51
|
McClure CJW, Lepage D, Dunn L, Anderson DL, Schulwitz SE, Camacho L, Robinson BW, Christidis L, Schulenberg TS, Iliff MJ, Rasmussen PC, Johnson J. Towards reconciliation of the four world bird lists: hotspots of disagreement in taxonomy of raptors. Proc Biol Sci 2020; 287:20200683. [PMID: 32546096 DOI: 10.1098/rspb.2020.0683] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There are currently four world bird lists referenced by different stakeholders including governments, academic journals, museums and citizen scientists. Consolidation of these lists is a conservation and research priority. In reconciling lists, care must be taken to ensure agreement in taxonomic concepts-the actual groups of individual organisms circumscribed by a given scientific epithet. Here, we compare species-level taxonomic concepts for raptors across the four lists, highlighting areas of disagreement. Of the 665 species-level raptor taxa observed at least once among the four lists, only 453 (68%) were consistent across all four lists. The Howard and Moore Checklist of the Birds of the World contains the fewest raptor species (528), whereas the International Ornithological Community World Bird List contains the most (580) and these two lists are in the most disagreement. Of the disagreements, 67% involved owls, and Indonesia was the country containing the most disagreed upon species (169). Finally, we calculated the amount of species-level agreement across lists for each avian order and found raptor orders spread throughout the rankings of agreement. Our results emphasize the need to reconcile the four world bird lists for all avian orders, highlight broad disagreements across lists and identify hotspots of disagreement for raptors, in particular.
Collapse
Affiliation(s)
| | - Denis Lepage
- Birds Canada, PO Box 160, 115 Front Street, Port Rowan, Ontario, Canada N0E 1M0
| | - Leah Dunn
- The Peregrine Fund, 5668 West Flying Hawk Lane, Boise, ID 83709, USA
| | - David L Anderson
- The Peregrine Fund, 5668 West Flying Hawk Lane, Boise, ID 83709, USA
| | - Sarah E Schulwitz
- The Peregrine Fund, 5668 West Flying Hawk Lane, Boise, ID 83709, USA
| | - Leticia Camacho
- The Peregrine Fund, 5668 West Flying Hawk Lane, Boise, ID 83709, USA.,Department of Biological Sciences and Raptor Research Center, Boise State University, 1910, Boise, ID 83725, USA
| | | | - Les Christidis
- Southern Cross University, Coffs Harbour, New South Wales, Australia
| | | | - Marshall J Iliff
- Cornell Lab of Ornithology, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| | - Pamela C Rasmussen
- Department of Integrative Biology, Michigan State University Museum, East Lansing, MI, USA
| | - Jeff Johnson
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #310559, Denton, TX 76203, USA
| |
Collapse
|
52
|
Fordham G, Shanee S, Peck M. Effect of river size on Amazonian primate community structure: A biogeographic analysis using updated taxonomic assessments. Am J Primatol 2020; 82:e23136. [PMID: 32323350 DOI: 10.1002/ajp.23136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 11/05/2022]
Abstract
The mechanisms that underlie the diversification of Neotropical primates remain contested. One mechanism that has found support is the riverine barrier hypothesis (RBH), which postulates that large rivers impede gene flow between populations on opposite riverbanks and promote allopatric speciation. Ayres and Clutton-Brock (1992) demonstrated that larger Amazonian rivers acted as barriers, delineating the distribution limits of primate species. However, profound changes in taxonomy and species concepts have led to the proliferation of Neotropical primate taxa, which may have reduced support for their results. Using the most recent taxonomic assessments and distribution maps, we tested the effect of increasing river size on the similarity of opposite riverbank primate communities in the Amazon. First, we conducted a literature review of primate taxonomy and developed a comprehensive spatial database, then applied geographical information system to query mapped primate ranges against the riverine geography of the Amazon watershed to produce a similarity index for opposite riverbank communities. Finally, we ran models to test how measures of river size predicted levels of similarity. We found that, almost without exception, similarity scores were lower than scores from Ayres and Clutton-Brock (1992) for the same rivers. Our model showed a significant negative relationship between streamflow and similarity in all tests, and found river width significant for the segmented Amazon, but not for multiple Amazon watershed rivers. Our results support the RBH insofar as they provide evidence for the prediction that rivers with higher streamflow act as more substantial barriers to dispersal, and accordingly exhibit greater variation in community composition between riverbanks.
Collapse
Affiliation(s)
- Gail Fordham
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Sam Shanee
- Neotropical Primate Conservation, Torpoint, Cornwall, UK
| | - Mika Peck
- School of Life Sciences, University of Sussex, Brighton, UK.,Neotropical Primate Conservation, Torpoint, Cornwall, UK
| |
Collapse
|
53
|
van Holstein L, Foley RA. Terrestrial habitats decouple the relationship between species and subspecies diversification in mammals. Proc Biol Sci 2020; 287:20192702. [PMID: 32183632 DOI: 10.1098/rspb.2019.2702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Darwin proposed that lineages with higher diversification rates should evidence this capacity at both the species and subspecies level. This should be the case if subspecific boundaries are evolutionary faultlines along which speciation is generally more likely to occur. This pattern has been described for birds, but remains poorly understood in mammals. To investigate the relationship between species richness (SR) and subspecies richness (SSR), we calculated the strength of the correlation between the two across all mammals. Mammalian taxonomic richness correlates positively, but only very weakly, between the species and subspecies level, deviating from the pattern found in birds. However, when mammals are separated by environmental substrate, the relationship between generic SR and average SSR in non-terrestrial taxa is stronger than that reported for birds (Kendall's tau = 0.31, p < 0.001). By contrast, the correlation in terrestrial taxa alone weakens compared to that for all mammals (Kendall's tau = 0.11, p < 0.001). A significant interaction between environmental substrate and SR in phylogenetic regressions confirms a role for terrestrial habitats in disrupting otherwise linked dynamics of diversification across the taxonomic hierarchy. Further, models including species range size as a predictor show that range size affects SSR more in terrestrial taxa. Taken together, these results suggest that the dynamics of diversification of terrestrial mammals are more affected by physical barriers or ecological heterogeneity within ranges than those of non-terrestrial mammals, at two evolutionary levels. We discuss the implication of these results for the equivalence of avian and mammalian subspecies, their potential role in speciation and the broader question of the relationship between microevolution and macroevolution.
Collapse
Affiliation(s)
| | - Robert A Foley
- Leverhulme Centre for Human Evolutionary Studies, Cambridge, UK
| |
Collapse
|
54
|
Costa APB, Fruet PF, Secchi ER, Daura-Jorge FG, Simões-Lopes PC, Di Tullio JC, Rosel PE. Ecological divergence and speciation in common bottlenose dolphins in the western South Atlantic. J Evol Biol 2019; 34:16-32. [PMID: 31808214 DOI: 10.1111/jeb.13575] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/01/2019] [Accepted: 11/28/2019] [Indexed: 01/02/2023]
Abstract
Coastal and offshore ecotypes of common bottlenose dolphins have been recognized in the western South Atlantic, and it is possible that trophic niche divergence associated with social interactions is leading them to genetic and phenotypic differentiation. The significant morphological differentiation observed between these ecotypes suggests they represent two different subspecies. However, there is still a need to investigate whether there is congruence between morphological and genetic data to rule out the possibility of ecophenotypic variation accompanied by gene flow. Mitochondrial DNA (mtDNA) control region sequence data and 10 microsatellite loci collected from stranded and biopsied dolphins sampled in coastal and offshore waters of Brazil as well as 106 skulls for morphological analyses were used to determine whether the morphological differentiation was supported by genetic differentiation. There was congruence among the data sets, reinforcing the presence of two distinct ecotypes. The divergence may be relatively recent, however, given the moderate values of mtDNA nucleotide divergence (dA = 0.008), presence of one shared mtDNA haplotype and possibly low levels of gene flow (around 1% of migrants per generation). Results suggest the ecotypes may be in the process of speciation and reinforce they are best described as two different subspecies until the degree of nuclear genetic divergence is thoroughly evaluated: Tursiops truncatus gephyreus (coastal ecotype) and T. t. truncatus (offshore ecotype). The endemic distribution of T. t. gephyreus in the western South Atlantic and number of anthropogenic threats in the area reinforces the importance of protecting this ecotype and its habitat.
Collapse
Affiliation(s)
- Ana P B Costa
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, USA
| | - Pedro F Fruet
- Museu Oceanográfico 'Prof. Eliézer C. Rios', Universidade Federal do Rio Grande, Rio Grande, Brazil.,Laboratório de Ecologia e Conservação da Megafauna Marinha (EcoMega), Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Brazil.,Kaosa, Rio Grande, Brazil.,Centro Nacional de Pesquisa e Conservação de Mamíferos Aquáticos - ICMBio/CMA, Santos, Brazil
| | - Eduardo R Secchi
- Laboratório de Ecologia e Conservação da Megafauna Marinha (EcoMega), Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Fábio G Daura-Jorge
- Laboratório de Mamíferos Aquáticos (LAMAQ), Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Paulo C Simões-Lopes
- Laboratório de Mamíferos Aquáticos (LAMAQ), Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Juliana C Di Tullio
- Museu Oceanográfico 'Prof. Eliézer C. Rios', Universidade Federal do Rio Grande, Rio Grande, Brazil.,Laboratório de Ecologia e Conservação da Megafauna Marinha (EcoMega), Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Brazil.,Kaosa, Rio Grande, Brazil
| | - Patricia E Rosel
- National Marine Fisheries Service, Southeast Fisheries Science Center, Lafayette, LA, USA
| |
Collapse
|
55
|
Simkins AT, Buchanan GM, Davies RG, Donald PF. The implications for conservation of a major taxonomic revision of the world’s birds. Anim Conserv 2019. [DOI: 10.1111/acv.12545] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- A. T. Simkins
- BirdLife International Cambridge UK
- School of Biological Sciences University of East Anglia Norwich UK
| | | | - R. G. Davies
- School of Biological Sciences University of East Anglia Norwich UK
| | - P. F. Donald
- BirdLife International Cambridge UK
- Conservation Science Group Department of Zoology University of Cambridge Cambridge UK
| |
Collapse
|
56
|
Prentice MB, Bowman J, Murray DL, Klütsch CFC, Khidas K, Wilson PJ. Evaluating evolutionary history and adaptive differentiation to identify conservation units of Canada lynx (Lynx canadensis). Glob Ecol Conserv 2019. [DOI: 10.1016/j.gecco.2019.e00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
57
|
Dincă V, Lee KM, Vila R, Mutanen M. The conundrum of species delimitation: a genomic perspective on a mitogenetically super-variable butterfly. Proc Biol Sci 2019; 286:20191311. [PMID: 31530141 PMCID: PMC6784721 DOI: 10.1098/rspb.2019.1311] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Palaearctic butterfly Melitaea didyma stands out as one of the most striking cases of intraspecific genetic differentiation detected in Lepidoptera: 11 partially sympatric mitochondrial lineages have been reported, displaying levels of divergence of up to 7.4%. To better understand the evolutionary processes underlying the diversity observed in mtDNA, we compared mtDNA and genome-wide SNP data using double-digest restriction site-associated DNA sequencing (ddRADseq) results from 93 specimens of M. didyma ranging from Morocco to eastern Kazakhstan. We found that, between ddRADseq and mtDNA results, there is a match only in populations that probably remained allopatric for long periods of time. Other mtDNA lineages may have resulted from introgression events and were probably affected by Wolbachia infection. The five main ddRADseq clades supported by STRUCTURE were parapatric or allopatric and showed high pairwise FST values, but some were also estimated to display various levels of gene flow. Melitaea didyma represents one of the first cases of deep mtDNA splits among European butterflies assessed by a genome-wide DNA analysis and reveals that the interpretation of patterns remains challenging even when a high amount of genomic data is available. These findings actualize the ongoing debate of species delimitation in allopatry, an issue probably of relevance to a significant proportion of global biodiversity.
Collapse
Affiliation(s)
- Vlad Dincă
- Department of Ecology and Genetics, University of Oulu, PO Box 3000, 90014 Oulu, Finland
| | - Kyung Min Lee
- Department of Ecology and Genetics, University of Oulu, PO Box 3000, 90014 Oulu, Finland
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37, 08003 Barcelona, Spain
| | - Marko Mutanen
- Department of Ecology and Genetics, University of Oulu, PO Box 3000, 90014 Oulu, Finland
| |
Collapse
|
58
|
Coalescent-based species delimitation in the sand lizards of the Liolaemus wiegmannii complex (Squamata: Liolaemidae). Mol Phylogenet Evol 2019; 138:89-101. [DOI: 10.1016/j.ympev.2019.05.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/20/2022]
|
59
|
Tonzo V, Papadopoulou A, Ortego J. Genomic data reveal deep genetic structure but no support for current taxonomic designation in a grasshopper species complex. Mol Ecol 2019; 28:3869-3886. [DOI: 10.1111/mec.15189] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Vanina Tonzo
- Department of Integrative Ecology Estación Biológica de Doñana (EBD‐CSIC) Seville Spain
| | - Anna Papadopoulou
- Department of Biological Sciences University of Cyprus Nicosia Cyprus
| | - Joaquín Ortego
- Department of Integrative Ecology Estación Biológica de Doñana (EBD‐CSIC) Seville Spain
| |
Collapse
|
60
|
Vigalondo B, Garilleti R, Vanderpoorten A, Patiño J, Draper I, Calleja JA, Mazimpaka V, Lara F. Do mosses really exhibit so large distribution ranges? Insights from the integrative taxonomic study of the Lewinskya affinis complex (Orthotrichaceae, Bryopsida). Mol Phylogenet Evol 2019; 140:106598. [PMID: 31430552 DOI: 10.1016/j.ympev.2019.106598] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/30/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023]
Abstract
The strikingly lower number of bryophyte species, and in particular of endemic species, and their larger distribution ranges in comparison with angiosperms, have traditionally been interpreted in terms of their low diversification rates associated with a high long-distance dispersal capacity. This hypothesis is tested here with Lewinskya affinis (≡ Orthotrichum affine), a moss species widely spread across Europe, North and East Africa, southwestern Asia, and western North America. We tested competing taxonomic hypotheses derived from separate and combined analyses of multilocus sequence data, morphological characters, and geographical distributions. The best hypothesis, selected by a Bayes factor molecular delimitation analysis, established that L. affinis is a complex of no less than seven distinct species, including L. affinis s.str., L. fastigiata and L. leptocarpa, which were previously reduced into synonymy with L. affinis, and four new species. Discriminant analyses indicated that each of the seven species within L. affinis s.l. can be morphologically identified with a minimal error rate. None of these species exhibit a trans-oceanic range, suggesting that the broad distributions typically exhibited by moss species largely result from a taxonomic artefact. The presence of three sibling western North American species on the one hand, and four Old World sibling species on the other, suggests that there is a tendency for within-continent diversification rather than recurrent dispersal following speciation. The faster rate of diversification as compared to intercontinental migration reported here is in sharp contrast with earlier views of bryophyte species with wide ranges and low speciation rates.
Collapse
Affiliation(s)
- B Vigalondo
- Departamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain.
| | - R Garilleti
- Departamento de Botánica y Geología, Facultad de Farmacia, Universidad de Valencia, Burjassot, 46100, Spain
| | - A Vanderpoorten
- Institute of Botany, University of Liège, B22 Sart Tilman, B-4000 Liège, Belgium
| | - J Patiño
- Plant Conservation and Biogeography, Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, La Laguna 38071, Spain; Island Ecology and Evolution Research Group, Instituto de Productos Naturales & Agrobiología (IPNA-CSIC), La Laguna, Tenerife, Spain
| | - I Draper
- Departamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | | | - V Mazimpaka
- Departamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - F Lara
- Departamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
61
|
Passer AR, Coelho MA, Billmyre RB, Nowrousian M, Mittelbach M, Yurkov AM, Averette AF, Cuomo CA, Sun S, Heitman J. Genetic and Genomic Analyses Reveal Boundaries between Species Closely Related to Cryptococcus Pathogens. mBio 2019; 10:e00764-19. [PMID: 31186317 PMCID: PMC6561019 DOI: 10.1128/mbio.00764-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/08/2019] [Indexed: 12/30/2022] Open
Abstract
Speciation is a central mechanism of biological diversification. While speciation is well studied in plants and animals, in comparison, relatively little is known about speciation in fungi. One fungal model is the Cryptococcus genus, which is best known for the pathogenic Cryptococcus neoformans/Cryptococcus gattii species complex that causes >200,000 new human infections annually. Elucidation of how these species evolved into important human-pathogenic species remains challenging and can be advanced by studying the most closely related nonpathogenic species, Cryptococcus amylolentus and Tsuchiyaea wingfieldii However, these species have only four known isolates, and available data were insufficient to determine species boundaries within this group. By analyzing full-length chromosome assemblies, we reappraised the phylogenetic relationships of the four available strains, confirmed the genetic separation of C. amylolentus and T. wingfieldii (now Cryptococcus wingfieldii), and revealed an additional cryptic species, for which the name Cryptococcus floricola is proposed. The genomes of the three species are ∼6% divergent and exhibit significant chromosomal rearrangements, including inversions and a reciprocal translocation that involved intercentromeric ectopic recombination, which together likely impose significant barriers to genetic exchange. Using genetic crosses, we show that while C. wingfieldii cannot interbreed with any of the other strains, C. floricola can still undergo sexual reproduction with C. amylolentus However, most of the resulting spores were inviable or sterile or showed reduced recombination during meiosis, indicating that intrinsic postzygotic barriers had been established. Our study and genomic data will foster additional studies addressing fungal speciation and transitions between nonpathogenic and pathogenic Cryptococcus lineages.IMPORTANCE The evolutionary drivers of speciation are critical to our understanding of how new pathogens arise from nonpathogenic lineages and adapt to new environments. Here we focus on the Cryptococcus amylolentus species complex, a nonpathogenic fungal lineage closely related to the human-pathogenic Cryptococcus neoformans/Cryptococcus gattii complex. Using genetic and genomic analyses, we reexamined the species boundaries of four available isolates within the C. amylolentus complex and revealed three genetically isolated species. Their genomes are ∼6% divergent and exhibit chromosome rearrangements, including translocations and small-scale inversions. Although two of the species (C. amylolentus and newly described C. floricola) were still able to interbreed, the resulting hybrid progeny were usually inviable or sterile, indicating that barriers to reproduction had already been established. These results advance our understanding of speciation in fungi and highlight the power of genomics in assisting our ability to correctly identify and discriminate fungal species.
Collapse
Affiliation(s)
- Andrew Ryan Passer
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Marco A Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Robert Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Moritz Mittelbach
- Geobotany, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Andrey M Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Anna Floyd Averette
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
62
|
Shi X, Gong C, Zhang L, Hu J, Ouyang Z, Xiao Y. Which Species Should We Focus On? Umbrella Species Assessment in Southwest China. BIOLOGY 2019; 8:biology8020042. [PMID: 31126137 PMCID: PMC6628075 DOI: 10.3390/biology8020042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/09/2019] [Accepted: 05/17/2019] [Indexed: 11/16/2022]
Abstract
In conservation biology, umbrella species are often used as agents for a broader set of species, or as representatives of an ecosystem, and their conservation is expected to benefit a large number of naturally co-occurring species. Southwest China is home to not only global biodiversity hotspots, but also rapid economic and population growth and extensive changes in land use. However, because of the large regional span, the diverse species distributions, and the difficulty of field investigations, traditional methods used to assess umbrella species are not suitable for implementation in Southwest China. In the current study, we assessed 810 key protected species from seven taxa by indicator value analysis, correlation analysis, and factor analysis. We selected 32 species as umbrella species, whose habitats overlapped the habitats of 97% of the total species. Furthermore, the selected species were significantly correlated with 70% of all species in the study area. A total of 16 out of 19 selected animal species have been previously mentioned as umbrella species, compared with only 3 out of 13 plants species; this is despite plants accounting for a large proportion of the total species in Southwest China. We discuss the roles of indicator species and co-occurring species, and provide suggestions for species protection in Southwest China based on the current results. Our research provides valuable scientific information for research on umbrella conservation species over large geographical scales, and related fields of biodiversity conservation.
Collapse
Affiliation(s)
- Xuewei Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Science, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Cheng Gong
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China.
| | - Lu Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Science, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jian Hu
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China.
| | - Zhiyun Ouyang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Science, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yi Xiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Science, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
63
|
Pan T, Sun Z, Lai X, Orozcoterwengel P, Yan P, Wu G, Wang H, Zhu W, Wu X, Zhang B. Hidden species diversity in Pachyhynobius: A multiple approaches species delimitation with mitogenomes. Mol Phylogenet Evol 2019; 137:138-145. [PMID: 31085325 DOI: 10.1016/j.ympev.2019.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 01/16/2023]
Abstract
The lack of distinct morphological features of cryptic species is a hard problem for taxonomy, especially when the taxa are closely related with considerable amounts of ancestral polymorphism. Lately, intensive coalescent-based analyses involving multiple loci have become the preferred method to assess the extent of genetic distinctiveness in otherwise phenotypically similar populations. Previously, phylogenetic studies on Pachyhynobius shangchengensis uncovered five extremely deeply divergent clades, which suggested that this species may be a cryptic species complex. In this study, we used the complete mitochondrial genome data and samples from the entire range of stout salamander (Pachyhynobius), as well as publicly available mitochondrial genomes to assess species boundaries within this genus using a suite of diverse methodologies (e.g. general mixed Yule coalescent model, Automatic Barcode Gap Discovery). The phylogenetic relationships recovered two major groups within P. shangchengensis, with one group formed by four of the six extant populations and corresponding to the central and eastern range of the Dabie mountains, while the other group encompassed two other lineages in the north west of the Dabie mountain range. The species delimitation comparison within Pachyhynobius supported the presence of recognized species within the genus, and consensus was observed across methods for the existence of up to five cryptic species within what has been traditionally considered to be P. shangchengensis. While this implies the existence of four taxa in addition to the described P. shangchengensis species, morphological data and life history information are further required to contribute to the species definition. The observed pattern of genetic variation is likely the outcome of a discontinuous habitat combined with niche conservatism, which produced the sky-island effect observed in Pachyhynobius, and which led to formation of a hidden species diversity in this genus.
Collapse
Affiliation(s)
- Tao Pan
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; School of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Zhonglou Sun
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Department of Medicine, University of Utah, Salt Lake City 84112, UT, United States
| | - Xinlei Lai
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | | | - Peng Yan
- School of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Guiyou Wu
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Hui Wang
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Weiquan Zhu
- Department of Medicine, University of Utah, Salt Lake City 84112, UT, United States
| | - Xiaobing Wu
- School of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China.
| | - Baowei Zhang
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China.
| |
Collapse
|
64
|
Firneno TJ, Townsend JH. Evaluation of species boundaries in sympatric and parapatric populations of Mesoamerican toads. ZOOL SCR 2019. [DOI: 10.1111/zsc.12354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Thomas J. Firneno
- Department of Biology Indiana University of Pennsylvania Indiana Pennsylvania
| | - Josiah H. Townsend
- Department of Biology Indiana University of Pennsylvania Indiana Pennsylvania
| |
Collapse
|
65
|
Pahad G, Montgelard C, Jansen van Vuuren B. Phylogeography and niche modelling: reciprocal enlightenment. MAMMALIA 2019. [DOI: 10.1515/mammalia-2018-0191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Phylogeography examines the spatial genetic structure of species. Environmental niche modelling (or ecological niche modelling; ENM) examines the environmental limits of a species’ ecological niche. These two fields have great potential to be used together. ENM can shed light on how phylogeographical patterns develop and help identify possible drivers of spatial structure that need to be further investigated. Specifically, ENM can be used to test for niche differentiation among clades, identify factors limiting individual clades and identify barriers and contact zones. It can also be used to test hypotheses regarding the effects of historical and future climate change on spatial genetic patterns by projecting niches using palaeoclimate or future climate data. Conversely, phylogeographical information can populate ENM with within-species genetic diversity. Where adaptive variation exists among clades within a species, modelling their niches separately can improve predictions of historical distribution patterns and future responses to climate change. Awareness of patterns of genetic diversity in niche modelling can also alert conservationists to the potential loss of genetically diverse areas in a species’ range. Here, we provide a simplistic overview of both fields, and focus on their potential for integration, encouraging researchers on both sides to take advantage of the opportunities available.
Collapse
Affiliation(s)
- Govan Pahad
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology , University of Johannesburg , PO Box 524 , Auckland Park, Johannesburg 2000 , South Africa
| | - Claudine Montgelard
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology , University of Johannesburg , PO Box 524 , Auckland Park, Johannesburg 2000 , South Africa
- PSL Research University, CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier , EPHE, Biogéographie et Ecologie des Vertébrés , 1919 route de Mende , 34293 Montpellier , France
| | - Bettine Jansen van Vuuren
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology , University of Johannesburg , PO Box 524 , Auckland Park, Johannesburg 2000 , South Africa
| |
Collapse
|
66
|
Folt B, Bauder J, Spear S, Stevenson D, Hoffman M, Oaks JR, Wood PL, Jenkins C, Steen DA, Guyer C. Taxonomic and conservation implications of population genetic admixture, mito-nuclear discordance, and male-biased dispersal of a large endangered snake, Drymarchon couperi. PLoS One 2019; 14:e0214439. [PMID: 30913266 PMCID: PMC6435180 DOI: 10.1371/journal.pone.0214439] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/11/2019] [Indexed: 01/08/2023] Open
Abstract
Accurate species delimitation and description are necessary to guide effective conservation of imperiled species, and this synergy is maximized when multiple data sources are used to delimit species. We illustrate this point by examining Drymarchon couperi (Eastern Indigo Snake), a large, federally-protected species in North America that was recently divided into two species based on gene sequence data from three loci and heuristic morphological assessment. Here, we re-evaluate the two-species hypothesis for D. couperi by evaluating both population genetic and gene sequence data. Our analyses of 14 microsatellite markers revealed 6–8 genetic population clusters with significant admixture, particularly across the contact zone between the two hypothesized species. Phylogenetic analyses of gene sequence data with maximum-likelihood methods suggested discordance between mitochondrial and nuclear markers and provided phylogenetic support for one species rather than two. For these reasons, we place Drymarchon kolpobasileus into synonymy with D. couperi. We suggest inconsistent patterns between mitochondrial and nuclear DNA are driven by high dispersal of males relative to females. We advocate for species delimitation exercises that evaluate admixture and gene flow in addition to phylogenetic analyses, particularly when the latter reveal monophyletic lineages. This is particularly important for taxa, such as squamates, that exhibit strong sex-biased dispersal. Problems associated with over-delimitation of species richness can become particularly acute for threatened and endangered species, because of high costs to conservation when taxonomy demands protection of more individual species than are supported by accumulating data.
Collapse
Affiliation(s)
- Brian Folt
- Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, Alabama, United States of America
- * E-mail:
| | - Javan Bauder
- The Orianne Society, 11 Fruitstand Lane, Tiger, Georgia, United States of America
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, United States of America
- Illinois Natural History Survey, University of Illinois, Champaign, Illinois, United States of America
| | - Stephen Spear
- The Orianne Society, 11 Fruitstand Lane, Tiger, Georgia, United States of America
- The Wilds, Cumberland, Ohio United States of America
| | - Dirk Stevenson
- The Orianne Society, 11 Fruitstand Lane, Tiger, Georgia, United States of America
- Altamaha Environmental Consulting, Hinesville, Georgia, United States of America
| | - Michelle Hoffman
- The Orianne Center for Indigo Conservation, Central Florida Zoo and Botanical Gardens, Sanford, Florida, United States of America
| | - Jamie R. Oaks
- Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, Alabama, United States of America
| | - Perry L. Wood
- Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, Alabama, United States of America
| | - Christopher Jenkins
- The Orianne Society, 11 Fruitstand Lane, Tiger, Georgia, United States of America
| | - David A. Steen
- Georgia Sea Turtle Center, Jekyll Island Authority, Jekyll Island, Georgia, United States of America
| | - Craig Guyer
- Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, Alabama, United States of America
| |
Collapse
|
67
|
Gao YD, Gao XF, Harris A. Species Boundaries and Parapatric Speciation in the Complex of Alpine Shrubs, Rosa sericea (Rosaceae), Based on Population Genetics and Ecological Tolerances. FRONTIERS IN PLANT SCIENCE 2019; 10:321. [PMID: 30936888 PMCID: PMC6432857 DOI: 10.3389/fpls.2019.00321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 02/27/2019] [Indexed: 06/01/2023]
Abstract
Discerning species boundaries among closely related taxa is fundamental to studying evolution and biodiversity. However, species boundaries can be difficult to access in plants because ongoing divergence and speciation may leave an evolutionary footprint similar to introgression, which occurs frequently among species and genera. In this study, we sought to determine species boundaries between two closely related alpine shrubs, Rosa sericea and Rosa omeiensis, using population genetics, environmental data and ecological niche modeling, and morphological traits. We analyzed populations of R. sericea and R. omeiensis using genetic markers comprising a fragment of the single-copy nuclear gene, LEAFY, micro-satellites (EST-SSR), and plastid DNA sequences. The DNA sequence data suggested clusters of populations consistent with geography but not with previously proposed species boundaries based on morphology. Nevertheless, we found that the ecological niches of the previously proposed species only partially overlap. Thus, we suspect that these species are in the process of parapatric speciation; that is, differentiating along an ecological gradient, so that they exhibit differing morphology. Morphology has previously been the basis of recognizing the species R. sericea and R. omeiensis, which are the most widely distributed species within a broader R. sericea complex that includes several other narrow endemics. Here, we recognize R. sericea and R. omeiensis as independent species based on morphological and ecological data under the unified species concept, which emphasizes that these data types are of equal value to DNA for determining species boundaries and refining taxonomic treatments. While the DNA data did not delimit species within the R. sericea complex, we expect to develop and utilize new, robust DNA tools for understanding speciation within this group in future studies.
Collapse
Affiliation(s)
- Yun-Dong Gao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xin-Fen Gao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Aj Harris
- Oberlin College and Conservatory, Department of Biology, Oberlin, OH, United States
| |
Collapse
|
68
|
Reydon TAC, Kunz W. Species as natural entities, instrumental units and ranked taxa: new perspectives on the grouping and ranking problems. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz013] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Thomas A C Reydon
- Institute of Philosophy, Leibniz University Hannover, Hannover, Germany
- Centre for Ethics and Law in the Life Sciences (CELLS), Leibniz University Hannover, Hannover, Germany
| | - Werner Kunz
- Institute for Genetics, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
69
|
Species delimitation in the presence of strong incomplete lineage sorting and hybridization: Lessons from Ophioderma (Ophiuroidea: Echinodermata). Mol Phylogenet Evol 2019; 131:138-148. [DOI: 10.1016/j.ympev.2018.11.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 01/01/2023]
|
70
|
Reydon TAC. Are Species Good Units for Biodiversity Studies and Conservation Efforts? HISTORY, PHILOSOPHY AND THEORY OF THE LIFE SCIENCES 2019. [DOI: 10.1007/978-3-030-10991-2_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractWhile species have long been seen as the principal units of biodiversity, with prominent roles in biodiversity research and conservation practice, the long-standing debate on the nature of species deeply problematizes their suitability as such units. Not only do the metaphysical questions remain unresolved what kinds of things species are, and whether species are at all real, there also is considerable disagreement on how to define the notion of species for use in practice. Moreover, it seems that different organism groups are best classified using different definitions of ‘species’, such that species of organisms in very different domains of biodiversity are not generally comparable units. In this chapter I will defend and elaborate the claim that species are not good units of biodiversity, focusing in the issue of species realism. I will sketch a pragmatic notion of ‘species’ that can be used as an epistemic tool in the context of biodiversity studies, without however involving a view of species as basic units of biodiversity or as the focal, real entities in biodiversity conservation.
Collapse
|
71
|
Chenuil A, Cahill AE, Délémontey N, Du Salliant du Luc E, Fanton H. Problems and Questions Posed by Cryptic Species. A Framework to Guide Future Studies. HISTORY, PHILOSOPHY AND THEORY OF THE LIFE SCIENCES 2019. [DOI: 10.1007/978-3-030-10991-2_4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractSpecies are the currency of biology and important units of biodiversity, thus errors in species delimitations potentially have important consequences. During the last decades, owing to the use of genetic markers, many nominal species appeared to consist of several reproductively isolated entities called cryptic species (hereafter CS). In this chapter we explain why CS are important for practical reasons related to community and ecosystem monitoring, and for biological knowledge, particularly for understanding ecological and evolutionary processes. To find solutions to practical problems and to correct biological errors, a thorough analysis of the distinct types of CS reported in the literature is necessary and some general rules have to be identified. Here we explain how to identify CS, and we propose a rational and practical classification of CS (and putative CS), based on the crossing of distinct levels of genetic isolation with distinct levels of morphological differentiation. We also explain how to identify likely explanations for a given CS (either inherent to taxonomic processes or related to taxon biology, ecology and geography) and how to build a comprehensive database aimed at answering these practical and theoretical questions. Our pilot review of the literature in marine animals established that half of the reported cases are not CS sensu stricto (i.e. where morphology cannot distinguish the entities) and just need taxonomic revision. It also revealed significant associations between CS features, such as a higher proportion of diagnostic morphological differences in sympatric than in allopatric CS and more frequent ecological differentiation between sympatric than allopatric CS, both observations supporting the competitive exclusion theory, thus suggesting that ignoring CS causes not only species diversity but also functional diversity underestimation.
Collapse
|
72
|
Suárez-Villota EY, Quercia CA, Díaz LM, Vera-Sovier V, Nuñez JJ. Speciation in a biodiversity hotspot: Phylogenetic relationships, species delimitation, and divergence times of Patagonian ground frogs from the Eupsophus roseus group (Alsodidae). PLoS One 2018; 13:e0204968. [PMID: 30543633 PMCID: PMC6292574 DOI: 10.1371/journal.pone.0204968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/27/2018] [Indexed: 11/19/2022] Open
Abstract
The alsodid ground frogs of the Eupsophus genus are divided into two groups, the roseus (2n = 30) and vertebralis (2n = 28), which are distributed throughout the temperate Nothofagus forests of South America. Currently, the roseus group is composed by four species, while the vertebralis group consists of two. Phylogenetic relationships and species delimitation within each group are controversial. In fact, previous analyses considered that the roseus group was composed of between four to nine species. In this work, we evaluated phylogenetic relationships, diversification times, and species delimitation within the roseus group using a multi-locus dataset. For this purpose, mitochondrial (D-loop, Cyt b, and COI) and nuclear (POMC and CRYBA1) partial sequences from 164 individuals were amplified, representing all species. Maximum Likelihood (ML) and Bayesian approaches were used to reconstruct phylogenetic relationships. Species tree was estimated using BEAST and singular value decomposition scores for species quartets (SVDquartets). Species limits were evaluated with six coalescent approaches. Diversification times were estimated using mitochondrial and nuclear rates with LogNormal relaxed clock in BEAST. Nine well-supported monophyletic lineages were recovered in Bayesian, ML, and SVDquartets, including eight named species and a lineage composed by specimens from the Villarrica population (Bootstrap:>70, PP:> 0.99). Single-locus species delimitation analyses overestimated the species number in E. migueli, E. calcaratus, and E. roseus lineages, while multi-locus analyses recovered as species the nine lineages observed in phylogenetic analyses (Ctax = 0.69). It is hypothesized that Eupsophus diversification occurred during Mid-Pleistocene (0.42-0.14 Mya), with most species having originated after the Last Southern Patagonian Glaciation (0.18 Mya). Our results revitalize the hypothesis that the E. roseus group is composed of eight species and support the Villarrica lineage as a new putative species.
Collapse
Affiliation(s)
| | - Camila A. Quercia
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Leila M. Díaz
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Victoria Vera-Sovier
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - José J. Nuñez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
73
|
Horsáková V, Nekola JC, Horsák M. When is a "cryptic" species not a cryptic species: A consideration from the Holarctic micro-landsnail genus Euconulus (Gastropoda: Stylommatophora). Mol Phylogenet Evol 2018; 132:307-320. [PMID: 30550963 DOI: 10.1016/j.ympev.2018.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 11/05/2018] [Accepted: 12/04/2018] [Indexed: 12/23/2022]
Abstract
Naive use of molecular data may lead to ambiguous conclusions, especially within the context of "cryptic" species. Here, we integrated molecular and morphometric data to evaluate phylogenetic relationships in the widespread terrestrial micro-snail genus, Euconulus. We analyzed mitochondrial (16S + COII) and nuclear (ITS1 + ITS2) sequence across 94 populations from Europe, Asia and North America within the nominate species E. alderi, E. fulvus and E. polygyratus, and used the southeastern USA E. chersinus, E. dentatus, and E. trochulus as comparative outgroups. Phylogeny was reconstructed using four different reconstruction methods to identify robust, well-supported topological features. We then performed discriminant analysis on shell measurements between these genetically-identified species-level clades. These analyses provided evidence for a biologically valid North American "cryptic" species within E. alderi. However, while highly supported polyphyletic structure was also observed within E. fulvus, disagreement in placement of individuals between mtDNA and nDNA clades, lack of morphological differences, and presence of potential hybrids imply that these lineages do not rise to the threshold as biologically valid cryptic species, and rather appear to simply represent a complex of geographically structured populations within a single species. These results caution that entering into a cryptic species hypothesis should not be undertaken lightly, and should be optimally supported along multiple lines of evidence. Generally, post-hoc analyses of macro-scale features should be conducted to attempt identification of previously ignored diagnostic traits. If such traits cannot be found, i.e. in the case of potentially "fully cryptic" species, additional criteria should be met to propound a cryptic species hypothesis, including the agreement in tree topology among both mtDNA and nDNA, and little (or no) evidence of hybridization based on a critical analysis of sequence chromatograms. Even when the above conditions are satisfied, it only implies that the cryptic species hypothesis is plausible, but should optimally be subjected to further careful examination.
Collapse
Affiliation(s)
- Veronika Horsáková
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic.
| | - Jeffrey C Nekola
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic.
| | - Michal Horsák
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic.
| |
Collapse
|
74
|
Caro A, Gómez-Moliner BJ, Madeira MJ. Integrating multilocus DNA data and 3D geometric morphometrics to elucidate species boundaries in the case of Pyrenaearia (Pulmonata: Hygromiidae). Mol Phylogenet Evol 2018; 132:194-206. [PMID: 30550961 DOI: 10.1016/j.ympev.2018.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 07/03/2018] [Accepted: 12/06/2018] [Indexed: 01/21/2023]
Abstract
To accurately delimit species the use of multiple character types is essential as all speciation processes are not equally reflected in different data (e.g. morphological, molecular or ecological characters). With the introduction of geometric morphometrics methods and advances in 3D technology, a comprehensive combination of molecular and morphological data has been enabled in groups where exhaustively quantifying and measuring morphological shape change was not possible before such as gastropod shells. In this study, we combined multilocus coalescent species delimitation methods with 3D geometric morphometrics of shell shape to delimit species within the land snail genus Pyrenaearia. A new taxonomic scheme was constructed for the genus identifying ten species. Two nominal species were synonymized and a hitherto unrecognized cryptic species was identified. Our findings support the importance of combining multiple lines of evidence as molecular and morphological data on their own do not yield the same information. Further, the integration of morphological and molecular data shows the importance of allometry in shell shape and suggests a combined effect of population history and selection in different environments on shells morphological variation. Our new taxonomy and phylogenetic reconstruction suggest that, besides the glacial cycles of the Pleistocene, passive dispersal and rock substrate complexity could also have been involved in the speciation of the genus.
Collapse
Affiliation(s)
- Amaia Caro
- Department of Zoology and Animal Cell Biology, Faculty of Pharmacy, University of the Basque Country, EHU/UPV, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Araba, Spain; Biodiversity Research Group, CIEA Lucio Lascaray, Avda. Miguel de Unamuno 3, 01006 Araba, Spain.
| | - Benjamín Juan Gómez-Moliner
- Department of Zoology and Animal Cell Biology, Faculty of Pharmacy, University of the Basque Country, EHU/UPV, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Araba, Spain; Biodiversity Research Group, CIEA Lucio Lascaray, Avda. Miguel de Unamuno 3, 01006 Araba, Spain.
| | - María José Madeira
- Department of Zoology and Animal Cell Biology, Faculty of Pharmacy, University of the Basque Country, EHU/UPV, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Araba, Spain; Biodiversity Research Group, CIEA Lucio Lascaray, Avda. Miguel de Unamuno 3, 01006 Araba, Spain.
| |
Collapse
|
75
|
Barreto SB, Silva AT, Batalha-Filho H, Affonso PRAM, Zanata AM. Integrative approach reveals a new species of Nematocharax (Teleostei: Characidae). JOURNAL OF FISH BIOLOGY 2018; 93:1151-1162. [PMID: 30306564 DOI: 10.1111/jfb.13834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 10/02/2018] [Indexed: 06/08/2023]
Abstract
An integrative approach based on morphological and multilocus genetic data was used to describe a new species of Nematocharax from the headwaters of the upper Contas River on the Diamantina Plateau, north-eastern Brazil and to infer the relationships among evolutionary lineages within this fish genus. Multispecies coalescent inference using three mitochondrial and five nuclear loci strongly supports a basal split between Nematocharax venustus and the new species, whose distinctive morphological characters include absence of filamentous rays on pelvic fins of maturing and mature males, reduced anal-fin lobe length and lower body depth. The unique morphological and genetic traits of the population from the upper Contas River were supported by previous reports based on cytogenetics, DNA barcode and geometric morphometrics, reinforcing the validation of the new species. The conservation status of this new species is discussed.
Collapse
Affiliation(s)
- Silvia B Barreto
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Instituto de Biologia, Universidade Federal da Bahia, Salvador, Brazil
| | - André T Silva
- Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Jequié, Brazil
| | - Henrique Batalha-Filho
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Instituto de Biologia, Universidade Federal da Bahia, Salvador, Brazil
| | | | - Angela M Zanata
- Instituto de Biologia, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
76
|
Koch JB, Rodriguez J, Pitts JP, Strange JP. Phylogeny and population genetic analyses reveals cryptic speciation in the Bombus fervidus species complex (Hymenoptera: Apidae). PLoS One 2018; 13:e0207080. [PMID: 30462683 PMCID: PMC6248958 DOI: 10.1371/journal.pone.0207080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 10/24/2018] [Indexed: 11/18/2022] Open
Abstract
Bumble bees (Bombus Latrielle) are significant pollinators of flowering plants due to their large body size, abundant setae, and generalist foraging strategies. However, shared setal coloration patterns among closely and distantly related bumble bee species makes identification notoriously difficult. The advent of molecular genetic techniques has increased our understanding of bumble bee evolution and taxonomy, and enables effective conservation policy and management. Individuals belonging to the North American Bombus fervidus species-complex (SC) are homogenous in body structure but exhibit significant body color phenotype variation across their geographic distribution. Given the uncertainty of the genealogical boundaries within the SC, some authors have synonymized all members of the B. fervidus SC within a single taxon, while others propose an alternative two taxa hypothesis. Operating under the phylogenetic species concept, our analysis supports the hypothesis that there are two independent lineages of bumble bees within the B. fervidus SC. With the current evidence, however, it is not possible to assign valid names to either of them, because both lineages include the color phenotypes found in the original species descriptions of B. fervidus and B. californicus. Cryptic speciation does not seem to be the product of Müllerian mimicry between the clades, because diverging coloration patterns are observed when the distribution of the clades overlaps. Furthermore, within each lineage there is evidence for strong population differentiation that is correlated with geographic distribution rather than color phenotype. In our study, we demonstrate the importance of obtaining a broad sample of multiple populations when conducting lower-level phylogenetic analyses. In addition to improving our knowledge of bumble bee diversification patterns, characterizing the evolutionary history of these pollinators provides the foundation needed to guide contemporary conservation assessments and management strategies.
Collapse
Affiliation(s)
- Jonathan B. Koch
- Department of Biology & Ecology Center, Utah State University, Logan, Utah, United States of America
- United States Department of Agriculture-Agricultural Research Services, Pollinating Insects-Biology, Management, and Systematics Research Laboratory, Logan, Utah, United States of America
| | - Juanita Rodriguez
- Australian National Insect Collection, National Research Collections Australia, CSIRO National Facilities and Collections, Canberra, Australian Capital Territory, Australia
| | - James P. Pitts
- Department of Biology & Ecology Center, Utah State University, Logan, Utah, United States of America
| | - James P. Strange
- United States Department of Agriculture-Agricultural Research Services, Pollinating Insects-Biology, Management, and Systematics Research Laboratory, Logan, Utah, United States of America
| |
Collapse
|
77
|
Abstract
Conservation genetics is a branch of conservation biology that uses molecular data to assist in the conservation and management of imperiled populations, subspecies, and species. In this review, I examine conservation action plans (CAPs)—instrumental documents designed to influence conservation policy—for selected primate species. I use the information contained in CAPs as a means to guide this review. The primary genetics-based topics that are mentioned in CAPs are genetic connectivity, inbreeding, and subspecies/species delimitation. I discuss these topics as well as historical demographic inference and hybridization using examples from wild primate species to illustrate the myriad ways in which genetics can assist in conservation efforts. I also discuss some recent technological advances such as genomic capture techniques and the potential to do molecular work in remote locations.
Collapse
Affiliation(s)
- Richard R. Lawler
- Department of Sociology and Anthropology, James Madison University, Harrisonburg, Virginia 22807, USA
| |
Collapse
|
78
|
Vreven EJWMN, Musschoot T, Decru E, Wamuini Lunkayilakio S, Obiero K, Cerwenka AF, Schliewen UK. The complex origins of mouth polymorphism in the Labeobarbus (Cypriniformes: Cyprinidae) of the Inkisi River basin (Lower Congo, DRC, Africa): insights from an integrative approach. Zool J Linn Soc 2018. [DOI: 10.1093/zoolinnean/zly049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Emmanuel J W M N Vreven
- Vertebrate Section, Ichthyology, Royal Museum for Central Africa, RMCA, Leuvensesteenweg, Tervuren, Belgium
- KU Leuven, Laboratory of Biodiversity and Evolutionary Genomics, Charles Deberiotstraat, Leuven, Belgium
| | - Tobias Musschoot
- Vertebrate Section, Ichthyology, Royal Museum for Central Africa, RMCA, Leuvensesteenweg, Tervuren, Belgium
| | - Eva Decru
- Vertebrate Section, Ichthyology, Royal Museum for Central Africa, RMCA, Leuvensesteenweg, Tervuren, Belgium
- KU Leuven, Laboratory of Biodiversity and Evolutionary Genomics, Charles Deberiotstraat, Leuven, Belgium
| | | | - Kevin Obiero
- Kenya Marine and Fisheries Research Institute, Lake Turkana Research Station, Lodwar, Kenya
| | - Alexander F Cerwenka
- SNSB Bavarian Natural History Collections, Bavarian State Collection of Zoology, Department of Ichthyology, Münchhausenstrasse, München, Germany
| | - Ulrich K Schliewen
- SNSB Bavarian Natural History Collections, Bavarian State Collection of Zoology, Department of Ichthyology, Münchhausenstrasse, München, Germany
| |
Collapse
|
79
|
Tougard C, Justy F, Guinand B, Douzery EJP, Berrebi P. Salmo macrostigma (Teleostei, Salmonidae): Nothing more than a brown trout (S. trutta) lineage? JOURNAL OF FISH BIOLOGY 2018; 93:302-310. [PMID: 29992566 DOI: 10.1111/jfb.13751] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/07/2018] [Indexed: 06/08/2023]
Abstract
We examined specimens of the macrostigma trout Salmo macrostigma, which refers to big black spots on the flanks, to assess whether it is an example of taxonomic inflation within the brown trout Salmo trutta complex. Using new specimens, publicly available data and a mitogenomic protocol to amplify the control and cytochrome b regions of the mitochondrial genome from degraded museum samples, including one syntype specimen, the present study shows that the macrostigma trout is not a valid species. Our results suggest the occurrence of a distinct evolutionary lineage of S. trutta in North Africa and Sicily. The name of the North African lineage is proposed for this lineage, which was found to be sister to the Atlantic lineage of brown trout, S. trutta.
Collapse
Affiliation(s)
| | - Fabienne Justy
- ISEM, CNRS, Université de Montpellier, IRD, EPHE, Montpellier, France
| | - Bruno Guinand
- ISEM, CNRS, Université de Montpellier, IRD, EPHE, Montpellier, France
| | | | - Patrick Berrebi
- ISEM, CNRS, Université de Montpellier, IRD, EPHE, Montpellier, France
| |
Collapse
|
80
|
Zhang L, Sun K, Liu T, Zhao H, Csorba G, Jin L, Thong VD, Feng J. Multilocus phylogeny and species delimitation within the philippinensis
group (Chiroptera: Rhinolophidae). ZOOL SCR 2018. [DOI: 10.1111/zsc.12308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Lin Zhang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization; Northeast Normal University; Changchun China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization; Northeast Normal University; Changchun China
| | - Tong Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization; Northeast Normal University; Changchun China
| | - Hanbo Zhao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization; Northeast Normal University; Changchun China
| | - Gábor Csorba
- Department of Zoology; Hungarian Natural History Museum; Budapest Hungary
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization; Northeast Normal University; Changchun China
| | - Vu Dinh Thong
- Graduate University of Science and Technology; Vietnam Academy of Science and Technology; Hanoi Vietnam
- Institute of Ecology and Biological Resources; Vietnam Academy of Science and Technology; Hanoi Vietnam
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization; Northeast Normal University; Changchun China
- Jilin Agricultural University; Changchun China
| |
Collapse
|
81
|
Niu YT, Jabbour F, Barrett RL, Ye JF, Zhang ZZ, Lu KQ, Lu LM, Chen ZD. Combining complete chloroplast genome sequences with target loci data and morphology to resolve species limits in Triplostegia (Caprifoliaceae). Mol Phylogenet Evol 2018; 129:15-26. [PMID: 30026123 DOI: 10.1016/j.ympev.2018.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/11/2018] [Accepted: 07/14/2018] [Indexed: 02/04/2023]
Abstract
Species represent the most basic unit of taxonomy. As such, species delimitation represents a crucial issue for biodiversity conservation. Taxonomic practices were revolutionized in the last three decades due to the increasing availability of molecular phylogenetic data. The genus Triplostegia (Caprifoliaceae) traditionally consists of two species, T. glandulifera and T. grandiflora, distinguishable mainly based on quantitative morphological features. In this study, we sequenced nine chloroplast loci (i.e., accD, psbK-psbI, rbcL-accD, rpoB-trnC, rps16-trnQ, trnE-trnT, trnF-ndhJ, trnH-psbA, trnS-trnG) and one nuclear locus (ITS) of 16 individuals of Triplostegia representing the entire distribution range of both species recognized. Furthermore, we also obtained whole chloroplast sequences for 11 of the 16 individuals for which silica gel-dried leaves were available. Our phylogenetic analyses integrating chloroplast genome sequences and multiple loci data revealed that Triplostegia includes four main clades that largely match geography. Neither T. grandiflora nor T. glandulifera was recovered as monophyletic and no diagnosable differences in leaf, flower, and pollen traits were detected between the two species, indicating the need for a revised species circumscription within Triplostegia. Our study highlights the importance of combining data from different sources while defining species limits.
Collapse
Affiliation(s)
- Yan-Ting Niu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Florian Jabbour
- Institut de Systématique Evolution Biodiversité (ISYEB), Muséum National D'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP39, Paris 75005, France
| | - Russell L Barrett
- National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney, Mrs Macquaries Road, Sydney 2000, New South Wales, Australia
| | - Jian-Fei Ye
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhu-Zhi Zhang
- School of Life Sciences, Shandong University, Jinan 250100, China
| | - Kai-Qing Lu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Min Lu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Zhi-Duan Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
82
|
Hyman IT, Köhler F. Reconciling comparative anatomy and mitochondrial phylogenetics in revising species limits in the Australian semislug Helicarion Férussac, 1821 (Gastropoda: Stylommatophora). Zool J Linn Soc 2018. [DOI: 10.1093/zoolinnean/zly017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
83
|
Jacobs SJ, Kristofferson C, Uribe‐Convers S, Latvis M, Tank DC. Incongruence in molecular species delimitation schemes: What to do when adding more data is difficult. Mol Ecol 2018; 27:2397-2413. [DOI: 10.1111/mec.14590] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 02/04/2023]
Affiliation(s)
- Sarah J. Jacobs
- Department of Biological Sciences University of Idaho Moscow Idaho
- Stillinger Herbarium University of Idaho Moscow Idaho
- Institute for Bioinformatics and Evolutionary Studies (IBEST) University of Idaho Moscow Idaho
| | - Casey Kristofferson
- Department of Biological Sciences University of Idaho Moscow Idaho
- Stillinger Herbarium University of Idaho Moscow Idaho
- Institute for Bioinformatics and Evolutionary Studies (IBEST) University of Idaho Moscow Idaho
| | - Simon Uribe‐Convers
- Department of Biological Sciences University of Idaho Moscow Idaho
- Stillinger Herbarium University of Idaho Moscow Idaho
- Institute for Bioinformatics and Evolutionary Studies (IBEST) University of Idaho Moscow Idaho
| | - Maribeth Latvis
- Department of Biological Sciences University of Idaho Moscow Idaho
- Stillinger Herbarium University of Idaho Moscow Idaho
- Institute for Bioinformatics and Evolutionary Studies (IBEST) University of Idaho Moscow Idaho
| | - David C. Tank
- Department of Biological Sciences University of Idaho Moscow Idaho
- Stillinger Herbarium University of Idaho Moscow Idaho
- Institute for Bioinformatics and Evolutionary Studies (IBEST) University of Idaho Moscow Idaho
| |
Collapse
|
84
|
Vaidya G, Lepage D, Guralnick R. The tempo and mode of the taxonomic correction process: How taxonomists have corrected and recorrected North American bird species over the last 127 years. PLoS One 2018; 13:e0195736. [PMID: 29672539 PMCID: PMC5909608 DOI: 10.1371/journal.pone.0195736] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 03/28/2018] [Indexed: 11/19/2022] Open
Abstract
While studies of taxonomy usually focus on species description, there is also a taxonomic correction process that retests and updates existing species circumscriptions on the basis of new evidence. These corrections may themselves be subsequently retested and recorrected. We studied this correction process by using the Check-List of North and Middle American Birds, a well-known taxonomic checklist that spans 130 years. We identified 142 lumps and 95 splits across sixty-three versions of the Check-List and found that while lumping rates have markedly decreased since the 1970s, splitting rates are accelerating. We found that 74% of North American bird species recognized today have never been corrected (i.e., lumped or split) over the period of the checklist, while 16% have been corrected exactly once and 10% have been corrected twice or more. Since North American bird species are known to have been extensively lumped in the first half of the 20th century with the advent of the biological species concept, we determined whether most splits seen today were the result of those lumps being recorrected. We found that 5% of lumps and 23% of splits fully reverted previous corrections, while a further 3% of lumps and 13% of splits are partial reversions. These results show a taxonomic correction process with moderate levels of recorrection, particularly of previous lumps. However, 81% of corrections do not revert any previous corrections, suggesting that the majority result in novel circumscriptions not previously recognized by the Check-List. We could find no order or family with a significantly higher rate of correction than any other, but twenty-two genera as currently recognized by the AOU do have significantly higher rates than others. Given the currently accelerating rate of splitting, prediction of the end-point of the taxonomic recorrection process is difficult, and many entirely new taxonomic concepts are still being, and likely will continue to be, proposed and further tested.
Collapse
Affiliation(s)
- Gaurav Vaidya
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
- * E-mail:
| | - Denis Lepage
- Bird Studies Canada, Port Rowan, Ontario, Canada
| | - Robert Guralnick
- Department of Natural History and the Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
85
|
Zachos FE. Mammals and meaningful taxonomic units: the debate about species concepts and conservation. Mamm Rev 2018. [DOI: 10.1111/mam.12121] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Frank E. Zachos
- Natural History Museum Vienna; Mammal Collection; Burgring 7 1010 Vienna Austria
- Department of Integrative Zoology; University of Vienna; Althanstraße 14 1090 Vienna Austria
| |
Collapse
|
86
|
Noguerales V, Cordero PJ, Ortego J. Integrating genomic and phenotypic data to evaluate alternative phylogenetic and species delimitation hypotheses in a recent evolutionary radiation of grasshoppers. Mol Ecol 2018; 27:1229-1244. [DOI: 10.1111/mec.14504] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/16/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Víctor Noguerales
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM); Ciudad Real Spain
| | - Pedro J. Cordero
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM); Ciudad Real Spain
| | - Joaquín Ortego
- Department of Integrative Ecology; Estación Biológica de Doñana (EBD-CSIC); Seville Spain
| |
Collapse
|
87
|
Fišer C, Robinson CT, Malard F. Cryptic species as a window into the paradigm shift of the species concept. Mol Ecol 2018; 27:613-635. [DOI: 10.1111/mec.14486] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Cene Fišer
- SubBio Lab; Department of Biology; Biotechnical Faculty; University of Ljubljana; Ljubljana Slovenia
| | - Christopher T. Robinson
- Department of Aquatic Ecology; Eawag; Dübendorf Switzerland
- Institute of Integrative Biology; ETH Zürich; Zürich Switzerland
| | - Florian Malard
- Université Lyon; Université Claude Bernard Lyon 1; CNRS; ENTPE; UMR5023 LEHNA Villeurbanne France
| |
Collapse
|
88
|
Pooley S. Descent with modification: Critical use of historical evidence for conservation. Conserv Lett 2018. [DOI: 10.1111/conl.12437] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Simon Pooley
- Lambert Lecturer in Environment (Applied Herpetology), Department of Geography; Birkbeck University of London; London WC1H 9EZ United Kingdom
- Wildlife Conservation Research Unit, Department of Zoology; University of Oxford Tubney; Oxfordshire OX13 5QL United Kingdom
| |
Collapse
|
89
|
Roth-Monzón AJ, Mendoza-Hernández AA, Flores-Villela O. Amphibian and reptile biodiversity in the semi-arid region of the municipality of Nopala de Villagrán, Hidalgo, Mexico. PeerJ 2018; 6:e4202. [PMID: 29312825 PMCID: PMC5756618 DOI: 10.7717/peerj.4202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/07/2017] [Indexed: 11/30/2022] Open
Abstract
Current global changes are putting both biodiversity and the processes that depend on it at risk. This is especially true for semi-arid regions and the flagship groups that inhabit them, such as amphibians and reptiles. Semi-arid regions are often thought to have lower biodiversity and thus have been overlooked, resulting in the underestimation of their biological richness. Therefore, the aim of this study was to conduct an inventory of amphibians and reptiles in the semi-arid municipality of Nopala de Villagrán, Mexico, and analyze its biodiversity in relation to the seasons, vegetation and microhabitat. During a year of fieldwork, we found 24 species in the area, most of them of low abundance, and one of which was recorded for the first time for the state of Hidalgo. We documented five amphibian species and 19 reptile species. We also found that observed species richness was higher in the rainy season and in xeric scrub vegetation, although only the season differences were significant according to rarefaction curves. Our findings highlight the importance of seasonality and vegetation type for the species that inhabit this semi-arid region. This study broadens our understanding of the importance of semi-arid regions and, by extension, that of other areas with similar characteristics.
Collapse
Affiliation(s)
- Andrea J Roth-Monzón
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico.,Current affiliation: Evolutionary Ecology Laboratories, Department of Biology, Brigham Young University, Provo, UT, United States of America
| | | | - Oscar Flores-Villela
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| |
Collapse
|
90
|
Zhang L, Wang M, Ma T, Liu J. Taxonomic status of Populuswulianensis and P.ningshanica (Salicaceae). PHYTOKEYS 2018:117-129. [PMID: 30275735 PMCID: PMC6160800 DOI: 10.3897/phytokeys.108.25600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/26/2018] [Indexed: 05/03/2023]
Abstract
Species delimitation in the genus Populus is particularly challenging due to high levels of intraspecific polymorphism as well as frequent interspecific hybridisation and introgression. In this study, we aimed to examine the taxonomic status of Populusningshanica and P.wulianensis using an integrative taxonomy that considers multiple operational criteria. We carried out morphometric analyses of leaf traits and genetic examinations (including sequence variations at five barcoding DNAs and polymorphisms at 14 nuclear microsatellite SSR primers) at the population level between them and two closely related species P.adenopoda and P.davidiana. Results suggest that P.wulianensis belongs to the polymorphic species, P.adenopoda and should be considered as a synonym of the latter. P.ningshanica may have arisen as a result on the hybridisation between P.adenopoda and P.davidiana and therefore should be treated as P.×ningshanica. This study highlights the importance of the integrated evidence in taxonomic decisions of the disputed species.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P. R. ChinaSichuan UniversityChengduChina
| | - Mingcheng Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P. R. ChinaSichuan UniversityChengduChina
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P. R. ChinaSichuan UniversityChengduChina
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P. R. ChinaSichuan UniversityChengduChina
| |
Collapse
|
91
|
Richter S, Schwentner M, Wirkner CS, Ahyong ST. Phylogeny and species diversity of Tasmanian mountain shrimps and their relatives (Crustacea, Anaspidesidae). ZOOL SCR 2017. [DOI: 10.1111/zsc.12263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Stefan Richter
- Allgemeine& Spezielle Zoologie; Institut fuer Biowissenschaften; Universitaet Rostock; Rostock Germany
| | - Martin Schwentner
- Department of Organismic and Evolutionary Biology; Museum of Comparative Zoology; Harvard University; Cambridge MA USA
| | - Christian S. Wirkner
- Allgemeine& Spezielle Zoologie; Institut fuer Biowissenschaften; Universitaet Rostock; Rostock Germany
| | - Shane T. Ahyong
- Marine Invertebrates; Australian Museum Research Institute, Australian Museum; Sydney NSW Australia
- School of Biological Earth and Environmental Sciences; University of New South Wales; Kensington NSW Australia
| |
Collapse
|
92
|
Yu G, Rao D, Matsui M, Yang J. Coalescent-based delimitation outperforms distance-based methods for delineating less divergent species: the case of Kurixalus odontotarsus species group. Sci Rep 2017; 7:16124. [PMID: 29170403 PMCID: PMC5700917 DOI: 10.1038/s41598-017-16309-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 11/10/2017] [Indexed: 12/30/2022] Open
Abstract
Few empirical studies have compared coalescent-based methods to distance-based methods for delimitation of less divergent species. In this study, we used two coalescent-based (BFD and BPP) and two distance-based barcoding (ABGD and jMOTU) methods to delimit closely related species in the Kurixalus odontotarsus species group. Phylogenetic analyses revealed that the K. odontotarsus species group comprises 11 distinct maternal clades with strong support values. Based on the genetic and morphological evidences, we consider that species diversity in the K. odontotarsus species group was underestimated and the 11 clades represent 11 species, of which six are unnamed. The coalescent-based delimitations decisively supported the scenario of 11-species corresponding to the 11 clades. However, the distance-based ABGD only obtained 3-6 candidate species, which is not consistent with morphological evidence. These results indicate that BFD and BPP are more conservative than ABGD to false negatives (lumping). Method of fixed threshold (jMOTU) may obtain a resolution similar to that inferred by BFD and BPP, but it severely relies on subjective choice of the threshold and lacks statistical support. We consider that coalescent-based BFD and BPP approaches outperform distance-based methods for delineation of less divergent species.
Collapse
Affiliation(s)
- Guohua Yu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming, Yunnan, 650223, China
| | - Dingqi Rao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming, Yunnan, 650223, China
| | - Masafumi Matsui
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu, Kakyo-ku, Kyoto, 606-8501, Japan
| | - Junxing Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming, Yunnan, 650223, China.
| |
Collapse
|
93
|
Crozier RH, Dunnett LJ, Agapow PM. Phylogenetic Biodiversity Assessment Based on Systematic Nomenclature. Evol Bioinform Online 2017. [DOI: 10.1177/117693430500100002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Biodiversity assessment demands objective measures, because ultimately conservation decisions must prioritize the use of limited resources for preserving taxa. The most general framework for the objective assessment of conservation worth are those that assess evolutionary distinctiveness, e.g. Genetic ( Crozier 1992 ) and Phylogenetic Diversity ( Faith 1992 ), and Evolutionary History ( Nee & May 1997 ). These measures all attempt to assess the conservation worth of any scheme based on how much of the encompassing phylogeny of organisms is preserved. However, their general applicability is limited by the small proportion of taxa that have been reliably placed in a phylogeny. Given that phylogenizaton of many interesting taxa or important is unlikely to occur soon, we present a framework for using taxonomy as a reasonable surrogate for phylogeny. Combining this framework with exhaustive searches for combinations of sites containing maximal diversity, we provide a proof-of-concept for assessing conservation schemes for systematized but un-phylogenised taxa spread over a series of sites. This is illustrated with data from four studies, on North Queensland flightless insects ( Yeates et al. 2002 ), ants from a Florida Transect ( Lubertazzi & Tschinkel 2003 ), New England bog ants ( Gotelli & Ellison 2002 ) and a simulated distribution of the known New Zealand Lepidosauria ( Daugherty et al. 1994 ). The results support this approach, indicating that species, genus and site numbers predict evolutionary history, to a degree depending on the size of the data set.
Collapse
Affiliation(s)
- Ross H Crozier
- School of Tropical Biology, James Cook University, Townsville, Queensland, Australia
| | - Lisa J Dunnett
- School of Information Technology, James Cook University, Townsville, Queensland, Australia
| | | |
Collapse
|
94
|
Ralls K, Ballou JD, Dudash MR, Eldridge MDB, Fenster CB, Lacy RC, Sunnucks P, Frankham R. Call for a Paradigm Shift in the Genetic Management of Fragmented Populations. Conserv Lett 2017. [DOI: 10.1111/conl.12412] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
95
|
|
96
|
Genitalic Differentiations in Neoleucinodes elegantalis (Gueneé) (Lepidoptera: Crambidae) Associated with Solanaceae Crops in Ecuador. INSECTS 2017; 8:insects8030091. [PMID: 28858224 PMCID: PMC5620711 DOI: 10.3390/insects8030091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/22/2017] [Accepted: 08/25/2017] [Indexed: 11/17/2022]
Abstract
Neoleucinodes elegantalis (Guenée) is an oligophagous species of plants in the Solanaceae family that has a broad geographical distribution in the tropical zones of South America. It is the most important insect pest of naranjilla (Solanum quitoense Lamarck), a crop grown in threatened areas of the tropical old-growth forest in Ecuador. In this study, two host-specific populations of N. elegantalis were collected from infested fruit of naranjilla and tree tomato (Solanum betaceum Cavanilles) in different locations. Sexually virgin adult insects (93 females and 103 males) were dissected to extract their genitalia to measure 12 morphological variables in females and six in males, resulting in six and four informative variables respectively. Using univariate and multivariate analysis of variance, it was found that the Solanaceous host was the main factor differentiating the area measurements of the seventh abdominal segment and ostium bursae in female genitalia, and cornuti length in male genitalia. Principal components generated with these measurements were employed in a logistic regression model for the classification of the Solanaceous host. Female genitalia of individuals from S. betaceum showed significantly larger ostium bursae relative to female genitalia from S. quitoense. For males, individuals collected from S. betaceum showed longer cornuti length than samples collected from S. quitoense. The results suggest genotypic differentiation according to the Solanaceous host or phenotypic plasticity in N. elegantalis. Further molecular and bio-geographical studies are needed to properly differentiate N. elegantalis populations that would help in the control of this pest.
Collapse
|
97
|
Atickem A, Stenseth NC, Drouilly M, Bock S, Roos C, Zinner D. Deep divergence among mitochondrial lineages in African jackals. ZOOL SCR 2017. [DOI: 10.1111/zsc.12257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anagaw Atickem
- Cognitive Ethology Laboratory; Primate Genetics Laboratory; German Primate Center (DPZ); Leibniz Institute for Primate Research; Göttingen Germany
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis (CEES); University of Oslo; Oslo Norway
| | - Nils Chr. Stenseth
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis (CEES); University of Oslo; Oslo Norway
| | - Marine Drouilly
- Department of Biological Sciences; Institute for Communities and Wildlife in Africa; University of Cape Town; Rondebosch South Africa
| | | | - Christian Roos
- Primate Genetics Laboratory; Gene Bank of Primates; German Primate Center (DPZ); Leibniz Institute for Primate Research; Göttingen Germany
| | - Dietmar Zinner
- Cognitive Ethology Laboratory; German Primate Center (DPZ); Leibniz Institute for Primate Research; Göttingen Germany
| |
Collapse
|
98
|
Sheth BP, Thaker VS. DNA barcoding and traditional taxonomy: an integrated approach for biodiversity conservation. Genome 2017; 60:618-628. [DOI: 10.1139/gen-2015-0167] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Biological diversity is depleting at an alarming rate. Additionally, a vast amount of biodiversity still remains undiscovered. Taxonomy has been serving the purpose of describing, naming, and classifying species for more than 250 years. DNA taxonomy and barcoding have accelerated the rate of this process, thereby providing a tool for conservation practice. DNA barcoding and traditional taxonomy have their own inherent merits and demerits. The synergistic use of both methods, in the form of integrative taxonomy, has the potential to contribute to biodiversity conservation in a pragmatic timeframe and overcome their individual drawbacks. In this review, we discuss the basics of both these methods of biological identification (traditional taxonomy and DNA barcoding), the technical advances in integrative taxonomy, and future trends. We also present a comprehensive compilation of published examples of integrative taxonomy that refer to nine topics within biodiversity conservation. Morphological and molecular species limits were observed to be congruent in ∼41% of the 58 source studies. The majority of the studies highlighted the description of cryptic diversity through the use of molecular data, whereas research areas like endemism, biological invasion, and threatened species were less discussed in the literature.
Collapse
Affiliation(s)
- Bhavisha P. Sheth
- Centre for Advanced Studies in Plant Biotechnology and Genetic Engineering, Department of Biosciences, Saurashtra University, Rajkot 360005, Gujarat, India
- Centre for Advanced Studies in Plant Biotechnology and Genetic Engineering, Department of Biosciences, Saurashtra University, Rajkot 360005, Gujarat, India
| | - Vrinda S. Thaker
- Centre for Advanced Studies in Plant Biotechnology and Genetic Engineering, Department of Biosciences, Saurashtra University, Rajkot 360005, Gujarat, India
- Centre for Advanced Studies in Plant Biotechnology and Genetic Engineering, Department of Biosciences, Saurashtra University, Rajkot 360005, Gujarat, India
| |
Collapse
|
99
|
Singh SP, Groeneveld JC, Al-Marzouqi A, Willows-Munro S. A molecular phylogeny of the spiny lobster Panulirus homarus highlights a separately evolving lineage from the Southwest Indian Ocean. PeerJ 2017; 5:e3356. [PMID: 28560106 PMCID: PMC5446773 DOI: 10.7717/peerj.3356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 04/26/2017] [Indexed: 11/20/2022] Open
Abstract
Accurate species description in the marine environment is critical for estimating biodiversity and identifying genetically distinct stocks. Analysis of molecular data can potentially improve species delimitations because they are easily generated and independent, and yield consistent results with high statistical power. We used classical phylogenetic (maximum likelihood and Bayesian inference) and coalescent-based methods (divergence dating with fossil calibrations and coalescent-based species delimitation) to resolve the phylogeny of the spiny lobster Panulirus homarus subspecies complex in the Indo-West Pacific. Analyses of mitochondrial data and combined nuclear and mitochondrial data recovered Panulirus homarus homarus and Panulirus homarus rubellus as separately evolving lineages, while the nuclear data trees were unresolved. Divergence dating analysis also identified Panulirus homarus homarus and Panulirus homarus rubellus as two distinct clades which diverged from a common ancestor during the Oligocene, approximately 26 million years ago. Species delimitation using coalescent-based methods corroborated these findings. A long pelagic larval life stage and the influence of ocean currents on post-larval settlement patterns suggest that a parapatric mode of speciation drives evolution in this subspecies complex. In combination, the results indicate that Panulirus homarus rubellus from the Southwest Indian Ocean is a separately evolving lineage and possibly a separate species.
Collapse
Affiliation(s)
- Sohana P. Singh
- Oceanographic Research Institute, Durban, KwaZulu-Natal, South Africa
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, KwaZulu-Natal, South Africa
| | - Johan C. Groeneveld
- Oceanographic Research Institute, Durban, KwaZulu-Natal, South Africa
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, KwaZulu-Natal, South Africa
| | - Abdulaziz Al-Marzouqi
- Marine Science and Fisheries Centre, Ministry of Agriculture and Fisheries, Muscat, Oman
| | - Sandi Willows-Munro
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, KwaZulu-Natal, South Africa
| |
Collapse
|
100
|
Aldhebiani AY. Species concept and speciation. Saudi J Biol Sci 2017; 25:437-440. [PMID: 29686507 PMCID: PMC5910646 DOI: 10.1016/j.sjbs.2017.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/08/2017] [Accepted: 04/30/2017] [Indexed: 11/16/2022] Open
Abstract
Defining and recognizing a species has been a controversial issue for a long time. To determine the variation and the limitation between species, many concepts have been proposed. When a taxonomist study a particular taxa, he/she must adopted a species concept and provide a species limitation to define this taxa. In this paper some of species concepts are discussed starting from the typological species concepts to the phylogenetic concept. Positive and negative aspects of these concepts are represented in addition to their application.
Collapse
Affiliation(s)
- Amal Y Aldhebiani
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| |
Collapse
|