51
|
Zhuang X, Zhao B, Liu S, Song F, Cui F, Liu Z, Li Y. Noncovalent Interactions between Superoxide Dismutase and Flavonoids Studied by Native Mass Spectrometry Combined with Molecular Simulations. Anal Chem 2016; 88:11720-11726. [PMID: 27760293 DOI: 10.1021/acs.analchem.6b03359] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Misfolding and aggregation of Cu, Zn superoxide dismutase (SOD1) is implicated in the etiology of amyotrophic lateral sclerosis (ALS). The use of small molecules may stabilize the spatial structure of SOD1 dimer, thus, preventing its dissociation and aggregation. In this study, "native" mass spectrometry (MS) was used to study the noncovalent interactions between SOD1 and flavonoid compounds. MS experiments were performed on a quadruple time-of-flight (Q-ToF) mass spectrometer with an electrospray ionization (ESI) source and T-wave ion mobility. ESI-MS was used to detect the SOD1-flavonoid complexes and compare their relative binding strengths. The complement of ion mobility separation allowed comparison in the binding affinities between flavonoid isomers and provided information on the conformational changes. Molecular docking together with molecular dynamics simulations and MM/PBSA methods were applied to gain insights into the binding modes and free energies of SOD1-flavonoid complexes at the molecule level. Among all the flavonoids investigated, flavonoid glycosides preferentially bind to SOD1 than their aglycone counterparts. Naringin, one of the compounds that has the strongest binding affinity to SOD1, was subjected to further characterization. Experiment results show that the binding of naringin can stabilize SOD1 dimer and inhibit the aggregation of SOD1. Molecular simulation results suggest that naringin could reduce the dissociation of SOD1 dimers through direct interaction with the dimer interface. This developed analytical strategy could also be applied to study the interactions between SOD1 and other drug-like molecules, which may have the effect to reduce the aggregation.
Collapse
Affiliation(s)
- Xiaoyu Zhuang
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Bing Zhao
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | | | | | | | | | | |
Collapse
|
52
|
Srinivasan E, Rajasekaran R. Computational simulation analysis on human SOD1 mutant (H80R) exposes the structural destabilization and the deviation of Zn binding that directs familial amyotrophic lateral sclerosis. J Biomol Struct Dyn 2016; 35:2645-2653. [DOI: 10.1080/07391102.2016.1227723] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- E. Srinivasan
- Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - R. Rajasekaran
- Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
53
|
Sirangelo I, Vella FM, Irace G, Manco G, Iannuzzi C. Glycation in Demetalated Superoxide Dismutase 1 Prevents Amyloid Aggregation and Produces Cytotoxic Ages Adducts. Front Mol Biosci 2016; 3:55. [PMID: 27695694 PMCID: PMC5026054 DOI: 10.3389/fmolb.2016.00055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/31/2016] [Indexed: 01/18/2023] Open
Abstract
Superoxide dismutase 1 (SOD1) has been implicated with familial amyotrophic lateral sclerosis (fALS) through accumulation of protein amyloid aggregates in motor neurons of patients. Amyloid aggregates and protein inclusions are a common pathological feature of many neurological disorders in which protein aggregation seems to be directly related to neurotoxicity. Although, extensive studies performed on the aggregation process of several amyloidogenic proteins in vitro allowed the identification of many physiological factors involved, the molecular mechanisms underlying the formation of amyloid aggregates in vivo and in pathological conditions are still poorly understood. Post-translational modifications are known to affect protein structure and function and, recently, much attention has been devoted to the role played by non-enzymatic glycation in stimulating amyloid aggregation and cellular toxicity. In particular, glycation seems to have a determining role both in sporadic and familial forms of ALS and SOD1 has been shown to be glycated in vivo The aim of this study was to investigate the role of glycation on the amyloid aggregation process of both wild-type SOD1 and its ALS-related mutant G93A. To this aim, the glycation kinetics of both native and demetalated SOD have been followed using two different glycating agents, i.e., D-ribose and methylglyoxal. The effect of glycation on the structure and the amyloid aggregation propensity of native and ApoSOD has been also investigated using a combination of biophysical and biochemical techniques. In addition, the effect of SOD glycated species on cellular toxicity and reactive oxygen species (ROS) production has been evaluated in different cellular models. The results provided by this study contribute to clarify the role of glycation in amyloid aggregation and suggest a direct implication of glycation in the pathology of fALS.
Collapse
Affiliation(s)
- Ivana Sirangelo
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples Naples, Italy
| | - Filomena M Vella
- Institute of Agro-environmental and Forest Biology, Italian National Research Council Naples, Italy
| | - Gaetano Irace
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples Naples, Italy
| | - Giuseppe Manco
- Institute of Protein Biochemistry, Italian National Research Council Naples, Italy
| | - Clara Iannuzzi
- Department of Biochemistry, Biophysics and General Pathology, Second University of NaplesNaples, Italy; Institute of Protein Biochemistry, Italian National Research CouncilNaples, Italy
| |
Collapse
|
54
|
Álvarez-Zaldiernas C, Lu J, Zheng Y, Yang H, Blasi J, Solsona C, Holmgren A. Cellular Redox Systems Impact the Aggregation of Cu,Zn Superoxide Dismutase Linked to Familial Amyotrophic Lateral Sclerosis. J Biol Chem 2016; 291:17197-208. [PMID: 27261461 DOI: 10.1074/jbc.m115.708230] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Indexed: 12/11/2022] Open
Abstract
Protein misfolding is implicated in neurodegenerative diseases such as ALS, where mutations of superoxide dismutase 1 (SOD1) account for about 20% of the inherited mutations. Human SOD1 (hSOD1) contains four cysteines, including Cys(57) and Cys(146), which have been linked to protein stability and folding via forming a disulfide bond, and Cys(6) and Cys(111) as free thiols. But the roles of the cellular oxidation-reduction (redox) environment in SOD1 folding and aggregation are not well understood. Here we explore the effects of cellular redox systems on the aggregation of hSOD1 proteins. We found that the known hSOD1 mutations G93A and A4V increased the capability of the thioredoxin and glutaredoxin systems to reduce hSOD1 compared with wild-type hSOD1. Treatment with inhibitors of these redox systems resulted in an increase of hSOD1 aggregates in the cytoplasm of cells transfected with mutants but not in cells transfected with wild-type hSOD1 or those containing a secondary C111G mutation. This aggregation may be coupled to changes in the redox state of the G93A and A4V mutants upon mild oxidative stress. These results strongly suggest that the thioredoxin and glutaredoxin systems are the key regulators for hSOD1 aggregation and may play critical roles in the pathogenesis of ALS.
Collapse
Affiliation(s)
- Cristina Álvarez-Zaldiernas
- From the Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden, the Department of Pathology and Experimental Therapeutics, Faculty of Medicine, Campus Bellvitge, University of Barcelona, Feixa Llarga s/n. Hospitalet de Llobregat, 08907 Barcelona, Spain, and the Bellvitge Biomedical Research Institute, Gran Via de l'Hospitalet, 199-203, L'Hospitalet de Llobregat, Barcelona, 08908 Barcelona, Spain
| | - Jun Lu
- From the Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden,
| | - Yujuan Zheng
- From the Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Hongqian Yang
- From the Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Juan Blasi
- the Department of Pathology and Experimental Therapeutics, Faculty of Medicine, Campus Bellvitge, University of Barcelona, Feixa Llarga s/n. Hospitalet de Llobregat, 08907 Barcelona, Spain, and the Bellvitge Biomedical Research Institute, Gran Via de l'Hospitalet, 199-203, L'Hospitalet de Llobregat, Barcelona, 08908 Barcelona, Spain
| | - Carles Solsona
- the Department of Pathology and Experimental Therapeutics, Faculty of Medicine, Campus Bellvitge, University of Barcelona, Feixa Llarga s/n. Hospitalet de Llobregat, 08907 Barcelona, Spain, and the Bellvitge Biomedical Research Institute, Gran Via de l'Hospitalet, 199-203, L'Hospitalet de Llobregat, Barcelona, 08908 Barcelona, Spain
| | - Arne Holmgren
- From the Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden,
| |
Collapse
|
55
|
Ruegsegger C, Saxena S. Proteostasis impairment in ALS. Brain Res 2016; 1648:571-579. [PMID: 27033833 DOI: 10.1016/j.brainres.2016.03.032] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/20/2016] [Accepted: 03/21/2016] [Indexed: 12/13/2022]
Abstract
In physiological conditions the maintenance of the cellular proteome is a prerequisite for optimal cell functioning and cell survival. Additionally, cells need to constantly sense and adapt to their changing environment and associated stressors. Cells achieve this via a set of molecular chaperones, protein clearance pathways as well as stress-associated signaling networks which work together to prevent protein misfolding, its aggregation and accumulation in subcellular compartments. These processes together form the proteostasis network which helps in maintaining cellular proteostasis. Imbalance or impairment in this processes is directly linked to ageing associated disorders such as diabetes, cancer, stroke, metabolic disorders, pulmonary fibrosis, inflammation and neurodegenerative diseases. In this review, we provide insights into the proteostasis process and how its failure governs neurodegenerative disorders with a special focus on Amyotrophic lateral sclerosis (ALS). This article is part of a Special Issue entitled SI:ER stress.
Collapse
Affiliation(s)
- Céline Ruegsegger
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Smita Saxena
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland.
| |
Collapse
|
56
|
Shi Y, Acerson MJ, Shuford KL, Shaw BF. Voltage-Induced Misfolding of Zinc-Replete ALS Mutant Superoxide Dismutase-1. ACS Chem Neurosci 2015. [PMID: 26207449 DOI: 10.1021/acschemneuro.5b00146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The monomerization of Cu, Zn superoxide dismutase (SOD1) is an early step along pathways of misfolding linked to amyotrophic lateral sclerosis (ALS). Monomerization requires the reversal of two post-translational modifications that are thermodynamically favorable: (i) dissociation of active-site metal ions and (ii) reduction of intramolecular disulfide bonds. This study found, using amide hydrogen/deuterium (H/D) exchange, capillary electrophoresis, and lysine-acetyl protein charge ladders, that ALS-linked A4V SOD1 rapidly monomerizes and partially unfolds in an external electric field (of physiological strength), without loss of metal ions, exposure to disulfide-reducing agents, or Joule heating. Voltage-induced monomerization was not observed for metal-free A4V SOD1, metal-free WT SOD1, or metal-loaded WT SOD1. Computational modeling suggested a mechanism for this counterintuitive effect: subunit macrodipoles of dimeric SOD1 are antiparallel and amplified 2-fold by metal coordination, which increases torque at the dimer interface as subunits rotate to align with the electric field.
Collapse
Affiliation(s)
- Yunhua Shi
- Department
of Chemistry and
Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Mark J. Acerson
- Department
of Chemistry and
Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Kevin L. Shuford
- Department
of Chemistry and
Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Bryan F. Shaw
- Department
of Chemistry and
Biochemistry, Baylor University, Waco, Texas 76706, United States
| |
Collapse
|
57
|
Chen Y, Liu H, Guan Y, Wang Q, Zhou F, Jie L, Ju J, Pu L, Du H, Wang X. The altered autophagy mediated by TFEB in animal and cell models of amyotrophic lateral sclerosis. Am J Transl Res 2015; 7:1574-87. [PMID: 26550457 PMCID: PMC4626419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/21/2015] [Indexed: 06/05/2023]
Abstract
Autophagy is an intracellular degradation process that clears away aggregated proteins or aged and damaged organelles. Abnormalities in autophagy result in defects in clearance of these misfolded and aggregate proteins, which have been associated with neurodegenerative disorders. A key neuropathological hallmark of amyotrophic lateral sclerosis (ALS) that contributes to the progressive loss of motor neurons is abnormal protein aggregation of mutant Cu/Zn superoxide dismutase1 (SOD1). TFEB is a recently described gene that regulates autophagy. Several studies have reported that autophagy is altered in ALS, but little is known about the role and mechanisms of TFEB-mediated autophagy during the progression of ALS. In this study, altered expression of TFEB and Beclin-1 were detected in the spinal cords of ALS transgenic mice at different stages and in an NSC-34 cell model with the SOD1-G93A mutation using RT-PCR, western blot, and immunohistochemistry. The majority of cells positive for TFEB and Beclin-1 are β-tubulin III-labeled neurons, especially in the anterior horn of the gray matter. Overexpression of TFEB in NSC-34 cells with the SOD1-G93A mutation increased the mRNA and protein levels of Beclin-1, accompanied by increased levels of LC3-II protein. MTS assay revealed that TFEB overexpression increased proliferation and survival of NSC-34 cells with the SOD1-G93A mutation. Our findings suggest that TFEB promotes autophagy by enhancing the expression of Beclin-1. The altered autophagy mediated by TFEB is a key element in the pathogenesis of ALS, making TFEB a very promising target for the development of novel drugs and new gene therapeutics for ALS.
Collapse
Affiliation(s)
- Yanchun Chen
- Department of Histology and Embryology, Weifang Medical UniversityWeifang, Shandong, PR China
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Huancai Liu
- Department of Orthopedic Surgery, Clinical College, Weifang Medical UniversityWeifang, Shandong, PR China
| | - Yingjun Guan
- Department of Histology and Embryology, Weifang Medical UniversityWeifang, Shandong, PR China
| | - Qiaozhen Wang
- Department of Human Anatomy, Weifang Medical UniversityWeifang, Shandong, PR China
| | - Fenghua Zhou
- Department of Pathology, Weifang Medical UniversityWeifang, Shandong, PR China
| | - Linlin Jie
- Department of Histology and Embryology, Weifang Medical UniversityWeifang, Shandong, PR China
| | - Jie Ju
- Department of Histology and Embryology, Weifang Medical UniversityWeifang, Shandong, PR China
| | - Leidong Pu
- Department of Histology and Embryology, Weifang Medical UniversityWeifang, Shandong, PR China
| | - Hongmei Du
- Department of Histology and Embryology, Weifang Medical UniversityWeifang, Shandong, PR China
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
58
|
Nagano S, Takahashi Y, Yamamoto K, Masutani H, Fujiwara N, Urushitani M, Araki T. A cysteine residue affects the conformational state and neuronal toxicity of mutant SOD1 in mice: relevance to the pathogenesis of ALS. Hum Mol Genet 2015; 24:3427-39. [DOI: 10.1093/hmg/ddv093] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/09/2015] [Indexed: 12/11/2022] Open
|
59
|
Patel P, Julien JP, Kriz J. Early-stage treatment with Withaferin A reduces levels of misfolded superoxide dismutase 1 and extends lifespan in a mouse model of amyotrophic lateral sclerosis. Neurotherapeutics 2015; 12:217-33. [PMID: 25404049 PMCID: PMC4322065 DOI: 10.1007/s13311-014-0311-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Approximately 20% of cases of familial amyotrophic lateral sclerosis (ALS) are caused by mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1). Recent studies have shown that Withaferin A (WA), an inhibitor of nuclear factor-kappa B activity, was efficient in reducing disease phenotype in a TAR DNA binding protein 43 transgenic mouse model of ALS. These findings led us to test WA in mice from 2 transgenic lines expressing different ALS-linked SOD1 mutations, SOD1(G93A) and SOD1(G37R). Intraperitoneal administration of WA at a dosage of 4 mg/kg of body weight was initiated from postnatal day 40 until end stage in SOD1(G93A) mice, and from 9 months until end stage in SOD1(G37R) mice. The beneficial effects of WA in the SOD1(G93A) mice model were accompanied by an alleviation of neuroinflammation, a decrease in levels of misfolded SOD1 species in the spinal cord, and a reduction in loss of motor neurons resulting in delayed disease progression and mortality. Interestingly, WA treatment triggered robust induction of heat shock protein 25 (a mouse ortholog of heat shock protein 27), which may explain the reduced level of misfolded SOD1 species in the spinal cord of SOD1(G93A) mice and the decrease of neuronal injury responses, as revealed by real-time imaging of biophotonic SOD1(G93A) mice expressing a luciferase transgene under the control of the growth-associated protein 43 promoter. These results suggest that WA may represent a potential lead compound for drug development aiming to treat ALS.
Collapse
Affiliation(s)
- Priyanka Patel
- Research Centre of Institut Universitaire en Santé Mentale de Québec, and Department of Psychiatry and Neuroscience, Laval University, 2601 Chemin de la Canardière, Québec, QC G1J 2G3 Canada
| | - Jean-Pierre Julien
- Research Centre of Institut Universitaire en Santé Mentale de Québec, and Department of Psychiatry and Neuroscience, Laval University, 2601 Chemin de la Canardière, Québec, QC G1J 2G3 Canada
| | - Jasna Kriz
- Research Centre of Institut Universitaire en Santé Mentale de Québec, and Department of Psychiatry and Neuroscience, Laval University, 2601 Chemin de la Canardière, Québec, QC G1J 2G3 Canada
| |
Collapse
|
60
|
Sea K, Sohn SH, Durazo A, Sheng Y, Shaw BF, Cao X, Taylor AB, Whitson LJ, Holloway SP, Hart PJ, Cabelli DE, Gralla EB, Valentine JS. Insights into the role of the unusual disulfide bond in copper-zinc superoxide dismutase. J Biol Chem 2014; 290:2405-18. [PMID: 25433341 DOI: 10.1074/jbc.m114.588798] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The functional and structural significance of the intrasubunit disulfide bond in copper-zinc superoxide dismutase (SOD1) was studied by characterizing mutant forms of human SOD1 (hSOD) and yeast SOD1 lacking the disulfide bond. We determined x-ray crystal structures of metal-bound and metal-deficient hC57S SOD1. C57S hSOD1 isolated from yeast contained four zinc ions per protein dimer and was structurally very similar to wild type. The addition of copper to this four-zinc protein gave properly reconstituted 2Cu,2Zn C57S hSOD, and its spectroscopic properties indicated that the coordination geometry of the copper was remarkably similar to that of holo wild type hSOD1. In contrast, the addition of copper and zinc ions to apo C57S human SOD1 failed to give proper reconstitution. Using pulse radiolysis, we determined SOD activities of yeast and human SOD1s lacking disulfide bonds and found that they were enzymatically active at ∼10% of the wild type rate. These results are contrary to earlier reports that the intrasubunit disulfide bonds in SOD1 are essential for SOD activity. Kinetic studies revealed further that the yeast mutant SOD1 had less ionic attraction for superoxide, possibly explaining the lower rates. Saccharomyces cerevisiae cells lacking the sod1 gene do not grow aerobically in the absence of lysine, but expression of C57S SOD1 increased growth to 30-50% of the growth of cells expressing wild type SOD1, supporting that C57S SOD1 retained a significant amount of activity.
Collapse
Affiliation(s)
- Kevin Sea
- From the Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, the Department of Wine Studies, Santa Rosa Junior College, Santa Rosa, California 95401,
| | - Se Hui Sohn
- From the Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, LG Chem, Ltd., Yuseong-gu, Daejeon 305-380, Korea
| | - Armando Durazo
- From the Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, the Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721
| | - Yuewei Sheng
- From the Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Bryan F Shaw
- From the Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, the Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798
| | - Xiaohang Cao
- the Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Alexander B Taylor
- the Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Lisa J Whitson
- the Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Stephen P Holloway
- the Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - P John Hart
- the Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, the Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, Texas 78229, and
| | - Diane E Cabelli
- the Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Edith Butler Gralla
- From the Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Joan Selverstone Valentine
- From the Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, the Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
61
|
Zhuang X, Liu S, Zhang R, Song F, Liu Z, Liu S. Identification of unfolding and dissociation pathways of superoxide dismutase in the gas phase by ion-mobility separation and tandem mass spectrometry. Anal Chem 2014; 86:11599-605. [PMID: 25361402 DOI: 10.1021/ac502253t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cu, Zn-superoxide dismutase (SOD1) is a homodimeric enzyme of approximately 32 kDa. Each monomer contains one Cu(2+) and one Zn(2+) ion, which play catalytic and structural roles in the enzyme. Dimer formation is also essential to its functionality. The spatial structure of this metalloenzyme is also closely related to its bioactivities. Here we investigate the structural and conformational changes of SOD1 in the gas phase by electrospray ionization mass spectrometry (ESI-MS) and ion-mobility (IM) separation combined with tandem mass spectrometry (MS/MS). First, the composition and forms of SOD1 were analyzed by ESI-MS. The dimer, monomer, and apomonomer were observed under different solvent conditions. The dimer was found to be stable, and could retain its native structure in neutral buffer. Ion-mobility separation combined with MS/MS was used to reveal the conformational changes and dissociation process of SOD1 when it was activated in the gas phase. Three different dimeric and two monomeric conformers were observed; three unfolding and dissociation pathways were also identified. The results from this study demonstrate that IM-MS/MS could be used to obtain spatial structural information on SOD1 and that the technique could therefore be employed to investigate the conformational changes in mutant SOD1, which is related to amyotrophic lateral sclerosis and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Xiaoyu Zhuang
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, China
| | | | | | | | | | | |
Collapse
|
62
|
Coelho FR, Iqbal A, Linares E, Silva DF, Lima FS, Cuccovia IM, Augusto O. Oxidation of the tryptophan 32 residue of human superoxide dismutase 1 caused by its bicarbonate-dependent peroxidase activity triggers the non-amyloid aggregation of the enzyme. J Biol Chem 2014; 289:30690-30701. [PMID: 25237191 DOI: 10.1074/jbc.m114.586370] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of oxidative post-translational modifications of human superoxide dismutase 1 (hSOD1) in the amyotrophic lateral sclerosis (ALS) pathology is an attractive hypothesis to explore based on several lines of evidence. Among them, the remarkable stability of hSOD1(WT) and several of its ALS-associated mutants suggests that hSOD1 oxidation may precede its conversion to the unfolded and aggregated forms found in ALS patients. The bicarbonate-dependent peroxidase activity of hSOD1 causes oxidation of its own solvent-exposed Trp(32) residue. The resulting products are apparently different from those produced in the absence of bicarbonate and are most likely specific for simian SOD1s, which contain the Trp(32) residue. The aims of this work were to examine whether the bicarbonate-dependent peroxidase activity of hSOD1 (hSOD1(WT) and hSOD1(G93A) mutant) triggers aggregation of the enzyme and to comprehend the role of the Trp(32) residue in the process. The results showed that Trp(32) residues of both enzymes are oxidized to a similar extent to hSOD1-derived tryptophanyl radicals. These radicals decayed to hSOD1-N-formylkynurenine and hSOD1-kynurenine or to a hSOD1 covalent dimer cross-linked by a ditryptophan bond, causing hSOD1 unfolding, oligomerization, and non-amyloid aggregation. The latter process was inhibited by tempol, which recombines with the hSOD1-derived tryptophanyl radical, and did not occur in the absence of bicarbonate or with enzymes that lack the Trp(32) residue (bovine SOD1 and hSOD1(W32F) mutant). The results support a role for the oxidation products of the hSOD1-Trp(32) residue, particularly the covalent dimer, in triggering the non-amyloid aggregation of hSOD1.
Collapse
Affiliation(s)
- Fernando R Coelho
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05513-970 São Paulo, SP, Brazil
| | - Asif Iqbal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05513-970 São Paulo, SP, Brazil
| | - Edlaine Linares
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05513-970 São Paulo, SP, Brazil
| | - Daniel F Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05513-970 São Paulo, SP, Brazil
| | - Filipe S Lima
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05513-970 São Paulo, SP, Brazil
| | - Iolanda M Cuccovia
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05513-970 São Paulo, SP, Brazil
| | - Ohara Augusto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05513-970 São Paulo, SP, Brazil.
| |
Collapse
|
63
|
Solsona C, Kahn TB, Badilla CL, Álvarez-Zaldiernas C, Blasi J, Fernandez JM, Alegre-Cebollada J. Altered thiol chemistry in human amyotrophic lateral sclerosis-linked mutants of superoxide dismutase 1. J Biol Chem 2014; 289:26722-26732. [PMID: 25096579 DOI: 10.1074/jbc.m114.565333] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative diseases share a common characteristic, the presence of intracellular or extracellular deposits of protein aggregates in nervous tissues. Amyotrophic Lateral Sclerosis (ALS) is a severe and fatal neurodegenerative disorder, which affects preferentially motoneurons. Changes in the redox state of superoxide dismutase 1 (SOD1) are associated with the onset and development of familial forms of ALS. In human SOD1 (hSOD1), a conserved disulfide bond and two free cysteine residues can engage in anomalous thiol/disulfide exchange resulting in non-native disulfides, a hallmark of ALS that is related to protein misfolding and aggregation. Because of the many competing reaction pathways, traditional bulk techniques fall short at quantifying individual thiol/disulfide exchange reactions. Here, we adapt recently developed single-bond chemistry techniques to study individual disulfide isomerization reactions in hSOD1. Mechanical unfolding of hSOD1 leads to the formation of a polypeptide loop held by the disulfide. This loop behaves as a molecular jump rope that brings reactive Cys-111 close to the disulfide. Using force-clamp spectroscopy, we monitor nucleophilic attack of Cys-111 at either sulfur of the disulfide and determine the selectivity of the reaction. Disease-causing mutations G93A and A4V show greatly altered reactivity patterns, which may contribute to the progression of familial ALS.
Collapse
Affiliation(s)
- Carles Solsona
- Laboratory of Cellular and Molecular Neurobiology, Department of Pathology and Experimental Therapeutics, Faculty of Medicine-Campus Bellvitge, University of Barcelona, Feixa Llarga s/n. Hospitalet de Llobregat, 08907 Barcelona, Spain,; Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de l'Hospitalet, 199-203, L'Hospitalet de Llobregat, Barcelona, 08908 Barcelona, Spain,.
| | - Thomas B Kahn
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032,; Department of Biological Sciences, Columbia University, New York, New York 10027, and
| | - Carmen L Badilla
- Department of Biological Sciences, Columbia University, New York, New York 10027, and
| | - Cristina Álvarez-Zaldiernas
- Laboratory of Cellular and Molecular Neurobiology, Department of Pathology and Experimental Therapeutics, Faculty of Medicine-Campus Bellvitge, University of Barcelona, Feixa Llarga s/n. Hospitalet de Llobregat, 08907 Barcelona, Spain,; Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de l'Hospitalet, 199-203, L'Hospitalet de Llobregat, Barcelona, 08908 Barcelona, Spain
| | - Juan Blasi
- Laboratory of Cellular and Molecular Neurobiology, Department of Pathology and Experimental Therapeutics, Faculty of Medicine-Campus Bellvitge, University of Barcelona, Feixa Llarga s/n. Hospitalet de Llobregat, 08907 Barcelona, Spain,; Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de l'Hospitalet, 199-203, L'Hospitalet de Llobregat, Barcelona, 08908 Barcelona, Spain
| | - Julio M Fernandez
- Department of Biological Sciences, Columbia University, New York, New York 10027, and
| | - Jorge Alegre-Cebollada
- Department of Biological Sciences, Columbia University, New York, New York 10027, and; Vascular Biology and Inflammation Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Cl. Melchor Fernández Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
64
|
Oral treatment with Cu(II)(atsm) increases mutant SOD1 in vivo but protects motor neurons and improves the phenotype of a transgenic mouse model of amyotrophic lateral sclerosis. J Neurosci 2014; 34:8021-31. [PMID: 24899723 DOI: 10.1523/jneurosci.4196-13.2014] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mutations in the metallo-protein Cu/Zn-superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS) in humans and an expression level-dependent phenotype in transgenic rodents. We show that oral treatment with the therapeutic agent diacetyl-bis(4-methylthiosemicarbazonato)copper(II) [Cu(II)(atsm)] increased the concentration of mutant SOD1 (SOD1G37R) in ALS model mice, but paradoxically improved locomotor function and survival of the mice. To determine why the mice with increased levels of mutant SOD1 had an improved phenotype, we analyzed tissues by mass spectrometry. These analyses revealed most SOD1 in the spinal cord tissue of the SOD1G37R mice was Cu deficient. Treating with Cu(II)(atsm) decreased the pool of Cu-deficient SOD1 and increased the pool of fully metallated (holo) SOD1. Tracking isotopically enriched (65)Cu(II)(atsm) confirmed the increase in holo-SOD1 involved transfer of Cu from Cu(II)(atsm) to SOD1, suggesting the improved locomotor function and survival of the Cu(II)(atsm)-treated SOD1G37R mice involved, at least in part, the ability of the compound to improve the Cu content of the mutant SOD1. This was supported by improved survival of SOD1G37R mice that expressed the human gene for the Cu uptake protein CTR1. Improving the metal content of mutant SOD1 in vivo with Cu(II)(atsm) did not decrease levels of misfolded SOD1. These outcomes indicate the metal content of SOD1 may be a greater determinant of the toxicity of the protein in mutant SOD1-associated forms of ALS than the mutations themselves. Improving the metal content of SOD1 therefore represents a valid therapeutic strategy for treating ALS caused by SOD1.
Collapse
|
65
|
Lovejoy DB, Guillemin GJ. The potential for transition metal-mediated neurodegeneration in amyotrophic lateral sclerosis. Front Aging Neurosci 2014; 6:173. [PMID: 25100994 PMCID: PMC4107949 DOI: 10.3389/fnagi.2014.00173] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/01/2014] [Indexed: 12/12/2022] Open
Abstract
Modulations of the potentially toxic transition metals iron (Fe) and copper (Cu) are implicated in the neurodegenerative process in a variety of human disease states including amyotrophic lateral sclerosis (ALS). However, the precise role played by these metals is still very much unclear, despite considerable clinical and experimental data suggestive of a role for these elements in the neurodegenerative process. The discovery of mutations in the antioxidant enzyme Cu/Zn superoxide dismutase 1 (SOD-1) in ALS patients established the first known cause of ALS. Recent data suggest that various mutations in SOD-1 affect metal-binding of Cu and Zn, in turn promoting toxic protein aggregation. Copper homeostasis is also disturbed in ALS, and may be relevant to ALS pathogenesis. Another set of interesting observations in ALS patients involves the key nutrient Fe. In ALS patients, Fe loading can be inferred by studies showing increased expression of serum ferritin, an Fe-storage protein, with high serum ferritin levels correlating to poor prognosis. Magnetic resonance imaging of ALS patients shows a characteristic T2 shortening that is attributed to the presence of Fe in the motor cortex. In mutant SOD-1 mouse models, increased Fe is also detected in the spinal cord and treatment with Fe-chelating drugs lowers spinal cord Fe, preserves motor neurons, and extends lifespan. Inflammation may play a key causative role in Fe accumulation, but this is not yet conclusive. Excess transition metals may enhance induction of endoplasmic reticulum (ER) stress, a system that is already under strain in ALS. Taken together, the evidence suggests a role for transition metals in ALS progression and the potential use of metal-chelating drugs as a component of future ALS therapy.
Collapse
Affiliation(s)
- David B Lovejoy
- Australian School of Advanced Medicine, Macquarie University , Sydney, NSW , Australia
| | - Gilles J Guillemin
- Australian School of Advanced Medicine, Macquarie University , Sydney, NSW , Australia
| |
Collapse
|
66
|
Ming LJ, Valentine JS. Insights into SOD1-linked amyotrophic lateral sclerosis from NMR studies of Ni(2+)- and other metal-ion-substituted wild-type copper-zinc superoxide dismutases. J Biol Inorg Chem 2014; 19:647-57. [PMID: 24692094 PMCID: PMC4109160 DOI: 10.1007/s00775-014-1126-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/12/2014] [Indexed: 12/14/2022]
Abstract
The dimeric Cu-Zn superoxide dismutase (SOD1) is a particularly interesting system for biological inorganic chemical studies because substitutions of the native Cu and/or Zn ions by a nonnative metal ion cause minimal structural changes and result in high enzymatic activity for those derivatives with Cu remaining in the Cu site. The pioneering NMR studies of the magnetically coupled derivative Cu2Co2SOD1 by Ivano Bertini and coworkers are of particular importance in this regard. In addition to Co(2+), Ni(2+) is a versatile metal ion for substitution into SOD1, showing very little disturbance of the structure in Cu2Ni2SOD1 and acting as a very good mimic of the native Cu ion in Ni2Zn2SOD1. The NMR studies presented here were inspired by and are indebted to Ivano Bertini's paramagnetic NMR pursuits of metalloproteins. We report Ni(2+) binding to apo wild-type SOD1 and a time-dependent Ni(2+) migration from the Zn site to the Cu site, and the preparation and characterization of Ni2Ni2SOD1, which shows coordination properties similar to those of Cu2Cu2SOD1, namely, an anion-binding property different from that of the wild type and a possibly broken bridging His. Mutations in the human SOD1 gene can cause familial amyotrophic lateral sclerosis (ALS), and mutant SOD1 proteins with significantly altered metal-binding behaviors are implicated in causing the disease. We conclude by discussing the effects of the ALS mutations on the remarkable stabilities and metal-binding properties of wild-type SOD1 proteins and the implications concerning the causes of SOD1-linked ALS.
Collapse
Affiliation(s)
- Li-June Ming
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620-5250, USA
| | - Joan Selverstone Valentine
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095-1569, USA
- Department of Bioinspired Science, Ewha Womans University, 120-750, Seoul, Republic of Korea
| |
Collapse
|
67
|
Sheng Y, Abreu IA, Cabelli DE, Maroney MJ, Miller AF, Teixeira M, Valentine JS. Superoxide dismutases and superoxide reductases. Chem Rev 2014; 114:3854-918. [PMID: 24684599 PMCID: PMC4317059 DOI: 10.1021/cr4005296] [Citation(s) in RCA: 644] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Yuewei Sheng
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los
Angeles, California 90095, United States
| | - Isabel A. Abreu
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
- Instituto
de Biologia Experimental e Tecnológica, Av. da República,
Qta. do Marquês, Estação Agronómica Nacional,
Edificio IBET/ITQB, 2780-157, Oeiras, Portugal
| | - Diane E. Cabelli
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Michael J. Maroney
- Department
of Chemistry, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Anne-Frances Miller
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Miguel Teixeira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Joan Selverstone Valentine
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los
Angeles, California 90095, United States
- Department
of Bioinspired Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| |
Collapse
|
68
|
Cui Y, Masaki K, Yamasaki R, Imamura S, Suzuki SO, Hayashi S, Sato S, Nagara Y, Kawamura MF, Kira JI. Extensive dysregulations of oligodendrocytic and astrocytic connexins are associated with disease progression in an amyotrophic lateral sclerosis mouse model. J Neuroinflammation 2014; 11:42. [PMID: 24597481 PMCID: PMC4016493 DOI: 10.1186/1742-2094-11-42] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 02/25/2014] [Indexed: 11/17/2022] Open
Abstract
Background Non-cell-autonomous motor neuronal death is suggested in a mutant Cu/Zn superoxide dismutase 1 (mSOD1)-mediated amyotrophic lateral sclerosis (ALS) model, in which glial cells play significant roles in disease progression. Connexins (Cxs) form homotypic or heterotypic gap junctions (GJs) and allow direct intercellular communications among nervous tissue cells. The role of Cxs in motor neuron disease has never been investigated; therefore, we aimed to evaluate alterations of Cxs in mSOD1-transgenic (mSOD1-Tg) mice in comparison with their non-transgenic (non-Tg) littermates at the same ages. Methods We pathologically evaluated temporal changes to astrocytic Cx43/Cx30 and oligodendrocytic Cx47/Cx32 immunoreactivities at presymptomatic, disease-progressive, and end stages, relative to aquaporin-4 (AQP4), glial fibrillary acidic protein (GFAP), excitatory amino acid transporter-2 (EAAT2), myelin-oligodendrocyte glycoprotein (MOG), and Nogo-A immunoreactivities, and observed neuronal loss by NeuN and neurofilament immunostaining, and microglial response by Iba-1 immunostaining. We also performed quantitative immunoblotting and real-time PCR analyses for Cxs. Results The mSOD1-Tg mice showed neuronal and axonal loss in the anterior horns of the lumbar spinal cord accompanied by increased activation of microglia compared with non-Tg mice at the disease-progressive and end stages. Expression patterns of Cxs were not different between mSOD1-Tg and non-Tg mice at the presymptomatic stage, but immunoreactivities for GFAP, Cx43, Cx30 and AQP4 were increased in the anterior horns of mSOD1-Tg mice at the disease-progressive and end stages. By contrast, Cx47 and Cx32 immunoreactivities were markedly diminished in Nogo-A-positive oligodendrocytes in the anterior horns of mSOD1-Tg mice at the disease-progressive and end stages, especially in oligodendrocytes showing SOD1 accumulation. EAAT2 immunoreactivity was also diminished in the anterior horns of mSOD1-Tg mice at the disease-progressive and end stages. Quantitative immunoblotting revealed a significant reduction in Cx47 and Cx32 protein levels in mSOD1-Tg mice at the disease-progressive and end stages. The levels of Cx47 and Cx32 mRNAs were also decreased at these stages. Conclusions Our findings indicate that oligodendrocytic and astrocytic GJ proteins in the anterior horns of spinal cord in mSOD1-Tg mice are profoundly affected at the disease-progressive and end stages, where disruption of GJs among glial cells may exacerbate motor neuronal death.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jun-ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
69
|
An T, Shi P, Duan W, Zhang S, Yuan P, Li Z, Wu D, Xu Z, Li C, Guo Y. Oxidative stress and autophagic alteration in brainstem of SOD1-G93A mouse model of ALS. Mol Neurobiol 2014; 49:1435-48. [PMID: 24390572 DOI: 10.1007/s12035-013-8623-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/15/2013] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease involving both upper and lower motor neurons. The mechanism of motor neuron degeneration is still unknown. Although many studies have been performed on spinal motor neurons, few have been reported on brainstem and its motor nuclei. The aim of this study was to investigate oxidative stress and autophagic changes in the brainstem and representative motor nuclei of superoxide dismutase 1 (SOD1)-G93A mouse model of ALS. The expression levels of cluster of differentiation molecule 11b (CD11b), glial fibrillary acidic protein, glutamate-cysteine ligase catalytic subunit, heme oxygenase-1, NAD(P)H: quinone oxidoreductase 1, voltage-dependent anion-selective channel protein 1, Sequestosome 1/p62 (p62), microtubule-associated protein 1 light chain 3B (LC3), and SOD1 proteins in brainstem were examined by Western blot analysis. Immunohistochemistry and immunofluorescence were performed to identify the cellular localization of SOD1, p62, and LC3B, respectively. The results showed that there were progressive asctrocytic proliferation and microglial activation, induction of antioxidant proteins, and increased p62 and LC3II expression in brainstem of SOD1-G93A mice. Additionally, SOD1 and p62 accumulated in hypoglossal, facial, and red nuclei, but not in oculomotor nucleus. Furthermore, electron microscope showed increased autophagic vacuoles in affected brainstem motor nuclei. Our results indicate that brainstem share similar gliosis, oxidative stress, and autophagic changes as the spinal cord in SOD1-G93A mice. Thus, SOD1 accumulation in astrocytes and neurons, oxidative stress, and altered autophagy are involved in motor neuron degeneration in the brainstem, similar to the motor neurons in spinal cord. Therefore, therapeutic trials in the SOD1G93A mice need to target the brainstem in addition to the spinal cord.
Collapse
Affiliation(s)
- Ting An
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei Province, 050000, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Rotunno MS, Bosco DA. An emerging role for misfolded wild-type SOD1 in sporadic ALS pathogenesis. Front Cell Neurosci 2013; 7:253. [PMID: 24379756 PMCID: PMC3863749 DOI: 10.3389/fncel.2013.00253] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 11/25/2013] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that targets motor neurons, leading to paralysis and death within a few years of disease onset. While several genes have been linked to the inheritable, or familial, form of ALS, much less is known about the cause(s) of sporadic ALS, which accounts for ~90% of ALS cases. Due to the clinical similarities between familial and sporadic ALS, it is plausible that both forms of the disease converge on a common pathway and, therefore, involve common factors. Recent evidence suggests the Cu,Zn-superoxide dismutase (SOD1) protein to be one such factor that is common to both sporadic and familial ALS. In 1993, mutations were uncovered in SOD1 that represent the first known genetic cause of familial ALS. While the exact mechanism of mutant-SOD1 toxicity is still not known today, most evidence points to a gain of toxic function that stems, at least in part, from the propensity of this protein to misfold. In the wild-type SOD1 protein, non-genetic perturbations such as metal depletion, disruption of the quaternary structure, and oxidation, can also induce SOD1 to misfold. In fact, these aforementioned post-translational modifications cause wild-type SOD1 to adopt a “toxic conformation” that is similar to familial ALS-linked SOD1 variants. These observations, together with the detection of misfolded wild-type SOD1 within human post-mortem sporadic ALS samples, have been used to support the controversial hypothesis that misfolded forms of wild-type SOD1 contribute to sporadic ALS pathogenesis. In this review, we present data from the literature that both support and contradict this hypothesis. We also discuss SOD1 as a potential therapeutic target for both familial and sporadic ALS.
Collapse
Affiliation(s)
- Melissa S Rotunno
- Department of Neurology, University of Massachusetts Medical Center Worcester, MA, USA
| | - Daryl A Bosco
- Department of Neurology, University of Massachusetts Medical Center Worcester, MA, USA
| |
Collapse
|
71
|
Foust KD, Salazar DL, Likhite S, Ferraiuolo L, Ditsworth D, Ilieva H, Meyer K, Schmelzer L, Braun L, Cleveland DW, Kaspar BK. Therapeutic AAV9-mediated suppression of mutant SOD1 slows disease progression and extends survival in models of inherited ALS. Mol Ther 2013; 21:2148-59. [PMID: 24008656 PMCID: PMC3863799 DOI: 10.1038/mt.2013.211] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 08/25/2013] [Indexed: 12/14/2022] Open
Abstract
Mutations in superoxide dismutase 1 (SOD1) are linked to familial amyotrophic lateral sclerosis (ALS) resulting in progressive motor neuron death through one or more acquired toxicities. Involvement of wild-type SOD1 has been linked to sporadic ALS, as misfolded SOD1 has been reported in affected tissues of sporadic patients and toxicity of astrocytes derived from sporadic ALS patients to motor neurons has been reported to be reduced by lowering the synthesis of SOD1. We now report slowed disease onset and progression in two mouse models following therapeutic delivery using a single peripheral injection of an adeno-associated virus serotype 9 (AAV9) encoding an shRNA to reduce the synthesis of ALS-causing human SOD1 mutants. Delivery to young mice that develop aggressive, fatal paralysis extended survival by delaying both disease onset and slowing progression. In a later-onset model, AAV9 delivery after onset markedly slowed disease progression and significantly extended survival. Moreover, AAV9 delivered intrathecally to nonhuman primates is demonstrated to yield robust SOD1 suppression in motor neurons and glia throughout the spinal cord and therefore, setting the stage for AAV9-mediated therapy in human clinical trials.
Collapse
Affiliation(s)
- Kevin D Foust
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Desirée L Salazar
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
- Ludwig Institute for Cancer Research, La Jolla, California, USA
- Present address: Department of Biology, San Diego State University, San Diego, California, USA
| | - Shibi Likhite
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Molecular, Cellular & Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Laura Ferraiuolo
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Dara Ditsworth
- Ludwig Institute for Cancer Research, La Jolla, California, USA
| | | | - Kathrin Meyer
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Leah Schmelzer
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Lyndsey Braun
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Don W Cleveland
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
- Ludwig Institute for Cancer Research, La Jolla, California, USA
| | - Brian K Kaspar
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Molecular, Cellular & Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
72
|
Greek R, Hansen LA. Questions regarding the predictive value of one evolved complex adaptive system for a second: Exemplified by the SOD1 mouse. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 113:231-53. [DOI: 10.1016/j.pbiomolbio.2013.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/07/2013] [Accepted: 06/11/2013] [Indexed: 11/25/2022]
|
73
|
Ayers J, Lelie H, Workman A, Prudencio M, Brown H, Fromholt S, Valentine J, Whitelegge J, Borchelt D. Distinctive features of the D101N and D101G variants of superoxide dismutase 1; two mutations that produce rapidly progressing motor neuron disease. J Neurochem 2013; 128:305-14. [PMID: 24032979 DOI: 10.1111/jnc.12451] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/07/2013] [Accepted: 09/03/2013] [Indexed: 11/28/2022]
Abstract
Mutations in superoxide dismutase 1 (SOD1) associated with familial amyotrophic lateral sclerosis induce misfolding and aggregation of the protein with the inherent propensity of mutant SOD1 to aggregate generally correlating, with a few exceptions, to the duration of illness in patients with the same mutation. One notable exception was the D101N variant, which has been described as wild-type-like. The D101N mutation is associated with rapidly progressing motor neuron degeneration but shows a low propensity to aggregate. By assaying the kinetics of aggregation in a well-characterized cultured cell model, we show that the D101N mutant is slower to initiate aggregation than the D101G mutant. In this cell system of protein over-expression, both mutants were equally less able to acquire Zn than WT SOD1. In addition, both of these mutants were equivalently less able to fold into the trypsin-resistant conformation that characterizes WT SOD1. A second major difference between the two mutants was that the D101N variant more efficiently formed a normal intramolecular disulfide bond. Overall, our findings demonstrate that the D101N and D101G variants exhibit clearly distinctive features, including a different rate of aggregation, and yet both are associated with rapidly progressing disease. We sought to better characterize the biochemical features of two SOD1 mutants associated with rapidly progressing disease, the D101G and wild-type like D101N mutants. We observed using our cell model that that although similarities were observed when comparing the ability to bind metals and resist trypsin digestion, these mutants differed in their ability to initiate aggregation and to form the normal intramolecular disulfide bond. We conclude that these mutants exhibit distinct properties despite producing similar disease phenotypes in patients.
Collapse
Affiliation(s)
- Jacob Ayers
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Potential effect of S-nitrosylated protein disulfide isomerase on mutant SOD1 aggregation and neuronal cell death in amyotrophic lateral sclerosis. Mol Neurobiol 2013; 49:796-807. [PMID: 24091828 DOI: 10.1007/s12035-013-8562-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/22/2013] [Indexed: 12/11/2022]
Abstract
Aggregation of misfolded protein and resultant intracellular inclusion body formation are common hallmarks of mutant superoxide dismutase (mSOD1)-linked familial amyotrophic lateral sclerosis (FALS) and have been associated with the selective neuronal death. Protein disulfide isomerase (PDI) represents a family of enzymatic chaperones that can fold nascent and aberrant proteins in the endoplasmic reticulum (ER) lumen. Recently, our group found that S-nitrosylated PDI could contribute to protein misfolding and subsequent neuronal cell death. However, the exact role of PDI in the pathogenesis of ALS remains unclear. In this study, we propose that PDI attenuates aggregation of mutant/misfolded SOD1 and resultant neurotoxicity associated with ER stress. ER stress resulting in PDI dysfunction therefore provides a mechanistic link between deficits in molecular chaperones, accumulation of misfolded proteins, and neuronal death in neurodegenerative diseases. In contrast, S-nitrosylation of PDI inhibits its activity, increases mSOD1 aggregation, and increases neuronal cell death. Specifically, our data show that S-nitrosylation abrogates PDI-mediated attenuation of neuronal cell death triggered by thapsigargin. Biotin switch assays demonstrate S-nitrosylated PDI both in the spinal cords of SOD1 (G93A) mice and human patients with sporadic ALS. Therefore, denitrosylation of PDI may have therapeutic implications. Taken together, our results suggest a novel strategy involving PDI as a therapy to prevent mSOD1 aggregation and neuronal degeneration. Moreover, the data demonstrate that inactivation of PDI by S-nitrosylation occurs in both mSOD1-linked and sporadic forms of ALS in humans as well as mice.
Collapse
|
75
|
Abstract
Sirtuins are a conserved family of deacetylases whose activities are dependent on nicotinamide adenine dinucleotide (NAD+). Sirtuins act in different cellular compartments, such as the nucleus where they deacetylate histones and transcriptional factors, in the cytoplasm where they modulate cytoskeletal and signaling molecules, and in the mitochondria where they engage components of the metabolic machinery. Collectively, they tune metabolic processes to energy availability, and modulate stress responses, protein aggregation, inflammatory processes, and genome stability. As such, they have garnered much interest and have been widely studied in aging and age-related neurodegeneration. In this chapter, we review the identification of sirtuins and their biological targets. We focus on their biological mechanisms of action and how they might be regulated, including via NAD metabolism, transcriptional and posttranscriptional control, and as targets of pharmacological agents. Lastly, we highlight the numerous studies suggesting that sirtuins are efficacious therapeutic targets in neurodegenerative disease and injury.
Collapse
Affiliation(s)
- Brett Langley
- The Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605 USA
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065 USA
| | - Anthony Sauve
- Department of Pharmacology, Weill Medical College of Cornell University, New York, NY 10065 USA
| |
Collapse
|
76
|
The carbonylation and covalent dimerization of human superoxide dismutase 1 caused by its bicarbonate-dependent peroxidase activity is inhibited by the radical scavenger tempol. Biochem J 2013; 455:37-46. [DOI: 10.1042/bj20130180] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The nitroxide tempol inhibited the carbonylation and covalent dimerization of human superoxide dismutase 1 caused by its bicarbonate-dependent peroxidase activity. Tempol acted by scavenging the produced carbonate radical and by recombining with hSOD1-Trp32• radicals as indicated by MS/MS evidence.
Collapse
|
77
|
Varabyova A, Topf U, Kwiatkowska P, Wrobel L, Kaus-Drobek M, Chacinska A. Mia40 and MINOS act in parallel with Ccs1 in the biogenesis of mitochondrial Sod1. FEBS J 2013; 280:4943-59. [PMID: 23802566 DOI: 10.1111/febs.12409] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/23/2013] [Accepted: 06/24/2013] [Indexed: 11/26/2022]
Abstract
Superoxide dismutase 1 (Sod1) is a major superoxide-scavenging enzyme in the eukaryotic cell, and is localized in the cytosol and intermembrane space of mitochondria. Sod1 requires its specific chaperone Ccs1 and disulfide bond formation in order to be retained in the intermembrane space. Our study identified a pool of Sod1 that is present in the reduced state in mitochondria that lack Ccs1. We created yeast mutants with mutations in highly conserved amino acid residues corresponding to human mutations that cause amyotrophic lateral sclerosis, and found that some of the mutant proteins were present in the reduced state. These mutant variants of Sod1 were efficiently localized in mitochondria. Localization of the reduced, Ccs1-independent forms of Sod1 relied on Mia40, an essential component of the mitochondrial intermembrane space import and assembly pathway that is responsible for the biogenesis of intermembrane space proteins. Furthermore, the mitochondrial inner membrane organizing system (MINOS), which is responsible for mitochondrial membrane architecture, differentially modulated the presence of reduced Sod1 in mitochondria. Thus, we identified novel mitochondrial players that are possibly involved in pathological conditions caused by changes in the biogenesis of Sod1.
Collapse
Affiliation(s)
- Aksana Varabyova
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
78
|
Mulligan VK, Chakrabartty A. Protein misfolding in the late-onset neurodegenerative diseases: Common themes and the unique case of amyotrophic lateral sclerosis. Proteins 2013; 81:1285-303. [DOI: 10.1002/prot.24285] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 12/12/2022]
Affiliation(s)
| | - Avijit Chakrabartty
- Department of Biochemistry; Toronto Ontario M5G 1L7 Canada
- Department of Medical Biophysics; University of Toronto; Toronto Ontario M5G 1L7 Canada
- Campbell Family Institute for Cancer Research, Ontario Cancer Institute/University Health Network; Toronto Ontario M5G 1L7 Canada
| |
Collapse
|
79
|
Structural similarity of wild-type and ALS-mutant superoxide dismutase-1 fibrils using limited proteolysis and atomic force microscopy. Proc Natl Acad Sci U S A 2013; 110:10934-9. [PMID: 23781106 DOI: 10.1073/pnas.1309613110] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abnormal assemblies formed by misfolded superoxide dismutase-1 (SOD1) proteins are the likely cause of SOD1-linked familial amyotrophic lateral sclerosis (fALS) and may be involved in some cases of sporadic ALS. To analyze the structure of the insoluble SOD1 amyloid fibrils, we first used limited proteolysis followed by mass spectrometric analysis. Digestion of amyloid fibrils formed from full-length N-acetylated WT SOD1 with trypsin, chymotrypsin, or Pronase revealed that the first 63 residues of the N terminus were protected from protease digestion by fibril formation. Furthermore, every tested ALS-mutant SOD1 protein (G37R, L38V, G41D, G93A, G93S, and D101N) showed a similar protected fragment after trypsin digestion. Our second approach to structural characterization used atomic force microscopy to image the SOD1 fibrils and revealed that WT and mutants showed similar twisted morphologies. WT fibrils had a consistent average helical pitch distance of 62.1 nm. The ALS-mutant SOD1 proteins L38V, G93A, and G93S formed fibrils with helical twist patterns very similar to those of WT, whereas small but significant structural deviations were observed for the mutant proteins G37R, G41D, and D101N. Overall, our studies suggest that human WT SOD1 and ALS-mutants tested have a common intrinsic propensity to fibrillate through the N terminus and that single amino acid substitutions can lead to changes in the helical twist pattern.
Collapse
|
80
|
Antinone SE, Ghadge GD, Lam TT, Wang L, Roos RP, Green WN. Palmitoylation of superoxide dismutase 1 (SOD1) is increased for familial amyotrophic lateral sclerosis-linked SOD1 mutants. J Biol Chem 2013; 288:21606-17. [PMID: 23760509 DOI: 10.1074/jbc.m113.487231] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mutations in Cu,Zn-superoxide dismutase (mtSOD1) cause familial amyotrophic lateral sclerosis (FALS), a neurodegenerative disease resulting from motor neuron degeneration. Here, we demonstrate that wild type SOD1 (wtSOD1) undergoes palmitoylation, a reversible post-translational modification that can regulate protein structure, function, and localization. SOD1 palmitoylation was confirmed by multiple techniques, including acyl-biotin exchange, click chemistry, cysteine mutagenesis, and mass spectrometry. Mass spectrometry and cysteine mutagenesis demonstrated that cysteine residue 6 was the primary site of palmitoylation. The palmitoylation of FALS-linked mtSOD1s (A4V and G93A) was significantly increased relative to that of wtSOD1 expressed in HEK cells and a motor neuron cell line. The palmitoylation of FALS-linked mtSOD1s (G93A and G85R) was also increased relative to that of wtSOD1 when assayed from transgenic mouse spinal cords. We found that the level of SOD1 palmitoylation correlated with the level of membrane-associated SOD1, suggesting a role for palmitoylation in targeting SOD1 to membranes. We further observed that palmitoylation occurred predominantly on disulfide-reduced as opposed to disulfide-bonded SOD1, suggesting that immature SOD1 is the primarily palmitoylated species. Increases in SOD1 disulfide bonding and maturation with increased copper chaperone for SOD1 expression caused a decrease in wtSOD1 palmitoylation. Copper chaperone for SOD1 overexpression decreased A4V palmitoylation less than wtSOD1 and had little effect on G93A mtSOD1 palmitoylation. These findings suggest that SOD1 palmitoylation occurs prior to disulfide bonding during SOD1 maturation and that palmitoylation is increased when disulfide bonding is delayed or decreased as observed for several mtSOD1s.
Collapse
Affiliation(s)
- Sarah E Antinone
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
81
|
Li C, Xu WC, Xie ZS, Pan K, Hu J, Chen J, Pang DW, Yang FQ, Liang Y. Cupric ions induce the oxidation and trigger the aggregation of human superoxide dismutase 1. PLoS One 2013; 8:e65287. [PMID: 23755211 PMCID: PMC3670862 DOI: 10.1371/journal.pone.0065287] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 04/23/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS), partly caused by the mutations and aggregation of human copper, zinc superoxide dismutase (SOD1), is a fatal degenerative disease of motor neurons. Because SOD1 is a major copper-binding protein present at relatively high concentration in motor neurons and copper can be a harmful pro-oxidant, we want to know whether aberrant copper biochemistry could underlie ALS pathogenesis. In this study, we have investigated and compared the effects of cupric ions on the aggregation of ALS-associated SOD1 mutant A4V and oxidized wild-type SOD1. METHODOLOGY/PRINCIPAL FINDINGS As revealed by 90° light scattering, dynamic light scattering, SDS-PAGE, and atomic force microscopy, free cupric ions in solution not only induce the oxidation of either apo A4V or Zn2-A4V and trigger the oligomerization and aggregation of oxidized A4V under copper-mediated oxidative conditions, but also trigger the aggregation of non-oxidized form of such a pathogenic mutant. As evidenced by mass spectrometry and SDS-PAGE, Cys-111 is a primary target for oxidative modification of pathological human SOD1 mutant A4V by either excess Cu(2+) or hydrogen peroxide. The results from isothermal titration calorimetry show that A4V possesses two sets of independent binding sites for Cu(2+): a moderate-affinity site (10(6) M(-1)) and a high-affinity site (10(8) M(-1)). Furthermore, Cu(2+) binds to wild-type SOD1 oxidized by hydrogen peroxide in a way similar to A4V, triggering the aggregation of such an oxidized form. CONCLUSIONS/SIGNIFICANCE We demonstrate that excess cupric ions induce the oxidation and trigger the aggregation of A4V SOD1, and suggest that Cu(2+) plays a key role in the mechanism of aggregation of both A4V and oxidized wild-type SOD1. A plausible model for how pathological SOD1 mutants aggregate in ALS-affected motor neurons with the disruption of copper homeostasis has been provided.
Collapse
Affiliation(s)
- Cheng Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wen-Chang Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhen-Sheng Xie
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Kai Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiao Hu
- College of Chemistry and Molecular Sciences, and State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | - Jie Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Dai-Wen Pang
- College of Chemistry and Molecular Sciences, and State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | - Fu-Quan Yang
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yi Liang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
82
|
α -Synuclein Modification in an ALS Animal Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:259381. [PMID: 23762114 PMCID: PMC3666397 DOI: 10.1155/2013/259381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/11/2013] [Accepted: 02/28/2013] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressively paralytic neurodegenerative disease that can be caused by mutations in Cu/Zn-superoxide dismutase 1 (SOD1). Transgenic mice that overexpress mutant SOD1 develop paralysis and accumulate aggregates of mutant protein in the brainstem and spinal cord. Bee venom (BV), which is also known as apitoxin, is extracted from honeybees and is commonly used in oriental medicine for the treatment of chronic rheumatoid arthritis and osteoarthritis. The purpose of the present study was to determine whether BV affects misfolded protein aggregates such as alpha-synuclein, which is a known pathological marker in Parkinson disease, and ubiquitin-proteasomal activity in hSOD1G93A mutant mice. BV was bilaterally administered into a 98-day-old hSOD1G93A animal model. We found that BV-treated hSOD1G93A transgenic mice showed reduced detergent-insoluble polymerization and phosphorylation of α-synuclein. Furthermore, phosphorylated or nitrated α-synuclein was significantly reduced in the spinal cords and brainstems of BV-treated hSOD1G93A mice and reduced proteasomal activity was revealed in the brainstems of BV-treated symptomatic hSOD1G93A. From these findings, we suggest that BV treatment attenuates the dysfunction of the ubiquitin-proteasomal system in a symptomatic hSOD1G93A ALS model and may help to slow motor neuron loss caused by misfolded protein aggregates in ALS models.
Collapse
|
83
|
Broering TJ, Wang H, Boatright NK, Wang Y, Baptista K, Shayan G, Garrity KA, Kayatekin C, Bosco DA, Matthews CR, Ambrosino DM, Xu Z, Babcock GJ. Identification of human monoclonal antibodies specific for human SOD1 recognizing distinct epitopes and forms of SOD1. PLoS One 2013; 8:e61210. [PMID: 23613814 PMCID: PMC3629177 DOI: 10.1371/journal.pone.0061210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/06/2013] [Indexed: 12/13/2022] Open
Abstract
Mutations in the gene encoding human SOD1 (hSOD1) can cause amyotrophic lateral sclerosis (ALS) yet the mechanism by which mutant SOD1 can induce ALS is not fully understood. There is currently no cure for ALS or treatment that significantly reduces symptoms or progression. To develop tools to understand the protein conformations present in mutant SOD1-induced ALS and as possible immunotherapy, we isolated and characterized eleven unique human monoclonal antibodies specific for hSOD1. Among these, five recognized distinct linear epitopes on hSOD1 that were not available in the properly-folded protein but were available on forms of protein with some degree of misfolding. The other six antibodies recognized conformation-dependent epitopes that were present in the properly-folded protein with two different recognition profiles: three could bind hSOD1 dimer or monomer and the other three were specific for hSOD1 dimer only. Antibodies with the capacity to bind hSOD1 monomer were able to prevent increased hydrophobicity when mutant hSOD1 was exposed to increased temperature and EDTA, suggesting that the antibodies stabilized the native structure of hSOD1. Two antibodies were tested in a G93A mutant hSOD1 transgenic mouse model of ALS but did not yield a statistically significant increase in overall survival. It may be that the two antibodies selected for testing in the mouse model were not effective for therapy or that the model and/or route of administration were not optimal to produce a therapeutic effect. Therefore, additional testing will be required to determine therapeutic potential for SOD1 mutant ALS and potentially some subset of sporadic ALS.
Collapse
Affiliation(s)
- Teresa J Broering
- MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Gal J, Chen J, Barnett KR, Yang L, Brumley E, Zhu H. HDAC6 regulates mutant SOD1 aggregation through two SMIR motifs and tubulin acetylation. J Biol Chem 2013; 288:15035-45. [PMID: 23580651 DOI: 10.1074/jbc.m112.431957] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Histone deacetylase 6 (HDAC6) is a tubulin deacetylase that regulates protein aggregation and turnover. Mutations in Cu/Zn superoxide dismutase (SOD1) linked to familial amyotrophic lateral sclerosis (ALS) make the mutant protein prone to aggregation. However, the role of HDAC6 in mutant SOD1 aggregation and the ALS etiology is unclear. Here we report that HDAC6 knockdown increased mutant SOD1 aggregation in cultured cells. Different from its known role in mediating the degradation of poly-ubiquitinated proteins, HDAC6 selectively interacted with mutant SOD1 via two motifs similar to the SOD1 mutant interaction region (SMIR) that we identified previously in p62/sequestosome 1. Expression of the aggregation-prone mutant SOD1 increased α-tubulin acetylation, and the acetylation-mimicking K40Q α-tubulin mutant promoted mutant SOD1 aggregation. Our results suggest that ALS-linked mutant SOD1 can modulate HDAC6 activity and increase tubulin acetylation, which, in turn, facilitates the microtubule- and retrograde transport-dependent mutant SOD1 aggregation. HDAC6 impairment might be a common feature in various subtypes of ALS.
Collapse
Affiliation(s)
- Jozsef Gal
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | |
Collapse
|
85
|
Linares E, Seixas LV, dos Prazeres JN, Ladd FVL, Ladd AABL, Coppi AA, Augusto O. Tempol moderately extends survival in a hSOD1(G93A) ALS rat model by inhibiting neuronal cell loss, oxidative damage and levels of non-native hSOD1(G93A) forms. PLoS One 2013; 8:e55868. [PMID: 23405225 PMCID: PMC3566093 DOI: 10.1371/journal.pone.0055868] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 01/03/2013] [Indexed: 01/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive dysfunction and death of motor neurons by mechanisms that remain unclear. Evidence indicates that oxidative mechanisms contribute to ALS pathology, but classical antioxidants have not performed well in clinical trials. Cyclic nitroxides are an alternative worth exploring because they are multifunctional antioxidants that display low toxicity in vivo. Here, we examine the effects of the cyclic nitroxide tempol (4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl) on ALS onset and progression in transgenic female rats over-expressing the mutant hSOD1(G93A) . Starting at 7 weeks of age, a high dose of tempol (155 mg/day/rat) in the rat´s drinking water had marginal effects on the disease onset but decelerated disease progression and extended survival by 9 days. In addition, tempol protected spinal cord tissues as monitored by the number of neuronal cells, and the reducing capability and levels of carbonylated proteins and non-native hSOD1 forms in spinal cord homogenates. Intraperitoneal tempol (26 mg/rat, 3 times/week) extended survival by 17 days. This group of rats, however, diverted to a decelerated disease progression. Therefore, it was inconclusive whether the higher protective effect of the lower i.p. dose was due to higher tempol bioavailability, decelerated disease development or both. Collectively, the results show that tempol moderately extends the survival of ALS rats while protecting their cellular and molecular structures against damage. Thus, the results provide proof that cyclic nitroxides are alternatives worth to be further tested in animal models of ALS.
Collapse
Affiliation(s)
- Edlaine Linares
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Luciana V. Seixas
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Janaina N. dos Prazeres
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Fernando V. L. Ladd
- Laboratory of Stochastic Stereology and Chemical Anatomy, Department of Surgery, College of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Aliny A. B. L. Ladd
- Laboratory of Stochastic Stereology and Chemical Anatomy, Department of Surgery, College of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Antonio A. Coppi
- Laboratory of Stochastic Stereology and Chemical Anatomy, Department of Surgery, College of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Ohara Augusto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
86
|
Jellinger KA. The relevance of metals in the pathophysiology of neurodegeneration, pathological considerations. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 110:1-47. [PMID: 24209432 DOI: 10.1016/b978-0-12-410502-7.00002-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders are featured by a variety of pathological conditions that share similar critical processes, such as oxidative stress, free radical activity, proteinaceous aggregations, mitochondrial dysfunctions, and energy failure. They are mediated or triggered by an imbalance of metal ions leading to changes of critical biological systems and initiating a cascade of events finally leading to neurodegeneration and cell death. Their causes are multifactorial, and although the source of the shift in oxidative homeostasis is still unclear, current evidence points to changes in the balance of redox transition metals, especially iron, copper, and other trace metals. They are present at elevated levels in Alzheimer disease, Parkinson disease, multisystem atrophy, etc., while in other neurodegenerative disorders, copper, zinc, aluminum, and manganese are involved. This chapter will review the recent advances of the role of metals in the pathogenesis and pathophysiology of major neurodegenerative diseases and discuss the use of chelating agents as potential therapies for metal-related disorders.
Collapse
|
87
|
Coughlin JM, Ishizuka K, Kano SI, Edwards JA, Seifuddin FT, Shimano MA, Daley EL, Zandi PP, Leweke FM, Cascella NG, Pomper MG, Yolken RH, Sawa A. Marked reduction of soluble superoxide dismutase-1 (SOD1) in cerebrospinal fluid of patients with recent-onset schizophrenia. Mol Psychiatry 2013; 18:10-1. [PMID: 22349781 PMCID: PMC4113962 DOI: 10.1038/mp.2012.6] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- JM Coughlin
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - K Ishizuka
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - SI Kano
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - JA Edwards
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - FT Seifuddin
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - MA Shimano
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - EL Daley
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - PP Zandi
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Bloomberg School of Public Health, Baltimore, MD, USA
| | - FM Leweke
- Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - NG Cascella
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - MG Pomper
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - RH Yolken
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA,The Stanley Medical Research Institute, Chevy Chase, MD, USA
| | - A Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
88
|
Benkler C, Ben-Zur T, Barhum Y, Offen D. Altered astrocytic response to activation in SOD1G93Amice and its implications on amyotrophic lateral sclerosis pathogenesis. Glia 2012; 61:312-26. [DOI: 10.1002/glia.22428] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 09/04/2012] [Indexed: 12/11/2022]
|
89
|
Toichi K, Yamanaka K, Furukawa Y. Disulfide scrambling describes the oligomer formation of superoxide dismutase (SOD1) proteins in the familial form of amyotrophic lateral sclerosis. J Biol Chem 2012; 288:4970-80. [PMID: 23264618 DOI: 10.1074/jbc.m112.414235] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dominant mutations in Cu,Zn-superoxide dismutase (SOD1) are a cause of a familial form of amyotrophic lateral sclerosis. Wild-type SOD1 forms a highly conserved intra-molecular disulfide bond, whereas pathological SOD1 proteins are cross-linked via intermolecular disulfide bonds and form insoluble oligomers. A thiol-disulfide status in SOD1 will thus play a regulatory role in determining its folding/misfolding pathways; however, it remains unknown how pathogenic mutations in SOD1 affect the thiol-disulfide status to facilitate the protein misfolding. Here, we show that the structural destabilization of SOD1 scrambles a disulfide bond among four Cys residues in an SOD1 molecule. The disulfide scrambling produces SOD1 monomers with distinct electrophoretic mobility and also reproduces the formation of disulfide-linked oligomers. We have also found that the familial form of amyotrophic lateral sclerosis-causing mutations facilitate the disulfide scrambling in SOD1. Based upon our results, therefore, scrambling of the conserved disulfide bond will be a key event to cause the pathological changes in disease-associated mutant SOD1 proteins.
Collapse
Affiliation(s)
- Keisuke Toichi
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | | | | |
Collapse
|
90
|
Cozzolino M, Pesaresi MG, Gerbino V, Grosskreutz J, Carrì MT. Amyotrophic lateral sclerosis: new insights into underlying molecular mechanisms and opportunities for therapeutic intervention. Antioxid Redox Signal 2012; 17:1277-330. [PMID: 22413952 DOI: 10.1089/ars.2011.4328] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent years have witnessed a renewed interest in the pathogenic mechanisms of amyotrophic lateral sclerosis (ALS), a late-onset progressive degeneration of motor neurons. The discovery of new genes associated with the familial form of the disease, along with a deeper insight into pathways already described for this disease, has led scientists to reconsider previous postulates. While protein misfolding, mitochondrial dysfunction, oxidative damage, defective axonal transport, and excitotoxicity have not been dismissed, they need to be re-examined as contributors to the onset or progression of ALS in the light of the current knowledge that the mutations of proteins involved in RNA processing, apparently unrelated to the previous "old partners," are causative of the same phenotype. Thus, newly envisaged models and tools may offer unforeseen clues on the etiology of this disease and hopefully provide the key to treatment.
Collapse
|
91
|
Botelho HM, Leal SS, Cardoso I, Yanamandra K, Morozova-Roche LA, Fritz G, Gomes CM. S100A6 amyloid fibril formation is calcium-modulated and enhances superoxide dismutase-1 (SOD1) aggregation. J Biol Chem 2012; 287:42233-42. [PMID: 23076148 DOI: 10.1074/jbc.m112.396416] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
S100A6 is a small EF-hand calcium- and zinc-binding protein involved in the regulation of cell proliferation and cytoskeletal dynamics. It is overexpressed in neurodegenerative disorders and a proposed marker for Amyotrophic Lateral Sclerosis (ALS). Following recent reports of amyloid formation by S100 proteins, we investigated the aggregation properties of S100A6. Computational analysis using aggregation predictors Waltz and Zyggregator revealed increased propensity within S100A6 helices H(I) and H(IV). Subsequent analysis of Thioflavin-T binding kinetics under acidic conditions elicited a very fast process with no lag phase and extensive formation of aggregates and stacked fibrils as observed by electron microscopy. Ca(2+) exerted an inhibitory effect on the aggregation kinetics, which could be reverted upon chelation. An FT-IR investigation of the early conformational changes occurring under these conditions showed that Ca(2+) promotes anti-parallel β-sheet conformations that repress fibrillation. At pH 7, Ca(2+) rendered the fibril formation kinetics slower: time-resolved imaging showed that fibril formation is highly suppressed, with aggregates forming instead. In the absence of metals an extensive network of fibrils is formed. S100A6 oligomers, but not fibrils, were found to be cytotoxic, decreasing cell viability by up to 40%. This effect was not observed when the aggregates were formed in the presence of Ca(2+). Interestingly, native S1006 seeds SOD1 aggregation, shortening its nucleation process. This suggests a cross-talk between these two proteins involved in ALS. Overall, these results put forward novel roles for S100 proteins, whose metal-modulated aggregation propensity may be a key aspect in their physiology and function.
Collapse
Affiliation(s)
- Hugo M Botelho
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2781-901 Oeiras, Portugal
| | | | | | | | | | | | | |
Collapse
|
92
|
Dibaj P, Zschüntzsch J, Steffens H, Scheffel J, Göricke B, Weishaupt JH, Le Meur K, Kirchhoff F, Hanisch UK, Schomburg ED, Neusch C. Influence of methylene blue on microglia-induced inflammation and motor neuron degeneration in the SOD1(G93A) model for ALS. PLoS One 2012; 7:e43963. [PMID: 22952827 PMCID: PMC3428282 DOI: 10.1371/journal.pone.0043963] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 07/27/2012] [Indexed: 11/18/2022] Open
Abstract
Mutations in SOD1 cause hereditary variants of the fatal motor neuron disease amyotrophic lateral sclerosis (ALS). Pathophysiology of the disease is non-cell-autonomous, with toxicity deriving also from glia. In particular, microglia contribute to disease progression. Methylene blue (MB) inhibits the effect of nitric oxide, which mediates microglial responses to injury. In vivo 2P-LSM imaging was performed in ALS-linked transgenic SOD1(G93A) mice to investigate the effect of MB on microglia-mediated inflammation in the spinal cord. Local superfusion of the lateral spinal cord with MB inhibited the microglial reaction directed at a laser-induced axon transection in control and SOD1(G93A) mice. In vitro, MB at high concentrations inhibited cytokine and chemokine release from microglia of control and advanced clinical SOD1(G93A) mice. Systemic MB-treatment of SOD1(G93A) mice at early preclinical stages significantly delayed disease onset and motor dysfunction. However, an increase of MB dose had no additional effect on disease progression; this was unexpected in view of the local anti-inflammatory effects. Furthermore, in vivo imaging of systemically MB-treated mice also showed no alterations of microglia activity in response to local lesions. Thus although systemic MB treatment had no effect on microgliosis, instead, its use revealed an important influence on motor neuron survival as indicated by an increased number of lumbar anterior horn neurons present at the time of disease onset. Thus, potentially beneficial effects of locally applied MB on inflammatory events contributing to disease progression could not be reproduced in SOD1(G93A) mice via systemic administration, whereas systemic MB application delayed disease onset via neuroprotection.
Collapse
Affiliation(s)
- Payam Dibaj
- Max-Planck-Institute for Experimental Medicine, Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Mulligan VK, Kerman A, Laister RC, Sharda PR, Arslan PE, Chakrabartty A. Early Steps in Oxidation-Induced SOD1 Misfolding: Implications for Non-Amyloid Protein Aggregation in Familial ALS. J Mol Biol 2012; 421:631-52. [DOI: 10.1016/j.jmb.2012.04.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 04/12/2012] [Accepted: 04/14/2012] [Indexed: 12/14/2022]
|
94
|
Handy DE, Loscalzo J. Redox regulation of mitochondrial function. Antioxid Redox Signal 2012; 16:1323-67. [PMID: 22146081 PMCID: PMC3324814 DOI: 10.1089/ars.2011.4123] [Citation(s) in RCA: 393] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 12/06/2011] [Accepted: 12/06/2011] [Indexed: 02/06/2023]
Abstract
Redox-dependent processes influence most cellular functions, such as differentiation, proliferation, and apoptosis. Mitochondria are at the center of these processes, as mitochondria both generate reactive oxygen species (ROS) that drive redox-sensitive events and respond to ROS-mediated changes in the cellular redox state. In this review, we examine the regulation of cellular ROS, their modes of production and removal, and the redox-sensitive targets that are modified by their flux. In particular, we focus on the actions of redox-sensitive targets that alter mitochondrial function and the role of these redox modifications on metabolism, mitochondrial biogenesis, receptor-mediated signaling, and apoptotic pathways. We also consider the role of mitochondria in modulating these pathways, and discuss how redox-dependent events may contribute to pathobiology by altering mitochondrial function.
Collapse
Affiliation(s)
- Diane E Handy
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
95
|
Dunning CJ, Reyes JF, Steiner JA, Brundin P. Can Parkinson's disease pathology be propagated from one neuron to another? Prog Neurobiol 2012; 97:205-19. [DOI: 10.1016/j.pneurobio.2011.11.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/02/2011] [Accepted: 11/08/2011] [Indexed: 12/12/2022]
|
96
|
Banci L, Bertini I, Blaževitš O, Calderone V, Cantini F, Mao J, Trapananti A, Vieru M, Amori I, Cozzolino M, Carrì MT. Interaction of cisplatin with human superoxide dismutase. J Am Chem Soc 2012; 134:7009-14. [PMID: 22471402 DOI: 10.1021/ja211591n] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
cis-Diamminedichloroplatinum(II) (cisplatin) is able to interact with human superoxide dismutase (hSOD1) in the disulfide oxidized apo form with a dissociation constant of 37 ± 3 μM through binding cysteine 111 (Cys111) located at the edge of the subunit interface. It also binds to Cu(2)-Zn(2) and Zn(2)-Zn(2) forms of hSOD1. Cisplatin inhibits aggregation of demetalated oxidized hSOD1, and it is further able to dissolve and monomerize oxidized hSOD1 oligomers in vitro and in cell, thus indicating its potential as a leading compound for amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Boccitto M, Lamitina T, Kalb RG. Daf-2 signaling modifies mutant SOD1 toxicity in C. elegans. PLoS One 2012; 7:e33494. [PMID: 22457769 PMCID: PMC3308959 DOI: 10.1371/journal.pone.0033494] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 02/14/2012] [Indexed: 12/14/2022] Open
Abstract
The DAF-2 Insulin/IGF-1 signaling (IIS) pathway is a strong modifier of Caenorhabditis elegans longevity and healthspan. As aging is the greatest risk factor for developing neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS), we were interested in determining if DAF-2 signaling modifies disease pathology in mutant superoxide dismutase 1 (SOD1) expressing C. elegans. Worms with pan-neuronal G85R SOD1 expression demonstrate significantly impaired locomotion as compared to WT SOD1 expressing controls and they develop insoluble SOD1 aggregates. Reductions in DAF-2 signaling, either through a hypomorphic allele or neuronally targeted RNAi, decreases the abundance of aggregated SOD1 and results in improved locomotion in a DAF-16 dependant manner. These results suggest that manipulation of the DAF-2 Insulin/IGF-1 signaling pathway may have therapeutic potential for the treatment of ALS.
Collapse
Affiliation(s)
- Marco Boccitto
- Department of Pediatrics, Division of Neurology, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America.
| | | | | |
Collapse
|
98
|
An over-oxidized form of superoxide dismutase found in sporadic amyotrophic lateral sclerosis with bulbar onset shares a toxic mechanism with mutant SOD1. Proc Natl Acad Sci U S A 2012; 109:5074-9. [PMID: 22416121 DOI: 10.1073/pnas.1115402109] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent studies suggest that Cu/Zn superoxide dismutase (SOD1) could be pathogenic in both familial and sporadic amyotrophic lateral sclerosis (ALS) through either inheritable or nonheritable modifications. The presence of a misfolded WT SOD1 in patients with sporadic ALS, along with the recently reported evidence that reducing SOD1 levels in astrocytes derived from sporadic patients inhibits astrocyte-mediated toxicity on motor neurons, suggest that WT SOD1 may acquire toxic properties similar to familial ALS-linked mutant SOD1, perhaps through posttranslational modifications. Using patients' lymphoblasts, we show here that indeed WT SOD1 is modified posttranslationally in sporadic ALS and is iper-oxidized (i.e., above baseline oxidation levels) in a subset of patients with bulbar onset. Derivatization analysis of oxidized carbonyl compounds performed on immunoprecipitated SOD1 identified an iper-oxidized SOD1 that recapitulates mutant SOD1-like properties and damages mitochondria by forming a toxic complex with mitochondrial Bcl-2. This study conclusively demonstrates the existence of an iper-oxidized SOD1 with toxic properties in patient-derived cells and identifies a common SOD1-dependent toxicity between mutant SOD1-linked familial ALS and a subset of sporadic ALS, providing an opportunity to develop biomarkers to subclassify ALS and devise SOD1-based therapies that go beyond the small group of patients with mutant SOD1.
Collapse
|
99
|
van Blitterswijk M, Gulati S, Smoot E, Jaffa M, Maher N, Hyman BT, Ivinson AJ, Scherzer CR, Schoenfeld DA, Cudkowicz ME, Brown RH, Bosco DA. Anti-superoxide dismutase antibodies are associated with survival in patients with sporadic amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2012; 12:430-8. [PMID: 22023190 DOI: 10.3109/17482968.2011.585163] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Our objective was to test the hypothesis that aberrantly modified forms of superoxide dismutase (SOD1) influence the disease course for sporadic amyotrophic lateral sclerosis (SALS). We probed for anti-SOD1 antibodies (IgM and IgG) against both the normal and aberrantly oxidized-SOD1 (SODox) antigens in sera from patients with SALS, subjects diagnosed with other neurological disorders and healthy individuals, and correlated the levels of these antibodies to disease duration and/or severity. Anti-SOD1 antibodies were detected in all cohorts; however, a subset of ∼5-10% of SALS cases exhibited elevated levels of anti-SOD1 antibodies. Those SALS cases with relatively high levels of IgM antibodies against SODox exhibit a longer survival of 6.4 years, compared to subjects lacking these antibodies. By contrast, SALS subjects expressing higher levels of IgG antibodies reactive for the normal WT-SOD1 antigen exhibit a shorter survival of 4.1 years. Anti-SOD1 antibody levels did not correlate with disease severity in either the Alzheimer's or Parkinson's disease cohorts. In conclusion, the association of longer survival with elevated levels of anti-SODox antibodies suggests that these antibodies may be protective. By extension, these data implicate aberrantly modified forms of WT-SOD1 (e.g. oxidized SOD1) in SALS pathogenesis. In contrast, an immune response against the normal WT-SOD1 appears to be disadvantageous in SALS, possibly because the anti-oxidizing activity of normal WT-SOD1 is beneficial to SALS individuals.
Collapse
Affiliation(s)
- Marka van Blitterswijk
- Department of Neurology, University of Massachusetts Medical Center, Worcester, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Audet JN, Soucy G, Julien JP. Methylene blue administration fails to confer neuroprotection in two amyotrophic lateral sclerosis mouse models. Neuroscience 2012; 209:136-43. [PMID: 22230045 DOI: 10.1016/j.neuroscience.2011.12.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/16/2011] [Accepted: 12/26/2011] [Indexed: 12/12/2022]
Abstract
Approximately 20% cases of familial amyotrophic lateral sclerosis (ALS) are caused by mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1). Recent studies have shown that methylene blue (MB) was efficient in conferring protection in several neurological disorders. MB was found to improve mitochondrial function, to reduce reactive oxygen species, to clear aggregates of toxic proteins, and to act as a nitric oxide synthase inhibitor. These pleiotropic effects of relevance to ALS pathogenesis led us to test MB in two models of ALS, SOD1(G93A) mice and TDP-43(G348C) transgenic mice. Intraperitoneal administration of MB at two different doses was initiated at the beginning of disease onset, at 90 days of age in SOD1(G93A) and at 6 months of age in TDP-43(G348C) mice. Despite its established neuroprotective properties, MB failed to confer protection in both mouse models of ALS. The lifespan of SOD1(G93A) mice was not affected by MB treatment. The declines in motor function, reflex score, and body weight of SOD1(G93A) mice remained unchanged. MB treatment had no effect on motor neuron loss and aggregation or misfolding of SOD1. A combination of MB with lithium also failed to provide benefits in SOD1(G93A) mice. In TDP-43(G348C) mice, MB failed to improve motor function. Cytosolic translocation of TDP-43, ubiquitination and inflammation remained also unchanged after MB treatment of TDP-43(G348C) mice.
Collapse
Affiliation(s)
- J-N Audet
- Research Centre of CHUQ and Department of Psychiatry and Neurosciences, Laval University, 2705 Laurier Boulevard, QC, Canada G1V 4G2
| | | | | |
Collapse
|