51
|
Barrès R, Gonzalez T, Le Marchand-Brustel Y, Tanti JF. The interaction between the adaptor protein APS and Enigma is involved in actin organisation. Exp Cell Res 2005; 308:334-44. [PMID: 15946664 DOI: 10.1016/j.yexcr.2005.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 05/03/2005] [Accepted: 05/04/2005] [Indexed: 11/17/2022]
Abstract
APS (adaptor protein with PH and SH2 domains) is an adaptor protein phosphorylated by several tyrosine kinase receptors including the insulin receptor. To identify novel binding partners of APS, we performed yeast two-hybrid screening. We identified Enigma, a PDZ and LIM domain-containing protein that was previously shown to be associated with the actin cytoskeleton. In HEK 293 cells, Enigma interacted specifically with APS, but not with the APS-related protein SH2-B. This interaction required the NPTY motif of APS and the LIM domains of Enigma. In NIH-3T3 cells that express the insulin receptor, Enigma and APS were partially co-localised with F-actin in small ruffling structures. Insulin increased the complex formation between APS and Enigma and their co-localisation in large F-actin containing ruffles. While in NIH-3T3 and HeLa cells the co-expression of both Enigma and APS did not modify the actin cytoskeleton organisation, expression of Enigma alone led to the formation of F-actin clusters. Similar alteration in actin cytoskeleton organisation was observed in cells expressing both Enigma and APS with a mutation in the NPTY motif. These results identify Enigma as a novel APS-binding protein and suggest that the APS/Enigma complex plays a critical role in actin cytoskeleton organisation.
Collapse
Affiliation(s)
- Romain Barrès
- INSERM U568 and IFR 50, Faculté de Médecine, Avenue de Valombrose, 06107 Nice Cedex 02, France
| | | | | | | |
Collapse
|
52
|
Sullivan CJ, Teal TH, Luttrell IP, Tran KB, Peters MA, Wessells H. Microarray analysis reveals novel gene expression changes associated with erectile dysfunction in diabetic rats. Physiol Genomics 2005; 23:192-205. [PMID: 16118269 PMCID: PMC3902176 DOI: 10.1152/physiolgenomics.00112.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To investigate the full range of molecular changes associated with erectile dysfunction (ED) in Type 1 diabetes, we examined alterations in penile gene expression in streptozotocin-induced diabetic rats and littermate controls. With the use of Affymetrix GeneChip arrays and statistical filtering, 529 genes/transcripts were considered to be differentially expressed in the diabetic rat cavernosum compared with control. Gene Ontology (GO) classification indicated that there was a decrease in numerous extracellular matrix genes (e.g., collagen and elastin related) and an increase in oxidative stress-associated genes in the diabetic rat cavernosum. In addition, PubMatrix literature mining identified differentially expressed genes previously shown to mediate vascular dysfunction [e.g., ceruloplasmin (Cp), lipoprotein lipase, and Cd36] as well as genes involved in the modulation of the smooth muscle phenotype (e.g., Kruppel-like factor 5 and chemokine C-X3-C motif ligand 1). Real-time PCR was used to confirm changes in expression for 23 relevant genes. Further validation of Cp expression in the diabetic rat cavernosum demonstrated increased mRNA levels of the secreted and anchored splice variants of Cp. CP protein levels showed a 1.9-fold increase in tissues from diabetic rats versus controls. Immunohistochemistry demonstrated localization of CP protein in cavernosal sinusoids of control and diabetic animals, including endothelial and smooth muscle layers. Overall, this study broadens the scope of candidate genes and pathways that may be relevant to the pathophysiology of diabetes-induced ED as well as highlights the potential complexity of this disorder.
Collapse
Affiliation(s)
- Chris J. Sullivan
- Department of Urology, University of Washington, School of Medicine and Harborview Medical Center, Seattle, WA 98104
| | - Thomas H. Teal
- Department of Urology, University of Washington, School of Medicine and Harborview Medical Center, Seattle, WA 98104
| | - Ian P. Luttrell
- Department of Urology, University of Washington, School of Medicine and Harborview Medical Center, Seattle, WA 98104
| | - Khoa B. Tran
- Department of Urology, University of Washington, School of Medicine and Harborview Medical Center, Seattle, WA 98104
| | - Mette A. Peters
- Center for Expression Arrays, University of Washington, Seattle, WA 98195
- All correspondence should be addressed to: Hunter Wessells, M.D., F.A.C.S., Department of Urology, Harborview Medical Center, 325 9 Avenue, Box 359868, Seattle, WA 98104-2499, Tel (206) 731-3205, Fax (206) 341-5442,
| | - Hunter Wessells
- Department of Urology, University of Washington, School of Medicine and Harborview Medical Center, Seattle, WA 98104
| |
Collapse
|
53
|
Au Y, Atkinson RA, Guerrini R, Kelly G, Joseph C, Martin SR, Muskett FW, Pallavicini A, Faulkner G, Pastore A. Solution structure of ZASP PDZ domain; implications for sarcomere ultrastructure and enigma family redundancy. Structure 2004; 12:611-22. [PMID: 15062084 DOI: 10.1016/j.str.2004.02.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 12/30/2003] [Accepted: 01/08/2004] [Indexed: 11/26/2022]
Abstract
Z band alternately spliced PDZ-containing protein (ZASP) is a sarcomere Z disk protein expressed in human cardiac and skeletal muscle that is thought to be involved in a dominant familial dilated cardiomyopathy. The N-terminal PDZ domain of ZASP interacts with the C terminus of alpha-actinin-2, the major component of the Z disk, probably by forming a ternary complex with titin Z repeats. We have determined the structure of ZASP PDZ by NMR and showed that it is a classical class 1 PDZ domain that recognizes the carboxy-terminal sequence of an alpha-actinin-2 calmodulin-like domain with micromolar affinity. We also characterized the role of each component in the ternary complex ZASP/alpha-actinin-2/titin, showing that the alpha-actinin-2/ZASP PDZ interaction involves a binding surface distinct from that recognized by the titin Z repeats. ZASP PDZ structure was used to model other members of the enigma family by homology and to predict their abilities to bind alpha-actinin-2.
Collapse
Affiliation(s)
- Yunghan Au
- National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Kee AJ, Schevzov G, Nair-Shalliker V, Robinson CS, Vrhovski B, Ghoddusi M, Qiu MR, Lin JJC, Weinberger R, Gunning PW, Hardeman EC. Sorting of a nonmuscle tropomyosin to a novel cytoskeletal compartment in skeletal muscle results in muscular dystrophy. ACTA ACUST UNITED AC 2004; 166:685-96. [PMID: 15337777 PMCID: PMC2172434 DOI: 10.1083/jcb.200406181] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tropomyosin (Tm) is a key component of the actin cytoskeleton and >40 isoforms have been described in mammals. In addition to the isoforms in the sarcomere, we now report the existence of two nonsarcomeric (NS) isoforms in skeletal muscle. These isoforms are excluded from the thin filament of the sarcomere and are localized to a novel Z-line adjacent structure. Immunostained cross sections indicate that one Tm defines a Z-line adjacent structure common to all myofibers, whereas the second Tm defines a spatially distinct structure unique to muscles that undergo chronic or repetitive contractions. When a Tm (Tm3) that is normally absent from muscle was expressed in mice it became associated with the Z-line adjacent structure. These mice display a muscular dystrophy and ragged-red fiber phenotype, suggestive of disruption of the membrane-associated cytoskeletal network. Our findings raise the possibility that mutations in these tropomyosin and these structures may underpin these types of myopathies.
Collapse
MESH Headings
- Animals
- Cell Compartmentation/genetics
- Cell Membrane/metabolism
- Cell Membrane/pathology
- Cell Membrane/ultrastructure
- Cytoskeleton/metabolism
- Cytoskeleton/pathology
- Cytoskeleton/ultrastructure
- Disease Models, Animal
- Female
- Mice
- Mice, Transgenic
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/ultrastructure
- Muscular Dystrophy, Animal/etiology
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/physiopathology
- Mutation/genetics
- Phenotype
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Isoforms/ultrastructure
- Protein Transport/genetics
- Sarcomeres/metabolism
- Sarcomeres/pathology
- Sarcomeres/ultrastructure
- Tropomyosin/genetics
- Tropomyosin/metabolism
- Tropomyosin/ultrastructure
Collapse
Affiliation(s)
- Anthony J Kee
- Muscle Development Unit, Children's Medical Research Institute, Locked Bag 23, Wentworthville, New South Wales 2145, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Krause A, Zacharias W, Camarata T, Linkhart B, Law E, Lischke A, Miljan E, Simon HG. Tbx5 and Tbx4 transcription factors interact with a new chicken PDZ-LIM protein in limb and heart development. Dev Biol 2004; 273:106-20. [PMID: 15302601 DOI: 10.1016/j.ydbio.2004.05.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 03/26/2004] [Accepted: 05/03/2004] [Indexed: 01/05/2023]
Abstract
The T-domain transcription factors, Tbx5 and Tbx4, play important roles in vertebrate limb and heart development. To identify interacting and potential Tbx-regulating proteins, we performed a yeast two-hybrid screen with the C-terminal domain of Tbx5 as bait. We identified a new PDZ-LIM protein composed of one N-terminal PDZ and three C-terminal LIM domains, which we named chicken LMP-4. Among the Tbx2, 3, 4, 5 subfamily, we observed exclusive interaction with Tbx5 and Tbx4 proteins. Tbx3 nor Tbx2 can substitute for LMP-4 binding. While chicken LMP-4 associates with Tbx5 or Tbx4, it uses distinct LIM domains to bind to the individual proteins. Subcellular co-localization of LMP-4 and Tbx proteins supports the protein interaction and reveals interference of LMP-4 with Tbx protein distribution, tethering the transcription factors to the cytoskeleton. The protein-protein interaction indicates regulation of Tbx function at the level of transcription factor nuclear localization. During chicken limb and heart development, Tbx5/LMP-4 and Tbx4/LMP-4 are tightly co-expressed in a temporal and spatial manner, suggesting that they operate in the same pathway. Surprisingly, chicken LMP-4 expression domains outside those of Tbx5 in the heart led to the discovery of Tbx4 expression in the outflow tract and the right ventricle of this organ. The Tbx4-expressing cells coincide with those of the recently discovered secondary anterior heart-forming field. The discrete posterior or anterior expression domains in the heart and the exclusive fore- or hindlimb expression of Tbx5 and Tbx4, respectively, suggest common pathways in the heart and limbs. The identification of a new Tbx5/4-specific binding factor further suggests a novel mechanism for Tbx transcription factor regulation in development and disease.
Collapse
Affiliation(s)
- Ange Krause
- Department of Pediatrics, The Feinberg School of Medicine, Children's Memorial Institute for Education and Research, Northwestern University, Chicago, IL 60614, USA
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Vrhovski B, Lemckert F, Gunning P. Modification of the tropomyosin isoform composition of actin filaments in the brain by deletion of an alternatively spliced exon. Neuropharmacology 2004; 47:684-93. [PMID: 15458840 DOI: 10.1016/j.neuropharm.2004.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 07/02/2004] [Accepted: 07/12/2004] [Indexed: 10/26/2022]
Abstract
Tropomyosin (Tm) in non-muscle cells is involved in stabilisation of the actin cytoskeleton. Some of the 40 isoforms described are found in the brain and exhibit spatial and developmental regulation. Non-muscle isoforms from the gamma Tm gene can be subdivided into three subsets of isoforms differing at the C-terminus, all of which are found throughout the brain and some of which are implicated in different aspects of neuronal function. We have approached the role of different gamma isoforms in neuronal function by knocking out a subset of isoforms. We show here that we can successfully knock out all isoforms containing the brain-specific 9c C-terminus. Brains from these mice did not show any gross abnormalities. Western analysis of adult brains showed that 9c isoforms are reduced in +/- and absent in -/- mice but that a compensation by 9a-containing isoforms resulted in total levels of gamma products remaining the same. No other Tm isoforms were altered. We have therefore specifically altered the Tm composition in these neurons which allows us to study the effects of these changes on the cytoskeleton of neurons during growth, differentiation and maturation and give us insights into the normal roles of these isoforms.
Collapse
Affiliation(s)
- Bernadette Vrhovski
- Oncology Research Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW 2145, Australia
| | | | | |
Collapse
|
57
|
Windemuth A, Kumar M, Nandabalan K, Koshy B, Xu C, Pungliya M, Judson R. Genome-wide association of haplotype markers to gene expression levels. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 68:89-107. [PMID: 15338607 DOI: 10.1101/sqb.2003.68.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- A Windemuth
- Genaissance Pharmaceuticals, New Haven, Connecticut 06511, USA
| | | | | | | | | | | | | |
Collapse
|
58
|
Watanabe T, Akishita M, Nakaoka T, He H, Miyahara Y, Yamashita N, Wada Y, Aburatani H, Yoshizumi M, Kozaki K, Ouchi Y. Caveolin-1, Id3a and two LIM protein genes are upregulated by estrogen in vascular smooth muscle cells. Life Sci 2004; 75:1219-29. [PMID: 15219810 DOI: 10.1016/j.lfs.2004.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Accepted: 03/02/2004] [Indexed: 11/18/2022]
Abstract
Estrogen has diverse effects on the vasculature, such as vasodilation, endothelial growth and inhibition of vascular smooth muscle cell (VSMC) proliferation and migration. However, little is known about the genes that are regulated by estrogen in the vascular wall. Wistar rats were ovariectomized or sham-operated (Sham group), and 2 weeks after the operation, were subjected to subcutaneous implantation of placebo pellets (OVX + V group) or estradiol pellets (OVX + E group). Endothelium-denuded aortic tissue was examined 2 weeks after implantation. By applying high-density oligonucleotide microarray analysis, the expression of approximately 7000 genes was analyzed. Among the genes with different expression levels between the OVX + E group and the OVX + V group, those that have been reported to be expressed in the vasculature or muscle tissue, were chosen. Finally, four genes, caveolin-1, two LIM proteins (enigma and SmLIM) and Id3a, were identified. Microarray as well as real-time polymerase chain reaction showed that the expression levels of these genes were significantly higher in the OVX + E group than in the OVX + V group. To clarify whether estrogen directly upregulates these genes in the vascular wall, Northern blot analysis was performed using cultured rat VSMC. Addition of 100 nmol/L estradiol for 24 hours increased the mRNA levels of all four genes. Although the precise mechanism remains unclear, regulation of these genes by estrogen might contribute to its effect on VSMC.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Aorta, Thoracic
- Blotting, Northern
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Caveolin 1
- Caveolins/genetics
- Caveolins/metabolism
- Cytoskeletal Proteins
- Estradiol/pharmacology
- Female
- Inhibitor of Differentiation Proteins
- Intracellular Signaling Peptides and Proteins
- LIM Domain Proteins
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Oligonucleotide Array Sequence Analysis
- Ovariectomy
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Reverse Transcriptase Polymerase Chain Reaction
- Up-Regulation
Collapse
Affiliation(s)
- Tokumitsu Watanabe
- Department of Geriatric Medicine, Graduate School of Medicine, University of Tokyo 7-3-1 Hongo, Bunkyo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Klaavuniemi T, Kelloniemi A, Ylänne J. The ZASP-like motif in actinin-associated LIM protein is required for interaction with the alpha-actinin rod and for targeting to the muscle Z-line. J Biol Chem 2004; 279:26402-10. [PMID: 15084604 DOI: 10.1074/jbc.m401871200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Z-line is a specialized structure connecting adjacent sarcomeres in muscle cells. alpha-Actinin cross-links actin filaments in the Z-line. Several PDZ-LIM domain proteins localize to the Z-line and interact with alpha-actinin. Actinin-associated LIM protein (ALP), C-terminal LIM domain protein (CLP36), and Z band alternatively spliced PDZ-containing protein (ZASP) have a conserved region named the ZASP-like motif (ZM) between PDZ and LIM domains. To study the interactions and function of ALP we used purified recombinant proteins in surface plasmon resonance measurements. We show that ALP and alpha-actinin 2 have two interaction sites. The ZM motif was required for the interaction of ALP internal region with the alpha-actinin rod and for targeting of ALP to the Z-line. The PDZ domain of ALP bound to the C terminus of alpha-actinin. This is the first indication that the ZM motif would have a direct role in a protein-protein interaction. These results suggest that the two interaction sites of ALP would stabilize certain conformations of alpha-actinin 2 that would strengthen the Z-line integrity.
Collapse
Affiliation(s)
- Tuula Klaavuniemi
- Biocenter Oulu and Department of Biochemisty, University of Oulu, P. O. Box 3000, FIN-90014 Oulu, Finland
| | | | | |
Collapse
|
60
|
Vallenius T, Scharm B, Vesikansa A, Luukko K, Schäfer R, Mäkelä TP. The PDZ-LIM protein RIL modulates actin stress fiber turnover and enhances the association of alpha-actinin with F-actin. Exp Cell Res 2004; 293:117-28. [PMID: 14729062 DOI: 10.1016/j.yexcr.2003.09.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
ALP, CLP-36 and RIL form the ALP subfamily of PDZ-LIM proteins. ALP has been implicated in sarcomere function in muscle cells in association with alpha-actinin. The closely related CLP-36 is predominantly expressed in nonmuscle cells, where it localizes to actin stress fibers also in association with alpha-actinin. Here we have studied the expression and functions of RIL originally identified as a gene downregulated in H-ras-transformed cells. RIL was mostly expressed in nonmuscle epithelial cells with a pattern distinct from that of CLP-36. RIL protein was found to localize to actin stress fibers in nonmuscle cells similarly to CLP-36. However, RIL expression led to partially abnormal actin filaments showing thick irregular stress fibers not seen with CLP-36. Furthermore, live cell imaging demonstrated altered stress fiber dynamics with rapid formation of new fibers and frequent collapse of thick irregular fibers in EGFP-RIL-expressing cells. These effects may be mediated through the association of RIL with alpha-actinin, as RIL was found to associate with alpha-actinin via its PDZ domain, and RIL enhanced the ability of alpha-actinin to cosediment with actin filaments. These results implicate the RIL PDZ-LIM protein as a regulator of actin stress fiber turnover.
Collapse
Affiliation(s)
- Tea Vallenius
- Molecular Cancer Biology Program, Institute of Biomedicine and Helsinki University Central Hospital, University of Helsinki, Biomedicum Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
61
|
Knöll R, Hoshijima M, Chien K. Cardiac mechanotransduction and implications for heart disease. J Mol Med (Berl) 2003; 81:750-6. [PMID: 14551702 DOI: 10.1007/s00109-003-0488-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2003] [Accepted: 08/07/2003] [Indexed: 12/20/2022]
Abstract
Mechanotransduction, the conversion of a mechanical stimulus into a cellular response, plays a fundamental role in cell volume regulation, fertilization, gravitaxis, proprioception, and the senses of hearing, touch, and balance. Mechanotransduction also fills important functions in the myocardium, where each cycle of contraction and relaxation leads to dynamic deformations. Since the initial observation of stretch induced muscle growth, our understanding of this complex field has been steadily growing, but remains incomplete. For example, the mechanism by which myocytes sense mechanical forces is still unknown. It is also unknown which mechanism converts such a stimulus into an electrochemical signal, and how this information is transferred to the nucleus. Is there a subpopulation of mechanosensing myocytes or mechanosensing cells in the myocardium? The following article offers an overview of the fundamental processes of mechanical stretch sensing in myocytes and recent advances in our understanding of this increasingly important field. Special emphasis is placed on the unique cardiac cytoskeletal structure and related Z-disc proteins.
Collapse
Affiliation(s)
- Ralph Knöll
- Institute of Molecular Medicine, University of California at San Diego, 9500 Gilman Drive Mail Code 0641, La Jolla, CA 92093-0641, USA.
| | | | | |
Collapse
|
62
|
Hoshijima M, Pashmforoush M, Knöll R, Chien KR. The MLP family of cytoskeletal Z disc proteins and dilated cardiomyopathy: a stress pathway model for heart failure progression. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 67:399-408. [PMID: 12858565 DOI: 10.1101/sqb.2002.67.399] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- M Hoshijima
- Institute of Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
63
|
Kieran NE, Doran PP, Connolly SB, Greenan MC, Higgins DF, Leonard M, Godson C, Taylor CT, Henger A, Kretzler M, Burne MJ, Rabb H, Brady HR. Modification of the transcriptomic response to renal ischemia/reperfusion injury by lipoxin analog. Kidney Int 2003; 64:480-92. [PMID: 12846743 DOI: 10.1046/j.1523-1755.2003.00106.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Lipoxins are lipoxygenase-derived eicosanoids with anti-inflammatory and proresolution bioactivities in vitro and in vivo. We have previously demonstrated that the stable synthetic LXA4 analog 15-epi-16-(FPhO)-LXA4-Me is renoprotective in murine renal ischemia/reperfusion injury, as gauged by lower serum creatinine, attenuated leukocyte infiltration, and reduced morphologic tubule injury. METHODS We employed complementary oligonucleotide microarray and bioinformatic analyses to probe the transcriptomic events that underpin lipoxin renoprotection in this setting. RESULTS Microarray-based analysis identified three broad categories of genes whose mRNA levels are altered in response to ischemia/reperfusion injury, including known genes previously implicated in the pathogenesis of ischemia/reperfusion injury [e.g., intercellular adhesion molecule-1 (ICAM-1), p21, KIM-1], known genes not previously associated with ischemia/reperfusion injury, and cDNAs representing yet uncharacterized genes. Characterization of expressed sequence tags (ESTs) displayed on microarrays represents a major challenge in studies of global gene expression. A bioinformatic annotation pipeline successfully annotated a large proportion of ESTs modulated during ischemia/reperfusion injury. The differential expression of a representative group of these ischemia/reperfusion injury-modulated genes was confirmed by real-time polymerase chain reaction. Prominent among the up-regulated genes were claudin-1, -3, and -7, and ADAM8. Interestingly, the former response was claudin-specific and was not observed with other claudins expressed by the kidney (e.g., claudin-8 and -6) or indeed with other components of the renal tight junctions (e.g., occludin and junctional adhesion molecule). Noteworthy among the down-regulated genes was a cluster of transport proteins (e.g., aquaporin-1) and the zinc metalloendopeptidase meprin-1 beta implicated in renal remodeling. CONCLUSION Treatment with the lipoxin analog 15-epi-16-(FPhO)-LXA4-Me prior to injury modified the expression of many differentially expressed pathogenic mediators, including cytokines, growth factors, adhesion molecules, and proteases, suggesting a renoprotective action at the core of the pathophysiology of acute renal failure (ARF). Importantly, this lipoxin-modulated transcriptomic response included many genes expressed by renal parenchymal cells and was not merely a reflection of a reduced renal mRNA load resulting from attenuated leukocyte recruitment. The data presented herein suggest a framework for understanding drivers of kidney injury in ischemia/reperfusion and the molecular basis for renoprotection by lipoxins in this setting.
Collapse
Affiliation(s)
- Niamh E Kieran
- Human Genomics and Bioinformatics Research Unit, Department of Medicine and Therapeutics, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Mater Misericordiae Hospital, Dublin 7, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Clark KA, McElhinny AS, Beckerle MC, Gregorio CC. Striated muscle cytoarchitecture: an intricate web of form and function. Annu Rev Cell Dev Biol 2003; 18:637-706. [PMID: 12142273 DOI: 10.1146/annurev.cellbio.18.012502.105840] [Citation(s) in RCA: 423] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Striated muscle is an intricate, efficient, and precise machine that contains complex interconnected cytoskeletal networks critical for its contractile activity. The individual units of the sarcomere, the basic contractile unit of myofibrils, include the thin, thick, titin, and nebulin filaments. These filament systems have been investigated intensely for some time, but the details of their functions, as well as how they are connected to other cytoskeletal elements, are just beginning to be elucidated. These investigations have advanced significantly in recent years through the identification of novel sarcomeric and sarcomeric-associated proteins and their subsequent functional analyses in model systems. Mutations in these cytoskeletal components account for a large percentage of human myopathies, and thus insight into the normal functions of these proteins has provided a much needed mechanistic understanding of these disorders. In this review, we highlight the components of striated muscle cytoarchitecture with respect to their interactions, dynamics, links to signaling pathways, and functions. The exciting conclusion is that the striated muscle cytoskeleton, an exquisitely tuned, dynamic molecular machine, is capable of responding to subtle changes in cellular physiology.
Collapse
Affiliation(s)
- Kathleen A Clark
- Department of Cell Biology, University of Arizona, Tucson 85724, USA
| | | | | | | |
Collapse
|
65
|
Guo L, Ji C, Gu S, Ying K, Cheng H, Ni X, Liu J, Xie Y, Mao Y. Molecular cloning and characterization of a novel human kinase gene,PDIK1L. J Genet 2003; 82:27-32. [PMID: 14631099 DOI: 10.1007/bf02715878] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We isolated a 4301-bp cDNA from a human foetal brain cDNA library by high-throughput cDNA sequencing. It encodes a protein of 341 amino acids, which shows 69% identity with the human kinase CLIK1 (AAL99353), which was suggested to be the CLP-36 interacting kinase. Bioinformatics analysis suggests that the putative kinase may interact with PDZ and LIM domain proteins. Therefore the protein and its cDNA were named 'PDLIM1 interacting kinase 1 like' (PDIK1L; nomenclature approved by the HUGO Gene Nomenclature Committee). Ensembl Genome Browser located PDIK1L to human chromosome 1p35.3. It spans about 13.7 kb and consists of four exons and three introns. Multiple-tissue cDNA panel PCR revealed that the gene is expressed widely in human tissues: liver, kidney, pancreas, spleen, thymus and prostate. The protein appears to be localized to the nucleus.
Collapse
Affiliation(s)
- Lingchen Guo
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Siemens J, Kazmierczak P, Reynolds A, Sticker M, Littlewood-Evans A, Müller U. The Usher syndrome proteins cadherin 23 and harmonin form a complex by means of PDZ-domain interactions. Proc Natl Acad Sci U S A 2002; 99:14946-51. [PMID: 12407180 PMCID: PMC137525 DOI: 10.1073/pnas.232579599] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Usher syndrome type 1 (USH1) patients suffer from sensorineuronal deafness, vestibular dysfunction, and visual impairment. Several genetic loci have been linked to USH1, and four of the relevant genes have been identified. They encode the unconventional myosin VIIa, the PDZ-domain protein harmonin, and the putative adhesion receptors cadherin 23 (CDH23) and protocadherin 15 (PCDH15). We show here that CDH23 and harmonin form a protein complex. Two PDZ domains in harmonin interact with two complementary binding surfaces in the CDH23 cytoplasmic domain. One of the binding surfaces is disrupted by sequences encoded by an alternatively spliced CDH23 exon that is expressed in the ear, but not the retina. In the ear, CDH23 and harmonin are expressed in the stereocilia of hair cells, and in the retina within the photoreceptor cell layer. Because CDH23-deficient mice have splayed stereocilia, our data suggest that CDH23 and harmonin are part of a transmembrane complex that connects stereocilia into a bundle. Defects in the formation of this complex are predicted to disrupt stereocilia bundles and cause deafness in USH1 patients.
Collapse
Affiliation(s)
- Jan Siemens
- Friedrich Miescher Institute, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
67
|
Borrello MG, Mercalli E, Perego C, Degl'Innocenti D, Ghizzoni S, Arighi E, Eroini B, Rizzetti MG, Pierotti MA. Differential interaction of Enigma protein with the two RET isoforms. Biochem Biophys Res Commun 2002; 296:515-22. [PMID: 12176011 DOI: 10.1016/s0006-291x(02)00886-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The receptor tyrosine kinase RET, with a known role in embryonic development and in human pathologies, is alternatively spliced to yield at least two functional isoforms, which differ only in their carboxyl terminal. Enigma protein is a member of the PDZ-LIM family and is known to interact with the short isoform of RET/PTC2, a chimeric oncoprotein isolated from papillary thyroid carcinoma. Here, we show that Enigma also interacts in intact cells with the short isoform of RET-wt and of its pathologic mutants associated to MEN2 syndromes, RET-C634R and RET-M918T. In contrast, Enigma binds all the corresponding RET long isoforms very poorly and colocalizes with short but not long RET/PTC2 isoforms. The RET docking tyrosine for Enigma is the last but one before the divergence between the two isoforms and we demonstrated that short-isoform-specific amino acid residues +2 to +4 to this tyrosine are required for the interaction of RET/PTC2 with Enigma.
Collapse
Affiliation(s)
- Maria Grazia Borrello
- Department of Experimental Oncology, Research Unit #3, Istituto Nazionale Tumori, Via Venezian 1, 20133 Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Vallenius T, Mäkelä TP. Clik1: a novel kinase targeted to actin stress fibers by the CLP-36 PDZ-LIM protein. J Cell Sci 2002; 115:2067-73. [PMID: 11973348 DOI: 10.1242/jcs.115.10.2067] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this report we have characterized a novel, ubiquitously expressed kinase, Clik1, that is predominantly nuclear and undergoes autophosphorylation. Yeast two-hybrid analysis indicated a highly specific association between Clik1 and CLP-36, which was identified in 36 out of 37 Clik1-interacting clones. CLP-36 is a PDZ-LIM protein that localizes to actin stress fibers in nonmuscle cells and associates with α-actinin via its PDZ-domain. The association of CLP-36 with Clik1, in turn, is mediated by the C-terminal part of CLP-36 containing the LIM domain, and association was not noted with the closely related ALP PDZ-LIM protein. Interestingly, the association with CLP-36 led to relocalization of the otherwise nuclear Clik1 kinase to actin stress fibers, where it disrupted the periodic staining pattern of CLP-36. Taken together these results establish the CLP-36 PDZ-LIM protein as an adapter, recruiting the Clik1 kinase to actin stress fibers in nonmuscle cells, and suggest that Clik1 represents a novel regulator of actin stress fibers.
Collapse
Affiliation(s)
- Tea Vallenius
- Haartman Institute and Helsinki University Central Hospital, Biomedicum Helsinki, P.O. Box 63, 00014 University of Helsinki, Finland
| | | |
Collapse
|
69
|
Kurihara LJ, Semenova E, Miller W, Ingram RS, Guan XJ, Tilghman SM. Candidate genes required for embryonic development: a comparative analysis of distal mouse chromosome 14 and human chromosome 13q22. Genomics 2002; 79:154-61. [PMID: 11829485 DOI: 10.1006/geno.2002.6692] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mice homozygous for the Ednrb(s-1Acrg) deletion arrest at embryonic day 8.5 from defects associated with mesoderm development. To determine the molecular basis of this phenotype, we initiated a positional cloning of the Acrg minimal region. This region was predicted to be gene-poor by several criteria. From comparative analysis with the syntenic human locus at 13q22 and gene prediction program analysis, we found a single cluster of four genes within the 1.4-to 2-Mb contig over the Acrg minimal region that is flanked by a gene desert. We also found 130 highly conserved nonexonic sequences that were distributed over the gene cluster and desert. The four genes encode the TBC (Tre-2, BUB2, CDC16) domain-containing protein KIAA0603, the ubiquitin carboxy-terminal hydrolase L3 (UCHL3), the F-box/PDZ/LIM domain protein LMO7,and a novel gene. On the basis of their expression profile during development, all four genes are candidates for the Ednrb(s-1Acrg) embryonic lethality. Because we determined that a mutant of Uchl3 was viable, three candidate genes remain within the region.
Collapse
Affiliation(s)
- Laurie Jo Kurihara
- Howard Hughes Medical Institute and Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | | | | | |
Collapse
|
70
|
Kotaka M, Lau YM, Cheung KK, Lee SM, Li HY, Chan WY, Fung KP, Lee CY, Waye MM, Tsui SK. Elfin is expressed during early heart development. J Cell Biochem 2001; 83:463-72. [PMID: 11596114 DOI: 10.1002/jcb.1244] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Elfin (previously named CLIM1) is a protein that possesses an N-terminal PDZ domain and a C-terminal LIM domain. It belongs to the family of Enigma proteins. Enigma proteins are a family of cytoplasmic proteins that contain an N-terminal PDZ domain and a series of C-terminal LIM domains. By virtue of these two protein interacting domains, Enigma proteins are capable of protein-protein interactions. It has been proposed that Enigma proteins may act as adapters between kinases and the cytoskeleton. We have previously shown that Elfin is most abundantly expressed in the heart and it colocalizes with alpha-actinin 2 at the Z-disks of the myocardium. In this report, Elfin was shown to localize at the actin stress fibers of myoblasts, as revealed by green fluorescent protein (GFP) tagging. In situ hybridization and immunostaining showed that Elfin expression begins at an early stage in mouse development and is present throughout the developing heart. Taken together, our experimental results suggest that Elfin may play an important role in myofibrillogenesis and heart development.
Collapse
Affiliation(s)
- M Kotaka
- Department of Biochemistry, The Chinese University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Li HY, Kotaka M, Kostin S, Lee SM, Kok LD, Chan KK, Tsui SK, Schaper J, Zimmermann R, Lee CY, Fung KP, Waye MM. Translocation of a human focal adhesion LIM-only protein, FHL2, during myofibrillogenesis and identification of LIM2 as the principal determinants of FHL2 focal adhesion localization. CELL MOTILITY AND THE CYTOSKELETON 2001; 48:11-23. [PMID: 11124707 DOI: 10.1002/1097-0169(200101)48:1<11::aid-cm2>3.0.co;2-i] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
LIM domain proteins are found to be important regulators in cell growth, cell fate determination, cell differentiation, and remodeling of the cell cytoskeleton. Human Four-and-a-half LIM-only protein 2 (FHL2) is expressed predominantly in human heart and is only slightly expressed in skeletal muscle. Since FHL2 is an abundant protein in human heart, it may play an important role in the regulation of cell differentiation and myofibrillogenesis of heart at defined subcellular compartment. Therefore, we hypothesized that FHL2 act as a multi-functional protein by the specific arrangement of the LIM domains of FHL2 and that one of the LIM domains of FHL2 can function as an anchor and localizes it into a specific subcellular compartment in a cell type specific manner to regulate myofibrillogenesis. From our results, we observed that FHL2 is localized at the focal adhesions of the C2C12, H9C2 myoblast as well as a nonmyogenic cell line, HepG2 cells. Colocalization of vinculin-CFP and FHL2-GFP at focal adhesions was also observed in cell lines. Site-directed mutagenesis, in turn, suggested that the second LIM domain-LIM2 is essential for its specific localization to focal adhesions. Moreover, FHL2 was observed along with F-actin and focal adhesion of C2C12 and H9C2 myotubes. Finally, we believe that FHL2 moves from focal adhesions and then stays at the Z-discs of terminally differentiated heart muscle.
Collapse
Affiliation(s)
- H Y Li
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Human CLP36, a PDZ-domain and LIM-domain protein, binds to α-actinin-1 and associates with actin filaments and stress fibers in activated platelets and endothelial cells. Blood 2000. [DOI: 10.1182/blood.v96.13.4236] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractA 38-kd protein that associates with F-actin structures in activated platelets and endothelial cells was purified, cloned, and characterized. The protein contains an N-terminal PDZ motif, a large intervening sequence, and a C-terminal LIM domain and was identified as the human homolog of rat CLP36. The study showed that CLP36 associates with actin filaments and stress fibers that are formed during shape change and spreading of platelets and during migration and contraction of endothelial cells. CLP36 binds to α-actinin-1 as shown by coimmunoprecipitation, pull-down experiments, yeast 2-hybrid analysis, and blot overlay assays and colocalizes with α-actinin-1 along endothelial actin stress fibers. In contrast to α-actinin-1, CLP36 was absent from focal adhesions in both activated platelets and endothelial cells. The N-terminal part of CLP36 containing the PDZ domain and the intervening region, but not the LIM domain, targeted enhanced green fluorescent protein fusion proteins to stress fibers in endothelial cells. Yeast 2-hybrid analysis demonstrated that the intervening sequence, but not the PDZ or the LIM domain of CLP36, binds to the spectrinlike repeats 2 and 3 of α-actinin-1. The study further shows that CLP36 binds to α-actinin in resting platelets and translocates as a CLP36/α-actinin complex to the newly formed actin cytoskeleton in activated platelets. The results indicate that CLP36 binds via α-actinin-1 to actin filaments and stress fibers in activated human platelets and endothelial cells. The study suggests that CLP36 may direct α-actinin-1 to specific actin structures and at this position might modulate the function of α-actinin-1.
Collapse
|
73
|
Human CLP36, a PDZ-domain and LIM-domain protein, binds to α-actinin-1 and associates with actin filaments and stress fibers in activated platelets and endothelial cells. Blood 2000. [DOI: 10.1182/blood.v96.13.4236.h8004236_4236_4245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 38-kd protein that associates with F-actin structures in activated platelets and endothelial cells was purified, cloned, and characterized. The protein contains an N-terminal PDZ motif, a large intervening sequence, and a C-terminal LIM domain and was identified as the human homolog of rat CLP36. The study showed that CLP36 associates with actin filaments and stress fibers that are formed during shape change and spreading of platelets and during migration and contraction of endothelial cells. CLP36 binds to α-actinin-1 as shown by coimmunoprecipitation, pull-down experiments, yeast 2-hybrid analysis, and blot overlay assays and colocalizes with α-actinin-1 along endothelial actin stress fibers. In contrast to α-actinin-1, CLP36 was absent from focal adhesions in both activated platelets and endothelial cells. The N-terminal part of CLP36 containing the PDZ domain and the intervening region, but not the LIM domain, targeted enhanced green fluorescent protein fusion proteins to stress fibers in endothelial cells. Yeast 2-hybrid analysis demonstrated that the intervening sequence, but not the PDZ or the LIM domain of CLP36, binds to the spectrinlike repeats 2 and 3 of α-actinin-1. The study further shows that CLP36 binds to α-actinin in resting platelets and translocates as a CLP36/α-actinin complex to the newly formed actin cytoskeleton in activated platelets. The results indicate that CLP36 binds via α-actinin-1 to actin filaments and stress fibers in activated human platelets and endothelial cells. The study suggests that CLP36 may direct α-actinin-1 to specific actin structures and at this position might modulate the function of α-actinin-1.
Collapse
|
74
|
Fu SL, Waha A, Vogt PK. Identification and characterization of genes upregulated in cells transformed by v-Jun. Oncogene 2000; 19:3537-45. [PMID: 10918612 DOI: 10.1038/sj.onc.1203691] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The transcription factor Jun (c-Jun) functions as a recipient of extracellular growth signals and converts them into patterns of gene expression. An oncogenic variant of c-Jun was isolated from the acutely transforming retrovirus ASV17. Overexpression of this viral Jun (v-Jun) induces transformation of chicken embryo fibroblasts (CEF) in culture and fibrosarcomas in chickens. v-Jun is a constitutively active form of c-Jun and transforms cells presumably by deregulating the expression of specific target genes. In this report, we describe six genes whose transcripts are upregulated in v-Jun-transformed CEF. Three of these genes show homology to known mammalian genes, to MAP kinase phosphatase 2 (MKP-2), to reversion-induced LIM protein (RIL) and to cytokine-inducible SH2-containing protein (CIS). Northern blot analysis, using CEF infected with various Jun mutants or an estrogen-regulatable Jun chimera, revealed distinct induction patterns of individual targets by v-Jun. The chicken RIL homolog showed an expression pattern tightly correlated with the activity of v-Jun. Its expression is also transformation-dependent, suggesting a role for this gene in v-Jun transformation. The newly identified v-Jun targets can serve as molecular markers in the v-Jun transformation process. Oncogene (2000) 19, 3537 - 3545
Collapse
Affiliation(s)
- S L Fu
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, BCC239, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
75
|
Kotaka M, Kostin S, Ngai S, Chan K, Lau Y, Lee SM, Li HY, Ng EK, Schaper J, Tsui SK, Fung KP, Lee CY, Waye MM. Interaction of hCLIM1, an enigma family protein, with alpha-actinin 2. J Cell Biochem 2000; 78:558-65. [PMID: 10861853 DOI: 10.1002/1097-4644(20000915)78:4<558::aid-jcb5>3.0.co;2-i] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Enigma proteins are proteins that possess a PDZ domain at the amino terminal and one to three LIM domains at the carboxyl terminal. They are cytoplasmic proteins that are involved with the cytoskeleton and signal transduction pathway. By virtue of the two protein interacting domains, they are capable of protein-protein interactions. Here we report a study on a human Enigma protein hCLIM1, in particular. Our study describes the interaction of the human 36 kDa carboxyl terminal LIM domain protein (hCLIM1), the human homologue of CLP36 in rat, with alpha-actinin 2, the skeletal muscle isoform of alpha-actinin. hCLIM1 protein was shown to interact with alpha-actinin 2 by yeast two-hybrid screening and immunochemical analyses. Yeast two-hybrid analyses also demonstrated that the LIM domain of hCLIM1 binds to the EF-hand region of alpha-actinin 2, defining a new mode of LIM domain interactions. Immunofluorescent study demonstrates that hCLIM1 colocalizes with alpha-actinin at the Z-disks in human myocardium. Taken together, our experimental results suggest that hCLIM1is a novel cytoskeletal protein and may act as an adapter that brings other proteins to the cytoskeleton.
Collapse
Affiliation(s)
- M Kotaka
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Nakagawa N, Hoshijima M, Oyasu M, Saito N, Tanizawa K, Kuroda S. ENH, containing PDZ and LIM domains, heart/skeletal muscle-specific protein, associates with cytoskeletal proteins through the PDZ domain. Biochem Biophys Res Commun 2000; 272:505-12. [PMID: 10833443 DOI: 10.1006/bbrc.2000.2787] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Enigma homologue protein (ENH), containing an N-terminal PDZ domain and three C-terminal LIM domains, is a heart and skeletal muscle-specific protein that has been shown to preferentially interact with protein kinase C beta (PKCbeta) through the LIM domains (Kuroda et al., J. Biol. Chem. 271, 31029-31032, 1996). We here demonstrate that ENH is colocalized with a cytoskeletal protein alpha-actinin in the Z-disk region of rat neonatal cardiomyocytes. Pull-down assays using the glutathione-S-transferase-fusion system also showed the interaction of the PDZ domain of ENH with actin and alpha-actinin. Furthermore, by combined use of the in silico and conventional cDNA cloning methods, we have isolated three ENH-related clones from a mouse heart-derived cDNA library: mENH1 (591 amino acid residues) corresponding to rat ENH, mENH2 (337 residues), and mENH3 (239 residues); the latter two containing only a single PDZ domain. Deciphering their cDNA sequences, these mENH1-3 mRNAs appear to be generated from a single mENH gene by alternative splicing. Northern blot analyses using human cancer cells and mouse embryos have shown expression of each mENH mRNA to vary considerably among the cell types and during the developmental stage. Together with a recent finding that PKCbeta is markedly activated in the cardiac hypertrophic signaling, these results suggest that ENH1 plays an important role in the heart development by scaffolding PKCbeta to the Z-disk region and that ENH2 and ENH3 negatively modulate the scaffolding activity of ENH1.
Collapse
MESH Headings
- Actinin/metabolism
- Actins/metabolism
- Adaptor Proteins, Signal Transducing
- Alternative Splicing/genetics
- Amino Acid Sequence
- Animals
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cells, Cultured
- Cloning, Molecular
- Cytoskeletal Proteins
- Cytoskeleton/metabolism
- Gene Expression Regulation, Developmental
- Heart/embryology
- Humans
- Immunohistochemistry
- Intracellular Signaling Peptides and Proteins
- LIM Domain Proteins
- Mice
- Microfilament Proteins
- Molecular Sequence Data
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/cytology
- Muscle, Skeletal/embryology
- Muscle, Skeletal/metabolism
- Myocardium/chemistry
- Myocardium/cytology
- Myocardium/metabolism
- Organ Specificity
- Protein Binding
- Protein Structure, Tertiary
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Rats
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Alignment
Collapse
Affiliation(s)
- N Nakagawa
- Department of Structural Molecular Biology, Osaka University, Japan
| | | | | | | | | | | |
Collapse
|
77
|
Abstract
Gelsolin is an actin filament severing protein composed of six similar structured domains that differ with respect to actin, calcium and polyphospho-inositide binding. Previous work has established that gelsolin binds tropomyosin [Koepf, E.K. and Burtnick, L.D. (1992) FEBS Lett. 309, 56-58]. We have produced various specific gelsolin domains in Escherichia coli in order to establish which of the six domains binds tropomyosin. Gelsolin domains 1-3 (G1-3), G1-2 and G2 all bind tropomyosin in a pH and calcium insensitive manner whereas binding of G4-6 to tropomyosin was barely detectable under the conditions tested. We conclude that gelsolin binds tropomyosin via domain 2 (G2).
Collapse
Affiliation(s)
- S K Maciver
- Genes and Development Group, Department of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, UK.
| | | | | |
Collapse
|
78
|
Vallenius T, Luukko K, Mäkelä TP. CLP-36 PDZ-LIM protein associates with nonmuscle alpha-actinin-1 and alpha-actinin-4. J Biol Chem 2000; 275:11100-5. [PMID: 10753915 DOI: 10.1074/jbc.275.15.11100] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PDZ-LIM family of proteins (Enigma/LMP-1, ENH, ZASP/Cypher, RIL, ALP, and CLP-36) has been suggested to act as adapters that direct LIM-binding proteins to the cytoskeleton. Most interactions of PDZ-LIM proteins with the cytoskeleton have been identified in striated muscle, where several PDZ-LIM proteins are predominantly expressed. By contrast, CLP-36 mRNA is expressed in several nonmuscle tissues, and here we demonstrate high expression of CLP-36 in epithelial cells by in situ hybridization analysis. Our subcellular localization studies indicate that in nonmuscle cells, CLP-36 protein localizes to actin stress fibers. This localization is mediated via the PDZ domain of CLP-36 that associates with the spectrin-like repeats of alpha-actinin. Interestingly, immunoprecipitation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis indicate that both nonmuscle alpha-actinin-1 and alpha-actinin-4 form complexes with CLP-36. The high expression of alpha-actinin-4 in the colon, together with these results, suggests a specific function for the alpha-actinin-4-CLP-36 complex in the colonic epithelium. More generally, results presented here demonstrate that the association of PDZ-LIM proteins with the cytoskeleton extends to the actin stress fibers of nonmuscle cells.
Collapse
Affiliation(s)
- T Vallenius
- Haartman Institute & Biocentrum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| | | | | |
Collapse
|
79
|
Passier R, Richardson JA, Olson EN. Oracle, a novel PDZ-LIM domain protein expressed in heart and skeletal muscle. Mech Dev 2000; 92:277-84. [PMID: 10727866 DOI: 10.1016/s0925-4773(99)00330-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to identify novel genes enriched in adult heart, we performed a subtractive hybridization for genes expressed in mouse heart but not in skeletal muscle. We identified two alternative splicing variants of a novel PDZ-LIM domain protein, which we named Oracle. Both variants contain a PDZ domain at the amino-terminus and three LIM domains at the carboxy-terminus. Highest homology of Oracle was found with the human and rat enigma proteins in the PDZ domain (62 and 61%, respectively) and in the LIM domains (60 and 69%, respectively). By Northern hybridization analysis, we showed that expression is highest in adult mouse heart, low in skeletal muscle and undetectable in other adult mouse tissues. In situ hybridization in mouse embryos confirmed and extended these data by showing high expression of Oracle mRNA in atrial and ventricular myocardial cells from E8.5. From E9.5 low expression of Oracle mRNA was detectable in myotomes. These data suggest a role for Oracle in the early development and function of heart and skeletal muscle.
Collapse
Affiliation(s)
- R Passier
- Department of Molecular Biology, Hamon Center for Basic Cancer Research, The University of Texas, Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75235-9148, USA
| | | | | |
Collapse
|
80
|
Abstract
The LIM domain is a zinc finger structure that is present in several types of proteins, including homeodomain transcription factors, kinases and proteins that consist of several LIM domains. Proteins containing LIM domains have been discovered to play important roles in a variety of fundamental biological processes including cytoskeleton organization, cell lineage specification and organ development, but also for pathological functions such as oncogenesis, leading to human disease. The LIM domain has been demonstrated to be a protein-protein interaction motif that is critically involved in these processes. The recent isolation and analysis of more LIM domain-containing proteins from several species have confirmed and broadened our knowledge about LIM protein function. Furthermore, the identification and characterization of factors that interact with LIM domains illuminates mechanisms of combinatorial developmental regulation.
Collapse
Affiliation(s)
- I Bach
- Center for Molecular Neurobiology, University of Hamburg, Martinistrasse 85, 20246, Hamburg, Germany.
| |
Collapse
|