51
|
Chen Y, De Koker S, De Geest BG. Engineering Strategies for Lymph Node Targeted Immune Activation. Acc Chem Res 2020; 53:2055-2067. [PMID: 32910636 DOI: 10.1021/acs.accounts.0c00260] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Development of vaccine technology that induces long lasting and potent adaptive immune responses is of vital importance to combat emerging pathogens and to design the next generation of cancer immunotherapies. Advanced biomaterials such as nanoparticle carriers are intensively explored to increase the efficacy and safety of vaccines and immunotherapies, based on their intrinsic potential to focus the therapeutic payload onto the relevant immune cells and to limit systemic distribution. With adaptive immune responses being primarily initiated in lymph nodes, the potency of nanoparticle vaccines in turn is tightly linked to their capacity to reach and accumulate in the lymph nodes draining the immunization site. Here, we discuss the main strategies applied to increase nanoparticle delivery to lymph nodes: (1) direct lymph node injection, (2) active cell-mediated transport through targeting of peripheral dendritic cells, and (3) exploiting passive transport through the afferent lymphatics.The intralymph nodal injection is obviously the most direct way for nanoparticles to reach lymph nodes, and multiple studies have demonstrated its capability in enhancing immunostimulant drugs' immune activation and increasing the therapeutic window. However, the requirement of using ultrasound guidance for mapping lymph nodes in patients renders intranodal administration unsuited for mass vaccination campaigns. As lymph nodes are fine structured organs with lymphocytes and chemokine gradients arrayed in a highly ordered fashion, the breakdown of such formats by the intralymph nodal injection is another concern. The exploitation of dendritic cells as live vectors for transporting nanoparticles to lymph nodes has intensively been studied both ex vivo and in vivo. While ex vivo engineering of dendritic cells in theory can achieve 100% dendritic cell-specific selectivity, a scenario impossible to be achieved in vivo, this procedure is usually laborious and complicated and entails the participation of professional staff and equipment. In addition, the poor efficiency of dendritic cell migration to the draining lymph node is another significant limitation following the injection of ex vivo cultured dendritic cells. Thus, in vivo targeting of surface receptors, particularly C-type lectin receptors, on dendritic cells by conjugating nanoparticles with antibodies or ligands is intensively studied by both academia and industry. Although such nanoparticles in vivo still face nonspecific engulfment by various phagocytes, multiple studies have shown its feasibility in targeting dendritic cells with high selectivity. Moreover, through optimizing the physicochemical properties of nanoparticles, nanoparticles can passively drain to lymph nodes carried by the interstitial flow. Compared to dendritic cell-mediated transport, passive draining is much faster and of higher efficiency. Of all such properties, size is the most important parameter as large particles (>500 nm) can only reach lymph nodes by an active cell-mediated transport. Other surface properties, such as the charge and the balance of hydrophobicity-vs-hydrophilicity, strongly influence the mobility of nanoparticles in the extracellular space. In addition, albumin, a natural fatty acid transporter, has recently been demonstrated capable of binding the amphiphiles through their lipid moiety and subsequent transporting them to lymph nodes.
Collapse
Affiliation(s)
- Yong Chen
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghemt, Belgium
| | | | - Bruno G. De Geest
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghemt, Belgium
| |
Collapse
|
52
|
Intradermal Delivery of Dendritic Cell-Targeting Chimeric mAbs Genetically Fused to Type 2 Dengue Virus Nonstructural Protein 1. Vaccines (Basel) 2020; 8:vaccines8040565. [PMID: 33019498 PMCID: PMC7712967 DOI: 10.3390/vaccines8040565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/21/2022] Open
Abstract
Targeting dendritic cells (DCs) by means of monoclonal antibodies (mAbs) capable of binding their surface receptors (DEC205 and DCIR2) has previously been shown to enhance the immunogenicity of genetically fused antigens. This approach has been repeatedly demonstrated to enhance the induced immune responses to passenger antigens and thus represents a promising therapeutic and/or prophylactic strategy against different infectious diseases. Additionally, under experimental conditions, chimeric αDEC205 or αDCIR2 mAbs are usually administered via an intraperitoneal (i.p.) route, which is not reproducible in clinical settings. In this study, we characterized the delivery of chimeric αDEC205 or αDCIR2 mAbs via an intradermal (i.d.) route, compared the elicited humoral immune responses, and evaluated the safety of this potential immunization strategy under preclinical conditions. As a model antigen, we used type 2 dengue virus (DENV2) nonstructural protein 1 (NS1). The results show that the administration of chimeric DC-targeting mAbs via the i.d. route induced humoral immune responses to the passenger antigen equivalent or superior to those elicited by i.p. immunization with no toxic effects to the animals. Collectively, these results clearly indicate that i.d. administration of DC-targeting chimeric mAbs presents promising approaches for the development of subunit vaccines, particularly against DENV and other flaviviruses.
Collapse
|
53
|
Kato Y, Steiner TM, Park HY, Hitchcock RO, Zaid A, Hor JL, Devi S, Davey GM, Vremec D, Tullett KM, Tan PS, Ahmet F, Mueller SN, Alonso S, Tarlinton DM, Ploegh HL, Kaisho T, Beattie L, Manton JH, Fernandez-Ruiz D, Shortman K, Lahoud MH, Heath WR, Caminschi I. Display of Native Antigen on cDC1 That Have Spatial Access to Both T and B Cells Underlies Efficient Humoral Vaccination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:1842-1856. [PMID: 32839238 PMCID: PMC7504891 DOI: 10.4049/jimmunol.2000549] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022]
Abstract
Follicular dendritic cells and macrophages have been strongly implicated in presentation of native Ag to B cells. This property has also occasionally been attributed to conventional dendritic cells (cDC) but is generally masked by their essential role in T cell priming. cDC can be divided into two main subsets, cDC1 and cDC2, with recent evidence suggesting that cDC2 are primarily responsible for initiating B cell and T follicular helper responses. This conclusion is, however, at odds with evidence that targeting Ag to Clec9A (DNGR1), expressed by cDC1, induces strong humoral responses. In this study, we reveal that murine cDC1 interact extensively with B cells at the border of B cell follicles and, when Ag is targeted to Clec9A, can display native Ag for B cell activation. This leads to efficient induction of humoral immunity. Our findings indicate that surface display of native Ag on cDC with access to both T and B cells is key to efficient humoral vaccination.
Collapse
Affiliation(s)
- Yu Kato
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia
- The Australian Reseach Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Thiago M. Steiner
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia
- The Australian Reseach Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Hae-Young Park
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Rohan O. Hitchcock
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia
- The Australian Reseach Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Ali Zaid
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia
- The Australian Reseach Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Jyh Liang Hor
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia
- The Australian Reseach Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Sapna Devi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia
- The Australian Reseach Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Gayle M. Davey
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia
- The Australian Reseach Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - David Vremec
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kirsteen M. Tullett
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Peck S. Tan
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Fatma Ahmet
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Scott N. Mueller
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia
- The Australian Reseach Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Sylvie Alonso
- Infectious Diseases Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117456
| | - David M. Tarlinton
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria 3004, Australia
| | - Hidde L. Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Wakayama 641-8509, Japan; and
| | - Lynette Beattie
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia
- The Australian Reseach Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Jonathan H. Manton
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Daniel Fernandez-Ruiz
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia
- The Australian Reseach Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Ken Shortman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mireille H. Lahoud
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - William R. Heath
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia
- The Australian Reseach Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Irina Caminschi
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
54
|
Song Z, Khaw YM, Pacheco LA, Tseng KY, Tan Z, Cai K, Ponnusamy E, Cheng J, Inoue M. Induction of a higher-ordered architecture in glatiramer acetate improves its biological efficiency in an animal model of multiple sclerosis. Biomater Sci 2020; 8:5271-5281. [PMID: 32744547 DOI: 10.1039/d0bm00957a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glatiramer acetate (GA), a linear random copolypeptide, is a first-line treatment for multiple sclerosis (MS). A major concern, however, is that GA treatment is associated with adverse effects and poor patient adherence due to the need for frequent injections. Here we describe improved performance of the polymeric drug, even at low doses with less-frequent injections, through the modification of its architecture into a star-shaped GA (sGA). In a sGA, multiple GAs are covalently linked onto a core, which greatly changes their properties such as molecular weight, size, and shape. The spherical sGA is retained longer in the body after intraperitoneal injection, and is more readily internalized by RAW 264.7 macrophage cells and bone marrow-derived dendritic cells than GA. In C57BL/6 mice induced with experimental autoimmune encephalitis, a mouse model for MS, sGA treatment exerts disease amelioration effect that is significantly better than that of GA despite a lower dose and less frequent injection. Moreover, spinal cord pathologies of demyelination and leukocyte infiltration are dramatically less pronounced in the sGA treatment condition compared to the GA treatment condition. Thus, we propose that sGA with a higher-ordered architecture offers an attractive and potentially viable treatment option for MS patients.
Collapse
Affiliation(s)
- Ziyuan Song
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. and Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Yee Ming Khaw
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. and University of Illinois at Urbana-Champaign, Neuroscience Program, 405 North Matthews Avenue, Urbana, Illinois 61801, USA
| | - Lazaro A Pacheco
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Kuan-Ying Tseng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Zhengzhong Tan
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Kaimin Cai
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Makoto Inoue
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. and University of Illinois at Urbana-Champaign, Neuroscience Program, 405 North Matthews Avenue, Urbana, Illinois 61801, USA
| |
Collapse
|
55
|
Lecoeur H, Rosazza T, Kokou K, Varet H, Coppée JY, Lari A, Commère PH, Weil R, Meng G, Milon G, Späth GF, Prina E. Leishmania amazonensis Subverts the Transcription Factor Landscape in Dendritic Cells to Avoid Inflammasome Activation and Stall Maturation. Front Immunol 2020; 11:1098. [PMID: 32582184 PMCID: PMC7295916 DOI: 10.3389/fimmu.2020.01098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Leishmania parasites are the causative agents of human leishmaniases. They infect professional phagocytes of their mammalian hosts, including dendritic cells (DCs) that are essential for the initiation of adaptive immune responses. These immune functions strictly depend on the DC's capacity to differentiate from immature, antigen-capturing cells to mature, antigen-presenting cells—a process accompanied by profound changes in cellular phenotype and expression profile. Only little is known on how intracellular Leishmania affects this important process and DC transcriptional regulation. Here, we investigate these important open questions analyzing phenotypic, cytokine profile and transcriptomic changes in murine, immature bone marrow-derived DCs (iBMDCs) infected with antibody-opsonized and non-opsonized Leishmania amazonensis (L.am) amastigotes. DCs infected by non-opsonized amastigotes remained phenotypically immature whereas those infected by opsonized parasites displayed a semi-mature phenotype. The low frequency of infected DCs in culture led us to use DsRed2-transgenic parasites allowing for the enrichment of infected BMDCs by FACS. Sorted infected DCs were then subjected to transcriptomic analyses using Affymetrix GeneChip technology. Independent of parasite opsonization, Leishmania infection induced expression of genes related to key DC processes involved in MHC Class I-restricted antigen presentation and alternative NF-κB activation. DCs infected by non-opsonized parasites maintained an immature phenotype and showed a small but significant down-regulation of gene expression related to pro-inflammatory TLR signaling, the canonical NF-kB pathway and the NLRP3 inflammasome. This transcriptomic profile was further enhanced in DCs infected with opsonized parasites that displayed a semi-mature phenotype despite absence of inflammasome activation. This paradoxical DC phenotype represents a Leishmania-specific signature, which to our knowledge has not been observed with other opsonized infectious agents. In conclusion, systems-analyses of our transcriptomics data uncovered important and previously unappreciated changes in the DC transcription factor landscape, thus revealing a novel Leishmania immune subversion strategy directly acting on transcriptional control of gene expression. Our data raise important questions on the dynamic and reciprocal interplay between trans-acting and epigenetic regulators in establishing permissive conditions for intracellular Leishmania infection and polarization of the immune response.
Collapse
Affiliation(s)
- Hervé Lecoeur
- Institut Pasteur, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Département des Parasites et Insectes Vecteurs, Paris, France.,Pasteur Institute of Shanghai, Innate Immunity Unit, Key Laboratory of Molecular Virology and Immunology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| | - Thibault Rosazza
- Institut Pasteur, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Département des Parasites et Insectes Vecteurs, Paris, France.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| | - Kossiwa Kokou
- Institut Pasteur, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Département des Parasites et Insectes Vecteurs, Paris, France.,Pasteur Institute of Shanghai, Innate Immunity Unit, Key Laboratory of Molecular Virology and Immunology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| | - Hugo Varet
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Jean-Yves Coppée
- Institut Pasteur - Transcriptome and Epigenome Platform - Biomics Pole - C2RT, Paris, France
| | - Arezou Lari
- Systems Biomedicine Unit, Institut Pasteur of Iran, Teheran, Iran
| | | | - Robert Weil
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CIMI, Paris, France
| | - Guangxun Meng
- Pasteur Institute of Shanghai, Innate Immunity Unit, Key Laboratory of Molecular Virology and Immunology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| | - Genevieve Milon
- Institut Pasteur, Laboratoire Immunophysiologie et Parasitisme, Département des Parasites et Insectes Vecteurs, Paris, France
| | - Gerald F Späth
- Institut Pasteur, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Département des Parasites et Insectes Vecteurs, Paris, France.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| | - Eric Prina
- Institut Pasteur, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Département des Parasites et Insectes Vecteurs, Paris, France.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| |
Collapse
|
56
|
Immunomodulation of Avian Dendritic Cells under the Induction of Prebiotics. Animals (Basel) 2020; 10:ani10040698. [PMID: 32316442 PMCID: PMC7222706 DOI: 10.3390/ani10040698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Dendritic cells recognize pathogen-associated molecular patterns in chicken intestines and are part of the initial immune response. The immunoregulatory properties of prebiotics acting in several ways in poultry have been known for many years. According to their function, dendritic cells should play an indispensable role in the proven effects of prebiotics on the intestinal immune system, such as through activation of T and B cells and cytokine production. Currently, there are no studies concerning direct interactions in poultry between non-digestible feed components and dendritic cells. Whereas most in vitro experiments with chicken dendritic cells have studied their interactions with pathogens, in vitro studies are now needed to determine the impacts of prebiotics on the gastrointestinal dendritic cells themselves. The present lack of information in this area limits the development of effective feed additives for poultry production. The main purpose of this review is to explore ideas regarding potential mechanisms by which dendritic cells might harmonize the immune response after prebiotic supplementation and thereby provide a basis for future studies. Abstract Although the immunomodulatory properties of prebiotics were demonstrated many years ago in poultry, not all mechanisms of action are yet clear. Dendritic cells (DCs) are the main antigen-presenting cells orchestrating the immune response in the chicken gastrointestinal tract, and they are the first line of defense in the immune response. Despite the crucial role of DCs in prebiotic immunomodulatory properties, information is lacking about interaction between prebiotics and DCs in an avian model. Mannan-oligosaccharides, β-glucans, fructooligosaccharides, and chitosan-oligosaccharides are the main groups of prebiotics having immunomodulatory properties. Because pathogen-associated molecular patterns on these prebiotics are recognized by many receptors of DCs, prebiotics can mimic activation of DCs by pathogens. Short-chain fatty acids are products of prebiotic fermentation by microbiota, and their anti-inflammatory properties have also been demonstrated in DCs. This review summarizes current knowledge about avian DCs in the gastrointestinal tract, and for the first-time, their role in the immunomodulatory properties of prebiotics within an avian model.
Collapse
|
57
|
Baldin AV, Savvateeva LV, Bazhin AV, Zamyatnin AA. Dendritic Cells in Anticancer Vaccination: Rationale for Ex Vivo Loading or In Vivo Targeting. Cancers (Basel) 2020; 12:cancers12030590. [PMID: 32150821 PMCID: PMC7139354 DOI: 10.3390/cancers12030590] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs) have shown great potential as a component or target in the landscape of cancer immunotherapy. Different in vivo and ex vivo strategies of DC vaccine generation with different outcomes have been proposed. Numerous clinical trials have demonstrated their efficacy and safety in cancer patients. However, there is no consensus regarding which DC-based vaccine generation method is preferable. A problem of result comparison between trials in which different DC-loading or -targeting approaches have been applied remains. The employment of different DC generation and maturation methods, antigens and administration routes from trial to trial also limits the objective comparison of DC vaccines. In the present review, we discuss different methods of DC vaccine generation. We conclude that standardized trial designs, treatment settings and outcome assessment criteria will help to determine which DC vaccine generation approach should be applied in certain cancer cases. This will result in a reduction in alternatives in the selection of preferable DC-based vaccine tactics in patient. Moreover, it has become clear that the application of a DC vaccine alone is not sufficient and combination immunotherapy with recent advances, such as immune checkpoint inhibitors, should be employed to achieve a better clinical response and outcome.
Collapse
Affiliation(s)
- Alexey V. Baldin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.V.B.); (L.V.S.)
| | - Lyudmila V. Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.V.B.); (L.V.S.)
| | - Alexandr V. Bazhin
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University of Munich, 81377 Munich, Germany;
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.V.B.); (L.V.S.)
- Belozersky Institute of Physico-Chemical Biology, Department of Cell Signaling, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: ; Tel.: +74-956-229-843
| |
Collapse
|
58
|
Abstract
During the past few years, there has been a substantial increase in the understanding of innate immunity. Dendritic cells are emerging as key players in the orchestration of this early phase of immune responses, with a role that will translate into the subsequent type of adaptive immune response against infection. Here we provide an overview of dendritic cell differentiation and function, with particular emphasis on those features unique to the immune defense of the peritoneal cavity and in the context of peritoneal dialysis-associated immune responses. The reader is referred to the primary references included in the accompanying list for specific details in this fascinating field.
Collapse
Affiliation(s)
- Michelle L. McCully
- The FOCIS Centre for Clinical Immunology and Immunotherapeutics, Robarts Research Institute, and the Departments of Microbiology and Immunology, and Medicine, The University of Western Ontario, London, Ontario, Canada
| | - Joaquín Madrenas
- The FOCIS Centre for Clinical Immunology and Immunotherapeutics, Robarts Research Institute, and the Departments of Microbiology and Immunology, and Medicine, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
59
|
Plant lectins and their usage in preparing targeted nanovaccines for cancer immunotherapy. Semin Cancer Biol 2020; 80:87-106. [PMID: 32068087 DOI: 10.1016/j.semcancer.2020.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 01/06/2023]
Abstract
Plant lectins, a natural source of glycans with a therapeutic potential may lead to the discovery of new targeted therapies. Glycans extracted from plant lectins are known to act as ligands for C-type lectin receptors (CLRs) that are primarily present on immune cells. Plant-derived glycosylated lectins offer diversity in their N-linked oligosaccharide structures that can serve as a unique source of homogenous and heterogenous glycans. Among the plant lectins-derived glycan motifs, Man9GlcNAc2Asn exhibits high-affinity interactions with CLRs that may resemble glycan motifs of pathogens. Thus, such glycan domains when presented along with antigens complexed with a nanocarrier of choice may bewilder the immune cells and direct antigen cross-presentation - a cytotoxic T lymphocyte immune response mediated by CD8+ T cells. Glycan structure analysis has attracted considerable interest as glycans are looked upon as better therapeutic alternatives than monoclonal antibodies due to their cost-effectiveness, reduced toxicity and side effects, and high specificity. Furthermore, this approach will be useful to understand whether the multivalent glycan presentation on the surface of nanocarriers can overcome the low-affinity lectin-ligand interaction and thereby modulation of CLR-dependent immune response. Besides this, understanding how the heterogeneity of glycan structure impacts the antigen cross-presentation is pivotal to develop alternative targeted therapies. In the present review, we discuss the findings on structural analysis of glycans from natural lectins performed using GlycanBuilder2 - a software tool based on a thorough literature review of natural lectins. Additionally, we discuss how multiple parameters like the orientation of glycan ligands, ligand density, simultaneous targeting of multiple CLRs and design of antigen delivery nanocarriers may influence the CLR targeting efficacy. Integrating this information will eventually set the ground for new generation immunotherapeutic vaccine design for the treatment of various human malignancies.
Collapse
|
60
|
Busold S, Nagy NA, Tas SW, van Ree R, de Jong EC, Geijtenbeek TBH. Various Tastes of Sugar: The Potential of Glycosylation in Targeting and Modulating Human Immunity via C-Type Lectin Receptors. Front Immunol 2020; 11:134. [PMID: 32117281 PMCID: PMC7019010 DOI: 10.3389/fimmu.2020.00134] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/20/2020] [Indexed: 12/31/2022] Open
Abstract
C-type lectin receptors (CLRs) are important in several immune regulatory processes. These receptors recognize glycans expressed by host cells or by pathogens. Whereas pathogens are recognized through their glycans, which leads to protective immunity, aberrant cellular glycans are now increasingly recognized as disease-driving factors in cancer, auto-immunity, and allergy. The vast variety of glycan structures translates into a wide spectrum of effects on the immune system ranging from immune suppression to hyper-inflammatory responses. CLRs have distinct expression patterns on antigen presenting cells (APCs) controlling their role in immunity. CLRs can also be exploited to selectively target specific APCs, modulate immune responses and enhance antigen presentation. Here we will discuss the role of glycans and their receptors in immunity as well as potential strategies for immune modulation. A special focus will be given to different dendritic cell subsets as these APCs are crucial orchestrators of immune responses in infections, cancer, auto-immunity and allergies. Furthermore, we will highlight the potential use of nanoscale lipid bi-layer structures (liposomes) in targeted immunotherapy.
Collapse
Affiliation(s)
- Stefanie Busold
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Noémi A Nagy
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Sander W Tas
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands.,Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Centers, Amsterdam Rheumatology and Immunology Center, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald van Ree
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands.,Department of Otorhinolaryngology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Esther C de Jong
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
61
|
Hoober JK, Eggink LL, Cote R. Stories From the Dendritic Cell Guardhouse. Front Immunol 2019; 10:2880. [PMID: 31921144 PMCID: PMC6919295 DOI: 10.3389/fimmu.2019.02880] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/25/2019] [Indexed: 12/19/2022] Open
Abstract
Phagocytic cells [dendritic cells (DCs), macrophages, monocytes, neutrophils, and mast cells] utilize C-type (Ca2+-dependent) lectin-like (CLEC) receptors to identify and internalize pathogens or danger signals. As monitors of environmental imbalances, CLEC receptors are particularly important in the function of DCs. Activation of the immune system requires, in sequence, presentation of antigen to the T cell receptor (TCR) by DCs, interaction of co-stimulatory factors such as CD40/80/86 on DCs with CD40L and CD28 on T cells, and production of IL-12 and/or IFN-α/β to amplify T cell differentiation and expansion. Without this sequence of events within an inflammatory environment, or in a different order, antigen-specific T cells become unresponsive, are deleted or become regulatory T cells. Thus, the mode by which CLEC receptors on DCs are engaged can either elicit activation of T cells to achieve an immune response or induce tolerance. This minireview illustrates these aspects with Dectin-1, DEC205, the mannose receptor and CLEC10A as examples.
Collapse
Affiliation(s)
| | | | - Robert Cote
- Susavion Biosciences, Inc., Tempe, AZ, United States
| |
Collapse
|
62
|
In vitro influence of Theileria annulata on the functions of bovine dendritic cells for stimulation of T lymphocyte proliferation. Parasitology 2019; 147:39-49. [PMID: 31452480 DOI: 10.1017/s0031182019001227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present study was performed on antigen-presenting cells (APCs) of Theileria annulata transformed dendritic cells (TaDCs) and monocyte-derived dendritic cells (MoDCs) to compare differences in antigen presentation and stimulation of T lymphocyte proliferation. Antigen presentation for T lymphocyte proliferation was analysed by flow cytometry. Additionally, the level of mRNA transcription of small GTPases of the Rab family expressed in the TaDC cell line was analysed by quantitative real-time polymerase chain reaction (Q-RT-PCR). The endocytosis rate of TaDCs was significantly (P < 0.01) lower than in MoDCs. In contrast, when T lymphocytes were co-cultured with TaDC-APCs T cell proliferation was similar, while co-culture with MoDC-APC stimulated proliferation of CD4+ cells to a greater degree than CD8+ cells. However, the efficacy of TaDC-APCs to stimulate T lymphocytes dropped as the number of passages of TaDC-APC increased. Likewise, the transcription level of Rab family genes also significantly (P > 0.001) declined with progressive passages (>50) of the TaDC cell line. We conclude that initially the TaDC cell line efficiently presents antigen to stimulate T lymphocyte proliferation to produce a cellular immune response against the presented antigen.
Collapse
|
63
|
Sartorius R, D'Apice L, Prisco A, De Berardinis P. Arming Filamentous Bacteriophage, a Nature-Made Nanoparticle, for New Vaccine and Immunotherapeutic Strategies. Pharmaceutics 2019; 11:437. [PMID: 31480551 PMCID: PMC6781307 DOI: 10.3390/pharmaceutics11090437] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/17/2022] Open
Abstract
The pharmaceutical use of bacteriophages as safe and inexpensive therapeutic tools is collecting renewed interest. The use of lytic phages to fight antibiotic-resistant bacterial strains is pursued in academic and industrial projects and is the object of several clinical trials. On the other hand, filamentous bacteriophages used for the phage display technology can also have diagnostic and therapeutic applications. Filamentous bacteriophages are nature-made nanoparticles useful for their size, the capability to enter blood vessels, and the capacity of high-density antigen expression. In the last decades, our laboratory focused its efforts in the study of antigen delivery strategies based on the filamentous bacteriophage 'fd', able to trigger all arms of the immune response, with particular emphasis on the ability of the MHC class I restricted antigenic determinants displayed on phages to induce strong and protective cytotoxic responses. We showed that fd bacteriophages, engineered to target mouse dendritic cells (DCs), activate innate and adaptive responses without the need of exogenous adjuvants, and more recently, we described the display of immunologically active lipids. In this review, we will provide an overview of the reported applications of the bacteriophage carriers and describe the advantages of exploiting this technology for delivery strategies.
Collapse
Affiliation(s)
- Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), 80131 CNR Naples, Italy
| | - Luciana D'Apice
- Institute of Biochemistry and Cell Biology (IBBC), 80131 CNR Naples, Italy.
| | - Antonella Prisco
- Institute of Genetics and Biophysics "A. Buzzati-Traverso" (IGB), 80131 CNR Naples, Italy
| | | |
Collapse
|
64
|
Kotsias F, Cebrian I, Alloatti A. Antigen processing and presentation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:69-121. [PMID: 31810556 DOI: 10.1016/bs.ircmb.2019.07.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendritic cells are at the center of immune responses. They are defined by their ability to sense the environment, take up and process antigen, migrate to secondary lymphoid organs, where they present antigens to the adaptive immune system. In particular, they present lipids and proteins from pathogens, which they encountered in peripheral tissues, to T cells in order to induce a specific effector immune response. These complex antigens need to be broken down into peptides of a certain length in association with Major Histocompatibility Complex (MHC) molecules. Presentation of MHC/antigen complexes alongside costimulatory molecules and secretion of proinflammatory cytokines will induce an appropriate immune response. This interaction between dendritic cells and T cells takes place at defined locations within secondary lymphoid organs. In this review, we discuss the current knowledge and recent advances on the cellular and molecular mechanisms that underlie antigen processing and the subsequent presentation to T lymphocytes.
Collapse
Affiliation(s)
- Fiorella Kotsias
- Cátedra de Virología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina; Instituto de Investigaciones en Producción Animal (INPA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Ignacio Cebrian
- Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET/Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Andrés Alloatti
- Facultad de Ciencias Médicas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER)-CONICET/Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
65
|
Rhodes JW, Tong O, Harman AN, Turville SG. Human Dendritic Cell Subsets, Ontogeny, and Impact on HIV Infection. Front Immunol 2019; 10:1088. [PMID: 31156637 PMCID: PMC6532592 DOI: 10.3389/fimmu.2019.01088] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/29/2019] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) play important roles in orchestrating host immunity against invading pathogens, representing one of the first responders to infection by mucosal invaders. From their discovery by Ralph Steinman in the 1970s followed shortly after with descriptions of their in vivo diversity and distribution by Derek Hart, we are still continuing to progressively elucidate the spectrum of DCs present in various anatomical compartments. With the power of high-dimensional approaches such as single-cell sequencing and multiparameter cytometry, recent studies have shed new light on the identities and functions of DC subtypes. Notable examples include the reclassification of plasmacytoid DCs as purely interferon-producing cells and re-evaluation of intestinal conventional DCs and macrophages as derived from monocyte precursors. Collectively, these observations have changed how we view these cells not only in steady-state immunity but also during disease and infection. In this review, we will discuss the current landscape of DCs and their ontogeny, and how this influences our understanding of their roles during HIV infection.
Collapse
Affiliation(s)
- Jake William Rhodes
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Orion Tong
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Andrew Nicholas Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Discipline of Applied Medical Sciences, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Stuart Grant Turville
- University of New South Wales, Sydney, NSW, Australia.,Kirby Institute, Kensington, NSW, Australia
| |
Collapse
|
66
|
Antigen presentation by dendritic cells for B cell activation. Curr Opin Immunol 2019; 58:44-52. [PMID: 31071588 DOI: 10.1016/j.coi.2019.04.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 12/27/2022]
Abstract
B cells are efficiently activated by antigens presented on cell membranes, which provide opportunity for receptor cross-linking and antigen capture. The two main cell types implicated in native antigen presentation to B cells are follicular dendritic cells (FDC), which reside in B cell follicles, and CD169+ macrophages, which line the antigen-exposed surfaces of these follicles in both the lymph nodes and the spleen. There is mounting evidence, however, that conventional dendritic cells (cDC) can also participate in native antigen presentation to B cells. This underappreciated role, largely hidden by the simultaneous need for cDC to participate in T cells priming, appears to be primarily mediated by the type 2 subset of cDC (cDC2), but may also be a function of cDC1. Better understanding of how cDC participate in B cell priming is likely to improve our capacity to develop effective humoral vaccines.
Collapse
|
67
|
Jáuregui-Zúñiga D, Pedraza-Escalona M, Merino-Guzman R, Possani LD. Construction and expression of a single-chain variable fragment antibody against chicken DEC 205 for targeting the bacterial expressed hemagglutinin-neuraminidase of Newcastle disease virus. Vet Immunol Immunopathol 2019; 212:9-14. [PMID: 31213252 DOI: 10.1016/j.vetimm.2019.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 01/14/2023]
Abstract
Targeting antigens to endocytic receptors on the surface of dendritic cells is a new strategy for increasing the adaptive immune response. The objective of the current study was the construction and bacterial expression of a recombinant antibody single-chain fragment variable (ScFv) directed against chicken DEC 205, an endocytic receptor, for use in the genetic fusion of antigens. In particular, we use as antigen the hemagglutinin-neuraminidase (HN) of Newcastle disease virus. Our results show that inoculation of chickens with HN genetically fused to the ScFv anti-DEC 205 induced an evidently higher immune response against HN, in contrast to inoculation with unconjugated HN. In addition, neutralizing antibodies against Newcastle disease virus were detected only in the serum from chickens immunized with HN fused to ScFv anti-DEC 205. Inoculated fused antigens to ScFv against endocytic receptor DEC 205 resulted in a greater antibody-specific anti-HN production compared with antigens applied alone. The results of this study show that the strategy described here has the potential to be used in the development of more effective vaccines against infectious diseases in chickens.
Collapse
Affiliation(s)
- David Jáuregui-Zúñiga
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62210, México.
| | - Martha Pedraza-Escalona
- CONACYT-UDIBI-ENCB-Instituto Politecnico Nacional. Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Ciudad de México 11340, México
| | - Rubén Merino-Guzman
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia Universidad Nacional Autónoma de México, UNAM, C.U., Ciudad de México 04510, México
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62210, México
| |
Collapse
|
68
|
Backer RA, Diener N, Clausen BE. Langerin +CD8 + Dendritic Cells in the Splenic Marginal Zone: Not So Marginal After All. Front Immunol 2019; 10:741. [PMID: 31031751 PMCID: PMC6474365 DOI: 10.3389/fimmu.2019.00741] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/19/2019] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DC) fulfill an essential sentinel function within the immune system, acting at the interface of innate and adaptive immunity. The DC family, both in mouse and man, shows high functional heterogeneity in order to orchestrate immune responses toward the immense variety of pathogens and other immunological threats. In this review, we focus on the Langerin+CD8+ DC subpopulation in the spleen. Langerin+CD8+ DC exhibit a high ability to take up apoptotic/dying cells, and therefore they are essential to prime and shape CD8+ T cell responses. Next to the induction of immunity toward blood-borne pathogens, i.e., viruses, these DC are important for the regulation of tolerance toward cell-associated self-antigens. The ontogeny and differentiation pathways of CD8+CD103+ DC should be further explored to better understand the immunological role of these cells as a prerequisite of their therapeutic application.
Collapse
Affiliation(s)
- Ronald A Backer
- Paul Klein Center for Immune Intervention, Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Nathalie Diener
- Paul Klein Center for Immune Intervention, Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Björn E Clausen
- Paul Klein Center for Immune Intervention, Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
69
|
Guttman-Yassky E, Zhou L, Krueger JG. The skin as an immune organ: Tolerance versus effector responses and applications to food allergy and hypersensitivity reactions. J Allergy Clin Immunol 2019; 144:362-374. [PMID: 30954522 DOI: 10.1016/j.jaci.2019.03.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/22/2019] [Accepted: 03/27/2019] [Indexed: 01/06/2023]
Abstract
Skin is replete with immunocompetent cells that modulate signaling pathways to maintain a salubrious immunogenic/tolerogenic balance. This fertile immune environment plays a significant role in the development of allergic responses and sensitivities, but the mechanisms underlying these pathways have been underappreciated and underused with respect to developing therapeutics. Among the complex repertoire of cells that promote tolerogenic pathways in the periphery, 2 key classes include dendritic cells and regulatory T (Treg) cells. Immature dendritic cells are the first line of defense, patrolling the periphery, sampling antigens, and secreting cytokines that suppress immune cells and promote the survival of Treg cells. Skin-homing Treg cells also play a critical role in mitigating the reactivity of immune cells, secreting high levels of cytokines that promote tolerance. Therapeutic approaches that capitalize on our knowledge of the rich cellular and molecular environment are emerging and show great promise. We will discuss the advantages and challenges of 5 such strategies and how these therapies might mitigate the atopic march by facilitating tolerance. We conclude that skin is a multifaceted structure that provides a fertile ground for therapeutic discovery. Accordingly, ongoing work in this domain will no doubt continue to deliver exciting progress for improved health outcomes.
Collapse
Affiliation(s)
- Emma Guttman-Yassky
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai Medical Center, New York, NY.
| | - Lisa Zhou
- Columbia University Medical Center, New York, NY
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY
| |
Collapse
|
70
|
Zaneti AB, Yamamoto MM, Sulczewski FB, Almeida BDS, Souza HFS, Ferreira NS, Maeda DLNF, Sales NS, Rosa DS, Ferreira LCDS, Boscardin SB. Dendritic Cell Targeting Using a DNA Vaccine Induces Specific Antibodies and CD4 + T Cells to the Dengue Virus Envelope Protein Domain III. Front Immunol 2019; 10:59. [PMID: 30761131 PMCID: PMC6362411 DOI: 10.3389/fimmu.2019.00059] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/10/2019] [Indexed: 01/18/2023] Open
Abstract
Dengue fever has become a global threat, causing millions of infections every year. An effective vaccine against all four serotypes of dengue virus (DENV) has not been developed yet. Among the different vaccination strategies available today, DNA vaccines are safe and practical, but currently induce relatively weak immune responses in humans. In order to improve immunogenicity, antigens may be targeted to dendritic cells (DCs), the main antigen presenting cells and orchestrators of the adaptive immune response, inducing T and B cell activation. It was previously shown that a DNA vaccine encoding a fusion protein comprised of an antigen and a single-chain Fv antibody (scFv) specific for the DC endocytic receptor DEC205 induced strong immune responses to the targeted antigen. In this work, we evaluate this strategy to improve the immunogenicity of dengue virus (DENV) proteins. Plasmids encoding the scFv αDEC205, or an isotype control (scFv ISO), fused to the DENV2 envelope protein domain III (EDIII) were generated, and EDIII specific immune responses were evaluated in immunized mice. BALB/c mice were intramuscularly (i.m.) immunized three times with plasmid DNAs encoding either scDEC-EDIII or scISO-EDIII followed by electroporation. Analyses of the antibody responses indicated that EDIII fusion with scFv targeting the DEC205 receptor significantly enhanced serum anti-EDIII IgG titers that inhibited DENV2 infection. Similarly, mice immunized with the scDEC-EDIII plasmid developed a robust CD4+ T cell response to the targeted antigen, allowing the identification of two linear epitopes recognized by the BALB/c haplotype. Taken together, these results indicate that targeting DENV2 EDIII protein to DCs using a DNA vaccine encoding the scFv αDEC205 improves both antibody and CD4+ T cell responses. This strategy opens perspectives for the use of DNA vaccines that encode antigens targeted to DCs as a strategy to increase immunogenicity.
Collapse
Affiliation(s)
- Arthur Baruel Zaneti
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcio Massao Yamamoto
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Bianca da Silva Almeida
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Higo Fernando Santos Souza
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Natália Soares Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Natiely Silva Sales
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), São Paulo, Brazil.,Institute for Investigation in Immunology (iii)-INCTiii, São Paulo, Brazil
| | | | - Silvia Beatriz Boscardin
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii)-INCTiii, São Paulo, Brazil
| |
Collapse
|
71
|
Mannose Receptor and Targeting Strategies. TARGETED INTRACELLULAR DRUG DELIVERY BY RECEPTOR MEDIATED ENDOCYTOSIS 2019. [DOI: 10.1007/978-3-030-29168-6_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
72
|
Silva-Vilches C, Ring S, Schrader J, Clausen BE, Probst HC, Melchior F, Schild H, Enk A, Mahnke K. Production of Extracellular Adenosine by CD73 + Dendritic Cells Is Crucial for Induction of Tolerance in Contact Hypersensitivity Reactions. J Invest Dermatol 2018; 139:541-551. [PMID: 30393085 DOI: 10.1016/j.jid.2018.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/02/2018] [Accepted: 10/15/2018] [Indexed: 02/02/2023]
Abstract
Dendritic cells (DCs) express the ecto-5'-nucleotidase CD73 that generates immunosuppressive adenosine (Ado) by dephosphorylation of extracellular Ado monophosphate and diphosphate. To investigate whether CD73-derived Ado has immune-suppressive activity, 2,4-dinitrothiocyanobenzene (DNTB) was applied to skin of wild-type (WT) or CD73-deficient (CD73-/-) mice, followed by sensitization and challenge with 2,4-dinitrofluorobenzene. In this model, we show the induction of tolerance by DNTB against 2,4-dinitrofluorobenzene only in WT but not in CD73-/- mice. Analysis of skin DCs showed increased expression of CD73 after application of DNTB in WT mice. That was accompanied by elevated concentrations of extracellular Ado in the lymph node. Moreover, T cells expressed markers for anergy, namely EGR2 and NDRG1 in DNTB-treated WT mice and they exhibited impaired proliferation upon ex vivo re-stimulation. Similarly, in vitro we observed that Ado-producing WT DCs, but not CD73-/- DCs, rendered transgenic T cells from OTII mice (OTII T cells) hyporeactive, decreased their T-cell costimulatory signaling, and induced up-regulation of EGR2 and NDRG1. Thus, these data show that expression of CD73 by DCs, which triggers elevated levels of extracellular Ado, is a crucial mechanism for the induction of anergic T cells and tolerance.
Collapse
Affiliation(s)
- Cinthia Silva-Vilches
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Sabine Ring
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Jürgen Schrader
- Institute for Molecular Cardiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hans-Christian Probst
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Felix Melchior
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hansjörg Schild
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Alexander Enk
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Karsten Mahnke
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany.
| |
Collapse
|
73
|
Sharabi A, Tsokos MG, Ding Y, Malek TR, Klatzmann D, Tsokos GC. Regulatory T cells in the treatment of disease. Nat Rev Drug Discov 2018; 17:823-844. [DOI: 10.1038/nrd.2018.148] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
74
|
Gornati L, Zanoni I, Granucci F. Dendritic Cells in the Cross Hair for the Generation of Tailored Vaccines. Front Immunol 2018; 9:1484. [PMID: 29997628 PMCID: PMC6030256 DOI: 10.3389/fimmu.2018.01484] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/14/2018] [Indexed: 12/14/2022] Open
Abstract
Vaccines represent the discovery of utmost importance for global health, due to both prophylactic action to prevent infections and therapeutic intervention in neoplastic diseases. Despite this, current vaccination strategies need to be refined to successfully generate robust protective antigen-specific memory immune responses. To address this issue, one possibility is to exploit the high efficiency of dendritic cells (DCs) as antigen-presenting cells for T cell priming. DCs functional plasticity allows shaping the outcome of immune responses to achieve the required type of immunity. Therefore, the choice of adjuvants to guide and sustain DCs maturation, the design of multifaceted vehicles, and the choice of surface molecules to specifically target DCs represent the key issues currently explored in both preclinical and clinical settings. Here, we review advances in DCs-based vaccination approaches, which exploit direct in vivo DCs targeting and activation options. We also discuss the recent findings for efficient antitumor DCs-based vaccinations and combination strategies to reduce the immune tolerance promoted by the tumor microenvironment.
Collapse
Affiliation(s)
- Laura Gornati
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Ivan Zanoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,Division of Gastroenterology, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
75
|
Brown FF, Campbell JP, Wadley AJ, Fisher JP, Aldred S, Turner JE. Acute aerobic exercise induces a preferential mobilisation of plasmacytoid dendritic cells into the peripheral blood in man. Physiol Behav 2018; 194:191-198. [PMID: 29763678 DOI: 10.1016/j.physbeh.2018.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/26/2018] [Accepted: 05/11/2018] [Indexed: 01/08/2023]
Abstract
Dendritic cells (DCs) are important sentinel cells of the immune system responsible for presenting antigen to T cells. Exercise is known to cause an acute and transient increase in the frequency of DCs in the bloodstream in humans, yet there are contradictory findings in the literature regarding the phenotypic composition of DCs mobilised during exercise, which may have implications for immune regulation and health. Accordingly, we sought to investigate the composition of DC sub-populations mobilised in response to acute aerobic exercise. Nine healthy males (age, 21.9 ± 3.6 years; height, 177.8 ± 5.4 cm; body mass, 78.9 ± 10.8 kg; body mass index, 24.9 ± 3.3 kg·m2; V̇O2 MAX, 41.5 ± 5.1 mL·kg·min-1) cycled for 20 min at 80% V̇O2 MAX. Blood was sampled at baseline, during the final minute of exercise and 30 min later. Using flow cytometry, total DCs were defined as Lineage- (CD3, CD19, CD20, CD14, CD56) HLA-DR+ and subsequently identified as plasmacytoid DCs (CD303+) and myeloid DCs (CD303-). Myeloid DCs were analysed for expression of CD1c and CD141 to yield four sub-populations; CD1c-CD141+; CD1c+CD141+; CD1c+CD141- and CD1c-CD141-. Expression of CD205 was also analysed on all DC sub-populations to identify DCs capable of recognising apoptotic and necrotic cells. Total DCs increased by 150% during exercise (F(1,10) = 60; p < 0.05, η2 = 0.9). Plasmacytoid DCs mobilised to a greater magnitude than myeloid DCs (195 ± 131% vs. 131 ± 100%; p < 0.05). Among myeloid DCs, CD1c-CD141- cells showed the largest exercise-induced mobilisation (167 ± 122%), with a stepwise pattern observed among the remaining sub-populations: CD1c+CD141- (79 ± 50%), followed by CD1c+CD141+ (44 ± 41%), with the smallest response shown by CD1c-CD141+ cells (23 ± 54%) (p < 0.05). Among myeloid DCs, CD205- cells were the most exercise responsive. All DC subsets returned to resting levels within 30 min of exercise cessation. These results show that there is a preferential mobilisation of plasmacytoid DCs during exercise. Given the functional repertoire of plasmacytoid DCs, which includes the production of interferons against viral and bacterial pathogens, these findings indicate that exercise may augment immune-surveillance by preferentially mobilising effector cells; these findings have general implications for the promotion of exercise for health, and specifically for the optimisation of DC harvest for cancer immunotherapy.
Collapse
Affiliation(s)
| | - John P Campbell
- Department for Health, University of Bath, Bath, UK; Clinical Immunology, University of Birmingham, Birmingham, UK
| | - Alex J Wadley
- School Sport, Exercise & Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - James P Fisher
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Sarah Aldred
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
76
|
Heger L, Balk S, Lühr JJ, Heidkamp GF, Lehmann CHK, Hatscher L, Purbojo A, Hartmann A, Garcia-Martin F, Nishimura SI, Cesnjevar R, Nimmerjahn F, Dudziak D. CLEC10A Is a Specific Marker for Human CD1c + Dendritic Cells and Enhances Their Toll-Like Receptor 7/8-Induced Cytokine Secretion. Front Immunol 2018; 9:744. [PMID: 29755453 PMCID: PMC5934495 DOI: 10.3389/fimmu.2018.00744] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/26/2018] [Indexed: 12/31/2022] Open
Abstract
Dendritic cells (DCs) are major players for the induction of immune responses. Apart from plasmacytoid DCs (pDCs), human DCs can be categorized into two types of conventional DCs: CD141+ DCs (cDC1) and CD1c+ DCs (cDC2). Defining uniquely expressed surface markers on human immune cells is not only important for the identification of DC subpopulations but also a prerequisite for harnessing the DC subset-specific potential in immunomodulatory approaches, such as antibody-mediated antigen targeting. Although others identified CLEC9A as a specific endocytic receptor for CD141+ DCs, such a receptor for CD1c+ DCs has not been discovered, yet. By performing transcriptomic and flow cytometric analyses on human DC subpopulations from different lymphohematopoietic tissues, we identified CLEC10A (CD301, macrophage galactose-type C-type lectin) as a specific marker for human CD1c+ DCs. We further demonstrate that CLEC10A rapidly internalizes into human CD1c+ DCs upon binding of a monoclonal antibody directed against CLEC10A. The binding of a CLEC10A-specific bivalent ligand (the MUC-1 peptide glycosylated with N-acetylgalactosamine) is limited to CD1c+ DCs and enhances the cytokine secretion (namely TNFα, IL-8, and IL-10) induced by TLR 7/8 stimulation. Thus, CLEC10A represents not only a candidate to better define CD1c+ DCs—due to its high endocytic potential—CLEC10A also exhibits an interesting candidate receptor for future antigen-targeting approaches.
Collapse
Affiliation(s)
- Lukas Heger
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Silke Balk
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Jennifer J Lühr
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Gordon F Heidkamp
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Christian H K Lehmann
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Lukas Hatscher
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Ariawan Purbojo
- Department of Pediatric Cardiac Surgery, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Arndt Hartmann
- Department of Pathology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Fayna Garcia-Martin
- Graduate School of Life Science and Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Shin-Ichiro Nishimura
- Graduate School of Life Science and Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Robert Cesnjevar
- Department of Pediatric Cardiac Surgery, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Falk Nimmerjahn
- Department of Biology, Chair of Genetics, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Diana Dudziak
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
77
|
Kita M, Yokota K, Kageyama C, Take S, Goto K, Kawahara Y, Matsushita O, Okada H. DEC205 mediates local and systemic immune responses to Helicobacter pylori infection in humans. Oncotarget 2018; 9:15828-15835. [PMID: 29662609 PMCID: PMC5882300 DOI: 10.18632/oncotarget.24574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 10/25/2017] [Indexed: 11/25/2022] Open
Abstract
Helicobacter pylori infections cause gastritis and affect systemic immune responses; however, no direct association between immune cells and stomach bacteria has yet been reported. The present study investigated DEC205-mediated phagocytosis of H. pylori and the role of DEC205-positive macrophages in the human gastric mucosa. DEC205 mediated phagocytosis of H. pylori was detected immunocytochemically in PMA-stimulated macrophages differentiated from NOMO1 cells. Expression of DEC205 mRNA in peripheral blood mononuclear cells (PBMCs) from H. pylori-infected patients was analyzed following stimulation with H. pylori cell lysate. We found that anti-DEC205 antibodies inhibited phagocytosis of H. pylori. The number of cells double-positive for DEC205 and CD14 in human gastric mucosa was higher in H. pylori-infected patients. DEC205-positive macrophages invaded the extracellular space between epithelial cells within gastric pits. In addition, DEC205 mRNA expression was upregulated in human PBMCs stimulated with H. pylori lysate. These findings suggest DEC205-expressing macrophages are important for recognition of H. pylori in human gastric mucosa, which affects systemic immunity.
Collapse
Affiliation(s)
- Masahide Kita
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama University, Okayama, Japan
| | - Kenji Yokota
- Graduate School of Health Science, Okayama University, Okayama, Japan
| | - Chihiro Kageyama
- Graduate School of Health Science, Okayama University, Okayama, Japan
| | - Susumu Take
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama University, Okayama, Japan
| | - Kazuyoshi Goto
- Department of Bacteriology, Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama University, Okayama, Japan
| | - Yoshiro Kawahara
- Department of Endoscopy, Okayama University Hospital, Okayama, Japan
| | - Osamu Matsushita
- Department of Bacteriology, Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama University, Okayama, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama University, Okayama, Japan
| |
Collapse
|
78
|
Tang R, Zhai Y, Dong L, Malla T, Hu K. Immunization with dendritic cell-based DNA vaccine pRSC-NLDC145.gD-IL21 protects mice against herpes simplex virus keratitis. Immunotherapy 2018; 10:189-200. [PMID: 29370719 DOI: 10.2217/imt-2017-0060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The aim of this study is to investigate the effects of constructed dendritic cell (DC)-based DNA vaccine (pRSC-NLDC145.gD-IL21) carried by chitosan nanoparticle in preventing primary or recurrent herpes simplex virus keratitis (HSK) in mice. Methods: The expression of constructed plasmid ‘pRSC-NLDC145.gD-IL21’ was verified by western blot and immunofluorescence. Plasmids that were embedded in chitosan were inoculated to test its therapeutic effect against primary or recurrent HSK in mice. Humoral and cellular immune response, clinical scores of herpes keratitis and inflammatory infiltration were measured. Results: The expressed glycoprotein D (gD) of pRSC-NLDC145.gD-IL21 DNA/chitosan nanoparticle vaccine could effectively target corneal DCs and significantly alleviate the symptoms of both primary and recurrent HSK mice via eliciting strong humoral and cellular immune response. Conclusion: Our data suggested that DC-based DNA vaccine could be a better choice for HSK treatment in the future.
Collapse
Affiliation(s)
- Ru Tang
- Department of Ophthalmology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Ophthalmology, The People's Hospital of Danyang, Zhenjiang, Jiangsu, China
- Department of Ophthalmology, Zhongda Hospital, Southeast University, Nanjing Jiangsu, China
| | - Yujia Zhai
- Department of Ophthalmology, Zhongda Hospital, Southeast University, Nanjing Jiangsu, China
| | - Lili Dong
- Department of Ophthalmology, Zhongda Hospital, Southeast University, Nanjing Jiangsu, China
- Department of Ophthalmology, Jiangsu Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Tejsu Malla
- Department of Ophthalmology, Zhongda Hospital, Southeast University, Nanjing Jiangsu, China
| | - Kai Hu
- Department of Ophthalmology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu, China
- Nanjing Ning Yi Eye Center, Nanjing, Jiangsu, China
| |
Collapse
|
79
|
Abstract
Antigen cross-presentation is an adaptation of the cellular process of loading MHC-I molecules with endogenous peptides during their biosynthesis within the endoplasmic reticulum. Cross-presented peptides derive from internalized proteins, microbial pathogens, and transformed or dying cells. The physical separation of internalized cargo from the endoplasmic reticulum, where the machinery for assembling peptide-MHC-I complexes resides, poses a challenge. To solve this problem, deliberate rewiring of organelle communication within cells is necessary to prepare for cross-presentation, and different endocytic receptors and vesicular traffic patterns customize the emergent cross-presentation compartment to the nature of the peptide source. Three distinct pathways of vesicular traffic converge to form the ideal cross-presentation compartment, each regulated differently to supply a unique component that enables cross-presentation of a diverse repertoire of peptides. Delivery of centerpiece MHC-I molecules is the critical step regulated by microbe-sensitive Toll-like receptors. Defining the subcellular sources of MHC-I and identifying sites of peptide loading during cross-presentation remain key challenges.
Collapse
Affiliation(s)
- J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; .,Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| |
Collapse
|
80
|
Lai C, Duan S, Ye F, Hou X, Li X, Zhao J, Yu X, Hu Z, Tang Z, Mo F, Yang X, Lu X. The enhanced antitumor-specific immune response with mannose- and CpG-ODN-coated liposomes delivering TRP2 peptide. Theranostics 2018; 8:1723-1739. [PMID: 29556352 PMCID: PMC5858178 DOI: 10.7150/thno.22056] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/17/2017] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Dendritic cell (DC)-based cancer vaccines is a newly emerging and potent form of immune therapy. As for any new technology, there are still considerable challenges that need to be addressed. Here, we investigate the antitumor potential of a novel liposomal vaccine, M/CpG-ODN-TRP2-Lipo. METHODS We developed a vaccination strategy by assembling the DC-targeting mannose and immune adjuvant CpG-ODN on the surface of liposomes, which were loaded with melanoma-specific TRP2180-188 peptide as liposomal vaccine. M/CpG-ODN-TRP2-Lipo treatment was used to intendedly induce activation of DCs and antitumor- specific immune response in vivo. RESULTS Our results demonstrated in vitro that the prepared liposomal particles were efficiently taken up by DCs. This uptake led to an enhanced activation of DCs, as measured by the upregulation of MHC II, CD80, and CD86. Furthermore, M/CpG-ODN-TRP2-Lipo effectively inhibited the growth of implanted B16 melanoma and prolonged the survival of mice. This therapy significantly reduced the number of myeloid-derived suppressor cells (MDSCs) and regulatory T cells, while simultaneously increasing the number of activated T cells, tumor antigen-specific CD8+ cytotoxic T cells, and interferon-γ-producing cells. At the same time, it was found to suppress tumor angiogenesis and tumor cell proliferation, as well as up-regulate their apoptosis. Interestingly, MyD88-knockout mice had significantly shorter median survival times compared to wild-type mice following the administration of M/CpG-ODN-TRP2-Lipo. CONCLUSIONS The results suggested that the antitumor activities of the vaccine partially rely on the Myd88 signaling pathway. Interestingly, compared to whole tumor cell lysate-based vaccine, M/CpG-ODN-TRP2-Lipo, tumor specific antigen peptide-based vaccine, improved survival of tumor-bearing mice as well as enhanced their antitumor responses. All in all, we describe a novel vaccine formulation, M/CpG-ODN-TRP2-Lipo, with the aim of improving antitumor responses by alleviating the immunosuppressive environment in tumors.
Collapse
|
81
|
Sharma PK, Dmitriev IP, Kashentseva EA, Raes G, Li L, Kim SW, Lu ZH, Arbeit JM, Fleming TP, Kaliberov SA, Goedegebuure SP, Curiel DT, Gillanders WE. Development of an adenovirus vector vaccine platform for targeting dendritic cells. Cancer Gene Ther 2018; 25:27-38. [PMID: 29242639 PMCID: PMC5972836 DOI: 10.1038/s41417-017-0002-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 12/16/2022]
Abstract
Adenoviral (Ad) vector vaccines represent one of the most promising modern vaccine platforms, and Ad vector vaccines are currently being investigated in human clinical trials for infectious disease and cancer. Our studies have shown that specific targeting of adenovirus to dendritic cells dramatically enhanced vaccine efficacy. However, this was achieved using a molecular adapter, thereby necessitating a two component vector approach. To address the mandates of clinical translation of our strategy, we here sought to accomplish the goal of DC targeting with a single-component adenovirus vector approach. To redirect the specificity of Ad vector vaccines, we replaced the Ad fiber knob with fiber-fibritin chimeras fused to DC1.8, a single-domain antibody (sdAb) specific for murine immature DC. We engineered a fiber-fibritin-sdAb chimeric molecule using the coding sequence for DC1.8, and then replaced the native Ad5 fiber knob sequence by homologous recombination. The resulting Ad5 virus, Ad5FF1.8, expresses the chimeric fiber-fibritin sdAb chimera. Infection with Ad5FF1.8 dramatically enhances transgene expression in DC2.4 dendritic cells compared with infection with native Ad5. Ad5FF1.8 infection of bone marrow-derived DC demonstrates that Ad5FF1.8 selectively infects immature DC consistent with the known specificity of DC1.8. Thus, sdAb can be used to selectively redirect the tropism of Ad5 vector vaccines, providing the opportunity to engineer Ad vector vaccines that are specifically targeted to DC, or specific DC subsets.
Collapse
Affiliation(s)
- Piyush K Sharma
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Igor P Dmitriev
- Cancer Biology Division, Biologic Therapeutics Center, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Elena A Kashentseva
- Cancer Biology Division, Biologic Therapeutics Center, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Geert Raes
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- VIB Center for Inflammation Research, Myeloid Cell Immunology Laboratory, Brussels, Belgium
| | - Lijin Li
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Samuel W Kim
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhi-Hong Lu
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeffrey M Arbeit
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- The Alvin J. Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy P Fleming
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- The Alvin J. Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - Sergey A Kaliberov
- Cancer Biology Division, Biologic Therapeutics Center, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - S Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- The Alvin J. Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - David T Curiel
- Cancer Biology Division, Biologic Therapeutics Center, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.
| | - William E Gillanders
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- The Alvin J. Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
82
|
Lee C, Lee M, Rhee I. Distinct features of dendritic cell-based immunotherapy as cancer vaccines. Clin Exp Vaccine Res 2018; 7:16-23. [PMID: 29399576 PMCID: PMC5795041 DOI: 10.7774/cevr.2018.7.1.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 12/22/2017] [Accepted: 12/28/2017] [Indexed: 01/07/2023] Open
Abstract
Dendritic cells (DCs) are the most professional antigen presenting cells that play important roles in connection between innate and adaptive immune responses. Numerous studies revealed that the functions of DCs are related with the capture and processing of antigen as well as the migration to lymphoid tissues for the presenting antigens to T cells. These unique features of DCs allow them to be considered as therapeutic vaccines that can induce immune responses and anti-tumor activity. Here, we discuss and understand the immunological basis of DCs and presume the possibilities of DC-based vaccines for the promising cancer therapy.
Collapse
Affiliation(s)
- Chaelin Lee
- Department of Bioscience & Biotechnology, Sejong University, Seoul, Korea
| | - Myungmi Lee
- Department of Bioscience & Biotechnology, Sejong University, Seoul, Korea
| | - Inmoo Rhee
- Department of Bioscience & Biotechnology, Sejong University, Seoul, Korea
| |
Collapse
|
83
|
Manches O, Muniz LR, Bhardwaj N. Dendritic Cell Biology. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
84
|
The mannose receptor LY75 (DEC205/CD205) modulates cellular phenotype and metastatic potential of ovarian cancer cells. Oncotarget 2017; 7:14125-42. [PMID: 26871602 PMCID: PMC4924702 DOI: 10.18632/oncotarget.7288] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 01/29/2016] [Indexed: 12/16/2022] Open
Abstract
The molecular basis of epithelial ovarian cancer (EOC) dissemination is still poorly understood. Previously, we identified the mannose receptor LY75 gene as hypomethylated in high-grade (HG) serous EOC tumors, compared to normal ovarian tissues. LY75 represents endocytic receptor expressed on dendritic cells and so far, has been primarily studied for its role in antigen processing and presentation. Here we demonstrate that LY75 is overexpressed in advanced EOC and that LY75 suppression induces mesenchymal-to-epithelial transition (MET) in EOC cell lines with mesenchymal morphology (SKOV3 and TOV112), accompanied by reduction of their migratory and invasive capacity in vitro and enhanced tumor cell colonization and metastatic growth in vivo. LY75 knockdown in SKOV3 cells also resulted in predominant upregulation of functional pathways implicated in cell proliferation and metabolism, while pathways associated with cell signaling and adhesion, complement activation and immune response were mostly suppressed. Moreover, LY75 suppression had an opposite effect on EOC cell lines with epithelial phenotype (A2780s and OV2008), by directing epithelial-to-mesenchymal transition (EMT) associated with reduced capacity for in vivo EOC cell colonization, as similar/identical signaling pathways were reversely regulated, when compared to mesenchymal LY75 knockdown EOC cells.To our knowledge, this is the first report of a gene displaying such pleiotropic effects in sustaining the cellular phenotype of EOC cells and points to novel functions of this receptor in modulating EOC dissemination. Our data also support previous findings regarding the superior capacity of epithelial cancer cells in metastatic colonization of distant sites, compared to cancer cells with mesenchymal-like morphology.
Collapse
|
85
|
Hu Z, Shi X, Yu B, Li N, Huang Y, He Y. Structural Insights into the pH-Dependent Conformational Change and Collagen Recognition of the Human Mannose Receptor. Structure 2017; 26:60-71.e3. [PMID: 29225077 DOI: 10.1016/j.str.2017.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/14/2017] [Accepted: 11/08/2017] [Indexed: 11/28/2022]
Abstract
Mannose receptor (MR, CD206) is an endocytic receptor on microphages and dendritic cells. It recognizes multiple ligands and plays important roles in regulating immune responses and maintaining glycoprotein homeostasis. However, the structure and functional mechanism of MR remain unclear. Here we determine the crystal structures of the N-terminal fragments of MR and reveal the potential binding mode of collagen on the fibronectin II domain. The SAXS and other biophysical data suggest that MR adopts an extended conformation at physiological pH and undergoes conformational changes as pH decreases, resulting in a compact conformation in an acidic environment. Moreover, biochemical data show that MR binds to collagen in a Ca2+-enhanced manner at physiological pH, whereas Ca2+ has no effect on the binding at acidic pH. These results provide a model for the dynamic mechanism of MR regarding its ligand binding and release during the recycling between cell surface and endosomes.
Collapse
Affiliation(s)
- Zhenzheng Hu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China
| | - Xiangyi Shi
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China
| | - Bowen Yu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China
| | - Na Li
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China
| | - Ying Huang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China
| | - Yongning He
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China.
| |
Collapse
|
86
|
Yu C, Xi J, Li M, An M, Liu H. Bioconjugate Strategies for the Induction of Antigen-Specific Tolerance in Autoimmune Diseases. Bioconjug Chem 2017; 29:719-732. [PMID: 29165988 DOI: 10.1021/acs.bioconjchem.7b00632] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antigen-specific immunotherapy (ASI) holds great promise for the treatment of autoimmune diseases. In mice, administration of major histocompatibility complex (MHC) binding synthetic peptides which modulate T cell receptor (TCR) signaling under subimmunogenic conditions induces selective tolerance without suppressing the global immune responses. However, clinical translation has yielded limited success. It has become apparent that the TCR signaling pathway via synthetic peptide antigen alone is inadequate to induce an effective tolerogenic immunity in autoimmune diseases. Bioconjugate strategies combining additional immunomodulatory functions with TCR signaling can amplify the antigen-specific immune tolerance and possibly lead to the development of new treatments in autoimmune diseases. In this review, we provide a summary of recent advances in the development of bioconjugates to achieve antigen-specific immune tolerance in vivo, with the discussion focused on the underlying design principles and challenges that must be overcome to target these therapies to patients suffering from autoimmune diseases.
Collapse
Affiliation(s)
- Chunsong Yu
- Department of Chemical Engineering and Materials Science , Wayne State University , Detroit , Michigan 48202 , United States
| | - Jingchao Xi
- Department of Chemical Engineering and Materials Science , Wayne State University , Detroit , Michigan 48202 , United States
| | - Meng Li
- Department of Chemical Engineering and Materials Science , Wayne State University , Detroit , Michigan 48202 , United States
| | - Myunggi An
- Department of Chemical Engineering and Materials Science , Wayne State University , Detroit , Michigan 48202 , United States
| | - Haipeng Liu
- Department of Chemical Engineering and Materials Science , Wayne State University , Detroit , Michigan 48202 , United States.,Department of Oncology , Wayne State University , Detroit , Michigan 48201 , United States.,Tumor Biology and Microenvironment Program , Barbara Ann Karmanos Cancer Institute , Detroit , Michigan 48201 , United States
| |
Collapse
|
87
|
Audiger C, Rahman MJ, Yun TJ, Tarbell KV, Lesage S. The Importance of Dendritic Cells in Maintaining Immune Tolerance. THE JOURNAL OF IMMUNOLOGY 2017; 198:2223-2231. [PMID: 28264998 DOI: 10.4049/jimmunol.1601629] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/11/2016] [Indexed: 12/30/2022]
Abstract
Immune tolerance is necessary to prevent the immune system from reacting against self, and thus to avoid the development of autoimmune diseases. In this review, we discuss key findings that position dendritic cells (DCs) as critical modulators of both thymic and peripheral immune tolerance. Although DCs are important for inducing both immunity and tolerance, increased autoimmunity associated with decreased DCs suggests their nonredundant role in tolerance induction. DC-mediated T cell immune tolerance is an active process that is influenced by genetic variants, environmental signals, as well as the nature of the specific DC subset presenting Ag to T cells. Answering the many open questions with regard to the role of DCs in immune tolerance could lead to the development of novel therapies for the prevention of autoimmune diseases.
Collapse
Affiliation(s)
- Cindy Audiger
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - M Jubayer Rahman
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Tae Jin Yun
- Laboratory of Cellular Physiology and Immunology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada; and.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Kristin V Tarbell
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sylvie Lesage
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada; .,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
88
|
|
89
|
Modifying Dendritic Cell Activation with Plasmonic Nano Vectors. Sci Rep 2017; 7:5513. [PMID: 28710434 PMCID: PMC5511287 DOI: 10.1038/s41598-017-04459-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/03/2017] [Indexed: 11/23/2022] Open
Abstract
Dendritic cells (DCs) can acquire, process, and present antigens to T-cells to induce an immune response. For this reason, targeting cancer antigens to DCs in order to cause an immune response against cancer is an emerging area of nanomedicine that has the potential to redefine the way certain cancers are treated. The use of plasmonically active silver-coated gold nanorods (henceforth referred to as plasmonic nano vectors (PNVs)) as potential carriers for DC tumor vaccines has not been presented before. Effective carriers must be able to be phagocytized by DCs, present low toxicity, and induce the maturation of DCs—an early indication of an immune response. When we treated DCs with the PNVs, we found that the cell viability of DCs was unaffected, up to 200 μg/ml. Additionally, the PNVs associated with the DCs as they were phagocytized and they were found to reside within intracellular compartments such as endosomes. More importantly, the PNVs were able to induce expression of surface markers indicative of DC activation and maturation, i.e. CD40, CD86, and MHC class II. These results provide the first evidence that PNVs are promising carriers for DC-based vaccines and warrant further investigating for clinical use.
Collapse
|
90
|
Dendritic Cells and Their Role in Allergy: Uptake, Proteolytic Processing and Presentation of Allergens. Int J Mol Sci 2017; 18:ijms18071491. [PMID: 28696399 PMCID: PMC5535981 DOI: 10.3390/ijms18071491] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) are the most important antigen presenting cells to activate naïve T cells, which results in the case of Type 1 allergies in a Type 2 helper T cell (Th2)-driven specific immune response towards allergens. So far, a number of different subsets of specialized DCs in different organs have been identified. In the recent past methods to study the interaction of DCs with allergenic proteins, their different uptake and processing mechanisms followed by the presentation to T cells were developed. The following review aims to summarize the most important characteristics of DC subsets in the context of allergic diseases, and highlights the recent findings. These detailed studies can contribute to a better understanding of the pathomechanisms of allergic diseases and contribute to the identification of key factors to be addressed for therapeutic interventions.
Collapse
|
91
|
Neuberger A, Ring S, Silva-Vilches C, Schrader J, Enk A, Mahnke K. Expression of CD73 slows down migration of skin dendritic cells, affecting the sensitization phase of contact hypersensitivity reactions in mice. J Dermatol Sci 2017; 87:292-299. [PMID: 28743609 DOI: 10.1016/j.jdermsci.2017.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/03/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Application of haptens to the skin induces release of immune stimulatory ATP into the extracellular space. This "danger" signal can be converted to immunosuppressive adenosine (ADO) by the action of the ectonucleotidases CD39 and CD73, expressed by skin and immune cells. Thus, the expression and regulation of CD73 by skin derived cells may have crucial influence on the outcome of contact hypersensitivity (CHS) reactions. OBJECTIVE To investigate the role of CD73 expression during 2,4,6-trinitrochlorobenzene (TNCB) induced CHS reactions. METHODS Wild type (wt) and CD73 deficient mice were subjected to TNCB induced CHS. In the different mouse strains the resulting ear swelling reaction was recorded along with a detailed phenotypic analysis of the skin migrating subsets of dendritic cells (DC). RESULTS In CD73 deficient animals the motility of DC was higher as compared to wt animals and in particular after sensitization we found increased migration of Langerin+ DC from skin to draining lymph nodes (LN). In the TNCB model this led to a stronger sensitization as indicated by increased frequency of interferon-γ producing T cells in the LN and an increased ear thickness after challenge. CONCLUSION CD73 derived ADO production slows down migration of Langerin+ DC from skin to LN. This may be a crucial mechanism to avoid over boarding immune reactions against haptens.
Collapse
Affiliation(s)
- A Neuberger
- Ruprecht-Karls-University Heidelberg, Department of Dermatology, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany
| | - S Ring
- Ruprecht-Karls-University Heidelberg, Department of Dermatology, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany
| | - C Silva-Vilches
- Ruprecht-Karls-University Heidelberg, Department of Dermatology, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany
| | - J Schrader
- University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - A Enk
- Ruprecht-Karls-University Heidelberg, Department of Dermatology, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany
| | - K Mahnke
- Ruprecht-Karls-University Heidelberg, Department of Dermatology, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany.
| |
Collapse
|
92
|
Silva-Cardoso SC, Affandi AJ, Spel L, Cossu M, van Roon JAG, Boes M, Radstake TRDJ. CXCL4 Exposure Potentiates TLR-Driven Polarization of Human Monocyte-Derived Dendritic Cells and Increases Stimulation of T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:253-262. [PMID: 28515281 DOI: 10.4049/jimmunol.1602020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/17/2017] [Indexed: 12/11/2022]
Abstract
Chemokines have been shown to play immune-modulatory functions unrelated to steering cell migration. CXCL4 is a chemokine abundantly produced by activated platelets and immune cells. Increased levels of circulating CXCL4 are associated with immune-mediated conditions, including systemic sclerosis. Considering the central role of dendritic cells (DCs) in immune activation, in this article we addressed the effect of CXCL4 on the phenotype and function of monocyte-derived DCs (moDCs). To this end, we compared innate and adaptive immune responses of moDCs with those that were differentiated in the presence of CXCL4. Already prior to TLR- or Ag-specific stimulation, CXCL4-moDCs displayed a more matured phenotype. We found that CXCL4 exposure can sensitize moDCs for TLR-ligand responsiveness, as illustrated by a dramatic upregulation of CD83, CD86, and MHC class I in response to TLR3 and TLR7/8-agonists. Also, we observed a markedly increased secretion of IL-12 and TNF-α by CXCL4-moDCs exclusively upon stimulation with polyinosinic-polycytidylic acid, R848, and CL075 ligands. Next, we analyzed the effect of CXCL4 in modulating DC-mediated T cell activation. CXCL4-moDCs strongly potentiated proliferation of autologous CD4+ T cells and CD8+ T cells and production of IFN-γ and IL-4, in an Ag-independent manner. Although the internalization of Ag was comparable to that of moDCs, Ag processing by CXCL4-moDCs was impaired. Yet, these cells were more potent at stimulating Ag-specific CD8+ T cell responses. Together our data support that increased levels of circulating CXCL4 may contribute to immune dysregulation through the modulation of DC differentiation.
Collapse
Affiliation(s)
- Sandra C Silva-Cardoso
- Laboratory of Translational Immunology, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; and
| | - Alsya J Affandi
- Laboratory of Translational Immunology, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; and
| | - Lotte Spel
- Laboratory of Translational Immunology, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
- Department of Pediatrics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Marta Cossu
- Laboratory of Translational Immunology, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; and
| | - Joel A G van Roon
- Laboratory of Translational Immunology, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; and
| | - Marianne Boes
- Laboratory of Translational Immunology, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands;
- Department of Pediatrics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Timothy R D J Radstake
- Laboratory of Translational Immunology, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands;
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; and
| |
Collapse
|
93
|
Leone DA, Peschel A, Brown M, Schachner H, Ball MJ, Gyuraszova M, Salzer-Muhar U, Fukuda M, Vizzardelli C, Bohle B, Rees AJ, Kain R. Surface LAMP-2 Is an Endocytic Receptor That Diverts Antigen Internalized by Human Dendritic Cells into Highly Immunogenic Exosomes. THE JOURNAL OF IMMUNOLOGY 2017; 199:531-546. [DOI: 10.4049/jimmunol.1601263] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 05/10/2017] [Indexed: 12/13/2022]
|
94
|
Cell-surface C-type lectin-like receptor CLEC-1 dampens dendritic cell activation and downstream Th17 responses. Blood Adv 2017; 1:557-568. [PMID: 29296975 DOI: 10.1182/bloodadvances.2016002360] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/22/2017] [Indexed: 01/20/2023] Open
Abstract
Dendritic cells (DCs) represent essential antigen-presenting cells that are critical for linking innate and adaptive immunity, and influencing T-cell responses. Among pattern recognition receptors, DCs express C-type lectin receptors triggered by both exogenous and endogenous ligands, therefore dictating pathogen response, and also shaping T-cell immunity. We previously described in rat, the expression of the orphan C-type lectin-like receptor-1 (CLEC-1) by DCs and demonstrated in vitro its inhibitory role in downstream T helper 17 (Th17) activation. In this study, we examined the expression and functionality of CLEC-1 in human DCs, and show a cell-surface expression on the CD16- subpopulation of blood DCs and on monocyte-derived DCs (moDCs). CLEC-1 expression on moDCs is downregulated by inflammatory stimuli and enhanced by transforming growth factor β. Moreover, we demonstrate that CLEC-1 is a functional receptor on human moDCs and that although not modulating the spleen tyrosine kinase-dependent canonical nuclear factor-κB pathway, represses subsequent Th17 responses. Interestingly, a decreased expression of CLEC1A in human lung transplants is predictive of the development of chronic rejection and is associated with a higher level of interleukin 17A (IL17A). Importantly, using CLEC-1-deficient rats, we showed that disruption of CLEC-1 signaling led to an enhanced Il12p40 subunit expression in DCs, and to an exacerbation of downstream in vitro and in vivo CD4+ Th1 and Th17 responses. Collectively, our results establish a role for CLEC-1 as an inhibitory receptor in DCs able to dampen activation and downstream effector Th responses. As a cell-surface receptor, CLEC-1 may represent a useful therapeutic target for modulating T-cell immune responses in a clinical setting.
Collapse
|
95
|
Oberli MA, Reichmuth AM, Dorkin JR, Mitchell MJ, Fenton OS, Jaklenec A, Anderson DG, Langer R, Blankschtein D. Lipid Nanoparticle Assisted mRNA Delivery for Potent Cancer Immunotherapy. NANO LETTERS 2017; 17:1326-1335. [PMID: 28273716 PMCID: PMC5523404 DOI: 10.1021/acs.nanolett.6b03329] [Citation(s) in RCA: 514] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The induction of a strong cytotoxic T cell response is an important prerequisite for successful immunotherapy against many viral diseases and tumors. Nucleotide vaccines, including mRNA vaccines with their intracellular antigen synthesis, have been shown to be potent activators of a cytotoxic immune response. The intracellular delivery of mRNA vaccines to the cytosol of antigen presenting immune cells is still not sufficiently well understood. Here, we report on the development of a lipid nanoparticle formulation for the delivery of mRNA vaccines to induce a cytotoxic CD 8 T cell response. We show transfection of dendritic cells, macrophages, and neutrophils. The efficacy of the vaccine was tested in an aggressive B16F10 melanoma model. We found a strong CD 8 T cell activation after a single immunization. Treatment of B16F10 melanoma tumors with lipid nanoparticles containing mRNA coding for the tumor-associated antigens gp100 and TRP2 resulted in tumor shrinkage and extended the overall survival of the treated mice. The immune response can be further increased by the incorporation of the adjuvant LPS. In conclusion, the lipid nanoparticle formulation presented here is a promising vector for mRNA vaccine delivery, one that is capable of inducing a strong cytotoxic T cell response. Further optimization, including the incorporation of different adjuvants, will likely enhance the potency of the vaccine.
Collapse
Affiliation(s)
- Matthias A. Oberli
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Andreas M. Reichmuth
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - J. Robert Dorkin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael J. Mitchell
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Owen S. Fenton
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ana Jaklenec
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Daniel G. Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
96
|
Volckmar J, Gereke M, Ebensen T, Riese P, Philipsen L, Lienenklaus S, Wohlleber D, Klopfleisch R, Stegemann-Koniszewski S, Müller AJ, Gruber AD, Knolle P, Guzman CA, Bruder D. Targeted antigen delivery to dendritic cells elicits robust antiviral T cell-mediated immunity in the liver. Sci Rep 2017; 7:43985. [PMID: 28266658 PMCID: PMC5339819 DOI: 10.1038/srep43985] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/02/2017] [Indexed: 01/13/2023] Open
Abstract
Hepatotropic viruses such as hepatitis C virus cause life-threatening chronic liver infections in millions of people worldwide. Targeted in vivo antigen-delivery to cross-presenting dendritic cells (DCs) has proven to be extraordinarily efficient in stimulating antigen-specific T cell responses. To determine whether this approach would as well be suitable to induce local antiviral effector T cells in the liver we compared different vaccine formulations based on either the targeting of DEC-205 or TLR2/6 on cross-presenting DCs or formulations not involving in vivo DC targeting. As read-outs we used in vivo hepatotropic adenovirus challenge, histology and automated multidimensional fluorescence microscopy (MELC). We show that targeted in vivo antigen delivery to cross-presenting DCs is highly effective in inducing antiviral CTLs capable of eliminating virus-infected hepatocytes, while control vaccine formulation not involving DC targeting failed to induce immunity against hepatotropic virus. Moreover, we observed distinct patterns of CD8+ T cell interaction with virus-infected and apoptotic hepatocytes in the two DC-targeting groups suggesting that the different vaccine formulations may stimulate distinct types of effector functions. Our findings represent an important step toward the future development of vaccines against hepatotropic viruses and the treatment of patients with hepatic virus infection after liver transplantation to avoid reinfection.
Collapse
Affiliation(s)
- Julia Volckmar
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany &Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Medical Faculty of the Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Marcus Gereke
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany &Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Medical Faculty of the Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peggy Riese
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lars Philipsen
- Intravital Microscopy in Infection and Immunity, Institute for Molecular and Clinical Immunology, Medical Faculty of the Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Stefan Lienenklaus
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dirk Wohlleber
- Institute of Molecular Immunology, Technische Universität München, Germany
| | - Robert Klopfleisch
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Free University Berlin, Berlin, Germany
| | - Sabine Stegemann-Koniszewski
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany &Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Medical Faculty of the Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Andreas J Müller
- Intravital Microscopy in Infection and Immunity, Institute for Molecular and Clinical Immunology, Medical Faculty of the Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Achim D Gruber
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Free University Berlin, Berlin, Germany
| | - Percy Knolle
- Institute of Molecular Immunology, Technische Universität München, Germany.,Institute of Molecular Medicine and Experimental Immunology, Universität Bonn, Germany
| | - Carlos A Guzman
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dunja Bruder
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany &Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Medical Faculty of the Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
97
|
Thurgood LA, Chataway TK, Lower KM, Kuss BJ. From genome to proteome: Looking beyond DNA and RNA in chronic lymphocytic leukemia. J Proteomics 2017; 155:73-84. [PMID: 28069558 DOI: 10.1016/j.jprot.2017.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/11/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023]
Abstract
Chronic lymphocytic leukemia (CLL) remains the most common leukemia in the Western world. Whilst its disease course is extremely heterogeneous (ranging from indolent to aggressive), current methods are unable to accurately predict the clinical journey of each patient. There is clearly a pressing need for both improved prognostication and treatment options for patients with this disease. Whilst molecular studies have analyzed both genetic mutations and gene expression profiles of these malignant B-cells, and as a result have shed light on the pathogenesis of CLL, proteomic studies have been largely overlooked to date. This review summarizes our current knowledge of the proteomics of CLL, and discusses some of the issues in CLL proteomic research, such as reproducibility and data interpretation. In addition, we look ahead to how proteomics may significantly help in the development of a successful treatment for this currently incurable disease.
Collapse
Affiliation(s)
- Lauren A Thurgood
- Department of Haematology and Genetic Pathology, Flinders University, Adelaide, South Australia, Australia.
| | - Tim K Chataway
- Department of Physiology, Flinders University, Adelaide, South Australia, Australia
| | - Karen M Lower
- Department of Haematology and Genetic Pathology, Flinders University, Adelaide, South Australia, Australia
| | - Bryone J Kuss
- Department of Haematology and Genetic Pathology, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
98
|
Cote R, Lynn Eggink L, Kenneth Hoober J. CLEC receptors, endocytosis and calcium signaling. AIMS ALLERGY AND IMMUNOLOGY 2017. [DOI: 10.3934/allergy.2017.4.207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
99
|
Zhu X, Okubo A, Igari N, Ninomiya K, Egashira Y. Modified rice bran hemicellulose inhibits vascular endothelial growth factor-induced angiogenesis in vitro via VEGFR2 and its downstream signaling pathways. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2016; 36:45-53. [PMID: 28439487 PMCID: PMC5395424 DOI: 10.12938/bmfh.16-016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/07/2016] [Indexed: 12/18/2022]
Abstract
Angiogenesis is implicated in diverse pathological conditions such as cancer, rheumatoid arthritis, psoriasis, atherosclerosis, and retinal neovascularization. In the present study, we investigated the effects of modified rice bran hemicellulose (MRBH), a water-soluble hemicellulose preparation from rice bran treated with shiitake enzymes, on vascular endothelial growth factor (VEGF)-induced angiogenesis in vitro and its mechanism. We found that MRBH significantly inhibited VEGF-induced tube formation in human umbilical vein endothelial cells (HUVECs) co-cultured with human dermal fibroblasts. We also observed that MRBH dose-dependently suppressed the VEGF-induced proliferation and migration of HUVECs. Furthermore, examination of the anti-angiogenic mechanism indicated that MRBH reduced not only VEGF-induced activation of VEGF receptor 2 but also of the downstream signaling proteins Akt, extracellular signal-regulated protein kinase 1/2, and p38 mitogen-activated protein kinase. These findings suggest that MRBH has in vitro anti-angiogenic effects that are partially mediated through the inhibition of VEGF signaling.
Collapse
Affiliation(s)
- Xia Zhu
- Research and Development Department, Daiwa Pharmaceutical Co., Ltd., 1650-88 Okubara-cho, Ushiku-shi, Ibaraki 300-1283, Japan
| | - Aya Okubo
- Research and Development Department, Daiwa Pharmaceutical Co., Ltd., 1650-88 Okubara-cho, Ushiku-shi, Ibaraki 300-1283, Japan
| | - Naoki Igari
- Research and Development Department, Daiwa Pharmaceutical Co., Ltd., 1650-88 Okubara-cho, Ushiku-shi, Ibaraki 300-1283, Japan
| | - Kentaro Ninomiya
- Marketing Planning & Support, Daiwa Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Yukari Egashira
- Laboratory of Food and Nutrition, Graduate School of Horticulture, Chiba University, Matsudo, Japan
| |
Collapse
|
100
|
Recruitment of calcineurin to the TCR positively regulates T cell activation. Nat Immunol 2016; 18:196-204. [PMID: 27941787 DOI: 10.1038/ni.3640] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/21/2016] [Indexed: 12/17/2022]
Abstract
Calcineurin is a phosphatase whose primary targets in T cells are NFAT transcription factors, and inhibition of calcineurin activity by treatment with cyclosporin A (CsA) or FK506 is a cornerstone of immunosuppressive therapies. Here we found that calcineurin was recruited to the T cell antigen receptor (TCR) signaling complex, where it reversed inhibitory phosphorylation of the tyrosine kinase Lck on Ser59 (LckS59). Loss of calcineurin activity impaired phosphorylation of Tyr493 of the tyrosine kinase ZAP-70 (ZAP-70Y493), as well as some downstream pathways in a manner consistent with signaling in cells expressing LckS59A (Lck that cannot be phosphorylated) or LckS59E (a phosphomimetic mutant). Notably, CsA inhibited integrin-LFA-1-dependent and NFAT-independent adhesion of T cells to the intercellular adhesion molecule ICAM-1, with little effect on cells expressing mutant Lck. These results provide new understanding of how widely used immunosuppressive drugs interfere with essential processes in the immune response.
Collapse
|