51
|
Patel AJ, Willsmore ZN, Khan N, Richter A, Naidu B, Drayson MT, Papa S, Cope A, Karagiannis SN, Perucha E, Middleton GW. Regulatory B cell repertoire defects predispose lung cancer patients to immune-related toxicity following checkpoint blockade. Nat Commun 2022; 13:3148. [PMID: 35672305 PMCID: PMC9174492 DOI: 10.1038/s41467-022-30863-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 05/22/2022] [Indexed: 12/20/2022] Open
Abstract
Checkpoint blockade with Pembrolizumab, has demonstrated durable clinical responses in advanced non-small cell lung cancer, however, treatment is offset by the development of high-grade immune related adverse events (irAEs) in some patients. Here, we show that in these patients a deficient Breg checkpoint fails to limit self-reactive T cell enhanced activity and auto-antibody formation enabled by PD-1/PD-L1 blockade, leading to severe auto-inflammatory sequelae. Principally a failure of IL-10 producing regulatory B cells as demonstrated through functional ex vivo assays and deep phenotyping mass cytometric analysis, is a major and significant finding in patients who develop high-grade irAEs when undergoing treatment with anti-PD1/PD-L1 checkpoint blockade. There is currently a lack of biomarkers to identify a priori those patients at greatest risk of developing severe auto-inflammatory syndrome. Pre-therapy B cell profiling could provide an important tool to identify lung cancer patients at high risk of developing severe irAEs on checkpoint blockade.
Collapse
Affiliation(s)
- Akshay J Patel
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Zena N Willsmore
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, King's College London, London, SE1 9RT, UK
| | - Naeem Khan
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alex Richter
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Babu Naidu
- Institute of Inflammation and Ageing (IIA), College of Medical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mark T Drayson
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sophie Papa
- Immunoengineering Group, King's College London, London, SE1 9RT, UK
- Department of Medical Oncology, Guy's and St Thomas' NHS Trust, London, SE1 9RT, UK
| | - Andrew Cope
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, King's College London, London, SE1 1UL, UK
- Centre for Rheumatic Diseases, King's College London, SE1 1UL, London, UK
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, King's College London, London, SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, SE1 9RT, UK
| | - Esperanza Perucha
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, King's College London, London, SE1 1UL, UK
- Centre for Rheumatic Diseases, King's College London, SE1 1UL, London, UK
| | - Gary W Middleton
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
52
|
Salit RB. The role of JAK inhibitors in hematopoietic cell transplantation. Bone Marrow Transplant 2022; 57:857-865. [PMID: 35388118 DOI: 10.1038/s41409-022-01649-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/07/2022] [Accepted: 03/16/2022] [Indexed: 01/03/2023]
Abstract
The Janus Kinase (JAK)/Signal Transducers and Activators of Transcription (STAT) pathway is essential for both the regulation of hematopoiesis and the control of inflammation. Disruption of this pathway can lead to inflammatory and malignant disease processes. JAK inhibitors, designed to control the downstream effects of pro-inflammatory and pro-angiogenic cytokines, have been successfully used in pre-clinical models and clinical studies of patients with autoimmune diseases, hematologic malignancies, and the hematopoietic cell transplantation (HCT) complication graft versus host disease (GVHD). In the last decade, JAK inhibitors Ruxolitinib, Fedratinib, and most recently Pacritinib have been United States Federal Drug Administration (FDA) approved for the treatment of myelofibrosis (MF). Ruxolitinib was also recently approved for the treatment of steroid refractory acute as well as chronic GVHD; JAK inhibitors are currently under evaluation in the pre-HCT setting in MF and for the prevention of GVHD. This review will focus on the role of JAK inhibitors in the treatment of hematologic malignancies, the potential function of pre-HCT JAK inhibitors in patients with MF, and the role of JAK inhibitors in the prevention and treatment of acute and chronic GVHD.
Collapse
Affiliation(s)
- Rachel B Salit
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Department of Medicine, University of Washington Medical Center, Seattle, WA, USA.
| |
Collapse
|
53
|
Avalos A, Tietsort JT, Suwankitwat N, Woods JD, Jackson SW, Christodoulou A, Morrill C, Liggitt HD, Zhu C, Li QZ, Bui KK, Park H, Iritani BM. Hem-1 regulates protective humoral immunity and limits autoantibody production in a B cell-specific manner. JCI Insight 2022; 7:e153597. [PMID: 35531955 PMCID: PMC9090261 DOI: 10.1172/jci.insight.153597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Hematopoietic protein-1 (Hem-1) is a member of the actin-regulatory WASp family verprolin homolog (WAVE) complex. Loss-of-function variants in the NCKAP1L gene encoding Hem-1 were recently discovered to result in primary immunodeficiency disease (PID) in children, characterized by poor specific Ab responses, increased autoantibodies, and high mortality. However, the mechanisms of how Hem-1 deficiency results in PID are unclear. In this study, we utilized constitutive and B cell-specific Nckap1l-KO mice to dissect the importance of Hem-1 in B cell development and functions. B cell-specific disruption of Hem-1 resulted in reduced numbers of recirculating follicular (FO), marginal zone (MZ), and B1 B cells. B cell migration in response to CXCL12 and -13 were reduced. T-independent Ab responses were nearly abolished, resulting in failed protective immunity to Streptococcus pneumoniae challenge. In contrast, T-dependent IgM and IgG2c, memory B cell, and plasma cell responses were more robust relative to WT control mice. B cell-specific Hem-1-deficient mice had increased autoantibodies against multiple autoantigens, and this correlated with hyperresponsive BCR signaling and increased representation of CD11c+T-bet+ age-associated B cell (ABC cells) - alterations associated with autoimmune diseases. These results suggest that dysfunctional B cells may be part of a mechanism explaining why loss-of-function Hem-1 variants result in recurring infections and autoimmunity.
Collapse
Affiliation(s)
- Alan Avalos
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Jacob T. Tietsort
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Nutthakarn Suwankitwat
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | | | | | | | - Christopher Morrill
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - H. Denny Liggitt
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Chengsong Zhu
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Quan-Zhen Li
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kevin K. Bui
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Heon Park
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Brian M. Iritani
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
54
|
Phalke S, Rivera-Correa J, Jenkins D, Flores Castro D, Giannopoulou E, Pernis AB. Molecular mechanisms controlling age-associated B cells in autoimmunity. Immunol Rev 2022; 307:79-100. [PMID: 35102602 DOI: 10.1111/imr.13068] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
Age-associated B cells (ABCs) have emerged as critical components of immune responses. Their inappropriate expansion and differentiation have increasingly been linked to the pathogenesis of autoimmune disorders, aging-associated diseases, and infections. ABCs exhibit a distinctive phenotype and, in addition to classical B cell markers, often express the transcription factor T-bet and myeloid markers like CD11c; hence, these cells are also commonly known as CD11c+ T-bet+ B cells. Formation of ABCs is promoted by distinctive combinations of innate and adaptive signals. In addition to producing antibodies, these cells display antigen-presenting and proinflammatory capabilities. It is becoming increasingly appreciated that the ABC compartment exhibits a high degree of heterogeneity, plasticity, and sex-specific regulation and that ABCs can differentiate into effector progeny via several routes particularly in autoimmune settings. In this review, we will discuss the initial insights that have been obtained on the molecular machinery that controls ABCs and we will highlight some of the unique aspects of this control system that may enable ABCs to fulfill their distinctive role in immune responses. Given the expanding array of autoimmune disorders and pathophysiological settings in which ABCs are being implicated, a deeper understanding of this machinery could have important and broad therapeutic implications for the successful, albeit daunting, task of targeting these cells.
Collapse
Affiliation(s)
- Swati Phalke
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Juan Rivera-Correa
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Daniel Jenkins
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Danny Flores Castro
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Evgenia Giannopoulou
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Alessandra B Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Immunology & Microbial Pathogenesis, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
55
|
Abstract
Follicular helper T (TFH) cells provide help to B cells, supporting the formation of germinal centres that allow affinity maturation of antibody responses. Although usually located in secondary lymphoid organs, T cells bearing features of TFH cells can also be identified in human blood, and their frequency and phenotype are often altered in people with autoimmune diseases. In this Perspective article, I discuss the increase in circulating TFH cells seen in autoimmune settings and explore potential explanations for this phenomenon. I consider the multistep regulation of TFH cell differentiation by the CTLA4 and IL-2 pathways as well as by regulatory T cells and highlight that these same pathways are crucial for regulating autoimmune diseases. The propensity of infection to serve as a cue for TFH cell differentiation and a potential trigger for autoimmune disease development is also discussed. Overall, I postulate that alterations in pathways that regulate autoimmunity are coupled to alterations in TFH cell homeostasis, suggesting that this population may serve as a core sentinel of dysregulated immunity.
Collapse
|
56
|
Descatoire M, Fritzen R, Rotman S, Kuntzelman G, Leber XC, Droz-Georget S, Thrasher AJ, Traggiai E, Candotti F. Critical role of WASp in germinal center tolerance through regulation of B cell apoptosis and diversification. Cell Rep 2022; 38:110474. [PMID: 35263577 DOI: 10.1016/j.celrep.2022.110474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/18/2021] [Accepted: 02/10/2022] [Indexed: 11/30/2022] Open
Abstract
A main feature of Wiskott-Aldrich syndrome (WAS) is increased susceptibility to autoimmunity. A key contribution of B cells to development of these complications has been demonstrated through studies of samples from affected individuals and mouse models of the disease, but the role of the WAS protein (WASp) in controlling peripheral tolerance has not been specifically explored. Here we show that B cell responses remain T cell dependent in constitutive WASp-deficient mice, whereas selective WASp deletion in germinal center B cells (GCBs) is sufficient to induce broad development of self-reactive antibodies and kidney pathology, pointing to loss of germinal center tolerance as a primary cause leading to autoimmunity. Mechanistically, we show that WASp is upregulated in GCBs and regulates apoptosis and plasma cell differentiation in the germinal center and that the somatic hypermutation-derived diversification is the basis of autoantibody development.
Collapse
Affiliation(s)
- Marc Descatoire
- Laboratory of Inherited Immune Disorders, Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | | | - Samuel Rotman
- Service of Clinical Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | | | - Stephanie Droz-Georget
- Laboratory of Inherited Immune Disorders, Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Adrian J Thrasher
- University College of London, Great Ormond Street Institute of Child Health, London, UK
| | | | - Fabio Candotti
- Laboratory of Inherited Immune Disorders, Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
57
|
Peterson JN, Boackle SA, Taitano SH, Sang A, Lang J, Kelly M, Rahkola JT, Miranda AM, Sheridan RM, Thurman JM, Rao VK, Torres RM, Pelanda R. Elevated Detection of Dual Antibody B Cells Identifies Lupus Patients With B Cell-Reactive VH4-34 Autoantibodies. Front Immunol 2022; 13:795209. [PMID: 35185888 PMCID: PMC8854503 DOI: 10.3389/fimmu.2022.795209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
About 5% of B cells in healthy mice and humans are allelically or isotypically included and hence co-express two different antibodies. In mice, dual antibody B cells (B2R) expand with systemic autoimmunity, co-express autoreactive and non-autoreactive antibodies, and participate in immune responses, but this phenomenon is strain dependent. This study was developed with two goals: 1) to establish the contribution of TLR and IFN receptor signaling to the development of germinal center B cells that express two antibodies in MRL/lpr mice; and 2) to determine whether B2R B cells are increased and particularly activated in a subset of adult patients diagnosed with systemic lupus erythematosus (SLE). Results from the MRL/lpr studies indicate that the enhanced differentiation of dual-κ B cells into germinal center B cells is due to a heightened response to TLR7 and TLR9 signaling, further fueled by an increased response to type II IFN. To understand the clinical and translational implications of our observations in mouse B2R B cells, cohorts of SLE patients and healthy controls were recruited and evaluated for expression of dual BCRs. Results from flow cytometry and microscopy revealed supraphysiological frequencies of κ+λ+ B2R cells in one fourth of the SLE patients. Abnormal numbers of κ+λ+ B cells correlated with higher frequencies of activated naïve B cells and age-associated B cells, and a lower proportion of "B cells that are naïve IgD+" (BND). However, results from single cell V(D)J sequencing demonstrated that these high κ+λ+ SLE patients harbored normal frequencies of κ+λ+ and other B2R B cells. and we further show that their B cells were instead decorated by κ and λ VH4-34 autoantibodies. Thus, our findings indicate that elevated flow cytometric detection of isotypically-included B cells can identify patients with high titers of B cell-reactive VH4-34 autoantibodies and abnormal distribution of B cell subsets relevant to autoimmunity.
Collapse
Affiliation(s)
- Jacob N. Peterson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Susan A. Boackle
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Sophina H. Taitano
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Allison Sang
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Julie Lang
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Margot Kelly
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jeremy T. Rahkola
- Mucosa and Vaccine Research Program Colorado, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, United States
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, CO, United States
| | - Anjelica M. Miranda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Ryan M. Sheridan
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Joshua M. Thurman
- Division of Nephrology and Hypertension, University of Colorado School of Medicine, Aurora, CO, United States
| | - V. Koneti Rao
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, United States
| | - Raul M. Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States
| |
Collapse
|
58
|
Douna H, de Mol J, Amersfoort J, Schaftenaar FH, Kiss MG, Suur BE, Kroner MJ, Binder CJ, Bot I, Van Puijvelde GHM, Kuiper J, Foks AC. IFNγ-Stimulated B Cells Inhibit T Follicular Helper Cells and Protect Against Atherosclerosis. Front Cardiovasc Med 2022; 9:781436. [PMID: 35187121 PMCID: PMC8847680 DOI: 10.3389/fcvm.2022.781436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022] Open
Abstract
B and T cells are interconnected in the T follicular helper—germinal center B cell (TFH-GC B cell) axis, which is hyperactive during atherosclerosis development and loss of control along this axis results in exacerbated atherosclerosis. Inhibition of the TFH–GC B cell axis can be achieved by providing negative co-stimulation to TFH cells through the PD-1/PD-L1 pathway. Therefore, we investigated a novel therapeutic strategy using PD-L1-expressing B cells to inhibit atherosclerosis. We found that IFNγ-stimulated B cells significantly enhanced PD-L1 expression and limited TFH cell development. To determine whether IFNγ-B cells can reduce collar-induced atherosclerosis, apoE−/− mice fed a Western-type diet were treated with PBS, B cells or IFNγ-B cells for a total of 5 weeks following collar placement. IFNγ-B cells significantly increased PD-L1hi GC B cells and reduced plasmablasts. Interestingly, IFNγ-B cells–treated mice show increased atheroprotective Tregs and T cell-derived IL-10. In line with these findings, we observed a significant reduction in total lesion volume in carotid arteries of IFNγ-B cells-treated mice compared to PBS-treated mice and a similar trend was observed compared to B cell-treated mice. In conclusion, our data show that IFNγ-stimulated B cells strongly upregulate PD-L1, inhibit TFH cell responses and protect against atherosclerosis.
Collapse
Affiliation(s)
- Hidde Douna
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - J. de Mol
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Jacob Amersfoort
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Frank H. Schaftenaar
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Mate G. Kiss
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bianca E. Suur
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Mara J. Kroner
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ilze Bot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Gijs H. M. Van Puijvelde
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Amanda C. Foks
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
- *Correspondence: Amanda C. Foks
| |
Collapse
|
59
|
Acharya M, Jackson SW. Regulatory strategies limiting endosomal Toll-like receptor activation in B cells. Immunol Rev 2022; 307:66-78. [PMID: 35040152 PMCID: PMC8986562 DOI: 10.1111/imr.13065] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/26/2022]
Abstract
The recognition of pathogen-associated nucleic acid (NA) promotes effective immunity against invading pathogens. However, endosomal Toll-like receptor (TLR) activation by self-NA also underlies the pathogenesis of systemic autoimmune diseases, such as systemic lupus erythematosus (SLE). For this reason, the activation thresholds of NA-sensing TLRs must be tightly regulated to balance protective and pathogenic immune responses. In this study, we will provide an overview of the evolutionary mechanisms designed to limit the aberrant activation of endosomal TLRs by self-ligands, focusing on four broad strategies. These include the following: 1) the production of nucleases able to degrade self-DNA and RNA; 2) the cell-specific regulation of endosomal TLR expression; 3) the spatial and temporal control of TLR positioning at a sub-cellular level; and 4) the modulation of downstream TLR signaling cascades. Given the critical role of B cells in lupus pathogenesis, where possible, we will describe evidence for B cell-specific induction of these regulatory mechanisms. We will also highlight our own work showing how modulation of B cell endolysosomal flux tunes NA-sensing TLR activation signals. In the face of inevitable generation of self-NA during normal cellular turnover, these parallel mechanisms are vital to protect against pathogenic inflammation.
Collapse
Affiliation(s)
- Mridu Acharya
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA.,Seattle Children's Research Institute, Seattle, Washington, USA
| | - Shaun W Jackson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA.,Seattle Children's Research Institute, Seattle, Washington, USA
| |
Collapse
|
60
|
Sobkowiak-Sobierajska A, Lindemans C, Sykora T, Wachowiak J, Dalle JH, Bonig H, Gennery A, Lawitschka A. Management of Chronic Graft-vs.-Host Disease in Children and Adolescents With ALL: Present Status and Model for a Personalised Management Plan. Front Pediatr 2022; 10:808103. [PMID: 35252060 PMCID: PMC8894895 DOI: 10.3389/fped.2022.808103] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/24/2022] [Indexed: 12/18/2022] Open
Abstract
Herein we review current practice regarding the management of chronic graft-vs.-host disease (cGvHD) in paediatric patients after allogeneic haematopoietic stem cell transplantation (HSCT) for acute lymphoblastic leukaemia (ALL). Topics covered include: (i) the epidemiology of cGvHD; (ii) an overview of advances in our understanding cGvHD pathogenesis; (iii) current knowledge regarding risk factors for cGvHD and prevention strategies complemented by biomarkers; (iii) the paediatric aspects of the 2014 National Institutes for Health-defined diagnosis and grading of cGvHD; and (iv) current options for cGvHD treatment. We cover topical therapy and newly approved tyrosine kinase inhibitors, emphasising the use of immunomodulatory approaches in the context of the delicate counterbalance between immunosuppression and immune reconstitution as well as risks of relapse and infectious complications. We examine real-world approaches of response assessment and tapering schedules of treatment. Furthermore, we report on the optimal timepoints for therapeutic interventions and changes in relation to immune reconstitution and risk of relapse/infection. Additionally, we review the different options for anti-infectious prophylaxis. Finally, we put forth a theory of a holistic view of paediatric cGvHD and its associated manifestations and propose a checklist for individualised risk evaluation with aggregated considerations including site-specific cGvHD evaluation with attention to each individual's GvHD history, previous medical history, comorbidities, and personal tolerance and psychosocial circumstances. To complement this checklist, we present a treatment algorithm using representative patients to inform the personalised management plans for patients with cGvHD after HSCT for ALL who are at high risk of relapse.
Collapse
Affiliation(s)
| | - Caroline Lindemans
- Department of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Pediatric Blood and Bone Marrow Transplantation, Princess Máxima Center, Utrecht, Netherlands
| | - Tomas Sykora
- Department of Pediatric Hematology and Oncology - Haematopoietic Stem Cell Transplantation Unit, National Institute of Children's Diseases and Medical Faculty, Comenius University, Bratislava, Slovakia
| | - Jacek Wachowiak
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jean-Hugues Dalle
- Hematology and Immunology Department, Robert-Debré Hospital, Assistance Publique-Hôpitaux de Paris and University of Paris, Paris, France
| | - Halvard Bonig
- Goethe University Medical Center, Institute of Transfusion Medicine and Immunohematology, and German Red Cross Blood Center Frankfurt, Frankfurt, Germany
| | - Andrew Gennery
- Medical School, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anita Lawitschka
- Stem Cell Transplantation Unit, St. Anna Children's Hospital, Medical University Vienna, Vienna, Austria.,St. Anna Children's Cancer Research Institute, Vienna, Austria
| |
Collapse
|
61
|
Green K, Wittenborn TR, Fahlquist-Hagert C, Terczynska-Dyla E, van Campen N, Jensen L, Reinert L, Hartmann R, Paludan SR, Degn SE. B Cell Intrinsic STING Signaling Is Not Required for Autoreactive Germinal Center Participation. Front Immunol 2021; 12:782558. [PMID: 34938294 PMCID: PMC8685402 DOI: 10.3389/fimmu.2021.782558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/17/2021] [Indexed: 01/16/2023] Open
Abstract
Germinal centers (GCs) are induced microanatomical structures wherein B cells undergo affinity maturation to improve the quality of the antibody response. Although GCs are crucial to appropriate humoral responses to infectious challenges and vaccines, many questions remain about the molecular signals driving B cell participation in GC responses. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is an important mediator of type I interferon and proinflammatory cytokine responses during infection and cellular stress. Recent studies have reported important roles for STING in B cell responses, including an impact on GC B cells and downstream antibody responses, which could have great consequences for vaccine design and understanding STING-associated interferonopathies. GCs are also involved in untoward reactions to autoantigens in a plethora of autoimmune disorders, and it is generally thought that these responses coopt the mechanisms used in foreign antigen-directed GCs. Here, we set out to investigate the importance of the cGAS-STING pathway in autoreactive B cell responses. In a direct competition scenario in a murine mixed bone marrow chimera model of autoreactive GCs, we find that B cell intrinsic deficiency of cGAS, STING, or the type I interferon receptor IFNAR, does not impair GC participation, whereas Toll-like receptor (TLR)-7 deficiency mediates a near-complete block. Our findings suggest that physiological B cell responses are strictly sustained by signals linked to BCR-mediated endocytosis. This wiring of B cell signals may enable appropriate antibody responses, while at the same time restricting aberrant antibody responses during infections and in autoimmune or autoinflammatory settings.
Collapse
Affiliation(s)
- Kenneth Green
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | | | | | - Nina van Campen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Biomedical Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lisbeth Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Line Reinert
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Søren E Degn
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
62
|
Interleukin-35 Prevents Development of Autoimmune Diabetes Possibly by Maintaining the Phenotype of Regulatory B Cells. Int J Mol Sci 2021; 22:ijms222312988. [PMID: 34884797 PMCID: PMC8657454 DOI: 10.3390/ijms222312988] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 01/12/2023] Open
Abstract
The anti-inflammatory role of regulatory B cells (Breg cells) has been associated with IL-35 based on studies of experimental autoimmune uveitis and encephalitis. The role of Breg cells and IL-35+ Breg cells for type 1 diabetes (T1D) remains to be investigated. We studied PBMCs from T1D subjects and healthy controls (HC) and found lowered proportions of Breg cells and IL-35+ Breg cells in T1D. To elucidate the role of Breg cells, the lymphoid organs of two mouse models of T1D were examined. Lower proportions of Breg cells and IL-35+ Breg cells were found in the animal models of T1D compared with control mice. In addition, the systemic administration of recombinant mouse IL-35 prevented hyperglycemia after multiple low dose streptozotocin (MLDSTZ) injections and increased the proportions of Breg cells and IL-35+ Breg cells. A higher proportion of IFN-γ+ cells among Breg cells were found in the PBMCs of the T1D subjects. In the MLDSTZ mice, IL-35 administration decreased the proportions of IFN-γ+ cells among the Breg cells. Our data illustrate that Breg cells may play an important role in the development of T1D and that IL-35 treatment prevents the development of hyperglycemia by maintaining the phenotype of the Breg cells under an experimental T1D condition.
Collapse
|
63
|
Satterthwaite AB. TLR7 Signaling in Lupus B Cells: New Insights into Synergizing Factors and Downstream Signals. Curr Rheumatol Rep 2021; 23:80. [PMID: 34817709 DOI: 10.1007/s11926-021-01047-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE OF THE REVIEW Systemic lupus erythematosus (SLE) is driven by nucleic acid-containing antigens that stimulate endosomal TLRs. We review new advances in our understanding of how TLR7 signaling in B cells drives autoimmunity. RECENT FINDINGS Pathogenic B cell responses to TLR7 engagement are shaped by the disease-associated cytokine environment. TLR7, IFNγ, and IL-21 together promote the formation of autoreactive germinal centers and the ABC/DN2 B cell subset. BAFF and type 1 IFNs enhance autoantibody production from transitional B cells in concert with TLR7. TLR7 signaling components STAT1, BANK1, IRF5, SLC15A4, and CXorf21/TASL are associated genetically with SLE and important for lupus development in mice, while role of T-bet is controversial. Proper control of TLR7 trafficking by UNC93B1, syntenin-1, and αvβ3 integrin is critical for preventing autoimmunity. A better understanding of TLR7 signaling has revealed potential new therapeutic approaches for SLE, several of which are being tested in animal models or clinical trials.
Collapse
Affiliation(s)
- Anne B Satterthwaite
- Department of Internal Medicine, Rheumatic Diseases Division and Department of Immunology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8884, USA.
| |
Collapse
|
64
|
Greaves RB, Chen D, Green EA. Thymic B Cells as a New Player in the Type 1 Diabetes Response. Front Immunol 2021; 12:772017. [PMID: 34745148 PMCID: PMC8566354 DOI: 10.3389/fimmu.2021.772017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/01/2021] [Indexed: 12/27/2022] Open
Abstract
Type 1 diabetes (T1d) results from a sustained autoreactive T and B cell response towards insulin-producing β cells in the islets of Langerhans. The autoreactive nature of the condition has led to many investigations addressing the genetic or cellular changes in primary lymphoid tissues that impairs central tolerance- a key process in the deletion of autoreactive T and B cells during their development. For T cells, these studies have largely focused on medullary thymic epithelial cells (mTECs) critical for the effective negative selection of autoreactive T cells in the thymus. Recently, a new cellular player that impacts positively or negatively on the deletion of autoreactive T cells during their development has come to light, thymic B cells. Normally a small population within the thymus of mouse and man, thymic B cells expand in T1d as well as other autoimmune conditions, reside in thymic ectopic germinal centres and secrete autoantibodies that bind selective mTECs precipitating mTEC death. In this review we will discuss the ontogeny, characteristics and functionality of thymic B cells in healthy and autoimmune settings. Furthermore, we explore how in silico approaches may help decipher the complex cellular interplay of thymic B cells with other cells within the thymic microenvironment leading to new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Richard B Greaves
- Centre for Experimental Medicine and Biomedicine, Hull York Medical School, University of York, York, United Kingdom
| | - Dawei Chen
- Centre for Experimental Medicine and Biomedicine, Hull York Medical School, University of York, York, United Kingdom
| | - E Allison Green
- Centre for Experimental Medicine and Biomedicine, Hull York Medical School, University of York, York, United Kingdom
| |
Collapse
|
65
|
Targeting interferon-γ in hyperinflammation: opportunities and challenges. Nat Rev Rheumatol 2021; 17:678-691. [PMID: 34611329 DOI: 10.1038/s41584-021-00694-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 02/08/2023]
Abstract
Interferon-γ (IFNγ) is a pleiotropic cytokine with multiple effects on the inflammatory response and on innate and adaptive immunity. Overproduction of IFNγ underlies several, potentially fatal, hyperinflammatory or immune-mediated diseases. Several data from animal models and/or from translational research in patients point to a role of IFNγ in hyperinflammatory diseases, such as primary haemophagocytic lymphohistiocytosis, various forms of secondary haemophagocytic lymphohistiocytosis, including macrophage activation syndrome, and cytokine release syndrome, all of which are often managed by rheumatologists or in consultation with rheumatologists. Given the effects of IFNγ on B cells and T follicular helper cells, a role for IFNγ in systemic lupus erythematosus pathogenesis is emerging. To improve our understanding of the role of IFNγ in human disease, IFNγ-related biomarkers that are relevant for the management of hyperinflammatory diseases are progressively being identified and studied, especially because circulating levels of IFNγ do not always reflect its overproduction in tissue. These biomarkers include STAT1 (specifically the phosphorylated form), neopterin and the chemokine CXCL9. IFNγ-neutralizing agents have shown efficacy in the treatment of primary haemophagocytic lymphohistiocytosis in clinical trials and initial promising results have been obtained in various forms of secondary haemophagocytic lymphohistiocytosis, including macrophage activation syndrome. In clinical practice, there is a growing body of evidence supporting the usefulness of circulating CXCL9 levels as a biomarker reflecting IFNγ production.
Collapse
|
66
|
Chiang K, Largent AD, Arkatkar T, Thouvenel CD, Du SW, Shumlak N, Woods J, Li QZ, Liu Y, Hou B, Rawlings DJ, Jackson SW. Cutting Edge: A Threshold of B Cell Costimulatory Signals Is Required for Spontaneous Germinal Center Formation in Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2021; 207:2217-2222. [PMID: 34588220 DOI: 10.4049/jimmunol.2100548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/30/2021] [Indexed: 11/19/2022]
Abstract
Cognate interactions between autoreactive B and T cells promote systemic lupus erythematosus pathogenesis by inter alia facilitating spontaneous germinal center (GC) formation. Whereas both myeloid and B cell APCs express B7 ligands (CD80 and CD86), the prevailing model holds that dendritic cell costimulation is sufficient for CD28-dependent T cell activation. In this study, we report that B cell-intrinsic CD80/CD86 deletion unexpectedly abrogates GCs in murine lupus. Interestingly, absent GCs differentially impacted serum autoantibodies. In keeping with distinct extrafollicular and GC activation pathways driving lupus autoantibodies, lack of GCs correlated with loss of RNA-associated autoantibodies but preserved anti-dsDNA and connective tissue autoantibody titers. Strikingly, even heterozygous B cell CD80/CD86 deletion was sufficient to prevent autoimmune GCs and RNA-associated autoantibodies. Together, these findings identify a key mechanism whereby B cells promote lupus pathogenesis by providing a threshold of costimulatory signals required for autoreactive T cell activation.
Collapse
Affiliation(s)
- Kristy Chiang
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | - Andrea D Largent
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | - Tanvi Arkatkar
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | | | - Samuel W Du
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | - Natali Shumlak
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | - Jonathan Woods
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | - Quan-Zhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Yifan Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Baidong Hou
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - David J Rawlings
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA.,Department of Immunology, University of Washington School of Medicine, Seattle, WA; and.,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| | - Shaun W Jackson
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA; .,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
67
|
Regulation of B Cell Responses in SLE by Three Classes of Interferons. Int J Mol Sci 2021; 22:ijms221910464. [PMID: 34638804 PMCID: PMC8508684 DOI: 10.3390/ijms221910464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/24/2022] Open
Abstract
There are three classes of interferons (type 1, 2, and 3) that can contribute to the development and maintenance of various autoimmune diseases, including systemic lupus erythematosus (SLE). Each class of interferons promotes the generation of autoreactive B cells and SLE-associated autoantibodies by distinct signaling mechanisms. SLE patients treated with various type 1 interferon-blocking biologics have diverse outcomes, suggesting that additional environmental and genetic factors may dictate how these cytokines contribute to the development of autoreactive B cells and SLE. Understanding how each class of interferons controls B cell responses in SLE is necessary for developing optimized B cell- and interferon-targeted therapeutics. In this review, we will discuss how each class of interferons differentially promotes the loss of peripheral B cell tolerance and leads to the development of autoreactive B cells, autoantibodies, and SLE.
Collapse
|
68
|
Yang M, Yi P, Jiang J, Zhao M, Wu H, Lu Q. Dysregulated translational factors and epigenetic regulations orchestrate in B cells contributing to autoimmune diseases. Int Rev Immunol 2021; 42:1-25. [PMID: 34445929 DOI: 10.1080/08830185.2021.1964498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
B cells play a crucial role in antigen presentation, antibody production and pro-/anti-inflammatory cytokine secretion in adaptive immunity. Several translational factors including transcription factors and cytokines participate in the regulation of B cell development, with the cooperation of epigenetic regulations. Autoimmune diseases are generally characterized with autoreactive B cells and high-level pathogenic autoantibodies. The success of B cell depletion therapy in mouse model and clinical trials has proven the role of B cells in pathogenesis of autoimmune diseases. The failure of B cell tolerance in immune checkpoints results in accumulated autoreactive naïve B (BN) cells with aberrant B cell receptor signaling and dysregulated B cell response, contributing to self-antibody-mediated autoimmune reaction. Dysregulation of translational factors and epigenetic alterations in B cells has been demonstrated to correlate with aberrant B cell compartment in autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, primary Sjögren's syndrome, multiple sclerosis, diabetes mellitus and pemphigus. This review is intended to summarize the interaction of translational factors and epigenetic regulations that are involved with development and differentiation of B cells, and the mechanism of dysregulation in the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Ming Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ping Yi
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Jiao Jiang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.,Department of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| |
Collapse
|
69
|
Kimura K, Lin Y, Yamaguchi H, Sato W, Takewaki D, Minote M, Doi Y, Okamoto T, Takahashi R, Kondo T, Yamamura T. Th1 - CD11c + B Cell Axis Associated with Response to Plasmapheresis in Multiple Sclerosis. Ann Neurol 2021; 90:595-611. [PMID: 34424567 PMCID: PMC9293420 DOI: 10.1002/ana.26202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/21/2021] [Accepted: 08/15/2021] [Indexed: 12/29/2022]
Abstract
Objective Although plasmapheresis is a treatment option for patients with autoimmune neurological diseases, treatment response varies greatly among patients. The main objective of this study was to find out if biological/immune traits correlate with a beneficial response. Methods We thoroughly analyzed immune phenotypes in paired blood samples from a cohort of 31 patients with multiple sclerosis before and after plasmapheresis, in parallel with clinical evaluation of treatment response. Results The frequency of IFN‐γ+ Th1 cells was persistently higher in those who obtained benefit from plasmapheresis (responders) than nonresponders. The Th1 cell frequency before plasmapheresis provided a high predictive value for beneficial response, achieving area under the curve (AUC) of 0.902. Plasmapheresis treatment decreased inflammation‐related gene expressions in Th1 cells. Meanwhile, IFNG expression in Th1 cells positively correlated with the frequency of CD11c+ B cells, of which a pathogenic role has been suggested in several autoimmune diseases. In line with this, in vitro experiments showed that CD11c+ B cells would increase in response to exogenous IFN‐γ compared to IL‐4, and secrete high amounts of IgG. B cell receptor analysis indicated that clonal expansion of CD11c+ B cells takes place in patients with multiple sclerosis. Interestingly, CD11c+ B cells, which showed unique gene expression profile, decreased after plasmapheresis treatment along with all the immunoglobulin subsets in the circulation. Interpretation Taken together, we postulate that Th1 cell ‐ CD11c+ B cell axis is involved in treatment response to plasmapheresis, giving us clues to better understanding of complicated pathogenesis of autoimmune diseases, and getting closer to a personalized therapy. ANN NEUROL 2021;90:595–611
Collapse
Affiliation(s)
- Kimitoshi Kimura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Multiple Sclerosis Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Youwei Lin
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Multiple Sclerosis Center, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiromi Yamaguchi
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Wakiro Sato
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Multiple Sclerosis Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Daiki Takewaki
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Multiple Sclerosis Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Misako Minote
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Multiple Sclerosis Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yoshimitsu Doi
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Multiple Sclerosis Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tomoko Okamoto
- Multiple Sclerosis Center, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayuki Kondo
- Department of Neurology, Kansai Medical University Medical Center, Osaka, Japan
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Multiple Sclerosis Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
70
|
Canny SP, Jackson SW. B Cells in Systemic Lupus Erythematosus: From Disease Mechanisms to Targeted Therapies. Rheum Dis Clin North Am 2021; 47:395-413. [PMID: 34215370 PMCID: PMC8357318 DOI: 10.1016/j.rdc.2021.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
B cells exert a prominent contribution to the pathogenesis of systemic lupus erythematosus (SLE). Here, we review the immune mechanisms underlying autoreactive B cell activation in SLE, focusing on how B cell receptor and Toll-like receptor signals integrate to drive breaks in tolerance to nuclear antigens. In addition, we discuss autoantibody-dependent and autoantibody-independent B cell effector functions during lupus pathogenesis. Finally, we address efforts to target B cells therapeutically in human SLE. Despite initial disappointing clinical trials testing B cell depletion in lupus, more recent studies show promise, emphasizing how greater understanding of underlying immune mechanisms can yield clinical benefits.
Collapse
Affiliation(s)
- Susan P Canny
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA; Benaroya Research Institute, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Shaun W Jackson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA.
| |
Collapse
|
71
|
Zhan J, Kipp M, Han W, Kaddatz H. Ectopic lymphoid follicles in progressive multiple sclerosis: From patients to animal models. Immunology 2021; 164:450-466. [PMID: 34293193 PMCID: PMC8517596 DOI: 10.1111/imm.13395] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/19/2022] Open
Abstract
Ectopic lymphoid follicles (ELFs), resembling germinal centre‐like structures, emerge in a variety of infectious and autoimmune and neoplastic diseases. ELFs can be found in the meninges of around 40% of the investigated progressive multiple sclerosis (MS) post‐mortem brain tissues and are associated with the severity of cortical degeneration and clinical disease progression. Of predominant importance for progressive neuronal damage during the progressive MS phase appears to be meningeal inflammation, comprising diffuse meningeal infiltrates, B‐cell aggregates and compartmentalized ELFs. However, the absence of a uniform definition of ELFs impedes reproducible and comparable neuropathological research in this field. In this review article, we will first highlight historical aspects and milestones around the discovery of ELFs in the meninges of progressive MS patients. In the next step, we discuss how animal models may contribute to an understanding of the mechanisms underlying ELF formation. Finally, we summarize challenges in investigating ELFs and propose potential directions for future research.
Collapse
Affiliation(s)
- Jiangshan Zhan
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, Rostock, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, Rostock, Germany
| | - Wenling Han
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University Health Science Cente, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| | - Hannes Kaddatz
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
72
|
Haralambieva IH, Eberhard KG, Ovsyannikova IG, Grill DE, Schaid DJ, Kennedy RB, Poland GA. Transcriptional signatures associated with rubella virus-specific humoral immunity after a third dose of MMR vaccine in women of childbearing age. Eur J Immunol 2021; 51:1824-1838. [PMID: 33818775 PMCID: PMC9841595 DOI: 10.1002/eji.202049054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/03/2021] [Accepted: 12/17/2020] [Indexed: 01/19/2023]
Abstract
Multiple factors linked to host genetics/inherent biology play a role in interindividual variability in immune response outcomes after rubella vaccination. In order to identify these factors, we conducted a study of rubella-specific humoral immunity before (Baseline) and after (Day 28) a third dose of MMR-II vaccine in a cohort of 109 women of childbearing age. We performed mRNA-Seq profiling of PBMCs after rubella virus in vitro stimulation to delineate genes associated with post-vaccination rubella humoral immunity and to define genes mediating the association between prior immune response status (high or low antibody) and subsequent immune response outcome. Our study identified novel genes that mediated the association between prior immune response and neutralizing antibody titer after a third MMR vaccine dose. These genes included the following: CDC34; CSNK1D; APOBEC3F; RAD18; AAAS; SLC37A1; FAS; and JAK2. The encoded proteins are involved in innate antiviral response, IFN/cytokine signaling, B cell repertoire generation, the clonal selection of B lymphocytes in germinal centers, and somatic hypermutation/antibody affinity maturation to promote optimal antigen-specific B cell immune function. These data advance our understanding of how subjects' prior immune status and/or genetic propensity to respond to rubella/MMR vaccination ultimately affects innate immunity and humoral immune outcomes after vaccination.
Collapse
Affiliation(s)
| | | | | | - Diane E. Grill
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel J. Schaid
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard B. Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory A. Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
73
|
Jacobs HM, Arkatkar T, Du SW, Scharping NE, Woods J, Li QZ, Hudkins KL, Alpers CE, Rawlings DJ, Jackson SW. TACI haploinsufficiency protects against BAFF-driven humoral autoimmunity in mice. Eur J Immunol 2021; 51:2225-2236. [PMID: 34146342 DOI: 10.1002/eji.202149244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/26/2021] [Accepted: 06/16/2021] [Indexed: 11/06/2022]
Abstract
Polymorphisms in TACI, a BAFF family cytokine receptor, are linked to diverse human immune disorders including common variable immunodeficiency (CVID) and systemic lupus erythematosus (SLE). Functional studies of individual variants show modest impacts on surface TACI expression and/or downstream signal transduction, indicating that relatively subtle variation in TACI activity can impact human B-cell biology. However, significant complexity underlies TACI biology, including both positive and negative regulation of physiologic and pathogenic B-cell responses. To model these contradictory events, we compared the functional impact of TACI deletion on separate models of murine SLE driven by T cell-independent and -dependent breaks in B-cell tolerance. First, we studied whether reduced surface TACI expression was sufficient to protect against progressive BAFF-mediated systemic autoimmunity. Strikingly, despite a relatively modest impact on surface TACI levels, TACI haploinsufficiency markedly reduced pathogenic RNA-associated autoantibody titers and conferred long-term protection from BAFF-driven lupus nephritis. In contrast, B cell-intrinsic TACI deletion exerted a limited impact of autoantibody generation in murine lupus characterized by spontaneous germinal center formation and T cell-dependent humoral autoimmunity. Together, these combined data provide new insights into TACI biology and highlight how TACI signals must be tightly regulated during protective and pathogenic B-cell responses.
Collapse
Affiliation(s)
| | | | - Samuel W Du
- Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | - Quan-Zhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kelly L Hudkins
- Departments of Laboratory Medicine and Pathology, Immunology and Pediatrics, University of Washington School of Medicine, Washington, WA, USA
| | - Charles E Alpers
- Departments of Laboratory Medicine and Pathology, Immunology and Pediatrics, University of Washington School of Medicine, Washington, WA, USA
| | | | | |
Collapse
|
74
|
Gocher AM, Workman CJ, Vignali DAA. Interferon-γ: teammate or opponent in the tumour microenvironment? Nat Rev Immunol 2021; 22:158-172. [PMID: 34155388 DOI: 10.1038/s41577-021-00566-3] [Citation(s) in RCA: 255] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy offers substantive benefit to patients with various tumour types, in some cases leading to complete tumour clearance. However, many patients do not respond to immunotherapy, galvanizing the field to define the mechanisms of pre-existing and acquired resistance. Interferon-γ (IFNγ) is a cytokine that has both protumour and antitumour activities, suggesting that it may serve as a nexus for responsiveness to immunotherapy. Many cancer immunotherapies and chemotherapies induce IFNγ production by various cell types, including activated T cells and natural killer cells. Patients resistant to these therapies commonly have molecular aberrations in the IFNγ signalling pathway or express resistance molecules driven by IFNγ. Given that all nucleated cells can respond to IFNγ, the functional consequences of IFNγ production need to be carefully dissected on a cell-by-cell basis. Here, we review the cells that produce IFNγ and the different effects of IFNγ in the tumour microenvironment, highlighting the pleiotropic nature of this multifunctional and abundant cytokine.
Collapse
Affiliation(s)
- Angela M Gocher
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA. .,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
75
|
Schell SL, Bricker KN, Fike AJ, Chodisetti SB, Domeier PP, Choi NM, Fasnacht MJ, Luckenbill SA, Ziegler SF, Rahman ZSM. Context-Dependent miR-21 Regulation of TLR7-Mediated Autoimmune and Foreign Antigen-Driven Antibody-Forming Cell and Germinal Center Responses. THE JOURNAL OF IMMUNOLOGY 2021; 206:2803-2818. [PMID: 34039637 DOI: 10.4049/jimmunol.2001039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 04/01/2021] [Indexed: 01/03/2023]
Abstract
MicroRNAs (miRNAs) are involved in healthy B cell responses and the loss of tolerance in systemic lupus erythematosus (SLE), although the role of many miRNAs remains poorly understood. Dampening miR-21 activity was previously shown to reduce splenomegaly and blood urea nitrogen levels in SLE-prone mice, but the detailed cellular responses and mechanism of action remains unexplored. In this study, using the TLR7 agonist, imiquimod-induced SLE model, we observed that loss of miR-21 in Sle1b mice prevented the formation of plasma cells and autoantibody-producing Ab-forming cells (AFCs) without a significant effect on the magnitude of the germinal center (GC) response. We further observed reduced dendritic cell and monocyte numbers in the spleens of miR-21-deficient Sle1b mice that were associated with reduced IFN, proinflammatory cytokines, and effector CD4+ T cell responses. RNA sequencing analysis on B cells from miR-21-deficient Sle1b mice revealed reduced activation and response to IFN, and cytokine and target array analysis revealed modulation of numerous miR-21 target genes in response to TLR7 activation and type I IFN stimulation. Our findings in the B6.Sle1bYaa (Sle1b Yaa) spontaneous model recapitulated the miR-21 role in TLR7-induced responses with an additional role in autoimmune GC and T follicular helper responses. Finally, immunization with T-dependent Ag revealed a role for miR-21 in foreign Ag-driven GC and Ab, but not AFC, responses. Our data suggest a potential multifaceted, context-dependent role for miR-21 in autoimmune and foreign Ag-driven AFC and GC responses. Further study is warranted to delineate the cell-intrinsic requirements and mechanisms of miR-21 during infection and SLE development.
Collapse
Affiliation(s)
- Stephanie L Schell
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA; and
| | - Kristen N Bricker
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA; and
| | - Adam J Fike
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA; and
| | - Sathi Babu Chodisetti
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA; and
| | | | - Nicholas M Choi
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA; and
| | - Melinda J Fasnacht
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA; and
| | - Sara A Luckenbill
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA; and
| | | | - Ziaur S M Rahman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA; and
| |
Collapse
|
76
|
Verstappen GM, Pringle S, Bootsma H, Kroese FGM. Epithelial-immune cell interplay in primary Sjögren syndrome salivary gland pathogenesis. Nat Rev Rheumatol 2021; 17:333-348. [PMID: 33911236 PMCID: PMC8081003 DOI: 10.1038/s41584-021-00605-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2021] [Indexed: 02/08/2023]
Abstract
In primary Sjögren syndrome (pSS), the function of the salivary glands is often considerably reduced. Multiple innate immune pathways are likely dysregulated in the salivary gland epithelium in pSS, including the nuclear factor-κB pathway, the inflammasome and interferon signalling. The ductal cells of the salivary gland in pSS are characteristically surrounded by a CD4+ T cell-rich and B cell-rich infiltrate, implying a degree of communication between epithelial cells and immune cells. B cell infiltrates within the ducts can initiate the development of lymphoepithelial lesions, including basal ductal cell hyperplasia. Vice versa, the epithelium provides chronic activation signals to the glandular B cell fraction. This continuous stimulation might ultimately drive the development of mucosa-associated lymphoid tissue lymphoma. This Review discusses changes in the cells of the salivary gland epithelium in pSS (including acinar, ductal and progenitor cells), and the proposed interplay of these cells with environmental stimuli and the immune system. Current therapeutic options are insufficient to address both lymphocytic infiltration and salivary gland dysfunction. Successful rescue of salivary gland function in pSS will probably demand a multimodal therapeutic approach and an appreciation of the complicity of the salivary gland epithelium in the development of pSS.
Collapse
Affiliation(s)
- Gwenny M Verstappen
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Sarah Pringle
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Hendrika Bootsma
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.
| | - Frans G M Kroese
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
77
|
Datta SK. Harnessing Tolerogenic Histone Peptide Epitopes From Nucleosomes for Selective Down-Regulation of Pathogenic Autoimmune Response in Lupus (Past, Present, and Future). Front Immunol 2021; 12:629807. [PMID: 33936042 PMCID: PMC8080879 DOI: 10.3389/fimmu.2021.629807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Autoantigen-directed tolerance can be induced by certain nucleosomal histone peptide epitope/s in nanomolar dosage leading to sustained remission of disease in mice with spontaneous SLE. By contrast, lupus is accelerated by administration of intact (whole) histones, or whole nucleosomes in microparticles from apoptotic cells, or by post-translationally acetylated histone-peptides. Low-dose therapy with the histone-peptide epitopes simultaneously induces TGFβ and inhibits IL-6 production by DC in vivo, especially pDC, which then induce CD4+CD25+ Treg and CD8+ Treg cells that suppress pathogenic autoimmune response. Both types of induced Treg cells are FoxP3+ and act by producing TGFβ at close cell-to-cell range. No anaphylactic adverse reactions, or generalized immunosuppression have been detected in mice injected with the peptides, because the epitopes are derived from evolutionarily conserved histones in the chromatin; and the peptides are expressed in the thymus during ontogeny, and their native sequences have not been altered. The peptide-induced Treg cells can block severe lupus on adoptive transfer reducing inflammatory cell reaction and infiltration in the kidney. In Humans, similar potent Treg cells are generated by the histone peptide epitopes in vitro in lupus patients’ PBMC, inhibiting anti-dsDNA autoantibody and interferon production. Furthermore, the same types of Treg cells are generated in lupus patients who are in very long-term remission (2-8 years) after undergoing autologous hematopoietic stem cell transplantation. These Treg cells are not found in lupus patients treated conventionally into clinical remission (SLEDAI of 0); and consequently they still harbor pathogenic autoimmune cells, causing subclinical damage. Although antigen-specific therapy with pinpoint accuracy is suitable for straight-forward organ-specific autoimmune diseases, Systemic Lupus is much more complex. The histone peptide epitopes have unique tolerogenic properties for inhibiting Innate immune cells (DC), T cells and B cell populations that are both antigen-specifically and cross-reactively involved in the pathogenic autoimmune response in lupus. The histone peptide tolerance is a natural and non-toxic therapy suitable for treating early lupus, and also maintaining lupus patients after toxic drug therapy. The experimental steps, challenges and possible solutions for successful therapy with these peptide epitopes are discussed in this highly focused review on Systemic Lupus.
Collapse
Affiliation(s)
- Syamal K Datta
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
78
|
Hahn WO, Pepper M, Liles WC. B cell intrinsic expression of IFNλ receptor suppresses the acute humoral immune response to experimental blood-stage malaria. Virulence 2021; 11:594-606. [PMID: 32407154 PMCID: PMC7549950 DOI: 10.1080/21505594.2020.1768329] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Antibodies play a critical protective role in the host response to blood-stage malaria infection. The role of cytokines in shaping the antibody response to blood-stage malaria is unclear. Interferon lambda (IFNλ), a type III interferon, is a cytokine produced early during blood-stage malaria infection that has an unknown physiological role during malaria infection. We demonstrate that B cell-intrinsic IFNλ signals suppress the acute antibody response, acute plasmablast response, and impede acute parasite clearance during a primary blood-stage malaria infection. Our findings demonstrate a previously unappreciated role for B cell intrinsic IFNλ-signaling in the initiation of the humoral immune response in the host response to experimental malaria.
Collapse
Affiliation(s)
- William O Hahn
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington , Seattle, USA
| | - Marion Pepper
- Department of Immunology, University of Washington , Seattle, USA
| | - W Conrad Liles
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington , Seattle, USA
| |
Collapse
|
79
|
Abstract
Memory B cells (MBCs) are critical for the rapid development of protective immunity following re-infection. MBCs capable of neutralizing distinct subclasses of pathogens, such as influenza and HIV, have been identified in humans. However, efforts to develop vaccines that induce broadly protective MBCs to rapidly mutating pathogens have not yet been successful. Better understanding of the signals regulating MBC development and function are essential to overcome current challenges hindering successful vaccine development. Here, we discuss recent advancements regarding the signals and transcription factors regulating germinal centre-derived MBC development and function.
Collapse
Affiliation(s)
- Brian J Laidlaw
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - Jason G Cyster
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
80
|
Ruxolitinib for the treatment of chronic GVHD and overlap syndrome in children and young adults. Transplantation 2021; 106:412-419. [PMID: 33795598 DOI: 10.1097/tp.0000000000003768] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ruxolitinib, a JAK1/2 inhibitor, is used to treat chronic graft-versus-host-disease (cGVHD) in adult allogeneic hematopoietic stem cell transplant patients, but experience in children is limited, perhaps due to lack of pediatric dosing information. In this report we describe our pediatric and young adult dosing strategy experience in cGVHD. METHODS Ruxolitinib was administered orally at 5mg twice daily for children ≥25kg or 2.5mg twice daily if <25kg. The dose was halved with concurrent azole administration and increased to a maximum of 10mg twice daily if tolerated. Responses were evaluated using the 2014 NIH consensus criteria. Phosphorylation of lymphocyte STAT5 following dosing, a surrogate of JAK inhibition, was evaluated by flow cytometry. RESULTS Twenty patients with a median age 14.6 years (range 5-26 years) received ruxolitinib for severe (n=9) and moderate (n=11) cGVHD. Median steroid dose was 0.5mg/kg/day (range 0.08-1.5mg/kg/day) at ruxolitinib initiation. Two patients with moderate cGVHD achieved a complete response (CR), while 12 patients achieved a partial response (PR) at a median of 48 days (range 17-98 days) from first ruxolitinib dose, for an overall response rate of 70%. Eleven patients are maintaining their PRs. pSTAT5 on lymphocytes was absent or decreased (0-6% events) in 5 evaluated patients, suggesting adequate inhibition. Three patients discontinued ruxolitinib due to neutropenia, thrombocytopenia, or elevated alanine aminotransferase. Four patients developed bacterial infections, and three experienced symptomatic viral infections. Two patients died from complications related to progressive severe cGVHD. CONCLUSION Ruxolitinib using our dosing strategy demonstrates promise for treating cGVHD in children.Supplemental Visual Abstract; http://links.lww.com/TP/C202.
Collapse
|
81
|
Jang E, Cho S, Pyo S, Nam JW, Youn J. An Inflammatory Loop Between Spleen-Derived Myeloid Cells and CD4 + T Cells Leads to Accumulation of Long-Lived Plasma Cells That Exacerbates Lupus Autoimmunity. Front Immunol 2021; 12:631472. [PMID: 33643317 PMCID: PMC7904883 DOI: 10.3389/fimmu.2021.631472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
Splenic long-lived plasma cells are abnormally numerous and deleterious in systemic autoimmune diseases, yet how they accumulate remains poorly understood. We demonstrate here that a pathological role of spleen-derived CD11b+Gr-1+ myeloid cells (SDMCs) underpins the accumulation of splenic long-lived plasma cells in a lupus-prone model named sanroque. We found that SDMCs were progressively accumulated in sanroque mice from the early clinical phase. Transcriptome profiles revealed that SDMCs have a predominant shift toward an inflammatory phenotype relative to the bone marrow-derived counterparts and are distinct from neutrophils and monocytes. SDMCs were expanded in situ via splenic extramedullary myelopoiesis under the proinflammatory cytokine milieu during lupus progression. SDMCs promoted the development of IFN-γ-secreting Th1 and follicular helper T cells, thereby licensing CD4+ T cells to be pathologic activators of SDMCs and plasma cells. SDMCs also directly promoted the survival of plasma cells by providing B-cell activating factor of the TNF family. The frequency of SDMCs correlated with that of splenic long-lived plasma cells. Selective depletion of CD11b+Gr-1+ cells reduced autoantibody production in sanroque mice. Thus, our findings suggest that SDMCs expanded in situ establish a positive feedback loop with CD4+ T cells, leading to accumulation of long-lived plasma cells which exacerbates lupus autoimmunity.
Collapse
Affiliation(s)
- Eunkyeong Jang
- Laboratory of Autoimmunology, Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Somi Cho
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Sungjin Pyo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Jeehee Youn
- Laboratory of Autoimmunology, Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul, South Korea.,Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| |
Collapse
|
82
|
B Cell Aberrance in Lupus: the Ringleader and the Solution. Clin Rev Allergy Immunol 2021; 62:301-323. [PMID: 33534064 DOI: 10.1007/s12016-020-08820-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 12/18/2022]
Abstract
Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease with high heterogeneity but the common characterization of numerous autoantibodies and systemic inflammation which lead to the damage of multiple organs. Aberrance of B cells plays a pivotal role in the immunopathogenesis of SLE via both antibody-dependent and antibody-independent manners. Escape of autoreactive B cells from the central and peripheral tolerance checkpoints, over-activation of B cells and their excessive cytokines release which drive T cells and dendritic cells stimulation, and dysregulated surface molecules, as well as intracellular signal pathways involved in B cell biology, are all contributing to B cell aberrance and participating in the pathogenesis of SLE. Based on that rationale, targeting aberrance of B cells and relevant molecules and pathways is expected to be a promising strategy for lupus control. Multiple approaches targeting B cells through different mechanisms have been attempted, including B-cell depletion via monoclonal antibodies against B-cell-specific molecules, blockade of B-cell survival and activation factors, suppressing T-B crosstalk by interrupting costimulatory molecules and inhibiting intracellular activation signaling cascade by targeting pathway molecules in B cells. Though most attempts ended in failure, the efficacy of B-cell targeting has been encouraged by the FDA approval of belimumab that blocks B cell-activating factor (BAFF) and the recommended use of anti-CD20 as a remedial therapy in refractory lupus. Still, quantities of clinical trials targeting B cells or relevant molecules are ongoing and some of them have displayed promising preliminary results. Additionally, advances in multi-omics studies help deepen our understandings of B cell biology in lupus and may promote the discovery of novel potential therapeutic targets. The combination of real-world data with basic research achievements may pave the road to conquering lupus.
Collapse
|
83
|
Cheng CW, Fang WF, Tang KT, Lin JD. Serum interferon levels associated with the disease activity in women with overt Graves' disease. Cytokine 2021; 138:155353. [PMID: 33121876 DOI: 10.1016/j.cyto.2020.155353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND Inflammatory cytokines participate in immune reactions and the pathogenesis of autoimmunity. Herein, we quantified four groups of inflammatory cytokines, including interferons (IFNs), the tumor necrosis factor (TNF) superfamily (TNFSF), interleukin (IL)-related cytokines, and bone and extracellular matrix remodeling-related cytokines to determine their contributions in women with overt Graves' disease (GD). METHODS Forty-three women with GD were enrolled in this cross-sectional study. Thirty-seven cytokines, thyroid-stimulating hormone (TSH), free thyroxine, and TSH receptor antibody (TSHRAb) were quantified. GD patients with a low TSH level at the time of sample collection were defined as having active GD. RESULTS Patients with active GD had higher IFN-α2, IFN-γ, IFN-λ1, and IFN-λ2 levels than those with inactive GD. In addition, certain TNFSF cytokines, including soluble cluster of differentiation 30 (sCD30), TNFSF member 14 (TNFSF14), pentraxin (PTX)-3, soluble TNF receptor 2 (sTNF-R2), and thymic stromal lymphopoietin (TSLP) were higher in active GD than in inactive GD. Moreover, active GD patients had higher IL-2, IL-12(p40), osteocalcin (OCN), and matrix metalloproteinase (MMP)-3 than inactive GD patients. All IFNs except IFN-λ1 were correlated with TSHRAb titers. Moreover, TNFSF cytokines, consisting of B-cell-activating factor, sCD30, TNFSF14, PTX-3, sTNF-R2, and TSLP, were associated with TSHRAb levels. CONCLUSIONS Serum IFNs could be the most remarkable cytokines in modulating the disease severity and TSHRAb titers in women with full-blown GD. Further molecular-based research to clarify the actual role of IFNs in the disease progression of GD is needed.
Collapse
Affiliation(s)
- Chao-Wen Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Traditional Herb Medicine Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Wen-Fang Fang
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Kam-Tsun Tang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Jiunn-Diann Lin
- Division of Endocrinology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
84
|
Fike AJ, Chodisetti SB, Bricker KN, Choi NM, Chroneos ZC, Kaplan MH, Rahman ZSM. STAT4 Is Largely Dispensable for Systemic Lupus Erythematosus-like Autoimmune- and Foreign Antigen-Driven Antibody-Forming Cell, Germinal Center, and Follicular Th Cell Responses. Immunohorizons 2021; 5:2-15. [PMID: 33446493 DOI: 10.4049/immunohorizons.2000111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/19/2022] Open
Abstract
Genome-wide association studies identified variants in the transcription factor STAT4 gene and several other genes in the STAT4 signaling pathway, such as IL12A, IL12B, JAK2, and TYK2, which are associated with an increased risk of developing systemic lupus erythematosus (SLE) and other autoimmune diseases. Consistent with the genome-wide association studies data, STAT4 was shown to play an important role in autoimmune responses and autoimmunity development in SLE mouse models. Despite such important role for STAT4 in SLE development in mice and humans, little is known whether and how STAT4 may regulate extrafollicular Ab-forming cell (AFC) and follicular germinal center (GC) responses, two major pathways of autoreactive B cell development and autoantibody production. To our surprise, we found STAT4 to be largely dispensable for promoting autoimmune AFC and GC responses in various autoimmune- and SLE-prone mouse models, which strongly correlated with autoantibody production, and immune complex deposition and immune cell infiltration in the kidney. We further observed that STAT4 deficiency had no effects on AFC, GC, and Ag-specific Ab responses during protein Ag immunization or influenza virus infection. Additionally, CD4+ effector and follicular Th cell responses in autoimmune- and SLE-prone mice and protein Ag-immunized and influenza virus-infected mice were intact in the absence of STAT4. Together, our data demonstrate a largely dispensable role for STAT4 in AFC, GC, and Ab responses in SLE mouse models and in certain foreign Ag-driven responses.
Collapse
Affiliation(s)
- Adam J Fike
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Sathi Babu Chodisetti
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Kristen N Bricker
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Nicholas M Choi
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Zissis C Chroneos
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033
- Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA 17033; and
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Ziaur S M Rahman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033;
| |
Collapse
|
85
|
Bacalao MA, Satterthwaite AB. Recent Advances in Lupus B Cell Biology: PI3K, IFNγ, and Chromatin. Front Immunol 2021; 11:615673. [PMID: 33519824 PMCID: PMC7841329 DOI: 10.3389/fimmu.2020.615673] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
In the autoimmune disease Systemic Lupus Erythematosus (SLE), autoantibodies are formed that promote inflammation and tissue damage. There has been significant interest in understanding the B cell derangements involved in SLE pathogenesis. The past few years have been particularly fruitful in three domains: the role of PI3K signaling in loss of B cell tolerance, the role of IFNγ signaling in the development of autoimmunity, and the characterization of changes in chromatin accessibility in SLE B cells. The PI3K pathway coordinates various downstream signaling molecules involved in B cell development and activation. It is governed by the phosphatases PTEN and SHIP-1. Murine models lacking either of these phosphatases in B cells develop autoimmune disease and exhibit defects in B cell tolerance. Limited studies of human SLE B cells demonstrate reduced expression of PTEN or increased signaling events downstream of PI3K in some patients. IFNγ has long been known to be elevated in both SLE patients and mouse models of lupus. New data suggests that IFNγR expression on B cells is required to develop autoreactive germinal centers (GC) and autoantibodies in murine lupus. Furthermore, IFNγ promotes increased transcription of BCL6, IL-6 and T-bet in B cells, which also promote GC and autoantibody formation. IFNγ also induces epigenetic changes in human B cells. SLE B cells demonstrate significant epigenetic reprogramming, including enhanced chromatin accessibility at transcription factor motifs involved in B cell activation and plasma cell (PC) differentiation as well as alterations in DNA methylation and histone modifications. Histone deacetylase inhibitors limit disease development in murine lupus models, at least in part via their ability to prevent B cell class switching and differentiation into plasma cells. This review will discuss relevant discoveries of the past several years pertaining to these areas of SLE B cell biology.
Collapse
Affiliation(s)
- Maria A. Bacalao
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Anne B. Satterthwaite
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
86
|
Abstract
B lymphocytes have a central role in autoimmune diseases, which are often defined by specific autoantibody patterns and feature a loss of B cell tolerance. A prototypic disease associated with B cell hyperactivity is systemic lupus erythematosus (SLE). In patients with SLE, the loss of B cell tolerance to autoantigens is controlled in a cell-intrinsic manner by Toll-like receptors (TLRs), which sense nucleic acids in endosomes. TLR7 drives the extrafollicular B cell response and the germinal centre reaction that are involved in autoantibody production and disease pathogenesis. Surprisingly, TLR9 seems to protect against SLE, even though it is required for the production of autoantibodies recognizing double-stranded DNA-associated antigens, which are abundant in SLE and are a hallmark of this disease. The protective function of TLR9 is at least partly mediated by its capacity to limit the stimulatory activity of TLR7. The roles of TLR7 and TLR9 in the effector function of B cells in lupus-like disease and in patients with SLE, and the unique features of TLR signalling in B cells, suggest that targeting TLR signalling in SLE might be therapeutically beneficial. Loss of B cell tolerance to autoantigens in systemic lupus erythematosus (SLE) is driven by TLR7, whereas TLR9 appears to protect against SLE by limiting the stimulatory activity of TLR7. The unique features of Toll-like receptor signalling in B cells implicate it as a therapeutic target in SLE. Intrinsic TLR7 and TLR9 signalling in B cells plays an important role in the development and pathogenesis of systemic lupus erythematosus (SLE). In patients with SLE, effector plasma cells are generated via the extrafollicular response and via the formation of spontaneous germinal centres. TLR7 plays key roles in the extrafollicular response and the response mediated by germinal centres. Some plasma cells produce IL-10 and can have protective roles in lupus-like disease.
Collapse
|
87
|
Kitazawa J, Kimura F, Nakamura A, Morimune A, Hanada T, Amano T, Tsuji S, Kasahara K, Satooka H, Hirata T, Kushima R, Murakami T. Alteration in endometrial helper T-cell subgroups in chronic endometritis. Am J Reprod Immunol 2020; 85:e13372. [PMID: 33155317 DOI: 10.1111/aji.13372] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/15/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
PROBLEM The effect of chronic endometritis (CE) on the subpopulation of CD4+ T cells, Th1, Th2, Th17, and regulatory T cells in the endometrium is unknown. METHOD OF STUDY Lymphocytes were isolated from the endometrium of CE patients (n = 12) and non-CE patients (n = 7). The CD4+ T-cell profile was analyzed by flow cytometry and immunofluorescence. RESULTS In the endometrium of CE patients, there were significantly more Th1 cells among CD4+ cells and fewer Th2 cells in comparison to non-CE patients. No marked difference was observed in Th17 cells or Foxp3+ Treg cells. Moreover, the proportion of Th1 cells increased and the proportion of Th2 cells decreased as the number of CD138+ cells increased. Furthermore, when the localization of CD138+ cells and CD4+ cells was examined, CD4+ cells were found to be clustered around CD138+ cells in CE patients. CONCLUSION The CD4+ T-cell profile in the endometrium is altered in women with CE. This finding may help to clarify the pathophysiology and development of treatment methods for CE.
Collapse
Affiliation(s)
- Jun Kitazawa
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Shiga, Japan
| | - Fuminori Kimura
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Shiga, Japan
| | - Akiko Nakamura
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Shiga, Japan
| | - Aina Morimune
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Shiga, Japan
| | - Tetsuro Hanada
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Shiga, Japan
| | - Tsukuru Amano
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Shiga, Japan
| | - Shunichiro Tsuji
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Shiga, Japan
| | - Kyoko Kasahara
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Shiga, Japan
| | - Hiroki Satooka
- Department of Fundamental Biosciences, Shiga University of Medical Science, Shiga, Japan
| | - Takako Hirata
- Department of Fundamental Biosciences, Shiga University of Medical Science, Shiga, Japan
| | - Ryoji Kushima
- Division of Human Pathology, Shiga University of Medical Science, Shiga, Japan
| | - Takashi Murakami
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|
88
|
Intermittent Fasting Aggravates Lupus Nephritis through Increasing Survival and Autophagy of Antibody Secreting Cells in MRL/lpr Mice. Int J Mol Sci 2020; 21:ijms21228477. [PMID: 33187196 PMCID: PMC7696283 DOI: 10.3390/ijms21228477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 11/17/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease in which the main contributors to organ damage are antibodies against autoantigens, such as double-stranded DNA (dsDNA). Calorie restriction and intermittent fasting (IF) have been shown to improve autoimmune disease symptoms in patients and animal models. Here, we tested the hypothesis that IF might improve symptoms in MRL/lpr mice, which spontaneously develop an SLE-like disease. Groups of mice were fed every other day (IF) or provided food ad libitum (controls), and various lupus-associated clinicopathological parameters were analyzed for up to 28 weeks. Contrary to expectations, anti-dsDNA antibody levels, immune complex deposition in the kidney, and glomerular injury were higher in the IF group than the control group, although there were no differences in spleen and lymph node weights between groups. Proteinuria was also worsened in the IF group. IF also increased the abundance of B cells, plasmablasts, and plasma cells and elevated autophagy in plasma cells in the spleen and lymph nodes. Secretion of anti-dsDNA antibody by splenocytes in vitro was reduced by chloroquine-induced inhibition of autophagy. These results suggest that IF exacerbates lupus nephritis in MRL/lpr mice by increasing autoantibody immune complex formation.
Collapse
|
89
|
He Y, Xu R, Zhai B, Zhou S, Wang X, Wang R. Gm614 Protects Germinal Center B Cells From Death by Suppressing Caspase-1 Transcription in Lupus-Prone Mice. Front Immunol 2020; 11:585726. [PMID: 33193409 PMCID: PMC7609865 DOI: 10.3389/fimmu.2020.585726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/09/2020] [Indexed: 01/08/2023] Open
Abstract
Only a few signaling pathways have been reported in germinal center (GC) B-cell proliferation and death. In this study, we showed that a novel uncharacterized Gm614 protein is highly expressed in GC B cells from lupus-prone mice. Critically, ablation of this GC B-cell-specific Gm614 promoted GC B-cell death and mitigation of autoimmune symptoms, whereas overexpression protected GC B cells from death and exacerbated autoimmune symptoms. We demonstrated that mechanistically, nuclear-localized Gm614 reduced caspase-1 expression in GC B cells by binding with caspase-1 promoter to suppress its activation. Our results suggest that Gm614 protects GC B cells from death by suppressing caspase-1 transcription in autoimmune diseases. This may provide some hints for targeting the cell proliferation involved in autoimmune diseases.
Collapse
Affiliation(s)
- Youdi He
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ruonan Xu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Bing Zhai
- Department of Geriatric Hematology, Nanlou Division, Chinese People’s Liberation Army of China General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Shan Zhou
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Xiaoqian Wang
- Staidson (Beijing) Biopharmaceuticals Co., Ltd, Beijing, China
| | - Renxi Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
90
|
Mathias LM, Stohl W. Systemic lupus erythematosus (SLE): emerging therapeutic targets. Expert Opin Ther Targets 2020; 24:1283-1302. [PMID: 33034541 DOI: 10.1080/14728222.2020.1832464] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with a heterogeneous clinical presentation whose etiologies are multifactorial. A myriad of genetic, hormonal, immunologic, and environmental factors contribute to its pathogenesis, and its diverse biological basis and phenotypic presentations make development of therapeutics difficult. In the past decade, tens of therapeutic targets with hundreds of individual candidate therapeutics have been investigated. AREAS COVERED We used a PUBMED database search through April 2020 to review the relevant literature. This review discusses therapeutic targets in the adaptive and innate immune systems, specifically: B cell surface antigens, B cell survival factors, Bruton's tyrosine kinase, costimulators, IL-12/IL-23, the calcineurin pathway, the JAK/STAT pathway, and interferons. EXPERT OPINION Our ever-improving understanding of SLE pathophysiology in the past decade has allowed us to identify new therapeutic targets. Multiple new drugs are on the horizon that target different elements of the adaptive and innate immune systems. SLE research remains challenging due to the heterogenous clinical presentation of SLE, confounding from background immunosuppressives being taken by SLE patients, animal models that inadequately recapitulate human disease, and imperfect and complicated outcome measures. Despite these limitations, research is promising and ongoing. The search for new therapies that target specific elements of SLE pathophysiology are discussed as well as key findings, pitfalls, and questions surrounding these targets.
Collapse
Affiliation(s)
- Lauren M Mathias
- Division of Rheumatology, Department of Medicine, University of Southern California Keck School of Medicine , Los Angeles, CA, USA
| | - William Stohl
- Division of Rheumatology, Department of Medicine, University of Southern California Keck School of Medicine , Los Angeles, CA, USA
| |
Collapse
|
91
|
Vella L, Giles JR, Baxter AE, Oldridge DA, Diorio C, Kuri-Cervantes L, Alanio C, Pampena MB, Wu JE, Chen Z, Huang YJ, Anderson EM, Gouma S, McNerney KO, Chase J, Burudpakdee C, Lee JH, Apostolidis SA, Huang AC, Mathew D, Kuthuru O, Goodwin EC, Weirick ME, Bolton MJ, Arevalo CP, Ramos A, Jasen C, Giannini HM, DAndrea K, Meyer NJ, Behrens EM, Bassiri H, Hensley SE, Henrickson SE, Teachey DT, Betts MR, Wherry EJ. Deep Immune Profiling of MIS-C demonstrates marked but transient immune activation compared to adult and pediatric COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 32995826 DOI: 10.1101/2020.09.25.20201863] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pediatric COVID-19 following SARS-CoV-2 infection is associated with fewer hospitalizations and often milder disease than in adults. A subset of children, however, present with Multisystem Inflammatory Syndrome in Children (MIS-C) that can lead to vascular complications and shock, but rarely death. The immune features of MIS-C compared to pediatric COVID-19 or adult disease remain poorly understood. We analyzed peripheral blood immune responses in hospitalized SARS-CoV-2 infected pediatric patients (pediatric COVID-19) and patients with MIS-C. MIS-C patients had patterns of T cell-biased lymphopenia and T cell activation similar to severely ill adults, and all patients with MIS-C had SARS-CoV-2 spike-specific antibodies at admission. A distinct feature of MIS-C patients was robust activation of vascular patrolling CX3CR1+ CD8 T cells that correlated with use of vasoactive medication. Finally, whereas pediatric COVID-19 patients with acute respiratory distress syndrome (ARDS) had sustained immune activation, MIS-C patients displayed clinical improvement over time, concomitant with decreasing immune activation. Thus, non-MIS-C versus MIS-C SARS-CoV-2 associated illnesses are characterized by divergent immune signatures that are temporally distinct and implicate CD8 T cells in clinical presentation and trajectory of MIS-C.
Collapse
|
92
|
Abstract
PURPOSE OF REVIEW Advances in genomics and animal models of human disease have enabled the discovery of mechanisms important for host immunity and self-tolerance. Here, we summarize conceptual and clinical discoveries identified from 2018 to 2019 in the field of primary immunodeficiencies and autoimmunity. RECENT FINDINGS Three new primary immunodeficiencies with autoimmunity were identified and the clinical phenotypes of NFKB1 haploinsufficiency and RASGRP1 deficiency were expanded. A diversity of novel mechanisms leading to autoimmunity associated with primary immunodeficiencies (PIDs) was reported, including pathways important for the metabolism and function of regulatory T cells and germinal B cells, the contribution of neutrophil extracellular traps to plasmacytoid dendritic cell activation and the influence of commensal bacteria on the generation of autoantibodies. With regard to therapeutic developments in the field, we highlight the use of janus kinase inhibitors for immune dysregulation associated with gain-of-function variants in STAT1 and STAT3, as well as the risks of persistent hypogammaglobulinemia associated with rituximab treatment. SUMMARY Mechanistic studies of PIDs with autoimmunity elucidate key principles governing the balance between immune surveillance and self-tolerance.
Collapse
|
93
|
Chodisetti SB, Fike AJ, Domeier PP, Choi NM, Soni C, Rahman ZSM. TLR7 Negatively Regulates B10 Cells Predominantly in an IFNγ Signaling Dependent Manner. Front Immunol 2020; 11:1632. [PMID: 32849556 PMCID: PMC7399053 DOI: 10.3389/fimmu.2020.01632] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/18/2020] [Indexed: 01/12/2023] Open
Abstract
IL-10 producing B cells (B10 cells) play an important immunoregulatory role in various autoimmune and infection conditions. However, the factors that regulate their development and maintenance are incompletely understood. Recently, we and others have established a requirement for TLR7 in promoting autoimmune antibody forming cell (AFC) and germinal center (GC) responses. Here we report an important additional role of TLR7 in the negative regulation of B10 cell development. TLR7 overexpression or overstimulation promoted the reduction of B10 cells whereas TLR7 deficiency rescued these cells in both non-autoimmune and autoimmune-prone mice. TLR7 expression was further inversely correlated with B cell-dependent IL-10 production and its inhibition of CD4 T cell proliferation and IFNγ production in an in vitro B cell and T cell co-culture system. Further, B10 cells displayed elevated TLR7, IFNγR, and STAT1 expression compared to non-B10 cells. Interestingly, deficiency of IFNγR in TLR7 overexpressing lupus-prone mice rescued B10 cells from TLR7-mediated reduction. Finally, B cell intrinsic deletion of IFNγR was sufficient to restore B10 cells in the spleens of TLR7-promoted autoimmune mouse model. In conclusion, our findings demonstrate a novel role for the IFNγR-STAT1 pathway in TLR7-mediated negative regulation of B10 cell development.
Collapse
Affiliation(s)
- Sathi Babu Chodisetti
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Adam J Fike
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Phillip P Domeier
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Nicholas M Choi
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Chetna Soni
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Ziaur S M Rahman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
94
|
Mihaylova N, Bradyanova S, Chipinski P, Chausheva S, Kyurkchiev D, Tchorbanov AI. Monoclonal antibody therapy that targets phospholipid-binding protein delays lupus activity in MRL/lpr mice. Scand J Immunol 2020; 92:e12915. [PMID: 32533866 DOI: 10.1111/sji.12915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/14/2020] [Accepted: 06/03/2020] [Indexed: 11/28/2022]
Abstract
Systemic lupus erythematosus is an autoimmune syndrome characterized by the development of autoantibodies to a wide range of antigens. Together with B cells, respective self-reactive T cells have an important contribution in disease progression as being responsible for inflammatory cytokines secretion, B cell activation and promoting amplification of the autoimmune response. Annexin A1 is expressed by many cell types and binds to phospholipids in a Ca2+ -dependent manner. Abnormal expression of annexin A1 was found on activated B and T cells in both murine and human autoimmunity suggesting its potential role as a therapeutic target. In the present study, we have investigated the possibility to suppress autoimmune manifestation in spontaneous mouse model of lupus using anti-annexin A1 antibody. Groups of lupus-prone MRL/lpr mice were treated with the anti-annexin A1 monoclonal antibody, and the disease activity and survival of the animals were following up. Flow cytometry, ELISA assays, and histological and immunofluorescence kidney analyses were used to determine the levels of Annexin A1 expression, cytokines, anti-dsDNA antibodies and kidney injuries. The administration of this monoclonal antibody to MRL/lpr mice resulted in suppression of IgG anti-dsDNA antibody production, modulated IL-10 secretion, decreased disease activity and prolonged survival compared with the control group.
Collapse
Affiliation(s)
- Nikolina Mihaylova
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Silviya Bradyanova
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Petroslav Chipinski
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Stela Chausheva
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Dobroslav Kyurkchiev
- Laboratory of Clinical Immunology, University Hospital 'Sv.I.Rilski', Medical University Sofia, Sofia, Bulgaria
| | - Andrey I Tchorbanov
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria.,National Institute of Immunology, Sofia, Bulgaria
| |
Collapse
|
95
|
Olson WJ, Jakic B, Hermann‐Kleiter N. Regulation of the germinal center response by nuclear receptors and implications for autoimmune diseases. FEBS J 2020; 287:2866-2890. [PMID: 32246891 PMCID: PMC7497069 DOI: 10.1111/febs.15312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/15/2020] [Accepted: 03/26/2020] [Indexed: 01/09/2023]
Abstract
The immune system plays an essential role in protecting the host from infectious diseases and cancer. Notably, B and T lymphocytes from the adaptive arm of the immune system can co-operate to form long-lived antibody responses and are therefore the main target in vaccination approaches. Nevertheless, protective immune responses must be tightly regulated to avoid hyper-responsiveness and responses against self that can result in autoimmunity. Nuclear receptors (NRs) are perfectly adapted to rapidly alter transcriptional cellular responses to altered environmental settings. Their functional role is associated with both immune deficiencies and autoimmunity. Despite extensive linking of nuclear receptor function with specific CD4 T helper subsets, research on the functional roles and mechanisms of specific NRs in CD4 follicular T helper cells (Tfh) and germinal center (GC) B cells during the germinal center reaction is just emerging. We review recent advances in our understanding of NR regulation in specific cell types of the GC response and discuss their implications for autoimmune diseases such as systemic lupus erythematosus (SLE).
Collapse
Affiliation(s)
- William J. Olson
- Translational Cell GeneticsDepartment of Pharmacology and GeneticsMedical University of InnsbruckAustria
| | - Bojana Jakic
- Translational Cell GeneticsDepartment of Pharmacology and GeneticsMedical University of InnsbruckAustria
- Department of Immunology, Genetics and PathologyUppsala UniversitySweden
| | - Natascha Hermann‐Kleiter
- Translational Cell GeneticsDepartment of Pharmacology and GeneticsMedical University of InnsbruckAustria
| |
Collapse
|
96
|
Fava A, Buyon J, Mohan C, Zhang T, Belmont HM, Izmirly P, Clancy R, Trujillo JM, Fine D, Zhang Y, Magder L, Rao DA, Arazi A, Berthier CC, Davidson A, Diamond B, Hacohen N, Wofsy D, Apruzzese W, Raychaudhuri S, Petri M. Integrated urine proteomics and renal single-cell genomics identify an IFN-γ response gradient in lupus nephritis. JCI Insight 2020; 5:138345. [PMID: 32396533 PMCID: PMC7406291 DOI: 10.1172/jci.insight.138345] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Lupus nephritis, one of the most serious manifestations of systemic lupus erythematosus (SLE), has a heterogeneous clinical and pathological presentation. For example, proliferative nephritis identifies a more aggressive disease class that requires immunosuppression. However, the current classification system relies on the static appearance of histopathological morphology, which does not capture differences in the inflammatory response. Therefore, a biomarker grounded in the disease biology is needed in order to understand the molecular heterogeneity of lupus nephritis and identify immunologic mechanism and pathways. Here, we analyzed the patterns of 1000 urine protein biomarkers in 30 patients with active lupus nephritis. We found that patients stratify over a chemokine gradient inducible by IFN-γ. Higher values identified patients with proliferative lupus nephritis. After integrating the urine proteomics with the single-cell transcriptomics of kidney biopsies, we observed that the urinary chemokines defining the gradient were predominantly produced by infiltrating CD8+ T cells, along with natural killer and myeloid cells. The urine chemokine gradient significantly correlated with the number of kidney-infiltrating CD8+ cells. These findings suggest that urine proteomics can capture the complex biology of the kidney in lupus nephritis. Patient-specific pathways could be noninvasively tracked in the urine in real time, enabling diagnosis and personalized treatment.
Collapse
Affiliation(s)
- Andrea Fava
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jill Buyon
- New York University School of Medicine, New York, New York, USA
| | | | - Ting Zhang
- University of Houston, Houston, Texas, USA
| | | | - Peter Izmirly
- New York University School of Medicine, New York, New York, USA
| | - Robert Clancy
- New York University School of Medicine, New York, New York, USA
| | | | - Derek Fine
- Division of Nephrology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yuji Zhang
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, Maryland, USA
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Laurence Magder
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, Maryland, USA
| | - Deepak A. Rao
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Arnon Arazi
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Celine C. Berthier
- Internal Medicine, Department of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Anne Davidson
- Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Betty Diamond
- Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - David Wofsy
- Division of Rheumatology, UCSF, San Francisco, California, USA
| | - William Apruzzese
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Soumya Raychaudhuri
- Center for Data Sciences and
- Division of Rheumatology and Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Michelle Petri
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
97
|
Bartsch YC, Eschweiler S, Leliavski A, Lunding HB, Wagt S, Petry J, Lilienthal GM, Rahmöller J, de Haan N, Hölscher A, Erapaneedi R, Giannou AD, Aly L, Sato R, de Neef LA, Winkler A, Braumann D, Hobusch J, Kuhnigk K, Krémer V, Steinhaus M, Blanchard V, Gemoll T, Habermann JK, Collin M, Salinas G, Manz RA, Fukuyama H, Korn T, Waisman A, Yogev N, Huber S, Rabe B, Rose-John S, Busch H, Berberich-Siebelt F, Hölscher C, Wuhrer M, Ehlers M. IgG Fc sialylation is regulated during the germinal center reaction following immunization with different adjuvants. J Allergy Clin Immunol 2020; 146:652-666.e11. [PMID: 32445838 DOI: 10.1016/j.jaci.2020.04.059] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Effector functions of IgG Abs are regulated by their Fc N-glycosylation pattern. IgG Fc glycans that lack galactose and terminal sialic acid residues correlate with the severity of inflammatory (auto)immune disorders and have also been linked to protection against viral infection and discussed in the context of vaccine-induced protection. In contrast, sialylated IgG Abs have shown immunosuppressive effects. OBJECTIVE We sought to investigate IgG glycosylation programming during the germinal center (GC) reaction following immunization of mice with a foreign protein antigen and different adjuvants. METHODS Mice were analyzed for GC T-cell, B-cell, and plasma cell responses, as well as for antigen-specific serum IgG subclass titers and Fc glycosylation patterns. RESULTS Different adjuvants induce distinct IgG+ GC B-cell responses with specific transcriptomes and expression levels of the α2,6-sialyltransferase responsible for IgG sialylation that correspond to distinct serum IgG Fc glycosylation patterns. Low IgG Fc sialylation programming in GC B cells was overall highly dependent on the Foxp3- follicular helper T (TFH) cell-inducing cytokine IL-6, here in particular induced by water-in-oil adjuvants and Mycobacterium tuberculosis. Furthermore, low IgG Fc sialylation programming was dependent on adjuvants that induced IL-27 receptor-dependent IFN-γ+ TFH1 cells, IL-6/IL-23-dependent IL-17A+ TFH17 cells, and high ratios of TFH cells to Foxp3+ follicular regulatory T cells. Here, the 2 latter were dependent on M tuberculosis and its cord factor. CONCLUSION This study's findings regarding adjuvant-dependent GC responses and IgG glycosylation programming may aid in the development of novel vaccination strategies to induce IgG Abs with both high affinity and defined Fc glycosylation patterns in the GC.
Collapse
Affiliation(s)
- Yannic C Bartsch
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Simon Eschweiler
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Alexei Leliavski
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Hanna B Lunding
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Sander Wagt
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany; Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Janina Petry
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Gina-Maria Lilienthal
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Johann Rahmöller
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany; Department of Anesthesiology and Intensive Care, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Noortje de Haan
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Raghu Erapaneedi
- Institute for Pathology, University of Würzburg, Würzburg, Germany
| | - Anastasios D Giannou
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lilian Aly
- Department of Neurology, Technical University of Munich, Klinikum rechts der Isar, Germany
| | - Ryota Sato
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Louise A de Neef
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - André Winkler
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany; Laboratory of Tolerance and Autoimmunity at the German Rheumatism Research Center, a Leibniz Institute, Berlin, Germany
| | - Dominique Braumann
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany; Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Juliane Hobusch
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Kyra Kuhnigk
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Vanessa Krémer
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Moritz Steinhaus
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Véronique Blanchard
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Timo Gemoll
- Section for Translational Surgical Oncology & Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Jens K Habermann
- Section for Translational Surgical Oncology & Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Mattias Collin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Gabriela Salinas
- NGS-Integrative Genomics, Institute Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Rudolf A Manz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Hidehiro Fukuyama
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Thomas Korn
- Department of Neurology, Technical University of Munich, Klinikum rechts der Isar, Germany; Munich Cluster for Systems Neurology, SyNergy, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nir Yogev
- Clinic and Polyclinic for Dermatology and Venerology, University Hospital Cologne, Cologne, Germany
| | - Samuel Huber
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rabe
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | | | - Hauke Busch
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Friederike Berberich-Siebelt
- Institute for Pathology, University of Würzburg, Würzburg, Germany; Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Christoph Hölscher
- Infection Immunology, Research Center Borstel, Borstel, Germany; German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marc Ehlers
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany; Laboratory of Tolerance and Autoimmunity at the German Rheumatism Research Center, a Leibniz Institute, Berlin, Germany; Airway Research Center North, University of Lübeck, German Center for Lung Research, Lübeck, Germany.
| |
Collapse
|
98
|
Chodisetti SB, Fike AJ, Domeier PP, Schell SL, Mockus TE, Choi NM, Corradetti C, Hou B, Atkins HM, Caricchio R, Decker T, Lukacher AE, Olsen N, Rahman ZSM. Serine Phosphorylation of the STAT1 Transactivation Domain Promotes Autoreactive B Cell and Systemic Autoimmunity Development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:2641-2650. [PMID: 32253245 PMCID: PMC9305983 DOI: 10.4049/jimmunol.2000170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/18/2020] [Indexed: 12/09/2023]
Abstract
Although STAT1 tyrosine-701 phosphorylation (designated STAT1-pY701) is indispensable for STAT1 function, the requirement for STAT1 serine-727 phosphorylation (designated STAT1-pS727) during systemic autoimmune and antipathogen responses remains unclear. Using autoimmune-prone B6.Sle1b mice expressing a STAT1-S727A mutant in which serine is replaced by alanine, we report in this study that STAT1-pS727 promotes autoimmune Ab-forming cell (AFC) and germinal center (GC) responses, driving autoantibody production and systemic lupus erythematosus (SLE) development. In contrast, STAT1-pS727 is not required for GC, T follicular helper cell (Tfh), and Ab responses to various foreign Ags, including pathogens. STAT1-pS727 is also not required for gut microbiota and dietary Ag-driven GC and Tfh responses in B6.Sle1b mice. By generating B cell-specific bone marrow chimeras, we demonstrate that STAT1-pS727 plays an important B cell-intrinsic role in promoting autoimmune AFC, GC, and Tfh responses, leading to SLE-associated autoantibody production. Our analysis of the TLR7-accelerated B6.Sle1b.Yaa SLE disease model expressing a STAT1-S727A mutant reveals STAT1-pS727-mediated regulation of autoimmune AFC and GC responses and lupus nephritis development. Together, we identify previously unrecognized differential regulation of systemic autoimmune and antipathogen responses by STAT1-pS727. Our data implicate STAT1-pS727 as a therapeutic target for SLE without overtly affecting STAT1-mediated protection against pathogenic infections.
Collapse
Affiliation(s)
- Sathi Babu Chodisetti
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Adam J Fike
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Phillip P Domeier
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Stephanie L Schell
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Taryn E Mockus
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Nicholas M Choi
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | | | - Baidong Hou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100864, China
| | - Hannah M Atkins
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | | | - Thomas Decker
- Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria; and
| | - Aron E Lukacher
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Nancy Olsen
- Department of Rheumatology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Ziaur S M Rahman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033;
| |
Collapse
|
99
|
van Langelaar J, Rijvers L, Smolders J, van Luijn MM. B and T Cells Driving Multiple Sclerosis: Identity, Mechanisms and Potential Triggers. Front Immunol 2020; 11:760. [PMID: 32457742 PMCID: PMC7225320 DOI: 10.3389/fimmu.2020.00760] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/03/2020] [Indexed: 12/25/2022] Open
Abstract
Historically, multiple sclerosis (MS) has been viewed as being primarily driven by T cells. However, the effective use of anti-CD20 treatment now also reveals an important role for B cells in MS patients. The results from this treatment put forward T-cell activation rather than antibody production by B cells as a driving force behind MS. The main question of how their interaction provokes both B and T cells to infiltrate the CNS and cause local pathology remains to be answered. In this review, we highlight key pathogenic events involving B and T cells that most likely contribute to the pathogenesis of MS. These include (1) peripheral escape of B cells from T cell-mediated control, (2) interaction of pathogenic B and T cells in secondary lymph nodes, and (3) reactivation of B and T cells accumulating in the CNS. We will focus on the functional programs of CNS-infiltrating lymphocyte subsets in MS patients and discuss how these are defined by mechanisms such as antigen presentation, co-stimulation and cytokine production in the periphery. Furthermore, the potential impact of genetic variants and viral triggers on candidate subsets will be debated in the context of MS.
Collapse
Affiliation(s)
- Jamie van Langelaar
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Liza Rijvers
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Joost Smolders
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Marvin M. van Luijn
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
100
|
Abstract
Vitiligo is an autoimmune disease of the skin that targets pigment-producing melanocytes and results in patches of depigmentation that are visible as white spots. Recent research studies have yielded a strong mechanistic understanding of this disease. Autoreactive cytotoxic CD8+ T cells engage melanocytes and promote disease progression through the local production of IFN-γ, and IFN-γ-induced chemokines are then secreted from surrounding keratinocytes to further recruit T cells to the skin through a positive-feedback loop. Both topical and systemic treatments that block IFN-γ signaling can effectively reverse vitiligo in humans; however, disease relapse is common after stopping treatments. Autoreactive resident memory T cells are responsible for relapse, and new treatment strategies focus on eliminating these cells to promote long-lasting benefit. Here, we discuss basic, translational, and clinical research studies that provide insight into the pathogenesis of vitiligo, and how this insight has been utilized to create new targeted treatment strategies.
Collapse
Affiliation(s)
- Michael L. Frisoli
- University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA;, ,
| | - Kingsley Essien
- University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA;, ,
| | - John E. Harris
- University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA;, ,
| |
Collapse
|