51
|
Castillo-Quan JI, Kinghorn KJ, Bjedov I. Genetics and pharmacology of longevity: the road to therapeutics for healthy aging. ADVANCES IN GENETICS 2015; 90:1-101. [PMID: 26296933 DOI: 10.1016/bs.adgen.2015.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aging can be defined as the progressive decline in tissue and organismal function and the ability to respond to stress that occurs in association with homeostatic failure and the accumulation of molecular damage. Aging is the biggest risk factor for human disease and results in a wide range of aging pathologies. Although we do not completely understand the underlying molecular basis that drives the aging process, we have gained exceptional insights into the plasticity of life span and healthspan from the use of model organisms such as the worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster. Single-gene mutations in key cellular pathways that regulate environmental sensing, and the response to stress, have been identified that prolong life span across evolution from yeast to mammals. These genetic manipulations also correlate with a delay in the onset of tissue and organismal dysfunction. While the molecular genetics of aging will remain a prosperous and attractive area of research in biogerontology, we are moving towards an era defined by the search for therapeutic drugs that promote healthy aging. Translational biogerontology will require incorporation of both therapeutic and pharmacological concepts. The use of model organisms will remain central to the quest for drug discovery, but as we uncover molecular processes regulated by repurposed drugs and polypharmacy, studies of pharmacodynamics and pharmacokinetics, drug-drug interactions, drug toxicity, and therapeutic index will slowly become more prevalent in aging research. As we move from genetics to pharmacology and therapeutics, studies will not only require demonstration of life span extension and an underlying molecular mechanism, but also the translational relevance for human health and disease prevention.
Collapse
Affiliation(s)
- Jorge Iván Castillo-Quan
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK; Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Kerri J Kinghorn
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK; Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Ivana Bjedov
- Cancer Institute, University College London, London, UK
| |
Collapse
|
52
|
Chaperone-mediated autophagy and neurodegeneration: connections, mechanisms, and therapeutic implications. Neurosci Bull 2015. [PMID: 26206600 DOI: 10.1007/s12264-015-1542-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lysosomes degrade dysfunctional intracellular components via three pathways: macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). Unlike the other two, CMA degrades cytosolic proteins with a recognized KFERQ-like motif in lysosomes and is important for cellular homeostasis. CMA activity declines with age and is altered in neurodegenerative diseases. Its impairment leads to the accumulation of aggregated proteins, some of which may be directly tied to the pathogenic processes of neurodegenerative diseases. Its induction may accelerate the clearance of pathogenic proteins and promote cell survival, representing a potential therapeutic approach for the treatment of neurodegenerative diseases. In this review, we summarize the current findings on how CMA is involved in neurodegenerative diseases, especially in Parkinson's disease.
Collapse
|
53
|
Cai Z, Zeng W, Tao K, E Z, Wang B, Yang Q. Chaperone-mediated autophagy: roles in neuroprotection. Neurosci Bull 2015. [PMID: 26206599 DOI: 10.1007/s12264-015-1540-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Chaperone-mediated autophagy (CMA), one of the main pathways of lysosomal proteolysis, is characterized by the selective targeting and direct translocation into the lysosomal lumen of substrate proteins containing a targeting motif biochemically related to the pentapeptide KFERQ. Along with the other two lysosomal pathways, macro- and micro-autophagy, CMA is essential for maintaining cellular homeostasis and survival by selectively degrading misfolded, oxidized, or damaged cytosolic proteins. CMA plays an important role in pathologies such as cancer, kidney disorders, and neurodegenerative diseases. Neurons are post-mitotic and highly susceptible to dysfunction of cellular quality-control systems. Maintaining a balance between protein synthesis and degradation is critical for neuronal functions and homeostasis. Recent studies have revealed several new mechanisms by which CMA protects neurons through regulating factors critical for their viability and homeostasis. In the current review, we summarize recent advances in the understanding of the regulation and physiology of CMA with a specific focus on its possible roles in neuroprotection.
Collapse
Affiliation(s)
- Zhibiao Cai
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | | | | | | | | | | |
Collapse
|
54
|
Rapino F, Abhari BA, Jung M, Fulda S. NIK is required for NF-κB-mediated induction of BAG3 upon inhibition of constitutive protein degradation pathways. Cell Death Dis 2015; 6:e1692. [PMID: 25766331 PMCID: PMC4385908 DOI: 10.1038/cddis.2014.584] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/26/2014] [Accepted: 12/17/2014] [Indexed: 02/07/2023]
Abstract
Recently, we reported that induction of the co-chaperone Bcl-2-associated athanogene 3 (BAG3) is critical for recovery of rhabdomyosarcoma (RMS) cells after proteotoxic stress upon inhibition of the two constitutive protein degradation pathways, that is, the ubiquitin-proteasome system by Bortezomib and the aggresome-autophagy system by histone deacetylase 6 (HDAC6) inhibitor ST80. In the present study, we investigated the molecular mechanisms mediating BAG3 induction under these conditions. Here, we identify nuclear factor-kappa B (NF-κB)-inducing kinase (NIK) as a key mediator of ST80/Bortezomib-stimulated NF-κB activation and transcriptional upregulation of BAG3. ST80/Bortezomib cotreatment upregulates mRNA and protein expression of NIK, which is accompanied by an initial increase in histone H3 acetylation. Importantly, NIK silencing by siRNA abolishes NF-κB activation and BAG3 induction by ST80/Bortezomib. Furthermore, ST80/Bortezomib cotreatment stimulates NF-κB transcriptional activity and upregulates NF-κB target genes. Genetic inhibition of NF-κB by overexpression of dominant-negative IκBα superrepressor (IκBα-SR) or by knockdown of p65 blocks the ST80/Bortezomib-stimulated upregulation of BAG3 mRNA and protein expression. Interestingly, inhibition of lysosomal activity by Bafilomycin A1 inhibits ST80/Bortezomib-stimulated IκBα degradation, NF-κB activation and BAG3 upregulation, indicating that IκBα is degraded via the lysosome in the presence of Bortezomib. Thus, by demonstrating a critical role of NIK in mediating NF-κB activation and BAG3 induction upon ST80/Bortezomib cotreatment, our study provides novel insights into mechanisms of resistance to proteotoxic stress in RMS.
Collapse
Affiliation(s)
- F Rapino
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| | - B A Abhari
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| | - M Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University, Freiburg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - S Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
55
|
Patel B, Cuervo AM. Methods to study chaperone-mediated autophagy. Methods 2015; 75:133-40. [PMID: 25595300 PMCID: PMC4355229 DOI: 10.1016/j.ymeth.2015.01.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/30/2014] [Accepted: 01/06/2015] [Indexed: 12/25/2022] Open
Abstract
Chaperone-mediated autophagy (CMA) is a multistep process that involves selective degradation and digestion of a pool of soluble cytosolic proteins in lysosomes. Cytosolic substrates are selectively identified and targeted by chaperones to lysosomes where they are subsequently translocated into the organelle lumen through a dedicated CMA-associated lysosomal membrane receptor/translocation complex. CMA contributes to maintaining a functional proteome, through elimination of altered proteins, and participates in the cellular energetic balance through amino acid recycling. Defective or dysfunctional CMA has been associated with human pathologies such as neurodegeneration, cancer, immunodeficiency or diabetes, increasing the overall interest in methods to monitor this selective autophagic pathway. Here, we describe approaches used to study CMA in different experimental models.
Collapse
Affiliation(s)
- Bindi Patel
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
56
|
Xilouri M, Stefanis L. Chaperone mediated autophagy to the rescue: A new-fangled target for the treatment of neurodegenerative diseases. Mol Cell Neurosci 2015; 66:29-36. [PMID: 25724482 DOI: 10.1016/j.mcn.2015.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/14/2015] [Accepted: 01/24/2015] [Indexed: 12/28/2022] Open
Abstract
One of the main pathways of lysosomal proteolysis is chaperone-mediated autophagy (CMA), which represents a selective mechanism for the degradation of specific soluble proteins within lysosomes. Along with the other two lysosomal pathways, macro- and micro-autophagy, CMA contributes to cellular quality control through the removal of damaged or malfunctioning proteins. The two intrinsic characteristics of CMA are the selective targeting and the direct translocation of substrate proteins into the lysosomal lumen, in a fine-tuned manner through the orchestrated action of a chaperone/co-chaperone complex localized both at the cytosol and the lysosomes. Even though CMA was originally identified as a stress-induced pathway, basal CMA activity is detectable in most cell types analyzed so far, including neurons. Additionally, CMA activity declines with age and this may become a major aggravating factor contributing to neurodegeneration. More specifically, it has been suggested that CMA impairment may underlie the accumulation of misfolded/aggregated proteins, such as alpha-synuclein or LRRK2, whose levels or conformations are critical to Parkinson's disease pathogenesis. On the other hand, CMA induction might accelerate clearance of pathogenic proteins and promote cell survival, suggesting that CMA represents a viable therapeutic target for the treatment of various proteinopathies. In the current review, we provide an overview of the current state of knowledge regarding the role of CMA under physiological and pathological conditions of the nervous system and discuss the implications of these findings for therapeutic interventions for Parkinson's disease and other neurodegenerative disorders. This article is part of Special Issue entitled "Neuronal Protein".
Collapse
Affiliation(s)
- Maria Xilouri
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Leonidas Stefanis
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Second Department of Neurology, University of Athens Medical School, Athens, Greece
| |
Collapse
|
57
|
Murphy KE, Gysbers AM, Abbott SK, Spiro AS, Furuta A, Cooper A, Garner B, Kabuta T, Halliday GM. Lysosomal-associated membrane protein 2 isoforms are differentially affected in early Parkinson's disease. Mov Disord 2015; 30:1639-47. [DOI: 10.1002/mds.26141] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 01/09/2023] Open
Affiliation(s)
- Karen E. Murphy
- Neuroscience Research Australia; Sydney Australia
- School of Medical Sciences, Faculty of Medicine, The University of New South Wales; Sydney Australia
| | | | - Sarah K. Abbott
- Illawarra Health and Medical Research Institute; Wollongong Australia
- School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong; Wollongong Australia
| | - Adena S. Spiro
- Illawarra Health and Medical Research Institute; Wollongong Australia
- School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong; Wollongong Australia
| | - Akiko Furuta
- Department of Degenerative Neurological Diseases; National Institute of Neuroscience, National Center of Neurology and Psychiatry; Kodaira Tokyo Japan
| | - Antony Cooper
- The Garvan Institute of Medical Research; Sydney Australia
- St Vincent's Clinical School, Faculty of Medicine, and School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales; Sydney Australia
| | - Brett Garner
- Illawarra Health and Medical Research Institute; Wollongong Australia
- School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong; Wollongong Australia
| | - Tomohiro Kabuta
- Department of Degenerative Neurological Diseases; National Institute of Neuroscience, National Center of Neurology and Psychiatry; Kodaira Tokyo Japan
| | - Glenda M. Halliday
- Neuroscience Research Australia; Sydney Australia
- School of Medical Sciences, Faculty of Medicine, The University of New South Wales; Sydney Australia
| |
Collapse
|
58
|
Bozaykut P, Ozer NK, Karademir B. Regulation of protein turnover by heat shock proteins. Free Radic Biol Med 2014; 77:195-209. [PMID: 25236750 DOI: 10.1016/j.freeradbiomed.2014.08.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 08/11/2014] [Accepted: 08/11/2014] [Indexed: 12/19/2022]
Abstract
Protein turnover reflects the balance between synthesis and degradation of proteins, and it is a crucial process for the maintenance of the cellular protein pool. The folding of proteins, refolding of misfolded proteins, and also degradation of misfolded and damaged proteins are involved in the protein quality control (PQC) system. Correct protein folding and degradation are controlled by many different factors, one of the most important of which is the heat shock protein family. Heat shock proteins (HSPs) are in the class of molecular chaperones, which may prevent the inappropriate interaction of proteins and induce correct folding. On the other hand, these proteins play significant roles in the degradation pathways, including endoplasmic reticulum-associated degradation (ERAD), the ubiquitin-proteasome system, and autophagy. This review focuses on the emerging role of HSPs in the regulation of protein turnover; the effects of HSPs on the degradation machineries ERAD, autophagy, and proteasome; as well as the role of posttranslational modifications in the PQC system.
Collapse
Affiliation(s)
- Perinur Bozaykut
- Genetic and Metabolic Diseases Research and Investigation Center, Department of Biochemistry, Faculty of Medicine, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Nesrin Kartal Ozer
- Genetic and Metabolic Diseases Research and Investigation Center, Department of Biochemistry, Faculty of Medicine, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Betul Karademir
- Genetic and Metabolic Diseases Research and Investigation Center, Department of Biochemistry, Faculty of Medicine, Marmara University, 34854 Maltepe, Istanbul, Turkey.
| |
Collapse
|
59
|
Valdor R, Mocholi E, Botbol Y, Guerrero-Ros I, Chandra D, Koga H, Gravekamp C, Cuervo AM, Macian F. Chaperone-mediated autophagy regulates T cell responses through targeted degradation of negative regulators of T cell activation. Nat Immunol 2014; 15:1046-54. [PMID: 25263126 PMCID: PMC4208273 DOI: 10.1038/ni.3003] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 09/04/2014] [Indexed: 12/23/2022]
Abstract
Chaperone-mediated autophagy (CMA) targets soluble proteins for lysosomal degradation. Here we found that CMA was activated in T cells in response to engagement of the T cell antigen receptor (TCR), which induced expression of the CMA-related lysosomal receptor LAMP-2A. In activated T cells, CMA targeted the ubiquitin ligase Itch and the calcineurin inhibitor RCAN1 for degradation to maintain activation-induced responses. Consequently, deletion of the gene encoding LAMP-2A in T cells caused deficient in vivo responses to immunization or infection with Listeria monocytogenes. Impaired CMA activity also occurred in T cells with age, which negatively affected their function. Restoration of LAMP-2A in T cells from old mice resulted in enhancement of activation-induced responses. Our findings define a role for CMA in regulating T cell activation through the targeted degradation of negative regulators of T cell activation.
Collapse
Affiliation(s)
- Rut Valdor
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Enric Mocholi
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Yair Botbol
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | - Dinesh Chandra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Hiroshi Koga
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Claudia Gravekamp
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute for Aging Studies. Albert Einstein College of Medicine, Bronx, NY 10461
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute for Aging Studies. Albert Einstein College of Medicine, Bronx, NY 10461
| | - Fernando Macian
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute for Aging Studies. Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
60
|
Knuppertz L, Hamann A, Pampaloni F, Stelzer E, Osiewacz HD. Identification of autophagy as a longevity-assurance mechanism in the aging model Podospora anserina. Autophagy 2014; 10:822-34. [PMID: 24584154 PMCID: PMC5119060 DOI: 10.4161/auto.28148] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 02/07/2014] [Accepted: 02/07/2014] [Indexed: 12/28/2022] Open
Abstract
The filamentous ascomycete Podospora anserina is a well-established aging model in which a variety of different pathways, including those involved in the control of respiration, ROS generation and scavenging, DNA maintenance, proteostasis, mitochondrial dynamics, and programmed cell death have previously been demonstrated to affect aging and life span. Here we address a potential role of autophagy. We provide data demonstrating high basal autophagy levels even in strains cultivated under noninduced conditions. By monitoring an N-terminal fusion of EGFP to the fungal LC3 homolog PaATG8 over the lifetime of the fungus on medium with and without nitrogen supplementation, respectively, we identified a significant increase of GFP puncta in older and in nitrogen-starved cultures suggesting an induction of autophagy during aging. This conclusion is supported by the demonstration of an age-related and autophagy-dependent degradation of a PaSOD1-GFP reporter protein. The deletion of Paatg1, which leads to the lack of the PaATG1 serine/threonine kinase active in early stages of autophagy induction, impairs ascospore germination and development and shortens life span. Under nitrogen-depleted conditions, life span of the wild type is increased almost 4-fold. In contrast, this effect is annihilated in the Paatg1 deletion strain, suggesting that the ability to induce autophagy is beneficial for this fungus. Collectively, our data identify autophagy as a longevity-assurance mechanism in P. anserina and as another surveillance pathway in the complex network of pathways affecting aging and development. These findings provide perspectives for the elucidation of the mechanisms involved in the regulation of individual pathways and their interactions.
Collapse
Affiliation(s)
- Laura Knuppertz
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes; Department of Biosciences; J W Goethe University; Frankfurt, Germany
| | - Andrea Hamann
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes; Department of Biosciences; J W Goethe University; Frankfurt, Germany
| | - Francesco Pampaloni
- Physical Biology Group; Buchmann Institute of Molecular Life Sciences; Cluster of Excellence Frankfurt Macromolecular Complexes; Frankfurt, Germany
| | - Ernst Stelzer
- Physical Biology Group; Buchmann Institute of Molecular Life Sciences; Cluster of Excellence Frankfurt Macromolecular Complexes; Frankfurt, Germany
| | - Heinz D Osiewacz
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes; Department of Biosciences; J W Goethe University; Frankfurt, Germany
| |
Collapse
|
61
|
Abstract
Far from now are the days when investigators raced to identify the proteolytic system responsible for the degradation of their favorite protein. Nowadays, it is well accepted that a given protein can be degraded by different systems depending on factors such as cell type, cellular conditions, or functionality of each proteolytic pathway. The realization of this sharing of substrates among pathways has also helped to unveil deeper levels of communication among the different proteolytic systems. Thus, cells often respond to blockage of one degradative mechanism by upregulating any of the other available pathways. In addition, effectors and regulators of one proteolytic system can be degraded by a different proteolytic pathway that exerts, in this way, a regulatory function. In this mini review, we describe the different levels of cross-talk among autophagic pathways and the ubiquitin/proteasome system. We also provide examples of how this proteolytic communication is used for compensatory purposes in different pathological conditions and discuss the possible therapeutic potential of targeting the modulators of the cross-talk among proteolytic pathways.
Collapse
Affiliation(s)
- Caroline Park
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | | |
Collapse
|
62
|
Abstract
This review focuses on chaperone-mediated autophagy (CMA), one of the proteolytic systems that contributes to degradation of intracellular proteins in lysosomes. CMA substrate proteins are selectively targeted to lysosomes and translocated into the lysosomal lumen through the coordinated action of chaperones located at both sides of the membrane and a dedicated protein translocation complex. The selectivity of CMA permits timed degradation of specific proteins with regulatory purposes supporting a modulatory role for CMA in enzymatic metabolic processes and subsets of the cellular transcriptional program. In addition, CMA contributes to cellular quality control through the removal of damaged or malfunctioning proteins. Here, we describe recent advances in the understanding of the molecular dynamics, regulation and physiology of CMA, and discuss the evidence in support of the contribution of CMA dysfunction to severe human disorders such as neurodegeneration and cancer.
Collapse
|
63
|
Vakifahmetoglu-Norberg H, Kim M, Xia HG, Iwanicki MP, Ofengeim D, Coloff JL, Pan L, Ince TA, Kroemer G, Brugge JS, Yuan J. Chaperone-mediated autophagy degrades mutant p53. Genes Dev 2013; 27:1718-30. [PMID: 23913924 DOI: 10.1101/gad.220897.113] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Missense mutations in the gene TP53, which encodes p53, one of the most important tumor suppressors, are common in human cancers. Accumulated mutant p53 proteins are known to actively contribute to tumor development and metastasis. Thus, promoting the removal of mutant p53 proteins in cancer cells may have therapeutic significance. Here we investigated the mechanisms that govern the turnover of mutant p53 in nonproliferating tumor cells using a combination of pharmacological and genetic approaches. We show that suppression of macroautophagy by multiple means promotes the degradation of mutant p53 through chaperone-mediated autophagy in a lysosome-dependent fashion. In addition, depletion of mutant p53 expression due to macroautophagy inhibition sensitizes the death of dormant cancer cells under nonproliferating conditions. Taken together, our results delineate a novel strategy for killing tumor cells that depend on mutant p53 expression by the activation of chaperone-mediated autophagy and potential pharmacological means to reduce the levels of accumulated mutant p53 without the restriction of mutant p53 conformation in quiescent tumor cells.
Collapse
|
64
|
Lee KH, Jeong J, Yoo CG. Long-term incubation with proteasome inhibitors (PIs) induces IκBα degradation via the lysosomal pathway in an IκB kinase (IKK)-dependent and IKK-independent manner. J Biol Chem 2013; 288:32777-32786. [PMID: 24085292 DOI: 10.1074/jbc.m113.480921] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteasome inhibitors (PIs) have been reported to induce apoptosis in many types of tumor. Their apoptotic activities have been suggested to be associated with the up-regulation of molecules implicated in pro-apoptotic cascades such as p53, p21(Waf1), and p27(Kip1). Moreover, the blocking of NF-κB nuclear translocation via the stabilization of IκB is an important mechanism of PI-induced apoptosis. However, we found that long-term incubation with PIs (PS-341 or MG132) increased NF-κB-regulated gene expression such as COX-2, cIAP2, XIAP, and IL-8 in a dose- and time-dependent manner, which was mediated by phosphorylation of IκBα and its subsequent degradation via the alternative route, lysosome. Overexpression of the IκBα superrepressor (IκBα-SR) blocked PI-induced NF-κB activation. Treatment with lysosomal inhibitors (ammonium chloride or chloroquine) or inhibitors of cathepsins (Z-FF-FMK or Z-FA-FMK) or knock-down of LC3B expression by siRNAs suppressed PI-induced IκBα degradation. Furthermore, we found that both IKK-dependent and IKK-independent pathways were required for PI-induced IκBα degradation. Pretreatment with IKKβ specific inhibitor, SC-514, partially suppressed IκBα degradation and IL-8 production by PIs. Blockade of IKK activity using insolubilization by heat shock (HS) and knock-down by siRNAs for IKKβ only delayed IκBα degradation up to 8 h after treatment with PIs. In addition, PIs induced Akt-dependent inactivation of GSK-3β. Inactive GSK-3β accelerated PI-induced IκBα degradation. Overexpression of active GSK-3β (S9A) or knock-down of GSK-3β delayed PI-induced IκBα degradation. Collectively, our data demonstrate that long-term incubation with PIs activates NF-κB, which is mediated by IκBα degradation via the lysosome in an IKK-dependent and IKK-independent manner.
Collapse
Affiliation(s)
- Kyoung-Hee Lee
- From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine; the Clinical Research Institute, Seoul National University Hospital, Seoul 110-744, Korea; the Lung Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Jiyeong Jeong
- From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine; the Clinical Research Institute, Seoul National University Hospital, Seoul 110-744, Korea; the Lung Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Chul-Gyu Yoo
- From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine; the Clinical Research Institute, Seoul National University Hospital, Seoul 110-744, Korea; the Lung Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799, Korea.
| |
Collapse
|
65
|
Wang XL, Wang K, Zhao S, Wu Y, Gao H, Zeng SM. Oocyte-secreted growth differentiation factor 9 inhibits BCL-2-interacting mediator of cell death-extra long expression in porcine cumulus cell. Biol Reprod 2013; 89:56. [PMID: 23843241 DOI: 10.1095/biolreprod.113.108365] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Oocyte-secreted factors (OSFs) maintain the low incidence of cumulus cell apoptosis. In this report, we described that the presence of oocytes suppressed the expression of proapoptotic protein BCL-2-interacting mediator of cell death-extra long (BIMEL) in porcine cumulus cells. Atretic (terminal deoxynucleotidyl transferase dUTP nick end labeling-positive) cumulus cells strongly expressed BIMEL protein. The healthy cumulus- oocyte complex exhibited a low BIMEL expression in cumulus cell while the removal of oocyte led to an about 2.5-fold (P < 0.5) increased expression in oocytectomized complex (OOX). Coculturing OOXs with denuded oocytes decreased BIMEL expression to the normal level. The similar expression pattern could also be achieved in OOXs treated with exogenous recombinant mouse growth differentiation factor 9 (GDF9), a well-characterized OSF. This inhibitory action of GDF9 was prevented by the addition of a phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. Luciferase assay further demonstrated that BIM gene expression was forkhead box O3a (FOXO3a)-dependent because mutation of FOXO3a-binding site on the BIM promoter inhibited luciferase activities. Moreover, the activity of BIM promoter encompassing the FOXO3a-binding site could be regulated by GDF9. Additionally, we found that GDF9 elevated the levels of phosphorylated AKT and FOXO3a, and this process was independent of the SMAD signal pathway. Taken together, we concluded that OSFs, particularly GDF9, maintained the low level of BIMEL expression in cumulus cell through activation of the PI3K/FOXO3a pathway.
Collapse
Affiliation(s)
- Xian-Long Wang
- Laboratory of Animal Embryonic Biotechnology, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | | | | | | | | |
Collapse
|
66
|
Ferreira JV, Fôfo H, Bejarano E, Bento CF, Ramalho JS, Girão H, Pereira P. STUB1/CHIP is required for HIF1A degradation by chaperone-mediated autophagy. Autophagy 2013; 9:1349-66. [PMID: 23880665 DOI: 10.4161/auto.25190] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The transcription factor HIF1 is mostly regulated by the oxygen-dependent proteasomal degradation of the labile subunit HIF1A. Recent data showed degradation of HIF1A in the lysosome through chaperone-mediated autophagy (CMA). However the molecular mechanism involved has not been elucidated. This study shows that the KFERQ-like motif, that has been identified in all CMA substrates, is required to mediate the interaction between HIF1A and the chaperone HSPA8. Moreover, mutations in the KFERQ-like motif of HIF1A preclude the interaction with the CMA receptor LAMP2A, thus inhibiting its lysosomal degradation. Importantly, we show for the first time that the ubiquitin ligase STUB1 is required for degradation of HIF1A in the lysosome by CMA. Indeed, mutations in STUB1 that inhibit either the ubiquitin ligase activity or its ability to bind to HSPA8, both prevent degradation of HIF1A by CMA. Moreover, we show that HIF1A binds to and is translocated into intact lysosomes isolated from rat livers. This new pathway for degradation of HIF1A does not depend on the presence of oxygen and is activated in response to nutrient deprivation such that the levels of HIF1A bound to CMA positive lysosomes significantly increase in starved animal livers and the binding of HIF1A to LAMP2A increases in response to serum deprivation. Moreover, excessive degradation of HIF1A by CMA compromises cells' ability to respond to and survive under hypoxia, suggesting that this pathway might be of pathophysiological importance in conditions that combine hypoxia with starvation.
Collapse
Affiliation(s)
- João Vasco Ferreira
- Center of Ophthalmology and Vision Sciences; Institute for Biomedical Imaging and Life Science (IBILI); Faculty of Medicine; University of Coimbra; Coimbra, Portugal
| | | | | | | | | | | | | |
Collapse
|
67
|
Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, Grune T, Gonos ES. Protein damage, repair and proteolysis. Mol Aspects Med 2012; 35:1-71. [PMID: 23107776 DOI: 10.1016/j.mam.2012.09.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/26/2012] [Indexed: 01/10/2023]
Abstract
Proteins are continuously affected by various intrinsic and extrinsic factors. Damaged proteins influence several intracellular pathways and result in different disorders and diseases. Aggregation of damaged proteins depends on the balance between their generation and their reversal or elimination by protein repair systems and degradation, respectively. With regard to protein repair, only few repair mechanisms have been evidenced including the reduction of methionine sulfoxide residues by the methionine sulfoxide reductases, the conversion of isoaspartyl residues to L-aspartate by L-isoaspartate methyl transferase and deglycation by phosphorylation of protein-bound fructosamine by fructosamine-3-kinase. Protein degradation is orchestrated by two major proteolytic systems, namely the lysosome and the proteasome. Alteration of the function for both systems has been involved in all aspects of cellular metabolic networks linked to either normal or pathological processes. Given the importance of protein repair and degradation, great effort has recently been made regarding the modulation of these systems in various physiological conditions such as aging, as well as in diseases. Genetic modulation has produced promising results in the area of protein repair enzymes but there are not yet any identified potent inhibitors, and, to our knowledge, only one activating compound has been reported so far. In contrast, different drugs as well as natural compounds that interfere with proteolysis have been identified and/or developed resulting in homeostatic maintenance and/or the delay of disease progression.
Collapse
Affiliation(s)
- Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Isabelle Petropoulos
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Stefanie Grimm
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Konstantina Georgila
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Betul Catalgol
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Haydarpasa, Istanbul, Turkey
| | - Bertrand Friguet
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| |
Collapse
|
68
|
Valdor R, Macian F. Autophagy and the regulation of the immune response. Pharmacol Res 2012; 66:475-83. [PMID: 23063674 DOI: 10.1016/j.phrs.2012.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 10/03/2012] [Indexed: 12/23/2022]
Abstract
Autophagy is a highly conserved mechanism of lysosomal-mediated protein degradation that plays a crucial role in maintaining cellular homeostasis by recycling amino acids, reducing the amount of damaged proteins and regulating protein levels in response to extracellular signals. In the last few years specific functions for different forms of autophagy have been identified in many tissues and organs. In the Immune System, autophagy functions range from the elimination infectious agents and the modulation of the inflammatory response, to the selection of antigens for presentation and the regulation of T cell homeostasis and activation. Here, we review the recent advances that have allowed us to better understand why autophagy is a crucial process in the regulation of the innate and adaptive immune responses.
Collapse
Affiliation(s)
- Rut Valdor
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | |
Collapse
|
69
|
Kaushik S, Cuervo AM. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol 2012; 22:407-17. [PMID: 22748206 DOI: 10.1016/j.tcb.2012.05.006] [Citation(s) in RCA: 632] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 05/27/2012] [Accepted: 05/29/2012] [Indexed: 01/13/2023]
Abstract
All cellular proteins undergo continuous synthesis and degradation. This permanent renewal is necessary to maintain a functional proteome and to allow rapid changes in levels of specific proteins with regulatory purposes. Although for a long time lysosomes were considered unable to contribute to the selective degradation of individual proteins, the discovery of chaperone-mediated autophagy (CMA) changed this notion. Here, we review the characteristics that set CMA apart from other types of lysosomal degradation and the subset of molecules that confer cells the capability to identify individual cytosolic proteins and direct them across the lysosomal membrane for degradation.
Collapse
Affiliation(s)
- Susmita Kaushik
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Chanin Building 504, Bronx, NY 10461, USA
| | | |
Collapse
|
70
|
Kon M, Kiffin R, Koga H, Chapochnick J, Macian F, Varticovski L, Cuervo AM. Chaperone-mediated autophagy is required for tumor growth. Sci Transl Med 2012; 3:109ra117. [PMID: 22089453 DOI: 10.1126/scitranslmed.3003182] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cellular process of autophagy (literally "self-eating") is important for maintaining the homeostasis and bioenergetics of mammalian cells. Two of the best-studied mechanisms of autophagy are macroautophagy and chaperone-mediated autophagy (CMA). Changes in macroautophagy activity have been described in cancer cells and in solid tumors, and inhibition of macroautophagy promotes tumorigenesis. Because normal cells respond to inhibition of macroautophagy by up-regulation of the CMA pathway, we aimed to characterize the CMA status in different cancer cells and to determine the contribution of changes in CMA to tumorigenesis. Here, we show consistent up-regulation of CMA in different types of cancer cells regardless of the status of macroautophagy. We also demonstrate an increase in CMA components in human cancers of different types and origins. CMA is required for cancer cell proliferation in vitro because it contributes to the maintenance of the metabolic alterations characteristic of malignant cells. Using human lung cancer xenografts in mice, we confirmed the CMA dependence of cancer cells in vivo. Inhibition of CMA delays xenograft tumor growth, reduces the number of cancer metastases, and induces regression of existing human lung cancer xenografts in mice. The fact that similar manipulations of CMA also reduce tumor growth of two different melanoma cell lines suggests that targeting this autophagic pathway may have broad antitumorigenic potential.
Collapse
Affiliation(s)
- Maria Kon
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
Bolt AM, Klimecki WT. Autophagy in toxicology: self-consumption in times of stress and plenty. J Appl Toxicol 2012; 32:465-79. [PMID: 22334383 DOI: 10.1002/jat.1787] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/11/2011] [Indexed: 12/22/2022]
Abstract
Autophagy is a critical cellular process orchestrating the lysosomal degradation of cellular components in order to maintain cellular homeostasis and respond to cellular stress. A growing research effort over the last decade has proven autophagy to be essential for constitutive protein and organelle turnover, for embryonic/neonatal survival and for cell survival during conditions of environmental stress. Emphasizing its biological importance, dysfunctional autophagy contributes to a diverse set of human diseases. Cellular stress induced by xenobiotic exposure typifies environmental stress, and can result in the induction of autophagy as a cytoprotective mechanism. An increasing number of xenobiotics are notable for their ability to modulate the induction or the rate of autophagy. The role of autophagy in normal cellular homeostasis, the intricate relationship between cellular stress and the induction of autophagy, and the identification of specific xenobiotics capable of modulating autophagy, point to the importance of the autophagic process in toxicology. This review will summarize the importance of autophagy and its role in cellular response to stress, including examples in which consideration of autophagy has contributed to a more complete understanding of toxicant-perturbed systems.
Collapse
Affiliation(s)
- Alicia M Bolt
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85724, USA.
| | | |
Collapse
|
72
|
Abstract
Cytosolic proteins can be selectively delivered to lysosomes for degradation through a type of autophagy known as chaperone-mediated autophagy (CMA). CMA contributes to intracellular quality control and to the cellular response to stress. Compromised CMA has been described in aging and in different age-related disorders. CMA substrates cross the lysosomal membrane through a translocation complex; consequently, changes in the properties of the lysosomal membrane should have a marked impact on CMA activity. In this work, we have analyzed the impact that dietary intake of lipids has on CMA activity. We have found that chronic exposure to a high-fat diet or acute exposure to a cholesterol-enriched diet both have an inhibitory effect on CMA. Lysosomes from livers of lipid-challenged mice had a marked decrease in the levels of the CMA receptor, the lysosome-associated membrane protein type 2A, because of loss of its stability at the lysosomal membrane. This accelerated degradation of lysosome-associated membrane protein type 2A, also described as the mechanism that determines the decline in CMA activity with age, results from its increased mobilization to specific lipid regions at the lysosomal membrane. Comparative lipidomic analyses revealed qualitative and quantitative changes in the lipid composition of the lysosomal membrane of the lipid-challenged animals that resemble those observed with age. Our findings identify a previously unknown negative impact of high dietary lipid intake on CMA and underscore the importance of diet composition on CMA malfunction in aging.
Collapse
|
73
|
Koga H, Martinez-Vicente M, Arias E, Kaushik S, Sulzer D, Cuervo AM. Constitutive upregulation of chaperone-mediated autophagy in Huntington's disease. J Neurosci 2011; 31:18492-505. [PMID: 22171050 PMCID: PMC3282924 DOI: 10.1523/jneurosci.3219-11.2011] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 10/17/2011] [Accepted: 11/03/2011] [Indexed: 12/12/2022] Open
Abstract
Autophagy contributes to the removal of prone-to-aggregate proteins, but in several instances these pathogenic proteins have been shown to interfere with autophagic activity. In the case of Huntington's disease (HD), a congenital neurodegenerative disorder resulting from mutation in the huntingtin protein, we have previously described that the mutant protein interferes with the ability of autophagic vacuoles to recognize cytosolic cargo. Growing evidence supports the existence of cross talk among autophagic pathways, suggesting the possibility of functional compensation when one of them is compromised. In this study, we have identified a compensatory upregulation of chaperone-mediated autophagy (CMA) in different cellular and mouse models of HD. Components of CMA, namely the lysosome-associated membrane protein type 2A (LAMP-2A) and lysosomal-hsc70, are markedly increased in HD models. The increase in LAMP-2A is achieved through both an increase in the stability of this protein at the lysosomal membrane and transcriptional upregulation of this splice variant of the lamp-2 gene. We propose that CMA activity increases in response to macroautophagic dysfunction in the early stages of HD, but that the efficiency of this compensatory mechanism may decrease with age and so contribute to cellular failure and the onset of pathological manifestations.
Collapse
Affiliation(s)
- Hiroshi Koga
- Department of Developmental and Molecular Biology and Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, New York 10461, and
| | - Marta Martinez-Vicente
- Department of Developmental and Molecular Biology and Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, New York 10461, and
| | - Esperanza Arias
- Department of Developmental and Molecular Biology and Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, New York 10461, and
| | - Susmita Kaushik
- Department of Developmental and Molecular Biology and Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, New York 10461, and
| | - David Sulzer
- Departments of Neurology, Psychiatry, Pharmacology, Columbia University Medical School, New York, New York 10032
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology and Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, New York 10461, and
| |
Collapse
|
74
|
Kaushik S, Bandyopadhyay U, Sridhar S, Kiffin R, Martinez-Vicente M, Kon M, Orenstein SJ, Wong E, Cuervo AM. Chaperone-mediated autophagy at a glance. J Cell Sci 2011; 124:495-9. [PMID: 21282471 DOI: 10.1242/jcs.073874] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Susmita Kaushik
- Department of Developmental and Molecular Biology and Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Hubbard VM, Valdor R, Macian F, Cuervo AM. Selective autophagy in the maintenance of cellular homeostasis in aging organisms. Biogerontology 2011; 13:21-35. [PMID: 21461872 DOI: 10.1007/s10522-011-9331-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 03/18/2011] [Indexed: 12/15/2022]
Abstract
Altered cellular homeostasis, accumulation of damaged non-functional organelles and presence of protein inclusions are characteristics shared by almost all types of differentiated cells in aged organisms. Cells rely on quality control mechanisms to prevent the occurrence of these events and the subsequent cellular compromise associated with them. What goes wrong in aging cells? Growing evidence supports gradual malfunctioning with age of the cellular quality control systems. In this review, we focus on autophagy, a catabolic process that contributes to the maintenance of cellular homeostasis through the degradation of unwanted and damaged components in lysosomes. We describe recent advances on the molecular characterization of this process, its different variants and the multiplicity of functions attributed to them. Autophagic dysfunction has been identified in severe human disorders, many of which worsen with age. We comment on the contribution of an adequate autophagic function to longevity, and the negative impact on health-span of the age-dependent decline in autophagic function.
Collapse
Affiliation(s)
- Vanessa M Hubbard
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | |
Collapse
|
76
|
Arias E, Cuervo AM. Chaperone-mediated autophagy in protein quality control. Curr Opin Cell Biol 2011; 23:184-9. [PMID: 21094035 PMCID: PMC3078170 DOI: 10.1016/j.ceb.2010.10.009] [Citation(s) in RCA: 237] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 10/01/2010] [Accepted: 10/21/2010] [Indexed: 10/18/2022]
Abstract
Chaperone-mediated autophagy is a selective mechanism for degradation of soluble cytosolic proteins in lysosomes that distinguishes itself from other autophagic pathways by the selectivity with which CMA substrates are targeted for degradation. The recent molecular dissection of this autophagic pathway and the development of experimental models with compromised CMA have unveiled the important contribution of this pathway to protein quality control. In fact, CMA activation seems to be a common mechanism of cellular defense against proteotoxicity.
Collapse
Affiliation(s)
- Esperanza Arias
- Department of Developmental and Molecular Biology and Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
77
|
Li W, Yang Q, Mao Z. Chaperone-mediated autophagy: machinery, regulation and biological consequences. Cell Mol Life Sci 2011; 68:749-63. [PMID: 20976518 PMCID: PMC11114861 DOI: 10.1007/s00018-010-0565-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 10/07/2010] [Accepted: 10/08/2010] [Indexed: 10/18/2022]
Abstract
Degradation of dysfunctional intracellular components in the lysosome system can occur through three different pathways, i.e., macroautophagy, microautophagy and chaperone-mediated autophagy (CMA). In this review, we focus on CMA, a type of autophagy distinct from the other two autophagic pathways owing to its selectivity, saturability and competitivity by which a subset of long-lived cytosolic soluble proteins are directly delivered into the lysosomal lumen via specific receptors. CMA participates in quality control to maintain normal cell functions by clearing "old" proteins and provides energy to cells under nutritional stress. Deregulation of CMA has recently been shown to underlie some diseases, especially neurodegenerative disorders for which the decline with age in the activity of CMA may become a major aggravating factor. Therefore, targeting aberrant alteration in CMA under pathological conditions could serve as a potential therapeutic strategy for treating related diseases.
Collapse
Affiliation(s)
- Wenming Li
- Departments of Pharmacology and Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Qian Yang
- Departments of Pharmacology and Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Zixu Mao
- Departments of Pharmacology and Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| |
Collapse
|
78
|
Yabu T, Imamura S, Mohammed MS, Touhata K, Minami T, Terayama M, Yamashita M. Differential gene expression of HSC70/HSP70 in yellowtail cells in response to chaperone-mediated autophagy. FEBS J 2011; 278:673-85. [DOI: 10.1111/j.1742-4658.2010.07989.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
79
|
Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey DCO, Menzies FM, Moreau K, Narayanan U, Renna M, Siddiqi FH, Underwood BR, Winslow AR, Rubinsztein DC. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 2010; 90:1383-435. [PMID: 20959619 DOI: 10.1152/physrev.00030.2009] [Citation(s) in RCA: 1367] [Impact Index Per Article: 91.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
(Macro)autophagy is a bulk degradation process that mediates the clearance of long-lived proteins and organelles. Autophagy is initiated by double-membraned structures, which engulf portions of cytoplasm. The resulting autophagosomes ultimately fuse with lysosomes, where their contents are degraded. Although the term autophagy was first used in 1963, the field has witnessed dramatic growth in the last 5 years, partly as a consequence of the discovery of key components of its cellular machinery. In this review we focus on mammalian autophagy, and we give an overview of the understanding of its machinery and the signaling cascades that regulate it. As recent studies have also shown that autophagy is critical in a range of normal human physiological processes, and defective autophagy is associated with diverse diseases, including neurodegeneration, lysosomal storage diseases, cancers, and Crohn's disease, we discuss the roles of autophagy in health and disease, while trying to critically evaluate if the coincidence between autophagy and these conditions is causal or an epiphenomenon. Finally, we consider the possibility of autophagy upregulation as a therapeutic approach for various conditions.
Collapse
Affiliation(s)
- Brinda Ravikumar
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Orenstein SJ, Cuervo AM. Chaperone-mediated autophagy: molecular mechanisms and physiological relevance. Semin Cell Dev Biol 2010; 21:719-26. [PMID: 20176123 PMCID: PMC2914824 DOI: 10.1016/j.semcdb.2010.02.005] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 02/07/2010] [Accepted: 02/15/2010] [Indexed: 11/18/2022]
Abstract
Chaperone-mediated autophagy (CMA) is a selective lysosomal pathway for the degradation of cytosolic proteins. We review in this work some of the recent findings on this pathway regarding the molecular mechanisms that contribute to substrate targeting, binding and translocation across the lysosomal membrane. We have placed particular emphasis on the critical role that changes in the lipid composition of the lysosomal membrane play in the regulation of CMA, as well as the modulatory effect of other novel CMA components. In the second part of this review, we describe the physiological relevance of CMA and its role as one of the cellular mechanisms involved in the response to stress. Changes with age in CMA activity and the contribution of failure of CMA to the phenotype of aging and to the pathogenesis of several age-related pathologies are also described.
Collapse
Affiliation(s)
- Samantha J. Orenstein
- Department of Developmental and Molecular Biology, Marion Bessin Liver Research Center, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA, 10461
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Marion Bessin Liver Research Center, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA, 10461
| |
Collapse
|
81
|
Abstract
Continuous renewal of intracellular components is required to preserve cellular functionality. In fact, failure to timely turnover proteins and organelles leads often to cell death and disease. Different pathways contribute to the degradation of intracellular components in lysosomes or autophagy. In this review, we focus on chaperone-mediated autophagy (CMA), a selective form of autophagy that modulates the turnover of a specific pool of soluble cytosolic proteins. Selectivity in CMA is conferred by the presence of a targeting motif in the cytosolic substrates that, upon recognition by a cytosolic chaperone, determines delivery to the lysosomal surface. Substrate proteins undergo unfolding and translocation across the lysosomal membrane before reaching the lumen, where they are rapidly degraded. Better molecular characterization of the different components of this pathway in recent years, along with the development of transgenic models with modified CMA activity and the identification of CMA dysfunction in different severe human pathologies and in aging, are all behind the recent regained interest in this catabolic pathway.
Collapse
|
82
|
Wang Y, Martinez-Vicente M, Krüger U, Kaushik S, Wong E, Mandelkow EM, Cuervo AM, Mandelkow E. Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum Mol Genet 2009; 18:4153-70. [PMID: 19654187 DOI: 10.1093/hmg/ddp367] [Citation(s) in RCA: 469] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aggregation and cleavage are two hallmarks of Tau pathology in Alzheimer disease (AD), and abnormal fragmentation of Tau is thought to contribute to the nucleation of Tau paired helical filaments. Clearance of the abnormally modified protein could occur by the ubiquitin-proteasome and autophagy-lysosomal pathways, the two major routes for protein degradation in cells. There is a debate on which of these pathways contributes to clearance of Tau protein and of the abnormal Tau aggregates formed in AD. Here, we demonstrate in an inducible neuronal cell model of tauopathy that the autophagy-lysosomal system contributes to both Tau fragmentation into pro-aggregating forms and to clearance of Tau aggregates. Inhibition of macroautophagy enhances Tau aggregation and cytotoxicity. The Tau repeat domain can be cleaved near the N terminus by a cytosolic protease to generate the fragment F1. Additional cleavage near the C terminus by the lysosomal protease cathepsin L is required to generate Tau fragments F2 and F3 that are highly amyloidogenic and capable of seeding the aggregation of Tau. We identify in this work that components of a selective form of autophagy, chaperone-mediated autophagy, are involved in the delivery of cytosolic Tau to lysosomes for this limited cleavage. However, F1 does not fully enter the lysosome but remains associated with the lysosomal membrane. Inefficient translocation of the Tau fragments across the lysosomal membrane seems to promote formation of Tau oligomers at the surface of these organelles which may act as precursors of aggregation and interfere with lysosomal functioning.
Collapse
Affiliation(s)
- Yipeng Wang
- Max-Planck-Unit for Structural Molecular Biology, Notkestrasse 85, 22607 Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
Recently, autophagy has emerged as a critical process in the control of T-cell homeostasis. Given the pivotal role of NF-kappaB in the signaling events of T cells, we have analyzed and unveiled a conserved NF-kappaB binding site in the promoter of the murine and human BECN1 autophagic gene (Atg6). Accordingly, we demonstrate that the NF-kappaB family member p65/RelA upregulates BECN1 mRNA and protein levels in different cellular systems. Moreover, p65-mediated upregulation of BECN1 is coupled to increased autophagy. The newly identified kappaB site in the BECN1 promoter specifically interacts with p65 both in vitro and in living Jurkat cells upon phorbol myristate acetate (PMA)-ionomycin stimulation, where p65 induction is coupled to BECN1 upregulation and autophagy induction. Finally, anti-CD3- and PMA-ionomycin-mediated activation of T-cell receptor signaling in peripheral T cells from lymph nodes of healthy mice results in an upregulation of BECN1 expression that can be blocked by the NF-kappaB inhibitor BAY 11-7082. Altogether, these data suggest that autophagy could represent a novel route modulated by p65 to regulate cell survival and control T-cell homeostasis.
Collapse
|
84
|
Abstract
Chaperone-mediated autophagy (CMA) is a selective type of autophagy responsible for the lysosomal degradation of soluble cytosolic proteins. In contrast to other forms of autophagy where cargo is sequestered and delivered to lysosomes through membrane fusion/excision, CMA substrates reach the lysosomal lumen after direct translocation across the lysosomal membrane. CMA is part of the cellular quality control systems and as such, essential for the cellular response to stress. CMA activity decreases with age, likely contributing to the accumulation of altered proteins characteristic in tissues from old organisms. Furthermore, impairment of CMA underlies the pathogenesis of certain human pathologies such as neurodegenerative disorders. These findings have drawn renewed attention to CMA and a growing interest in the measurement of changes in CMA activity under different physiological and pathological conditions. In this chapter we review the different experimental approaches used to assess CMA activity both in cells in culture and in different organs from animals.
Collapse
Affiliation(s)
- Susmita Kaushik
- Department of Developmental and Molecular Biology, Marion Bessin Liver Research Center, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Marion Bessin Liver Research Center, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
85
|
Masuhara M, Sato T, Hada N, Hakeda Y. Protective protein/cathepsin A down-regulates osteoclastogenesis by associating with and degrading NF-kappaB p50/p65. J Bone Miner Metab 2009; 27:46-56. [PMID: 19066718 DOI: 10.1007/s00774-008-0017-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 04/25/2008] [Indexed: 01/03/2023]
Abstract
Disruption of the cooperative function balance between osteoblasts and osteoclasts causes various bone disorders, some of which are attributed to abnormal osteoclast recruitment. Osteoclast differentiation is dependent on the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) as well as the macrophage colony-stimulating factor. The osteoclast formation induced by cytokines requires activation of NF-kappaB, AP-1 and nuclear factor of activated T cells c1. However, osteoclasts are not the only cell types that express these transcription factors, suggesting that some unknown molecules specific for osteoclasts may associate with the transcription factors. Here, we explored the possibility of molecules binding directly to NF-kappaB and cloned protective protein/cathepsin A (PPCA) by yeast two-hybrid screening using a cDNA library of osteoclast precursors. Forced expression of PPCA with p50/p65 in HEK293 cells decreased both the level of p50/p65 proteins and the transcriptional activity. Abundant PPCA was detected in the lysosomes of the transfected HEK293 cells, but a small amount of this enzyme was also present in the cytosolic fraction. In addition, over-expression of PPCA caused the disappearance of p50/p65 in both the lysosomal and cytosolic fractions. PPCA was expressed throughout osteoclastogenesis, and the expression was slightly up-regulated by RANKL signaling. Knockdown of PPCA in osteoclast precursors with PPCA siRNA stimulated binding of nuclear proteins to oligonucleotides containing an NF-kappaB binding motif and increased osteoclastogenesis. Our present results indicate a novel role for PPCA in osteoclastogenesis via down-regulation of NF-kappaB activity and suggest a new function for PPCA as an NF-kappaB-degrading enzyme in addition to its known multifunctional properties.
Collapse
Affiliation(s)
- Masaaki Masuhara
- Division of Oral Anatomy, Department of Human Development and Fostering, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
| | | | | | | |
Collapse
|
86
|
Abstract
We have previously demonstrated that clioquinol (5-chloro-7-iodo-8-hydroxyquinoline) acts as a zinc ionophore and induces apoptosis of human cancer cells; however, the mechanisms of clioquinol/zinc-induced apoptotic cell death remain to be elucidated further. Using fluorescence-labelled probes, the present study has examined intracellular zinc distribution after clioquinol treatment in human cancer cells in order to identify cellular targets for zinc ionophores. DU 145, a human prostate cancer line, was chosen as a model system for the present study, and results were confirmed in other human cancer cell lines. Although treatment of cancer cells with 50 μM ZnCl2 for 3 days had no effect on cell viability, addition of clioquinol dramatically enhanced the cytotoxicity, confirming our previous observations. The ionophore activity of clioquinol was confirmed using fluorescence microscopy. Intracellular free zinc was found to be concentrated in lysosomes, indicating that lysosomes are the primary target of zinc ionophores. Furthermore, lysosomal integrity was disrupted after addition of clioquinol and zinc to the cells, as shown by redistribution of both Acridine Orange and cathepsin D. Clioquinol plus zinc resulted in a cleavage of Bid (BH3-interacting domain death agonist), a hallmark of lysosome-mediated apoptotic cell death. Thus the present study demonstrates for the first time that clioquinol generates free zinc in lysosomes, leading to their disruption and apoptotic cell death.
Collapse
|
87
|
Kraft C, Deplazes A, Sohrmann M, Peter M. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol 2008; 10:602-10. [PMID: 18391941 DOI: 10.1038/ncb1723] [Citation(s) in RCA: 572] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 03/23/2008] [Indexed: 01/05/2023]
Abstract
Eukaryotic cells use autophagy and the ubiquitin-proteasome system (UPS) as their major protein degradation pathways. Whereas the UPS is required for the rapid degradation of proteins when fast adaptation is needed, autophagy pathways selectively remove protein aggregates and damaged or excess organelles. However, little is known about the targets and mechanisms that provide specificity to this process. Here we show that mature ribosomes are rapidly degraded by autophagy upon nutrient starvation in Saccharomyces cerevisiae. Surprisingly, this degradation not only occurs by a non-selective mechanism, but also involves a novel type of selective autophagy, which we term 'ribophagy'. A genetic screen revealed that selective degradation of ribosomes requires catalytic activity of the Ubp3p/Bre5p ubiquitin protease. Although ubp3Delta and bre5Delta cells strongly accumulate 60S ribosomal particles upon starvation, they are proficient in starvation sensing and in general trafficking and autophagy pathways. Moreover, ubiquitination of several ribosomal subunits and/or ribosome-associated proteins was specifically enriched in ubp3Delta cells, suggesting that the regulation of ribophagy by ubiquitination may be direct. Interestingly, ubp3Delta cells are sensitive to rapamycin and nutrient starvation, implying that selective degradation of ribosomes is functionally important in vivo. Taken together, our results suggest a link between ubiquitination and the regulated degradation of mature ribosomes by autophagy.
Collapse
Affiliation(s)
- Claudine Kraft
- Institute of Biochemistry, HPM, ETH Hönggerberg, 8093 Zürich, Switzerland.
| | | | | | | |
Collapse
|
88
|
NAD(P)H quinone oxidoreductase 1 inhibits the proteasomal degradation of the tumour suppressor p33(ING1b). EMBO Rep 2008; 9:576-81. [PMID: 18388957 DOI: 10.1038/embor.2008.48] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 03/03/2008] [Indexed: 12/27/2022] Open
Abstract
The tumour suppressor p33(ING1b) ((ING1b) for inhibitor of growth family, member 1b) is important in cellular stress responses, including cell-cycle arrest, apoptosis, chromatin remodelling and DNA repair; however, its degradation pathway is still unknown. Recently, we showed that genotoxic stress induces p33(ING1b) phosphorylation at Ser 126, and abolishment of Ser 126 phosphorylation markedly shortened its half-life. Therefore, we suggest that Ser 126 phosphorylation modulates the interaction of p33(ING1b) with its degradation machinery, stabilizing this protein. Combining the use of inhibitors of the main degradation pathways in the nucleus (proteasome and calpains), partial isolation of the proteasome complex, and in vitro interaction and degradation assays, we set out to determine the degradation mechanism of p33(ING1b). We found that p33(ING1b) is degraded in the 20S proteasome and that NAD(P)H quinone oxidoreductase 1 (NQO1), an oxidoreductase previously shown to modulate the degradation of p53 in the 20S proteasome, inhibits the degradation of p33(ING1b). Furthermore, ultraviolet irradiation induces p33(ING1b) phosphorylation at Ser 126, which, in turn, facilitates its interaction with NQO1.
Collapse
|
89
|
Garate M, Campos EI, Bush JA, Xiao H, Li G. Phosphorylation of the tumor suppressor p33(ING1b) at Ser-126 influences its protein stability and proliferation of melanoma cells. FASEB J 2007; 21:3705-16. [PMID: 17585055 DOI: 10.1096/fj.07-8069com] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ING (inhibitor of growth) tumor suppressors regulate cell-cycle checkpoints, apoptosis, and ultimately tumor suppression. Among the ING family members, p33(ING1b) is the most intensively studied and plays an important role in the cellular stress response to DNA damage. Here we demonstrate that there is basal phosphorylation of p33(ING1b) at Ser-126 in normal physiological conditions and that this phosphorylation is increased on DNA damage. The mutation of Ser-126 to alanine dramatically shortened the half-life of p33(ING1b). Furthermore, we found that both Chk1 and Cdk1 can phosphorylate this residue. Interestingly, while Cdk1 can phosphorylate p33(ING1b) at Ser-126 in nonstress conditions, Chk1 predominantly phosphorylates this residue on DNA damage, which suggests that p33(ING1b) is a downstream target of the ATM/ATR response cascade to genotoxic stress. More importantly, our data indicate that the Ser-126 residue plays a key role in regulating the expression of cyclin B1 and proliferation of melanoma cells.
Collapse
Affiliation(s)
- Marco Garate
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, Jack Bell Research Centre, 2660 Oak St., Vancouver, BC, Canada V6H 3Z6
| | | | | | | | | |
Collapse
|
90
|
Abstract
Autophagy/macroautophagy is known for its role in cellular homeostasis, development, cell survival, aging, immunity, cancer and neurodegeneration. However, until recently, the mechanisms by which autophagy contributes to these important processes were largely unknown. The demonstration of a direct cross-talk between autophagy and NF-kappaB opens up new frontiers for deciphering the role of autophagy in diverse biological processes. Here, we review our current understanding of autophagy, with a focus on its role in tumor suppression, NF-kappaB inactivation and selective protein degradation in mammals. We also list some most intriguing and outstanding questions that are likely to engage researchers in the near future.
Collapse
Affiliation(s)
- Gutian Xiao
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
91
|
Finn PF, Dice JF. Proteolytic and lipolytic responses to starvation. Nutrition 2006; 22:830-44. [PMID: 16815497 DOI: 10.1016/j.nut.2006.04.008] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 03/30/2006] [Accepted: 04/12/2006] [Indexed: 01/20/2023]
Abstract
Mammals survive starvation by activating proteolysis and lipolysis in many different tissues. These responses are triggered, at least in part, by changing hormonal and neural statuses during starvation. Pathways of proteolysis that are activated during starvation are surprisingly diverse, depending on tissue type and duration of starvation. The ubiquitin-proteasome system is primarily responsible for increased skeletal muscle protein breakdown during starvation. However, in most other tissues, lysosomal pathways of proteolysis are stimulated during fasting. Short-term starvation activates macroautophagy, whereas long-term starvation activates chaperone-mediated autophagy. Lipolysis also increases in response to starvation, and the breakdown of triacylglycerols provides free fatty acids to be used as an energy source by skeletal muscle and other tissues. In addition, glycerol released from triacylglycerols can be converted to glucose by hepatic gluconeogenesis. During long-term starvation, oxidation of free fatty acids by the liver leads to the production of ketone bodies that can be used for energy by skeletal muscle and brain. Tissues that cannot use ketone bodies for energy respond to these small molecules by activating chaperone-mediated autophagy. This is one form of interaction between proteolytic and lipolytic responses to starvation.
Collapse
Affiliation(s)
- Patrick F Finn
- Department of Molecular and Cellular Physiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
92
|
Abstract
Different mechanisms target intracellular components for their degradation into lysosomes through what is known as autophagy. In mammals, three main forms of autophagy have been described: macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). CMA is the only autophagic pathway that allows selective degradation of soluble proteins in lysosomes. In contrast to the other mammalian forms of autophagy, CMA does not require vesicle formation or major changes in the lysosomal membrane. Instead, substrate proteins directly cross the lysosomal membrane to reach the lumen, where they are rapidly degraded. The substrate proteins are targeted to the lysosomal membrane by recognition of a targeting motif (a KFERQ-like motif), by a chaperone complex, consisting of hsc70 and its cochaperones, in the cytoplasm. Once at the lysosomal membrane, the protein interacts with a lysosomal receptor for this pathway, lysosomal associated membrane protein type 2A (LAMP-2A), and it is translocated across the membrane into the lysosomal lumen assisted by a lysosome resident chaperone. These two characteristics--selectivity and direct substrate translocation--determine the particular role of CMA in different physiological and pathological conditions. In this chapter, we cover current findings on the molecular mechanisms for CMA and the possible pathophysiological relevance of this selective lysosomal degradation.
Collapse
Affiliation(s)
- Ashish C Massey
- Department of Anatomy and Structural Biology, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
93
|
Singal M, Finkelstein JN. Amorphous silica particles promote inflammatory gene expression through the redox sensitive transcription factor, AP-1, in alveolar epithelial cells. Exp Lung Res 2005; 31:581-97. [PMID: 16019989 DOI: 10.1080/019021490951504] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Ultrafine particulate (UFP) matter, from environmental or industrial exposure, can induce expression of inflammatory mediators and promote production of reactive oxygen species. Previous studies showed various cellular stresses activate signaling pathways operating through specific transcription factors (TFs), activator protein (AP)-1 and nuclear factor (NF)-kappaB, known to regulate inflammatory gene expression. Exposing MLE15 cells to inflammatory, or UFP, stimuli increased macrophage inflammatory protein (MIP)-2 protein, in the absence of the NF = kappaB inhibitor IkappaBc degradation, synergistically increasing in the presence of proteosomal inhibition. Although thiol antioxidants attenuate MIP-2 induction, mitogen-activated protein kinase (MAPK) inhibitors significantly inhibit MIP-2 protein production. This suggests UFP promote inflammatory gene expression through the redox responsive TF AP-1.
Collapse
Affiliation(s)
- Madhuri Singal
- Department of Environmental Medicine, School of Medicine and Dentistry, The University of Rochester, New York 14642, USA
| | | |
Collapse
|
94
|
Silva JLT, Giannocco G, Furuya DT, Lima GA, Moraes PAC, Nachef S, Bordin S, Britto LRG, Nunes MT, Machado UF. NF-kappaB, MEF2A, MEF2D and HIF1-a involvement on insulin- and contraction-induced regulation of GLUT4 gene expression in soleus muscle. Mol Cell Endocrinol 2005; 240:82-93. [PMID: 16024167 DOI: 10.1016/j.mce.2005.05.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Revised: 05/13/2005] [Accepted: 05/20/2005] [Indexed: 02/07/2023]
Abstract
The GLUT4 gene transcriptional activity has a profound impact on the insulin-mediated glucose disposal and it is, therefore, important to understand the mechanisms underlying it. Insulin and exercise modulate GLUT4 expression in vivo, but the net control and involved mechanisms of each one have not been established yet. This paper sought to discriminate, in soleus muscle, the effects of insulin and muscle contraction on GLUT4 gene expression, and the involvement of transcriptional factors: myocite enhancer factor 2 (MEF2 A/C/D), hypoxia inducible factor 1-a (HIF1-a) and nuclear factor-kappa B (NF-kappaB). The GLUT4 mRNA was reduced by fasting (40%), and increased by in vitro incubation with insulin (25%) or insulin plus glucose (40%), which was accompanied by opposite regulations of NF-kappaB mRNA. Differently, in vitro, muscle contraction led to a rapid increase (35-80%) in GLUT4, MEF2A, MEF2D and HIF1-a mRNAs. Additionally, electrophoretic mobility shift assay confirmed changes in the binding activity of nuclear proteins to consensus NF-kappaB, GLUT4-Ebox and GLUT4-AT-rich element probes, parallel to the mRNA changes of their respective transcriptional factors NF-kappaB, HIF1-a and MEF2s. Concluding, insulin- and contraction-induced regulation of GLUT4 expression involves distinct transcriptional factors.
Collapse
Affiliation(s)
- Jose L T Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Shay KP, Wang Z, Xing PX, McKenzie IFC, Magnuson NS. Pim-1 kinase stability is regulated by heat shock proteins and the ubiquitin-proteasome pathway. Mol Cancer Res 2005; 3:170-81. [PMID: 15798097 DOI: 10.1158/1541-7786.mcr-04-0192] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Elevated expression of the serine/threonine kinase Pim-1 increases the incidence of lymphomas in Pim-1 transgenic mice and has also been found to occur in some human cancers. Pim-1 acts as a cell survival factor and may prevent apoptosis in malignant cells. It was therefore of interest to understand to what extent maintenance and degradation of Pim-1 protein is affected by heat shock proteins (Hsp) and the ubiquitin-proteasome pathway in K562 and BV173 human leukemic cells. The half-life of Pim-1 protein in these cells was found to increase from 1.7 to 3.1 hours when induced by heat shock or by treating the cells with the proteasome inhibitor PS-341 (bortezomib). The Hsp90 inhibitor geldanamycin prevented the stabilization of Pim-1 by heat shock. Using immunoprecipitation, it was determined that Pim-1 is targeted for degradation by ubiquitin and that Hsp70 is associated with Pim-1 under these circumstances. Conversely, Hsp90 was found to protect Pim-1 from proteasomal degradation. A luminescence-based kinase assay showed that Pim-1 kinase bound to Hsp70 or Hsp90 remains active, emphasizing the importance of its overall cellular levels. This study shows how Pim-1 levels can be modulated in cells through degradation and stabilization.
Collapse
Affiliation(s)
- Kate Petersen Shay
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4234, USA
| | | | | | | | | |
Collapse
|
96
|
Abstract
In contrast to the classically described "in bulk" lysosomal degradation, the first evidence for selective degradation of cytosolic proteins in lysosomes was presented more than 20 years ago. Throughout this time, we have gained a better understanding about this process, now known as chaperone-mediated autophagy (CMA). The identification of new substrates for CMA and novel components, in both the cytosol and the lysosomes, along with better insights on how CMA is regulated, have all helped to shape the possible physiological roles of CMA. We review here different intracellular functions of CMA that arise from its unique characteristics when compared to other forms of autophagy. In view of these functions, we discuss the relevance of the changes in CMA activity in aging and in different pathological conditions.
Collapse
Affiliation(s)
- Ashish Massey
- Department of Anatomy and Structural Biology, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Ullmann Building Room 614, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
97
|
Deng J, Lu PD, Zhang Y, Scheuner D, Kaufman RJ, Sonenberg N, Harding HP, Ron D. Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol Cell Biol 2005; 24:10161-8. [PMID: 15542827 PMCID: PMC529034 DOI: 10.1128/mcb.24.23.10161-10168.2004] [Citation(s) in RCA: 524] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Numerous stressful conditions activate kinases that phosphorylate the alpha subunit of translation initiation factor 2 (eIF2alpha), thus attenuating mRNA translation and activating a gene expression program known as the integrated stress response. It has been noted that conditions associated with eIF2alpha phosphorylation, notably accumulation of unfolded proteins in the endoplasmic reticulum (ER), or ER stress, are also associated with activation of nuclear factor kappa B (NF-kappaB) and that eIF2alpha phosphorylation is required for NF-kappaB activation by ER stress. We have used a pharmacologically activable version of pancreatic ER kinase (PERK, an ER stress-responsive eIF2alpha kinase) to uncouple eIF2alpha phosphorylation from stress and found that phosphorylation of eIF2alpha is both necessary and sufficient to activate both NF-kappaB DNA binding and an NF-kappaB reporter gene. eIF2alpha phosphorylation-dependent NF-kappaB activation correlated with decreased levels of the inhibitor IkappaBalpha protein. Unlike canonical signaling pathways that promote IkappaBalpha phosphorylation and degradation, eIF2alpha phosphorylation did not increase phosphorylated IkappaBalpha levels or affect the stability of the protein. Pulse-chase labeling experiments indicate instead that repression of IkappaBalpha translation plays an important role in NF-kappaB activation in cells experiencing high levels of eIF2alpha phosphorylation. These studies suggest a direct role for eIF2alpha phosphorylation-dependent translational control in activating NF-kappaB during ER stress.
Collapse
Affiliation(s)
- Jing Deng
- New York University Medical Center, SI 3-10, 540 First Ave., New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Lee J, Kim YS, Choi DH, Bang MS, Han TR, Joh TH, Kim SY. Transglutaminase 2 Induces Nuclear Factor-κB Activation via a Novel Pathway in BV-2 Microglia. J Biol Chem 2004; 279:53725-35. [PMID: 15471861 DOI: 10.1074/jbc.m407627200] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transglutaminase 2 (TGase 2) expression is increased in inflammatory diseases. We demonstrated previously that inhibitors of TGase 2 reduce nitric oxide (NO) generation in a lipopolysaccharide (LPS)-treated microglial cell line. However, the precise mechanism by which TGase 2 promotes inflammation remains unclear. We found that TGase 2 activates the transcriptional activator nuclear factor (NF)-kappaB and thereby enhances LPS-induced expression of inducible nitric-oxide synthase. TGase 2 activates NF-kappaB via a novel pathway. Rather than stimulating phosphorylation and degradation of the inhibitory subunit alpha of NF-kappaB (I-kappaBalpha), TGase2 induces its polymerization. This polymerization results in dissociation of NF-kappaB and its translocation to the nucleus, where it is capable of up-regulating a host of inflammatory genes, including inducible nitric-oxide synthase and tumor necrosis factor alpha (TNF-alpha). Indeed, TGase inhibitors prevent depletion of monomeric I-kappaBalpha in the cytosol of cells overexpressing TGase 2. In an LPS-induced rat brain injury model, TGase inhibitors significantly reduced TNF-alpha synthesis. The findings are consistent with a model in which LPS-induced NF-kappaB activation is the result of phosphorylation of I-kappaBalpha by I-kappaB kinase as well as I-kappaBalpha polymerization by TGase 2. Safe and stable TGase2 inhibitors may be effective agents in diseases associated with inflammation.
Collapse
Affiliation(s)
- Jongmin Lee
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University and Burke Medical Research Institute, White Plains, NY 10605, USA
| | | | | | | | | | | | | |
Collapse
|
99
|
Abstract
Chaperone-mediated autophagy is one of several lysosomal pathways of proteolysis. This pathway is activated by physiological stresses such as prolonged starvation. Cytosolic proteins with particular peptide sequence motifs are recognized by a complex of molecular chaperones and delivered to lysosomes. No vesicular traffic is required for this protein degradation pathway, so it differs from microautophagy and macroautophagy. Protein substrates bind to a receptor in the lysosomal membrane, the lysosome-associated membrane protein (lamp) type 2a. Levels of lamp2a in the lysosomal membrane are controlled by alterations in the lamp2a half-life as well as by the dynamic distribution of the protein between the lysosomal membrane and the lumen. Substrate proteins are unfolded before transport into the lysosome lumen, and the transport of substrate proteins requires a molecular chaperone within the lysosomal lumen. The exact roles of this lysosomal chaperone remain to be defined. The mechanisms of chaperone-mediated autophagy are similar to mechanisms of protein import into mitochondria, chloroplasts, and the endoplasmic reticulum.
Collapse
Affiliation(s)
- Amy E Majeski
- Department of Physiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| | | |
Collapse
|
100
|
Kiffin R, Christian C, Knecht E, Cuervo AM. Activation of chaperone-mediated autophagy during oxidative stress. Mol Biol Cell 2004; 15:4829-40. [PMID: 15331765 PMCID: PMC524731 DOI: 10.1091/mbc.e04-06-0477] [Citation(s) in RCA: 473] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 08/03/2004] [Accepted: 08/18/2004] [Indexed: 02/06/2023] Open
Abstract
Oxidatively damaged proteins accumulate with age in almost all cell types and tissues. The activity of chaperone-mediated autophagy (CMA), a selective pathway for the degradation of cytosolic proteins in lysosomes, decreases with age. We have analyzed the possible participation of CMA in the removal of oxidized proteins in rat liver and cultured mouse fibroblasts. Added to the fact that CMA substrates, when oxidized, are more efficiently internalized into lysosomes, we have found a constitutive activation of CMA during oxidative stress. Oxidation-induced activation of CMA correlates with higher levels of several components of the lysosomal translocation complex, but in particular of the lumenal chaperone, required for substrate uptake, and of the lysosomal membrane protein (lamp) type 2a, previously identified as a receptor for this pathway. In contrast with the well characterized mechanism of CMA activation during nutritional stress, which does not require de novo synthesis of the receptor, oxidation-induced activation of CMA is attained through transcriptional up-regulation of lamp2a. We conclude that CMA is activated during oxidative stress and that the higher activity of this pathway under these conditions, along with the higher susceptibility of the oxidized proteins to be taken up by lysosomes, both contribute to the efficient removal of oxidized proteins.
Collapse
Affiliation(s)
- Roberta Kiffin
- Department of Anatomy and Structural Biology, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 1046, USA
| | | | | | | |
Collapse
|