51
|
Takatsu H, Yoshino K, Toda K, Nakayama K. GGA proteins associate with Golgi membranes through interaction between their GGAH domains and ADP-ribosylation factors. Biochem J 2002; 365:369-78. [PMID: 11950392 PMCID: PMC1222692 DOI: 10.1042/bj20020428] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2002] [Accepted: 04/12/2002] [Indexed: 11/17/2022]
Abstract
ADP-ribosylation factors (ARFs) are a family of small GTPases that are involved in various aspects of membrane trafficking events. These include ARF1-ARF6, which are divided into three classes on the basis of similarity in the primary structure: Class I, ARF1-ARF3; Class II, ARF4 and ARF5; and Class III, ARF6. Previous studies identified a novel family of potential ARF effectors, termed GGA1-GGA3, which interact specifically with GTP-bound ARF1 and ARF3 and are localized to the trans-Golgi network (TGN) or its related compartment(s) (GGA is an abbreviation for Golgi-localizing, gamma-adaptin ear homology domain, ARF-binding protein). In the present study we have shown that ARF proteins belonging to the three classes, ARF1, ARF5 and ARF6, can interact with all GGA proteins in a yeast two-hybrid assay, in vitro and in vivo. Segmentation of GGA proteins and isolation of GGA mutants defective in ARF binding have revealed that a limited region within the GGA homology domain, which is conserved in the GGA family, is essential for ARF binding. Expression in cells of GTPase-restricted mutants of ARF1 and ARF5 blocks dissociation of GGA proteins from membranes induced by brefeldin A. However, neither of the ARF mutants recruits GGA mutants defective in ARF binding. On the basis of these observations, we conclude that at least ARF1 (Class I) and ARF5 (Class II) in their GTP-bound state cause recruitment of GGA proteins on to TGN membranes. In contrast, on the basis of similar experiments, ARF6 (Class III) may be involved in recruitment of GGA proteins to other compartments, possibly early endosomes.
Collapse
Affiliation(s)
- Hiroyuki Takatsu
- Institute of Biological Sciences and Gene Research Center, University of Tsukuba, Tsukuba Science City, Ibaraki 305-8572, Japan
| | | | | | | |
Collapse
|
52
|
Boehm M, Aguilar RC, Bonifacino JS. Functional and physical interactions of the adaptor protein complex AP-4 with ADP-ribosylation factors (ARFs). EMBO J 2001; 20:6265-76. [PMID: 11707398 PMCID: PMC125733 DOI: 10.1093/emboj/20.22.6265] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AP-4 is a member of the family of heterotetrameric adaptor protein (AP) complexes that mediate the sorting of integral membrane proteins in post-Golgi compartments. This complex consists of four subunits (epsilon, beta4, mu4 and sigma4) and localizes to the cytoplasmic face of the trans-Golgi network (TGN). Here, we show that the recruitment of endogenous AP-4 to the TGN in vivo is regulated by the small GTP-binding protein ARF1. In addition, we demonstrate a direct interaction of the epsilon and mu4 subunits of AP-4 with ARF1. epsilon binds only to ARF1-GTP and requires residues in the switch I and switch II regions of ARF1. In contrast, mu4 binds equally well to the GTP- and GDP-bound forms of ARF1 and is less dependent on switch I and switch II residues. These observations establish AP-4 as an ARF1 effector and suggest a novel mode of interaction between ARF1 and an AP complex involving both constitutive and regulated interactions.
Collapse
Affiliation(s)
| | | | - Juan S. Bonifacino
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
Corresponding author e-mail:
| |
Collapse
|
53
|
Lucocq J, Manifava M, Bi K, Roth MG, Ktistakis NT. Immunolocalisation of phospholipase D1 on tubular vesicular membranes of endocytic and secretory origin. Eur J Cell Biol 2001; 80:508-20. [PMID: 11561902 DOI: 10.1078/0171-9335-00186] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have examined the localisation of overexpressed phospholipase D1 (PLD1) using antibodies against its amino- and carboxyl-terminal domains. PLD1 overexpressed in COS-7 cells showed variable distribution by immunofluorescence but was mainly in punctate structures in the perinuclear region and at the plasma membrane. Downregulation by an anti-sense plasmid resulted in almost exclusively perinuclear distribution in punctate structures that contained immunoreactivity for the endogenous KDEL receptor and the early endosomal antigen EEA1 protein. Influenza haemagglutinin (HA) and HA-derived mutants designed to locate primarily to secretory or endocytic membranes were present in PLD1-positive membranes. Immunofluorescence analysis in permanent CHO cell lines that express PLD1 inducibly confirmed the presence of PLD1 on both endocytic and secretory membranes. Analysis of PLD1 distribution by immunocytochemistry and electron microscopy of intact CHO cells and of isolated membranes revealed that PLD1 was present in tubulovesicular elements and multivesicular bodies. Some of these were close to the Golgi region whereas others stained positive for endocytic cargo proteins. Morphometric analysis assigned the majority of PLD1 immunoreactivity on endosomal membranes and a smaller amount on membranes of secretory origin. PLD1, via signals that are currently not understood, is capable of localising in tubulovesicular membranes of both endocytic and secretory origin.
Collapse
Affiliation(s)
- J Lucocq
- Department of Anatomy and Physiology, University of Dundee, UK
| | | | | | | | | |
Collapse
|
54
|
Abstract
The trans-Golgi network (TGN) is a major secretory pathway sorting station that directs newly synthesized proteins to different subcellular destinations. The TGN also receives extracellular materials and recycled molecules from endocytic compartments. In this review, we summarize recent progress on understanding TGN structure and the dynamics of trafficking to and from this compartment. Protein sorting into different transport vesicles requires specific interactions between sorting motifs on the cargo molecules and vesicle coat components that recognize these motifs. Current understanding of the various targeting signals and vesicle coat components that are involved in TGN sorting are discussed, as well as the molecules that participate in retrieval to this compartment in both yeast and mammalian cells. Besides proteins, lipids and lipid-modifying enzymes also participate actively in the formation of secretory vesicles. The possible mechanisms of action of these lipid hydrolases and lipid kinases are discussed. Finally, we summarize the fundamentally different apical and basolateral cell surface delivery mechanisms and the current facts and hypotheses on protein sorting from the TGN into the regulated secretory pathway in neuroendocrine cells.
Collapse
Affiliation(s)
- F. Gu
- Vollum Institute, L-474, Oregon Health Science University, 3181 SW Sam Jackson Park Road, Portland (Oregon 97201, USA), Fax: +1 503 494 4534, e-mail: , , , , US
| | - C.M. Crump
- Vollum Institute, L-474, Oregon Health Science University, 3181 SW Sam Jackson Park Road, Portland (Oregon 97201, USA), Fax: +1 503 494 4534, e-mail: , , , , US
| | - G. Thomas
- Vollum Institute, L-474, Oregon Health Science University, 3181 SW Sam Jackson Park Road, Portland (Oregon 97201, USA), Fax: +1 503 494 4534, e-mail: , , , , US
| |
Collapse
|
55
|
Puertollano R, Randazzo PA, Presley JF, Hartnell LM, Bonifacino JS. The GGAs promote ARF-dependent recruitment of clathrin to the TGN. Cell 2001; 105:93-102. [PMID: 11301005 DOI: 10.1016/s0092-8674(01)00299-9] [Citation(s) in RCA: 226] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The GGAs constitute a family of modular adaptor-related proteins that bind ADP-ribosylation factors (ARFs) and localize to the trans-Golgi network (TGN) via their GAT domains. Here, we show that binding of the GAT domain stabilizes membrane-bound ARF1.GTP due to interference with the action of GTPase-activating proteins. We also show that the hinge and ear domains of the GGAs interact with clathrin in vitro, and that the GGAs promote recruitment of clathrin to liposomes in vitro and to TGN membranes in vivo. These observations suggest that the GGAs could function to link clathrin to membrane-bound ARF.GTP.
Collapse
Affiliation(s)
- R Puertollano
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
56
|
Zhu Y, Drake MT, Kornfeld S. Adaptor protein 1-dependent clathrin coat assembly on synthetic liposomes and Golgi membranes. Methods Enzymol 2001; 329:379-87. [PMID: 11210557 DOI: 10.1016/s0076-6879(01)29099-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Y Zhu
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
57
|
Zhao X, Greener T, Al-Hasani H, Cushman SW, Eisenberg E, Greene LE. Expression of auxilin or AP180 inhibits endocytosis by mislocalizing clathrin: evidence for formation of nascent pits containing AP1 or AP2 but not clathrin. J Cell Sci 2001; 114:353-65. [PMID: 11148137 DOI: 10.1242/jcs.114.2.353] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although uncoating of clathrin-coated vesicles is a key event in clathrin-mediated endocytosis it is unclear what prevents uncoating of clathrin-coated pits before they pinch off to become clathrin-coated vesicles. We have shown that the J-domain proteins auxilin and GAK are required for uncoating by Hsc70 in vitro. In the present study, we expressed auxilin in cultured cells to determine if this would block endocytosis by causing premature uncoating of clathrin-coated pits. We found that expression of auxilin indeed inhibited endocytosis. However, expression of auxilin with its J-domain mutated so that it no longer interacted with Hsc70 also inhibited endocytosis as did expression of the clathrin-assembly protein, AP180, or its clathrin-binding domain. Accompanying this inhibition, we observed a marked decrease in clathrin associated with the plasma membrane and the trans-Golgi network, which provided us with an opportunity to determine whether the absence of clathrin from clathrin-coated pits affected the distribution of the clathrin assembly proteins AP1 and AP2. Surprisingly we found almost no change in the association of AP2 and AP1 with the plasma membrane and the trans-Golgi network, respectively. This was particularly obvious when auxilin or GAK was expressed with functional J-domains since, in these cases, almost all of the clathrin was sequestered in granules that also contained Hsc70 and auxilin or GAK. We conclude that expression of clathrin-binding proteins inhibits clathrin-mediated endocytosis by sequestering clathrin so that it is no longer available to bind to nascent pits but that assembly proteins bind to these pits independently of clathrin.
Collapse
Affiliation(s)
- X Zhao
- Laboratory of Cell Biology, NHLBI and Experimental Diabetes, Metabolism and Nutrition Section, NIDDK, NIH, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
58
|
Abstract
Cargo molecules have to be included in carrier vesicles of different forms and sizes to be transported between organelles. During this process, a limited set of proteins, including the coat proteins COPI, COPII and clathrin, carries out a programmed set of sequential interactions that lead to the budding of vesicles. A general model to explain the formation of coated vesicles is starting to emerge but the picture is more complex than we had imagined.
Collapse
Affiliation(s)
- T Kirchhausen
- Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, USA.
| |
Collapse
|
59
|
Randazzo PA, Nie Z, Miura K, Hsu VW. Molecular Aspects of the Cellular Activities of ADP-Ribosylation Factors. Sci Signal 2000. [DOI: 10.1126/scisignal.592000re1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
60
|
Randazzo PA, Nie Z, Miura K, Hsu VW. Molecular aspects of the cellular activities of ADP-ribosylation factors. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2000; 2000:re1. [PMID: 11752622 DOI: 10.1126/stke.2000.59.re1] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Adenosine diphosphate-ribosylation factor (Arf) proteins are members of the Arf arm of the Ras superfamily of guanosine triphosphate (GTP)-binding proteins. Arfs are named for their activity as cofactors for cholera toxin-catalyzed adenosine diphosphate-ribosylation of the heterotrimeric G protein Gs. Physiologically, Arfs regulate membrane traffic and the actin cytoskeleton. Arfs function both constitutively within the secretory pathway and as targets of signal transduction in the cell periphery. In each case, the controlled binding and hydrolysis of GTP is critical to Arf function. The activities of some guanine nucleotide exchange factors (GEFs) and guanosine triphosphatase (GTPase)-activating proteins (GAPs) are stimulated by phosphoinositides, including phosphatidylinositol 3,4,5-trisphosphate (PIP3) and phosphatidylinositol 4,5-bisphosphate (PIP2), and phosphatidic acid (PA), likely providing both a means to respond to regulatory signals and a mechanism to coordinate GTP binding and hydrolysis. Arfs affect membrane traffic in part by recruiting coat proteins, including COPI and clathrin adaptor complexes, to membranes. However, Arf function likely involves many additional biochemical activities. Arf activates phospholipase D and phosphatidylinositol 4-phosphate 5-kinase with the consequent production of PA and PIP2, respectively. In addition to mediating Arf's effects on membrane traffic and the actin cytoskeleton, PA and PIP2 are involved in the regulation of Arf. Arf also works with Rho family proteins to affect the actin cytoskeleton. Several Arf-binding proteins suspected to be effectors have been identified in two-hybrid screens. Arf-dependent biochemical activities, actin cytoskeleton changes, and membrane trafficking may be integrally related. Understanding Arf's role in complex cellular functions such as protein secretion or cell movement will involve a description of the temporal and spatial coordination of these multiple Arf-dependent events.
Collapse
Affiliation(s)
- P A Randazzo
- Laboratory of Cellular Oncology, Division of Basic Sciences, National Cancer Institute, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
61
|
Drake MT, Zhu Y, Kornfeld S. The assembly of AP-3 adaptor complex-containing clathrin-coated vesicles on synthetic liposomes. Mol Biol Cell 2000; 11:3723-36. [PMID: 11071902 PMCID: PMC15032 DOI: 10.1091/mbc.11.11.3723] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The heterotetrameric adaptor protein complex AP-3 has been shown to function in the sorting of proteins to the endosomal/lysosomal system. However, the mechanism of AP-3 recruitment onto membranes is poorly understood, and it is still uncertain whether AP-3 nucleates clathrin-coated vesicles. Using purified components, we show that AP-3 and clathrin are recruited onto protein-free liposomes and Golgi-enriched membranes by a process that requires ADP-ribosylation factor (ARF) and GTP but no other proteins or nucleotides. The efficiency of recruitment onto the two sources of membranes is comparable and independent of the composition of the liposomes. Clathrin binding occurred in a cooperative manner as a function of the membrane concentration of AP-3. Thin-section electron microscopy of liposomes and Golgi-enriched membranes that had been incubated with AP-3, clathrin, and ARF.GTP showed the presence of clathrin-coated buds and vesicles. These results establish that AP-3-containing clathrin-coated vesicles form in vitro and are consistent with AP-3-dependent protein transport being mediated by clathrin-coated vesicles.
Collapse
Affiliation(s)
- M T Drake
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
62
|
Roelofsen H, Wolters H, Van Luyn MJ, Miura N, Kuipers F, Vonk RJ. Copper-induced apical trafficking of ATP7B in polarized hepatoma cells provides a mechanism for biliary copper excretion. Gastroenterology 2000; 119:782-93. [PMID: 10982773 DOI: 10.1053/gast.2000.17834] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS Mutations in the ATP7B gene, encoding a copper-transporting P-type adenosine triphosphatase, lead to excessive hepatic copper accumulation because of impaired biliary copper excretion in Wilson's disease. In human liver, ATP7B is predominantly localized to the trans-Golgi network, which appears incompatible with a role of ATP7B in biliary copper excretion. The aim of this study was to elucidate this discrepancy. METHODS Immunofluorescence and electron-microscopic methods were used to study the effects of excess copper on ATP7B localization in polarized HepG2 hepatoma cells. RESULTS ATP7B is localized to the trans-Golgi network only when extracellular copper concentration is low (<1 micromol/L). At increased copper levels, ATP7B redistributes to vesicular structures and to apical vacuoles reminiscent of bile canaliculi. After copper depletion, ATP7B returns to the trans-Golgi network. Brefeldin A and nocodazole impair copper-induced apical trafficking of ATP7B and cause accumulation of apically retrieved transporters in a subapical compartment, suggesting continuous recycling of ATP7B between this vesicular compartment and the apical membrane when copper is increased. CONCLUSIONS Copper induces trafficking of its own transporter from the trans-Golgi network to the apical membrane, where it may facilitate biliary copper excretion. This system of ligand-induced apical sorting provides a novel mechanism to control copper homeostasis in hepatic cells.
Collapse
Affiliation(s)
- H Roelofsen
- Groningen University Institute for Drug Exploration (GUIDE), Center for Liver, Digestive and Metabolic Diseases, University Hospital Groningen, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
63
|
Abstract
Subconfluent cultures of Madin-Darby canine kidney (MDCK) and CV-1 cells were immunostained with two monoclonal antibodies (MAbs), MAb X-22 and MAb 23, against clathrin heavy chain and with polyclonal antiserum against a conserved region of all mammalian clathrin light chains. In interphase MDCK and CV-1 cells, staining by all three antibodies resulted in the characteristic intracellular punctate vesicular and perinuclear staining pattern. In mitotic cells, all three anti-clathrin antibodies strongly stained the mitotic spindle. Staining of clathrin in the mitotic spindle was colocalized with anti-tubulin staining of microtubular arrays in the spindle. Staining of the mitotic spindle was evident in mitotic cells from prometaphase to telophase and in spindles in mitotic cells released from a thymidine-nocodazole block. In CV-1 cells, staining of clathrin in the mitotic spindle was not affected by brefeldin A. On Western blots, clathrin was detected, but not enriched, in isolated spindles. The immunodetection of clathrin in the mitotic spindle may suggest a novel role for clathrin in mitosis. Alternatively, the recruitment of clathrin to the spindle may suggest a novel regulatory mechanism for localization of clathrin in mitotic cells.
Collapse
Affiliation(s)
- C T Okamoto
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles 90089-9121, USA.
| | | | | |
Collapse
|
64
|
Austin C, Hinners I, Tooze SA. Direct and GTP-dependent interaction of ADP-ribosylation factor 1 with clathrin adaptor protein AP-1 on immature secretory granules. J Biol Chem 2000; 275:21862-9. [PMID: 10807927 DOI: 10.1074/jbc.m908875199] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ADP-ribosylation factor 1 (ARF1) mediates clathrin coat formation on PC12 immature secretory granules (ISGs). We have used two approaches to investigate whether ARF1 interacts directly with the clathrin adaptor protein, AP-1. Using an in vitro recruitment assay and co-immunoprecipitation, we could isolate an AP-1.ARF1 complex. Then we used a site-directed photocross-linking approach to determine the components that act downstream of ARF1 in clathrin coat formation on ISGs. Myristoylated ARF1, with a photolabile phenylalanine analogue incorporated into its putative effector domain (switch 1), showed a specific, GTP-dependent interaction with both the gamma- and beta-adaptin subunits of AP-1 on ISGs. These experiments provide evidence for a direct interaction of ARF1 with AP-1. On mature secretory granules myristoylated ARF1 does not bind, and hence clathrin coat formation cannot be initiated, supporting the hypothesis that molecules involved in coat recruitment are removed during ISG maturation.
Collapse
Affiliation(s)
- C Austin
- Secretory Pathway Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London, WC2A 3PX, United Kingdom
| | | | | |
Collapse
|
65
|
Martin ME, Hidalgo J, Rosa JL, Crottet P, Velasco A. Effect of protein kinase A activity on the association of ADP-ribosylation factor 1 to golgi membranes. J Biol Chem 2000; 275:19050-9. [PMID: 10858454 DOI: 10.1074/jbc.275.25.19050] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small GTP-binding protein ADP-ribosylation factor 1 (ARF1) is an essential component of the molecular machinery that catalyzes the formation of membrane-bound transport intermediates. By using an in vitro assay that reproduces recruitment of cytosolic proteins onto purified, high salt-washed Golgi membranes, we have analyzed the role of cAMP-dependent protein kinase A (PKA) on ARF1 incorporation. Addition to this assay of either pure catalytic subunits of PKA (C-PKA) or cAMP increased ARF1 binding. By contrast, ARF1 association was inhibited following C-PKA inactivation with either PKA inhibitory peptide or RIIalpha as well as after cytosol depletion of C-PKA. C-PKA also stimulated recruitment and activation of a recombinant form of human ARF1 in the absence of additional cytosolic components. The binding step could be dissociated from the activation reaction and found to be independent of guanine nucleotides and saturable. This step was stimulated by C-PKA in an ATP-dependent manner. Dephosphorylated Golgi membranes exhibited a decreased ability to recruit ARF1, and this effect was reverted by addition of C-PKA. Following an increase in the intracellular level of cAMP, ARF proteins redistributed from cytosol to the perinuclear Golgi region of intact cells. Collectively, the results show that PKA exerts a key regulatory role in the recruitment of ARF1 onto Golgi membranes. In contrast, PKA modulators did not affect recruitment of beta-COP onto Golgi membranes containing prebound ARF1.
Collapse
Affiliation(s)
- M E Martin
- Department of Cell Biology, University of Seville, 41012 Seville, Spain
| | | | | | | | | |
Collapse
|
66
|
Rohn WM, Rouillé Y, Waguri S, Hoflack B. Bi-directional trafficking between the trans-Golgi network and the endosomal/lysosomal system. J Cell Sci 2000; 113 ( Pt 12):2093-101. [PMID: 10825282 DOI: 10.1242/jcs.113.12.2093] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein transport in the secretory and endocytic pathways of eukaryotic cells is mediated by vesicular transport intermediates. Their formation is a tightly controlled multistep process in which coat components are recruited onto specific membranes, and cargo, as well as targeting molecules, become segregated into nascent vesicles. At the trans-Golgi network, two transport systems deliver cargo molecules to the endosomal system. They can be distinguished with regard to coat components that select cargo molecules. AP-1 assembly proteins mediate transport of MPRs and furin, whereas AP-3 adaptors mediate transport of lysosomal membrane glycoproteins to the endosomal/lysosomal system. The molecular basis for protein-specific sorting lies within sorting signals that are present in the cytoplasmic tails of cargo proteins and allow specific interactions with individual coat components. In order to maintain cellular homeostasis, some proteins are retrieved from endosomal compartments and transported back to the trans-Golgi network. Distinct points for protein retrieval exist within the endosomal system, retrieval occurring from either early or late endosomes. Whereas significant progress has been made in recent years in identifying anterograde and retrograde transport pathways, the molecular mechanisms underlying protein sorting and retrieval are only poorly defined. Recently, however, novel vesicle coats (e.g. AP-4) and proteins that might be involved in sorting (e.g. PACS-1 and TIP47) have been described, and the interactions between assembly proteins and sorting signals are becoming increasingly well defined.
Collapse
Affiliation(s)
- W M Rohn
- Institut de Biologie de Lille, CNRS EP 525, Institute de Pasteur de Lille, BP447, 59021 Lille Cédex, France.
| | | | | | | |
Collapse
|
67
|
Abstract
Maintenance of the structural and functional organization of a eucaryotic cell requires the correct targeting of proteins and lipids to their destinations. This is achieved by the delivery of newly synthesized material along the secretory pathway on one hand and by the retrieval of membranes on the other hand. Various models have been suggested over the years to explain traffic flow within the secretory pathway. The only two models that are under discussion to date are the "vesicular model" and the "cisternal maturation model". A wealth of information from various experimental approaches, strongly supports the vesicular model as the general mode of intracellular transport. Three major types of protein-coated transport vesicles are characterized in molecular detail, and have been attributed to various steps of the secretory pathway: COPII-coated vesicles allow exit from the endoplasmic reticulum (ER), COPI-coated vesicles carry proteins within the early secretory pathway, i.e. between ER and Golgi apparatus, and clathrin-coated vesicles mediate transport from the trans-Golgi network (TGN). In this review we will give an overview of the route of a protein along the secretory pathway and summarize the progress that was made within the last decades in the characterization of distinct intracellular transport steps. We will discuss the current models for the formation and fusion of vesicular carriers with a major focus on the mechanism underlying budding of a COPI-coated vesicle.
Collapse
Affiliation(s)
- C Harter
- Biochemie-Zentrum Heidelberg, Ruprecht-Karls-Universität, Germany
| | | |
Collapse
|
68
|
Turner MD, Arvan P. Protein traffic from the secretory pathway to the endosomal system in pancreatic beta-cells. J Biol Chem 2000; 275:14025-30. [PMID: 10799475 DOI: 10.1074/jbc.275.19.14025] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Constitutive-like secretion involves vesicular trafficking corresponding kinetically and biochemically with a post-trans-Golgi network (TGN) origin. In pancreatic beta-cells, the budding of AP-1/clathrin-coated vesicles, a portion of which is derived from immature secretory granules, has been hypothesized to initiate constitutive-like trafficking. However, approximately 30 min after release of a 20 degrees C intracellular transport block in pancreatic beta-cells (to synchronize protein egress from the TGN), addition of brefeldin A (BFA) (which inhibits AP-1 recruitment) was reported not to block subsequent constitutive-like secretion. To further explore post-TGN trafficking in pancreatic beta-cell lines, we have followed the fate of pulse-labeled procathepsin B (ProB, a lysosomal proenyzme) after postpulse wortmannin treatment or the BFA treatment described above. We find that continuous wortmannin treatment allows ProB to reach immature secretory granules but inhibits its egress from maturing granules. Remarkably, BFA treatment causes augmented unstimulated secretion of newly synthesized ProB that is not paralleled by insulin. This effect requires a delay of 25-35 min after release from the 20 degrees C block. Further, when ProB delivery to endosomes is inhibited, its BFA-augmented secretion is eliminated. We hypothesize that the constitutive-like pathway involves an endosomal intermediate.
Collapse
Affiliation(s)
- M D Turner
- Diabetes Center, Division of Endocrinology and the Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
69
|
Abstract
A short while ago, we could only inhibit post-Golgi membrane traffic with crude, unselective tools, such as low temperature or high extracellular sucrose. Molecular dissection of vesiculation steps has revealed unexpected complexity in the coating machinery that has initiated a search for more specific inhibitors. We have learned that membrane vesiculation is driven by a tightly regulated multicomponent, membrane-associated protein machine held together by carefully specified interaction domains. An experimental advantage of such complex interacting machinery is that it is very susceptible to disruption by dominant negative inhibitors or by overexpression. As a result, we now have much more specific inhibitors of post-Golgi membrane traffic. Some, such as dynamin K44A, may be general inhibitors, whereas others can distinguish classes of endocytotic events (10), binding events that require clathrin from those that do not (42), or specific steps of endocytosis (62). Ligand-mediated uptake of EGF and numerous, but not all, GPCRs can be inhibited by overexpression of an ARF GTPase-activating protein that has no effect on transferrin uptake (67). We can look forward to increasingly powerful and selective inhibitors that should help us to navigate successfully the complex routes of post-Golgi membrane traffic.
Collapse
Affiliation(s)
- N Jarousse
- Department of Biochemistry and Biophysics, Hormone Research Institute, University of California, San Francisco, CA 94143-0534, USA
| | | |
Collapse
|
70
|
Abstract
Sorting signals on cargo proteins are recognized by coatomer for selective uptake into COPI (coatomer)-coated vesicles. This study shows that coatomer couples sorting signal recognition to the GTP hydrolysis reaction on ARF1. Coatomer responds differently to different signals. The cytoplasmic signal sequence of hp24a inhibits coatomer-dependent GTP hydrolysis. By contrast, the dilysine retrieval signal, which competes for the same binding site on coatomer, has no effect on GTPase activity. It is inferred that, in vivo, sorting signal selection is under kinetic control, with coatomer governing a GTPase discard pathway that excludes dilysine-tagged proteins from one class of COPI-coated vesicles. The concept of competing sets of sorting signals that act positively and negatively during vesicle budding through a GTPase switch in the COPI coat complex suggests mechanisms for cargo segregation in which specificity is conferred by GTP hydrolysis.
Collapse
Affiliation(s)
- J Goldberg
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| |
Collapse
|
71
|
Kuai J, Boman AL, Arnold RS, Zhu X, Kahn RA. Effects of activated ADP-ribosylation factors on Golgi morphology require neither activation of phospholipase D1 nor recruitment of coatomer. J Biol Chem 2000; 275:4022-32. [PMID: 10660559 DOI: 10.1074/jbc.275.6.4022] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nine mutations in the switch I and switch II regions of human ADP-ribosylation factor 3 (ARF3) were isolated from loss-of-interaction screens, using two-hybrid assays with three different effectors. We then analyzed the ability of the recombinant proteins to (i) bind guanine nucleotides, (ii) activate phospholipase D1 (PLD1), (iii) recruit coatomer (COP-I) to Golgi-enriched membranes, and (iv) expand and vesiculate Golgi in intact cells. Correlations of activities in these assays were used as a means of testing specific hypotheses of ARF action, including the role of PLD1 activation in COP-I recruitment, the role of COP-I in Golgi vesiculation caused by expression of the dominant activating mutant [Q71L]ARF3, and the need for PLD1 activation in Golgi vesiculation. Because we were able to find at least one example of a protein that has lost each of these activities with retention of the others, we conclude that activation of PLD1, recruitment of COP-I to Golgi, and vesiculation of Golgi in cells are functionally separable processes. The ability of certain mutants of ARF3 to alter Golgi morphology without changes in PLD1 activity or COP-I binding is interpreted as evidence for at least one additional, currently unidentified, effector for ARF action at the Golgi.
Collapse
Affiliation(s)
- J Kuai
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322-3050, USA
| | | | | | | | | |
Collapse
|
72
|
Greener T, Zhao X, Nojima H, Eisenberg E, Greene LE. Role of cyclin G-associated kinase in uncoating clathrin-coated vesicles from non-neuronal cells. J Biol Chem 2000; 275:1365-70. [PMID: 10625686 DOI: 10.1074/jbc.275.2.1365] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Auxilin is a brain-specific DnaJ homolog that is required for Hsc70 to dissociate clathrin from bovine brain clathrin-coated vesicles. However, Hsc70 is also involved in uncoating clathrin-coated vesicles formed at the plasma membrane of non-neuronal cells suggesting that an auxilin homolog may be required for uncoating in these cells. One candidate is cyclin G-associated kinase (GAK), a 150-kDa protein expressed ubiquitously in various tissues. GAK has a C-terminal domain with high sequence similarity to auxilin; like auxilin this C-terminal domain consists of three subdomains, an N-terminal tensin-like domain, a clathrin-binding domain, and a C-terminal J-domain. Western blot analysis shows that GAK is present in rat liver, bovine testes, and bovine brain clathrin-coated vesicles. More importantly, liver clathrin-coated vesicles, which contain GAK but not auxilin, are uncoated by Hsc70, suggesting that GAK acts as an auxilin homolog in non-neuronal cells. In support of this view, the clathrin-binding domain of GAK alone induces clathrin polymerization into baskets and the combined clathrin-binding domain and J-domain of GAK supports uncoating of AP180-clathrin baskets by Hsc70 at pH 7 and induces Hsc70 binding to clathrin baskets at pH 6. Immunolocalization studies suggest that GAK is a cytosolic protein that is concentrated in the perinuclear region; it appears to be highly associated with the trans-Golgi where the budding of clathrin-coated vesicles occurs. We propose that GAK is a required cofactor for the uncoating of clathrin-coated vesicles by Hsc70 in non-neuronal cells.
Collapse
Affiliation(s)
- T Greener
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-0301, USA
| | | | | | | | | |
Collapse
|
73
|
Abstract
Clathrin-based systems are responsible for a large portion of vesicular traffic originating from the plasma membrane and the trans-Golgi network that reaches the endosomal compartment. The assembly of cytosolic clathrin forms the scaffold required for the local deformation of the membrane and for the formation of coated pits and vesicles. In this process, clathrin interacts in a coordinated fashion with a large number of protein partners. A subset designated clathrin adaptors links integral membrane proteins to the clathrin coat, a process that results in the recruitment of specific cargo proteins to the budding vesicle. This review focuses on the most recent advances dealing with the molecular basis for sorting by clathrin adaptors.
Collapse
Affiliation(s)
- T Kirchhausen
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
74
|
Gillingham AK, Koumanov F, Pryor PR, Reaves BJ, Holman GD. Association of AP1 adaptor complexes with GLUT4 vesicles. J Cell Sci 1999; 112 ( Pt 24):4793-800. [PMID: 10574726 DOI: 10.1242/jcs.112.24.4793] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Nycodenz gradients have been used to examine the in vitro effects of GTP-(gamma)-S on adaptor complex association with GLUT4 vesicles. On addition of GTP-(gamma)-S, GLUT4 fractionates as a heavier population of vesicles, which we suggest is due to a budding or coating reaction. Under these conditions there is an increase in co-sedimentation of GLUT4 with AP1, but not with AP3. Western blotting of proteins associated with isolated GLUT4 vesicles shows the presence of high levels of AP1 and some AP3 but very little AP2 adaptor complexes. Cell free, in vitro association of the AP1 complex with GLUT4 vesicles is increased approximately 4-fold by the addition of GTP-(gamma)-S and an ATP regenerating system. Following GTP-(gamma)-S treatment in vitro, ARF is also recruited to GLUT4 vesicles, and the temperature dependence of ARF recruitment closely parallels that of AP1. The recruitment of both AP1 and ARF are partially blocked by brefeldin A. These data demonstrate that the coating of GLUT4 vesicles can be studied in isolated cell-free fractions. Furthermore, at least two distinct adaptor complexes can associate with the GLUT4 vesicles and it is likely that these adaptors are involved in mediating distinct intracellular sorting events at the level of TGN and endosomes.
Collapse
Affiliation(s)
- A K Gillingham
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | | | | | | | | |
Collapse
|
75
|
Chen CY, Ingram MF, Rosal PH, Graham TR. Role for Drs2p, a P-type ATPase and potential aminophospholipid translocase, in yeast late Golgi function. J Cell Biol 1999; 147:1223-36. [PMID: 10601336 PMCID: PMC2168089 DOI: 10.1083/jcb.147.6.1223] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/1999] [Accepted: 11/09/1999] [Indexed: 11/22/2022] Open
Abstract
ADP-ribosylation factor appears to regulate the budding of both COPI and clathrin-coated transport vesicles from Golgi membranes. An arf1Delta synthetic lethal screen identified SWA3/DRS2, which encodes an integral membrane P-type ATPase and potential aminophospholipid translocase (or flippase). The drs2 null allele is also synthetically lethal with clathrin heavy chain (chc1) temperature-sensitive alleles, but not with mutations in COPI subunits or other SEC genes tested. Consistent with these genetic analyses, we found that the drs2Delta mutant exhibits late Golgi defects that may result from a loss of clathrin function at this compartment. These include a defect in the Kex2-dependent processing of pro-alpha-factor and the accumulation of abnormal Golgi cisternae. Moreover, we observed a marked reduction in clathrin-coated vesicles that can be isolated from the drs2Delta cells. Subcellular fractionation and immunofluorescence analysis indicate that Drs2p localizes to late Golgi membranes containing Kex2p. These observations indicate a novel role for a P-type ATPase in late Golgi function and suggest a possible link between membrane asymmetry and clathrin function at the Golgi complex.
Collapse
Affiliation(s)
- Chih-Ying Chen
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235
| | - Michael F. Ingram
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235
| | - Peter H. Rosal
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235
| | - Todd R. Graham
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235
| |
Collapse
|
76
|
Jones AT, Spiro DJ, Kirchhausen T, Melançon P, Wessling-Resnick M. Studies on the inhibition of endosome fusion by GTPgammaS-bound ARF. J Cell Sci 1999; 112 ( Pt 20):3477-85. [PMID: 10504296 DOI: 10.1242/jcs.112.20.3477] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Using a cell free assay, we have previously shown that ARF is not required for endosome fusion but that inhibition of fusion by GTPgammaS is dependent on a cytosolic pool of ARFs. Since ARF is proposed to function in intracellular membrane traffic by promoting vesicle biogenesis, and components of clathrin- and COP-coated vesicles have been localized on endosomal structures, we investigated whether ARF-mediated inhibition of early endosome fusion involves the recruitment or irreversible association of these proteins onto endosomal membranes. We now report that depletion of components of clathrin coated vesicles (clathrin, AP-1 and AP-2) or COPI vesicles (beta COP) does not affect the capacity of GTPgammaS-activated ARF to inhibit endosome fusion. Inhibition of fusion by activated ARF is also independent of endosomal acidification since assays performed in the presence of the vacuolar ATPase inhibitor bafilomycin A1 are equally sensitive to GTPgammaS-bound ARF. Finally, in contrast to reported effects on lysosomes, we demonstrate that ARF-GTPgammaS does not induce endosomal lysis. These combined data argue that sequestration of known coat proteins to membranes by activated ARF is not involved in the inhibition of early endosome fusion and that its capacity to inhibit fusion involves other specific interactions with the endosome surface. These results contrast with the mechanistic action of ARF on intra-Golgi transport and nuclear envelope assembly.
Collapse
Affiliation(s)
- A T Jones
- Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
77
|
Schneider H, Martin M, Agarraberes FA, Yin L, Rapoport I, Kirchhausen T, Rudd CE. Cytolytic T Lymphocyte-Associated Antigen-4 and the TCRζ/CD3 Complex, But Not CD28, Interact with Clathrin Adaptor Complexes AP-1 and AP-2. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.4.1868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
The negative signaling receptor cytolytic T lymphocyte-associated Ag-4 (CTLA-4) resides primarily in intracellular compartments such as the Golgi apparatus of T cells. However, little is known regarding the molecular mechanisms that influence this accumulation. In this study, we demonstrate binding of the clathrin adaptor complex AP-1 with the GVYVKM motif of the cytoplasmic domain of CTLA-4. Binding occurred primarily in the Golgi compartment of T cells, unlike with AP-2 binding that occurs mostly with cell surface CTLA-4. Although evidence was not found to implicate AP-1 binding in the retention of CTLA-4 in the Golgi, AP-1 appears to play a role in shuttling of excess receptor from the Golgi to the lysosomal compartments for degradation. In support of this, increased CTLA-4 synthesis resulted in an increase in CTLA-4/AP-1 binding and a concomitant increase in the appearance of CTLA-4 in the lysosomal compartment. At the same time, the level of intracellular receptor was maintained at a constant level, suggesting that CTLA-4/AP-1 binding represents one mechanism to ensure steady state levels of intracellular CTLA-4 in T cells. Finally, we demonstrate that the TCRζ/CD3 complex (but not CD28) also binds to AP-1 and AP-2 complexes, thus providing a possible link between these two receptors in the regulation of T cell function.
Collapse
Affiliation(s)
- Helga Schneider
- *Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115
- §Medicine,
| | - Margarita Martin
- *Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115
- §Medicine,
| | | | - Li Yin
- *Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115
- §Medicine,
| | - Iris Rapoport
- ‡Center for Blood Research, and Departments of
- ∥Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Tomas Kirchhausen
- ‡Center for Blood Research, and Departments of
- ∥Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Christopher E. Rudd
- *Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115
- ¶Pathology, and
| |
Collapse
|
78
|
Aoe T, Huber I, Vasudevan C, Watkins SC, Romero G, Cassel D, Hsu VW. The KDEL receptor regulates a GTPase-activating protein for ADP-ribosylation factor 1 by interacting with its non-catalytic domain. J Biol Chem 1999; 274:20545-9. [PMID: 10400684 DOI: 10.1074/jbc.274.29.20545] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ADP-ribosylation factor 1 (ARF1) is a key regulator of transport in the secretory system. Like all small GTPases, deactivation of ARF1 requires a GTPase-activating protein (GAP) that promotes hydrolysis of GTP to GDP on ARF1. Structure-function analysis of a GAP for ARF1 revealed that its activity in vivo requires not only a domain that catalyzes hydrolysis of GTP on ARF1 but also a non-catalytic domain. In this study, we show that the non-catalytic domain of GAP is required for its recruitment from cytosol to membranes and that this domain mediates the interaction of GAP with the transmembrane KDEL receptor. Blocking its interaction with the KDEL receptor leaves the GAP cytosolic and prevents the deactivation in vivo of Golgi-localized ARF1. Thus, these findings suggest that the KDEL receptor plays a critical role in the function of GAP by regulating its recruitment from cytosol to membranes, where it can then act on its membrane-restricted target, the GTP-bound form of ARF1.
Collapse
Affiliation(s)
- T Aoe
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
79
|
Arneson LS, Kunz J, Anderson RA, Traub LM. Coupled inositide phosphorylation and phospholipase D activation initiates clathrin-coat assembly on lysosomes. J Biol Chem 1999; 274:17794-805. [PMID: 10364223 DOI: 10.1074/jbc.274.25.17794] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adaptors appear to control clathrin-coat assembly by determining the site of lattice polymerization but the nucleating events that target soluble adaptors to an appropriate membrane are poorly understood. Using an in vitro model system that allows AP-2-containing clathrin coats to assemble on lysosomes, we show that adaptor recruitment and coat initiation requires phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) synthesis. PtdIns(4,5)P2 is generated on lysosomes by the sequential action of a lysosome-associated type II phosphatidylinositol 4-kinase and a soluble type I phosphatidylinositol 4-phosphate 5-kinase. Phosphatidic acid, which potently stimulates type I phosphatidylinositol 4-phosphate 5-kinase activity, is generated on the bilayer by a phospholipase D1-like enzyme located on the lysosomal surface. Quenching phosphatidic acid function with primary alcohols prevents the synthesis of PtdIns(4, 5)P2 and blocks coat assembly. Generating phosphatidic acid directly on lysosomes with exogenous bacterial phospholipase D in the absence of ATP still drives adaptor recruitment and limited coat assembly, indicating that PtdIns(4,5)P2 functions, at least in part, to activate the PtdIns(4,5)P2-dependent phospholipase D1. These results provide the first direct evidence for the involvement of anionic phospholipids in clathrin-coat assembly on membranes and define the enzymes responsible for the production of these important lipid mediators.
Collapse
Affiliation(s)
- L S Arneson
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
80
|
Abstract
Evidence is accumulating that membrane traffic between organelles can be achieved by different types of intermediates. Small (< 100 nm) and short-lived vesicles mediate transport from the plasma membrane or the trans-Golgi network to endosomes, and formation of these vesicles depends on specific adapter complexes. In contrast, transport from early to late endosomes is achieved by relatively large (approximately 0.5 microm), long-lived and multivesicular intermediates, and their biogenesis depends on endosomal COP-I proteins. Here, we review recent work on the formation of these different transport intermediates, and we discuss, in particular, coat proteins, sorting signals contained in cargo molecules and the emerging role of lipid in vesicle biogenesis.
Collapse
Affiliation(s)
- F Gu
- Department of Biochemistry, Sciences II, University of Geneva, Switzerland
| | | |
Collapse
|
81
|
Zhao L, Helms JB, Brunner J, Wieland FT. GTP-dependent binding of ADP-ribosylation factor to coatomer in close proximity to the binding site for dilysine retrieval motifs and p23. J Biol Chem 1999; 274:14198-203. [PMID: 10318838 DOI: 10.1074/jbc.274.20.14198] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A site-directed photocross-linking approach was employed to determine components that act downstream of ADP-ribosylation factor (ARF). To this end, a photolabile phenylalanine analog was incorporated at various positions of the putative effector region of the ARF molecule. Depending on the position of incorporation, we find specific and GTP-dependent interactions of ARF with two subunits of the coatomer complex, beta-COP and gamma-COP, as well as an interaction with a cytosolic protein (approximately 185 kDa). In addition, we observe homodimer formation of ARF molecules at the Golgi membrane. These data suggest that the binding site of ARF to coatomer is at the interface of its beta- and gamma-subunits, and this is in close proximity to the second site of interaction of coatomer with the Golgi membrane, the binding site within gamma-COP for cytosolic dibasic/diphenylalanine motifs.
Collapse
Affiliation(s)
- L Zhao
- Biochemie-Zentrum Heidelberg, University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
82
|
Abstract
Enzymes that modify phospholipids play necessary, but poorly understood, roles in constitutive membrane traffic. Local production of specific phosphoinositides is required for endocytosis and regulated exocytosis, and enzymes that produce and consume phosphoinositides are components of post-Golgi membrane vesicles. Both biochemical and genetic data indicate that regulation of the membrane content of phosphatidic acid, diacylglycerol and phosphoinositides is necessary for protein traffic from the Golgi complex. Evidence for a regulatory role for lipids earlier in the constitutive secretory pathway is more limited and controversial. Although the mechanisms that regulate traffic between the endoplasmic reticulum and Golgi might be qualitatively different from those that control later membrane transport pathways, recent studies suggest that production of specific lipids is important for transport both into and out of the Golgi. As discussed in this article, one potential mechanism for the involvement of lipids is to control the GTPase cycle of a small GTP-binding protein, ARF (ADP-ribosylation factor).
Collapse
Affiliation(s)
- M G Roth
- Dept of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75235-9038, USA.
| |
Collapse
|
83
|
Zhu Y, Drake MT, Kornfeld S. ADP-ribosylation factor 1 dependent clathrin-coat assembly on synthetic liposomes. Proc Natl Acad Sci U S A 1999; 96:5013-8. [PMID: 10220410 PMCID: PMC21808 DOI: 10.1073/pnas.96.9.5013] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The assembly of clathrin-coated vesicles on Golgi membranes is initiated by the GTP-binding protein ADP ribosylation factor (ARF), which generates high-affinity membrane-binding sites for the heterotetrameric AP-1 adaptor complex. Once bound, the AP-1 recruits clathrin triskelia, which polymerize to form the coat. We have found that ARF.GTP also recruits AP-1 and clathrin onto protein-free liposomes. The efficiency of this process is modulated by the composition of the liposomes, with phosphatidylserine being the most stimulatory phospholipid. There is also a requirement for cytosolic factor(s) other than ARF. Thin-section electron microscopy shows the presence of clathrin-coated buds and vesicles that resemble those formed in vivo. These results indicate that AP-1-containing clathrin-coated vesicles can form in the absence of integral membrane proteins. Thus, ARF.GTP, appropriate lipids, and cytosolic factor(s) are the minimal components necessary for AP-1 clathrin-coat assembly.
Collapse
Affiliation(s)
- Y Zhu
- Washington University School of Medicine, Department of Internal Medicine, 660 South Euclid Avenue, Box 8125, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
84
|
Affiliation(s)
- M G Roth
- Department of Biochemistry, University of Texas, Southwestern Medical Center, Dallas 75235, USA.
| |
Collapse
|
85
|
Sata M, Moss J, Vaughan M. Structural basis for the inhibitory effect of brefeldin A on guanine nucleotide-exchange proteins for ADP-ribosylation factors. Proc Natl Acad Sci U S A 1999; 96:2752-7. [PMID: 10077583 PMCID: PMC15841 DOI: 10.1073/pnas.96.6.2752] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein secretion through the endoplasmic reticulum and Golgi vesicular trafficking system is initiated by the binding of ADP-ribosylation factors (ARFs) to donor membranes, leading to recruitment of coatomer, bud formation, and eventual vesicle release. ARFs are approximately 20-kDa GTPases that are active with bound GTP and inactive with GDP bound. Conversion of ARF-GDP to ARF-GTP is regulated by guanine nucleotide-exchange proteins. All known ARF guanine nucleotide-exchange proteins contain a Sec7 domain of approximately 200 amino acids that includes the active site and fall into two classes that differ in molecular size and susceptibility to inhibition by the fungal metabolite brefeldin A (BFA). To determine the structural basis of BFA sensitivity, chimeric molecules were constructed by using sequences from the Sec7 domains of BFA-sensitive yeast Sec7 protein (ySec7d) and the insensitive human cytohesin-1 (C-1Sec7). Based on BFA inhibition of the activities of these molecules with recombinant yeast ARF2 as substrate, the Asp965-Met975 sequence in ySec7d was shown to be responsible for BFA sensitivity. A C-1Sec7 mutant in which Ser199, Asn204, and Pro209 were replaced with the corresponding ySec7d amino acids, Asp965, Gln970, and Met975, exhibited BFA sensitivity similar to that of recombinant ySec7d (rySec7d). Single replacement in C-1Sec7 of Ser199 or Pro209 resulted in partial inhibition by BFA, whereas replacement of Gln970 in ySec7d with Asn (as found in C-1Sec7) had no effect. As predicted, the double C-1Sec7 mutant with S199D and P209M was BFA-sensitive, demonstrating that Asp965 and Met975 in ySec7d are major molecular determinants of BFA sensitivity.
Collapse
Affiliation(s)
- M Sata
- Pulmonary-Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
86
|
Zhu Y, Traub LM, Kornfeld S. High-affinity binding of the AP-1 adaptor complex to trans-golgi network membranes devoid of mannose 6-phosphate receptors. Mol Biol Cell 1999; 10:537-49. [PMID: 10069802 PMCID: PMC25186 DOI: 10.1091/mbc.10.3.537] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The GTP-binding protein ADP-ribosylation factor (ARF) initiates clathrin-coat assembly at the trans-Goli network (TGN) by generating high-affinity membrane-binding sites for the AP-1 adaptor complex. Both transmembrane proteins, which are sorted into the assembling coated bud, and novel docking proteins have been suggested to be partners with GTP-bound ARF in generating the AP-1-docking sites. The best characterized, and probably the major transmembrane molecules sorted into the clathrin-coated vesicles that form on the TGN, are the mannose 6-phosphate receptors (MPRs). Here, we have examined the role of the MPRs in the AP-1 recruitment process by comparing fibroblasts derived from embryos of either normal or MPR-negative animals. Despite major alterations to the lysosome compartment in the MPR-deficient cells, the steady-state distribution of AP-1 at the TGN is comparable to that of normal cells. Golgi-enriched membranes prepared from the receptor-negative cells also display an apparently normal capacity to recruit AP-1 in vitro in the presence of ARF and either GTP or GTPgammaS. The AP-1 adaptor is recruited specifically onto the TGN and not onto the numerous abnormal membrane elements that accumulate within the MPR-negative fibroblasts. AP-1 bound to TGN membranes from either normal or MPR-negative fibroblasts is fully resistant to chemical extraction with 1 M Tris-HCl, pH 7, indicating that the adaptor binds to both membrane types with high affinity. The only difference we do note between the Golgi prepared from the MPR-deficient cells and the normal cells is that AP-1 recruited onto the receptor-lacking membranes in the presence of ARF1.GTP is consistently more resistant to extraction with Tris. Because sensitivity to Tris extraction correlates well with nucleotide hydrolysis, this finding might suggest a possible link between MPR sorting and ARF GAP regulation. We conclude that the MPRs are not essential determinants in the initial steps of AP-1 binding to the TGN but, instead, they may play a regulatory role in clathrin-coated vesicle formation by affecting ARF.GTP hydrolysis.
Collapse
Affiliation(s)
- Y Zhu
- Division of Hematology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|