligomerization and subsequent membrane permeabilization. These findings suggest that certain plant defensins are innate immune receptors for phospholipids and adopt conserved dimeric configurations to mediate PIP2 binding and membrane permeabilization. This mechanism of innate defense may be conserved across defensins from different species.
Collapse
|
93
|
Milovanovic D, Jahn R. Organization and dynamics of SNARE proteins in the presynaptic membrane. Front Physiol 2015; 6:89. [PMID: 25852575 PMCID: PMC4365744 DOI: 10.3389/fphys.2015.00089] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/05/2015] [Indexed: 01/19/2023] Open
Abstract
Our view of the lateral organization of lipids and proteins in the plasma membrane has evolved substantially in the last few decades. It is widely accepted that many, if not all, plasma membrane proteins and lipids are organized in specific domains. These domains vary widely in size, composition, and stability, and they represent platforms governing diverse cell functions. The presynaptic plasma membrane is a well-studied example of a membrane which undergoes rearrangements, especially during exo- and endocytosis. Many proteins and lipids involved in presynaptic function are known, and major efforts have been made to understand their spatial organization and dynamics. Here, we focus on the mechanisms underlying the organization of SNAREs, the key proteins of the fusion machinery, in distinct domains, and we discuss the functional significance of these clusters.
Collapse
Affiliation(s)
- Dragomir Milovanovic
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry Göttingen, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry Göttingen, Germany
| |
Collapse
|
94
|
Xing HY, Meng EY, Xia YP, Peng H. Effect of retinoic acid on expression of LINGO-1 and neural regeneration after cerebral ischemia. ACTA ACUST UNITED AC 2015; 35:54-57. [PMID: 25673193 DOI: 10.1007/s11596-015-1388-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/13/2014] [Indexed: 01/26/2023]
Abstract
The purpose of this study was to observe the expression of LINGO-1 after cerebral ischemia, investigate the effects of retinoic acid (RA) on the expression of LINGO-1 and GAP-43, and the number of synapses, and to emplore the repressive effect of LINGO-1 on neural regeneration after cerebral ischemia. The model of permanent focal cerebral ischemia was established by the modified suture method of middle cerebral artery occlusion (MCAO) in Sprague-Dawley (SD) rats. The expression of LINGO-1 was detected by Western blotting and that of GAP-43 by immunohistochemistry. The number of synapses was observed by transmission electron microscopy. The SD rats were divided into three groups: sham operation (sham) group, cerebral ischemia (CI) group and RA treatment (RA) group. The results showed that the expression level of LINGO-1 at 7th day after MCAO in sham, CI and RA groups was 0.266 ± 0.019, 1.215 ± 0.063 and 0.702 ± 0.081, respectively (P<0.01). The number of Gap-43-positive nerve cells at 7th day after MCAO in sham, CI and RA group was 0, 59.08 ± 1.76 and 76.20 ± 3.12 per high power field, respectively (P<0.05). The number of synapses at 7th day after MCAO was 8.42 ± 0.13, 1.74 ± 0.37 and 5.39 ± 0.26 per μm², respectively (P<0.05). It is concluded that LINGO-1 expression is up-regulated after cerebral ischemia, and RA inhibits the expression of LINGO-1, promotes the expression of GAP-43 and increases the number of synapses. It suggests that LINGO-1 may be involved in the pathogenesis of cerebral ischemia, which may provide an experimenal basis for LINGO-1 antogonist, RA, for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Hong-Yi Xing
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Er-Yan Meng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuan-Peng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hai Peng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
95
|
Favale NO, Santacreu BJ, Pescio LG, Marquez MG, Sterin-Speziale NB. Sphingomyelin metabolism is involved in the differentiation of MDCK cells induced by environmental hypertonicity. J Lipid Res 2015; 56:786-800. [PMID: 25670801 DOI: 10.1194/jlr.m050781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Sphingolipids (SLs) are relevant lipid components of eukaryotic cells. Besides regulating various cellular processes, SLs provide the structural framework for plasma membrane organization. Particularly, SM is associated with detergent-resistant microdomains. We have previously shown that the adherens junction (AJ) complex, the relevant cell-cell adhesion structure involved in cell differentiation and tissue organization, is located in an SM-rich membrane lipid domain. We have also demonstrated that under hypertonic conditions, Madin-Darby canine kidney (MDCK) cells acquire a differentiated phenotype with changes in SL metabolism. For these reasons, we decided to evaluate whether SM metabolism is involved in the acquisition of the differentiated phenotype of MDCK cells. We found that SM synthesis mediated by SM synthase 1 is involved in hypertonicity-induced formation of mature AJs, necessary for correct epithelial cell differentiation. Inhibition of SM synthesis impaired the acquisition of mature AJs, evoking a disintegration-like process reflected by the dissipation of E-cadherin and β- and α-catenins from the AJ complex. As a consequence, MDCK cells did not develop the hypertonicity-induced differentiated epithelial cell phenotype.
Collapse
Affiliation(s)
- Nicolás Octavio Favale
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina IQUIFIB-LANAIS-PROEM-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Bruno Jaime Santacreu
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina IQUIFIB-LANAIS-PROEM-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucila Gisele Pescio
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina IQUIFIB-LANAIS-PROEM-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Gabriela Marquez
- IQUIFIB-LANAIS-PROEM-CONICET, Ciudad Autónoma de Buenos Aires, Argentina Instituto de Investigaciones en Ciencias de la Salud Humana (IICSHUM), Universidad Nacional de La Rioja , La Rioja, Argentina
| | | |
Collapse
|
96
|
Modifiers of membrane dipole potentials as tools for investigating ion channel formation and functioning. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:245-97. [PMID: 25708465 DOI: 10.1016/bs.ircmb.2014.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrostatic fields generated on and within biological membranes play a fundamental role in key processes in cell functions. The role of the membrane dipole potential is of particular interest because of its powerful impact on membrane permeability and lipid-protein interactions, including protein insertion, oligomerization, and function. The membrane dipole potential is defined by the orientation of electric dipoles of lipid headgroups, fatty acid carbonyl groups, and membrane-adsorbed water. As a result, the membrane interior is several hundred millivolts more positive than the external aqueous phase. This potential decrease depends on the lipid, and especially sterol, composition of the membrane. The adsorption of certain electroneutral molecules known as dipole modifiers may also lead to significant changes in the magnitude of the potential decrease. These agents are widely used to study the effects of the dipole potential on membrane transport. This review presents a critical analysis of a variety of data from studies dedicated to ion channel formation and functioning in membranes with different dipole potentials. The types of ion channels found in cellular membranes and pores formed by antimicrobial agents and toxins in artificial lipid membranes are summarized. The mechanisms underlying the influence of the membrane dipole potential on ion channel activity, including dipole-dipole and charge-dipole interactions in the pores and in membranes, are discussed. A hypothesis, in which lipid rafts in both model and cellular membranes also modulate ion channel activity by virtue of an increased or decreased dipole potential, is also considered.
Collapse
|
97
|
Microscopy of membrane lipids: how precisely can we define their distribution? Essays Biochem 2015; 57:81-91. [DOI: 10.1042/bse0570081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Membrane lipids form the basic framework of biological membranes by forming the lipid bilayer, but it is becoming increasingly clear that individual lipid species play different functional roles. However, in comparison with proteins, relatively little is known about how lipids are distributed in the membrane. Several microscopic methods are available to study membrane lipid dynamics in living cells, but defining the distribution of lipids at the submicrometre scale is difficult, because lipids diffuse quickly in the membrane and most lipids do not react with aldehydes that are commonly used as fixatives. Quick-freezing appears to be the only practical method by which to stop the lipid movement instantaneously and capture the molecular localization at the moment of interest. Electron microscopic methods, using cryosections, resin sections, and freeze-fracture replicas are used to visualize lipids in quick-frozen samples. The method that employs the freeze-fracture replica is unique in that it requires no chemical treatment and provides a two-dimensional view of the membrane.
Collapse
|
98
|
Angliker N, Rüegg MA. In vivo evidence for mTORC2-mediated actin cytoskeleton rearrangement in neurons. BIOARCHITECTURE 2015; 3:113-8. [PMID: 24721730 PMCID: PMC4201605 DOI: 10.4161/bioa.26497] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mammalian target of rapamycin (mTOR) assembles into two distinct multi-protein complexes called mTORC1 and mTORC2. While mTORC1 controls the signaling pathways important for cell growth, the physiological function of mTORC2 is only partially known. Here we comment on recent work on gene-targeted mice lacking mTORC2 in the cerebellum or the hippocampus that provided strong evidence that mTORC2 plays an important role in neuron morphology and synapse function. We discuss that this phenotype might be based on the perturbed regulation of the actin cytoskeleton and the lack of activation of several PKC isoforms. The fact that PKC isoforms and their targets have been implicated in neurological disease including spinocerebellar ataxia and that they have been shown to affect learning and memory, suggests that aberration of mTORC2 signaling might be involved in diseases of the brain.
Collapse
|
99
|
Hornemann T. Palmitoylation and depalmitoylation defects. J Inherit Metab Dis 2015; 38:179-86. [PMID: 25091425 DOI: 10.1007/s10545-014-9753-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/11/2014] [Accepted: 07/17/2014] [Indexed: 11/29/2022]
Abstract
Palmitoylation describes the enzymatic attachment of a 16-carbon atom fatty acid to a target protein. Such lipidation events occur in all eukaryotes and can be of reversible (S-palmitoylation) or irreversible (N-palmitoylation) nature. In particular S-palmitoylation is dynamically regulated by two opposing types of enzymes which add (palmitoyl acyltransferases - PAT) or remove (acyl protein thioesterases) palmitate from proteins. Protein palmitoylation is an important process that dynamically regulates the assembly and compartmentalization of many neuronal proteins at specific subcellular sites. Enzymes that regulate protein palmitoylation are critical for several biological processes. To date, eight palmitoylation related genes have been reported to be associated with human disease. This review intends to give an overview on the pathological changes which are associated with defects in the palmitoylation/depalmitoylation process.
Collapse
Affiliation(s)
- Thorsten Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland,
| |
Collapse
|
100
|
Vangaveti S, Travesset A. Separation of the Stern and diffuse layer in coarse-grained models: the cases of phosphatidyl serine, phosphatidic acid, and PIP2 monolayers. J Chem Phys 2014; 141:245102. [PMID: 25554186 DOI: 10.1063/1.4904885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We present here a method to separate the Stern and diffuse layer in general systems into two regions that can be analyzed separately. The Stern layer can be described in terms of Bjerrum pairing and the diffuse layer in terms of Poisson-Boltzmann theory (monovalent) or strong coupling theory plus a slowly decaying tail (divalent). We consider three anionic phospholipids: phosphatidyl serine, phosphatidic acid, and phosphatidylinositol(4,5)bisphosphate (PIP2), which we describe within a minimal coarse-grained model as a function of ionic concentration. The case of mixed lipid systems is also considered, which shows a high level of binding cooperativity as a function of PIP2 localization. Implications for existing experimental systems of lipid heterogeneities are also discussed.
Collapse
Affiliation(s)
- S Vangaveti
- Department of Physics and Astronomy and Ames Laboratory, Iowa State University, Ames, Iowa 50010, USA
| | - A Travesset
- Department of Physics and Astronomy and Ames Laboratory, Iowa State University, Ames, Iowa 50010, USA
| |
Collapse
|