51
|
Wang LD, Clark MR. B-cell antigen-receptor signalling in lymphocyte development. Immunology 2003; 110:411-20. [PMID: 14632637 PMCID: PMC1783068 DOI: 10.1111/j.1365-2567.2003.01756.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Revised: 09/15/2003] [Accepted: 09/15/2003] [Indexed: 12/11/2022] Open
Abstract
Signalling through the B-cell antigen receptor (BCR) is required throughout B-cell development and peripheral maturation. Targeted disruption of BCR components or downstream effectors indicates that specific signalling mechanisms are preferentially required for central B-cell development, peripheral maturation and repertoire selection. Additionally, the avidity and the context in which antigen is encountered determine both cell fate and differentiation in the periphery. Although the signalling and receptor components required at each stage have been largely elucidated, the molecular mechanisms through which specific signalling are evoked at each stage are still obscure. In particular, it is not known how the pre-BCR initiates the signals required for normal development or how immature B cells regulate the signalling pathways that determine cell fate. In this review, we will summarize the recent studies that have defined the molecules required for B-cell development and maturation as well as the theories on how signals may be regulated at each stage.
Collapse
Affiliation(s)
- Leo D Wang
- Section of Rheumatology and Committee on Immunology, Biological Sciences Division and Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
52
|
Schamel WWA, Kuppig S, Becker B, Gimborn K, Hauri HP, Reth M. A high-molecular-weight complex of membrane proteins BAP29/BAP31 is involved in the retention of membrane-bound IgD in the endoplasmic reticulum. Proc Natl Acad Sci U S A 2003; 100:9861-6. [PMID: 12886015 PMCID: PMC187866 DOI: 10.1073/pnas.1633363100] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2002] [Indexed: 11/18/2022] Open
Abstract
B cell antigen receptors (BCRs) are multimeric transmembrane protein complexes comprising membrane-bound immunoglobulins (mIgs) and Ig-alpha/Ig-beta heterodimers. In most cases, transport of mIgs from the endoplasmic reticulum (ER) to the cell surface requires assembly with the Ig-alpha/Ig-beta subunits. In addition to Ig-alpha/Ig-beta, mIg molecules also bind two ER-resident membrane proteins, BAP29 and BAP31, and the chaperone heavy chain binding protein (BiP). In this article, we show that neither Ig-alpha/Ig-beta nor BAP29/BAP31 nor BiP bind simultaneously to the same mIgD molecule. Blue native PAGE revealed that only a minor fraction of intracellular mIgD is associated with high-molecular-weight BAP29/BAP31 complexes. BAP-binding to mIgs was found to correlate with ER retention of chimeric mIgD molecules. On high-level expression in Drosophila melanogaster S2 cells, mIgD molecules were detected on the cell surface in the absence of Ig-alpha/Ig-beta. This aberrant transport was prevented by coexpression of BAP29 and BAP31. Thus, BAP complexes contribute to ER retention of mIg complexes that are not bound to Ig-alpha/Ig-beta. Furthermore, the mechanism of ER retention of both BAP31 and mIgD is not through retrieval from a post-ER compartment, but true ER retention. In conclusion, BAP29 and BAP31 might be the long sought after retention proteins and/or chaperones that act on transmembrane regions of various proteins.
Collapse
Affiliation(s)
- Wolfgang W A Schamel
- Department of Molecular Immunology, Biology III, University of Freiburg and Max-Planck-Institut für Immunobiologie, D-79108 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
53
|
Clark MR, Massenburg D, Zhang M, Siemasko K. Molecular mechanisms of B cell antigen receptor trafficking. Ann N Y Acad Sci 2003; 987:26-37. [PMID: 12727621 DOI: 10.1111/j.1749-6632.2003.tb06030.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
B lymphocytes are among the most efficient cells of the immune system in capturing, processing, and presenting MHC class II restricted peptides to T cells. Antigen capture is essentially restricted by the specificity of the clonotypic antigen receptor expressed on each B lymphocyte. However, receptor recognition is only one factor determining whether an antigen is processed and presented. The context of antigen encounter is crucial. In particular, polyvalent arrays of repetitive epitopes, indicative of infection, accelerate the delivery of antigen to specialized processing compartments, and up-regulate the surface expression of MHC class II and co-stimulatory molecules such as B7. Recent studies have demonstrated that receptor-mediated signaling and receptor-facilitated peptide presentation to T cells are intimately related. For example, rapid sorting of endocytosed receptor complexes through early endosomes requires the activation of the tyrosine Syk. This proximal kinase initiates all BCR-dependent signaling pathways. Subsequent entry into the antigen-processing compartment requires the tyrosine phosphorylation of the BCR constituent Igalpha and direct recruitment of the linker protein BLNK. Signals from the BCR also regulate the biophysical and biochemical properties of the targeted antigen-processing compartments. These observations indicate that the activation and recruitment of signaling molecules by the BCR orchestrate a complex series of cellular responses that favor the presentation of even rare or low-affinity antigens if encountered in contexts indicative of infection. The requirement for BCR signaling provides possible mechanisms by which cognate B:T cell interactions can be controlled by the milieu in which antigen engagement occurs.
Collapse
Affiliation(s)
- Marcus R Clark
- University of Chicago, Section of Rheumatology, 5841 South Maryland Avenue, Chicago, Illinois 60637, USA.
| | | | | | | |
Collapse
|
54
|
Sheu JJC, Cheng T, Chen HY, Lim C, Chang TW. Comparative effects of human Ig alpha and Ig beta in inducing autoreactive antibodies against B cells in mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1158-66. [PMID: 12538671 DOI: 10.4049/jimmunol.170.3.1158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human and mouse Ig alpha molecules share only 58% amino acid sequence identity in their extracellular regions. However, mice immunized with a recombinant Fc fusion protein containing the extracellular portion of human Ig alpha produced significant amounts of IgG capable of binding to Ig alpha on mouse B cells. The induced auto/cross-reactive Abs could down-regulate B cell levels and the consequent humoral immune responses against an irrelevant Ag in treated mice. Analogous immunization with an Fc fusion protein containing the extracellular portion of human Ig beta gave a much weaker response to mouse Ig beta, although human and mouse Ig beta, like their Ig alpha counterparts, share 56% sequence identity in their extracellular regions. Protein sequence analyses indicated that a potential immunogenic segment, located at the C-terminal loop of the extracellular domain, has an amino acid sequence that is identical between human and mouse Ig alpha. A mAb A01, which could bind to both human and mouse Ig alpha, was found to be specific to a peptide encompassing this immunogenic segment. These findings suggest that specific auto/cross-reactivity against self Ig alpha can be induced by a molecular mimicry presented by a foreign Ig alpha.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Bispecific/metabolism
- Antigen-Antibody Reactions
- Antigens, CD/administration & dosage
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Autoantibodies/biosynthesis
- Autoantibodies/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Binding Sites, Antibody
- CD79 Antigens
- Cell Death/immunology
- Cell Line
- Down-Regulation/immunology
- Humans
- Immune Sera/metabolism
- Immunization
- Immunoglobulin Fc Fragments/administration & dosage
- Immunoglobulin Fc Fragments/genetics
- Immunoglobulin Fc Fragments/immunology
- Injections, Intraperitoneal
- Lymphopenia/immunology
- Male
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Ovalbumin/administration & dosage
- Ovalbumin/immunology
- Receptors, Antigen, B-Cell/administration & dosage
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/immunology
Collapse
Affiliation(s)
- Jim J C Sheu
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | |
Collapse
|
55
|
Hamilton VT, Stone DM, Pritchard SM, Cantor GH. Bovine leukemia virus gp30 transmembrane (TM) protein is not tyrosine phosphorylated: examining potential interactions with host tyrosine-mediated signaling. Virus Res 2002; 90:155-69. [PMID: 12457971 DOI: 10.1016/s0168-1702(02)00149-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bovine leukemia virus (BLV) causes persistent lymphocytosis, a preneoplastic, polyclonal expansion of B lymphocytes. The expansion increases viral transmission to new hosts, but the mechanisms of this expansion have not been determined. We hypothesized that BLV infection contributes to B-cell expansion by signaling initiated via viral transmembrane protein motifs undergoing tyrosine phosphorylation. Viral mimicry of host cell proteins is a well-demonstrated mechanism by which viruses may increase propagation or decrease recognition by the host immune system. The cytoplasmic tail of BLV transmembrane protein gp30 (TM) has multiple areas of homology to motifs of host cell signaling proteins, including two immunoreceptor tyrosine-based activation motifs (ITAMs) and two immunoreceptor tyrosine-based inhibition motifs (ITIMs), which are homologous to B-cell receptor and inhibitory co-receptor motifs. Signaling by these motifs in B cells typically relies on tyrosine phosphorylation, followed by interactions with Src-homology-2 (SH2) domains of nonreceptor protein tyrosine kinases or phosphatases. Phosphorylation of tyrosine residues in the cytoplasmic tail of TM was tested in four systems including ex vivo cultured peripheral blood mononuclear cells from BLV infected cows, BLV-expressing fetal lamb kidney cell and bat lung cell lines, and DT40 B cells transfected with a fusion of mouse extracellular CD8alpha and cytoplasmic TM. No phosphorylation of TM was detected in our experiments in any of the cell types utilized, or with various stimulation methods. Detection was attempted by immunoblotting for phosphotyrosines, or by metabolic labeling of cells. Thus BLV TM is not likely to modify host signal pathways through interactions between phosphorylated tyrosines of the ITAM or ITIM motifs and host-cell tyrosine kinases or phosphatases.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- B-Lymphocytes/immunology
- Cattle
- Cell Line
- Enzootic Bovine Leukosis/virology
- Leukemia Virus, Bovine/pathogenicity
- Lymphocyte Activation
- Mice
- Molecular Sequence Data
- Phosphorylation
- Receptors, Amino Acid/chemistry
- Receptors, Amino Acid/metabolism
- Receptors, Antigen, B-Cell/chemistry
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/metabolism
- Retroviridae Proteins, Oncogenic/chemistry
- Retroviridae Proteins, Oncogenic/metabolism
- Signal Transduction
- Tyrosine/metabolism
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/metabolism
Collapse
Affiliation(s)
- Valerie T Hamilton
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040 USA
| | | | | | | |
Collapse
|
56
|
Rolli V, Gallwitz M, Wossning T, Flemming A, Schamel WWA, Zürn C, Reth M. Amplification of B cell antigen receptor signaling by a Syk/ITAM positive feedback loop. Mol Cell 2002; 10:1057-69. [PMID: 12453414 DOI: 10.1016/s1097-2765(02)00739-6] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have established a protocol allowing transient and inducible coexpression of many foreign genes in Drosophila S2 Schneider cells. With this powerful approach of reverse genetics, we studied the interaction of the protein tyrosine kinases Syk and Lyn with the B cell antigen receptor (BCR). We find that Lyn phosphorylates only the first tyrosine whereas Syk phosphorylates both tyrosines of the BCR immunoreceptor tyrosine-based activation motif (ITAM). Furthermore, we show that Syk is a positive allosteric enzyme, which is strongly activated by the binding to the phosphorylated ITAM tyrosines, thus initiating a positive feedback loop at the receptor. The BCR-dependent Syk activation and signal amplification is efficiently counterbalanced by protein tyrosine phosphatases, the activity of which is regulated by H(2)O(2) and the redox equilibrium inside the cell.
Collapse
Affiliation(s)
- Véronique Rolli
- Department of Molecular Immunology, Biology III, University of Freiburg and Max-Planck Institute for Immunobiology, Stuebeweg 51, 79108 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
57
|
Cragg MS, Chan HTC, Fox MD, Tutt A, Smith A, Oscier DG, Hamblin TJ, Glennie MJ. The alternative transcript of CD79b is overexpressed in B-CLL and inhibits signaling for apoptosis. Blood 2002; 100:3068-76. [PMID: 12384401 DOI: 10.1182/blood.v100.9.3068] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The B-cell receptor (BCR) for antigen is composed of surface immunoglobulin (sIg), which provides antigen specificity, and a noncovalently associated signaling unit, the CD79a/b heterodimer. Defects in CD79 can influence both BCR expression and signaling and may explain why cells from certain malignancies, such as B-chronic lymphocytic leukemia (B-CLL), often express diminished and inactive BCR. Recently, an alternative transcript of CD79b (DeltaCD79b) has been reported that is up-regulated in B-CLL and may explain this diminished BCR expression. Here we assess the expression of DeltaCD79b in B-CLL and other lymphoid malignancies and investigate its function. High relative expression of DeltaCD79b was confirmed in most cases of B-CLL and found in 6 of 6 cases of splenic lymphomas with villous lymphocytes (SLVLs) and hairy cell leukemia. In a range of Burkitt lymphoma cell lines, expression of DeltaCD79b was relatively low but correlated inversely with the ability of the BCR to signal apoptosis when cross-linked by antibody (Ab). Interestingly, when Ramos-EHRB cells, which express low DeltaCD79b, were transfected with this transcript, they were transformed from being sensitive to anti-Fcmu-induced apoptosis to being highly resistant. Although DeltaCD79b was expressed as protein, its overexpression did not reduce the level of cell surface BCR. Finally, we showed that the inhibitory activity of DeltaCD79b depended on an intact leader sequence to ensure endoplasmic reticulum (ER) trafficking and a functional signaling immunoreceptor tyrosine-based activation motif (ITAM) in its cytoplasmic tail. These results point to DeltaCD79b being a powerful modulator of BCR signaling that may play an important role in normal and malignant B cells.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Motifs
- Antigens, CD/biosynthesis
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/physiology
- Apoptosis/genetics
- Burkitt Lymphoma/genetics
- Burkitt Lymphoma/metabolism
- Burkitt Lymphoma/pathology
- CD79 Antigens
- Dimerization
- Endoplasmic Reticulum/metabolism
- Gene Expression Regulation, Leukemic
- Humans
- K562 Cells/metabolism
- K562 Cells/pathology
- Leukemia, Hairy Cell/genetics
- Leukemia, Hairy Cell/metabolism
- Leukemia, Hairy Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Protein Transport
- RNA, Messenger/metabolism
- RNA, Neoplasm/metabolism
- Receptors, Antigen, B-Cell/metabolism
- Recombinant Fusion Proteins/physiology
- Splenic Neoplasms/genetics
- Splenic Neoplasms/metabolism
- Splenic Neoplasms/pathology
- Transfection
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/pathology
Collapse
Affiliation(s)
- Mark S Cragg
- Tenovus Research Laboratory, Cancer Sciences Division, University of Southampton School of Medicine, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Stoddart A, Dykstra ML, Brown BK, Song W, Pierce SK, Brodsky FM. Lipid rafts unite signaling cascades with clathrin to regulate BCR internalization. Immunity 2002; 17:451-62. [PMID: 12387739 DOI: 10.1016/s1074-7613(02)00416-8] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A major function of the B cell is the internalization of antigen through the BCR for processing and presentation to T cells. While there is evidence suggesting that lipid raft signaling may regulate internalization, the molecular machinery coordinating these two processes remains to be defined. Here we present a link between the B cell signaling and internalization machinery and show that Src-family kinase activity is required for inducible clathrin heavy chain phosphorylation, BCR colocalization with clathrin, and regulated internalization. An analysis of different B cell lines shows that BCR uptake occurs only when clathrin is associated with rafts and is tyrosine phosphorylated following BCR crosslinking. We therefore propose that lipid rafts spatially organize signaling cascades with clathrin to regulate BCR internalization.
Collapse
Affiliation(s)
- Angela Stoddart
- The G.W. Hooper Foundation, Department of Microbiology and Immunology, University of California, San Francisco 94143, USA
| | | | | | | | | | | |
Collapse
|
59
|
Abstract
Expression of surface immunoglobulin (sIg) related receptors has been conserved in phylogenetically distinct species as a critical checkpoint in B cell development. The sIg receptor comprises extracellular IgM heavy and light chains, with the potential for ligand binding, complexed to the Igalpha/Igbeta heterodimer that is responsible for signal transduction through sIg. Experimental systems, from both avian and murine models of B cell development, have been designed to identify the function of individual receptor components in B cell development. In this review, we assess the regulatory functions of different components of the sIg receptor complex during early development in experimental systems from evolutionarily distinct species.
Collapse
Affiliation(s)
- Kelly A Pike
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ont., Canada M5S 1A8
| | | |
Collapse
|
60
|
Li C, Siemasko K, Clark MR, Song W. Cooperative interaction of Ig and Ig of the BCR regulates the kinetics and specificity of antigen targeting. Int Immunol 2002. [DOI: 10.1093/intimm/14.10.1179] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
61
|
Abstract
B lymphocyte development can occur in a variety of anatomical sites. While typically considered to be a process that occurs in the bone marrow throughout life, it is becoming clear that gut associates sites of B cell development are critically important in many species of veterinary importance. Among these sites, the bursa of Fabricius in chickens and the ileal Peyer's patches of sheep are among the best studied. In these organs, it has become clear that many of the properties associated with B cell development in rodent and primate bone marrow do not apply. Thus while bone marrow B cell development typically involves an ongoing maturation of mature B cells from immature B lineage precursors that lack the expression of a surface immunoglobulin complex, gut associated lymphoid tissues (GALTs) may be colonized by a single wave of precursor cells during embryo development. Nonetheless, molecular analysis of the requirements for B lymphocyte development in GALTs reveals some striking parallels with requirements identified for B cell development in bone marrow. This article will discuss differences between B cell development in the bone marrow and GALTs and recent evidence emerging that yields insights into how these processes are regulated.
Collapse
Affiliation(s)
- Michael J H Ratcliffe
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ont., Canada M5S 1A8.
| |
Collapse
|
62
|
Payelle-Brogard B, Magnac C, Alcover A, Roux P, Dighiero G. Defective assembly of the B-cell receptor chains accounts for its low expression in B-chronic lymphocytic leukaemia. Br J Haematol 2002; 118:976-85. [PMID: 12199775 DOI: 10.1046/j.1365-2141.2002.03759.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
B-cell chronic lymphocytic leukaemia (B-CLL) characteristically displays low amounts of B-cell receptor (BCR), which mainly consists of the heterodimer CD79a/CD79b bound non-covalently with the surface immunoglobulin (SIg). This heterodimer is required for SIg expression and BCR signalling. To better define the mechanisms related to low BCR expression, we have investigated transcription, protein synthesis, assembly and transport of the BCR in B-CLL cells. Our results demonstrated that: (1) there was no major defect in transcriptional expression of the B29 (CD79b) gene; (2) the BCR components were intracellularly detected, thus adequately synthesized, in almost all patients; (3) neither a genetic defect in the transmembrane region of SIg, which associated with CD79a/CD79b, nor a genetic abnormality in the chaperone protein calnexin that is involved in folding and assembly of the BCR were found; (4) a constant defect in the assembly of IgM and CD79b chains occurred leading to abnormal accumulation of both chains in different intracellular compartments; (5) in a majority of CLL patients all of the nascent IgM failed to be processed into mature chains and remained unsuitable for transport. These findings demonstrated that a post-transcriptional defect located at the BCR intracellular assembly and/or trafficking levels could be involved in its low surface expression in B-CLL.
Collapse
MESH Headings
- Antigens, CD/genetics
- Biological Transport
- CD79 Antigens
- Calnexin/genetics
- Cells, Cultured
- Gene Expression
- Humans
- Immunoglobulin M/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Microscopy, Confocal
- Receptors, Antigen, B-Cell/analysis
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
|
63
|
Wienands J, Engels N. Multitasking of Ig-alpha and Ig-beta to regulate B cell antigen receptor function. Int Rev Immunol 2002; 20:679-96. [PMID: 11913945 DOI: 10.3109/08830180109045585] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Since their discovery as signaling subunits of the B cell antigen receptor (BCR), Ig-alpha and Ig-beta are discussed to serve either a redundant or distinct function for B cell development, maintenance, and activation. Dependent upon the experimental system that has been used to address this issue, evidence could be provided to support both possibilities. Only recently has it become clear that Ig-alpha and Ig-beta possess a unique signaling identity but that both together are required to orchestrate proper B cell function in vivo. Here we discuss some of the underlying mechanisms that may involve direct coupling to discrete subsets of BCR effector proteins, such as protein tyrosine kinases or the intracellular adaptor SLP-65/BLNK.
Collapse
Affiliation(s)
- J Wienands
- Department of Biochemistry and Molecular Immunology, University of Bielefeld, Germany.
| | | |
Collapse
|
64
|
Indraccolo S, Minuzzo S, Zamarchi R, Calderazzo F, Piovan E, Amadori A. Alternatively spliced forms of Igalpha and Igbeta prevent B cell receptor expression on the cell surface. Eur J Immunol 2002; 32:1530-40. [PMID: 12115635 DOI: 10.1002/1521-4141(200206)32:6<1530::aid-immu1530>3.0.co;2-#] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The B cell antigen receptor (BCR) includes an Igalpha/Igbeta heterodimer non-covalently associated with surface immunoglobulin. Recently, variant Igalpha and Igbeta transcripts, arising from alternative mRNA splicing, have been reported. The present study examined the function of the potential products of these transcripts, by utilizing cDNA expression plasmids to reconstitute human BCR expression in transfected 293T cells. Spliced transcripts produced truncated proteins (deltaIgalpha and deltaIgbeta), that failed to form heterodimers with their full-length counterparts, and did not mediate transport of IgM to the cell surface. When overexpressed, both deltaIgalpha and deltaIgbeta acted as competitors of Igalpha and Igbeta, leading to down-modulated surface IgM expression, and retention of IgM in the endoplasmic reticulum. These findings document a possible novel mechanism for controlling BCR expression in B cells, based on up-regulated synthesis of components devoid of transport function.
Collapse
Affiliation(s)
- Stefano Indraccolo
- Department of Oncology and Surgical Sciences, Interuniversity Center for Research on Cancer, University of Padova, Padova, Italy.
| | | | | | | | | | | |
Collapse
|
65
|
Kabak S, Skaggs BJ, Gold MR, Affolter M, West KL, Foster MS, Siemasko K, Chan AC, Aebersold R, Clark MR. The direct recruitment of BLNK to immunoglobulin alpha couples the B-cell antigen receptor to distal signaling pathways. Mol Cell Biol 2002; 22:2524-35. [PMID: 11909947 PMCID: PMC133735 DOI: 10.1128/mcb.22.8.2524-2535.2002] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2001] [Revised: 12/18/2001] [Accepted: 12/24/2001] [Indexed: 01/30/2023] Open
Abstract
Following B-cell antigen receptor (BCR) ligation, the cytoplasmic domains of immunoglobulin alpha (Ig alpha) and Ig beta recruit Syk to initiate signaling cascades. The coupling of Syk to several distal substrates requires linker protein BLNK. However, the mechanism by which BLNK is recruited to the BCR is unknown. Using chimeric receptors with wild-type and mutant Ig alpha cytoplasmic tails we show that the non-immunoreceptor tyrosine-based activation motif (ITAM) tyrosines, Y176 and Y204, are required to activate BLNK-dependent pathways. Subsequent analysis demonstrated that BLNK bound directly to phospho-Y204 and that fusing BLNK to mutated Ig alpha reconstituted downstream signaling events. Moreover, ligation of the endogenous BCR induced Y204 phosphorylation and BLNK recruitment. These data demonstrate that the non-ITAM tyrosines of Ig alpha couple Syk activation to BLNK-dependent pathways.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- CD79 Antigens
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Clone Cells
- Enzyme Precursors/metabolism
- Intracellular Signaling Peptides and Proteins
- Isoenzymes/metabolism
- Mice
- Models, Molecular
- Mutation
- Phospholipase C gamma
- Phosphoproteins/chemistry
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Protein-Tyrosine Kinases/metabolism
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Signal Transduction
- Syk Kinase
- Type C Phospholipases/metabolism
- src Homology Domains
Collapse
Affiliation(s)
- Shara Kabak
- Committee on Immunology, Section of Rheumatology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Bannish G, Fuentes-Pananá EM, Cambier JC, Pear WS, Monroe JG. Ligand-independent signaling functions for the B lymphocyte antigen receptor and their role in positive selection during B lymphopoiesis. J Exp Med 2001; 194:1583-96. [PMID: 11733573 PMCID: PMC2193524 DOI: 10.1084/jem.194.11.1583] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2001] [Revised: 09/25/2001] [Accepted: 10/16/2001] [Indexed: 11/15/2022] Open
Abstract
Signal transduction through the B cell antigen receptor (BCR) is determined by a balance of positive and negative regulators. This balance is shifted by aggregation that results from binding to extracellular ligand. Aggregation of the BCR is necessary for eliciting negative selection or activation by BCR-expressing B cells. However, ligand-independent signaling through intermediate and mature forms of the BCR has been postulated to regulate B cell development and peripheral homeostasis. To address the importance of ligand-independent BCR signaling functions and their regulation during B cell development, we have designed a model that allows us to isolate the basal signaling functions of immunoglobulin (Ig)alpha/Igbeta-containing BCR complexes from those that are dependent upon ligand-mediated aggregation. In vivo, we find that basal signaling is sufficient to facilitate pro-B --> pre-B cell transition and to generate immature/mature peripheral B cells. The ability to generate basal signals and to drive developmental progression were both dependent on plasma membrane association of Igalpha/Igbeta complexes and intact immunoregulatory tyrosine activation motifs (ITAM), thereby establishing a correlation between these processes. We believe that these studies are the first to directly demonstrate biologically relevant basal signaling through the BCR where the ability to interact with both conventional as well as nonconventional extracellular ligands is eliminated.
Collapse
Affiliation(s)
- G Bannish
- University of Pennsylvania School of Medicine, Department of Pathology and Laboratory Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
67
|
Kraus M, Pao LI, Reichlin A, Hu Y, Canono B, Cambier JC, Nussenzweig MC, Rajewsky K. Interference with immunoglobulin (Ig)alpha immunoreceptor tyrosine-based activation motif (ITAM) phosphorylation modulates or blocks B cell development, depending on the availability of an Igbeta cytoplasmic tail. J Exp Med 2001; 194:455-69. [PMID: 11514602 PMCID: PMC2193498 DOI: 10.1084/jem.194.4.455] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To determine the function of immunoglobulin (Ig)alpha immunoreceptor tyrosine-based activation motif (ITAM) phosphorylation, we generated mice in which Igalpha ITAM tyrosines were replaced by phenylalanines (Igalpha(FF/FF)). Igalpha(FF/FF) mice had a specific reduction of B1 and marginal zone B cells, whereas B2 cell development appeared to be normal, except that lambda1 light chain usage was increased. The mutants responded less efficiently to T cell-dependent antigens, whereas T cell-independent responses were unaffected. Upon B cell receptor ligation, the cells exhibited heightened calcium flux, weaker Lyn and Syk tyrosine phosphorylation, and phosphorylation of Igalpha non-ITAM tyrosines. Strikingly, when the Igalpha ITAM mutation was combined with a truncation of Igbeta, B cell development was completely blocked at the pro-B cell stage, indicating a crucial role of ITAM phosphorylation in B cell development.
Collapse
Affiliation(s)
- M Kraus
- Institute for Genetics, University of Cologne, D-50931 Cologne, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Engels N, Wollscheid B, Wienands J. Association of SLP-65/BLNK with the B cell antigen receptor through a non-ITAM tyrosine of Ig-alpha. Eur J Immunol 2001; 31:2126-34. [PMID: 11449366 DOI: 10.1002/1521-4141(200107)31:7<2126::aid-immu2126>3.0.co;2-o] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cytoplasmic adaptor protein SLP-65 (BLNK or BASH) is a critical downstream effector of the B cell antigen receptor (BCR). Tyrosine-phosphorylated SLP-65 assembles intracellular signaling complexes such as the Ca(2 +) initiation complex encompassing phospholipase C-gamma2 and Bruton's tyrosine kinase. It is, however, unclear how the SLP-65 signaling module can be recruited to the plasma membrane. Here we show that following B cell stimulation, SLP-65 associates directly with the BCR signaling subunit, the Ig-alpha / Ig-beta heterodimer. The interaction is mediated by the Src homology 2 domain of SLP-65 and the phosphorylated Ig-alpha tyrosine 204, which is located outside of the immunoreceptor tyrosine-based activation motif. Our data identify an unexpected BCR phosphorylation pattern and indicate that Ig-alpha has the capability to serve as transmembrane adaptor in BCR signaling.
Collapse
Affiliation(s)
- N Engels
- Institute of Biology III, University of Freiburg and Max Planck Institute of Immunobiology, Freiburg, Germany
| | | | | |
Collapse
|
69
|
Hsueh RC, Scheuermann RH. Tyrosine kinase activation in the decision between growth, differentiation, and death responses initiated from the B cell antigen receptor. Adv Immunol 2001; 75:283-316. [PMID: 10879287 DOI: 10.1016/s0065-2776(00)75007-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Immunoglobulin-containing receptors expressed on B lineage lymphocytes play critical roles in the development and function of the humoral arm of the immune system. The preB cell antigen receptor (preBCR) contains the immunoglobulin mu heavy chain (Ig mu) and signals to the preB cell that heavy chain rearrangement has been successful, a process termed heavy chain selection. The B cell antigen receptor (BCR) contains both Ig heavy and light chains and is expressed on immature and mature B cells before and after antigen encounter. Both receptor types from a complex with the Ig alpha and Ig beta proteins that link the predominantly extracellular Ig with intracellular signal transduction pathways. Signaling through the BCR induces different cellular responses depending on the nature of the signaling agent and the development stage of the target cell. These responses include clonal anergy and apoptotic deletion in immature B cells and survival, proliferation, and differentiation in mature B and preB cells. Several protein tyrosine kinases are activated rapidly following engagement of the BCR/preBCR complexes, including members of the Src family (Lyn and Blk), the Syk/ZAP70 family (Syk), and the Tec family (Btk). In this review, we discuss possible mechanisms by which engagement of these similar receptor complexes can give rise to different cellular responses and the role that these kinases play in this process.
Collapse
MESH Headings
- Agammaglobulinaemia Tyrosine Kinase
- Antibody Formation
- Antigens, CD/genetics
- Antigens, CD/immunology
- Apoptosis/physiology
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/enzymology
- B-Lymphocyte Subsets/immunology
- CD79 Antigens
- Cell Differentiation/physiology
- Cell Division/physiology
- Enzyme Activation
- Enzyme Precursors/physiology
- Genes, Immunoglobulin
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/immunology
- Humans
- Immune Tolerance
- Immunoglobulin Heavy Chains/genetics
- Immunologic Deficiency Syndromes/enzymology
- Immunologic Deficiency Syndromes/genetics
- Immunologic Deficiency Syndromes/immunology
- Intracellular Signaling Peptides and Proteins
- Lymphocyte Activation
- Phosphorylation
- Plasma Cells/cytology
- Plasma Cells/immunology
- Protein Processing, Post-Translational
- Protein-Tyrosine Kinases/physiology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/physiology
- Recombinant Fusion Proteins/immunology
- Signal Transduction
- Syk Kinase
- ZAP-70 Protein-Tyrosine Kinase
- src Homology Domains
- src-Family Kinases/deficiency
- src-Family Kinases/genetics
- src-Family Kinases/physiology
Collapse
Affiliation(s)
- R C Hsueh
- Laboratory of Molecular Pathology, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | |
Collapse
|
70
|
Kunjibettu S, Fuller-Espie S, Carey GB, Spain LM. Conserved transmembrane tyrosine residues of the TCR beta chain are required for TCR expression and function in primary T cells and hybridomas. Int Immunol 2001; 13:211-22. [PMID: 11157854 DOI: 10.1093/intimm/13.2.211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The T cell receptor (TCR) beta chain transmembrane domain contains two evolutionarily conserved tyrosines (Y). In this study, the functional basis for the evolutionary conservation is addressed by mutation of the residues, expression of the mutants in hybridoma and primary T cells, and examination of TCR signaling function. We find that the phenotype of the mutants, both surface expression and ability to signal for IL-2 production, is highly variable in different mouse T hybridoma lines. Although we have not been able to determine the basis for these differences in the hybridomas, expression of the mutants in primary T cells provides a definitive assessment of mutant phenotype. We show that mutation of the N-terminal Y to either leucine (L) or alanine (A) results in low surface expression in primary T cells, while mutation of both N- and C-terminal Y to A or L abrogates surface expression. However, the more conservative mutation of both transmembrane Y to phenylalanine maintained receptor surface expression and assembly while severely disrupting signaling in primary T cells. Our data demonstrate that TCR beta chain transmembrane Y are essential for TCR signal transduction as well as complex assembly. These findings suggest that protein-protein interactions involving membrane-spanning domains are likely relevant for TCR signal transduction mechanisms.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Line
- Cell Membrane/genetics
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cells, Cultured
- Conserved Sequence/immunology
- Gene Expression Regulation/immunology
- Hybridomas/immunology
- Hybridomas/metabolism
- Immunophenotyping
- Lymphocyte Activation/genetics
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Mice
- Mice, Transgenic
- Mutagenesis, Site-Directed
- Protein Structure, Tertiary/genetics
- Receptors, Antigen, T-Cell/deficiency
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Spleen/immunology
- Spleen/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Tumor Cells, Cultured
- Tyrosine/genetics
- Tyrosine/physiology
Collapse
Affiliation(s)
- S Kunjibettu
- Department of Immunology, Jerome H. Holland Laboratory for the Biomedical Sciences and George Washington University School of Medicine, American Red Cross, 15601 Crabbs Branch Way, Rockville, MD 20855, USA
| | | | | | | |
Collapse
|
71
|
Reichlin A, Hu Y, Meffre E, Nagaoka H, Gong S, Kraus M, Rajewsky K, Nussenzweig MC. B cell development is arrested at the immature B cell stage in mice carrying a mutation in the cytoplasmic domain of immunoglobulin beta. J Exp Med 2001; 193:13-23. [PMID: 11136817 PMCID: PMC2195879 DOI: 10.1084/jem.193.1.13] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The B cell receptor (BCR) regulates B cell development and function through immunoglobulin (Ig)alpha and Ig beta, a pair of membrane-bound Ig superfamily proteins, each of which contains a single cytoplasmic immunoreceptor tyrosine activation motif (ITAM). To determine the function of Ig beta, we produced mice that carry a deletion of the cytoplasmic domain of Ig beta (Ig beta Delta C mice) and compared them to mice that carry a similar mutation in Ig alpha (MB1 Delta C, herein referred to as Ig alpha Delta C mice). Ig beta Delta C mice differ from Ig alpha Delta C mice in that they show little impairment in early B cell development and they produce immature B cells that respond normally to BCR cross-linking as determined by Ca(2+) flux. However, Ig beta Delta C B cells are arrested at the immature stage of B cell development in the bone marrow and die by apoptosis. We conclude that the cytoplasmic domain Ig beta is required for B cell development beyond the immature B cell stage and that Ig alpha and Ig beta have distinct biologic activities in vivo.
Collapse
Affiliation(s)
- Amy Reichlin
- Laboratory of Molecular Immunology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021
| | - Yun Hu
- Laboratory of Molecular Immunology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021
| | - Eric Meffre
- Laboratory of Molecular Immunology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021
| | - Hitoshi Nagaoka
- Laboratory of Molecular Immunology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021
| | - Shiaoching Gong
- Laboratory of Molecular Immunology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021
| | - Manfred Kraus
- Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Klaus Rajewsky
- Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021
| |
Collapse
|
72
|
Abstract
Antibodies on the surface of B lymphocytes trigger adaptive immune responses and control a series of antigen-independent checkpoints during B cell development. These physiologic processes are regulated by a complex of membrane immunoglobulin and two signal transducing proteins known as Ig alpha and Ig beta. Here we focus on the role of antibodies in governing the maturation of B cells from early antigen-independent through the final antigen-dependent stages.
Collapse
Affiliation(s)
- E Meffre
- Howard Hughes Medical Institute, Rockefeller University, 1230 York Avenue, New York, NY 10021-6399, USA
| | | | | |
Collapse
|
73
|
Abstract
The current structural model of the B cell antigen receptor (BCR) describes it as a symmetric protein complex in which one membrane-bound immunoglobulin molecule (mIg) is noncovalently bound on each side by an Ig-alpha/Ig-beta heterodimer. Using peptide-tagged Ig-alpha proteins, blue native polyacrylamide gel electrophoresis (BN-PAGE), and biosynthetical labeling of B cells, we find that the mIg:Ig-alpha/Ig-beta complex has a stoichiometry of 1:1 and not 1:2. An anti-Flag stimulation of B cells coexpressing Flag-tagged and wild-type Ig-alpha proteins results in the phosphorylation of both Ig-alpha proteins, suggesting that on the surface of living B cells, several BCR monomers are in contact with each other. A BN-PAGE analysis after limited detergent lysis provides further evidence for an oligomeric BCR structure.
Collapse
Affiliation(s)
- W W Schamel
- Department of Molecular Immunology, University of Freiburg and Max Planck Institute for Immunobiology, Germany
| | | |
Collapse
|
74
|
Abstract
Signal transduction by the BCR is critical for progression through developmental checkpoints as well as for immune responses. Recent results obtained in mice deficient either in an adaptor molecule, BLNK (alternatively named SLP-65 or BASH), or in phosphatidylinositol 3-kinase have revealed similar - though not identical - phenotypes to those of Btk(-/-) mice, suggesting a functional link between BLNK, Btk and phosphatidylinositol 3-kinase.
Collapse
Affiliation(s)
- T Kurosaki
- Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Moriguchi, 570-8506, Japan. kurosaki@mxr. mesh.ne.jp
| |
Collapse
|
75
|
McCarron KF, Hammel JP, Hsi ED. Usefulness of CD79b expression in the diagnosis of B-cell chronic lymphoproliferative disorders. Am J Clin Pathol 2000; 113:805-13. [PMID: 10874881 DOI: 10.1309/g689-2j36-kctc-wd5n] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
We evaluated anti-CD79b for its usefulness in the diagnosis of B-cell chronic lymphoproliferative disorders (BCLPDs), particularly chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL). We analyzed 100 BCLPDs for CD5, CD19, CD20, CD23, CD79b, and surface immunoglobulin light chain (sIg) expression by 4-color flow cytometry. CD20, CD79b, and sIg expression were quantified. Correlational analysis and univariable and multivariable logistic regression models were used to determine the best combination of antigens for the immunophenotypic classification of CLL vs other BCLPDs. Positive and statistically significant Spearman pairwise correlations between CD20, CD79b, and sIg fluorescence intensity were demonstrated. In the simplest models in which a single variable was considered, cutoff points were chosen that gave misclassification rates for CLL of 16% for CD79b, 19% for sIg, and 18% for CD20. Low-intensity CD79b, CD20, and sIg are associated highly with CLL. A panel containing CD5, CD19, CD23, and sIg allowed correct classification of most cases. Addition of CD20 or CD79b improved diagnostic accuracy; CD79b was slightly better than CD20. CD79b seems to be a useful addition to a standard flow cytometry panel for the evaluation of BCLPDs.
Collapse
MESH Headings
- Antigens, CD/metabolism
- Antigens, CD20/metabolism
- Antigens, Differentiation, B-Lymphocyte/metabolism
- CD79 Antigens
- Flow Cytometry
- Humans
- Immunoglobulin Light Chains/metabolism
- Immunophenotyping
- Leukemia, Lymphocytic, Chronic, B-Cell/classification
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Logistic Models
- Lymphoma, Mantle-Cell/classification
- Lymphoma, Mantle-Cell/diagnosis
- Lymphoma, Mantle-Cell/metabolism
- Receptors, Antigen, B-Cell/metabolism
- Reproducibility of Results
Collapse
Affiliation(s)
- K F McCarron
- Department of Clinical Pathology, Cleveland Clinic Foundation, OH 44195, USA
| | | | | |
Collapse
|
76
|
Gordon MS, Kato RM, Lansigan F, Thompson AA, Wall R, Rawlings DJ. Aberrant B cell receptor signaling from B29 (Igbeta, CD79b) gene mutations of chronic lymphocytic leukemia B cells. Proc Natl Acad Sci U S A 2000; 97:5504-9. [PMID: 10792036 PMCID: PMC25858 DOI: 10.1073/pnas.090087097] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) B cells characteristically exhibit low or undetectable surface B cell receptor (BCR) and diminished responses to BCR-mediated signaling. These features suggest that CLL cells may have sustained mutations affecting one or more of the BCR proteins required for receptor surface assembly and signal transduction. Loss of expression and mutations in the critical BCR protein B29 (Igbeta, CD79b), are prevalent in CLL and could produce the hallmark features of these leukemic B cells. Because patient CLL cells are intractable to manipulation, we developed a model system to analyze B29 mutations. Jurkat T cells stably expressing micro, kappa, and mb1 efficiently assembled a functional BCR when infected with recombinant vaccinia virus bearing wild-type B29. In contrast, a B29 CLL mutant protein truncated in the transmembrane domain did not associate with mu or mb1 at the cell surface. Another B29 CLL mutant lacking the C-terminal immunoreceptor tyrosine activation motif tyrosine and distal residues brought the receptor to the surface as well as wild-type B29 but showed significant impairment in anti-IgM-stimulated signaling events including mitogen-activated protein kinase activation. These findings demonstrate that B29 mutations previously identified in CLL patients can affect BCR-dependent signaling and may contribute to the unresponsive B cell phenotype in CLL. Finally, the features of the B29 mutations in CLL predict that they may be generated by somatic hypermutation.
Collapse
MESH Headings
- Antigens, CD/genetics
- Antigens, CD/immunology
- B-Lymphocytes/immunology
- CD79 Antigens
- Flow Cytometry
- Humans
- Immunoglobulin M/immunology
- Jurkat Cells
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Mutagenesis, Site-Directed
- Mutation
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Signal Transduction/immunology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M S Gordon
- Molecular Biology Institute, Department of Microbiology, Division of Immunology/Rheumatology, University of California School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
77
|
Abstract
The B cell antigen receptor (BCR) comprises the membrane-bound immunoglobulin (mIg) molecule and the Ig-alpha/Ig-beta heterodimer. By comparing the stability of the IgD-BCR and IgM-BCR in different detergent lysates, we find that the IgD-BCR is more stable than the IgM-BCR. Analysis of chimeric mIgD molecules suggests that the deltam transmembrane region is responsible for the more stable association of mIgD with the Ig-alpha/Ig-beta heterodimer. Further, the differential glycosylation of Ig-alpha molecules, in the two different BCR complexes, is determined solely by the ectodomains of the mIg molecules. The implications of these findings for the intracellular transport and the signalling capacity of the BCRs are discussed.
Collapse
Affiliation(s)
- W W Schamel
- Department of Molecular Immunology, Biology III, University of Freiburg and Max-Planck-Institute for Immunobiology, Germany.
| | | |
Collapse
|
78
|
Abstract
Lymphocyte antigen receptor engagement leads to the initiation of numerous signal transduction pathways that direct ultimate cellular responses. In recent years, it has become apparent that adapter molecules regulate the coupling of receptor-proximal events, such as protein tyrosine kinase activation, with end results such as inducible gene expression and cytoskeletal rearrangements. While adapter molecules possess no intrinsic enzymatic activity, their ability to mediate protein-protein interactions is vital for the integration and propagation of signal transduction cascades in lymphocytes. Recent studies demonstrate that intracellular adapter molecules function as both positive and negative regulators of lymphocyte activation.
Collapse
Affiliation(s)
- L A Norian
- Interdisciplinary Graduate Program in Immunology, University of Iowa, College of Medicine, Iowa City 52242, USA
| | | |
Collapse
|
79
|
Caldwell RG, Brown RC, Longnecker R. Epstein-Barr virus LMP2A-induced B-cell survival in two unique classes of EmuLMP2A transgenic mice. J Virol 2000; 74:1101-13. [PMID: 10627520 PMCID: PMC111444 DOI: 10.1128/jvi.74.3.1101-1113.2000] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Latent membrane protein 2A (LMP2A) is one of only two viral proteins expressed during latent Epstein-Barr virus (EBV) infections in human peripheral B cells. LMP2A blocks B-cell receptor (BCR) signal transduction in vitro by modulation of the Syk and Lyn protein tyrosine kinases. Five genetically unique LMP2A transgenic mouse lines (EmuLMP2A) with B-cell lineage expression of LMP2A were generated in this study to analyze the importance of LMP2A expression in vivo. These animals can be grouped into EmuLMP2A(BCR+) (TgB, Tg6, and TgC) and EmuLMP2A(BCR-) (Tg7 and TgE) lines based on B-cell phenotype. LMP2A expression in bone marrow cells of EmuLMP2A(BCR-) lines was associated with a bypass of normal B-lymphocyte developmental checkpoints inasmuch as immunoglobulin light-chain gene rearrangement occurred in the absence of complete immunoglobulin heavy-chain gene rearrangement. The resulting BCR-negative B cells were able to exit the bone marrow and colonize peripheral lymphoid organs. LMP2A expression in EmuLMP2A(BCR+) lines was not associated with altered B-cell development in a genetically wild-type background. When crossed into a recombinase activating null (RAG(-/-)) genetic background, LMP2A expression in either RAG(-/-) EmuLMP2A(BCR+) or RAG(-/-) EmuLMP2A(BCR-) animals was able to provide a survival signal to BCR-negative splenic B cells. Additionally, bone marrow cells from all EmuLMP2A animals were able to proliferate in response to interleukin-7-dependent developmental signals in vitro. These studies illustrate that LMP2A can provide a survival signal to BCR-negative B cells in two different groups of EmuLMP2A transgenic mice.
Collapse
Affiliation(s)
- R G Caldwell
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
80
|
Abstract
The B-cell antigen receptor (BCR) comprises membrane Igs (mIgs) and a heterodimer of Ig (CD79a) and Igβ (CD79b) transmembrane proteins, encoded by the mb-1 and B29 genes, respectively. These accessory proteins are required for surface expression of mIg and BCR signaling. B cells from chronic lymphocytic leukemia (B-CLL) frequently express low to undetectable surface Ig, as well as CD79b protein. Recent work described genetic aberrations affecting B29 expression and/or function in B-CLL. Because the prevalence of CLL is increased among first degree relatives, we analyzed the B29 gene in 10 families including 2 affected members each. A few silent or replacement mutations were observed at the genomic level, which never lead to truncated CD79b protein. Both members of the same family did not harbor the same mutations. However, a single silent base change in the B29 extracellular domain, corresponding to a polymorphism, was detected on 1 allele of most patients. These results indicate that the few mutations observed in the B29 gene in these patients do not induce structural abnormalities of the CD79b protein and thus do not account for its low surface expression in B-CLL. Furthermore, genetic factors were not implicated, because identical mutations were not observed among 2 members of the same family.
Collapse
|
81
|
Abstract
The development of B cells requires the expression of an antigen receptor at distinct points during maturation. The Ig-alpha/beta heterodimer signals for these receptors, and mice harboring a truncation of the Ig-alpha intracellular domain (mb-1(delta(c)/delta(c)) have severely reduced peripheral B cell numbers. Here we report that immature mb-1(delta(c)/delta(c) B cells are activated despite lacking a critical Ig-alpha-positive signaling motif. As a consequence of abnormal activation, transitional immature IgMhighIgDlow B cells are largely absent in mb-1delta(c)/delta(c) mutants, accounting for the paucity of mature B cells. Thus, Ig-alpha cytoplasmic tail truncation yields an antigen receptor complex on immature B cells that signals constitutively. These data illustrate a role for Ig-alpha in negatively regulating antigen receptor signaling during B cell development.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/physiology
- B-Lymphocytes/cytology
- B7-2 Antigen
- CD79 Antigens
- Dimerization
- Immunoglobulin M/biosynthesis
- Immunophenotyping
- Liver/cytology
- Liver/embryology
- Lymphocyte Count
- Lymphoid Tissue/pathology
- Membrane Glycoproteins/biosynthesis
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Phosphorylation
- Protein Processing, Post-Translational
- Protein-Tyrosine Kinases/metabolism
- Receptors, Antigen, B-Cell/chemistry
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/physiology
- Sequence Deletion
- Signal Transduction
- Specific Pathogen-Free Organisms
- Terminator Regions, Genetic
Collapse
Affiliation(s)
- R M Torres
- Basel Institute for Immunology, Switzerland.
| | | |
Collapse
|
82
|
Kraus M, Saijo K, Torres RM, Rajewsky K. Ig-alpha cytoplasmic truncation renders immature B cells more sensitive to antigen contact. Immunity 1999; 11:537-45. [PMID: 10591179 DOI: 10.1016/s1074-7613(00)80129-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To study the function of Ig-alpha in the selection of autoreactive B cells, we have analyzed mb-1 cytoplasmic truncation mutant mice (mb-1delta(c)/delta(c)), which coexpress transgenes encoding hen egg lysozyme (HEL) and HEL-specific immunoglobulin. We demonstrate that in the presence of soluble HEL (sHEL) and dependent on the mb-1delta(c) mutation, most immature B cells bearing the HEL-specific Ig transgene undergo rearrangements of endogenous kappa light chains, resulting in loss of HEL specificity. Moreover, immature B cells from Ig-alpha mutant mice respond to BCR cross-linking with an exaggerated and prolonged calcium response and induction of protein tyrosine phosphorylation. Our data imply a negative signaling role for Ig-alpha in immature B cells.
Collapse
MESH Headings
- Animals
- Antibody Specificity
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/immunology
- Apoptosis
- Autoantigens/genetics
- Autoantigens/immunology
- CD79 Antigens
- Calcium Signaling/immunology
- Clonal Deletion
- Crosses, Genetic
- Gene Rearrangement, B-Lymphocyte, Light Chain
- Immunoglobulin kappa-Chains/immunology
- Immunologic Capping
- Lymphocyte Activation/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Muramidase/genetics
- Muramidase/immunology
- Mutagenesis, Site-Directed
- Phosphorylation
- Protein Processing, Post-Translational/immunology
- Protein Structure, Tertiary
- Protein-Tyrosine Kinases/physiology
- Receptors, Antigen, B-Cell/chemistry
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Sequence Deletion
- Terminator Regions, Genetic
Collapse
Affiliation(s)
- M Kraus
- Department of Immunology, Institute for Genetics, University of Cologne, Germany.
| | | | | | | |
Collapse
|
83
|
Wienands J. The B-cell antigen receptor: formation of signaling complexes and the function of adaptor proteins. Curr Top Microbiol Immunol 1999; 245:53-76. [PMID: 10533310 DOI: 10.1007/978-3-642-57066-7_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- J Wienands
- Department for Molecular Immunology, Biology III, University of Freiburg, Germany.
| |
Collapse
|
84
|
da Cruz LA, Penfold S, Zhang J, Somani AK, Shi F, McGavin MK, Song X, Siminovitch KA. Involvement of the lymphocyte cytoskeleton in antigen-receptor signaling. Curr Top Microbiol Immunol 1999; 245:135-67. [PMID: 10533312 DOI: 10.1007/978-3-642-57066-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- L A da Cruz
- Department of Medicine, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Justement LB. Signal transduction via the B-cell antigen receptor: the role of protein tyrosine kinases and protein tyrosine phosphatases. Curr Top Microbiol Immunol 1999; 245:1-51. [PMID: 10533309 DOI: 10.1007/978-3-642-57066-7_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
MESH Headings
- Adaptor Proteins, Signal Transducing
- Agammaglobulinaemia Tyrosine Kinase
- Animals
- Antigens/metabolism
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- B-Lymphocytes/metabolism
- CD79 Antigens
- Calcium/metabolism
- Carrier Proteins/metabolism
- Cell Adhesion Molecules
- Enzyme Activation
- Enzyme Precursors/metabolism
- Gene Expression Regulation
- Humans
- Immunoglobulin M/metabolism
- Intracellular Signaling Peptides and Proteins
- Lectins
- Oncogene Proteins/metabolism
- Phosphoproteins/metabolism
- Phosphorylation
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/metabolism
- Protein Tyrosine Phosphatases/physiology
- Protein-Tyrosine Kinases/metabolism
- Protein-Tyrosine Kinases/physiology
- Proteins/metabolism
- Proto-Oncogene Proteins c-vav
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/physiology
- Receptors, IgG/metabolism
- Sialic Acid Binding Ig-like Lectin 2
- Signal Transduction/immunology
- Signal Transduction/physiology
- Syk Kinase
- Type C Phospholipases/metabolism
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- L B Justement
- Department of Microbiology, University of Alabama at Birmingham 35294-3300, USA
| |
Collapse
|
86
|
Affiliation(s)
- K M Coggeshall
- Department of Microbiology, Ohio State University, Columbus 43210, USA.
| |
Collapse
|
87
|
Minegishi Y, Coustan-Smith E, Rapalus L, Ersoy F, Campana D, Conley ME. Mutations in Igalpha (CD79a) result in a complete block in B-cell development. J Clin Invest 1999; 104:1115-21. [PMID: 10525050 PMCID: PMC408581 DOI: 10.1172/jci7696] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mutations in Btk, mu heavy chain, or the surrogate light chain account for 85-90% of patients with early onset hypogammaglobulinemia and absent B cells. The nature of the defect in the remaining patients is unknown. We screened 25 such patients for mutations in genes encoding components of the pre-B-cell receptor (pre-BCR) complex. A 2-year-old girl was found to have a homozygous splice defect in Igalpha, a transmembrane protein that forms part of the Igalpha/Igbeta signal-transduction module of the pre-BCR. Studies in mice suggest that the Igbeta component of the pre-BCR influences V-DJ rearrangement before cell-surface expression of mu heavy chain. To determine whether Igalpha plays a similar role, we compared B-cell development in an Igalpha-deficient patient with that seen in a mu heavy chain-deficient patient. By immunofluorescence, both patients had a complete block in B-cell development at the pro-B to pre-B transition; both patients also had an equivalent number and diversity of rearranged V-DJ sequences. These results indicate that mutations in Igalpha can be a cause of agammaglobulinemia. Furthermore, they suggest that Igalpha does not play a critical role in B-cell development until it is expressed, along with mu heavy chain, as part of the pre-BCR.
Collapse
Affiliation(s)
- Y Minegishi
- Departments of Immunology, Hematology/Oncology, and Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| | | | | | | | | | | |
Collapse
|
88
|
Abstract
In B lymphocytes, a signaling complex that contributes to cell fate decisions is the B cell antigen receptor (BCR). Data from knockout experiments in cell lines and mice have revealed distinct functions for the intracellular protein tyrosine kinases (Lyn, Syk, Btk) in BCR signaling and B cell development. Combinations of intracellular signaling pathways downstream of these PTKs determine the quality and quantity of BCR signaling. For example, concerted actions of the PLC-gamma 2 and PI3-K pathways are required for proper calcium responses. Similarly, the regulation of ERK and JNK responses involves both PLC-gamma 2 and GTPases pathways. Since the immune response in vivo is regulated by alteration of these signaling outcomes, achieving a precise understanding of intracellular molecular events leading to B lymphocyte proliferation, deletion, anergy, receptor editing, and survival still remains a challenge for the future.
Collapse
Affiliation(s)
- T Kurosaki
- Department of Molecular Genetics, Kansai Medical University, Moriguchi, Japan.
| |
Collapse
|
89
|
Siemasko K, Eisfelder BJ, Stebbins C, Kabak S, Sant AJ, Song W, Clark MR. Igα and Igβ Are Required for Efficient Trafficking to Late Endosomes and to Enhance Antigen Presentation. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.11.6518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The B cell Ag receptor (BCR) is a multimeric complex, containing Igα and Igβ, capable of internalizing and delivering specific Ags to specialized late endosomes, where they are processed into peptides for loading onto MHC class II molecules. By this mechanism, the presentation of receptor-selected epitopes to T cells is enhanced by several orders of magnitude. Previously, it has been reported that, under some circumstances, either Igα or Igβ can facilitate the presentation of Ags. However, we now demonstrate that if these Ags are at low concentrations and temporally restricted, both Igα and Igβ are required. When compared with the BCR, chimeric complexes containing either chain alone were internalized but failed to access the MHC class II-enriched compartment (MIIC) or induce the aggregation and fusion of its constituent vesicles. Furthermore, Igα/Igβ complexes in which the immunoreceptor tyrosine-based activation motif tyrosines of Igα were mutated were also incapable of accessing the MIIC or of facilitating the presentation of Ag. These data indicate that both Igα and Igβ contribute signaling, and possibly other functions, to the BCR that are necessary and sufficient to reconstitute the trafficking and Ag-processing enhancing capacities of the intact receptor complex.
Collapse
Affiliation(s)
| | | | - Christopher Stebbins
- †Pathology, Department of Medicine, Committee on Immunology, University of Chicago, Chicago, IL 60637; and
- Sections of
| | | | - Andrea J. Sant
- †Pathology, Department of Medicine, Committee on Immunology, University of Chicago, Chicago, IL 60637; and
- Sections of
| | - Wenxia Song
- ‡Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
- Sections of
| | - Marcus R. Clark
- *Rheumatology and
- Sections of
- †Pathology, Department of Medicine, Committee on Immunology, University of Chicago, Chicago, IL 60637; and
- Sections of
| |
Collapse
|
90
|
Maeda A, Scharenberg AM, Tsukada S, Bolen JB, Kinet JP, Kurosaki T. Paired immunoglobulin-like receptor B (PIR-B) inhibits BCR-induced activation of Syk and Btk by SHP-1. Oncogene 1999; 18:2291-7. [PMID: 10327049 DOI: 10.1038/sj.onc.1202552] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Coligation of paired immunoglobulin-like receptor B (PIR-B) with B cell antigen receptor (BCR) blocks antigen-induced B cell activation. This inhibition is mediated in part by recruitment of SHP-1 and SHP-2 to the phosphorylated ITIMs in the cytoplasmic domain of PIR-B; however the molecular target(s) of these phosphatases remain elusive. Here we show that PIR-B ligation inhibits the BCR-induced tyrosine phosphorylation of Igalpha/Igbeta, Syk, Btk and phospholipase C (PLC)-gamma2. Overexpression of a catalytically inactive form of SHP-1 prevents the PIR-B-mediated inhibition of tyrosine phosphorylation of Syk, Btk, and PLC-gamma2. Dephosphorylation of Syk and Btk mediated by SHP-1 leads to a decrease of their kinase activity, which in turn inhibits tyrosine phosphorylation of PLC-gamma2. Furthermore, we define a requirement for Lyn in mediating tyrosine phosphorylation of PIR-B. Based on these results, we propose a model of PIR-B-mediated inhibitory signaling in which coligation of PIR-B and BCR results in phosphorylation of ITIMs by Lyn, subsequent recruitment of SHP-1, and a resulting inhibition of the BCR-induced inositol 1,4,5-trisphosphate generation by dephosphorylation of Syk and Btk.
Collapse
Affiliation(s)
- A Maeda
- Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Moriguchi, Japan
| | | | | | | | | | | |
Collapse
|
91
|
Benschop RJ, Cambier JC. B cell development: signal transduction by antigen receptors and their surrogates. Curr Opin Immunol 1999; 11:143-51. [PMID: 10322153 DOI: 10.1016/s0952-7915(99)80025-9] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Constitutive signal transduction by B cell antigen-receptors and/or their surrogates appears to be critical for progression through multiple developmental checkpoints and for survival of mature B cells in the periphery. Antigen-induced signaling via the B cell receptor can compensate for defects in constitutive signaling and initiates receptor editing, apoptosis and anergy in normal mice - purging the repertoire of autoreactive cells. Thus development and survival of mature B cells seem to require continuous receptor signaling of a defined amplitude.
Collapse
Affiliation(s)
- R J Benschop
- Division of Basic Sciences, Department of Pediatrics, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA
| | | |
Collapse
|
92
|
An Alternatively Spliced Form of CD79b Gene May Account for Altered B-Cell Receptor Expression in B-Chronic Lymphocytic Leukemia. Blood 1999. [DOI: 10.1182/blood.v93.7.2327.407a08_2327_2335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several functional anomalies of B-chronic lymphocytic leukemia (B-CLL) cells may be explained by abnormalities of the B-cell receptor (BCR), a multimeric complex formed by the sIg homodimer and the noncovalently bound heterodimer Ig/Igβ (CD79a/CD79b). Because the expression of the extracellular Ig-like domain of CD79b has been reported to be absent in the cells of most CLL cases, we have investigated the molecular mechanisms that may account for this defect. Peripheral blood lymphocytes (PBL) from 50 patients and two cell lines (MEC1, MEC2) obtained from the PBL of one of them were studied. MEC1, MEC2, and 75% of CLL cases did not express detectable levels of the extracellular Ig-like domain of CD79b, which was nevertheless present in greater than 80% CD19+ cells from normal donors. In healthy subjects the expression of CD79b was equally distributed in CD5+ and CD5− B-cell subsets. Reverse transcription-polymerase chain reaction (RT-PCR) analysis of CD79b RNA from all patients and from MEC1 and MEC2 cell lines consistently yielded two fragments of different size (709 bp and 397 bp). The 709-bp band corresponds to CD79b entire transcript; the 397-bp band corresponds to an alternatively spliced form lacking exon 3 that encodes the extracellular Ig-like domain. Both fragments were also visible in normal PBL. The expression of the 397-bp fragment was increased in normal activated B cells, while no difference was seen between CD5+ and CD5− B cells. To obtain a more accurate estimate of the relative proportions of the two spliced forms, a radioactive PCR was performed in 13 normal and 22 B-CLL samples and the results analyzed using a digital imager. The mean value of the CD79b to the CD79b internally deleted ratio was 0.64 ± 0.20 SD in normal donors and 0.44 ± 0.27 SD in B-CLL (P = .01). Direct sequencing of 397-bp RT-PCR products and of genomic DNA corresponding to exon 3 from MEC1, MEC2, their parental cells, and five fresh B-CLL samples did not show any causal mutation. Single-strand conformation polymorphism analysis of exon 3 performed in 18 additional B-CLL cases showed a single abnormal shift corresponding to a TGT → TGC polymorphic change at amino acid 122. We propose a role for the alternative splicing of CD79b gene in causing the reduced expression of BCR on the surface of B-CLL cells. As normal B cells also present this variant, the mechanism of CD79b posttranscriptional regulation might reflect the activation stage of the normal B cell from which B-CLL derives.
Collapse
|
93
|
An Alternatively Spliced Form of CD79b Gene May Account for Altered B-Cell Receptor Expression in B-Chronic Lymphocytic Leukemia. Blood 1999. [DOI: 10.1182/blood.v93.7.2327] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractSeveral functional anomalies of B-chronic lymphocytic leukemia (B-CLL) cells may be explained by abnormalities of the B-cell receptor (BCR), a multimeric complex formed by the sIg homodimer and the noncovalently bound heterodimer Ig/Igβ (CD79a/CD79b). Because the expression of the extracellular Ig-like domain of CD79b has been reported to be absent in the cells of most CLL cases, we have investigated the molecular mechanisms that may account for this defect. Peripheral blood lymphocytes (PBL) from 50 patients and two cell lines (MEC1, MEC2) obtained from the PBL of one of them were studied. MEC1, MEC2, and 75% of CLL cases did not express detectable levels of the extracellular Ig-like domain of CD79b, which was nevertheless present in greater than 80% CD19+ cells from normal donors. In healthy subjects the expression of CD79b was equally distributed in CD5+ and CD5− B-cell subsets. Reverse transcription-polymerase chain reaction (RT-PCR) analysis of CD79b RNA from all patients and from MEC1 and MEC2 cell lines consistently yielded two fragments of different size (709 bp and 397 bp). The 709-bp band corresponds to CD79b entire transcript; the 397-bp band corresponds to an alternatively spliced form lacking exon 3 that encodes the extracellular Ig-like domain. Both fragments were also visible in normal PBL. The expression of the 397-bp fragment was increased in normal activated B cells, while no difference was seen between CD5+ and CD5− B cells. To obtain a more accurate estimate of the relative proportions of the two spliced forms, a radioactive PCR was performed in 13 normal and 22 B-CLL samples and the results analyzed using a digital imager. The mean value of the CD79b to the CD79b internally deleted ratio was 0.64 ± 0.20 SD in normal donors and 0.44 ± 0.27 SD in B-CLL (P = .01). Direct sequencing of 397-bp RT-PCR products and of genomic DNA corresponding to exon 3 from MEC1, MEC2, their parental cells, and five fresh B-CLL samples did not show any causal mutation. Single-strand conformation polymorphism analysis of exon 3 performed in 18 additional B-CLL cases showed a single abnormal shift corresponding to a TGT → TGC polymorphic change at amino acid 122. We propose a role for the alternative splicing of CD79b gene in causing the reduced expression of BCR on the surface of B-CLL cells. As normal B cells also present this variant, the mechanism of CD79b posttranscriptional regulation might reflect the activation stage of the normal B cell from which B-CLL derives.
Collapse
|
94
|
Thompson AA, Do HN, Saxon A, Wall R. Widespread B29 (CD79b) gene defects and loss of expression in chronic lymphocytic leukemia. Leuk Lymphoma 1999; 32:561-9. [PMID: 10048429 DOI: 10.3109/10428199909058414] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic Lymphocytic Leukemia (CLL) is the most prevalent form of leukemia in Western countries, and is characterized by a monoclonal proliferation of primarily immature CD5+ B lymphocytes. The molecular biology of chronic leukemias and lymphomas remains largely unresolved. Surface immunoglobulin (Ig) expression, which is often decreased in CLL, requires the protein product of the B29 gene for translocation of the B cell antigen receptor complex (BCR) to the cell surface and for signal transduction. Because B29 is essential for intracellular assembly and transport of the B cell antigen receptor complex to the cell surface, we postulate that a perturbation in B29 could result in the diminished expression and function of surface Ig in leukemic CLL cells. We have found recurrent aberrations affecting the B29 gene in CLL cells. Analyses of 27 unselected cases of CLL demonstrate that over 75% had low to absent B29 expression which correlated directly to their level of surface Ig expression. Half of these surface B29(low/-) cases had either no or barely detectable levels of B29 mRNA by RNAse protection assay. To date, all of the CLL samples with normal B29 mRNA levels have been found to have point mutations or truncations which would significantly effect the structure and/or function of B29 protein. Strategies directed at correcting these B29 mutations are expected to induce increased Ig surface expression in CLL and may improve the sensitivity of CLL cells to conventional cytotoxic chemotherapy.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- CD79 Antigens
- Female
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immunophenotyping
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Male
- Middle Aged
- Mutation/immunology
- RNA, Messenger/analysis
- RNA, Neoplasm/analysis
Collapse
Affiliation(s)
- A A Thompson
- Dept. of Pediatrics, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
95
|
Alfarano A, Circosta P, Vallario A, Camaschella C, Indraccolo S, Amadori A, Caligaris-Cappio F. Alternative Splicing of CD79a (Igα) and CD79b (Igß Transcripts in Human B-CLL Cells. Curr Top Microbiol Immunol 1999. [DOI: 10.1007/978-3-642-60162-0_30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
96
|
Zidovetzki R, Rost B, Pecht I. Role of transmembrane domains in the functions of B- and T-cell receptors. Immunol Lett 1998; 64:97-107. [PMID: 9870660 DOI: 10.1016/s0165-2478(98)00100-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The antigen receptors on the surface of B- and T-lymphocytes are complexes of several integral membrane proteins, essential for their proper expression and function. Recent studies demonstrated that transmembrane (TM) domains of the components of these receptors play a critical role in their association and function. It was specifically demonstrated that in many cases point mutations in the TM domains can partially or completely disrupt the receptor surface expression and function. Here we review studies of the TM domains of B- and T-cell receptors. Furthermore, we use a novel method, PHDtopology, to provide estimates of the exact locations and lengths of the TM domains of the subunit components of these receptors. Most previous studies used single residue hydrophobicity as a criterion for determining the position and length of the TM domains. In contrast, PHDtopology utilizes a system of neural networks and the evolutionary information contained in multiple alignments of related sequences to predict the location, length, and orientation of transmembrane helices. Present results significantly differ from most published estimates of the TM domains of the B- and T-cell receptor components, primarily in the length of the TM domains. These results may lead to modification of putative TM motifs and re-interpretation of the results of studies using mutated TM domains. The availability of PHDtopology on the Internet would make it a valuable tool in the future studies of the TM domains of integral membrane proteins.
Collapse
Affiliation(s)
- R Zidovetzki
- Department of Biology, University of California, Riverside 92521, USA.
| | | | | |
Collapse
|
97
|
Lankar D, Briken V, Adler K, Weiser P, Cassard S, Blank U, Viguier M, Bonnerot C. Syk tyrosine kinase and B cell antigen receptor (BCR) immunoglobulin-alpha subunit determine BCR-mediated major histocompatibility complex class II-restricted antigen presentation. J Exp Med 1998; 188:819-31. [PMID: 9730884 PMCID: PMC2213387 DOI: 10.1084/jem.188.5.819] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/1998] [Revised: 04/28/1998] [Indexed: 11/04/2022] Open
Abstract
Stimulation of CD4(+) helper T lymphocytes by antigen-presenting cells requires the degradation of exogenous antigens into antigenic peptides which associate with major histocompatibility complex (MHC) class II molecules in endosomal or lysosomal compartments. B lymphocytes mediate efficient antigen presentation first by capturing soluble antigens through clonally distributed antigen receptors (BCRs), composed of membrane immunoglobulin (Ig) associated with Ig-alpha/Ig-beta heterodimers which, second, target antigens to MHC class II-containing compartments. We report that antigen internalization and antigen targeting through the BCR or its Ig-alpha-associated subunit to newly synthesized class II lead to the presentation of a large spectrum of T cell epitopes, including some cryptic T cell epitopes. To further characterize the intracellular mechanisms of BCR-mediated antigen presentation, we used two complementary experimental approaches: mutational analysis of the Ig-alpha cytoplasmic tail, and overexpression in B cells of dominant negative syk mutants. Thus, we found that the syk tyrosine kinase, an effector of the BCR signal transduction pathway, is involved in the presentation of peptide- MHC class II complexes through antigen targeting by BCR subunits.
Collapse
MESH Headings
- Animals
- Antigen Presentation
- Antigens, CD/chemistry
- Antigens, CD/physiology
- Antigens, Viral/metabolism
- B-Lymphocytes/enzymology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Bacteriophage lambda/immunology
- CD79 Antigens
- Cytoplasm/immunology
- DNA-Binding Proteins
- Enzyme Precursors/metabolism
- Enzyme Precursors/physiology
- Epitopes, T-Lymphocyte/metabolism
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Intracellular Signaling Peptides and Proteins
- Lymphocyte Activation
- Lymphoma, B-Cell
- Mice
- Protein-Tyrosine Kinases/metabolism
- Protein-Tyrosine Kinases/physiology
- Rats
- Receptors, Antigen, B-Cell/chemistry
- Receptors, Antigen, B-Cell/physiology
- Repressor Proteins/immunology
- Syk Kinase
- Tumor Cells, Cultured
- Tyrosine/physiology
- Viral Proteins
- Viral Regulatory and Accessory Proteins
Collapse
Affiliation(s)
- D Lankar
- INSERM CJF 95-01, Institut Curie, Section Recherche, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Thévenin C, Nutt SL, Busslinger M. Early function of Pax5 (BSAP) before the pre-B cell receptor stage of B lymphopoiesis. J Exp Med 1998; 188:735-44. [PMID: 9705955 PMCID: PMC2213350 DOI: 10.1084/jem.188.4.735] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The formation of the pre-B cell receptor (BCR) corresponds to an important checkpoint in B cell development that selects pro-B (pre-BI) cells expressing a functionally rearranged immunoglobulin mu (Igmu) heavy chain protein to undergo the transition to the pre-B (pre-BII) cell stage. The pre-BCR contains, in addition to Igmu, the surrogate light chains lambda5 and VpreB and the signal transducing proteins Igalpha and Igbeta. The absence of one of these pre-BCR components is known to arrest B cell development at the pre-BI cell stage. Disruption of the Pax5 gene, which codes for the B cell-specific activator protein (BSAP), also blocks adult B lymphopoiesis at the pre-BI cell stage. Moreover, expression of the mb-1 (Igalpha) gene and VH-to-DHJH recombination at the IgH locus are reduced in Pax5-deficient B lymphocytes approximately 10- and approximately 50-fold, respectively. Here we demonstrate that complementation of these deficiencies in pre-BCR components by expression of functionally rearranged Ig mu and chimeric Igmu-Igbeta transgenes fails to advance B cell development to the pre-BII cell stage in Pax5 (-/-) mice in contrast to RAG2 (-/-) mice. Furthermore, the pre-BCR is stably expressed on cultured pre-BI cells from Igmu transgenic, Pax5-deficient bone marrow, but is unable to elicit its normal signaling responses. In addition, the early developmental block is unlikely to be caused by the absence of a survival signal, as it could not be rescued by expression of a bcl2 transgene in Pax5-deficient pre-BI cells. Together, these data demonstrate that the absence of Pax5 arrests adult B lymphopoiesis at an early developmental stage that is unresponsive to pre-BCR signaling.
Collapse
Affiliation(s)
- C Thévenin
- Research Institute of Molecular Pathology, A-1030 Vienna, Austria
| | | | | |
Collapse
|
99
|
Cronin FE, Jiang M, Abbas AK, Grupp SA. Role of μ Heavy Chain in B Cell Development. I. Blocked B Cell Maturation But Complete Allelic Exclusion in the Absence of Igα/β. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.1.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
There is good evidence for a signaling role played by Ig heavy chain in the developmental transition through the pre-B cell stage. We have previously described signal-capable or signal-incapable mutants of μ heavy chain in which a signaling defect is caused by failure to associate with the Igα/β heterodimer. To further characterize the role of Ig heavy chain-mediated signaling in vivo, as well as in B cell development and allelic exclusion, we have created transgenic mice in which the B cells express these signal-capable and signal-incapable mutant μ chains. Failure of μ to signal via Igα/β results in a block in B cell development in mice expressing the signal-incapable μ. A small number of B cells in these animals do escape the developmental block and are expressed in the spleen and the periphery as B220+ transgenic IgM+ cells. These cells respond to LPS by proliferating but show no response to T-independent-specific Ag. In contrast, B cells expressing the signal-capable B cell receptor show a strong signaling response to Ag-specific stimulus. There is no Igα seen in association with signal-deficient IgM. Thus, the B cell receptor complex is not assembled, and no signal can be delivered. Despite the block in developmental signaling, allelic exclusion is complete. There is no detectable coexpression of transgenic IgM and endogenous murine IgM, nor is there rearrangement of the endogenous heavy chain genes. This suggests that differing signaling mechanisms are responsible for the developmental transition and allelic exclusion and thus allows for separate examination of these signaling mechanisms.
Collapse
Affiliation(s)
- Frank E. Cronin
- *Immunology Research Division, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115; and
| | - Ming Jiang
- †Division of Pediatric Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Abul K. Abbas
- *Immunology Research Division, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115; and
| | - Stephan A. Grupp
- †Division of Pediatric Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| |
Collapse
|
100
|
Nutt SL, Morrison AM, Dörfler P, Rolink A, Busslinger M. Identification of BSAP (Pax-5) target genes in early B-cell development by loss- and gain-of-function experiments. EMBO J 1998; 17:2319-33. [PMID: 9545244 PMCID: PMC1170575 DOI: 10.1093/emboj/17.8.2319] [Citation(s) in RCA: 243] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Pax-5 gene codes for the transcription factor BSAP which is essential for the progression of adult B lymphopoiesis beyond an early progenitor (pre-BI) cell stage. Although several genes have been proposed to be regulated by BSAP, CD19 is to date the only target gene which has been genetically confirmed to depend on this transcription factor for its expression. We have now taken advantage of cultured pre-BI cells of wild-type and Pax-5 mutant bone marrow to screen a large panel of B lymphoid genes for additional BSAP target genes. Four differentially expressed genes were shown to be under the direct control of BSAP, as their expression was rapidly regulated in Pax-5-deficient pre-BI cells by a hormone-inducible BSAP-estrogen receptor fusion protein. The genes coding for the B-cell receptor component Ig-alpha (mb-1) and the transcription factors N-myc and LEF-1 are positively regulated by BSAP, while the gene coding for the cell surface protein PD-1 is efficiently repressed. Distinct regulatory mechanisms of BSAP were revealed by reconstituting Pax-5-deficient pre-BI cells with full-length BSAP or a truncated form containing only the paired domain. IL-7 signalling was able to efficiently induce the N-myc gene only in the presence of full-length BSAP, while complete restoration of CD19 synthesis was critically dependent on the BSAP protein concentration. In contrast, the expression of the mb-1 and LEF-1 genes was already reconstituted by the paired domain polypeptide lacking any transactivation function, suggesting that the DNA-binding domain of BSAP is sufficient to recruit other transcription factors to the regulatory regions of these two genes. In conclusion, these loss- and gain-of-function experiments demonstrate that BSAP regulates four newly identified target genes as a transcriptional activator, repressor or docking protein depending on the specific regulatory sequence context.
Collapse
Affiliation(s)
- S L Nutt
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | | | | | |
Collapse
|