51
|
Hu Z, Zhou F, Xu H. Circulating vitamin C and D concentrations and risk of dental caries and periodontitis: A Mendelian randomization study. J Clin Periodontol 2022; 49:335-344. [PMID: 35112385 DOI: 10.1111/jcpe.13598] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/06/2022] [Accepted: 01/22/2022] [Indexed: 12/13/2022]
Abstract
AIM This Mendelian randomization (MR) study was performed to explore the causal relationship among circulating vitamin C and D levels, dental caries, and periodontitis. MATERIALS AND METHODS MR analyses were conducted with the inverse variance weighted (IVW) method, weighted median, MR-Egger approaches, and MR-robust adjusted profile score method to assess the causal relationships between circulating vitamin C and D concentrations and dental caries, the number of remaining natural permanent teeth in the mouth (N teeth), and periodontitis. RESULTS We found potential causal association of circulating vitamin D concentrations with N teeth (β = 0.085; 95% confidence interval: 0.019 to 0.150; p = .012) based on the IVW method. No significant causal relationship between circulating vitamin D levels and dental caries and periodontitis was observed. Similarly, no evidence supported a causal relationship between circulating vitamin C concentrations and the risk of dental caries, N teeth, and periodontitis. CONCLUSIONS There is no obvious evidence suggesting a causal relationship among circulating vitamin D, dental caries, and periodontitis, drawing into question the mechanism for any association with N teeth. Additionally, there is insufficient power to detect small effects in vitamin C levels and caries and periodontitis.
Collapse
Affiliation(s)
- Zhao Hu
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, China
| | - Feixiang Zhou
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, China
| | - Huilan Xu
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
52
|
Peng B, Guo Y, Ma Y, Zhou M, Zhao Y, Wang J, Fang Y. Smartphone-assisted multiple-mode assay of ascorbic acid using cobalt oxyhydroxide nanoflakes and carbon quantum dots. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
53
|
|
54
|
Enhancement of Antiviral T-Cell Responses by Vitamin C Suggests New Strategies to Improve Manufacturing of Virus-Specific T Cells for Adoptive Immunotherapy. BIOLOGY 2022; 11:biology11040536. [PMID: 35453735 PMCID: PMC9032103 DOI: 10.3390/biology11040536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/14/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022]
Abstract
Allogeneic and autologous transplantation of hematopoietic stem cells (HSCT) are being routinely used to treat patients with leukemia and lymphoma. Due to the required immunosuppression after stem cell transplantation, infection and reactivation by viruses are life-threatening complications. In recent years, adoptive transfer using virus-specific T cells (VSTs) has emerged as alternative to conventional therapies. Since vitamins are described to influence the immune system and its cellular components, the aim of this study was to examine whether vitamins modulate VST function and thereby enable an improvement of therapy. For that, we investigated the impact of vitamin C and D on the functionality of cytomegalovirus (CMV)-specific T cells isolated from CMV-seropositive healthy donors. We were able to show that vitamin C increases the expansion and activation state of CMV-specific T cells, and an increased influence of vitamin C was observed on cells isolated from male donors and donors above 40 years of age. A higher frequency of the terminally differentiated effector memory CD8+ T-cell population in these donors indicates a connection between these cells and the enhanced response to vitamin C. Thus, here we provide insights into the impact of vitamin C on cytotoxic T cells as well as possible additional selection criteria and strategies to improve VST functionality.
Collapse
|
55
|
Advances on the Antioxidant Activity of a Phytocomplex Product Containing Berry Extracts from Romanian Spontaneous Flora. Processes (Basel) 2022. [DOI: 10.3390/pr10040646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The present study aimed to evaluate the antioxidant properties of a phytocomplex product obtained using 10% hydroalcoholic extractive solutions, in equal proportions, from Ribes nigrum, Rubus idaeus, Rubus fruticosus and Fragaria moschata fresh fruits harvested from the spontaneous flora of Romania. These plant products were recognized for their rich antioxidant content. The phytochemical profile was assessed using HPLC chromatography and UV-Vis spectrometry. The obtained results highlighted the presence of complex bioactive compounds with antioxidant actions, namely anthocyanins, proanthocyanins and vitamin C. The antioxidant actions of the hydroalcoholic extractive solutions and the phytocomplex product were evaluated using chemiluminescence, electrochemical and superoxide dismutase (SOD) methods. The experimental results showed evident antioxidant activity in both the hydroalcoholic extracts and the phytocomplex product.
Collapse
|
56
|
Shukurov I, Mohamed MS, Mizuki T, Palaninathan V, Ukai T, Hanajiri T, Maekawa T. Biological Synthesis of Bioactive Gold Nanoparticles from Inonotus obliquus for Dual Chemo-Photothermal Effects against Human Brain Cancer Cells. Int J Mol Sci 2022; 23:2292. [PMID: 35216406 PMCID: PMC8880898 DOI: 10.3390/ijms23042292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
The possibility for an ecologically friendly and simple production of gold nanoparticles (AuNPs) with Chaga mushroom (Inonotus obliquus) (Ch-AuNPs) is presented in this study. Chaga extract's reducing potential was evaluated at varied concentrations and temperatures. The nanoparticles synthesized were all under 20 nm in size, as measured by TEM, which is a commendable result for a spontaneous synthesis method utilizing a biological source. The Ch-AuNPs showed anti-cancer chemotherapeutic effects on human brain cancer cells which is attributed to the biofunctionalization of the AuNPs with Chaga bioactive components during the synthesis process. Further, the photothermal ablation capability of the as-prepared gold nanoparticles on human brain cancer cells was investigated. It was found that the NIR-laser induced thermal ablation of cancer cells was effective in eliminating over 80% of the cells. This research projects the Ch-AuNPs as promising, dual modal (chemo-photothermal) therapeutic candidates for anti-cancer applications.
Collapse
Affiliation(s)
- Ibrohimjon Shukurov
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585, Japan; (I.S.); (T.M.); (V.P.); (T.U.); (T.H.); (T.M.)
| | - Mohamed Sheikh Mohamed
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585, Japan; (I.S.); (T.M.); (V.P.); (T.U.); (T.H.); (T.M.)
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585, Japan
| | - Toru Mizuki
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585, Japan; (I.S.); (T.M.); (V.P.); (T.U.); (T.H.); (T.M.)
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585, Japan
| | - Vivekanandan Palaninathan
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585, Japan; (I.S.); (T.M.); (V.P.); (T.U.); (T.H.); (T.M.)
| | - Tomofumi Ukai
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585, Japan; (I.S.); (T.M.); (V.P.); (T.U.); (T.H.); (T.M.)
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585, Japan
| | - Tatsuro Hanajiri
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585, Japan; (I.S.); (T.M.); (V.P.); (T.U.); (T.H.); (T.M.)
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585, Japan
| | - Toru Maekawa
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585, Japan; (I.S.); (T.M.); (V.P.); (T.U.); (T.H.); (T.M.)
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585, Japan
| |
Collapse
|
57
|
Underutilized Fruit Crops of Indian Arid and Semi-Arid Regions: Importance, Conservation and Utilization Strategies. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nowadays, there is a large demand for nutrient-dense fruits to promote nutritional and metabolic human health. The production of commercial fruit crops is becoming progressively input-dependent to cope with the losses caused by biotic and abiotic stresses. A wide variety of underutilized crops, which are neither commercially cultivated nor traded on a large scale, are mainly grown, commercialized and consumed locally. These underutilized fruits have many advantages in terms of ease to grow, hardiness and resilience to climate changes compared to the major commercially grown crops. In addition, they are exceptionally rich in important phytochemicals and have medicinal value. Hence, their consumption may help to meet the nutritional needs of rural populations, such as those living in fragile arid and semi-arid regions around the world. In addition, local people are well aware of the nutritional and medicinal properties of these crops. Therefore, emphasis must be given to the rigorous study of the conservation and the nutritional characterization of these crops so that the future food basket may be widened for enhancing its functional and nutritional values. In this review, we described the ethnobotany, medicinal and nutritional values, biodiversity conservation and utilization strategies of 19 climate-resilient important, underutilized fruit crops of arid and semi-arid regions (Indian jujube, Indian gooseberry, lasora, bael, kair, karonda, tamarind, wood apple, custard apple, jamun, jharber, mahua, pilu, khejri, mulberry, chironji, manila tamarind, timroo, khirni).
Collapse
|
58
|
Mitochondrial Pathophysiology on Chronic Kidney Disease. Int J Mol Sci 2022; 23:ijms23031776. [PMID: 35163697 PMCID: PMC8836100 DOI: 10.3390/ijms23031776] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
In healthy kidneys, interstitial fibroblasts are responsible for the maintenance of renal architecture. Progressive interstitial fibrosis is thought to be a common pathway for chronic kidney diseases (CKD). Diabetes is one of the boosters of CKD. There is no effective treatment to improve kidney function in CKD patients. The kidney is a highly demanding organ, rich in redox reactions occurring in mitochondria, making it particularly vulnerable to oxidative stress (OS). A dysregulation in OS leads to an impairment of the Electron transport chain (ETC). Gene deficiencies in the ETC are closely related to the development of kidney disease, providing evidence that mitochondria integrity is a key player in the early detection of CKD. The development of novel CKD therapies is needed since current methods of treatment are ineffective. Antioxidant targeted therapies and metabolic approaches revealed promising results to delay the progression of some markers associated with kidney disease. Herein, we discuss the role and possible origin of fibroblasts and the possible potentiators of CKD. We will focus on the important features of mitochondria in renal cell function and discuss their role in kidney disease progression. We also discuss the potential of antioxidants and pharmacologic agents to delay kidney disease progression.
Collapse
|
59
|
Vitamin C Status in People with Types 1 and 2 Diabetes Mellitus and Varying Degrees of Renal Dysfunction: Relationship to Body Weight. Antioxidants (Basel) 2022; 11:antiox11020245. [PMID: 35204128 PMCID: PMC8868094 DOI: 10.3390/antiox11020245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder and is associated with depleted vitamin C status. The underlying aetiologies and pathogeneses responsible for this association are poorly understood. This retrospective study explored the vitamin C status of 136 adult outpatients with types 1 and 2 diabetes mellitus (T1DM/T2DM), with a focus on indices of renal function and metabolic health, including body weight. In the T1DM group (n = 73), the median plasma vitamin C concentration was 33 (18, 48) µmol/L, with 37% hypovitaminosis C and 12% deficiency. In the T2DM group (n = 63), the median plasma concentration was 15 (7, 29) µmol/L, with 68% hypovitaminosis C and 38% deficiency. Lower vitamin C was associated with macroalbuminuria (p = 0.03), renal dysfunction (p = 0.08), and hypertension (p = 0.0005). Inverse associations were also observed between plasma vitamin C and various other metabolic health parameters (p < 0.05), especially body weight (p < 0.0001), which was higher in those with hypovitaminosis C (<23 µmol/L; p = 0.0001). The association with bodyweight remained, even after multivariable analysis. In summary, body weight was a significant predictor of low vitamin C status in people with diabetes. This suggests that people with both diabetes and a high body weight may have greater than average vitamin C requirements.
Collapse
|
60
|
Bioactive Compounds from Cardoon as Health Promoters in Metabolic Disorders. Foods 2022; 11:foods11030336. [PMID: 35159487 PMCID: PMC8915173 DOI: 10.3390/foods11030336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022] Open
Abstract
Cardoon (Cynara cardunculus L.) is a Mediterranean plant and member of the Asteraceae family that includes three botanical taxa, the wild perennial cardoon (C. cardunculus L. var. sylvestris (Lamk) Fiori), globe artichoke (C. cardunculus L. var. scolymus L. Fiori), and domesticated cardoon (C. cardunculus L. var. altilis DC.). Cardoon has been widely used in the Mediterranean diet and folk medicine since ancient times. Today, cardoon is recognized as a plant with great industrial potential and is considered as a functional food, with important nutritional value, being an interesting source of bioactive compounds, such as phenolics, minerals, inulin, fiber, and sesquiterpene lactones. These bioactive compounds have been vastly described in the literature, exhibiting a wide range of beneficial effects, such as antimicrobial, anti-inflammatory, anticancer, antioxidant, lipid-lowering, cytotoxic, antidiabetic, antihemorrhoidal, cardiotonic, and choleretic activity. In this review, an overview of the cardoon nutritional and phytochemical composition, as well as its biological potential, is provided, highlighting the main therapeutic effects of the different parts of the cardoon plant on metabolic disorders, specifically associated with hepatoprotective, hypolipidemic, and antidiabetic activity.
Collapse
|
61
|
The Role of Macronutrients, Micronutrients and Flavonoid Polyphenols in the Prevention and Treatment of Osteoporosis. Nutrients 2022; 14:nu14030523. [PMID: 35276879 PMCID: PMC8839902 DOI: 10.3390/nu14030523] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is considered an age-related disorder of the skeletal system, characterized primarily by decreased bone mineral density (BMD), microstructural quality and an elevated risk of fragility fractures. This silent disease is increasingly becoming a global epidemic due to an aging population and longer life expectancy. It is known that nutrition and physical activity play an important role in skeletal health, both in achieving the highest BMD and in maintaining bone health. In this review, the role of macronutrients (proteins, lipids, carbohydrates), micronutrients (minerals—calcium, phosphorus, magnesium, as well as vitamins—D, C, K) and flavonoid polyphenols (quercetin, rutin, luteolin, kaempferol, naringin) which appear to be essential for the prevention and treatment of osteoporosis, are characterized. Moreover, the importance of various naturally available nutrients, whether in the diet or in food supplements, is emphasized. In addition to pharmacotherapy, the basis of osteoporosis prevention is a healthy diet rich mainly in fruits, vegetables, seafood and fish oil supplements, specific dairy products, containing a sufficient amount of all aforementioned nutritional substances along with regular physical activity. The effect of diet alone in this context may depend on an individual’s genotype, gene-diet interactions or the composition and function of the gut microbiota.
Collapse
|
62
|
Chen Z, Huang Y, Cao D, Qiu S, Chen B, Li J, Bao Y, Wei Q, Han P, Liu L. Vitamin C Intake and Cancers: An Umbrella Review. Front Nutr 2022; 8:812394. [PMID: 35127793 PMCID: PMC8812486 DOI: 10.3389/fnut.2021.812394] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Based on the existing systematic reviews and meta-analyses, we conducted this umbrella review aiming at evaluating the quality of evidence, validity and biases of the relationship between vitamin C (VC) intake and incidence and outcomes of multiple cancers. We identified 22 cancer outcomes within 3,562 articles. VC consumption was associated with lower incidence of bladder cancer, breast cancer, cervical tumors, endometrial cancer, esophageal cancer, gastric cancer, glioma, lung cancer, pancreatic cancer, prostate cancer, renal cell cancer, and total cancer occurrence. VC intake was also related to decreased risk of breast cancer prognosis (recurrence, cancer-specific mortality, and all-cause mortality).
Collapse
Affiliation(s)
- Zeyu Chen
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Clinical Medicine, Sichuan University, Chengdu, China
| | - Yin Huang
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Clinical Medicine, Sichuan University, Chengdu, China
| | - Dehong Cao
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shi Qiu
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Chen
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Clinical Medicine, Sichuan University, Chengdu, China
| | - Jin Li
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Clinical Medicine, Sichuan University, Chengdu, China
| | - Yige Bao
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Han
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Ping Han
| | - Liangren Liu
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Liangren Liu
| |
Collapse
|
63
|
Chang P, Wu LJ, Yuan X, Yukun B, Dan Y, Wu G, An M, Zhao L. Construction of a ratiometric fluorescence sensing platform based on DES-CDs/CoOOH/OPD system for ascorbic acid detection. NEW J CHEM 2022. [DOI: 10.1039/d2nj02066a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a ratiometric fluorescence sensing platform based on deep eutectic solvent-carbon dots (DES-CDs) was constructed to efficiently determine ascorbic acid (AA). The CDs were synthesized by hydrothermal method using green...
Collapse
|
64
|
Bedhiafi T, Inchakalody VP, Fernandes Q, Mestiri S, Billa N, Uddin S, Merhi M, Dermime S. The potential role of vitamin C in empowering cancer immunotherapy. Biomed Pharmacother 2021; 146:112553. [PMID: 34923342 DOI: 10.1016/j.biopha.2021.112553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Vitamin C also known as L-ascorbic acid is a nutrient naturally occurring in many fruits and vegetables and widely known for its potent antioxidant activity. Several studies have highlighted the importance of using high dose vitamin C as an adjuvant anti-cancer therapy. Interestingly, it has been shown that vitamin C is able to modulate the anti-cancer immune response and to help to overcome the resistance to immune checkpoints blockade (ICB) drugs such as cytotoxic T-lymphocyte antigen 4 (CLTA-4) and programmed cell death ligand 1 (PD-L1/PD-1) inhibitors. Indeed, it was reported that vitamin C regulates several mechanisms developed by cancer cells to escape T cells immune response and resist ICB. Understanding the role of vitamin C in the anti-tumor immune response will pave the way to the development of novel combination therapies that would enhance the response of cancer patients to ICB immunotherapy. In this review, we discuss the effect of vitamin C on the immune system and its potential role in empowering cancer immunotherapy through its pro-oxidant potential, its ability to modulate epigenetic factors and its capacity to regulate the expression of different cytokines involved in the immune response.
Collapse
Affiliation(s)
- Takwa Bedhiafi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Philipose Inchakalody
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Queenie Fernandes
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Medicine, Qatar University, Doha, Qatar
| | - Sarra Mestiri
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | | | - Shahab Uddin
- Translational Research Institute and dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.
| | - Said Dermime
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
65
|
Zhong Y, Zou Y, Yang X, Lu Z, Wang D. Ascorbic acid detector based on fluorescent molybdenum disulfide quantum dots. Mikrochim Acta 2021; 189:19. [PMID: 34877612 DOI: 10.1007/s00604-021-05124-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
A rapid and facile method is reported for the detection of ascorbic acid using molybdenum disulfide quantum dots (MoS2 QDs) as a fluorescence sensor. Water-soluble and biocompatible MoS2 QDs with the maximum fluorescence emission at 506 nm have been successfully synthesized by hydrothermal method and specific detection for ascorbic acid (AA) was constructed to utilize the modulation of metal ion on the fluorescence of MoS2 QDs and the affinity and specificity between the ligand and the metal ion. The fluorescence of MoS2 QDs was quenched by the irreversible static quenching of Fe3+ through the formation of a MoS2 QDs/Fe3+ complex, while the pre-existence of AA can retain the fluorescence of MoS2 QDs through the redox reaction between AA and Fe3+. Based on this principle, a good linear relationship was obtained in the AA concentration range 1 to 150 μM with a detection limit of 50 nM. The proposed fluorescent sensing strategy was proven to be highly selective, quite simple, and rapid with a requirement of only 5 min at room temperature (RT), which is particularly useful for rapid and easy analysis. Satisfactory results were obtained when applied to AA determination in fruits, beverages, and serum samples as well as AA imaging in living cells, suggesting its great potential in constructing other fluorescence detection and imaging platforms.
Collapse
Affiliation(s)
- Yaping Zhong
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan, 430200, China.
| | - Yibiao Zou
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan, 430200, China
| | - Xianhong Yang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan, 430200, China
| | - Zhentan Lu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan, 430200, China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan, 430200, China.
| |
Collapse
|
66
|
Subramanian VS, Teafatiller T, Vidal J, Gunaratne GS, Rodriguez-Ortiz CJ, Kitazawa M, Marchant JS. Calsyntenin-3 interacts with the sodium-dependent vitamin C transporter-2 to regulate vitamin C uptake. Int J Biol Macromol 2021; 192:1178-1184. [PMID: 34673103 PMCID: PMC9842108 DOI: 10.1016/j.ijbiomac.2021.10.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 01/19/2023]
Abstract
Ascorbic acid (AA) uptake in neurons occurs via a Na+-dependent carrier-mediated process mediated by the sodium-dependent vitamin C transporter-2 (SVCT2). Relatively little information is available concerning the network of interacting proteins that support human (h)SVCT2 trafficking and cell surface expression in neuronal cells. Here we identified the synaptogenic adhesion protein, calsyntenin-3 (CLSTN3) as an hSVCT2 interacting protein from yeast two-hybrid (Y2H) screening of a human adult brain cDNA library. This interaction was confirmed by co-immunoprecipitation, mammalian two-hybrid (M2H), and co-localization in human cell lines. Co-expression of hCLSTN3 with hSVCT2 in SH-SY5Y cells led to a marked increase in AA uptake. Reciprocally, siRNA targeting hCLSTN3 inhibited AA uptake. In the J20 mouse model of Alzheimer's disease (AD), mouse (m)SVCT2 and mCLSTN3 expression levels in hippocampus were decreased. Similarly, expression levels of hSVCT2 and hCLSTN3 were markedly decreased in hippocampal samples from AD patients. These findings establish CLSTN3 as a novel hSVCT2 interactor in neuronal cells with potential pathophysiological significance.
Collapse
Affiliation(s)
- Veedamali S. Subramanian
- Department of Medicine, University of California, Irvine, CA 92697, United States of America,Corresponding author. (V.S. Subramanian)
| | - Trevor Teafatiller
- Department of Medicine, University of California, Irvine, CA 92697, United States of America
| | - Janielle Vidal
- Department of Medicine, University of California, Irvine, CA 92697, United States of America,Department of Environmental and Occupational Health, University of California, Irvine, CA 92697, United States of America
| | - Gihan S. Gunaratne
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, United States of America
| | - Carlos J. Rodriguez-Ortiz
- Department of Medicine, University of California, Irvine, CA 92697, United States of America,Department of Environmental and Occupational Health, University of California, Irvine, CA 92697, United States of America
| | - Masashi Kitazawa
- Department of Medicine, University of California, Irvine, CA 92697, United States of America,Department of Environmental and Occupational Health, University of California, Irvine, CA 92697, United States of America
| | - Jonathan S. Marchant
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, United States of America
| |
Collapse
|
67
|
Comparative studies on the interaction of ascorbic acid with gastric enzyme using multispectroscopic and docking methods. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
68
|
Subramanian VS, Teafatiller T, Moradi H, Marchant JS. Histone deacetylase inhibitors regulate vitamin C transporter functional expression in intestinal epithelial cells. J Nutr Biochem 2021; 98:108838. [PMID: 34403723 DOI: 10.1016/j.jnutbio.2021.108838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/04/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023]
Abstract
Intestinal absorption of vitamin C in humans is mediated via the sodium-dependent vitamin C transporters (hSVCT1 and hSVCT2). hSVCT1 and hSVCT2 are localized at the apical and basolateral membranes, respectively, of polarized intestinal epithelia. Studies have identified low plasma levels of vitamin C and decreased expression of hSVCT1 in patients with several inflammatory conditions including inflammatory bowel disease (IBD). Investigating the underlying mechanisms responsible for regulating hSVCT1 expression are critical for understanding vitamin C homeostasis, particularly in conditions where suboptimal vitamin C levels detrimentally affect human health. Previous research has shown that hSVCT1 expression is regulated at the transcriptional level, however, little is known about epigenetic regulatory pathways that modulate hSVCT1 expression in the intestine. In this study, we found that hSVCT1 expression and function were significantly decreased in intestinal epithelial cells by the histone deacetylase inhibitors (HDACi), valproic acid (VPA), and sodium butyrate (NaB). Further, expression of transcription factor HNF1α, which is critical for SLC23A1 promoter activity, was significantly down regulated in VPA-treated cells. Chromatin immunoprecipitation (ChIP) assays showed significantly increased enrichment of tetra-acetylated histone H3 and H4 within the SLC23A1 promoter following VPA treatment. In addition, knockdown of HDAC isoforms two, and three significantly decreased hSVCT1 functional expression. Following VPA administration to mice, functional expression of SVCT1 in the jejunum was significantly decreased. Collectively, these in vitro and in vivo studies demonstrate epigenetic regulation of SVCT1 expression in intestinal epithelia partly mediated through HDAC isoforms two and three.
Collapse
Affiliation(s)
| | - Trevor Teafatiller
- Department of Medicine, University of California, Irvine, California, USA
| | - Hamid Moradi
- Department of Medicine, University of California, Irvine, California, USA; Tibor Rubin VA Medical Center, Long Beach, California, USA
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
69
|
Aumailley L, Bourassa S, Gotti C, Droit A, Lebel M. Vitamin C Differentially Impacts the Serum Proteome Profile in Female and Male Mice. J Proteome Res 2021; 20:5036-5053. [PMID: 34643398 DOI: 10.1021/acs.jproteome.1c00542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A suboptimal blood vitamin C (ascorbate) level increases the risk of several chronic diseases. However, the detection of hypovitaminosis C is not a simple task, as ascorbate is unstable in blood samples. In this study, we examined the serum proteome of mice lacking the gulonolactone oxidase (Gulo) required for the ascorbate biosynthesis. Gulo-/- mice were supplemented with different concentrations of ascorbate in drinking water, and serum was collected to identify proteins correlating with serum ascorbate levels using an unbiased label-free liquid chromatography-tandem mass spectrometry global quantitative proteomic approach. Parallel reaction monitoring was performed to validate the correlations. We uncovered that the serum proteome profiles differ significantly between male and female mice. Also, unlike Gulo-/- males, a four-week ascorbate treatment did not entirely re-establish the serum proteome profile of ascorbate-deficient Gulo-/- females to the optimal profile exhibited by Gulo-/- females that never experienced an ascorbate deficiency. Finally, the serum proteins involved in retinoid metabolism, cholesterol, and lipid transport were similarly affected by ascorbate levels in males and females. In contrast, the proteins regulating serum peptidases and the protein of the acute phase response were different between males and females. These proteins are potential biomarkers correlating with blood ascorbate levels and require further study in standard clinical settings. The complete proteomics data set generated in this study has been deposited to the public repository ProteomeXchange with the data set identifier: PXD027019.
Collapse
Affiliation(s)
- Lucie Aumailley
- Centre de recherche du CHU de Québec, Faculty of Medicine, Université Laval, Québec City, Québec G1 V 4G2, Canada
| | - Sylvie Bourassa
- Proteomics Platform, Centre de recherche du CHU de Québec, Faculty of Medicine, Université Laval, Québec City, Québec G1 V 4G2, Canada
| | - Clarisse Gotti
- Proteomics Platform, Centre de recherche du CHU de Québec, Faculty of Medicine, Université Laval, Québec City, Québec G1 V 4G2, Canada
| | - Arnaud Droit
- Centre de recherche du CHU de Québec, Faculty of Medicine, Université Laval, Québec City, Québec G1 V 4G2, Canada.,Proteomics Platform, Centre de recherche du CHU de Québec, Faculty of Medicine, Université Laval, Québec City, Québec G1 V 4G2, Canada
| | - Michel Lebel
- Centre de recherche du CHU de Québec, Faculty of Medicine, Université Laval, Québec City, Québec G1 V 4G2, Canada
| |
Collapse
|
70
|
Crook J, Horgas A, Yoon SJ, Grundmann O, Johnson-Mallard V. Insufficient Vitamin C Levels among Adults in the United States: Results from the NHANES Surveys, 2003-2006. Nutrients 2021; 13:nu13113910. [PMID: 34836166 PMCID: PMC8625707 DOI: 10.3390/nu13113910] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 01/08/2023] Open
Abstract
Vitamin C, well-established in immune function and a key factor in epigenetic inflammatory modifications, is only obtained through consistent dietary intake. Identifying individuals at risk for Vitamin C insufficiency may guide prevention and treatment, however, national surveillance has not been evaluated in the United States since 2006. A descriptive, cross-sectional secondary analysis was performed utilizing data from the 2003–2006 National Health and Nutrition Examination Surveys (NHANES) assessing non-institutionalized adults. Five categories of plasma Vitamin C were delineated: deficiency (<11 μmol/L), hypovitaminosis (11–23 μmol/L), inadequate (23–49 μmol/L), adequate (50–69 μmol/L), and saturating (≥70 μmol/L). Results indicated 41.8% of the population possessed insufficient levels (deficiency, hypovitaminosis, and inadequate) of Vitamin C. Males, adults aged 20–59, Black and Mexican Americans, smokers, individuals with increased BMI, middle and high poverty to income ratio and food insecurity were significantly associated with insufficient Vitamin C plasma levels. Plasma Vitamin C levels reveal a large proportion of the population still at risk for inflammatory driven disease with little to no symptoms of Vitamin C hypovitaminosis. Recognition and regulation of the health impact of Vitamin C support the goal of Nutrition and Healthy Eating as part of the Healthy People 2030.
Collapse
Affiliation(s)
- Jennifer Crook
- Center for Health Equity and Community Engagement Research, Mayo Clinic Hospital, Jacksonville, FL 32224, USA
- Correspondence:
| | - Ann Horgas
- Biobehavioral Nursing Science, College of Nursing, University of Florida, Gainesville, FL 32610, USA; (A.H.); (S.-J.Y.)
| | - Saun-Joo Yoon
- Biobehavioral Nursing Science, College of Nursing, University of Florida, Gainesville, FL 32610, USA; (A.H.); (S.-J.Y.)
| | - Oliver Grundmann
- Entrepreneurial Programs in Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA;
| | | |
Collapse
|
71
|
Medina-Lozano I, Bertolín JR, Díaz A. Nutritional value of commercial and traditional lettuce (Lactuca sativa L.) and wild relatives: Vitamin C and anthocyanin content. Food Chem 2021; 359:129864. [PMID: 33962194 DOI: 10.1016/j.foodchem.2021.129864] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 10/21/2022]
Abstract
Lettuce is the most consumed leafy vegetable though the most popular varieties have a low nutritional value. Our objective was to accurately quantify vitamin C and anthocyanins in wild relatives, and commercial and traditional varieties. Wild species and traditional varieties contained more total ascorbic acid (TAA) than commercial varieties (21% and 8%, respectively). In contrast, commercial varieties had significantly higher content of anthocyanins than traditional varieties and wild species (6 and 8 times more, respectively). TAA was significantly higher in green than in red lettuces (18%). TAA was also significantly higher in the leaves of two wild species than in stems. Cyanidin 3-O-(6'-O-malonylglucoside) was the most abundant anthocyanin (97%), present in most samples. The rankings of accessions by vitamin C and anthocyanin contents can be useful for consumers worried about the impacts of food on their wellbeing and for breeders aiming to improve lettuce by biofortification with health-promoting compounds.
Collapse
Affiliation(s)
- Inés Medina-Lozano
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain; Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Juan Ramón Bertolín
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Avda. Montañana 930, 50059 Zaragoza, Spain; Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Aurora Díaz
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain; Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain.
| |
Collapse
|
72
|
Cancer Therapy Challenge: It Is Time to Look in the "St. Patrick's Well" of the Nature. Int J Mol Sci 2021; 22:ijms221910380. [PMID: 34638721 PMCID: PMC8508794 DOI: 10.3390/ijms221910380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Cancer still remains a leading cause of death despite improvements in diagnosis, drug discovery and therapy approach. Therefore, there is a strong need to improve methodologies as well as to increase the number of approaches available. Natural compounds of different origins (i.e., from fungi, plants, microbes, etc.) represent an interesting approach for fighting cancer. In particular, synergistic strategies may represent an intriguing approach, combining natural compounds with classic chemotherapeutic drugs to increase therapeutic efficacy and lower the required drug concentrations. In this review, we focus primarily on those natural compounds utilized in synergistic approached to treating cancer, with particular attention to those compounds that have gained the most research interest.
Collapse
|
73
|
Chen L, Sun X, Wang Z, Lu Y, Chen M, He Y, Xu H, Zheng L. The impact of plasma vitamin C levels on the risk of cardiovascular diseases and Alzheimer's disease: A Mendelian randomization study. Clin Nutr 2021; 40:5327-5334. [PMID: 34537655 DOI: 10.1016/j.clnu.2021.08.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/23/2021] [Accepted: 08/25/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Previous observational studies have reported associations between plasma vitamin C levels, and cardiovascular diseases (CVDs) and Alzheimer's disease (AD); however, no conclusive results have been obtained. We conducted a Mendelian randomization (MR) study to investigate the causality of vitamin C on the risk of nine CVDs [including coronary artery disease (CAD), myocardial infarction (MI), atrial fibrillation (AF), heart failure (HF), stroke, ischemic stroke (IS), and IS subtypes] and Alzheimer's disease. METHODS Eleven single-nucleotide polymorphisms (SNPs) identified in a recent genome-wide meta-analysis (N = 52,018) were used as the instrumental variables for plasma vitamin C levels. The summary-level data for CVDs and AD were extracted from consortia and genome-wide association studies (GWAS). We performed MR analyses using the fixed-effects inverse-variance-weighted (IVW) method, weighted median, and MR-Egger approaches. RESULTS This MR study found suggestive evidence that genetic liability to higher vitamin C levels was associated with a lower risk of cardioembolic stroke [odds ratio (OR, presented per 1 standard deviation increase in plasma vitamin C levels) = 0.773; 95% confidence interval (CI), 0.623-0.959; P = 0.020] and AD (OR = 0.968; 95% CI, 0.946-0.991; P = 0.007) using the fixed-effects IVW method. Sensitivity analysis yielded directionally similar results. A null-association was observed between vitamin C and the other CVDs. CONCLUSION Our MR study provided suggestive evidence that higher vitamin C levels were casually associated with a decreased risk of cardioembolic stroke and AD. No evidence was observed to suggest that vitamin C affected the risk of CAD, MI, AF, HF, stroke, IS, large artery stroke, or small vessel stroke. However, well-designed studies are warranted to confirm these results and determine the underlying mechanisms of the causal links.
Collapse
Affiliation(s)
- Lu Chen
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| | - Xingang Sun
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| | - Zhen Wang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| | - Yunlong Lu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| | - Miao Chen
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| | - Yuxian He
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| | - Hongfei Xu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| | - Liangrong Zheng
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
74
|
Unalan I, Fuggerer T, Slavik B, Buettner A, Boccaccini AR. Antibacterial and antioxidant activity of cinnamon essential oil-laden 45S5 bioactive glass/soy protein composite scaffolds for the treatment of bone infections and oxidative stress. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112320. [PMID: 34474871 DOI: 10.1016/j.msec.2021.112320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022]
Abstract
This study aimed to fabricate cinnamon essential oil (CO)-laden 45S5 bioactive glass (BG)/soy protein (SP) scaffolds exhibiting antioxidant and antibacterial activity. In this regard, 45S5 BG-based scaffolds were produced by the foam replica method, and subsequently the scaffolds were coated with various concentrations of CO (2.5, 5 and 7 (v/v) %) incorporated SP solution. Scanning electron microscopy images revealed that the CO-laden SP effectively attached to the 45S5 BG scaffold struts. The presence of 45S5 BG, SP and CO was confirmed using Fourier transform infrared spectroscopy. Compressive strength results indicated that SP based coatings improved the scaffolds' mechanical properties compared to uncoated BG scaffolds. The loading efficiency and releasing behaviour of the different CO concentrations were tested by gas chromatography-mass spectroscopy and UV-Vis spectroscopy. The results showed that CO incorporated scaffolds have controlled releasing behaviour over seven days. Furthermore, the coating on the scaffold surfaces slightly retarded, but it did not inhibit, the in vitro bioactivity of the scaffolds. Moreover, the antioxidant and antibacterial activity of CO was studied. The free radical scavenging activity measured by DPPH was 5 ± 1, 41 ± 3, 44 ± 1 and 43 ± 1 % for BGSP, CO2.5, CO5 and CO7, respectively. The antioxidant activity was thus enhanced by incorporating CO. Agar diffusion and colony counting results indicated that the incorporation of CO increased the antibacterial activity of scaffolds against S. aureus and E. coli. In addition, cytotoxicity of the scaffolds was investigated using MG-63 osteoblast-like cells. The results showed that the BG-SP scaffold was non-toxic under the investigated conditions, whereas dose-dependent toxicity was observed in CO-laden scaffolds. Considered together, the developed phytotherapeutic agent laden 45S5 BG-based scaffolds are promising for bone tissue engineering exhibiting capability to combat bone infections and to protect against oxidative stress damage.
Collapse
Affiliation(s)
- Irem Unalan
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Caustraße 6, 91058 Erlangen, Germany
| | - Tim Fuggerer
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Caustraße 6, 91058 Erlangen, Germany
| | - Benedikt Slavik
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Henkestraße 9, 91054 Erlangen, Germany
| | - Andrea Buettner
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Henkestraße 9, 91054 Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Caustraße 6, 91058 Erlangen, Germany.
| |
Collapse
|
75
|
Bioactive Composition and Nutritional Profile of Microgreens Cultivated in Thailand. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11177981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Microgreens are young and tender leafy vegetables that have gained wider consumer acceptance. This is attributed to their low caloric composition and rich micronutrient and antioxidant composition. The present study investigated the bioactive composition and proximate analysis of fourteen microgreens belonging to Brassicaceae, Fabaceae, Pedaliaceae, Polygonaceae, Convolvulaceae, and Malvaceae. All the microgreens showed low calories (20.22 to 53.43 kcal 100 g−1) and fat (0.15 to 0.66 g 100 g−1), whilst mung bean and lentil microgreens showed considerable amounts of carbohydrate (7.16 g 100 g−1) and protein (6.47 g 100 g−1), respectively. Lentil microgreens had the highest total chlorophyll (112.62 mg 100 g−1) and carotenoid (28.37 mg 100 g−1) contents, whilst buckwheat microgreens showed the highest total phenolic content (268.99 mg GAE 100 g−1) and DPPH• scavenging activity (90.83 mM TEAC g−1). The lentil microgreens also presented high ascorbic acid content (128.70 mg 100 g−1) along with broccoli, Chinese kale, purple radish, and red cabbage microgreens (79.11, 81.33, 82.58, and 89.49 mg 100 g−1, respectively). Anthocyanin content was only detected in purple radish (0.148 mg CGE 100 g−1) and red cabbage (0.246 mg CGE 100 g−1). The results provide basic information and highlight the benefits of utilizing genetic biodiversity to obtain microgreens with the desired nutrients and antioxidants.
Collapse
|
76
|
Effect of Lipopolysaccharide and TNF α on Neuronal Ascorbic Acid Uptake. Mediators Inflamm 2021; 2021:4157132. [PMID: 34285658 PMCID: PMC8275400 DOI: 10.1155/2021/4157132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/22/2021] [Indexed: 01/14/2023] Open
Abstract
Vitamin C (ascorbic acid: AA) uptake in neurons occurs via the sodium-dependent vitamin C transporter-2 (SVCT2), which is highly expressed in the central nervous system (CNS). During chronic neuroinflammation or infection, CNS levels of lipopolysaccharide (LPS) and LPS-induced tumor necrosis factor-α (TNFα) are increased. Elevated levels of LPS and TNFα have been associated with neurodegenerative diseases together with reduced levels of AA. However, little is known about the impacts of LPS and TNFα on neuronal AA uptake. The objective of this study was to examine the effect of LPS and TNFα on SVCT2 expression and function using in vitro and in vivo approaches. Treatment of SH-SY5Y cells with either LPS or TNFα inhibited AA uptake. This reduced uptake was associated with a significant decrease in SVCT2 protein and mRNA levels. In vivo exposure to LPS or TNFα also decreased SVCT2 protein and mRNA levels in mouse brains. Both LPS and TNFα decreased SLC23A2 promoter activity. Further, the inhibitory effect of LPS on a minimal SLC23A2 promoter was attenuated when either the binding site for the transcription factor Sp1 was mutated or cells were treated with the NF-κB inhibitor, celastrol. We conclude that inflammatory signals suppress AA uptake by impairing SLC23A2 transcription through opposing regulation of Sp1 and NF-κB factors.
Collapse
|
77
|
Enteropathogenic Escherichia coli Infection Inhibits Intestinal Ascorbic Acid Uptake via Dysregulation of Its Transporter Expression. Dig Dis Sci 2021; 66:2250-2260. [PMID: 32556816 PMCID: PMC7744340 DOI: 10.1007/s10620-020-06389-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/03/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Enteropathogenic Escherichia coli (EPEC) infection causes prolonged, watery diarrhea leading to morbidity and mortality. Although EPEC infection impacts nutrient transporter function and expression in intestinal epithelial cells, the effects of EPEC infection on intestinal absorption of ascorbic acid (AA) have not yet been investigated. AIMS To investigate the effect of EPEC infection on intestinal AA uptake process and expression of both AA transporters. METHODS We used two experimental models: human-derived intestinal epithelial Caco-2 cells and mice. 14C-AA uptake assay, Western blot, RT-qPCR, and promoter assay were performed. RESULTS EPEC (WT) as well as ΔespF and ΔespG/G2 mutant-infected Caco-2 cells showed markedly inhibited AA uptake, while other mutants (ΔescN, ΔespA, ΔespB, and ΔespD) did not affect AA uptake. Infection also reduced protein and mRNA expression levels for both hSVCT1 and hSVCT2. EPEC-infected mice showed marked inhibitory effect on AA uptake and decreased protein and mRNA expression levels for both mSVCT1 and mSVCT2 in jejunum and colon. MicroRNA regulators of SVCT1 and SVCT2 (miR103a, miR141, and miR200a) were upregulated significantly upon EPEC infection in both Caco-2 and mouse jejunum and colon. In addition, expression of the accessory protein glyoxalate reductase/hydroxypyruvate reductase (GRHPR), which regulates SVCT1 function, was markedly decreased by EPEC infection in both models. CONCLUSIONS These findings suggest that EPEC infection causes inhibition in AA uptake through a multifactorial dysregulation of SVCT1 and SVCT2 expression in intestinal epithelial cells.
Collapse
|
78
|
Wu A, Ding H, Zhang W, Rao H, Wang L, Chen Y, Lu C, Wang X. A colorimetric and fluorescence turn-on probe for the detection of ascorbic acid in living cells and beverages. Food Chem 2021; 363:130325. [PMID: 34139516 DOI: 10.1016/j.foodchem.2021.130325] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/22/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
A colorimetric and fluorescence turn-on dual-signal assay was developed for the determination of ascorbic acid (AA). Because the ultraviolet absorption of the oxidized 3,3',5,5'-tetramethylbenzidine (oxTMB) overlapped with the fluorescence emission of glutathione stabilized Au nanoclusters (AuNCs), the fluorescence of AuNCs can be quenched by oxTMB. When AA was added, the blue oxTMB was reduced to colorless TMB, and the fluorescence of AuNCs was restored simultaneously. The decrease in absorbance and increase in fluorescence signal depended on the concentration of AA. In the determination range of 0.5 to 200 μM, the detection limits (LOD) for AA were as low as 0.15 µM and 0.22 µM for fluorometric and colorimetric, respectively. The established probe was used successfully for AA detection in living cells and beverages.
Collapse
Affiliation(s)
- Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Hao Ding
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wei Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lizhi Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Yinyin Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Changfang Lu
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
79
|
Sharma P, Shri R, Ntie-Kang F, Kumar S. Phytochemical and Ethnopharmacological Perspectives of Ehretia laevis. Molecules 2021; 26:molecules26123489. [PMID: 34201193 PMCID: PMC8228998 DOI: 10.3390/molecules26123489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 01/27/2023] Open
Abstract
Ehretia laevis Roxb. (Boraginaceae) has been extensively used as a traditional remedy for the treatment of a diverse range of ailments related to the respiratory system, the gastrointestinal tract, the reproductive system, and against several infections. This review critically assesses and documents, for the first time, the fragmented information on E. laevis, including its botanical description, folklore uses, bioactive phyto metabolites and pharmacological activities. The goal is to explore this plant therapeutically. Ethnomedicinal surveys reveal that E. laevis has been used by tribal communities in Asian countries for the treatment of various disorders. Quantitative and qualitative phytochemical investigations of E. laevis showed the presence of important phytoconstituents such as pentacyclic triterpenoids, phenolic acids, flavonoids, fatty acids, steroids, alkaloids, aliphatic alcohols, hydrocarbons, amino acids, carbohydrates, vitamins and minerals. Fresh plant parts, crude extracts, fractions and isolated compounds have been reported to exhibit broad spectrum of therapeutic activities viz., antioxidant, antiarthritic, antidiabetic, anti-inflammatory, antiulcer, antidiarrheal, antidysenteric, wound healing and anti-infective activities. E. laevis is shown to be an excellent potential source of drugs for the mitigation of jaundice, asthma, dysentery, ulcers, diarrhea, ringworm, eczema, diabetes, fissure, syphilis, cuts and wounds, inflammation, liver problems, venereal and infectious disorders. Although few investigations authenticated its traditional uses but employed uncharacterized crude extracts of the plant, the major concerns raised are reproducibility of therapeutic efficacy and safety of plant material. The outcomes of limited pharmacological screening and reported bioactive compounds of E. laevis suggest that there is an urgent need for in-depth pharmacological investigations of the plant.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India or (P.S.); (R.S.)
- Sri Sai College of Pharmacy, Manawala, Amritsar 143001, India
| | - Richa Shri
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India or (P.S.); (R.S.)
| | - Fidele Ntie-Kang
- Department of Chemistry, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon
- Institute for Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle, Germany
- Correspondence: (F.N.-K.); (S.K.)
| | - Suresh Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India or (P.S.); (R.S.)
- Correspondence: (F.N.-K.); (S.K.)
| |
Collapse
|
80
|
Dobón-Suárez A, Giménez MJ, Castillo S, García-Pastor ME, Zapata PJ. Influence of the Phenological Stage and Harvest Date on the Bioactive Compounds Content of Green Pepper Fruit. Molecules 2021; 26:3099. [PMID: 34067307 PMCID: PMC8196862 DOI: 10.3390/molecules26113099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Green pepper fruit is often consumed before it is completely ripe. However, the influence of the phenological stage in which the green pepper is consumed as a potential influencing factor in its bioactive compounds content and antioxidant capacity remains unknown. In addition, no literature is available concerning the bioactive compounds changes in 'Lamuyo' green peppers along its developmental and growth cycle. For this, two different approaches have been carried out, one using twelve different phenological stages (S1 to S12), and in the other, seven different harvest dates (from 27 February to 20 April). Moreover, bioactive compounds changes during 21 days of postharvest storage at 8 °C were investigated. In this study, bioactive compounds (ascorbic acid, dehydroascorbic acid, and total phenolic content) and the total hydrophilic and lipophilic (TAA-H and TAA-L) antioxidant activity were analysed. In addition, total soluble solids, total acidity, individual sugars, and organic acids were determined. Vitamin C levels increased along the phenological stages and harvest dates due to significant increases in ascorbic and dehydroascorbic acid levels. Our results show that the total phenol content decreases as vegetables develop and subsequently increases both as ripening begins and by the last harvest date. Furthermore, TAA-H was also greater by the phenological stage S12 and the 20 April harvest date. In conclusion, the phenological stage and harvest date are key factors that significantly influence the bioactive compounds of green peppers, and those that appear by S12 and 20 April could be more beneficial to health.
Collapse
Affiliation(s)
| | | | | | | | - Pedro J. Zapata
- Department of Food Technology, EPSO, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Alicante, Spain; (A.D.-S.); (M.J.G.); (S.C.); (M.E.G.-P.)
| |
Collapse
|
81
|
Collie JTB, Greaves RF, Jones OAH, Eastwood G, Bellomo R. Vitamin C measurement in critical illness: challenges, methodologies and quality improvements. Clin Chem Lab Med 2021; 58:460-470. [PMID: 31829967 DOI: 10.1515/cclm-2019-0912] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/12/2019] [Indexed: 01/29/2023]
Abstract
Background There is renewed interest in high-dose vitamin C interventions in clinical medicine due to its antioxidant properties, safe use and cost-effectiveness. Yet, randomised control trials (RCTs) employing these interventions are failing to include robust analytical methodology and proper sample handling and processing techniques. Consequently, comparisons between studies becomes impossible as there is no metrological traceability and results may be prone to pre-analytical errors. Content Through published vitamin C stability studies, method comparison papers and data from vitamin C external quality assurance programs, an assessment was made on the functionality of current methods for critically ill patient samples. Summary Data was obtained from two external quality assurance programs, two papers assessing sample stability and interlaboratory agreement and a publication on vitamin C method comparisons. A shift from spectrophotometric and enzymatic methodologies to high performance liquid chromatography (HPLC) greatly improved the variability and interlaboratory agreement. Therefore, the current analytical performance of vitamin C HPLC methodologies are acceptable for the requirements of a high-dose vitamin C RCTs. Outlook Recommendations across the total testing process of vitamin C have been provided to improve the quality of the results. The harmonisation of sample handling and processing procedures will further improve the reliability of current analytical methodologies.
Collapse
Affiliation(s)
- Jake T B Collie
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
- Dorevitch Pathology, Heidelberg, Australia
- RCPAQAP - Australasian Association of Clinical Biochemists Vitamins Advisory Committee, Alexandria, Australia
| | - Ronda F Greaves
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
- RCPAQAP - Australasian Association of Clinical Biochemists Vitamins Advisory Committee, Alexandria, Australia
- Victorian Clinical Genetic Services, Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Oliver A H Jones
- Australian Centre for Research on Separation Science, School of Science, RMIT University, Melbourne, Australia
| | - Glenn Eastwood
- Department of Intensive Care, Austin Health, Heidelberg, Australia
| | - Rinaldo Bellomo
- Department of Intensive Care, Austin Health, Heidelberg, Australia
- School of Medicine, University of Melbourne, Parkville, Australia
| |
Collapse
|
82
|
Carrot Supplementation Improves Blood Pressure and Reduces Aortic Root Lesions in an Atherosclerosis-Prone Genetic Mouse Model. Nutrients 2021; 13:nu13041181. [PMID: 33918417 PMCID: PMC8065932 DOI: 10.3390/nu13041181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/30/2022] Open
Abstract
Epidemiological studies have shown that carrot consumption may be associated with a lower risk of developing several metabolic dysfunctions. Our group previously determined that the Bolero (Bo) carrot variety exhibited vascular and hepatic tropism using cellular models of cardiometabolic diseases. The present study evaluated the potential metabolic and cardiovascular protective effect of Bo, grown under two conditions (standard and biotic stress conditions (BoBS)), in apolipoprotein E-knockout (ApoE−/−) mice fed with high fat diet (HFD). Effects on metabolic/hemodynamic parameters and on atherosclerotic lesions have been assessed. Both Bo and BoBS decreased plasma triglyceride and expression levels of genes implicated in hepatic de novo lipogenesis and lipid oxidation. BoBS supplementation decreased body weight gain, secretion of very-low-density lipoprotein, and increased cecal propionate content. Interestingly, Bo and BoBS supplementation improved hemodynamic parameters by decreasing systolic, diastolic, and mean blood pressure. Moreover, Bo improved cardiac output. Finally, Bo and BoBS substantially reduced the aortic root lesion area. These results showed that Bo and BoBS enriched diets corrected most of the metabolic and cardiovascular disorders in an atherosclerosis-prone genetic mouse model and may therefore represent an interesting nutritional approach for the prevention of cardiovascular diseases.
Collapse
|
83
|
Berger MM, Herter-Aeberli I, Zimmermann MB, Spieldenner J, Eggersdorfer M. Strengthening the immunity of the Swiss population with micronutrients: A narrative review and call for action. Clin Nutr ESPEN 2021; 43:39-48. [PMID: 34024545 PMCID: PMC7987506 DOI: 10.1016/j.clnesp.2021.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The enormous health impact of the COVID-19 pandemic has refocused attention on measures to optimize immune function and vaccine response. Dietary deficiencies of micronutrients can weaken adaptive immunity. The aim of this review was to examine links between micronutrients, immune function and COVID-19 infection, with a focus on nutritional risks in subgroups of the Swiss population. METHODS Scoping review on the associations between selected micronutrients (vitamins D and C, iron, selenium, zinc, and n-3 PUFAs) and immunity, with particular reference to the Swiss population. These nutrients were chosen because previous EFSA reviews have concluded they play a key role in immunity. RESULTS The review discusses the available knowledge on links between sufficient nutrient status, optimal immune function, and prevention of respiratory tract infections. Because of the rapid spread of the COVID-19 pandemic, controlled intervention studies of micronutrients in the context of COVID-19 infection are now underway, but evidence is not yet available to draw conclusions. The anti-inflammatory properties of n-3 PUFAs are well established. In Switzerland, several subgroups of the population are at clear risk of nutrient deficiencies; e.g., older adults, multiple comorbidities, obesity, pregnancy, and institutionalized. Low intakes of n-3 PUFA are present in a large proportion of the population. CONCLUSION There are clear and strong relationships between micronutrient and n-3 PUFA status and immune function, and subgroups of the Swiss population are at risk for deficient intakes. Therefore, during the COVID-19 pandemic, as a complement to a healthy and balanced diet, it may be prudent to consider supplementation with a combination of moderate doses of Vitamins C and D, as well as of Se, Zn and n-3 PUFA, in risk groups.
Collapse
Affiliation(s)
- Mette M Berger
- Lausanne University Hospital (CHUV) & University of Lausanne, Lausanne, Switzerland.
| | - Isabelle Herter-Aeberli
- Laboratory of Human Nutrition, Institute of Food, Nutrition, and Health, ETH Zürich, Zurich, Switzerland.
| | | | | | - Manfred Eggersdorfer
- Department of Internal Medicine, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
84
|
Kerbadou RM, Hadjadj Aoul R, Benmaati A, Taleb A, Hacini S, Habib Zahmani H. Identification of new biologically active synthetic molecules: comparative experimental and theoretical studies on the structure-antioxidant activity relationship of cyclic 1,3-ketoamides. J Mol Model 2021; 27:109. [PMID: 33742261 DOI: 10.1007/s00894-021-04705-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/04/2021] [Indexed: 10/21/2022]
Abstract
Antioxidant agent is a chemical that prevents the oxidation of other chemical substances. Its use is the most effective means of protecting the organism by neutralizing the harmful effects of free radicals caused by oxidative stress. In the present work, a series of β-ketoamides containing a variety of monosubstituted amide groups were synthesized and tested as antioxidant agents. In order to establish a possible structure-antioxidant activity relationship, we are presenting a systematic theoretical study of these molecules with the aim of clarifying the active sites. In particular, we discuss the selectivity resulting from the choice of a free radical/antioxidant system. The theoretical study of these molecules was carried out using density functional theory (DFT) calculations at the B3LYP/6-311G (d,p) level of theory. In order to shed light on the antioxidant properties of β-ketoamides, O-H bond dissociation enthalpies (BDEs), ionization potentials (IPs), electron affinities (EAs), proton affinities (PAs), and electron transfer enthalpies (ETEs) are performed in the gas phase and in ethanol. The results obtained show that the HAT mechanism is thermodynamically more favored in the gas phase, while the SPLET is preferred in the polar solvent.
Collapse
Affiliation(s)
- Riad Mustapha Kerbadou
- Laboratoire de Chimie Fine LCF, Université Oran 1 Ahmed Ben Bella, BP-1524-Menouar, 31000, Oran, Algeria
| | - Ratiba Hadjadj Aoul
- Laboratoire de Chimie Fine LCF, Université Oran 1 Ahmed Ben Bella, BP-1524-Menouar, 31000, Oran, Algeria
| | - Aouicha Benmaati
- Laboratoire de Chimie Fine LCF, Université Oran 1 Ahmed Ben Bella, BP-1524-Menouar, 31000, Oran, Algeria.,Ecole Nationale Polytechnique d'Oran Maurice Audin, ENPO-MA, BP-1523-Menouar, 31000, Oran, Algeria
| | - Assya Taleb
- Laboratoire de Chimie Fine LCF, Université Oran 1 Ahmed Ben Bella, BP-1524-Menouar, 31000, Oran, Algeria
| | - Salih Hacini
- Laboratoire de Chimie Fine LCF, Université Oran 1 Ahmed Ben Bella, BP-1524-Menouar, 31000, Oran, Algeria
| | - Hadjira Habib Zahmani
- Laboratoire de Chimie Fine LCF, Université Oran 1 Ahmed Ben Bella, BP-1524-Menouar, 31000, Oran, Algeria.
| |
Collapse
|
85
|
Tareke AA, Hadgu AA. The effect of vitamin C supplementation on lipid profile of type 2 diabetic patients: a systematic review and meta-analysis of clinical trials. Diabetol Metab Syndr 2021; 13:24. [PMID: 33653396 PMCID: PMC7923652 DOI: 10.1186/s13098-021-00640-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/15/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND AIMS We conducted a systematic review and meta-analysis of clinical trials evaluating the role of vitamin C supplementation on lipid profiles among diabetic patients to summarize the available findings. METHODS A comprehensive search of PubMed, ScienceDirect, Google Scholar, and Cochrane Library databases was performed. Clinical trials conducted on adult type 2 diabetic patients evaluating the effect of vitamin C supplementation and reported lipid profiles (cholesterol (TC), triglycerides (TG), low density lipoprotein (LDL), high density lipoprotein (HDL)) were included. Weighted mean difference (WMD) was calculated. RESULTS Vitamin C supplementation had no significant effect on TC (WMD = - 4.36 mg/dl (95% CI - 10.24, 1.52) p-value = 0.146), LDL level (WMD = 2.73 mg/dl (95% CI - 1.72, 7.17) p-value = 0.229), and HDL level (WMD = 0.91 mg/dl (CI - 0.45, 2.27) p-value = 0.191). However, it reduced TG and secondary outcomes (FBS and HgA1C): TG (WMD = - 11.15 mg/dl (95% CI - 21.58, - 0.71) p-value = 0.036), FBS (WMD = - 16.94 mg/dl CI - 21.84, - 12.04, p-value = 0.000), and HgA1C (WMD = - 1.01% CI - 1.18, - 0.83, p-value = 0.001. Subgroup analysis also depicted younger patients, longer duration of treatment and higher dose were important factors. In addition, meta-regression analysis indicated the significant role of patient age, duration of treatment, supplementation dose, BMI and other baseline variables. CONCLUSION There is no adequate evidence to support vitamin C supplementation for dyslipidemias in diabetic patients. Specific group of patients might have benefited including younger diabetic patients. Future researches should give emphasis on the duration of treatment, the dose of vitamin C and baseline values.
Collapse
Affiliation(s)
- Amare Abera Tareke
- Physiology Unit, Department of Biomedical Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia.
| | - Addis Alem Hadgu
- Biochemistry Unit, Department of Biomedical Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| |
Collapse
|
86
|
Fletcher BD, Flett JAM, Wickham SR, Pullar JM, Vissers MCM, Conner TS. Initial Evidence of Variation by Ethnicity in the Relationship between Vitamin C Status and Mental States in Young Adults. Nutrients 2021; 13:792. [PMID: 33673717 PMCID: PMC7997165 DOI: 10.3390/nu13030792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
Higher fruit and vegetable intake has been associated with improved mood, greater vitality, and lower stress. Although the nutrients driving these benefits are not specifically identified, one potentially important micronutrient is vitamin C, an important co-factor for the production of peptide hormones, carnitine and neurotransmitters that are involved in regulation of physical energy and mood. The aim of our study was to investigate the cross-sectional relationship between blood plasma vitamin C status and mood, vitality and perceived stress. A sample of 419 university students (aged 18 to 35; 67.8% female) of various ethnicities (49.2% European, 16.2% East Asian, 8.1% Southeast/Other Asian, 9.1% Māori/Pasifika, 11.5% Other) provided a fasting blood sample to determine vitamin C status and completed psychological measures consisting of the Profile of Mood States Short Form (POMS-SF), the vitality subscale of the Rand 36-Item Short Form (SF-36), and the Perceived Stress Scale (PSS). Participants were screened for prescription medication, smoking history, vitamin C supplementation, fruit/juice and vegetable consumption, kiwifruit allergies, excessive alcohol consumption and serious health issues, and provided age, gender, ethnicity, and socioeconomic status information, which served as covariates. There were no significant associations between vitamin C status and the psychological measures for the sample overall. However, associations varied by ethnicity. Among Māori/Pasifika participants, higher vitamin C was associated with greater vitality and lower stress, whereas among Southeast Asian participants, higher vitamin C was associated with greater confusion on the POMS-SF subscale. These novel findings demonstrate potential ethnicity-linked differences in the relationship between vitamin C and mental states. Further research is required to determine whether genetic variation or cultural factors are driving these ethnicity differences.
Collapse
Affiliation(s)
- Benjamin D. Fletcher
- Department of Psychology, University of Otago, Dunedin 9016, New Zealand; (B.D.F.); (S.-R.W.)
| | | | - Shay-Ruby Wickham
- Department of Psychology, University of Otago, Dunedin 9016, New Zealand; (B.D.F.); (S.-R.W.)
| | - Juliet M. Pullar
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand; (J.M.P.); (M.C.M.V.)
| | - Margreet C. M. Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand; (J.M.P.); (M.C.M.V.)
| | - Tamlin S. Conner
- Department of Psychology, University of Otago, Dunedin 9016, New Zealand; (B.D.F.); (S.-R.W.)
| |
Collapse
|
87
|
Teafatiller T, Heskett CW, Agrawal A, Marchant JS, Baulch JE, Acharya MM, Subramanian VS. Upregulation of Vitamin C Transporter Functional Expression in 5xFAD Mouse Intestine. Nutrients 2021; 13:nu13020617. [PMID: 33672967 PMCID: PMC7918291 DOI: 10.3390/nu13020617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 01/14/2023] Open
Abstract
The process of obtaining ascorbic acid (AA) via intestinal absorption and blood circulation is carrier-mediated utilizing the AA transporters SVCT1 and SVCT2, which are expressed in the intestine and brain (SVCT2 in abundance). AA concentration is decreased in Alzheimer’s disease (AD), but information regarding the status of intestinal AA uptake in the AD is still lacking. We aimed here to understand how AA homeostasis is modulated in a transgenic mouse model (5xFAD) of AD. AA levels in serum from 5xFAD mice were markedly lower than controls. Expression of oxidative stress response genes (glutathione peroxidase 1 (GPX1) and superoxide dismutase 1 (SOD1)) were significantly increased in AD mice jejunum, and this increase was mitigated by AA supplementation. Uptake of AA in the jejunum was upregulated. This increased AA transport was caused by a marked increase in SVCT1 and SVCT2 protein, mRNA, and heterogeneous nuclear RNA (hnRNA) expression. A significant increase in the expression of HNF1α and specific protein 1 (Sp1), which drive SLC23A1 and SLC23A2 promoter activity, respectively, was observed. Expression of hSVCT interacting proteins GRHPR and CLSTN3 were also increased. SVCT2 protein and mRNA expression in the hippocampus of 5xFAD mice was not altered. Together, these investigations reveal adaptive up-regulation of intestinal AA uptake in the 5xFAD mouse model.
Collapse
Affiliation(s)
- Trevor Teafatiller
- Department of Medicine, University of California, Irvine, CA 92697, USA; (T.T.); (C.W.H.); (A.A.)
| | - Christopher W. Heskett
- Department of Medicine, University of California, Irvine, CA 92697, USA; (T.T.); (C.W.H.); (A.A.)
| | - Anshu Agrawal
- Department of Medicine, University of California, Irvine, CA 92697, USA; (T.T.); (C.W.H.); (A.A.)
| | - Jonathan S. Marchant
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Janet E. Baulch
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA; (J.E.B.); (M.M.A.)
| | - Munjal M. Acharya
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA; (J.E.B.); (M.M.A.)
| | - Veedamali S. Subramanian
- Department of Medicine, University of California, Irvine, CA 92697, USA; (T.T.); (C.W.H.); (A.A.)
- Correspondence: ; Tel.: +1-949-824-3084
| |
Collapse
|
88
|
Two Distinct Faces of Vitamin C: AA vs. DHA. Antioxidants (Basel) 2021; 10:antiox10020215. [PMID: 33535710 PMCID: PMC7912923 DOI: 10.3390/antiox10020215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/13/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Historically, vitamin C has been associated with many regulatory processes that involve specific signaling pathways. Among the most studied signaling pathways are those involved in the regulation of aging, differentiation, neurotransmission, proliferation, and cell death processes in cancer. This wide variety of regulatory effects is due to the fact that vitamin C has a dual mechanism of action. On the one hand, it regulates the expression of genes associated with proliferation (Ccnf and Ccnb1), differentiation (Sox-2 and Oct-4), and cell death (RIPK1 and Bcl-2). At the same time, vitamin C can act as a regulator of kinases, such as MAPK and p38, or by controlling the activation of the NF-kB pathway, generating chronic responses related to changes in gene expression or acute responses associated with the regulation of signal transduction processes. To date, data from the literature show a permanent increase in processes regulated by vitamin C. In this review, we critically examine how vitamin C regulates these different cellular programs in normal and tumor cells.
Collapse
|
89
|
Sun M, Xin T, Ran Z, Pei X, Ma C, Liu J, Cao M, Bai J, Zhou M. A Bendable Biofuel Cell-Based Fully Integrated Biomedical Nanodevice for Point-of-Care Diagnosis of Scurvy. ACS Sens 2021; 6:275-284. [PMID: 33356148 DOI: 10.1021/acssensors.0c02335] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fully integrated nanodevices that allow the complete functional implementation without an external accessory or equipment are deemed to be one of the most ideal and ultimate goals for modern nanodevice design and construction. In this work, we demonstrate the first example of a bendable biofuel cell (BFC)-based fully integrated biomedical nanodevice with simple, palm-sized, easy-to-carry, pump-free, cost-saving, and easy-to-use features for the point-of-care (POC) diagnosis of scurvy from a single drop of untreated human serum (down to 0.2 μL) by integrating a bendable and disposable vitamin C/air microfluidic BFC (micro-BFC) (named iezCard) for self-powered vitamin C biosensing with a custom mini digital LED voltmeter (named iezBox) for signal processing and transmission, along with a ″built-in″ biocomputing BUFFER gate for intelligent diagnosis. Under the simplicity- and practicability-oriented idea, a cost-effective strategy (e.g., biomass-derived hierarchical micro-mesoporous carbon aerogels, screen-printed technique, a single piece of Kimwipes paper, LED display, and universal components) was implemented for nanodevice design rather than any top-end or pricey method (e.g., photolithography/electron-beam evaporation, peristaltic pump, wireless system, and 3D printing technique), which enormously reduces the cost of feedstock down to ∼USD 2.55 per integrated kit including a disposal iezCard (∼USD 0.08 per test) and a reusable iezBox (∼USD 2.47 for large-scale tests). These distinctive and attractive features allow such a fully integrated biomedical nanodevice to fully satisfy the basic requirements for POC diagnosis of scurvy from a single drop of raw human serum and make it particularly appropriate for resource-poor settings, where there is a lack of medical facilities, funds, and qualified personnel.
Collapse
Affiliation(s)
- Mimi Sun
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Tong Xin
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Zhiyong Ran
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Xinyi Pei
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Chongbo Ma
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Jian Liu
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Mengzhu Cao
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Jing Bai
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Ming Zhou
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China
| |
Collapse
|
90
|
Ascorbic Acid: A New Player of Epigenetic Regulation in LPS- gingivalis Treated Human Periodontal Ligament Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6679708. [PMID: 33542783 PMCID: PMC7840256 DOI: 10.1155/2021/6679708] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/21/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022]
Abstract
Periodontitis is usually sustained from microorganism of oral cavity, like Porphyromonas gingivalis (P. gingivalis). Periodontal disease is an infectious disease that afflicts a large number of people. Researches are investigating on the mesenchymal stem cells (MSCs) response to inflammatory events in combination with antioxidant substances. In particular, ascorbic acid (AA) increased cell proliferation, upregulated the cells pluripotency marker expression, provide a protection from inflammation, and induced the regeneration of periodontal ligament tissue. The purpose of the present research was to investigate the effects of AA in primary culture of human periodontal ligament stem cells (hPDLSCs) exposed to P. gingivalis lipopolysaccharide (LPS-G). The effect of AA on hPDLSCs exposed to LPS-G was determined through the cell proliferation assay. The molecules involved in the inflammatory pathway and epigenetic regulation have been identified using immunofluorescence and Western blot analyses. miR-210 level was quantified by qRT-PCR, and the ROS generation was finally studied. Cells co-treated with LPS-G and AA showed a restoration in terms of cell proliferation. The expression of NFκB, MyD88, and p300 was upregulated in LPS-G exposed cells, while the expression was attenuated in the co-treatment with AA. DNMT1 expression is attenuated in the cells exposed to the inflammatory stimulus. The level of miR-210 was reduced in stimulated cells, while the expression was evident in the hPDLSCs co-treated with LPS-G and AA. In conclusion, the AA could enhance a protective effect in in vitro periodontitis model, downregulating the inflammatory pathway and ROS generation and modulating the miR-210 level.
Collapse
|
91
|
Vitamin C and Cardiovascular Disease: An Update. Antioxidants (Basel) 2020; 9:antiox9121227. [PMID: 33287462 PMCID: PMC7761826 DOI: 10.3390/antiox9121227] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
The potential beneficial effects of the antioxidant properties of vitamin C have been investigated in a number of pathological conditions. In this review, we assess both clinical and preclinical studies evaluating the role of vitamin C in cardiac and vascular disorders, including coronary heart disease, heart failure, hypertension, and cerebrovascular diseases. Pitfalls and controversies in investigations on vitamin C and cardiovascular disorders are also discussed.
Collapse
|
92
|
Li H, Shi H, He Y, Fei X, Peng L. Preparation and characterization of carboxymethyl cellulose-based composite films reinforced by cellulose nanocrystals derived from pea hull waste for food packaging applications. Int J Biol Macromol 2020; 164:4104-4112. [PMID: 32898536 DOI: 10.1016/j.ijbiomac.2020.09.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
Pea hull is a renewable, readily available and abundant agricultural waste whose high-value utilization deserves more attentions. This work aimed at the isolation of cellulose nanocrystals (CNC) from pea hull and evaluation its reinforcement capability for carboxymethyl cellulose (CMC) film. The obtained CNC displayed needle-like shapes with length of 81-286 nm, diameter of 8-21 nm, aspect ratio of 16 and crystallinity index of 0.77. The effects of CNC content on the morphologies, optical, mechanical, water vapor barrier and thermal properties of CMC/CNC films were investigated. SEM images showed that the CNC was evenly distributed in the CMC matrix to form homogenous films when the content of CNC was ≤5 wt%. The CMC/CNC composite films showed improved UV barrier, mechanical strength, water vapor barrier and thermal stability. Compared with pure CMC film, an increase of 50.8% in tensile strength and a decrease of 53.4% in water vapor permeability were observed for 5 wt% CNC-reinforced composite film. Furthermore, 5 wt% CNC-reinforced composite film was used for red chilies packaging, which is very effective at reducing weight loss and maintaining vitamin C compared with uncoated red chilies. These results indicated that the CMC/CNC composite film may have promising application potential as edible food packaging material.
Collapse
Affiliation(s)
- Hui Li
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
| | - Hongbo Shi
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
| | - Yunqing He
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiang Fei
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
| | - Lincai Peng
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
93
|
Abstract
In this mini-reflection, I explain how during my doctoral work in a Botany Department I first became interested in H2O2 and later in my career in other reactive oxygen species, especially the role of "catalytic" iron and haem compounds (including leghaemoglobin) in promoting oxidative damage. The important roles that H2O2, other ROS and dietary plants play in respect to humans are discussed. I also review the roles of diet-derived antioxidants in relation to human disease, presenting reasons why clinical trials using high doses of natural antioxidants have generally given disappointing results. Iron chelators and ergothioneine are reviewed as potential cytoprotective agents with antioxidant properties that may be useful therapeutically. The discovery of ferroptosis may also lead to novel agents that can be used to treat certain diseases.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Sciences, #05-01A, 28 Medical Drive, 117456, Singapore.
| |
Collapse
|
94
|
Berretta M, Quagliariello V, Maurea N, Di Francia R, Sharifi S, Facchini G, Rinaldi L, Piezzo M, Manuela C, Nunnari G, Montopoli M. Multiple Effects of Ascorbic Acid against Chronic Diseases: Updated Evidence from Preclinical and Clinical Studies. Antioxidants (Basel) 2020; 9:antiox9121182. [PMID: 33256059 PMCID: PMC7761324 DOI: 10.3390/antiox9121182] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Severe disease commonly manifests as a systemic inflammatory process. Inflammation is associated withthe enhanced production of reactive oxygen and nitrogen species and with a marked reduction in the plasma concentrations of protective antioxidant molecules. This imbalance gives rise to oxidative stress, which is greater in patients with more severe conditions such as sepsis, cancer, cardiovascular disease, acute respiratory distress syndrome, and burns. In these patients, oxidative stress can trigger cell, tissue, and organ damage, thus increasing morbidity and mortality. Ascorbic acid (ASC) is a key nutrient thatserves as an antioxidant and a cofactor for numerous enzymatic reactions. However, humans, unlike most mammals, are unable to synthesize it. Consequently, ASC must be obtained through dietary sources, especially fresh fruit and vegetables. The value of administering exogenous micronutrients, to reestablish antioxidant concentrations in patients with severe disease, has been recognized for decades. Despite the suggestion that ASC supplementation may reduce oxidative stress and prevent several chronic conditions, few large, randomized clinical trials have tested it in patients with severe illness. This article reviews the recent literature on the pharmacological profile of ASC and the role of its supplementation in critically ill patients.
Collapse
Affiliation(s)
- Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98121 Messina, Italy;
- Correspondence:
| | - Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (V.Q.); (N.M.)
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (V.Q.); (N.M.)
| | - Raffaele Di Francia
- Italian Association of Pharmacogenomics and Molecular Diagnostics (IAPharmagen), 60126 Ancona, Italy;
| | - Saman Sharifi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35100 Padova, Italy; (S.S.); (M.M.)
| | - Gaetano Facchini
- Division of Medical Oncology, “S. Maria delle Grazie” Hospital—ASL Napoli 2 Nord, 80126 Pozzuoli, Italy;
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “L. Vanvitelli”, 80121 Napoli, Italy;
| | - Michela Piezzo
- Division of Breast Medical Oncology, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy;
| | - Ceccarelli Manuela
- Division of Infectious Disease, University of Catania, 95122 Catania, Italy;
| | - Giuseppe Nunnari
- Department of Clinical and Experimental Medicine, University of Messina, 98121 Messina, Italy;
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35100 Padova, Italy; (S.S.); (M.M.)
| |
Collapse
|
95
|
Abstract
Vitamin C (Vit C) is an ideal antioxidant as it is easily available, water soluble, very potent, least toxic, regenerates other antioxidants particularly Vit E, and acts as a cofactor for different enzymes. It has received much attention due to its ability in limiting reactive oxygen species, oxidative stress, and nitrosative stress, as well as it helps to maintain some of the normal metabolic functions of the cell. However, over 140 clinical trials using Vit C in different pathological conditions such as myocardial infarction, gastritis, diabetes, hypertension, stroke, and cancer have yielded inconsistent results. Such a divergence calls for new strategies to establish practical significance of Vit C in heart failure or even in its prevention. For a better understanding of Vit C functioning, it is important to revisit its transport across the cell membrane and subcellular interactions. In this review, we have highlighted some historical details of Vit C and its transporters in the heart with a particular focus on heart failure in cancer chemotherapy.
Collapse
|
96
|
Pisoschi AM, Pop A, Iordache F, Stanca L, Predoi G, Serban AI. Oxidative stress mitigation by antioxidants - An overview on their chemistry and influences on health status. Eur J Med Chem 2020; 209:112891. [PMID: 33032084 DOI: 10.1016/j.ejmech.2020.112891] [Citation(s) in RCA: 304] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/30/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022]
Abstract
The present review paper focuses on the chemistry of oxidative stress mitigation by antioxidants. Oxidative stress is understood as a lack of balance between the pro-oxidant and the antioxidant species. Reactive oxygen species in limited amounts are necessary for cell homeostasis and redox signaling. Excessive reactive oxygenated/nitrogenated species production, which counteracts the organism's defense systems, is known as oxidative stress. Sustained attack of endogenous and exogenous ROS results in conformational and oxidative alterations in key biomolecules. Chronic oxidative stress is associated with oxidative modifications occurring in key biomolecules: lipid peroxidation, protein carbonylation, carbonyl (aldehyde/ketone) adduct formation, nitration, sulfoxidation, DNA impairment such strand breaks or nucleobase oxidation. Oxidative stress is tightly linked to the development of cancer, diabetes, neurodegeneration, cardiovascular diseases, rheumatoid arthritis, kidney disease, eye disease. The deleterious action of reactive oxygenated species and their role in the onset and progression of pathologies are discussed. The results of oxidative attack become themselves sources of oxidative stress, becoming part of a vicious cycle that amplifies oxidative impairment. The term antioxidant refers to a compound that is able to impede or retard oxidation, acting at a lower concentration compared to that of the protected substrate. Antioxidant intervention against the radicalic lipid peroxidation can involve different mechanisms. Chain breaking antioxidants are called primary antioxidants, acting by scavenging radical species, converting them into more stable radicals or non-radical species. Secondary antioxidants quench singlet oxygen, decompose peroxides, chelate prooxidative metal ions, inhibit oxidative enzymes. Moreover, four reactivity-based lines of defense have been identified: preventative antioxidants, radical scavengers, repair antioxidants, and those relying on adaptation mechanisms. The specific mechanism of a series of endogenous and exogenous antioxidants in particular aspects of oxidative stress, is detailed. The final section resumes critical conclusions regarding antioxidant supplementation.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania.
| | - Aneta Pop
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Florin Iordache
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Gabriel Predoi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Andreea Iren Serban
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania
| |
Collapse
|
97
|
KiwiC for Vitality: Results of a Randomized Placebo-Controlled Trial Testing the Effects of Kiwifruit or Vitamin C Tablets on Vitality in Adults with Low Vitamin C Levels. Nutrients 2020; 12:nu12092898. [PMID: 32971991 PMCID: PMC7551849 DOI: 10.3390/nu12092898] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
Consumption of vitamin C-rich fruit and vegetables has been associated with greater feelings of vitality. However, these associations have rarely been tested in randomized controlled trials. The aim of the current study was to test the effects of eating a vitamin C-rich food (kiwifruit) on subjective vitality and whether effects are driven by vitamin C. Young adults (n = 167, 61.1% female, aged 18-35) with plasma vitamin C <40 µmol/L were randomized into three intervention conditions: kiwifruit (2 SunGold™ kiwifruit/day), vitamin C (250 mg tablet/day), placebo (1 tablet/day). The trial consisted of a two-week lead-in, four-week intervention, and two-week washout. Plasma vitamin C and vitality questionnaires (total mood disturbance, fatigue, and well-being) were measured fortnightly. Self-reported sleep quality and physical activity were measured every second day through smartphone surveys. Nutritional confounds were assessed using a three-day food diary during each study phase. Plasma vitamin C reached saturation levels within two weeks for the kiwifruit and vitamin C groups. Participants consuming kiwifruit showed significantly improved mood and well-being during the intervention period; improvements in well-being were sustained during washout. Decreased fatigue and increased well-being were observed following intake of vitamin C alone, but only for participants with consistently low vitamin C levels during lead-in. Diet records showed that participants consuming kiwifruit reduced their fat intake during the intervention period. Intervention effects remained significant when adjusting for age and ethnicity, and were not explained by sleep quality, physical activity, BMI, or other dietary patterns, including fat intake. There were no changes in plasma vitamin C status or vitality in the placebo group. Whole food consumption of kiwifruit improved subjective vitality in adults with low vitamin C status. Similar, but not identical, changes were found for vitamin C tablets suggesting that additional properties of kiwifruit may contribute to improved vitality.
Collapse
|
98
|
Antimicrobial Effect of Natural Berry Juices on Common Oral Pathogenic Bacteria. Antibiotics (Basel) 2020; 9:antibiotics9090533. [PMID: 32847029 PMCID: PMC7557983 DOI: 10.3390/antibiotics9090533] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 01/04/2023] Open
Abstract
(1) Background: Antimicrobial agents such as chlorhexidine (CHX) are commonly used in oral plaque control. However, sometimes those agents lack antimicrobial efficiency or cause undesired side effects. To identify alternative anti-infective agents, the present study investigated the antibacterial activity of all-fruit juices derived from blackcurrant, redcurrant, cranberry and raspberry on common oral pathogenic gram-positive and gram-negative bacteria (Streptococcus mutans, Streptococcus gordonii, Streptococcus sobrinus, Actinomyces naeslundii, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Enterococcus faecalis). (2) Methods: Antibacterial efficiency was evaluated by agar diffusion assay and in direct contact with bacteria in planktonic culture. Furthermore, cytotoxicity on human gingival fibroblasts was determined. (3) Results: Blackcurrant juice was most efficient at suppressing bacteria; followed by the activity of redcurrant and cranberry juice. Raspberry juice only suppressed P. gingivalis significantly. Only high-concentrated blackcurrant juice showed minimal cytotoxic effects which were significantly less compared to the action of CHX. (4) Conclusion: Extracts from natural berry juices might be used for safe and efficient suppression of oral pathogenic bacterial species.
Collapse
|
99
|
White R, Nonis M, Pearson JF, Burgess E, Morrin HR, Pullar JM, Spencer E, Vissers MCM, Robinson BA, Dachs GU. Low Vitamin C Status in Patients with Cancer Is Associated with Patient and Tumor Characteristics. Nutrients 2020; 12:nu12082338. [PMID: 32764253 PMCID: PMC7468872 DOI: 10.3390/nu12082338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Vitamin C (ascorbate) acts as an antioxidant and enzyme cofactor, and plays a vital role in human health. Vitamin C status can be affected by illness, with low levels being associated with disease due to accelerated turnover. However, robust data on the ascorbate status of patients with cancer are sparse. This study aimed to accurately measure ascorbate concentrations in plasma from patients with cancer, and determine associations with patient or tumor characteristics. We recruited 150 fasting patients with cancer (of 199 total recruited) from two cohorts, either prior to cancer surgery or during cancer chemo- or immunotherapy. A significant number of patients with cancer had inadequate plasma ascorbate concentrations. Low plasma status was more prevalent in patients undergoing cancer therapy. Ascorbate status was higher in women than in men, and exercising patients had higher levels than sedentary patients. Our study may prompt increased vigilance of ascorbate status in cancer patients.
Collapse
Affiliation(s)
- Rebecca White
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch 8011, New Zealand; (R.W.); (M.N.); (E.B.); (H.R.M.); (B.A.R.)
| | - Maria Nonis
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch 8011, New Zealand; (R.W.); (M.N.); (E.B.); (H.R.M.); (B.A.R.)
| | - John F. Pearson
- Biostatistics and Computational Biology Unit, University of Otago Christchurch, Christchurch 8011, New Zealand;
| | - Eleanor Burgess
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch 8011, New Zealand; (R.W.); (M.N.); (E.B.); (H.R.M.); (B.A.R.)
| | - Helen R. Morrin
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch 8011, New Zealand; (R.W.); (M.N.); (E.B.); (H.R.M.); (B.A.R.)
- Cancer Society Tissue Bank, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - Juliet M. Pullar
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch 8011, New Zealand; (J.M.P.); (M.C.M.V.)
| | - Emma Spencer
- Nutrition in Medicine Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch 8011, New Zealand;
| | - Margreet C. M. Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch 8011, New Zealand; (J.M.P.); (M.C.M.V.)
| | - Bridget A. Robinson
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch 8011, New Zealand; (R.W.); (M.N.); (E.B.); (H.R.M.); (B.A.R.)
- Canterbury Regional Cancer and Hematology Service, Canterbury District Health Board, and Department of Medicine, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - Gabi U. Dachs
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch 8011, New Zealand; (R.W.); (M.N.); (E.B.); (H.R.M.); (B.A.R.)
- Correspondence: ; Tel.: +64-3-3640544
| |
Collapse
|
100
|
Rowe S, Carr AC. Global Vitamin C Status and Prevalence of Deficiency: A Cause for Concern? Nutrients 2020; 12:E2008. [PMID: 32640674 PMCID: PMC7400810 DOI: 10.3390/nu12072008] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
Vitamin C is an essential nutrient that must be obtained through the diet in adequate amounts to prevent hypovitaminosis C, deficiency and its consequences-including the potentially fatal deficiency disease scurvy. Global vitamin C status and prevalence of deficiency has not previously been reported, despite vitamin C's pleiotropic roles in both non-communicable and communicable disease. This review highlights the global literature on vitamin C status and the prevalence of hypovitaminosis C and deficiency. Related dietary intake is reported if assessed in the studies. Overall, the review illustrates the shortage of high quality epidemiological studies of vitamin C status in many countries, particularly low- and middle-income countries. The available evidence indicates that vitamin C hypovitaminosis and deficiency is common in low- and middle-income countries and not uncommon in high income settings. Further epidemiological studies are required to confirm these findings, to fully assess the extent of global vitamin C insufficiency, and to understand associations with a range of disease processes. Our findings suggest a need for interventions to prevent deficiency in a range of at risk groups and regions of the world.
Collapse
Affiliation(s)
- Sam Rowe
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L35QA, UK;
| | - Anitra C. Carr
- Nutrition in Medicine Research Group, Department of Pathology & Biomedical Science, University of Otago, Christchurch 8011, New Zealand
| |
Collapse
|