51
|
Dean C, Liu H, Dunning FM, Chang PY, Jackson MB, Chapman ER. Synaptotagmin-IV modulates synaptic function and long-term potentiation by regulating BDNF release. Nat Neurosci 2009; 12:767-76. [PMID: 19448629 PMCID: PMC2846764 DOI: 10.1038/nn.2315] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 03/20/2009] [Indexed: 02/07/2023]
Abstract
Synaptotagmin-IV (syt-IV) is a membrane trafficking protein that influences learning and memory, but its localization and role in synaptic function remain unclear. Here we discovered that syt-IV localizes to BDNF-containing vesicles in hippocampal neurons. Syt-IV/BDNF-harboring vesicles undergo exocytosis in both axons and dendrites, and syt-IV inhibits BDNF release at both sites. Knockout of syt-IV increases, and over-expression decreases, the rate of FM dye destaining from presynaptic terminals indirectly via changes in post-synaptic release of BDNF. Hence, post-synaptic syt-IV regulates the trans-synaptic action of BDNF to control presynaptic vesicle dynamics. Furthermore, selective loss of presynaptic syt-IV increased spontaneous quantal release, while loss of post-synaptic syt-IV increased quantal amplitude. Finally, syt-IV knockout mice exhibit enhanced LTP, which depends entirely on disinhibition of BDNF release. Thus, regulation of BDNF secretion by syt-IV emerges as a mechanism to maintain synaptic strength within a useful range during long-term potentiation.
Collapse
Affiliation(s)
- Camin Dean
- Department of Physiology, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | | | | | | |
Collapse
|
52
|
Tajparast M, Glavinović MI. Extrusion of transmitter, water and ions generates forces to close fusion pore. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:993-1008. [PMID: 19366586 DOI: 10.1016/j.bbamem.2009.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2008] [Revised: 01/07/2009] [Accepted: 01/30/2009] [Indexed: 11/16/2022]
Abstract
During exocytosis the fusion pore opens rapidly, then dilates gradually, and may subsequently close completely, but what controls its dynamics is not well understood. In this study we focus our attention on forces acting on the pore wall, and which are generated solely by the passage of transmitter, ions and water through the open fusion pore. The transport through the charged cylindrical nano-size pore is simulated using a coupled system of Poisson-Nernst-Planck and Navier-Stokes equations and the forces that act radially on the wall of the fusion pore are then estimated. Four forces are considered: a) inertial force, b) pressure, c) viscotic force, and d) electrostatic force. The inertial and viscotic forces are small, but the electrostatic force and the pressure are typically significant. High vesicular pressure tends to open the fusion pore, but the pressure induced by the transport of charged particles (glutamate, ions), which is predominant when the pore wall charge density is high tends to close the pore. The electrostatic force, which also depends on the charge density on the pore wall, is weakly repulsive before the pore dilates, but becomes attractive and pronounced as the pore dilates. Given that the vesicular concentration of free transmitter can change rapidly due to the release, or owing to the dissociation from the gel matrix, we evaluated how much and how rapidly a change of the vesicular K(+)-glutamate(-) concentration affects the concentration of glutamate(-) and ions in the pore and how such changes alter the radial force on the wall of the fusion pore. A step-like rise of the vesicular K(+)-glutamate(-) concentration leads to a chain of events. Pore concentration (and efflux) of both K(+) and glutamate(-) rise reaching their new steady-state values in less than 100 ns. Interestingly within a similar time interval the pore concentration of Na(+) also rises, whereas that of Cl(-) diminishes, although their extra-cellular concentration does not change. Finally such changes affect also the water movement. Water efflux changes bi-phasically, first increasing before decreasing to a new, but lower steady-state value. Nevertheless, even under such conditions an overall approximate neutrality of the pore is maintained remarkably well, and the electrostatic, but also inertial, viscotic and pressure forces acting on the pore wall remain constant. In conclusion the extrusion of the vesicular content generates forces, primarily the force due to the electro-kinetically induced pressure and electrostatic force (both influenced by the pore radius and even more by the charge density on the pore wall), which tend to close the fusion pore.
Collapse
Affiliation(s)
- M Tajparast
- Department of Civil Engineering, McGill University, Montreal, PQ, Canada
| | | |
Collapse
|
53
|
|
54
|
Two pathways of synaptic vesicle retrieval revealed by single-vesicle imaging. Neuron 2009; 61:397-411. [PMID: 19217377 DOI: 10.1016/j.neuron.2008.12.024] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 12/18/2008] [Accepted: 12/22/2008] [Indexed: 11/20/2022]
Abstract
Synaptic vesicle recycling is essential for maintaining efficient synaptic transmission. Detailed dissection of single-vesicle recycling still remains a major challenge. We have developed a fluorescent pH reporter that permits us to follow the fate of individual vesicles at hippocampal synapses after exocytosis. Here we show that, during low-frequency stimulation, single-vesicle fusion leads to two distinct vesicle internalizations, instead of one, as in general perception: one by a fast endocytosis pathway ( approximately 3 s), the other by a slow endocytosis pathway (after 10 s). The exocytosed vesicular proteins are preferentially recaptured in both pathways. RNAi knockdown of clathrin inhibits both pathways. As stimulation frequency increases, the number of endocytosed vesicles begins to match antecedent exocytosis. Meanwhile, the slow endocytosis is accelerated and becomes the predominant pathway. These results reveal that two pathways of endocytosis are orchestrated during neuronal activity, establishing a highly efficient endocytosis at central synapses.
Collapse
|
55
|
Xia X, Lessmann V, Martin TFJ. Imaging of evoked dense-core-vesicle exocytosis in hippocampal neurons reveals long latencies and kiss-and-run fusion events. J Cell Sci 2008; 122:75-82. [PMID: 19066284 DOI: 10.1242/jcs.034603] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Evoked neuropeptide secretion in the central nervous system occurs slowly, but the basis for slow release is not fully understood. Whereas exocytosis of single synaptic vesicles in neurons and of dense-core vesicles (DCVs) in endocrine cells have been directly visualized, single DCV exocytic events in neurons of the central nervous system have not been previously studied. We imaged DCV exocytosis in primary cultured hippocampal neurons using fluorescent propeptide cargo and total internal reflectance fluorescence microscopy. The majority of Ca(2+)-triggered exocytic events occurred from immobile plasma-membrane-proximal DCVs in the cell soma, whereas there were few events in the neurites. Strikingly, DCVs in the cell soma exhibited 50-fold greater release probabilities than those in neurites. Latencies to depolarization-evoked fusion for DCVs were surprisingly long, occurring with an average time constant (tau) of 16 seconds for DCVs in the soma and even longer for DCVs in neurites. All of the single DCV release events exhibited rapid fusion-pore openings and closures, the kinetics of which were highly dependent upon Ca(2+) levels. These ;kiss-and-run' events were associated with limited cargo secretion. Thus, the slow evoked release of neuropeptides could be attributed to very prolonged latencies from stimulation to fusion and transient fusion-pore openings that might limit cargo secretion.
Collapse
Affiliation(s)
- Xiaofeng Xia
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
56
|
Smith SM, Renden R, von Gersdorff H. Synaptic vesicle endocytosis: fast and slow modes of membrane retrieval. Trends Neurosci 2008; 31:559-68. [PMID: 18817990 DOI: 10.1016/j.tins.2008.08.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 08/18/2008] [Accepted: 08/19/2008] [Indexed: 10/21/2022]
Abstract
Several modes of synaptic vesicle release, retrieval and recycling have been identified. In a well-established mode of exocytosis, termed 'full-collapse fusion', vesicles empty their neurotransmitter content fully into the synaptic cleft by flattening out and becoming part of the presynaptic membrane. The fused vesicle membrane is then reinternalized via a slow and clathrin-dependent mode of compensatory endocytosis that takes several seconds. A more fleeting mode of vesicle fusion, termed 'kiss-and-run' exocytosis or 'flicker-fusion', indicates that during synaptic transmission some vesicles are only briefly connected to the presynaptic membrane by a transient fusion pore. Finally, a mode that retrieves a large amount of membrane, equivalent to that of several fused vesicles, termed 'bulk endocytosis', has been found after prolonged exocytosis. We are of the opinion that both fast and slow modes of endocytosis co-exist at central nervous system nerve terminals and that one mode can predominate depending on stimulus strength, temperature and synaptic maturation.
Collapse
Affiliation(s)
- Stephen M Smith
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | | | | |
Collapse
|
57
|
Abstract
Neurotransmitter release at synapses involves a highly specialized form of membrane fusion that is triggered by Ca(2+) ions and is optimized for speed. These observations were established decades ago, but only recently have the molecular mechanisms that underlie this process begun to come into view. Here, we summarize findings obtained from genetically modified neurons and neuroendocrine cells, as well as from reconstituted systems, which are beginning to reveal the molecular mechanism by which Ca(2+)-acting on the synaptic vesicle (SV) protein synaptotagmin I (syt)-triggers rapid exocytosis. This work sheds light not only on presynaptic aspects of synaptic transmission, but also on the fundamental problem of membrane fusion, which has remained a puzzle that has yet to be solved in any biological system.
Collapse
Affiliation(s)
- Edwin R Chapman
- Howard Hughes Medical Institute and Department of Physiology, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
58
|
Abstract
The aqueous compartment inside a vesicle makes its first connection with the extracellular fluid through an intermediate structure termed the exocytotic fusion pore. Progress in exocytosis can be measured in terms of the formation and growth of the fusion pore. The fusion pore has become a major focus of research in exocytosis; sensitive biophysical measurements have provided various glimpses of what it looks like and how it behaves. Some of the principal questions about the molecular mechanism of exocytosis can be cast explicitly in terms of properties and transitions of fusion pores. This Review will present current knowledge about fusion pores in Ca(2+)-triggered exocytosis, highlight recent advances and relate questions about fusion pores to broader issues concerning how cells regulate exocytosis and how nerve terminals release neurotransmitter.
Collapse
Affiliation(s)
- Meyer B Jackson
- Department of Physiology, University of Wisconsin School of Medicine and Public Health, 1300 University Avenue, Madison,WI 53706, USA.
| | | |
Collapse
|
59
|
Myosin II activation and actin reorganization regulate the mode of quantal exocytosis in mouse adrenal chromaffin cells. J Neurosci 2008; 28:4470-8. [PMID: 18434525 DOI: 10.1523/jneurosci.0008-08.2008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chromaffin cells of the adrenal medulla are innervated by the sympathetic nervous system. Stimulation causes chromaffin cells to fire action potentials, leading to the exocytosis of various classes of transmitters into the circulation. Low-frequency electrical stimulation (action potentials delivered at 0.5 Hz) causes adrenal chromaffin cells to selectively release catecholamines through a kiss-and-run fusion event. Elevated electrical stimulation (action potentials at 15 Hz) evokes fusion pore dilation, full granule collapse, and additional release of the neuropeptide-containing proteinaceous granule core. Here we apply single-cell electrophysiological, electrochemical, and fluorescence measurements to investigate the cellular mechanism for this shift in exocytic behavior. We show that at low-frequency stimulation, a filamentous-actin cell cortex plays a key role in stabilizing the kiss-and-run fusion event. Increased stimulation disrupts the actin cortex, driving full granule collapse. We show that pharmacological perturbation of the actin cortex supersedes stimulus frequency in controlling exocytic mode. Finally, we show that nonmuscle myosin II activation contributes to the cytoskeleton-dependent control of the fusion event. Inhibition of myosin II or myosin light chain kinase under elevated stimulation frequencies inhibits fusion pore dilation and maintains the granule in a kiss-and-run mode of exocytosis. These results demonstrate an essential role for activity-evoked cytoskeletal rearrangement and the action of myosin II in the regulation of catecholamine and neuropeptide exocytosis and represent an essential element of the sympathetic stress response.
Collapse
|
60
|
Dynamin I plays dual roles in the activity-dependent shift in exocytic mode in mouse adrenal chromaffin cells. Arch Biochem Biophys 2008; 477:146-54. [PMID: 18492483 DOI: 10.1016/j.abb.2008.04.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 04/21/2008] [Accepted: 04/23/2008] [Indexed: 11/21/2022]
Abstract
Under low stimulation, adrenal chromaffin cells release freely soluble catecholamines through a restricted granule fusion pore while retaining the large neuropeptide-containing proteinacious granule core. Elevated activity causes dilation of the pore and release of all granule contents. Thus, physiological differential transmitter release is achieved through regulation of fusion pore dilation. We examined the mechanism for pore dilation utilizing a combined approach of peptide transfection, electrophysiology, electrochemistry and quantitative imaging techniques. We report that disruption of dynamin I function alters both fusion modes. Under low stimulation, interference with dynamin I does not affect granule fusion but blocks its re-internalization. In full collapse mode, disruption of dynamin I limits fusion pore dilation, but does not block membrane re-internalization. These data suggest that dynamin I is involved in both modes of exocytosis by regulating contraction or dilation of the fusion pore and thus contributes to activity-dependent differential transmitter release from the adrenal medulla.
Collapse
|
61
|
Johnson JM, Betz WJ. The color of lactotroph secretory granules stained with FM1-43 depends on dye concentration. Biophys J 2008; 94:3167-77. [PMID: 18065476 PMCID: PMC2275707 DOI: 10.1529/biophysj.107.112573] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 11/15/2007] [Indexed: 11/18/2022] Open
Abstract
When pituitary lactotroph granules undergo exocytosis in the presence of FM1-43, their cores absorb dye and fluoresce brightly. We report that different granules fluoresce with different colors, despite being stained with a single fluorescent dye; emission spectra from individual granules show up to a 25 nm difference between the greenest and reddest granules. We found a correlation between granule color and average fluorescence intensity, suggesting that granule color depends upon dye concentration. We confirmed this in two ways: by increasing FM dye concentration in granules, which red shifted granule color, and by partially photobleaching the FM dye in granules, which green shifted granule color. Increasing stimulation intensity (by increasing KCl concentration) increased the proportion of red granules, indicating that granules exocytosing during intense stimulation bound more dye. This, perhaps, reflects differences in granule core maturation and condensation in which mature granules with condensed cores bind more FM dye but require more intense stimulation to be released. Concentration-dependent color shifts of FM dyes may be useful for monitoring aggregation processes occurring on a size scale smaller than the optical limit.
Collapse
Affiliation(s)
- Joseph M Johnson
- Department of Physiology and Biophysics, University of Colorado Medical School, Aurora, Colorado 80045, USA
| | | |
Collapse
|
62
|
Abstract
In small presynaptic boutons in brain, synaptic vesicles are thought not to merge with the plasma membrane when they release transmitter, but instead to close their fusion pores and survive intact for future use (kiss-and-run exocytosis). The strongest evidence for this idea is the slow and incomplete release of the fluorescent membrane marker, FM1-43 [N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl) pyridinium dibromide], from single vesicles. We investigated the release of FM1-43 from sparse cultures of hippocampal neurons grown on coverslips with no glia. This allowed presynaptic boutons to be imaged at favorable signal-to-noise ratio. Sparingly stained boutons were imaged at high time resolution, while high-frequency electrical stimulation caused exocytosis. The release of FM1-43 was quantal and occurred in abrupt steps, each representing a single fusion event. The fluorescence of vesicle clusters traveling along axons had a distribution with the same quantal size, indicating that a vesicle releases all the dye it contains. In most fusion events, the time constant of dye release was <100 ms, and slower release was rarely observed. After exocytosis, no FM1-43 could be detected in the axon to either side of a bouton, indicating that dye was released before it could spread. Our results are consistent with synaptic vesicles fusing fully with the plasma membrane during high-frequency stimulation.
Collapse
|
63
|
Verstreken P, Ohyama T, Bellen HJ. FM 1-43 labeling of synaptic vesicle pools at the Drosophila neuromuscular junction. Methods Mol Biol 2008; 440:349-69. [PMID: 18369958 PMCID: PMC2712823 DOI: 10.1007/978-1-59745-178-9_26] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To maintain transmitter release during intense stimulation, neurons need to efficiently recycle vesicles at the synapse. Following membrane fusion, vesicles are reshaped and formed from the plasma membrane by bulk or clathrin-mediated endocytosis. Most synapses, including the Drosophila neuromuscular junction (NMJ), can also recycle synaptic vesicles directly by closing the fusion pore, a process referred to as "kiss and run." While the process of clathrin-mediated vesicle retrieval is under intense investigation, the kiss-and-run phenomenon remains much less accepted. To gain better insight into the mechanisms of synaptic vesicle recycling, it is therefore critical not only to identify and characterize novel players involved in the process, but also to develop novel methods to study vesicle recycling. Although in recent years numerous techniques to study vesicle traffic have been developed (see also this volume), in this chapter we outline established procedures that use the fluorescent dye FM 1-43 or related compounds to study vesicle cycling. We describe how FM 1-43 can be used to study and visualize clathrin-mediated or bulk endocytosis from the presynaptic membrane as well as exocytosis of labeled vesicles at the Drosophila NMJ, one of the best-characterized model synapses to study synaptic function in a genetic model system.
Collapse
Affiliation(s)
- Patrik Verstreken
- VIB, Department of Molecular and Developmental Genetics and K.U. Leuven, Center for Human Genetics, Leuven, Belgium
| | | | | |
Collapse
|
64
|
Single-vesicle imaging reveals that synaptic vesicle exocytosis and endocytosis are coupled by a single stochastic mode. Proc Natl Acad Sci U S A 2007; 104:20576-81. [PMID: 18077369 DOI: 10.1073/pnas.0707574105] [Citation(s) in RCA: 205] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nature of synaptic vesicle recycling at nerve terminals has been a subject of considerable debate for >35 years. Here, we report the use of an optical strategy that allows the exocytosis and retrieval of synaptic components to be tracked in real time at single-molecule sensitivity in living nerve terminals. This approach has allowed us to examine the recycling of synaptic vesicles in response to single action potentials. Our results show that, after exocytosis, individual synaptic vesicles are retrieved by a stochastic process with an exponential distribution of delay times, with a mean time of approximately 14 s. We propose that evidence for fast endocytosis, such as that proposed to support the presence of kiss-and-run, is likely explained by the stochastic nature of a slower process.
Collapse
|
65
|
Modes of vesicle retrieval at ribbon synapses, calyx-type synapses, and small central synapses. J Neurosci 2007; 27:11793-802. [PMID: 17978015 DOI: 10.1523/jneurosci.3471-07.2007] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
66
|
Quantum dots provide an optical signal specific to full collapse fusion of synaptic vesicles. Proc Natl Acad Sci U S A 2007; 104:17843-8. [PMID: 17968015 DOI: 10.1073/pnas.0706906104] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synaptic vesicles are responsible for releasing neurotransmitters and are thus essential to brain function. The classical mode of vesicle recycling includes full collapse of the vesicle into the plasma membrane and clathrin-mediated regeneration of a new vesicle. In contrast, a nonclassical mode known as "kiss-and-run" features fusion by a transient fusion pore without complete loss of vesicle identity and offers possible advantages for increasing the throughput of neurotransmission. Studies of vesicular traffic have benefited greatly from fluorescent probes like FM dyes and synaptopHluorin. However, intrinsic properties of these probes limit their ability to provide a simple and precise distinction between classical and nonclassical modes. Here we report a novel optical probe specific to full collapse fusion, capitalizing on the size and superior photo-properties of photoluminescent quantum dots (Qdots). Qdots with exposed carboxyl groups were readily taken up by synaptic vesicles in an activity-, Ca(2+)-, and clathrin-dependent manner. Electron microscopy showed that Qdots were harbored within individual vesicles in a 1:1 ratio. The release of Qdots was activity- and Ca(2+)-dependent, similar to FM dyes. As artificial cargo, approximately 15 nm in diameter, Qdots will not escape vesicles during kiss-and-run but only with full collapse fusion. Strikingly, Qdots unloaded with kinetics substantially slower than destaining of FM dye, indicating that full-collapse fusion contributed only a fraction of all fusion events. As a full-collapse-fusion-responsive reporter, Qdots will likely promote better understanding of vesicle recycling at small CNS nerve terminals.
Collapse
|
67
|
Abdulreda MH, Bhalla A, Chapman ER, Moy VT. Atomic force microscope spectroscopy reveals a hemifusion intermediate during soluble N-ethylmaleimide-sensitive factor-attachment protein receptors-mediated membrane fusion. Biophys J 2007; 94:648-55. [PMID: 17872963 PMCID: PMC2157233 DOI: 10.1529/biophysj.107.114298] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study investigated the effect of soluble N-ethylmaleimide-sensitive factor-attachment protein (SNAP) receptors (SNAREs) on the fusion of egg L-alpha-phosphatidylcholine bilayers using atomic force microscope (AFM) spectroscopy. AFM measurements of the fusion force under compression were acquired to reveal the energy landscape of the fusion process. A single main energy barrier governing the fusion process was identified in the absence and presence of SNAREs in the bilayers. Under compression, a significant downward shift in the fusion dynamic force spectrum was observed when cognate v- and t-SNAREs were present in the opposite bilayers. The presence of vesicle-associated membrane protein (VAMP) and binary syntaxin and SNAP 25 in the apposed bilayers resulted in a reduction in the height of the activation potential by approximately 1.3 k(B)T and a >2-fold increase in the width of the energy barrier. The widening of the energy barrier in the presence SNAREs is interpreted as an increase in the compressibility of the membranes, which translates to a greater ease in the bilayer deformation and subsequently the fusion of the membranes under compression. Facilitation of membrane fusion was observed only when SNAREs were present in both bilayers. Moreover, addition of the soluble cytoplasmic domain of VAMP, which interferes with the interaction between opposing v- and t-SNAREs, prevented such facilitation. These observations implicated the interaction between the cytoplasmic domains of opposing SNAREs in the observed fusion facilitation, possibly by destabilizing the bilayers through pulling on their transmembrane segments. Our AFM compression measurements revealed that SNARE-mediated membrane fusion proceeded through a sequence of two approximately 5 nm collapses of the membrane, an observation that is consistent with the existence of a hemifused state during the fusion process.
Collapse
Affiliation(s)
- Midhat H Abdulreda
- University of Miami Miller School of Medicine, Physiology and Biophysics Department, Miami, Florida 33136, USA
| | | | | | | |
Collapse
|
68
|
Stenovec M, Solmajer T, Perdih A, Vardjan N, Kreft M, Zorec R. Distinct labelling of fusion events in rat lactotrophs by FM 1-43 and FM 4-64 is associated with conformational differences. Acta Physiol (Oxf) 2007; 191:35-42. [PMID: 17550407 DOI: 10.1111/j.1748-1716.2007.01716.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM Conformational analysis of fluorescent styryl dyes FM 1-43 and FM 4-64 was undertaken to clarify if distinct activity-dependent labelling of single lactotrophs vesicles and plasma membrane by two dyes is associated with their structural differences. METHODS The activity-dependent labelling of single vesicles and plasma membrane by FM 1-43 and FM 4-64 was studied using confocal microscopy. The fluorescence intensity of vesicles fused with the plasma membrane, and the plasma membrane alone was measured; the ratio of their respective peak amplitudes was calculated. The conformational analysis of FM 1-43 and FM 4-64 was further undertaken by employing the Monte Carlo approach to search the conformational space of these molecules. RESULTS In FM 1-43 staining of vesicles and plasma membrane, the ratio of the fluorescence peak amplitudes (vesicle vs. plasma membrane) was 2.6 times higher in comparison with FM 4-64 staining. In FM 4-64 molecule the low-energy conformations are distributed in three conformational states (consisting of 3, 4 and 2 conformers respectively) in which the proportion of the molecules residing in a given state is 62%, 28% and 9% respectively. In FM 1-43 the conformation distribution is limited to just one conformational state with three approximately equally populated conformers what can be explained by greater intrinsic rigidity of the molecule. CONCLUSIONS The observed structural characteristics of FM 1-43 molecules may account for a higher increase in quantum yield and/or binding affinity upon incorporation of the dye into the vesicle matrix and therefore stronger fluorescence emission in comparison with FM 4-64.
Collapse
Affiliation(s)
- M Stenovec
- Celica Biomedical Center, Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
69
|
He L, Wu LG. The debate on the kiss-and-run fusion at synapses. Trends Neurosci 2007; 30:447-55. [PMID: 17765328 DOI: 10.1016/j.tins.2007.06.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 06/08/2007] [Accepted: 06/13/2007] [Indexed: 11/17/2022]
Abstract
It has long been proposed that following vesicle fusion, a small pore might open and close rapidly without full dilation. Such 'kiss-and-run' vesicle fusion can in principle result in rapid vesicle recycling and influence the size and the kinetics of the resulting synaptic current. However, the existence of kiss-and-run remains highly controversial, as revealed by recent imaging and electrophysiological studies at several synapses, including hippocampal synapses, neuromuscular junctions and retinal bipolar synapses. Only a minor fraction of fusion events has been shown to be kiss-and-run, as determined using cell-attached capacitance recordings in endocrine cells, pituitary nerve terminals and calyx-type synapses. Further work is needed to determine whether kiss-and-run is a major mode of fusion and has a major role in controlling synaptic strength at synapses.
Collapse
Affiliation(s)
- Liming He
- National Institute of Neurological Disorders and Stroke, 35 Convent Drive, Bldg 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | | |
Collapse
|
70
|
Granseth B, Odermatt B, Royle SJ, Lagnado L. Clathrin-mediated endocytosis: the physiological mechanism of vesicle retrieval at hippocampal synapses. J Physiol 2007; 585:681-6. [PMID: 17599959 PMCID: PMC2375507 DOI: 10.1113/jphysiol.2007.139022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The maintenance of synaptic transmission requires that vesicles are recycled after releasing neurotransmitter. Several modes of retrieval have been proposed to operate at small synaptic terminals of central neurons, but the relative importance of these has been controversial. It is established that synaptic vesicles can collapse on fusion and the machinery for retrieving this membrane by clathrin-mediated endocytosis (CME) is enriched in the presynaptic terminal. But it has also been suggested that the majority of vesicles released by physiological stimulation are recycled by a second, faster mechanism called 'kiss-and-run', which operates in 1 s or less to retrieve a vesicle before it has collapsed. The most recent evidence argues against the occurrence of 'kiss-and-run' in hippocampal synapses. First, an improved fluorescent reporter of exocytosis (sypHy), indicates that only a slow mode of endocytosis (tau = 15 s) operates when vesicle fusion is triggered by a single nerve impulse or short burst. Second, this retrieval mechanism is blocked by overexpressing the C-terminal fragment of AP180 or by knockdown of clathrin using RNAi. Third, vesicle fusion is associated with the movement of clathrin and vesicle proteins out of the synapse into the neighbouring axon. These observations indicate that clathrin-mediated endocytosis is the major, if not exclusive, mechanism of retrieval in small hippocampal synapses.
Collapse
Affiliation(s)
- Björn Granseth
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK
| | | | | | | |
Collapse
|
71
|
Abstract
Two models of synaptic vesicle recycling have been intensely debated for decades: kiss-and-run, in which the vesicle opens and closes transiently, presumably through a small fusion pore, and full fusion, in which the vesicle collapses into the plasma membrane and is retrieved by clathrin-coat-dependent processes. Conceptually, it seems that kiss-and-run would be faster and would retrieve vesicles with greater fidelity. Is this the case? This review discusses recent evidence for both models. We conclude that both mechanisms allow for high fidelity of vesicle recycling. Also, the presence in the plasma membrane of a depot of previously fused vesicles that are already interacting with the endocytotic machinery (the 'readily retrievable' vesicles) allows full fusion to trigger quite fast endocytosis, further blurring the efficiency differences between the two models.
Collapse
Affiliation(s)
- Silvio O Rizzoli
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | |
Collapse
|
72
|
Schwartz EJ, Blackmer T, Gerachshenko T, Alford S. Presynaptic G-protein-coupled receptors regulate synaptic cleft glutamate via transient vesicle fusion. J Neurosci 2007; 27:5857-68. [PMID: 17537956 PMCID: PMC6672243 DOI: 10.1523/jneurosci.1160-07.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
When synaptic vesicles fuse with the plasma membrane, they may completely collapse or fuse transiently. Transiently fusing vesicles remain structurally intact and therefore have been proposed to represent a form of rapid vesicle recycling. However, the impact of a transient synaptic vesicle fusion event on neurotransmitter release, and therefore on synaptic transmission, has yet to be determined. Recently, the molecular mechanism by which a serotonergic presynaptic G-protein-coupled receptor (GPCR) regulates synaptic vesicle fusion and inhibits synaptic transmission was identified. By making paired electrophysiological recordings in the presence and absence of low-affinity antagonists, we now demonstrate that activation of this presynaptic GPCR lowers the peak synaptic cleft glutamate concentration independently of the probability of vesicle fusion. Furthermore, this change in cleft glutamate concentration differentially inhibits synaptic NMDA and AMPA receptor-mediated currents. We conclude that a presynaptic GPCR regulates the profile of glutamate in the synaptic cleft through altering the mechanism of vesicle fusion leading to qualitative as well as quantitative changes in neural signaling.
Collapse
Affiliation(s)
- Eric J. Schwartz
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Trillium Blackmer
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Tatyana Gerachshenko
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Simon Alford
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| |
Collapse
|
73
|
Vardjan N, Stenovec M, Jorgačevski J, Kreft M, Zorec R. Subnanometer fusion pores in spontaneous exocytosis of peptidergic vesicles. J Neurosci 2007; 27:4737-46. [PMID: 17460086 PMCID: PMC6672992 DOI: 10.1523/jneurosci.0351-07.2007] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Kiss-and-run exocytosis, consisting of reversible fusion between the vesicle membrane and the plasma membrane, is considered to lead to full fusion after stimulation of vesicles containing classical transmitters. However, whether this is also the case in the fusion of peptidergic vesicles is unknown. Previously, we have observed that spontaneous neuropeptide discharge from a single vesicle is slower than stimulated release, because of the kinetic constraints of fusion pore opening. To explore whether slow spontaneous release also reflects a relatively narrow fusion pore, we analyzed the permeation of FM 4-64 dye and HEPES molecules through spontaneously forming fusion pores in lactotroph vesicles expressing synaptopHluorin, a pH-dependent fluorescent fusion marker. Confocal imaging showed that half of the spontaneous exocytotic events exhibited fusion pore openings associated with a change in synaptopHluorin fluorescence but were impermeable to FM 4-64 and HEPES. Together with membrane capacitance measurements, these findings indicate an open fusion pore diameter <0.5 nm, much smaller than the neuropeptides. In stimulated cells, >70% of exocytotic events exhibited a larger, FM 4-64-permeable pore (>1 nm). Interestingly, capacitance measurements showed that the majority of exocytotic events in spontaneous and stimulated conditions were transient. Stimulation increased the frequency of transient events and the fusion pore dwell time but decreased the fraction of events with lowest measurable fusion pore. Kiss-and-run is the predominant mode of exocytosis in resting and in stimulated peptidergic vesicles. Stimulation prolongs the effective opening of the fusion pore and expands its primary subnanometer diameter to enable hormone secretion without full fusion.
Collapse
Affiliation(s)
- Nina Vardjan
- Celica Biomedical Center, 1000 Ljubljana, Slovenia, and
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Medical School, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Matjaž Stenovec
- Celica Biomedical Center, 1000 Ljubljana, Slovenia, and
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Medical School, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Medical School, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Marko Kreft
- Celica Biomedical Center, 1000 Ljubljana, Slovenia, and
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Medical School, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Celica Biomedical Center, 1000 Ljubljana, Slovenia, and
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Medical School, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
74
|
Voglmaier SM, Edwards RH. Do different endocytic pathways make different synaptic vesicles? Curr Opin Neurobiol 2007; 17:374-80. [PMID: 17449236 DOI: 10.1016/j.conb.2007.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 04/11/2007] [Indexed: 11/23/2022]
Abstract
At a wide range of synapses, synaptic vesicles reside in distinct pools that respond to different stimuli. The recycling pool supplies the vesicles required for release in response to modest stimulation, whereas the reserve pool is mobilized only by strong stimulation. Multiple pathways have been proposed for the recycling of synaptic vesicles after exocytosis, but the relationship of these pathways to the different synaptic vesicle pools has remained unclear. Synaptic vesicle proteins have also been assumed to undergo recycling as a unit. However, emerging data indicate that differences in the association with distinct endocytic adaptors such as the heterotetrameric adaptor AP3 influence the trafficking of individual synaptic vesicle proteins, affecting the composition of synaptic vesicles and hence their functional characteristics. These observations might begin to account for differences in the properties of different vesicle pools.
Collapse
Affiliation(s)
- Susan M Voglmaier
- Department of Psychiatry, UCSF School of Medicine, 600 16th Street, San Francisco, CA 94158-2517, USA
| | | |
Collapse
|
75
|
Ertunc M, Sara Y, Chung C, Atasoy D, Virmani T, Kavalali ET. Fast synaptic vesicle reuse slows the rate of synaptic depression in the CA1 region of hippocampus. J Neurosci 2007; 27:341-54. [PMID: 17215395 PMCID: PMC6672081 DOI: 10.1523/jneurosci.4051-06.2007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During short-term synaptic depression, neurotransmission rapidly decreases in response to repetitive action potential firing. Here, by blocking the vacuolar ATPase, alkalinizing the extracellular pH, or exposing hippocampal slices to pH buffers, we impaired neurotransmitter refilling, and electrophysiologically tested the role of vesicle reuse in synaptic depression. Under all conditions, synapses onto hippocampal CA1 pyramidal cells showed faster depression with increasing stimulation frequencies. At 20 Hz, compromising neurotransmitter refilling increased depression within 300 ms reaching completion within 2 s, suggesting a minimal contribution of reserve vesicles to neurotransmission. In contrast, at 1 Hz, depression emerged gradually and became significant within 100 s. Moreover, the depression induced by pH buffers was reversible with a similar frequency dependence, suggesting that the frequency-dependent increase in depression was caused by impairment of rapid synaptic vesicle reuse. These results indicate that synaptic vesicle trafficking impacts the kinetics of short-term synaptic plasticity at an extremely rapid time scale.
Collapse
Affiliation(s)
- Mert Ertunc
- Center for Basic Neuroscience and Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| | - Yildirim Sara
- Center for Basic Neuroscience and Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| | - ChiHye Chung
- Center for Basic Neuroscience and Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| | - Deniz Atasoy
- Center for Basic Neuroscience and Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| | - Tuhin Virmani
- Center for Basic Neuroscience and Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| | - Ege T. Kavalali
- Center for Basic Neuroscience and Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| |
Collapse
|
76
|
Abstract
FM dyes have been used to label and then monitor synaptic vesicles, secretory granules and other endocytic structures in a variety of preparations. Here, we describe the general procedure for using FM dyes to study endosomal trafficking in general, and synaptic vesicle recycling in particular. The dye, dissolved in normal saline solution, is added to a chamber containing the preparation to be labeled. Stimulation evokes exocytosis, and compensatory endocytosis that follows traps FM dye inside the retrieved vesicles. The extracellular dye is then washed from the chamber, and labeled endocytic structures are examined with a fluorescence microscope. Fluorescence intensity provides a direct measure of the labeled vesicle number, a good measure of the amount of exocytosis. If the preparation is stimulated again, without dye in the chamber, dimming of the preparation provides a measure of exocytosis of labeled vesicles. With a synaptic preparation on hand, this protocol requires 1 day.
Collapse
Affiliation(s)
- Michael A Gaffield
- Neuroscience Program, University of Colorado Medical School, Aurora, Colorado 80045, USA
| | | |
Collapse
|
77
|
Serulle Y, Sugimori M, Llinás RR. Imaging synaptosomal calcium concentration microdomains and vesicle fusion by using total internal reflection fluorescent microscopy. Proc Natl Acad Sci U S A 2007; 104:1697-702. [PMID: 17242349 PMCID: PMC1785242 DOI: 10.1073/pnas.0610741104] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transmitter release at chemical synapses is triggered by high calcium concentration microprofiles at the presynaptic cytosol. Such microprofiles, generated by the opening of voltage-dependent calcium channels at the presynaptic plasma membrane, have been defined as calcium concentration microdomains. Using total internal reflection fluorescent microscopy in conjunction with calcium and vesicular release indicator dyes, we have directly visualized the close apposition of calcium concentration microdomains and synaptic release sites at single synaptic terminals from the CNS from rat cerebellar mossy fiber and squid optic lobe. These findings demonstrate the close apposition of calcium entry and release sites and the dynamics of such site locations over time. Kinetic analysis shows that vesicles can be released via two distinct mechanisms: full-fusion and kiss-and-run. Calcium triggers vesicular motion toward the membrane, and the speed of such movement is calcium concentration-dependent. Moreover, the immediately available vesicular pool represents molecularly trapped vesicles that can be located at a larger distance from the plasma membrane than the field illuminated by total internal reflection fluorescent microscopy.
Collapse
Affiliation(s)
- Yafell Serulle
- *Program in Neuroscience and Physiology
- Department of Biochemistry, and
- Marine Biological Laboratory, Woods Hole, MA 02543
| | - Mutsuyuki Sugimori
- *Program in Neuroscience and Physiology
- Department of Physiology and Neuroscience, New York University School of Medicine, New York, NY 10016; and
- Marine Biological Laboratory, Woods Hole, MA 02543
| | - Rodolfo R. Llinás
- *Program in Neuroscience and Physiology
- Department of Physiology and Neuroscience, New York University School of Medicine, New York, NY 10016; and
- Marine Biological Laboratory, Woods Hole, MA 02543
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
78
|
Newton AJ, Kirchhausen T, Murthy VN. Inhibition of dynamin completely blocks compensatory synaptic vesicle endocytosis. Proc Natl Acad Sci U S A 2006; 103:17955-60. [PMID: 17093049 PMCID: PMC1693854 DOI: 10.1073/pnas.0606212103] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ability of synapses to sustain signal propagation relies on rapid recycling of transmitter-containing presynaptic vesicles. Clathrin- and dynamin-mediated retrieval of vesicular membrane has an undisputed role in synaptic vesicle recycling. There is also evidence for other modes of vesicle retrieval, including bulk retrieval and the so-called kiss-and-run recycling. Whether dynamin in required for these other modes of synaptic vesicle endocytosis remains unclear. Here, we have tested the role of dynamin in synaptic vesicle endocytosis by using a small molecule called dynasore, which rapidly inhibits the GTPase activity of dynamin with high specificity. Endocytosis after sustained or brief stimuli was completely and reversibly blocked by dynasore in cultured hippocampal neurons expressing the fluorescent tracer synaptopHluorin. By contrast, dynasore had no effect on exocytosis. In the presence of dynasore, low-frequency stimulation led to sustained accumulation of synaptopHluorin and other vesicular proteins on the surface membrane at a rate predicted from net exocytosis. These vesicular components remained on surface membranes even after the stimulus was terminated, suggesting that all endocytic events rely on dynamin during low-frequency activity as well as in the period after it. Ultrastructural analysis revealed a reduction in the density of synaptic vesicles and the presence of endocytic structures only at synapses that were stimulated in the presence of dynasore. In sum, our data indicate that dynamin is essential for all forms of compensatory synaptic vesicle endocytosis including any kiss-and-run events.
Collapse
Affiliation(s)
- A. Jamila Newton
- *Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138; and
| | - Tom Kirchhausen
- Department of Cell Biology and CBR Institute for Biomedical Research, Harvard Medical School, Boston, MA 02115
| | - Venkatesh N. Murthy
- *Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
79
|
Granseth B, Odermatt B, Royle SJ, Lagnado L. Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 2006; 51:773-86. [PMID: 16982422 DOI: 10.1016/j.neuron.2006.08.029] [Citation(s) in RCA: 506] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 08/03/2006] [Accepted: 08/28/2006] [Indexed: 10/24/2022]
Abstract
The maintenance of synaptic transmission requires that vesicles be recycled after releasing neurotransmitter. Several modes of retrieval have been proposed to operate at small synaptic terminals of central neurons, including a fast "kiss-and-run" mechanism that releases neurotransmitter through a fusion pore. Using an improved fluorescent reporter comprising pHluorin fused to synaptophysin, we find that only a slow mode of endocytosis (tau = 15 s) operates at hippocampal synapses when vesicle fusion is triggered by a single nerve impulse or short burst. This retrieval mechanism is blocked by overexpression of the C-terminal fragment of AP180 or by knockdown of clathrin using RNAi, and it is associated with the movement of clathrin and vesicle proteins out of the synapse. These results indicate that clathrin-mediated endocytosis is the major, if not exclusive, mechanism of vesicle retrieval after physiological stimuli.
Collapse
Affiliation(s)
- Björn Granseth
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, United Kingdom
| | | | | | | |
Collapse
|
80
|
Lisman J, Raghavachari S. A unified model of the presynaptic and postsynaptic changes during LTP at CA1 synapses. ACTA ACUST UNITED AC 2006; 2006:re11. [PMID: 17033044 DOI: 10.1126/stke.3562006re11] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Long-term potentiation (LTP) has been studied extensively at CA1 synapses of the hippocampus, and there is evidence implicating both postsynaptic and presynaptic changes in this process. These changes include (i) addition of AMPA channels to the extrasynaptic membrane and diffusional equilibrium of extrasynaptic receptors with synaptic receptors, (ii) sudden addition of AMPA channels to the synapse in large groups, (iii) a change in the mode of glutamate release (presumably from kiss-and-run to full fusion), and (iv) a delayed increase in the number of vesicles released. However, it remains unclear whether (or how) these changes work together. We have incorporated all of these processes into a structural model of the synapse. We propose that the synapse is composed of transsynaptic modules that function quasi-independently in AMPA-mediated transmission. Under basal conditions, synapses are partially silent; some modules are AMPA-silent (but contribute to NMDA-mediated transmission), whereas others are functional (and contribute to both AMPA- and NMDA-mediated transmission). During LTP, there is both a rapid change in the mode of vesicle fusion and a rapid insertion of a postsynaptic complex (a hyperslot) containing many proteins (slots) capable of binding AMPA channels. The combined effect of these pre- and postsynaptic changes is to convert AMPA-silent modules into functional modules. Slot filling is transiently enhanced by a rapid increase in extrasynaptic GluR1, a form of the AMPA-type receptor. A slower transsynaptic growth process adds AMPA-silent modules to the synapse, enhancing the number of vesicles released and thereby enhancing the NMDA response. This model accounts for a broad range of data, including the LTP-induced changes in quantal parameters. The model also provides a coherent explanation for the diverse effects of GluR1 knockout on basal transmission, LTP, and distance-dependent scaling.
Collapse
Affiliation(s)
- John Lisman
- Department of Biology, Brandeis University, Waltham, MA 02454, USA.
| | | |
Collapse
|
81
|
Harata NC, Aravanis AM, Tsien RW. Kiss-and-run and full-collapse fusion as modes of exo-endocytosis in neurosecretion. J Neurochem 2006; 97:1546-70. [PMID: 16805768 DOI: 10.1111/j.1471-4159.2006.03987.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurotransmitters and hormones are released from neurosecretory cells by exocytosis (fusion) of synaptic vesicles, large dense-core vesicles and other types of vesicles or granules. The exocytosis is terminated and followed by endocytosis (retrieval). More than fifty years of research have established full-collapse fusion and clathrin-mediated endocytosis as essential modes of exo-endocytosis. Kiss-and-run and vesicle reuse represent alternative modes, but their prevalence and importance have yet to be elucidated, especially in neurons of the mammalian CNS. Here we examine various modes of exo-endocytosis across a wide range of neurosecretory systems. Full-collapse fusion and kiss-and-run coexist in many systems and play active roles in exocytotic events. In small nerve terminals of CNS, kiss-and-run has an additional role of enabling nerve terminals to conserve scarce vesicular resources and respond to high-frequency inputs. Full-collapse fusion and kiss-and-run will each contribute to maintaining cellular communication over a wide range of frequencies.
Collapse
Affiliation(s)
- Nobutoshi C Harata
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA
| | | | | |
Collapse
|
82
|
Abstract
Exocytosis is initiated within a highly localized region of contact between two biological membranes. Small areas of these membranes draw close, molecules on the two surfaces interact, and structural transformations take place. Membrane fusion requires the action of proteins specialized for this task, and these proteins act as a fusion machine. At a critical point in this process, a fusion pore forms within the membrane contact site and then expands as the spherical vesicle merges with the flat target membrane. Hence, the operation of a fusion machine must be realized through the formation and expansion of a fusion pore. Delineating the relation between the fusion machine and the fusion pore thus emerges as a central goal in elucidating the mechanisms of membrane fusion. We summarize present knowledge of fusion machines and fusion pores studied in vitro, in neurons, and in neuroendocrine cells, and synthesize this knowledge into some specific and detailed hypotheses for exocytosis.
Collapse
Affiliation(s)
- Meyer B Jackson
- Howard Hughes Medical Institute, 2Department of Physiology, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
83
|
Becherer U, Rettig J. Vesicle pools, docking, priming, and release. Cell Tissue Res 2006; 326:393-407. [PMID: 16819626 DOI: 10.1007/s00441-006-0243-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 05/09/2006] [Indexed: 10/24/2022]
Abstract
The release of neurotransmitter from synaptic vesicles represents the final event by which presynapses send their chemical signal to the receiving postsynapses. Prior to fusion, synaptic vesicles undergo a series of maturation events, most notably the membrane-delimited docking and priming steps. Physiological and optical experiments with high-time resolution have allowed the distinction of vesicles in different maturation states with respect to fusion, the so-called vesicle pools. In this review, we define the various vesicle pools and discuss pathways leading into and out of these pools. We also provide an overview of an array of proteins that have been identified or are speculated to play a role in the transition between the various vesicle pools.
Collapse
Affiliation(s)
- Ute Becherer
- Universität des Saarlandes, Physiologisches Institut, Gebäude 59, Kirrberger Strasse 8, 66421, Homburg/Saar, Germany
| | | |
Collapse
|
84
|
Elhamdani A, Azizi F, Artalejo CR. Double patch clamp reveals that transient fusion (kiss-and-run) is a major mechanism of secretion in calf adrenal chromaffin cells: high calcium shifts the mechanism from kiss-and-run to complete fusion. J Neurosci 2006; 26:3030-6. [PMID: 16540581 PMCID: PMC6673983 DOI: 10.1523/jneurosci.5275-05.2006] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transient fusion ("kiss-and-run") is accepted as a mode of transmitter release both in central neurons and neuroendocrine cells, but the prevalence of this mechanism compared with full fusion is still in doubt. Using a novel double patch-clamp method (whole cell/cell attached), permitting the recording of unitary capacitance events while stimulating under a variety of conditions including action potentials, we show that transient fusion is the predominant (>90%) mode of secretion in calf adrenal chromaffin cells. Raising intracellular Ca2+ concentration ([Ca]i) from 10 to 200 microM increases the incidence of full fusion events at the expense of transient fusion. Blocking rapid endocytosis that normally terminates transient fusion events also promotes full fusion events. Thus, [Ca]i controls the transition between transient and full fusion, each of which is coupled to different modes of endocytosis.
Collapse
Affiliation(s)
- Abdeladim Elhamdani
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | |
Collapse
|
85
|
Abstract
After exocytosis, synaptic vesicles are recycled locally in the synaptic terminal and are refilled with neurotransmitter via vesicular transporters. The biophysical mechanisms of refilling are poorly understood, but it is clear that the generation of a proton gradient across the vesicle membrane is crucial. To better understand the determinants of vesicle refilling, we developed a novel method to measure unambiguously the kinetics of synaptic vesicle reacidification at individual synaptic terminals. Hippocampal neurons transfected with synapto-pHluorin (SpH), a synaptic vesicle-targeted lumenal GFP (green fluorescent protein), whose fluorescence is quenched when protonated (pKa approximately 7.1), were rapidly surface-quenched immediately after trains of repetitive electrical stimulation. The recently endocytosed alkaline pool of SpH is protected from such surface quenching, and its fluorescence decay reflects reacidification kinetics. These measurements indicate that, after compensatory endocytosis, synaptic vesicles reacidify with first-order kinetics (tau approximately 4-5 s) and that their rate of reacidification is subject to slowing by increased external buffer.
Collapse
|
86
|
Abstract
Presynaptic nerve terminals are exquisite vesicle trafficking machines. Neurotransmission is sustained by constant recycling of a handful of vesicles. Therefore, the rate and the pathway of vesicle trafficking can critically determine synaptic efficacy during activity. However, it is yet unclear whether synaptic vesicle recycling becomes rate limiting on a rapid time scale during physiologically relevant forms of activity in the brain. Several forms of synaptic plasticity arise from persistent alterations in the dynamics of vesicle trafficking in presynaptic terminals. What makes presynaptic forms of plasticity particularly interesting is that they not only increase or decrease the amplitude of synaptic responses but also cause frequency-dependent changes in neurotransmission. In this manner, plasticity can alter the information coding in neural circuits beyond simple scaling of synaptic responses. However, studying the synaptic vesicle cycle beyond exocytosis and endocytosis has been difficult. In the past decade, several methods have been developed to infer vesicles' trajectory during their cycle in the synapse. Nevertheless, several questions remain. A better understanding of the role of synaptic vesicle trafficking in neurotransmission will require novel approaches that either combine existing methods or the development of new methods to trace vesicles during their cycle. Recent evidence suggests that various presynaptic proteins involved in the synaptic function and homeostasis are either mutated or altered in their expression in several neurological and psychiatric disorders. Therefore, elucidation of the mechanisms that underlie the synaptic vesicle cycle may reveal novel therapeutic targets for brain disorders.
Collapse
Affiliation(s)
- Ege T Kavalali
- Center for Basic Neuroscience and Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, 75390-9111, USA.
| |
Collapse
|
87
|
Ting JT, Kelley BG, Sullivan JM. Synaptotagmin IV does not alter excitatory fast synaptic transmission or fusion pore kinetics in mammalian CNS neurons. J Neurosci 2006; 26:372-80. [PMID: 16407532 PMCID: PMC2100427 DOI: 10.1523/jneurosci.3997-05.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptotagmin IV (Syt IV) is a brain-specific isoform of the synaptotagmin family, the levels of which are strongly elevated after seizure activity. The dominant hypothesis of Syt IV function states that Syt IV upregulation is a neuroprotective mechanism for reducing neurotransmitter release. To test this hypothesis in mammalian CNS synapses, Syt IV was overexpressed in cultured mouse hippocampal neurons, and acute effects on fast excitatory neurotransmission were assessed. We found neurotransmission unaltered with respect to basal release probability, Ca2+ dependence of release, short-term plasticity, and fusion pore kinetics. In contrast, expression of a mutant Syt I with diminished Ca2+ affinity (R233Q) reduced release probability and altered the Ca2+ dependence of release, thus demonstrating the sensitivity of the system to changes in neurotransmission resulting from changes to the Ca2+ sensor. Together, these data refute the dominant model that Syt IV functions as an inhibitor of neurotransmitter release in mammalian neurons.
Collapse
Affiliation(s)
- Jonathan T Ting
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
88
|
Photowala H, Blackmer T, Schwartz E, Hamm HE, Alford S. G protein betagamma-subunits activated by serotonin mediate presynaptic inhibition by regulating vesicle fusion properties. Proc Natl Acad Sci U S A 2006; 103:4281-6. [PMID: 16537522 PMCID: PMC1449684 DOI: 10.1073/pnas.0600509103] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurotransmitters are thought to be released as quanta, where synaptic vesicles deliver packets of neurotransmitter to the synaptic cleft by fusion with the plasma membrane. However, synaptic vesicles may undergo incomplete fusion. We provide evidence that G protein-coupled receptors inhibit release by causing such incomplete fusion. 5-hydroxytryptamine (5-HT) receptor signaling potently inhibits excitatory postsynaptic currents (EPSCs) between lamprey reticulospinal axons and their postsynaptic targets by a direct action on the vesicle fusion machinery. We show that 5-HT receptor-mediated presynaptic inhibition, at this synapse, involves a reduction in EPSC quantal size. Quantal size was measured directly by comparing unitary quantal amplitudes of paired EPSCs before and during 5-HT application and indirectly by determining the effect of 5-HT on the relationship between mean-evoked EPSC amplitude and variance. Results from FM dye-labeling experiments indicate that 5-HT prevents full fusion of vesicles. 5-HT reduces FM1-43 staining of vesicles with a similar efficacy to its effect on the EPSC. However, destaining of FM1-43-labeled vesicles is abolished by lower concentrations of 5-HT that leave a substantial EPSC. The use of a water-soluble membrane impermeant quenching agent in the extracellular space reduced FM1-43 fluorescence during stimulation in 5-HT. Thus vesicles contact the extracellular space during inhibition of synaptic transmission by 5-HT. We conclude that 5-HT, via free Gbetagamma, prevents the collapse of synaptic vesicles into the presynaptic membrane.
Collapse
Affiliation(s)
- Huzefa Photowala
- *Department of Biological Sciences, University of Illinois, 840 West Taylor Street, Chicago, IL 60607; and
| | - Trillium Blackmer
- *Department of Biological Sciences, University of Illinois, 840 West Taylor Street, Chicago, IL 60607; and
| | - Eric Schwartz
- *Department of Biological Sciences, University of Illinois, 840 West Taylor Street, Chicago, IL 60607; and
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University Medical School, 23rd Avenue South at Pierce, Nashville, TN 37232
| | - Simon Alford
- *Department of Biological Sciences, University of Illinois, 840 West Taylor Street, Chicago, IL 60607; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
89
|
Abstract
In this issue of Neuron, Harata et al. use a novel quenching technique to provide compelling evidence that kiss-and-run is the dominant mode of vesicle fusion at hippocampal synapses and that the prevalence of kiss-and-run can be modulated by stimulus frequency. The increased incidence of kiss-and-run at lower frequencies may ensure that vesicles are available for use during periods of high demand.
Collapse
Affiliation(s)
- Jane M Sullivan
- Department of Physiology and Biophysics, University of Washington School of Medicine, Box 357290, Seattle, Washington 98195, USA
| |
Collapse
|
90
|
Harata NC, Choi S, Pyle JL, Aravanis AM, Tsien RW. Frequency-dependent kinetics and prevalence of kiss-and-run and reuse at hippocampal synapses studied with novel quenching methods. Neuron 2006; 49:243-56. [PMID: 16423698 DOI: 10.1016/j.neuron.2005.12.018] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 10/12/2005] [Accepted: 12/21/2005] [Indexed: 11/29/2022]
Abstract
The kinetics of exo-endocytotic recycling could restrict information transfer at central synapses if neurotransmission were entirely reliant on classical full-collapse fusion. Nonclassical fusion retrieval by kiss-and-run would be kinetically advantageous but remains controversial. We used a hydrophilic quencher, bromophenol blue (BPB), to help detect nonclassical events. Upon stimulation, extracellular BPB entered synaptic vesicles and quenched FM1-43 fluorescence, indicating retention of FM dye beyond first fusion. BPB also quenched fluorescence of VAMP (synaptobrevin-2)-EGFP, thus indicating the timing of first fusion of vesicles in the total recycling pool. Comparison with FM dye destaining revealed that kiss-and-run strongly prevailed over full-collapse fusion at low frequency, giving way to a near-even balance at high frequency. Quickening of kiss-and-run vesicle reuse was also observed at higher frequency in the average single vesicle fluorescence response. Kiss-and-run and reuse could enable hippocampal nerve terminals to conserve scarce vesicular resources when responding to widely varying input patterns.
Collapse
Affiliation(s)
- Nobutoshi C Harata
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
91
|
Nolan S, Cowan AE, Koppel DE, Jin H, Grote E. FUS1 regulates the opening and expansion of fusion pores between mating yeast. Mol Biol Cell 2006; 17:2439-50. [PMID: 16495338 PMCID: PMC1446097 DOI: 10.1091/mbc.e05-11-1015] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mating yeast cells provide a genetically accessible system for the study of cell fusion. The dynamics of fusion pores between yeast cells were analyzed by following the exchange of fluorescent markers between fusion partners. Upon plasma membrane fusion, cytoplasmic GFP and DsRed diffuse between cells at rates proportional to the size of the fusion pore. GFP permeance measurements reveal that a typical fusion pore opens with a burst and then gradually expands. In some mating pairs, a sudden increase in GFP permeance was found, consistent with the opening of a second pore. In contrast, other fusion pores closed after permitting a limited amount of cytoplasmic exchange. Deletion of FUS1 from both mating partners caused a >10-fold reduction in the initial permeance and expansion rate of the fusion pore. Although fus1 mating pairs also have a defect in degrading the cell wall that separates mating partners before plasma membrane fusion, other cell fusion mutants with cell wall remodeling defects had more modest effects on fusion pore permeance. Karyogamy is delayed by >1 h in fus1 mating pairs, possibly as a consequence of retarded fusion pore expansion.
Collapse
Affiliation(s)
- Scott Nolan
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
92
|
Sokac AM, Bement WM. Kiss-and-coat and compartment mixing: coupling exocytosis to signal generation and local actin assembly. Mol Biol Cell 2006; 17:1495-502. [PMID: 16436510 PMCID: PMC1415325 DOI: 10.1091/mbc.e05-10-0908] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Regulated exocytosis is thought to occur either by "full fusion," where the secretory vesicle fuses with the plasma membrane (PM) via a fusion pore that then dilates until the secretory vesicle collapses into the PM; or by "kiss-and-run," where the fusion pore does not dilate and instead rapidly reseals such that the secretory vesicle is retrieved almost fully intact. Here, we describe growing evidence for a third form of exocytosis, dubbed "kiss-and-coat," which is characteristic of a broad variety of cell types that undergo regulated exocytosis. Kiss-and-coat exocytosis entails prolonged maintenance of a dilated fusion pore and assembly of actin filament (F-actin) coats around the exocytosing secretory vesicles followed by direct retrieval of some fraction of the emptied vesicle membrane. We propose that assembly of the actin coats results from the union of the secretory vesicle membrane and PM and that this compartment mixing represents a general mechanism for generating local signals via directed membrane fusion.
Collapse
Affiliation(s)
- Anna M Sokac
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
93
|
Abstract
Neurotransmitters, hormones, or dyes may be released from vesicles via a fusion pore, rather than by full fusion of the vesicle with the plasma membrane. If the lifetime of the fusion pore is comparable to the time required for the substance to exit the vesicle, only a fraction of the total vesicle content may be released during a single pore opening. Assuming 1), fusion pore lifetimes are exponentially distributed (tauP), as expected for simple single channel openings, and 2), vesicle contents are lost through the fusion pore with an exponential time course (tauD), we derive an analytical expression for the probability density function of the fraction of vesicle content released (F): dP/dF=A (1-F)(A-1), where A=tauD/tauP. If A>1, the maximum of the distribution is at F=0; if A<1, the maximum is at F=1; if A=1, the distribution is perfectly flat. Thus, the distribution never has a peak in the middle (0<F<1). This should be considered when interpreting the distribution of miniature synaptic currents, or the fraction of FM dye molecules lost during a single fusion pore opening event.
Collapse
Affiliation(s)
- Stephen W Jones
- Department of Physiology and Biophysics, Case Western University, Cleveland, OH 44106, USA.
| | | |
Collapse
|
94
|
Plattner H, Hentschel J. Sub-second cellular dynamics: time-resolved electron microscopy and functional correlation. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 255:133-76. [PMID: 17178466 DOI: 10.1016/s0074-7696(06)55003-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Subcellular processes, from molecular events to organellar responses and cell movement, cover a broad scale in time and space. Clearly the extremes, such as ion channel activation are accessible only by electrophysiology, whereas numerous routine methods exist for relatively slow processes. However, many other processes, from a millisecond time scale on, can be "caught" only by methods providing appropriate time resolution. Fast freezing (cryofixation) is the method of choice in that case. In combination with follow-up methodologies appropriate for electron microscopic (EM) analysis, with all its variations, such technologies can also provide high spatial resolution. Such analyses may include, for example, freeze-fracturing for analyzing restructuring of membrane components, scanning EM and other standard EM techniques, as well as analytical EM analyses. The latter encompass energy-dispersive x-ray microanalysis and electron spectroscopic imaging, all applicable, for instance, to the second messenger, calcium. Most importantly, when conducted in parallel, such analyses can provide a structural background to the functional analyses, such as cyclic nucleotide formation or protein de- or rephosphorylation during cell stimulation. In sum, we discuss many examples of how it is practically possible to achieve strict function-structure correlations in the sub-second time range. We complement this review by discussing alternative methods currently available to analyze fast cellular phenomena occurring in the sub-second time range.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|
95
|
Ashton AC, Ushkaryov YA. Properties of synaptic vesicle pools in mature central nerve terminals. J Biol Chem 2005; 280:37278-88. [PMID: 16148008 DOI: 10.1074/jbc.m504137200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Readily releasable and reserve pools of synaptic vesicles play different roles in neurotransmission, and it is important to understand their recycling and interchange in mature central synapses. Using adult rat cerebrocortical synaptosomes, we have shown that 100 mosm hypertonic sucrose caused complete exocytosis of only the readily releasable pool (RRP) of synaptic vesicles containing glutamate or gamma-aminobutyric acid. Repetitive hypertonic stimulations revealed that this pool recycled (and reloaded the neurotransmitter from the cytosol) fully in <30 s and did so independently of the reserve pool. Multiple rounds of exocytosis could occur in the constant absence of extracellular Ca(2+). However, although each vesicle cycle includes a Ca(2+)-independent exocytotic step, some other stage(s) critically require an elevation of cytosolic [Ca(2+)], and this is supplied by intracellular stores. Repetitive recycling also requires energy, but not the activity of phosphatidylinositol 4-kinase, which maintains the normal level of phosphoinositides. By varying the length of hypertonic stimulations, we found that approximately 70% of the RRP vesicles fused completely with the plasmalemma during exocytosis and could then enter silent pools, probably outside active zones. The rest of the RRP vesicles underwent very fast local recycling (possibly by kiss-and-run) and did not leave active zones. Forcing the fully fused RRP vesicles into the silent pool enabled us to measure the transfer of reserve vesicles to the RRP and to show that this process requires intact phosphatidylinositol 4-kinase and actin microfilaments. Our findings also demonstrate that respective vesicle pools have similar characteristics and requirements in excitatory and inhibitory nerve terminals.
Collapse
Affiliation(s)
- Anthony C Ashton
- Department of Biological Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | | |
Collapse
|
96
|
Barclay JW, Morgan A, Burgoyne RD. Calcium-dependent regulation of exocytosis. Cell Calcium 2005; 38:343-53. [PMID: 16099500 DOI: 10.1016/j.ceca.2005.06.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/28/2005] [Indexed: 11/30/2022]
Abstract
A rapid increase in intracellular calcium directly triggers regulated exocytosis. In addition, changes in intracellular calcium concentration can adjust the extent of exocytosis (quantal content) or the magnitude of individual release events (quantal size) in both the short- and long-term. It is generally agreed that calcium achieves this regulation via an interaction with a number of different molecular targets located at or near to the site of membrane fusion. We review here the synaptic proteins with defined calcium-binding domains and protein kinases activated by calcium, summarize what is known about their function in membrane fusion and the experimental evidence in support of their involvement in synaptic plasticity.
Collapse
Affiliation(s)
- Jeff W Barclay
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | | | | |
Collapse
|
97
|
Jockusch WJ, Praefcke GJK, McMahon HT, Lagnado L. Clathrin-dependent and clathrin-independent retrieval of synaptic vesicles in retinal bipolar cells. Neuron 2005; 46:869-78. [PMID: 15953416 DOI: 10.1016/j.neuron.2005.05.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 03/03/2005] [Accepted: 05/02/2005] [Indexed: 10/25/2022]
Abstract
Synaptic vesicles can be retrieved rapidly or slowly, but the molecular basis of these kinetic differences has not been defined. We now show that substantially different sets of molecules mediate fast and slow endocytosis in the synaptic terminal of retinal bipolar cells. Capacitance measurements of membrane retrieval were made in terminals in which peptides and protein domains were introduced to disrupt known interactions of clathrin, the AP2 adaptor complex, and amphiphysin. All these manipulations caused a selective inhibition of the slow phase of membrane retrieval (time constant approximately 10 s), leaving the fast phase (approximately 1 s) intact. Slow endocytosis after strong stimulation was therefore dependent on the formation of clathrin-coated membrane. Fast endocytosis occurring after weaker stimuli retrieves vesicle membrane in a clathrin-independent manner. All compensatory endocytosis required GTP hydrolysis, but only a subset of released vesicles were primed for fast, clathrin-independent endocytosis.
Collapse
Affiliation(s)
- Wolf J Jockusch
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
98
|
Bhalla A, Tucker WC, Chapman ER. Synaptotagmin isoforms couple distinct ranges of Ca2+, Ba2+, and Sr2+ concentration to SNARE-mediated membrane fusion. Mol Biol Cell 2005; 16:4755-64. [PMID: 16093350 PMCID: PMC1237081 DOI: 10.1091/mbc.e05-04-0277] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ca2+-triggered exocytosis of synaptic vesicles is controlled by the Ca2+-binding protein synaptotagmin (syt) I. Fifteen additional isoforms of syt have been identified. Here, we compared the abilities of three syt isoforms (I, VII, and IX) to regulate soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion in vitro in response to divalent cations. We found that different isoforms of syt couple distinct ranges of Ca2+, Ba2+, and Sr2+ to membrane fusion; syt VII was approximately 400-fold more sensitive to Ca2+ than was syt I. Omission of phosphatidylserine (PS) from both populations of liposomes completely abrogated the ability of all three isoforms of syt to stimulate fusion. Mutations that selectively inhibit syt.target-SNARE (t-SNARE) interactions reduced syt stimulation of fusion. Using Sr2+ and Ba2+, we found that binding of syt to PS and t-SNAREs can be dissociated from activation of fusion, uncovering posteffector-binding functions for syt. Our data demonstrate that different syt isoforms are specialized to sense different ranges of divalent cations and that PS is an essential effector of Ca2+.syt action.
Collapse
Affiliation(s)
- Akhil Bhalla
- Department of Physiology, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|