51
|
Ouyang MY, Liu JH, Wen B, Huang JN, Feng XS, Gao JZ, Chen ZZ. Ecological stoichiometric and stable isotopic responses to microplastics are modified by food conditions in koi carp. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124121. [PMID: 33011633 DOI: 10.1016/j.jhazmat.2020.124121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Microplastics (MPs) can be easily taken up by a wide range of aquatic animals and cause blockage of the digestive tract leading to starvation. Meanwhile, aquatic organisms are facing threats posed by food restriction in both wild and cultured environment. Little knowledge, however, exists on how MPs interact with food conditions to affect aquatic animals. Here, koi carp were exposed to polystyrene MPs (0, 100 or 1000 μg/L) under controlled feeding (satiated or starved) for 30 or 60 days. MPs reduced and interacted synergistically with food conditions on growth after 30 days but antagonistically after 60 days. MPs reduced crude lipid and carbohydrate but increased and antagonistically interacted with feeding conditions on crude protein. Food conditions interacted with MPs on C, N and P but stoichiometric responses were decoupled with macromolecules changes. Food conditions antagonistically interacted with MPs on δ13C after 60 days. Linear discriminant analysis revealed that C:P and N:P were the two most important measured parameters accounting for the response of koi towards MPs and food restriction, presenting an antagonistic interaction of MPs and food status with the prolonged exposure duration.
Collapse
Affiliation(s)
- Ming-Yan Ouyang
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jun-Heng Liu
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Wen
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Jun-Nan Huang
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Xiao-Sa Feng
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jian-Zhong Gao
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Zai-Zhong Chen
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
52
|
Gomes N, Semin GR. The Function of Fear Chemosignals: Preparing for Danger. Chem Senses 2021; 46:6132829. [PMID: 33569586 DOI: 10.1093/chemse/bjab005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It has been shown that the presence of conspecifics modulates human vigilance strategies as is the case with animal species. Mere presence has been found to reduce vigilance. However, animal research has also shown that chemosignals (e.g., sweat) produced during fear-inducing situations modulate individuals' threat detection strategies. In the case of humans, little is known about how exposure to conspecifics' fear chemosignals modulates vigilance and threat detection effectiveness. This study (N = 59) examined how human fear chemosignals affect vigilance strategies and threat avoidance in its receivers. We relied on a paradigm that simulates a "foraging under threat" situation in the lab, integrated with an eye-tracker to examine the attention allocation. Our results showed that the exposure to fear chemosignals (vs. rest chemosignals and a no-sweat condition) while not changing vigilance behavior leads to faster answers to threatening events. In conclusion, fear chemosignals seem to constitute an important warning signal for human beings, possibly leading their receiver to a readiness state that allows faster reactions to threat-related events.
Collapse
Affiliation(s)
- Nuno Gomes
- William James Center for Research, ISPA - Instituto Universitário, Lisbon, Portugal
| | - Gün R Semin
- William James Center for Research, ISPA - Instituto Universitário, Lisbon, Portugal.,Faculty of Social and Behavioral Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
53
|
Fardell LL, Bedoya-Pérez MA, Dickman CR, Crowther MS, Pavey CR, Narayan EJ. Are physiological and behavioural responses to stressors displayed concordantly by wild urban rodents? Naturwissenschaften 2021; 108:5. [PMID: 33411125 PMCID: PMC7790802 DOI: 10.1007/s00114-020-01716-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 10/27/2022]
Abstract
Understanding wild animal responses to stressors underpins effective wildlife management. In order for responses to stressors to be correctly interpreted, it is critical that measurements are taken on wild animals using minimally invasive techniques. Studies investigating wild animal responses to stressors often measure either a single physiological or behavioural variable, but whether such responses are comparable and concordant remains uncertain. We investigated this question in a pilot study that measured responses of wild-caught urban brown and black rats (Rattus norvegicus, Rattus rattus) to fur-based olfactory cues from a predator, the domestic cat (Felis catus); a novel herbivore, the koala (Phascolarctos cinereus); and a familiar herbivore and competitor, the common brushtail possum (Trichosurus vulpecula). Physiological responses, measured by assaying faecal glucocorticoid metabolites, were compared to behavioural responses observed via video recordings. We found that physiological and behavioural responses to stressors were expressed concordantly. There was no sizeable physiological response observed, and the behavioural response when considered across the night was negligible. However, the behavioural response to the predator and competitor cues changed across the observation period, with activity increasing with increasing hours of exposure. Our results indicate that responses of wild rodents to cues are nuanced, with stress responses modulated by behaviour changes that vary over time according to the severity of the perceived threat as animals gather further information. If the physiological response alone had been assessed, this moderated response may not have been evident, and in terms of wildlife management, vital information would have been lost.
Collapse
Affiliation(s)
- Loren L Fardell
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Miguel A Bedoya-Pérez
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, 2006, Australia.,School of Psychology, The University of Sydney, Sydney, New South Wales, 2006, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Christopher R Dickman
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Mathew S Crowther
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Chris R Pavey
- CSIRO, Land and Water, PMB 44, Winnellie, Northern Territory, 0822, Australia
| | - Edward J Narayan
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
54
|
Villegas M, Loiselle BA, Kimball RT, Blake JG. Ecological niche differentiation in Chiroxiphia and Antilophia manakins (Aves: Pipridae). PLoS One 2021. [PMID: 33439873 DOI: 10.1371/journal.pone.0243760i] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Species distribution models are useful for identifying the ecological characteristics that may limit a species' geographic range and for inferring patterns of speciation. Here, we test a hypothesis of niche conservatism across evolutionary time in a group of manakins (Aves: Pipridae), with a focus on Chiroxiphia boliviana, and examine the degree of ecological differentiation with other Chiroxiphia and Antilophia manakins. We tested whether allopatric sister species were more or less similar in environmental space than expected given their phylogenetic distances, which would suggest, respectively, ecological niche conservatism over time or ecologically mediated selection (i.e. niche divergence). We modeled the distribution of nine manakin taxa (C. boliviana, C. caudata, C. lanceolata, C. linearis, C. p. pareola, C. p. regina, C. p. napensis, Antilophia galeata and A. bokermanni) using Maxent. We first performed models for each taxon and compared them. To test our hypothesis we followed three approaches: (1) we tested whether C. boliviana could predict the distribution of the other manakin taxa and vice versa; (2) we compared the ecological niches by using metrics of niche overlap, niche equivalency and niche similarity; and (3) lastly, we tested whether niche differentiation corresponded to phylogenetic distances calculated from two recent phylogenies. All models had high training and test AUC values. Mean AUC ratios were high (>0.8) for most taxa, indicating performance better than random. Results suggested niche conservatism, and high niche overlap and equivalency between C. boliviana and C. caudata, but we found very low values between C. boliviana and the rest of the taxa. We found a negative, but not significant, relationship between niche overlap and phylogenetic distance, suggesting an increase in ecological differentiation and niche divergence over evolutionary time. Overall, we give some insights into the evolution of C. boliviana, proposing that ecological selection may have influenced its speciation.
Collapse
Affiliation(s)
- Mariana Villegas
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, United States of America
| | - Bette A Loiselle
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, United States of America
- Center for Latin American Studies, University of Florida, Gainesville, Florida, United States of America
| | - Rebecca T Kimball
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
| | - John G Blake
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
55
|
Predator presence affects activity patterns but not food consumption or growth of juvenile corkwing wrasse (Symphodus melops). Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-020-02947-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
56
|
Lucas JM, Jonas J, Laws AN, Branson DH, Pennings SC, Prather CM, Strickland MS. Functional and taxonomic diversity of grasshoppers differentially shape above‐ and below‐ground communities and their function. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jane M. Lucas
- Department of Soil and Water Systems University of Idaho Moscow ID USA
| | - Jayne Jonas
- Department of Forest and Rangeland Stewardship Colorado State University Fort Collins CO USA
| | - Angela N. Laws
- Department of Biology and Biochemistry University of Houston Houston TX USA
- The Xerces Society Sacramento CA USA
| | - David H. Branson
- United States Department of Agriculture Agricultural Research Service Sidney MT USA
| | - Steven C. Pennings
- Department of Biology and Biochemistry University of Houston Houston TX USA
| | | | | |
Collapse
|
57
|
Gumiel M, de Mattos DP, Vieira CS, Moraes CS, Moreira CJDC, Gonzalez MS, Teixeira-Ferreira A, Waghabi M, Azambuja P, Carels N. Proteome of the Triatomine Digestive Tract: From Catalytic to Immune Pathways; Focusing on Annexin Expression. Front Mol Biosci 2020; 7:589435. [PMID: 33363206 PMCID: PMC7755933 DOI: 10.3389/fmolb.2020.589435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
Rhodnius prolixus, Panstrongylus megistus, Triatoma infestans, and Dipetalogaster maxima are all triatomines and potential vectors of the protozoan Trypanosoma cruzi responsible for human Chagas' disease. Considering that the T. cruzi's cycle occurs inside the triatomine digestive tract (TDT), the analysis of the TDT protein profile is an essential step to understand TDT physiology during T. cruzi infection. To characterize the protein profile of TDT of D. maxima, P. megistus, R. prolixus, and T. infestans, a shotgun liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach was applied in this report. Most proteins were found to be closely related to metabolic pathways such as gluconeogenesis/glycolysis, citrate cycle, fatty acid metabolism, oxidative phosphorylation, but also to the immune system. We annotated this new proteome contribution gathering it with those previously published in accordance with Gene Ontology and KEGG. Enzymes were classified in terms of class, acceptor, and function, while the proteins from the immune system were annotated by reference to the pathways of humoral response, cell cycle regulation, Toll, IMD, JNK, Jak-STAT, and MAPK, as available from the Insect Innate Immunity Database (IIID). These pathways were further subclassified in recognition, signaling, response, coagulation, melanization and none. Finally, phylogenetic affinities and gene expression of annexins were investigated for understanding their role in the protection and homeostasis of intestinal epithelial cells against the inflammation.
Collapse
Affiliation(s)
- Marcia Gumiel
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
- Research Department, Universidad Privada Franz Tamayo (UNIFRANZ), La Paz, Bolivia
| | - Debora Passos de Mattos
- Laboratório de Biologia de Insetos, Departamento de Biologia Geral, Universidade Federal Fluminense, Niterói, Brazil
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Cecília Stahl Vieira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
- Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Caroline Silva Moraes
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Marcelo Salabert Gonzalez
- Laboratório de Biologia de Insetos, Departamento de Biologia Geral, Universidade Federal Fluminense, Niterói, Brazil
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | | | - Mariana Waghabi
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Patricia Azambuja
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
- Laboratório de Biologia de Insetos, Departamento de Biologia Geral, Universidade Federal Fluminense, Niterói, Brazil
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Nicolas Carels
- Laboratório de Modelagem de Sistemas Biológicos, National Institute for Science and Technology on Innovation in Neglected Diseases (INCT-IDN), Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
58
|
Bayoumy MH, Osawa N, Hatt S. Fitness costs of reflex bleeding in the ladybird beetle Harmonia axyridis: the role of parental effects. INSECT SCIENCE 2020; 27:1346-1359. [PMID: 31762189 DOI: 10.1111/1744-7917.12737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/05/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Reflex bleeding is an important antipredator defense mechanism in Coccinellidae. We examined the costs of reflex bleeding in larval and adult stages of the ladybird beetle Harmonia axyridis on offspring fitness and reproductive performance through the comparisons between bled and control larvae, reciprocal crosses of bled/control beetles, and early and late clutch phenotypes. Beetles bled during their larval stage spent a longer time in development and weighed less than controls. Egg fertility was reduced for crosses where either one or both parents had been bled during the larval or adult stage. Offspring crosses that included a parent bled during the larval stage suffered fitness costs in development and female body mass, while those bled during the adult stage suffered no transgenerational costs. Males that suffered bleeding during their larval stage accelerated progeny development of nonbled females in early clutches, suggesting a positive transgenerational effect of larval bleeding, while males that did not suffer bleeding accelerated progeny development of bled females in later clutches. As the underlying effects of bleeding on females' offspring in the early clutches were diminished in the late ones, suggesting another transgenerational effect. The strengths of maternal and paternal effects on progeny development of parents bled at the larval stage were higher in earlier clutches. This study suggests that H. axyridis adults are less affected than larvae by the frequent use of the defensive secretions in their stressful habitats.
Collapse
Affiliation(s)
- Mohamed H Bayoumy
- Faculty of Agriculture, Economic Entomology Department, Mansoura University, Mansoura, Egypt
- Laboratory of Forest Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Naoya Osawa
- Laboratory of Forest Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Séverin Hatt
- Laboratory of Forest Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
59
|
Zandonà E, Moraes M, Neres‐Lima V, Dalton CM, Flecker AS, Mazzoni R. Differences in nutrient mineralisation between native and invasive grazing catfish during the invasion process. AUSTRAL ECOL 2020. [DOI: 10.1111/aec.12978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Eugenia Zandonà
- Departamento de Ecologia Universidade do Estado do Rio de Janeiro Rua São Francisco Xavier 524 Rio de Janeiro RJ20550‐013Brazil
| | - Maíra Moraes
- Departamento de Ecologia Universidade do Estado do Rio de Janeiro Rua São Francisco Xavier 524 Rio de Janeiro RJ20550‐013Brazil
- Universidade Veiga de Almeida Rio de Janeiro RJ Brazil
| | - Vinicius Neres‐Lima
- Departamento de Ecologia Universidade do Estado do Rio de Janeiro Rua São Francisco Xavier 524 Rio de Janeiro RJ20550‐013Brazil
| | - Christopher M. Dalton
- Department of Ecology and Evolutionary Biology Cornell University Ithaca New York USA
| | - Alexander S. Flecker
- Department of Ecology and Evolutionary Biology Cornell University Ithaca New York USA
| | - Rosana Mazzoni
- Departamento de Ecologia Universidade do Estado do Rio de Janeiro Rua São Francisco Xavier 524 Rio de Janeiro RJ20550‐013Brazil
| |
Collapse
|
60
|
Glazier DS, Gring JP, Holsopple JR, Gjoni V. Temperature effects on metabolic scaling of a keystone freshwater crustacean depend on fish-predation regime. J Exp Biol 2020; 223:jeb232322. [PMID: 33037112 DOI: 10.1242/jeb.232322] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/28/2020] [Indexed: 01/02/2023]
Abstract
According to the metabolic theory of ecology, metabolic rate, an important indicator of the pace of life, varies with body mass and temperature as a result of internal physical constraints. However, various ecological factors may also affect metabolic rate and its scaling with body mass. Although reports of such effects on metabolic scaling usually focus on single factors, the possibility of significant interactive effects between multiple factors requires further study. In this study, we show that the effect of temperature on the ontogenetic scaling of resting metabolic rate of the freshwater amphipod Gammarus minus depends critically on habitat differences in predation regime. Increasing temperature tends to cause decreases in the metabolic scaling exponent (slope) in population samples from springs with fish predators, but increases in population samples from springs without fish. Accordingly, the temperature sensitivity of metabolic rate is not only size-specific, but also its relationship to body size shifts dramatically in response to fish predators. We hypothesize that the dampened effect of temperature on the metabolic rate of large adults in springs with fish, and of small juveniles in springs without fish are adaptive evolutionary responses to differences in the relative mortality risk of adults and juveniles in springs with versus without fish predators. Our results demonstrate a complex interaction among metabolic rate, body mass, temperature and predation regime. The intraspecific scaling of metabolic rate with body mass and temperature is not merely the result of physical constraints related to internal body design and biochemical kinetics, but rather is ecologically sensitive and evolutionarily malleable.
Collapse
Affiliation(s)
- Douglas S Glazier
- Department of Biology, Juniata College, 1700 Moore Street, Huntingdon, PA 16652, USA
| | - Jeffrey P Gring
- Department of Biology, Juniata College, 1700 Moore Street, Huntingdon, PA 16652, USA
- Coastal Resources, Inc., Annapolis, MD 21401, USA
| | - Jacob R Holsopple
- Department of Biology, Juniata College, 1700 Moore Street, Huntingdon, PA 16652, USA
| | - Vojsava Gjoni
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| |
Collapse
|
61
|
Jermacz Ł, Kletkiewicz H, Krzyżyńska K, Klimiuk M, Kobak J. Does global warming intensify cost of antipredator reaction? A case study of freshwater amphipods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140474. [PMID: 32623164 DOI: 10.1016/j.scitotenv.2020.140474] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Global warming is a worldwide phenomenon affecting the functioning of diverse ecosystems, including fresh waters. Temperature increase affects physiology and behaviour of ectotherms due to growing energetic demands necessary to sustain increased metabolic rate. Anti-predator responses may resemble temperature-induced changes in organisms, suggesting synergism between these factors. To check how temperature shapes physiological and behavioural responses of ectotherms to predation risk, we exposed amphipods: Dikerogammarus villosus and Gammarus jazdzewskii to fish kairomones at 10, 17 or 24 °C. Animals were placed in tanks where temperature was gradually adjusted to the desired test temperature and acclimated under such conditions for 3 subsequent days. Then they were exposed to the predator cue (the Eurasian perch kairomone) for 35 min to test their acute responses. We measured metabolic rate (as respiration), antioxidant defence (CAT: catalase activity, TAS: total antioxidant status), oxidative molecules (TOS: total oxidative status), oxidative damage (TBARS: thiobarbituric acid reactive substances) and behaviour (locomotor activity). Amphipods increased respiration with raising temperature and when exposed to predation risk (all temperatures). Only G. jazdzewskii exhibited increased TOS when exposed to 24 °C or to predation risk at all temperatures. Antioxidant defence increased with raising temperature (CAT, TAS) and decreased under predation risk (CAT). Cellular damage increased in G. jazdzewskii under predation risk at 10 and 24 °C, but raised temperature itself did not generate any damage. Amphipods reduced locomotor activity at 24 °C. Thus, at elevated temperatures, amphipods minimized their cellular damage at the cost of increased antioxidant defence and lower locomotor activity (potentially disadvantageous under higher energetic demands). Under predation risk, the performance of antioxidant systems was reduced, probably due to energy allocation into anti-predatory mechanisms, leading to increased cellular damage at suboptimum temperatures. Thus, negative consequences of elevated temperature for organisms may be amplified by changes in behaviour (compromising food acquisition) and non-consumptive predator effects.
Collapse
Affiliation(s)
- Łukasz Jermacz
- Nicolaus Copernicus University, Faculty of Biological and Veterinary Sciences, Department of Ecology and Biogeography, Lwowska 1, 87-100 Toruń, Poland.
| | - Hanna Kletkiewicz
- Nicolaus Copernicus University, Faculty of Biological and Veterinary Sciences, Department of Animal Physiology, Lwowska 1, 87-100 Toruń, Poland
| | - Katarzyna Krzyżyńska
- Nicolaus Copernicus University, Faculty of Biological and Veterinary Sciences, Department of Ecology and Biogeography, Lwowska 1, 87-100 Toruń, Poland
| | - Maciej Klimiuk
- Nicolaus Copernicus University, Faculty of Biological and Veterinary Sciences, Department of Animal Physiology, Lwowska 1, 87-100 Toruń, Poland
| | - Jarosław Kobak
- Nicolaus Copernicus University, Faculty of Biological and Veterinary Sciences, Department of Invertebrate Zoology and Parasitology, Lwowska 1, 87-100 Toruń, Poland
| |
Collapse
|
62
|
Palacios MDM, McCormick MI. Positive indirect effects of top‐predators on the behaviour and survival of juvenile fishes. OIKOS 2020. [DOI: 10.1111/oik.07731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maria del Mar Palacios
- ARC Centre of Excellence for Coral Reef Studies, James Cook Univ. Townsville Queensland Australia
- School of Life and Environmental Sciences, Deakin Univ. Victoria Australia
| | - Mark I. McCormick
- ARC Centre of Excellence for Coral Reef Studies, James Cook Univ. Townsville Queensland Australia
| |
Collapse
|
63
|
Schmitz OJ, Leroux SJ. Food Webs and Ecosystems: Linking Species Interactions to the Carbon Cycle. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-104730] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All species within ecosystems contribute to regulating carbon cycling because of their functional integration into food webs. Yet carbon modeling and accounting still assumes that only plants, microbes, and invertebrate decomposer species are relevant to the carbon cycle. Our multifaceted review develops a case for considering a wider range of species, especially herbivorous and carnivorous wild animals. Animal control over carbon cycling is shaped by the animals’ stoichiometric needs and functional traits in relation to the stoichiometry and functional traits of their resources. Quantitative synthesis reveals that failing to consider these mechanisms can lead to serious inaccuracies in the carbon budget. Newer carbon-cycle models that consider food-web structure based on organismal functional traits and stoichiometry can offer mechanistically informed predictions about the magnitudes of animal effects that will help guide new empirical research aimed at developing a coherent understanding of the interactions and importance of all species within food webs.
Collapse
Affiliation(s)
- Oswald J. Schmitz
- School of the Environment, Yale University, New Haven, Connecticut 06511, USA
| | - Shawn J. Leroux
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X9, Canada
| |
Collapse
|
64
|
Zanette LY, Clinchy M. Ecology and Neurobiology of Fear in Free-Living Wildlife. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-124613] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ecology of fear concerns the population-, community-, and ecosystem-level consequences of the behavioral interactions between predators and prey, i.e., the aggregate impacts of individual responses to life-threatening events. We review new experiments demonstrating that fear itself is powerful enough to affect the population growth rate in free-living wild birds and mammals, and fear of large carnivores—or the human super predator—can cause trophic cascades affecting plant and invertebrate abundance. Life-threatening events like escaping a predator can have enduring, even lifelong, effects on the brain, and new interdisciplinary research on the neurobiology of fear in wild animals is both providing insights into post-traumatic stress (PTSD) and reinforcing the likely commonality of population- and community-level effects of fear in nature. Failing to consider fear thus risks dramatically underestimating the total impact predators can have on prey populations and the critical role predator-prey interactions can play in shaping ecosystems.
Collapse
Affiliation(s)
- Liana Y. Zanette
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada;,
| | - Michael Clinchy
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada;,
| |
Collapse
|
65
|
Culshaw‐Maurer M, Sih A, Rosenheim JA. Bugs scaring bugs: enemy-risk effects in biological control systems. Ecol Lett 2020; 23:1693-1714. [PMID: 32902103 PMCID: PMC7692946 DOI: 10.1111/ele.13601] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/30/2020] [Accepted: 08/13/2020] [Indexed: 01/09/2023]
Abstract
Enemy-risk effects, often referred to as non-consumptive effects (NCEs), are an important feature of predator-prey ecology, but their significance has had little impact on the conceptual underpinning or practice of biological control. We provide an overview of enemy-risk effects in predator-prey interactions, discuss ways in which risk effects may impact biocontrol programs and suggest avenues for further integration of natural enemy ecology and integrated pest management. Enemy-risk effects can have important influences on different stages of biological control programs, including natural enemy selection, efficacy testing and quantification of non-target impacts. Enemy-risk effects can also shape the interactions of biological control with other pest management practices. Biocontrol systems also provide community ecologists with some of the richest examples of behaviourally mediated trophic cascades and demonstrations of how enemy-risk effects play out among species with no shared evolutionary history, important topics for invasion biology and conservation. We conclude that the longstanding use of ecological theory by biocontrol practitioners should be expanded to incorporate enemy-risk effects, and that community ecologists will find many opportunities to study enemy-risk effects in biocontrol settings.
Collapse
Affiliation(s)
- Michael Culshaw‐Maurer
- Department of Entomology and NematologyUniversity of CaliforniaDavisCA95616USA
- Department of Evolution and EcologyUniversity of CaliforniaDavisCA95616USA
| | - Andrew Sih
- Department of Environmental Science and PolicyUniversity of CaliforniaDavisCA95616USA
| | - Jay A. Rosenheim
- Department of Entomology and NematologyUniversity of CaliforniaDavisCA95616USA
| |
Collapse
|
66
|
Hammond TT, Ortiz-Jimenez CA, Smith JE. Anthropogenic Change Alters Ecological Relationships via Interactive Changes in Stress Physiology and Behavior within and among Organisms. Integr Comp Biol 2020; 60:57-69. [PMID: 31960928 DOI: 10.1093/icb/icaa001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Anthropogenic change has well-documented impacts on stress physiology and behavior across diverse taxonomic groups. Within individual organisms, physiological and behavioral traits often covary at proximate and ultimate timescales. In the context of global change, this means that impacts on physiology can have downstream impacts on behavior, and vice versa. Because all organisms interact with members of their own species and other species within their communities, the effects of humans on one organism can impose indirect effects on one or more other organisms, resulting in cascading effects across interaction networks. Human-induced changes in the stress physiology of one species and the downstream impacts on behavior can therefore interact with the physiological and behavioral responses of other organisms to alter emergent ecological phenomena. Here, we highlight three scenarios in which the stress physiology and behavior of individuals on different sides of an ecological relationship are interactively impacted by anthropogenic change. We discuss host-parasite/pathogen dynamics, predator-prey relationships, and beneficial partnerships (mutualisms and cooperation) in this framework, considering cases in which the effect of stressors on each type of network may be attenuated or enhanced by interactive changes in behavior and physiology. These examples shed light on the ways that stressors imposed at the level of one individual can impact ecological relationships to trigger downstream consequences for behavioral and ecological dynamics. Ultimately, changes in stress physiology on one or both sides of an ecological interaction can mediate higher-level population and community changes due in part to their cascading impacts on behavior. This framework may prove useful for anticipating and potentially mitigating previously underappreciated ecological responses to anthropogenic perturbations in a rapidly changing world.
Collapse
Affiliation(s)
- Talisin T Hammond
- San Diego Zoo Institute for Conservation Research, Escondido, CA 92027, USA
| | - Chelsea A Ortiz-Jimenez
- Department of Environmental Science and Policy, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
67
|
Sommer NR, Schmitz OJ. Differences in prey personality mediate trophic cascades. Ecol Evol 2020; 10:9538-9551. [PMID: 32953082 PMCID: PMC7487229 DOI: 10.1002/ece3.6648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/27/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022] Open
Abstract
Functional trait approaches in ecology chiefly assume the mean trait value of a population adequately predicts the outcome of species interactions. Yet this assumption ignores substantial trait variation among individuals within a population, which can have a profound effect on community structure and function. We explored individual trait variation through the lens of animal personality to test whether among-individual variation in prey behavior mediates trophic interactions. We quantified the structure of personalities within a population of generalist grasshoppers and examined, through a number of field and laboratory-based experiments, how personality types could impact tri-trophic interactions in a food chain. Unlike other studies of this nature, we used spatial habitat domains to evaluate how personality types mechanistically map to behaviors relevant in predator-prey dynamics and found shy and bold individuals differed in both their habitat use and foraging strategy under predation risk by a sit-and-wait spider predator. In the field-based mesocosm portion of our study, we found experimental populations of personality types differed in their trophic impact, demonstrating that prey personality can mediate trophic cascades. We found no differences in respiration rates or body size between personality types used in the mesocosm experiment, indicating relative differences in trophic impact were not due to variation in prey physiology but rather variation in behavioral strategies. Our work demonstrates how embracing the complexity of individual trait variation can offer mechanistically richer understanding of the processes underlying trophic interactions.
Collapse
|
68
|
Briceño FA, Fitzgibbon QP, Polymeropoulos ET, Hinojosa IA, Pecl GT. Temperature alters the physiological response of spiny lobsters under predation risk. CONSERVATION PHYSIOLOGY 2020; 8:coaa065. [PMID: 32843966 PMCID: PMC7439581 DOI: 10.1093/conphys/coaa065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 04/19/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Predation risk can strongly shape prey ecological traits, with specific anti-predator responses displayed to reduce encounters with predators. Key environmental drivers, such as temperature, can profoundly modulate prey energetic costs in ectotherms, although we currently lack knowledge of how both temperature and predation risk can challenge prey physiology and ecology. Such uncertainties in predator-prey interactions are particularly relevant for marine regions experiencing rapid environmental changes due to climate change. Using the octopus (Octopus maorum)-spiny lobster (Jasus edwardsii) interaction as a predator-prey model, we examined different metabolic traits of sub adult spiny lobsters under predation risk in combination with two thermal scenarios: 'current' (20°C) and 'warming' (23°C), based on projections of sea-surface temperature under climate change. We examined lobster standard metabolic rates to define the energetic requirements at specific temperatures. Routine metabolic rates (RMRs) within a respirometer were used as a proxy of lobster activity during night and day time, and active metabolic rates, aerobic scope and excess post-exercise oxygen consumption were used to assess the energetic costs associated with escape responses (i.e. tail-flipping) in both thermal scenarios. Lobster standard metabolic rate increased at 23°C, suggesting an elevated energetic requirement (39%) compared to 20°C. Unthreatened lobsters displayed a strong circadian pattern in RMR with higher rates during the night compared with the day, which were strongly magnified at 23°C. Once exposed to predation risk, lobsters at 20°C quickly reduced their RMR by ~29%, suggesting an immobility or 'freezing' response to avoid predators. Conversely, lobsters acclimated to 23°C did not display such an anti-predator response. These findings suggest that warmer temperatures may induce a change to the typical immobility predation risk response of lobsters. It is hypothesized that heightened energetic maintenance requirements at higher temperatures may act to override the normal predator-risk responses under climate-change scenarios.
Collapse
Affiliation(s)
- Felipe A Briceño
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Tasmania 7001, Australia
- Crustacean Ecophysiology Laboratory, Universidad Austral de Chile, Los Pinos s/n, Pelluco, Puerto Montt 5480000, Chile
| | - Quinn P Fitzgibbon
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Elias T Polymeropoulos
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Iván A Hinojosa
- Millennium Nucleus for Ecology and Sustainable Management of Oceanic Islands (ESMOI), Departamento de Biología Marina, Universidad Católica del Norte, Coquimbo, 1781421, Chile
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Facultad de Ciencias, Departamento de Ecología, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| | - Gretta T Pecl
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
69
|
Tan H, Polverino G, Martin JM, Bertram MG, Wiles SC, Palacios MM, Bywater CL, White CR, Wong BBM. Chronic exposure to a pervasive pharmaceutical pollutant erodes among-individual phenotypic variation in a fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114450. [PMID: 32283454 DOI: 10.1016/j.envpol.2020.114450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/27/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceutical pollution is now recognised as a major emerging agent of global change. Increasingly, pharmaceutical pollutants are documented to disrupt ecologically important physiological and behavioural traits in exposed wildlife. However, little is known about potential impacts of pharmaceutical exposure on among-individual variation in these traits, despite phenotypic diversity being critical for population resilience to environmental change. Furthermore, although wildlife commonly experience multiple stressors contemporaneously, potential interactive effects between pharmaceuticals and biological stressors-such as predation threat-remain poorly understood. To redress this, we investigated the impacts of long-term exposure to the pervasive pharmaceutical pollutant fluoxetine (Prozac®) on among-individual variation in metabolic and behavioural traits, and the combined impacts of fluoxetine exposure and predation threat on mean metabolic and behavioural traits in a freshwater fish, the guppy (Poecilia reticulata). Using a mesocosm system, guppy populations were exposed for 15 months to one of two field-realistic levels of fluoxetine (nominal concentrations: 30 and 300 ng/L) or a solvent control. Fish from these populations were then tested for metabolic rate (oxygen uptake) and behaviour (activity), both before and after experiencing one of three levels of a predation treatment: an empty tank, a non-predatory fish (Melanotaenia splendida) or a predatory fish (Leiopotherapon unicolor). Guppies from both fluoxetine treatments had ∼70% lower among-individual variation in their activity levels, compared to unexposed fish. Similarly, fluoxetine exposure at the higher dosage was associated with a significant (26%) reduction in individual-level variation in oxygen uptake relative to unexposed fish. In addition, mean baseline metabolic rate was disrupted in low-fluoxetine exposed fish, although mean metabolic and behavioural responses to predation threat were not affected. Overall, our study demonstrates that long-term exposure to a pervasive pharmaceutical pollutant alters ecologically relevant traits in fish and erodes among-individual variability, which may be detrimental to the stability of contaminated populations globally.
Collapse
Affiliation(s)
- Hung Tan
- School of Biological Sciences, Monash University, Melbourne, Australia.
| | - Giovanni Polverino
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Australia
| | - Jake M Martin
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Michael G Bertram
- School of Biological Sciences, Monash University, Melbourne, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Sarah C Wiles
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Maria M Palacios
- School of Life and Environmental Sciences, Deakin University, Melbourne, Australia
| | - Candice L Bywater
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Craig R White
- School of Biological Sciences, Monash University, Melbourne, Australia; Centre for Geometric Biology, Monash University, Melbourne, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
70
|
Cropp R, Norbury J. The emergence of new trophic levels in eco-evolutionary models with naturally-bounded traits. J Theor Biol 2020; 496:110264. [PMID: 32272135 DOI: 10.1016/j.jtbi.2020.110264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 10/24/2022]
Abstract
Ecosystems and food webs are structured into trophic levels of who eats whom. Species that occupy higher trophic levels have less available energy and higher energetic costs than species at lower trophic levels. So why do higher trophic levels exist? What processes generate new trophic levels? We consider a heuristic eco-evolutionary model based on simple Lotka-Volterra equations, where the evolution of traits is described by a generalisation of Lande's equation. The transition from competition to predation in this simplest of models is a successful, safe strategy for a population, and suggests a propensity to develop new trophic levels may be an inherent property of ecosystems. Numerical simulations with a more complex eco-evolutionary model of interacting plant and herbivore populations display the emergence of a new trophic level as an alternative to continued competition. These simulations reveal that new trophic levels may arise naturally from ecosystems because a robust strategy for a population in the presence of a strong competitor that could dominate or potentially extinguish them, is to predate upon the competitor. The same properties that make the competitor strong make it an ideal prey, suggesting the rubric that it is better to eat a strong competitor than to continue competing.
Collapse
Affiliation(s)
- Roger Cropp
- School of Environment and Science, Griffith University, Gold Coast, Qld, 4215, Australia; Centre for Applications in Natural Resource Mathematics, School of Mathematics and Physics, The University of Queensland, St Lucia, Qld 4072 Australia.
| | - John Norbury
- Mathematical Institute, University of Oxford, Andrew Wiles Building, ROQ, Woodstock Road, Oxford OX2 6GG, UK
| |
Collapse
|
71
|
Animals have a Plan B: how insects deal with the dual challenge of predators and pathogens. J Comp Physiol B 2020; 190:381-390. [PMID: 32529590 DOI: 10.1007/s00360-020-01282-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/08/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
Abstract
When animals are faced with a life-threatening challenge, they mount an organism-wide response (i.e. Plan A). For example, both the stress response (i.e. fight-or-flight) and the immune response recruit molecular resources from other body tissues, and induce physiological changes that optimize the body for defense. However, pathogens and predators often co-occur. Animals that can optimize responses for a dual challenge, i.e. simultaneous predator and pathogen attacks, will have a selective advantage. Responses to a combined predator and pathogen attack have not been well studied, but this paper summarizes the existing literature in insects. The response to dual challenges (i.e. Plan B) results in a suite of physiological changes that are different from either the stress response or the immune response, and is not a simple summation of the two. It is also not a straight-forward trade-off of one response against the other. The response to a dual challenge (i.e. Plan B) appears to resolve physiological trade-offs between the stress and immune responses, and reconfigures both responses to provide the best overall defense. However, the dual response appears to be more costly than either response occurring singly, resulting in greater damage from oxidative stress, reduced growth rate, and increased mortality.
Collapse
|
72
|
Fardell LL, Pavey CR, Dickman CR. Fear and stressing in predator-prey ecology: considering the twin stressors of predators and people on mammals. PeerJ 2020; 8:e9104. [PMID: 32391213 PMCID: PMC7196326 DOI: 10.7717/peerj.9104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/09/2020] [Indexed: 12/28/2022] Open
Abstract
Predators induce stress in prey and can have beneficial effects in ecosystems, but can also have negative effects on biodiversity if they are overabundant or have been introduced. The growth of human populations is, at the same time, causing degradation of natural habitats and increasing interaction rates of humans with wildlife, such that conservation management routinely considers the effects of human disturbance as tantamount to or surpassing those of predators. The need to simultaneously manage both of these threats is particularly acute in urban areas that are, increasingly, being recognized as global hotspots of wildlife activity. Pressures from altered predator-prey interactions and human activity may each initiate fear responses in prey species above those that are triggered by natural stressors in ecosystems. If fear responses are experienced by prey at elevated levels, on top of responses to multiple environmental stressors, chronic stress impacts may occur. Despite common knowledge of the negative effects of stress, however, it is rare that stress management is considered in conservation, except in intensive ex situ situations such as in captive breeding facilities or zoos. We propose that mitigation of stress impacts on wildlife is crucial for preserving biodiversity, especially as the value of habitats within urban areas increases. As such, we highlight the need for future studies to consider fear and stress in predator-prey ecology to preserve both biodiversity and ecosystem functioning, especially in areas where human disturbance occurs. We suggest, in particular, that non-invasive in situ investigations of endocrinology and ethology be partnered in conservation planning with surveys of habitat resources to incorporate and reduce the effects of fear and stress on wildlife.
Collapse
Affiliation(s)
- Loren L. Fardell
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | | | | |
Collapse
|
73
|
Continuity of chronic predation risk determines changes in prey physiology. Sci Rep 2020; 10:6972. [PMID: 32332831 PMCID: PMC7181678 DOI: 10.1038/s41598-020-64000-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/09/2020] [Indexed: 12/29/2022] Open
Abstract
Prey reconfigure their physiology to avoid costs of prolonged predator pressure. However, these changes might not occur under periodic predation risk, with repeating acute phases. To test the effect of predation risk continuity on changes in prey physiology, we exposed amphipods: Dikerogammarus villosus and Gammarus jazdzewskii to periodic and constant predation cue. After one week, we measured: cellular defence systems: total antioxidant status (TAS), heat shock proteins (Hsp70); intracellular damage marker: lipid peroxidation (TBARS); condition index: glycogen concentration. Predator presence reduced TAS level in G. jazdzewskii independent of its continuity and in D. villosus after periodic exposure. Amphipods showed downregulation of Hsp70 when exposed to periodic (D. villosus) or constant (G. jazdzewskii) predation risk. Exposure to predators reduced TBARS level in D. villosus (irrespective of the continuity) and G. jazdzewskii (periodic exposure). Glycogen concentration in both species was not affected by predator presence. Thus, the continuity of the predator cue shaped prey physiology reconfiguration, optimizing costs of physiological adjustments under challenging conditions. Nevertheless, the lack of negative consequences of the prolonged exposure to the predator cue, whether constant or periodic, shows that amphipods can thrive under chronic predation risk, which is a constant part of the wild environment.
Collapse
|
74
|
Sheriff MJ, Peacor SD, Hawlena D, Thaker M. Non-consumptive predator effects on prey population size: A dearth of evidence. J Anim Ecol 2020; 89:1302-1316. [PMID: 32215909 DOI: 10.1111/1365-2656.13213] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/24/2020] [Indexed: 11/30/2022]
Abstract
There is a large and growing interest in non-consumptive effects (NCEs) of predators. Diverse and extensive evidence shows that predation risk directly influences prey traits, such as behaviour, morphology and physiology, which in turn, may cause a reduction in prey fitness components (i.e. growth rate, survival and reproduction). An intuitive expectation is that NCEs that reduce prey fitness will extend to alter population growth rate and therefore population size. However, our intensive literature search yielded only 10 studies that examined how predator-induced changes in prey traits translate to changes in prey population size. Further, the scant evidence for risk-induced changes on prey population size have been generated from studies that were performed in very controlled systems (mesocosm and laboratory), which do not have the complexity and feedbacks of natural settings. Thus, although likely that predation risk alone can alter prey population size, there is little direct empirical evidence that demonstrates that it does. There are also clear reasons that risk effects on population size may be much smaller than the responses on phenotype and fitness components that are typically measured, magnifying the need to show, rather than infer, effects on population size. Herein we break down the process of how predation risk influences prey population size into a chain of events (predation risk affects prey traits, which affect prey fitness components and population growth rate, which affect prey population size), and highlight the complexity of each transition. We illustrate how the outcomes of these transitions are not straightforward, and how environmental context strongly dictates the direction and magnitude of effects. Indeed, the high variance in prey responses is reflected in the variance of results reported in the few studies that have empirically quantified risk effects on population size. It is therefore a major challenge to predict population effects given the complexity of how environmental context interacts with predation risk and prey responses. We highlight the critical need to appreciate risk effects at each level in the chain of events, and that changes at one level cannot be assumed to translate into changes in the next because of the interplay between risk, prey responses, and the environment. The gaps in knowledge we illuminate underscore the need for more evidence to substantiate the claim that predation risk effects extend to prey population size. The lacunae we identify should inspire future studies on the impact of predation risk on population-level responses in free-living animals.
Collapse
Affiliation(s)
- Michael J Sheriff
- Biology Department, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| | - Scott D Peacor
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Dror Hawlena
- Risk Management Ecology Laboratory, Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maria Thaker
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| |
Collapse
|
75
|
Brashears JA, Fokidis HB, DeNardo DF. Fear-based aggression and its relationship to corticosterone responsiveness in three species of python. Gen Comp Endocrinol 2020; 289:113374. [PMID: 31891687 DOI: 10.1016/j.ygcen.2019.113374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 12/08/2019] [Accepted: 12/20/2019] [Indexed: 11/21/2022]
Abstract
It has long been known that even closely related species can vary in their antipredator behavior, and in the last two decades there has been mounting interest in how these differences might relate to the hormonal stress response. We tested the relationship between fear-based aggression, a form of antipredator behavior, and plasma corticosterone levels in three species of python [Children's Python (Antaresia childreni), Ball Python (Python regius), Bismarck Ring Python (Bothrochilus boa)]. We recorded the amount of striking in response to perturbation before and after a controlled, stressful confinement. We also measured plasma corticosterone levels prior to confinement, after confinement, and after confinement plus an adrenocorticotropin hormone (ACTH) injection, the later to induce a maximal corticosterone response. We performed among species analyses using two mixed models, and we determined between individual variance within each species to estimate repeatability. Bismarck Ring Pythons struck more than either Ball Pythons or Children's Pythons, and Ball Pythons had a suppressed corticosterone response compared to Children's and Bismarck Ring Pythons. Thus, mean species fear-based aggression correlated with species level differences in corticosterone profile. We also found evidence suggesting behaviors are repeatable within individuals. Our results point to a need for further exploration of aggression, anti-predator behavior, and corticosterone profile.
Collapse
Affiliation(s)
- J Alex Brashears
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - H Bobby Fokidis
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Dale F DeNardo
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
76
|
Rinehart S, Hawlena D. The effects of predation risk on prey stoichiometry: a meta‐analysis. Ecology 2020; 101:e03037. [DOI: 10.1002/ecy.3037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/03/2019] [Accepted: 01/29/2020] [Indexed: 12/29/2022]
Affiliation(s)
- S. Rinehart
- Department of Ecology, Evolution, and Behavior Alexander Silberman Institute of Life Sciences The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - D. Hawlena
- Department of Ecology, Evolution, and Behavior Alexander Silberman Institute of Life Sciences The Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
77
|
Zhang C, De Meester L, Stoks R. Effects of thermal evolution on the stoichiometric responses to nano-ZnO under warming are not general: insights from experimental evolution. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:175-184. [PMID: 31940103 DOI: 10.1007/s10646-020-02165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
A key challenge for ecological risk assessment of contaminants under global warming is to predict effects at higher levels of biological organisation. One approach to reach this goal is to study how contaminants and warming cause changes in body stoichiometry as these may potentially cascade through food webs. Furthermore, though contaminants typically interact with warming, how rapid adaptation to higher temperatures affects these interactions is poorly studied. Here, we examined the effects of an important contaminant (ZnO nanoparticles, nZnO) and mild warming (4 °C) on body stoichiometry (C, N, P and their ratios) of an aquatic keystone species, the water flea Daphnia magna. To evaluate whether thermal evolution impacts the effects of nZnO at higher temperatures, we compared two sets of clones from a thermal selection experiment where Daphnia were kept in outdoor mesocosms at ambient or ambient +4 °C temperatures for 2 years. Exposure to nZnO decreased key body stoichiometric ratios (C:N, C:P and a trend for N:P) while warming increased the body C:N ratio. The stoichiometric changes to nZnO and warming were mostly independent and could be partly explained by changes in the macromolecules sugars and fat. Exposure to nZnO decreased C-rich sugars contributing to a reduced %C. Warming reduced body %C due to decreased C-rich sugars and fat levels, yet warming decreased body N% even more resulting in a higher C:N ratio. The stoichiometric responses to nZnO at the higher temperature did not differ between the two sets of clones, indicating experimental thermal evolution did not change the effects of nZnO under warming. Studying the stoichiometric responses to nZnO and warming of this keystone species may provide novel insights on the toxic effects of contaminants under warming. Moreover, understanding the influence of thermal evolution on the toxicity of contaminants is important for ecological risk assessment especially in a warming world.
Collapse
Affiliation(s)
- Chao Zhang
- Environmental Research Institute, Shandong University, Qingdao, 266237, China.
- Evolutionary Stress Ecology and Ecotoxicology, KU Leuven, Leuven, 3000, Belgium.
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, 3000, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, KU Leuven, Leuven, 3000, Belgium
| |
Collapse
|
78
|
Harris BN. Stress hypothesis overload: 131 hypotheses exploring the role of stress in tradeoffs, transitions, and health. Gen Comp Endocrinol 2020; 288:113355. [PMID: 31830473 DOI: 10.1016/j.ygcen.2019.113355] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
Stress is ubiquitous and thus, not surprisingly, many hypotheses and models have been created to better study the role stress plays in life. Stress spans fields and is found in the literature of biology, psychology, psychophysiology, sociology, economics, and medicine, just to name a few. Stress, and the hypothalamic-pituitaryadrenal/interrenal (HPA/I) axis and sympathetic nervous system (SNS), are involved in a multitude of behaviors and physiological processes, including life-history and ecological tradeoffs, developmental transitions, health, and survival. The goal of this review is to highlight and summarize the large number of available hypotheses and models, to aid in comparative and interdisciplinary thinking, and to increase reproducibility by a) discouraging hypothesizing after results are known (HARKing) and b) encouraging a priori hypothesis testing. For this review I collected 214 published hypotheses or models dealing broadly with stress. In the main paper, I summarized and categorized 131 of those hypotheses and models which made direct connections among stress and/or HPA/I and SNS, tradeoffs, transitions, and health. Of those 131, the majority made predictions about reproduction (n = 43), the transition from health to disease (n = 38), development (n = 23), and stress coping (n = 18). Additional hypotheses were classified as stage-spanning or models (n = 37). The additional 83 hypotheses found during searches were tangentially related, or pertained to immune function or oxidative stress, and these are listed separately. Many of the hypotheses share underlying rationale and suggest similar, if not identical, predictions, and are thus not mutually exclusive; some hypotheses spanned classification categories. Some of the hypotheses have been tested multiple times, whereas others have only been examined a few times. It is the hope that multi-disciplinary stress researchers will begin to harmonize their naming of hypotheses in the literature so as to build a clearer picture of how stress impacts various outcomes across fields. The paper concludes with some considerations and recommendations for robust testing of stress hypotheses.
Collapse
Affiliation(s)
- Breanna N Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|
79
|
Glazier DS, Borrelli JJ, Hoffman CL. Effects of Fish Predators on the Mass-Related Energetics of a Keystone Freshwater Crustacean. BIOLOGY 2020; 9:biology9030040. [PMID: 32106435 PMCID: PMC7150980 DOI: 10.3390/biology9030040] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 11/28/2022]
Abstract
Little is known about how predators or their cues affect the acquisition and allocation of energy throughout the ontogeny of prey organisms. To address this question, we have been comparing the ontogenetic body-mass scaling of various traits related to energy intake and use between populations of a keystone amphipod crustacean inhabiting freshwater springs, with versus without fish predators. In this progress report, we analyze new and previously reported data to develop a synthetic picture of how the presence/absence of fish predators affects the scaling of food assimilation, fat content, metabolism, growth and reproduction in populations of Gammarus minus located in central Pennsylvania (USA). Our analysis reveals two major clusters of ‘symmorphic allometry’ (parallel scaling relationships) for traits related to somatic versus reproductive investment. In the presence of fish predators, the scaling exponents for somatic traits tend to decrease, whereas those for reproductive traits tend to increase. This divergence of scaling exponents reflects an intensified trade-off between somatic and reproductive investments resulting from low adult survival in the face of size-selective predation. Our results indicate the value of an integrated view of the ontogenetic size-specific energetics of organisms and its response to both top-down (predation) and bottom-up (resource supply) effects.
Collapse
Affiliation(s)
- Douglas S. Glazier
- Department of Biology, Juniata College, Huntingdon, PA 16652, USA
- Correspondence: ; Tel.: +1-814-641-3584
| | - Jonathan J. Borrelli
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA;
| | - Casandra L. Hoffman
- Department of Pediatrics, School of Medicine, University of Virginia, Charlottesville, VI 22908, USA;
| |
Collapse
|
80
|
Van Dievel M, Janssens L, Stoks R. Effects of pesticide exposure and predation risk on nutrient cycling and primary production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135880. [PMID: 31972928 DOI: 10.1016/j.scitotenv.2019.135880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/26/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Understanding how pesticides and natural stressors shape ecosystem functions remains a major challenge. A largely overlooked way how stressors may affect nutrient cycling and primary production is through effects on body stoichiometry and the egestion of elements. We investigated how exposure to the pesticide chlorpyrifos and to predation risk, an abundant natural stressor in aquatic systems, altered the stoichiometry of the bodies and the egested faecal pellets of Enallagma cyathigerum damselfly larvae and how this further cascaded into effects on primary production (algae growth). Chlorpyrifos exposure reduced egestion rates while predation risk had no effect. Chlorpyrifos exposure and predation risk affected both elemental composition of bodies and faecal pellets, and this in an additive way. Chlorpyrifos exposure increased body C(carbon), N(nitrogen), and P(phosphorous) contents, and increased the C content of the faecal pellets. Predation risk induced an increase of the N content, resulting in a decreased C:N ratio, of both the bodies and faecal pellets. The changes in the composition of the faecal pellets caused by predation risk but not by chlorpyrifos exposure increased algae growth under control conditions. This indicated that algae growth was N limited. Our results provide an important proof-of-principle how a stressor may shape nutrient cycling and subsequently primary productivity.
Collapse
Affiliation(s)
- Marie Van Dievel
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Lizanne Janssens
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium.
| |
Collapse
|
81
|
Benbow ME, Receveur JP, Lamberti GA. Death and Decomposition in Aquatic Ecosystems. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
82
|
Elvidge CK, Cooke SJ. Predation risk mediates cognitive constraints following physical exertion in schoolmaster snapper. Physiol Behav 2020; 214:112767. [PMID: 31816275 DOI: 10.1016/j.physbeh.2019.112767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/18/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
Abstract
A large body of literature suggests that physically exhausted fish, including those that are released following fisheries interactions, experience behavioural and cognitive constraints and are at elevated risk of predation during homeostatic recovery. However, previous studies have focused on exhausted fish subsequently encountering predators, and not on fish that had been exposed to elevated predation risk prior to exhaustive exercise. Here, we exercised individual schoolmaster snapper (Lutjanus apodus) for 0, 1, or 4 min via hand chases following exposure to conspecific chemical alarm cues or seawater controls. The snapper were then introduced into one end of a rectangular arena supplied with mangrove prop roots as a refuge at the opposite end. Snapper exposed to the seawater control treatment demonstrated graded responses in mean times to move one body length and latency to enter the refuge, with unchased fish taking the least time and fish chased for 4 mins taking the longest. Amongst the snapper pre-exposed to alarm cues, the graded response did not occur and mean responses did not differ between chase treatments. Consistent with increased antipredator vigilance, alarm cue-exposed snapper were more likely to subsequently exit the refuge and to do so more times than fish exposed to seawater controls, independent of chase time. These observations suggest that perception of elevated predation risk may induce a conditional response offseting the behavioural and cognitive constraints associated with physical exhaustion through an unknown physiological mechanism to prioritize immediate survival-oriented behaviours over recovery.
Collapse
Affiliation(s)
- Chris K Elvidge
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa ON K1S 5B6, Canada.
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa ON K1S 5B6, Canada
| |
Collapse
|
83
|
Monteforte S, Cattelan S, Morosinotto C, Pilastro A, Grapputo A. Maternal predator-exposure affects offspring size at birth but not telomere length in a live-bearing fish. Ecol Evol 2020; 10:2030-2039. [PMID: 32128135 PMCID: PMC7042736 DOI: 10.1002/ece3.6035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 01/01/2023] Open
Abstract
The perception of predation risk could affect prey phenotype both within and between generations (via parental effects). The response to predation risk could involve modifications in physiology, morphology, and behavior and can ultimately affect long-term fitness. Among the possible modifications mediated by the exposure to predation risk, telomere length could be a proxy for investigating the response to predation risk both within and between generations, as telomeres can be significantly affected by environmental stress. Maternal exposure to the perception of predation risk can affect a variety of offspring traits but the effect on offspring telomere length has never been experimentally tested. Using a live-bearing fish, the guppy (Poecilia reticulata), we tested if the perceived risk of predation could affect the telomere length of adult females directly and that of their offspring with a balanced experimental setup that allowed us to control for both maternal and paternal contribution. We exposed female guppies to the perception of predation risk during gestation using a combination of both visual and chemical cues and we then measured female telomere length after the exposure period. Maternal effects mediated by the exposure to predation risk were measured on offspring telomere length and body size at birth. Contrary to our predictions, we did not find a significant effect of predation-exposure neither on female nor on offspring telomere length, but females exposed to predation risk produced smaller offspring at birth. We discuss the possible explanations for our findings and advocate for further research on telomere dynamics in ectotherms.
Collapse
Affiliation(s)
| | | | - Chiara Morosinotto
- Department of BiologyUniversity of PadovaPadovaItaly
- Bioeconomy Research TeamNovia University of Applied SciencesEkenäsFinland
| | | | | |
Collapse
|
84
|
Ord J, Holmes KE, Holt WV, Fazeli A, Watt PJ. Premature birth stunts early growth and is a possible driver of stress-induced maternal effects in the guppy Poecilia reticulata. JOURNAL OF FISH BIOLOGY 2020; 96:506-515. [PMID: 31846081 DOI: 10.1111/jfb.14235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
We tested the effects of gestational stress, principally in the form of alarm cue extracted from the skin of conspecifics, on reproduction in female guppies (Poecilia reticulata) and the growth and behaviour of their offspring. Offspring from mothers exposed to alarm cue exhibited stunted growth in the first few days post-partum, which appeared to be mediated by shortening of the gestation period, the length of which directly correlated with growth rate within the first 6 days post-partum. Mature offspring did not differ in behaviour or stress responses compared with controls and so the effects of maternal predation stress did not appear to persist into adulthood. A different form of gestational stress, dietary restriction, did not significantly affect offspring growth, though brood size was reduced, suggesting that the effects of predation stress were not mediated by differences in resource demand or consumption.
Collapse
Affiliation(s)
- James Ord
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kelle E Holmes
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - William V Holt
- Academic Unit of Reproductive and Developmental Medicine, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Alireza Fazeli
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Academic Unit of Reproductive and Developmental Medicine, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Penelope J Watt
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
85
|
Florencio M, Burraco P, Rendón MÁ, Díaz-Paniagua C, Gomez-Mestre I. Opposite and synergistic physiological responses to water acidity and predator cues in spadefoot toad tadpoles. Comp Biochem Physiol A Mol Integr Physiol 2020; 242:110654. [PMID: 31926298 DOI: 10.1016/j.cbpa.2020.110654] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/19/2019] [Accepted: 01/06/2020] [Indexed: 12/13/2022]
Abstract
Organisms are exposed to multiple environmental factors simultaneously to which they often respond behaviorally, morphologically and/or physiologically. Amphibian larvae are quite plastic and efficiently adjust their phenotype and physiology to the reigning local conditions. Here we tested whether the combination of predator presence and low water pH induces alterations in the morphology and physiology of spadefoot toad tadpoles. We raised Pelobates cultripes tadpoles in the laboratory in water at either pH 4 or 7, and in the presence or absence of caged dragonfly nymphs, and determined their changes in shape through geometric morphometrics to assess whether predator recognition was impaired or not at low pH. We also measured levels of plasma corticosterone, activity of four antioxidant enzymes, as well as markers of oxidative damage and redox status. We found that tadpoles altered their body shape in response to predator cues even at low pH, indicating that predator recognition was not interfered by water acidity and developmental responses were robust even under abiotic stress. Water acidity was associated with increased corticosterone levels in tadpoles, whereas predator presence consistently reduced corticosterone levels. Predator presence was linked to reduced antioxidant enzyme activity, whereas the combination of both factors resulted in negative synergistic effects on lipid peroxidation and the antioxidant capacity of tadpoles. Here we show that tadpoles detect predators even at low pH but that the development of adaptive anti-predatory morphology can magnify physiological imbalances when other stressors co-occur. These results emphasize the need to understand how multiple environmental perturbations can affect animal homeostasis.
Collapse
Affiliation(s)
- Margarita Florencio
- Ecology, Evolution and Development Group, Estación Biológica de Doñana, CSIC, Seville, Spain; Dept. of Ecology, Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Burraco
- Ecology, Evolution and Development Group, Estación Biológica de Doñana, CSIC, Seville, Spain; Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Miguel Ángel Rendón
- Dept. of Wetland Ecology, Estación Biológica de Doñana, CSIC, Seville, Spain
| | - Carmen Díaz-Paniagua
- Ecology, Evolution and Development Group, Estación Biológica de Doñana, CSIC, Seville, Spain
| | - Ivan Gomez-Mestre
- Ecology, Evolution and Development Group, Estación Biológica de Doñana, CSIC, Seville, Spain.
| |
Collapse
|
86
|
Dulude‐de Broin F, Hamel S, Mastromonaco GF, Côté SD. Predation risk and mountain goat reproduction: Evidence for stress‐induced breeding suppression in a wild ungulate. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13514] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Frédéric Dulude‐de Broin
- Département de biologie Université Laval Québec City QC Canada
- Centre d'études nordiquesQuébec City QC Canada
| | - Sandra Hamel
- Département de biologie Université Laval Québec City QC Canada
- Department of Arctic and Marine Biology Faculty of Biosciences, Fisheries, and Economics UiT The Arctic University of Norway Tromsø Norway
| | | | - Steeve D. Côté
- Département de biologie Université Laval Québec City QC Canada
- Centre d'études nordiquesQuébec City QC Canada
| |
Collapse
|
87
|
Jermacz Ł, Nowakowska A, Kletkiewicz H, Kobak J. Experimental evidence for the adaptive response of aquatic invertebrates to chronic predation risk. Oecologia 2020; 192:341-350. [PMID: 31919694 PMCID: PMC7002334 DOI: 10.1007/s00442-020-04594-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/02/2020] [Indexed: 12/29/2022]
Abstract
As acute stress induced by predation risk can generate significant oxidative damage, prey organisms are forced to balance their defence reaction and the cost of activating the cellular defence system. Stress tolerance differs significantly among species; therefore predator pressure indirectly shapes the community structure. To test adaptation abilities of amphipod crustaceans (Dikerogammarus villosus and Gammarus jazdzewskii) we exposed them to acute (35 min.) and chronic (1 or 7 days) predation risk (the Eurasian perch). We measured respiration (related to metabolic rate), cellular defence systems (antioxidant enzyme (catalase) activity and heat shock protein (Hsp70) concentration), and the level of oxidative damage (thiobarbituric acid reactive substances (TBARS) concentration). Both amphipods increased their respiration rate in the presence of predation cues, irrespective of the duration of their pre-exposure to danger. This increase in D. villosus was initiated more quickly (immediately vs. after 10 min. of the test) and lasted for a longer time (20 vs. 10 min.) than in G. jazdzewskii. However, only G. jazdzewskii after a short exposure to predation risk exhibited an increase in its catalase activity, Hsp70 concentration and oxidative damage. No changes in these parameters were exhibited by D. villosus or after a chronic exposure of G. jazdzewskii to predation cues. Our results show that prey organisms are able to reconfigure their physiology to maintain increased metabolic rate under prolonged predator pressure and, at the same time, reduce oxidative damage as well as costs related to anti-oxidant defence.
Collapse
Affiliation(s)
- Łukasz Jermacz
- Department of Invertebrate Zoology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland. .,Department of Ecology and Biogeography, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland.
| | - Anna Nowakowska
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| | - Hanna Kletkiewicz
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| | - Jarosław Kobak
- Department of Invertebrate Zoology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
88
|
|
89
|
Ma Y, Bao H, Bencini R, Raubenheimer D, Dou H, Liu H, Wang S, Jiang G. Macro-Nutritional Adaptive Strategies of Moose ( Alces alces) Related to Population Density. Animals (Basel) 2019; 10:ani10010073. [PMID: 31906149 PMCID: PMC7022907 DOI: 10.3390/ani10010073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/13/2019] [Accepted: 12/21/2019] [Indexed: 11/16/2022] Open
Abstract
The distribution area of moose in China has been shrinking back toward the north and northeast because of climate change and human disturbance, and the population number has been declining. Between 2011 and 2015, we studied moose at six sites in the northeast of China during the snowy seasons. We collected fecal samples and plant samples that were used to estimate population densities for moose, as well as their macro-nutrient selection. Out of a total of 257 fecal samples collected at six sites, we identified a total of 120 individual moose (57 females and 63 males). The population density (moose/km2 ± SE) was highest at Hanma with 0.305 ± 0.064 moose/km2 and lowest at Meitian with only 0.028 ± 0.013 moose/km2. Forage availability was different among sites, with the lowest availability at Mohe (58.17 number/20 m2) and highest was Zhanhe (250.44 number/20 m2). Moose at Zhanhe, Hanma, and Nanwenghe had a balanced diet with higher N:C (1:7), while at Meitian, Shuanghe and Mohe the N:C was 1:8. Our results indicate that the southern areas had low forage quality and quantity and this may be the reason for the distribution of the population of moose shrinking northward.
Collapse
Affiliation(s)
- Yingjie Ma
- Feline Research Center of Chinese State Forestry Administration, College of Wildlife and Protected Areas, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; (Y.M.); (H.B.); (S.W.)
- Key Lab of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxi Road, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Bao
- Feline Research Center of Chinese State Forestry Administration, College of Wildlife and Protected Areas, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; (Y.M.); (H.B.); (S.W.)
| | - Roberta Bencini
- School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth 6009, Australia;
| | - David Raubenheimer
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Hongliang Dou
- College of Animal Science and Technology, Jinlin Agricultural University, Changchun 130118, China;
| | - Hui Liu
- Institute of Tropical Agriculture and Forestry, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China;
| | - Sirui Wang
- Feline Research Center of Chinese State Forestry Administration, College of Wildlife and Protected Areas, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; (Y.M.); (H.B.); (S.W.)
| | - Guangshun Jiang
- Feline Research Center of Chinese State Forestry Administration, College of Wildlife and Protected Areas, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; (Y.M.); (H.B.); (S.W.)
- Correspondence:
| |
Collapse
|
90
|
Lawrence MJ, Eliason EJ, Zolderdo AJ, Lapointe D, Best C, Gilmour KM, Cooke SJ. Cortisol modulates metabolism and energy mobilization in wild-caught pumpkinseed (Lepomis gibbosus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1813-1828. [PMID: 31300974 DOI: 10.1007/s10695-019-00680-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Acute elevation of cortisol via activation of the hypothalamic-pituitary-interrenal (HPI) axis aids the fish in dealing with a stressor. However, chronic elevation of cortisol has detrimental effects and has been studied extensively in lab settings. However, data pertaining to wild teleosts are lacking. Here, we characterized the metabolic consequences of prolonged cortisol elevation (96 h) in wild-caught pumpkinseed (Lepomis gibbosus). Pumpkinseed were implanted with cocoa butter alone (sham) or containing cortisol (25 mg kg-1 body weight), and at 24, 48, 72, and 96 h, tissue samples were collected, whole-body ammonia excretion was determined, and whole-organism metabolism was assessed using intermittent flow respirometry. Cortisol-treated pumpkinseed exhibited the highest plasma cortisol concentration at 24 h post-implantation, with levels decreasing over the subsequent time points although remaining higher than in sham-treated fish. Cortisol-treated fish exhibited higher standard and maximal metabolic rates than sham-treated fish, but the effect of cortisol treatment on aerobic scope was negligible. Indices of energy synthesis/mobilization, including blood glucose concentrations, hepatosomatic index, hepatic glycogen concentrations, and ammonia excretion rates, were higher in cortisol-treated fish compared with controls. Our work suggests that although aerobic scope was not diminished by prolonged elevation of cortisol levels, higher metabolic expenditures may be of detriment to the animal's performance in the longer term.
Collapse
Affiliation(s)
- Michael J Lawrence
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada.
| | - Erika J Eliason
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93117, USA
| | - Aaron J Zolderdo
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
- Queen's University Biological Station, Queen's University, Elgin, ON, K0G 1E0, Canada
| | - Dominique Lapointe
- St. Lawrence River Institute of Environmental Sciences, Cornwall, ON, K6H 4Z1, Canada
| | - Carol Best
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Kathleen M Gilmour
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| |
Collapse
|
91
|
O’Dwyer K, Dargent F, Forbes MR, Koprivnikar J. Parasite infection leads to widespread glucocorticoid hormone increases in vertebrate hosts: A meta‐analysis. J Anim Ecol 2019; 89:519-529. [DOI: 10.1111/1365-2656.13123] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/18/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Katie O’Dwyer
- Department of Chemistry and Biology Ryerson University Toronto ON Canada
| | - Felipe Dargent
- Department of Biology Carleton University Ottawa ON Canada
| | - Mark R. Forbes
- Department of Biology Carleton University Ottawa ON Canada
| | - Janet Koprivnikar
- Department of Chemistry and Biology Ryerson University Toronto ON Canada
| |
Collapse
|
92
|
Polverino G, Karakaya M, Spinello C, Soman VR, Porfiri M. Behavioural and life-history responses of mosquitofish to biologically inspired and interactive robotic predators. J R Soc Interface 2019; 16:20190359. [PMID: 31506048 PMCID: PMC6769303 DOI: 10.1098/rsif.2019.0359] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/07/2019] [Indexed: 12/24/2022] Open
Abstract
Invasive alien species threaten biodiversity worldwide and contribute to biotic homogenization, especially in freshwaters, where the ability of native animals to disperse is limited. Robotics may offer a promising tool to address this compelling problem, but whether and how invasive species can be negatively affected by robotic stimuli is an open question. Here, we explore the possibility of modulating behavioural and life-history responses of mosquitofish by varying the degree of biomimicry of a robotic predator, whose appearance and locomotion are inspired by natural mosquitofish predators. Our results support the prediction that real-time interactions at varying swimming speeds evoke a more robust antipredator response in mosquitofish than simpler movement patterns by the robot, especially in individuals with better body conditions that are less prone to take risks. Through an information-theoretic analysis of animal-robot interactions, we offer evidence in favour of a causal link between the motion of the robotic predator and a fish antipredator response. Remarkably, we observe that even a brief exposure to the robotic predator of 15 min per week is sufficient to erode energy reserves and compromise the body condition of mosquitofish, opening the door for future endeavours to control mosquitofish in the wild.
Collapse
Affiliation(s)
- Giovanni Polverino
- Centre for Evolutionary Biology, University of Western Australia, Perth, Australia
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Mert Karakaya
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, USA
| | - Chiara Spinello
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, USA
| | - Vrishin R. Soman
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, USA
| | - Maurizio Porfiri
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, USA
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, USA
| |
Collapse
|
93
|
Boudreau MR, Seguin JL, Boonstra R, Palme R, Boutin S, Krebs CJ, Murray DL. Experimental increase in predation risk causes a cascading stress response in free-ranging snowshoe hares. Oecologia 2019; 191:311-323. [PMID: 31535254 DOI: 10.1007/s00442-019-04500-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 09/04/2019] [Indexed: 11/26/2022]
Abstract
Extensive research confirms that environmental stressors like predation risk can profoundly affect animal condition and physiology. However, there is a lack of experimental research assessing the suite of physiological responses to risk that may arise under realistic field conditions, leaving a fragmented picture of risk-related physiological change and potential downstream consequences on individuals. We increased predation risk in free-ranging snowshoe hares (Lepus americanus) during two consecutive summers by simulating natural chases using a model predator and monitored hares intensively via radio-telemetry and physiological assays, including measures designed to assess changes in stress physiology and overall condition. Compared to controls, risk-augmented hares had 25.8% higher free plasma cortisol, 15.9% lower cortisol-binding capacity, a greater neutrophil:lymphocyte skew, and a 10.4% increase in glucose. Despite these changes, intra-annual changes in two distinct condition indices, were unaffected by risk exposure. We infer risk-augmented hares compensated for changes in their stress physiology through either compensatory foraging and/or metabolic changes, which allowed them to have comparable condition to controls. Although differences between controls and risk-augmented hares were consistent each year, both groups had heightened stress measures during the second summer, likely reflecting an increase in natural stressors (i.e., predators) in the environment. We show that increased predation risk in free-ranging animals can profoundly alter stress physiology and that compensatory responses may contribute to limiting effects of such changes on condition. Ultimately, our results also highlight the importance of biologically relevant experimental risk manipulations in the wild as a means of assessing physiological responses to natural stressors.
Collapse
Affiliation(s)
- Melanie R Boudreau
- Environmental and Life Sciences, Trent University, Peterborough, ON, K9J 0G2, Canada.
| | - Jacob L Seguin
- Environmental and Life Sciences, Trent University, Peterborough, ON, K9J 0G2, Canada
| | - Rudy Boonstra
- Center for Neurobiology of Stress, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Stan Boutin
- Faculty of Science, 1-001 CCIS, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Charles J Krebs
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Dennis L Murray
- Environmental and Life Sciences, Trent University, Peterborough, ON, K9J 0G2, Canada
| |
Collapse
|
94
|
Van Dievel M, Tüzün N, Stoks R. Latitude-associated evolution and drivers of thermal response curves in body stoichiometry. J Anim Ecol 2019; 88:1961-1972. [PMID: 31408526 DOI: 10.1111/1365-2656.13088] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/10/2019] [Accepted: 07/21/2019] [Indexed: 12/26/2022]
Abstract
Trait-based studies are needed to understand the plastic and genetic responses of organisms to warming. A neglected organismal trait is elemental composition, despite its potential to cascade into effects on the ecosystem level. Warming is predicted to shape elemental composition through shifts in storage molecules associated with responses in growth, body size and metabolic rate. Our goals were to quantify thermal response patterns in body composition and to obtain insights into their underlying drivers and their evolution across latitudes. We reconstructed the thermal response curves (TRCs) for body elemental composition [C (carbon), N (nitrogen) and the C:N ratio] of damselfly larvae from high- and low-latitude populations. Additionally, we quantified the TRCs for survival, growth and development rates and body size to assess local thermal adaptation, as well as the TRCs for metabolic rate and key macromolecules (proteins, fat, sugars and cuticular melanin and chitin) as these may underlie the elemental TRCs. All larvae died at 36°C. Up to 32°C, low-latitude larvae increased growth and development rates and did not suffer increased mortality. Instead, growth and development rates of high-latitude larvae were lower and levelled off at 24°C, and mortality increased at 32°C. This latitude-associated thermal adaptation pattern matched the 'hotter-is-better' hypothesis. With increasing temperatures, low-latitude larvae decreased C:N, while high-latitude larvae increased C:N. These patterns were driven by associated changes in N contents, while C contents did not respond to temperature. Consistent with the temperature-size rule and the thermal melanism hypothesis, body size and melanin levels decreased with warming. While all traits and associated macromolecules (except for metabolic rate that showed thermal compensation) assumed to underlie thermal responses in elemental composition showed thermal plasticity, these were largely independent and none could explain the stoichiometric TRCs. Our results highlight that thermal responses in elemental composition cannot be explained by traditionally assumed drivers, asking for a broader perspective including the thermal dependence of elemental fluxes. Another key implication is that thermal evolution can reverse the plastic stoichiometric thermal responses and hence reverse how warming may shape food web dynamics through changes in body composition at different latitudes.
Collapse
Affiliation(s)
- Marie Van Dievel
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Nedim Tüzün
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| |
Collapse
|
95
|
Dulude-de Broin F, Côté SD, Whiteside DP, Mastromonaco GF. Faecal metabolites and hair cortisol as biological markers of HPA-axis activity in the Rocky mountain goat. Gen Comp Endocrinol 2019; 280:147-157. [PMID: 31009603 DOI: 10.1016/j.ygcen.2019.04.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/04/2019] [Accepted: 04/19/2019] [Indexed: 11/27/2022]
Abstract
Monitoring glucocorticoids in faeces and hair is increasingly used in ecological studies and provides a powerful and minimally intrusive mean to identify physiological challenges faced by wild animals. Using a cortisol and a corticosterone immunoassays, we conducted an adrenocorticotropic (ACTH) challenge with five weekly repeated injections to validate the use of faecal glucocorticoid metabolites and hair cortisol concentration as biological markers of the HPA-axis activity in captive mountain goats (Oreamnos americanus). We also investigated the effect of endogenous (age, sex, reproductive status) and methodological (faecal sample collection date, freezing delay and hair type) variables on cortisol values using faecal and hair samples collected from marked wild mountain goats during a long-term study. The cortisol enzyme immunoassay was reliable for mountain goat faeces and hair, and was sensitive enough to detect a clear rise in glucocorticoid concentration following ACTH injections for both matrices. Age and sex had no detectable effect on faecal glucocorticoid metabolites, but hair cortisol concentration was higher in kids and yearlings than in older goats, and lower in adult males compared to adult females. Reproductive status had no detectable effect on both faecal and hair measurements. Faecal metabolite concentrations increased with sample collection date in late spring until mid-summer and decreased afterward until early fall. Guard hair had nearly twice as much cortisol per gram as undercoat hair. Prolonged delay to freezing reduced the concentration of faecal glucocorticoid metabolites, but degradation seemed limited when samples were exposed to wind and sun or when ambient temperature was low. We conclude that faeces and hair can be used as valid biomarkers of the HPA-axis activity in mountain goat provided that confounding variables are taken into account when interpreting measurements.
Collapse
Affiliation(s)
- Frédéric Dulude-de Broin
- Département de biologie, and Centre d'études Nordiques, Université Laval, Québec G1V 0A6, Canada.
| | - Steeve D Côté
- Département de biologie, and Centre d'études Nordiques, Université Laval, Québec G1V 0A6, Canada
| | - Douglas P Whiteside
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Alberta T2N 4Z6, Canada; Calgary Zoo, Alberta T2E 7V6, Canada
| | - Gabriela F Mastromonaco
- Reproductive Physiology, Toronto Zoo, 361A Old Finch Avenue, Toronto, Ontario, M1B 5K7, Canada
| |
Collapse
|
96
|
Gallagher AJ, Lawrence MJ, Jain-Schlaepfer SMR, Gilmour KM, Wilson ADM, Cooke SJ. Effects of predator exposure on baseline and stress-induced glucocorticoid hormone concentrations in pumpkinseed Lepomis gibbosus. JOURNAL OF FISH BIOLOGY 2019; 95:969-973. [PMID: 31254399 DOI: 10.1111/jfb.14084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
We compared baseline and maximal cortisol concentrations between predator exposure and prey blood samples in pumpkinseed Lepomis gibbosus, captured using a standardised fishing event underneath osprey Pandion haliaetus nests and away from osprey nests. We did not detect differences in cortisol or glucose between sites. These findings suggest that predictable sources of predation risk may not confer stress-related costs in teleosts.
Collapse
Affiliation(s)
- Austin J Gallagher
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa, Canada
- Beneath the Waves, Inc., Herndon, Virginia, USA
| | - Michael J Lawrence
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa, Canada
| | - Sofia M R Jain-Schlaepfer
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa, Canada
| | | | - Alexander D M Wilson
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa, Canada
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa, Canada
| |
Collapse
|
97
|
Van Dievel M, Janssens L, Stoks R. Additive bioenergetic responses to a pesticide and predation risk in an aquatic insect. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 212:205-213. [PMID: 31132738 DOI: 10.1016/j.aquatox.2019.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Ignoring natural stressors such as predation risk may contribute to the failure of ecological risk assessment of pesticides to protect freshwater biodiversity. To better understand combined effects of multiple stressors, bioenergetic responses are important as these inform about the balance between energy input and consumption, and provide a unifying mechanism to integrate the impact of multiple stressors with different modes of action. We studied in Enallagma cyathigerum damselfly larvae the single and combined effects of exposure to the pesticide chlorpyrifos and predation risk on life history (survival and growth rate) and bioenergetic response variables at the organismal level (assimilation and conversion efficiency) and the cellular level (cellular energy allocation CEA, energy storage Ea, and energy consumption Ec). Chlorpyrifos exposure almost halved the survival of the damselfly larvae, while predation risk had no effect on survival. Both exposure to the pesticide and to predation risk reduced larval growth rates. This was caused by a reduced conversion efficiency under chlorpyrifos exposure, and by a reduced assimilation efficiency under predation risk. Both chlorpyrifos and predation risk reduced the CEA because of a decreased Ea, and for chlorpyrifos also an increased Ec. The lower Ea was driven by reductions in the fat and glycogen contents. Effects of the pesticide and predation risk were consistently additive and for most variables the strongest response was detected when both stressors were present. The absence of any synergisms may be explained by the high mortality and hypometabolism caused by the pesticide. Our results indicate that CEA can be a sensitive biomarker to evaluate effects of not only contaminants but also natural stressors, such as predation risk, and their combined impact on organisms.
Collapse
Affiliation(s)
- Marie Van Dievel
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium.
| | - Lizanne Janssens
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| |
Collapse
|
98
|
Warne RW, Baer SG, Boyles JG. Community Physiological Ecology. Trends Ecol Evol 2019; 34:510-518. [DOI: 10.1016/j.tree.2019.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 02/06/2023]
|
99
|
Burkepile DE, Thurber RV. The Long Arm of Species Loss: How Will Defaunation Disrupt Ecosystems Down to the Microbial Scale? Bioscience 2019. [DOI: 10.1093/biosci/biz047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Deron E Burkepile
- Department of Ecology, Evolution and Marine Biology, and with the Marine Science Institute, both at the University of California, in Santa Barbara
| | | |
Collapse
|
100
|
Xu JJ, Fu SJ, Fu C. Physiological and behavioral stress responses to predators are altered by prior predator experience in juvenile qingbo ( Spinibarbus sinensis). Biol Open 2019; 8:bio.041012. [PMID: 31097443 PMCID: PMC6550089 DOI: 10.1242/bio.041012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
All vertebrates exhibit physiological responses to predator stress and these responses are the basis of appropriate behavioral adaptation. We aimed to identify the physiological and behavioral responses of juvenile qingbo (Spinibarbus sinensis) to its natural predator, the southern catfish (Silurus meridionalis) and to test whether these responses could be altered by prior predator experience. We measured the routine metabolic rate (RMR), cortisol levels and spontaneous behavior of both predator-naive and predator-experienced qingbo under predator-absent, predator-present and non-predator-present (Hemibarbus maculatus) conditions. Predator-naive qingbo showed a typical stress response in the form of increased RMR and cortisol when exposed to predators. Spontaneous activity showed no difference between prior-experience groups or among stimulus conditions when tested alone; however, when tested with a companion, predator-naive qingbo showed increased activity and decreased distance to the stimulus arena under the predator-present condition than they did under the predator-absent condition. Both predator-naive and predator-experienced qingbo showed different physiological and behavioral responses between predatory and non-predatory fish, which suggested that predator-naive qingbo can instinctually discriminate between natural predators and non-predators. Predator-naive qingbo increase their inspection behavior when exposed to a predator compared with the predator-absent condition only when tested with a companion, which is possibly due to decreased predation risk and increased boldness. Summary: A predator-naive carp can recognize its natural predator, and this recognition can be intensified by prior experience with a predator or the presence of a conspecific.
Collapse
Affiliation(s)
- Jia-Jia Xu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, 401331, China
| | - Shi-Jian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, 401331, China
| | - Cheng Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, 401331, China
| |
Collapse
|