51
|
Tayeb Z, Dragomir A, Lee JH, Abbasi NI, Dean E, Bandla A, Bose R, Sundar R, Bezerianos A, Thakor NV, Cheng G. Distinct spatio-temporal and spectral brain patterns for different thermal stimuli perception. Sci Rep 2022; 12:919. [PMID: 35042875 PMCID: PMC8766611 DOI: 10.1038/s41598-022-04831-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding the human brain's perception of different thermal sensations has sparked the interest of many neuroscientists. The identification of distinct brain patterns when processing thermal stimuli has several clinical applications, such as phantom-limb pain prediction, as well as increasing the sense of embodiment when interacting with neurorehabilitation devices. Notwithstanding the remarkable number of studies that have touched upon this research topic, understanding how the human brain processes different thermal stimuli has remained elusive. More importantly, very intense thermal stimuli perception dynamics, their related cortical activations, as well as their decoding using effective features are still not fully understood. In this study, using electroencephalography (EEG) recorded from three healthy human subjects, we identified spatial, temporal, and spectral patterns of brain responses to different thermal stimulations ranging from extremely cold and hot stimuli (very intense), moderately cold and hot stimuli (intense), to a warm stimulus (innocuous). Our results show that very intense thermal stimuli elicit a decrease in alpha power compared to intense and innocuous stimulations. Spatio-temporal analysis reveals that in the first 400 ms post-stimulus, brain activity increases in the prefrontal and central brain areas for very intense stimulations, whereas for intense stimulation, high activity of the parietal area was observed post-500 ms. Based on these identified EEG patterns, we successfully classified the different thermal stimulations with an average test accuracy of 84% across all subjects. En route to understanding the underlying cortical activity, we source localized the EEG signal for each of the five thermal stimuli conditions. Our findings reveal that very intense stimuli were anticipated and induced early activation (before 400 ms) of the anterior cingulate cortex (ACC). Moreover, activation of the pre-frontal cortex, somatosensory, central, and parietal areas, was observed in the first 400 ms post-stimulation for very intense conditions and starting 500 ms post-stimuli for intense conditions. Overall, despite the small sample size, this work presents novel findings and a first comprehensive approach to explore, analyze, and classify EEG-brain activity changes evoked by five different thermal stimuli, which could lead to a better understanding of thermal stimuli processing in the brain and could, therefore, pave the way for developing a real-time withdrawal reaction system when interacting with prosthetic limbs. We underpin this last point by benchmarking our EEG results with a demonstration of a real-time withdrawal reaction of a robotic prosthesis using a human-like artificial skin.
Collapse
Affiliation(s)
- Zied Tayeb
- Institute for Cognitive Systems, Technical University of Munich, Arcisstraße 21, 80333, Munich, Germany.
| | - Andrei Dragomir
- The N.1 Institute for Health, National University of Singapore, 28 Medical Dr. 05-COR, Singapore, 117456, Singapore
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Houston, TX, 77204, USA
| | - Jin Ho Lee
- Institute for Cognitive Systems, Technical University of Munich, Arcisstraße 21, 80333, Munich, Germany
| | - Nida Itrat Abbasi
- The N.1 Institute for Health, National University of Singapore, 28 Medical Dr. 05-COR, Singapore, 117456, Singapore
| | - Emmanuel Dean
- Institute for Cognitive Systems, Technical University of Munich, Arcisstraße 21, 80333, Munich, Germany
- Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Aishwarya Bandla
- The N.1 Institute for Health, National University of Singapore, 28 Medical Dr. 05-COR, Singapore, 117456, Singapore
| | - Rohit Bose
- Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA, 15261, USA
| | - Raghav Sundar
- The N.1 Institute for Health, National University of Singapore, 28 Medical Dr. 05-COR, Singapore, 117456, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, National University Hospital, 5 Lower Kent Ridge Rd, Singapore, 119074, Singapore
| | - Anastasios Bezerianos
- The N.1 Institute for Health, National University of Singapore, 28 Medical Dr. 05-COR, Singapore, 117456, Singapore
- Hellenic Institute of Transport (HIT), Centre for Research and Technology (CERTH), Thessaloniki, Greece
| | - Nitish V Thakor
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, 720 Rutland Ave, Baltimore, MD, 21205, USA
- Department of Biomedical Engineering, National University of Singapore, Engineering Drive 3, #04-08, Singapore, 117583, Singapore
| | - Gordon Cheng
- Institute for Cognitive Systems, Technical University of Munich, Arcisstraße 21, 80333, Munich, Germany
| |
Collapse
|
52
|
Deak B, Eggert T, Mayr A, Stankewitz A, Filippopulos F, Jahn P, Witkovsky V, Straube A, Schulz E. Intrinsic Network Activity Reflects the Fluctuating Experience of Tonic Pain. Cereb Cortex 2022; 32:4098-4109. [PMID: 35024821 DOI: 10.1093/cercor/bhab468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/14/2022] Open
Abstract
Although we know sensation is continuous, research on long-lasting and continuously changing stimuli is scarce and the dynamic nature of ongoing cortical processing is largely neglected. In a longitudinal study, 38 participants across four sessions were asked to continuously rate the intensity of an applied tonic heat pain for 20 min. Using group-independent component analysis and dual regression, we extracted the subjects' time courses of intrinsic network activity. The relationship between the dynamic fluctuation of network activity with the varying time courses of three pain processing entities was computed: pain intensity, the direction of pain intensity changes, and temperature. We were able to dissociate the spatio-temporal patterns of objective (temperature) and subjective (pain intensity/changes of pain intensity) aspects of pain processing in the human brain. We found two somatosensory networks with distinct functions: one network that encodes the small fluctuations in temperature and consists mainly of bilateral primary somatosensory cortex (SI), and a second right-lateralized network that encodes the intensity of the subjective experience of pain consisting of SI, secondary somatosensory cortex, the posterior cingulate cortex, and the thalamus. We revealed the somatosensory dynamics that build up toward a current subjective percept of pain. The timing suggests a cascade of subsequent processing steps toward the current pain percept.
Collapse
Affiliation(s)
- Bettina Deak
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Thomas Eggert
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Astrid Mayr
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.,Department of Radiology, LMU University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Anne Stankewitz
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Filipp Filippopulos
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Pauline Jahn
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Viktor Witkovsky
- Department of Theoretical Methods, Institute of Measurement Science, Slovak Academy of Sciences, 841 04 Bratislava, Slovak Republic
| | - Andreas Straube
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Enrico Schulz
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.,Department of Medical Psychology, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| |
Collapse
|
53
|
Mayr A, Jahn P, Stankewitz A, Deak B, Winkler A, Witkovsky V, Eren O, Straube A, Schulz E. Patients with chronic pain exhibit individually unique cortical signatures of pain encoding. Hum Brain Mapp 2021; 43:1676-1693. [PMID: 34921467 PMCID: PMC8886665 DOI: 10.1002/hbm.25750] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 12/30/2022] Open
Abstract
Chronic pain is characterised by an ongoing and fluctuating intensity over time. Here, we investigated how the trajectory of the patients' endogenous pain is encoded in the brain. In repeated functional MRI (fMRI) sessions, 20 patients with chronic back pain and 20 patients with chronic migraine were asked to continuously rate the intensity of their endogenous pain. Linear mixed effects models were used to disentangle cortical processes related to pain intensity and to pain intensity changes. At group level, we found that the intensity of pain in patients with chronic back pain is encoded in the anterior insular cortex, the frontal operculum, and the pons; the change of pain in chronic back pain and chronic migraine patients is mainly encoded in the anterior insular cortex. At the individual level, we identified a more complex picture where each patient exhibited their own signature of endogenous pain encoding. The diversity of the individual cortical signatures of chronic pain encoding results bridge between clinical observations and neuroimaging; they add to the understanding of chronic pain as a complex and multifaceted disease.
Collapse
Affiliation(s)
- Astrid Mayr
- Department of Radiology, University Hospital LMU, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Neurology, University Hospital LMU, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Pauline Jahn
- Department of Neurology, University Hospital LMU, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anne Stankewitz
- Department of Neurology, University Hospital LMU, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bettina Deak
- Department of Neurology, University Hospital LMU, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anderson Winkler
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Viktor Witkovsky
- Department of Theoretical Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Ozan Eren
- Department of Neurology, University Hospital LMU, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andreas Straube
- Department of Neurology, University Hospital LMU, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Enrico Schulz
- Department of Neurology, University Hospital LMU, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Medical Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
54
|
Chen ZS. Decoding pain from brain activity. J Neural Eng 2021; 18. [PMID: 34608868 DOI: 10.1088/1741-2552/ac28d4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/21/2021] [Indexed: 11/12/2022]
Abstract
Pain is a dynamic, complex and multidimensional experience. The identification of pain from brain activity as neural readout may effectively provide a neural code for pain, and further provide useful information for pain diagnosis and treatment. Advances in neuroimaging and large-scale electrophysiology have enabled us to examine neural activity with improved spatial and temporal resolution, providing opportunities to decode pain in humans and freely behaving animals. This topical review provides a systematical overview of state-of-the-art methods for decoding pain from brain signals, with special emphasis on electrophysiological and neuroimaging modalities. We show how pain decoding analyses can help pain diagnosis and discovery of neurobiomarkers for chronic pain. Finally, we discuss the challenges in the research field and point to several important future research directions.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, Department of Neuroscience and Physiology, Neuroscience Institute, Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY 10016, United States of America
| |
Collapse
|
55
|
May ES, Hohn VD, Nickel MM, Tiemann L, Gil Ávila C, Heitmann H, Sauseng P, Ploner M. Modulating Brain Rhythms of Pain Using Transcranial Alternating Current Stimulation (tACS) - A Sham-Controlled Study in Healthy Human Participants. THE JOURNAL OF PAIN 2021; 22:1256-1272. [PMID: 33845173 DOI: 10.1016/j.jpain.2021.03.150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/27/2022]
Abstract
Chronic pain is a major health care problem. A better mechanistic understanding and new treatment approaches are urgently needed. In the brain, pain has been associated with neural oscillations at alpha and gamma frequencies, which can be targeted using transcranial alternating current stimulation (tACS). Thus, we investigated the potential of tACS to modulate pain and pain-related autonomic activity in an experimental model of chronic pain in 29 healthy participants. In 6 recording sessions, participants completed a tonic heat pain paradigm and simultaneously received tACS over prefrontal or somatosensory cortices at alpha or gamma frequencies or sham tACS. Concurrently, pain ratings and autonomic responses were collected. Using the present setup, tACS did not modulate pain or autonomic responses. Bayesian statistics confirmed a lack of tACS effects in most conditions. The only exception was alpha tACS over somatosensory cortex where evidence was inconclusive. Taken together, we did not find significant tACS effects on tonic experimental pain in healthy humans. Based on our present and previous findings, further studies might apply refined stimulation protocols targeting somatosensory alpha oscillations. TRIAL REGISTRATION: The study protocol was pre-registered at ClinicalTrials.gov (NCT03805854). PERSPECTIVE: Modulating brain oscillations is a promising approach for the treatment of pain. We therefore applied transcranial alternating current stimulation (tACS) to modulate experimental pain in healthy participants. However, tACS did not modulate pain, autonomic responses, or EEG oscillations. These findings help to shape future tACS studies for the treatment of pain.
Collapse
Affiliation(s)
- Elisabeth S May
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Munich, Germany; TUM-Neuroimaging Center, School of Medicine, TUM, Munich, Germany
| | - Vanessa D Hohn
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Munich, Germany; TUM-Neuroimaging Center, School of Medicine, TUM, Munich, Germany
| | - Moritz M Nickel
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Munich, Germany; TUM-Neuroimaging Center, School of Medicine, TUM, Munich, Germany
| | - Laura Tiemann
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Munich, Germany; TUM-Neuroimaging Center, School of Medicine, TUM, Munich, Germany
| | - Cristina Gil Ávila
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Munich, Germany; TUM-Neuroimaging Center, School of Medicine, TUM, Munich, Germany
| | - Henrik Heitmann
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Munich, Germany; TUM-Neuroimaging Center, School of Medicine, TUM, Munich, Germany; Center for Interdisciplinary Pain Medicine, School of Medicine, TUM, Munich, Germany
| | - Paul Sauseng
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Markus Ploner
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Munich, Germany; TUM-Neuroimaging Center, School of Medicine, TUM, Munich, Germany; Center for Interdisciplinary Pain Medicine, School of Medicine, TUM, Munich, Germany.
| |
Collapse
|
56
|
Kandić M, Moliadze V, Andoh J, Flor H, Nees F. Brain Circuits Involved in the Development of Chronic Musculoskeletal Pain: Evidence From Non-invasive Brain Stimulation. Front Neurol 2021; 12:732034. [PMID: 34531819 PMCID: PMC8438114 DOI: 10.3389/fneur.2021.732034] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/06/2021] [Indexed: 12/03/2022] Open
Abstract
It has been well-documented that the brain changes in states of chronic pain. Less is known about changes in the brain that predict the transition from acute to chronic pain. Evidence from neuroimaging studies suggests a shift from brain regions involved in nociceptive processing to corticostriatal brain regions that are instrumental in the processing of reward and emotional learning in the transition to the chronic state. In addition, dysfunction in descending pain modulatory circuits encompassing the periaqueductal gray and the rostral anterior cingulate cortex may also be a key risk factor for pain chronicity. Although longitudinal imaging studies have revealed potential predictors of pain chronicity, their causal role has not yet been determined. Here we review evidence from studies that involve non-invasive brain stimulation to elucidate to what extent they may help to elucidate the brain circuits involved in pain chronicity. Especially, we focus on studies using non-invasive brain stimulation techniques [e.g., transcranial magnetic stimulation (TMS), particularly its repetitive form (rTMS), transcranial alternating current stimulation (tACS), and transcranial direct current stimulation (tDCS)] in the context of musculoskeletal pain chronicity. We focus on the role of the motor cortex because of its known contribution to sensory components of pain via thalamic inhibition, and the role of the dorsolateral prefrontal cortex because of its role on cognitive and affective processing of pain. We will also discuss findings from studies using experimentally induced prolonged pain and studies implicating the DLPFC, which may shed light on the earliest transition phase to chronicity. We propose that combined brain stimulation and imaging studies might further advance mechanistic models of the chronicity process and involved brain circuits. Implications and challenges for translating the research on mechanistic models of the development of chronic pain to clinical practice will also be addressed.
Collapse
Affiliation(s)
- Mina Kandić
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Jamila Andoh
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frauke Nees
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| |
Collapse
|
57
|
Tan LL, Kuner R. Neocortical circuits in pain and pain relief. Nat Rev Neurosci 2021; 22:458-471. [PMID: 34127843 DOI: 10.1038/s41583-021-00468-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
The sensory, associative and limbic neocortical structures play a critical role in shaping incoming noxious inputs to generate variable pain perceptions. Technological advances in tracing circuitry and interrogation of pathways and complex behaviours are now yielding critical knowledge of neocortical circuits, cellular contributions and causal relationships between pain perception and its abnormalities in chronic pain. Emerging insights into neocortical pain processing suggest the existence of neocortical causality and specificity for pain at the level of subdomains, circuits and cellular entities and the activity patterns they encode. These mechanisms provide opportunities for therapeutic intervention for improved pain management.
Collapse
Affiliation(s)
- Linette Liqi Tan
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
58
|
Gevers-Montoro C, Provencher B, Northon S, Stedile-Lovatel JP, Ortega de Mues A, Piché M. Chiropractic Spinal Manipulation Prevents Secondary Hyperalgesia Induced by Topical Capsaicin in Healthy Individuals. FRONTIERS IN PAIN RESEARCH 2021; 2:702429. [PMID: 35295504 PMCID: PMC8915757 DOI: 10.3389/fpain.2021.702429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/18/2021] [Indexed: 12/28/2022] Open
Abstract
Background and Aims: Spinal manipulation (SM) is currently recommended for the management of back pain. Experimental studies indicate that the hypoalgesic mechanisms of SM may rely on inhibition of segmental processes related to temporal summation of pain and, possibly, on central sensitization, although this remains unclear. The aim of this study was to determine whether experimental back pain, secondary hyperalgesia, and pain-related brain activity induced by capsaicin are decreased by segmental SM. Methods: Seventy-three healthy volunteers were randomly allocated to one of four experimental groups: SM at T5 vertebral level (segmental), SM at T9 vertebral level (heterosegmental), placebo intervention at T5 vertebral level, or no intervention. Topical capsaicin was applied to the area of T5 vertebra for 40 min. After 20 min, the interventions were administered. Pressure pain thresholds (PPTs) were assessed outside the area of capsaicin application at 0 and 40 min to examine secondary hyperalgesia. Capsaicin pain intensity and unpleasantness were reported every 4 min. Frontal high-gamma oscillations were also measured with electroencephalography. Results: Pain ratings and brain activity were not significantly different between groups over time (p > 0.5). However, PPTs were significantly decreased in the placebo and control groups (p < 0.01), indicative of secondary hyperalgesia, while no hyperalgesia was observed for groups receiving SM (p = 1.0). This effect was independent of expectations and greater than placebo for segmental (p < 0.01) but not heterosegmental SM (p = 1.0). Conclusions: These results indicate that segmental SM can prevent secondary hyperalgesia, independently of expectations. This has implications for the management of back pain, particularly when central sensitization is involved.
Collapse
Affiliation(s)
- Carlos Gevers-Montoro
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Madrid College of Chiropractic, RCU Maria Cristina, Madrid, Spain
| | - Benjamin Provencher
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Stéphane Northon
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | | | | | - Mathieu Piché
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| |
Collapse
|
59
|
Low Back Pain Assessment Based on Alpha Oscillation Changes in Spontaneous Electroencephalogram (EEG). Neural Plast 2021; 2021:8537437. [PMID: 34306064 PMCID: PMC8266462 DOI: 10.1155/2021/8537437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Objectively and accurately assessing pain in clinical settings is challenging. Previous studies showed that alpha oscillations of electroencephalogram data are correlated with subjective perceived pain. Based on this finding, this study is aimed at assessing chronic low back pain based on alpha oscillations. Multichannel electroencephalogram data were recorded from 27 subjects with chronic low back pain under the simple conditions of closing eyes or opening eyes. Spectral analyses were conducted to extract the alpha band responses, and the alpha powers were calculated for the two conditions, respectively. Normalized alpha power was calculated by subtracting the alpha power in the eyes-open condition from that in the eyes-closed condition. The correlation between the alpha power and the subjective pain intensity was evaluated in frontal, central, and posterior regions. The normalized alpha power in the central region was negatively correlated with the subjective pain intensity (R = -0.50, P = 0.01), with the strongest correlation occurring at the Cz electrode (R = -0.59, P = 0.04). The correlation analysis results demonstrated the possibility of using the differences of alpha spectral power between eyes-closed and eyes-open conditions as a measure for assessing chronic low back pain. The findings suggest that the normalized alpha power in the central region may be used as a measurable and quantitative indicator of chronic pain for clinical applications.
Collapse
|
60
|
De Martino E, Gregoret L, Zandalasini M, Graven-Nielsen T. Slowing in Peak-Alpha Frequency Recorded After Experimentally-Induced Muscle Pain is not Significantly Different Between High and Low Pain-Sensitive Subjects. THE JOURNAL OF PAIN 2021; 22:1722-1732. [PMID: 34182105 DOI: 10.1016/j.jpain.2021.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022]
Abstract
Peak alpha frequency (PAF) reduces during cutaneous pain, but no studies have investigated PAF during movement-related muscle pain. Whether high-pain sensitive (HPS) individuals exhibit a more pronounced PAF response to pain than low-pain sensitive (LPS) individuals is unclear. As a pain model, twenty-four participants received nerve growth factor injections into a wrist extensor muscle at Day 0, Day 2, and Day 4. At Day 4, a subgroup of twelve participants also undertook eccentric wrist exercise to induce additional pain. Pain numerical rating scale (NRS) scores and electroencephalography were recorded at Day 0 (before injection), Day 4, and Day 6 for 3 minutes (eyes closed) with wrist at rest (Resting-state) and extension (Contraction-state). The average pain NRS scores in contraction-state across Days were used to divide participants into HPS (NRS-scores≥2) and LPS groups. PAF was calculated by frequency decomposition of electroencephalographic recordings. Compared with Day 0, contraction NRS-scores only increased in HPS-group at Day 4 and Day 6 (P < .001). PAF in Contraction-state decreased in both groups at Day 6 compared with Day 0 (P = .011). Across days, HPS-group showed faster PAF than LPS-group during Resting-state and Contraction-state (P < .04). Average pain NRS-scores across days during Contraction-states correlated with PAF at Day 0 (P = .012). Pain NRS-scores were associated with PAF during Contraction-state at Day 4 and Day 6 (P < .05). PERSPECTIVE: PAF was slowed during long-lasting movement-related pain in both groups, suggesting a widespread change in cortical excitability independent of the pain sensitivity. Moreover, HPS individuals showed faster PAF than LPS individuals during muscle pain, which may reflect a different cognitive, emotional, or attentional response to muscle pain among individuals.
Collapse
Affiliation(s)
- Enrico De Martino
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark; Aerospace Medicine and Rehabilitation Laboratory, Department of Sport, Exercise & Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Luisina Gregoret
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Matteo Zandalasini
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark; Department of Spinal Unit and Intensive Rehabilitation Medicine. A.U.S.L. Piacenza, Italy
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
61
|
Tan LL, Oswald MJ, Kuner R. Neurobiology of brain oscillations in acute and chronic pain. Trends Neurosci 2021; 44:629-642. [PMID: 34176645 DOI: 10.1016/j.tins.2021.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/19/2021] [Accepted: 05/07/2021] [Indexed: 01/08/2023]
Abstract
Pain is a complex perceptual phenomenon. Coordinated activity among local and distant brain networks is a central element of the neural underpinnings of pain. Brain oscillatory rhythms across diverse frequency ranges provide a functional substrate for coordinating activity across local neuronal ensembles and anatomically distant brain areas in pain networks. This review addresses parallels between insights from human and rodent analyses of oscillatory rhythms in acute and chronic pain and discusses recent rodent-based studies that have shed light on mechanistic underpinnings of brain oscillatory dynamics in pain-related behaviors. We highlight the potential for therapeutic modulation of oscillatory rhythms, and identify outstanding questions and challenges to be addressed in future research.
Collapse
Affiliation(s)
- Linette Liqi Tan
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany.
| | - Manfred Josef Oswald
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany.
| |
Collapse
|
62
|
Tøttrup L, Atashzar SF, Farina D, Kamavuako EN, Jensen W. Altered evoked low-frequency connectivity from SI to ACC following nerve injury in rats. J Neural Eng 2021; 18. [PMID: 33957613 DOI: 10.1088/1741-2552/abfeb9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/06/2021] [Indexed: 12/11/2022]
Abstract
Objective. Despite decades of research on central processing of pain, there are still several unanswered questions, in particular regarding the brain regions that may contribute to this alerting sensation. Since it is generally accepted that more than one cortical area is responsible for pain processing, there is an increasing focus on the interaction between areas known to be involved.Approach. In this study, we aimed to investigate the bidirectional information flow from the primary somatosensory cortex (SI) to the anterior cingulate cortex (ACC) in an animal model of neuropathic pain.19 rats (nine controls and ten intervention) had an intracortical electrode implanted with six pins in SI and six pins in ACC, and a cuff stimulation electrode around the sciatic nerve. The intervention rats were subjected to the spared nerve injury (SNI) after baseline recordings. Electrical stimulation at three intensities of both noxious and non-noxious stimulation was used to record electrically evoked cortical potentials. To investigate information flow, two connectivity measures were used: phase lag index (PLI) and granger prediction (GP). The rats were anesthetized during the entire study.Main results. Immediately after the intervention (<5 min after intervention), the high frequency (γandγ+) PLI was significantly decreased compared to controls. In the last recording cycle (3-4 h after intervention), the GP increased consistently in the intervention group. Peripheral nerve injury, as a model of neuropathic pain, resulted in an immediate decrease in information flow between SI and ACC, possibly due to decreased sensory input from the injured nerve. Hours after injury, the connectivity between SI and ACC increased, likely indicating hypersensitivity of this pathway.Significance. We have shown that both a directed and non-directed connectivity between SI and ACC approach can be used to show the acute changes resulting from the SNI model.
Collapse
Affiliation(s)
- Lea Tøttrup
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - S Farokh Atashzar
- Departments of Electrical and Computer Engineering, and Mechanical and Aerospace Engineering, New York University, New York, NY, USA.,NYU WIRELESS center, New York University (NYU), New York, NY, USA
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Ernest Nlandu Kamavuako
- Department of Engineering, King's College London, London, United Kingdom.,Université de Kindu, Faculté de Médecine, Département des Sciences de base, Maniema, DR Congo
| | - Winnie Jensen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
63
|
Jelinčić V, Van Diest I, Torta DM, von Leupoldt A. The breathing brain: The potential of neural oscillations for the understanding of respiratory perception in health and disease. Psychophysiology 2021; 59:e13844. [PMID: 34009644 DOI: 10.1111/psyp.13844] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 11/30/2022]
Abstract
Dyspnea or breathlessness is a symptom occurring in multiple acute and chronic illnesses, however, the understanding of the neural mechanisms underlying its subjective experience is limited. In this topical review, we propose neural oscillatory dynamics and cross-frequency coupling as viable candidates for a neural mechanism underlying respiratory perception, and a technique warranting more attention in respiration research. With the evidence for the potential of neural oscillations in the study of normal and disordered breathing coming from disparate research fields with a limited history of interdisciplinary collaboration, the main objective of the review was to converge the existing research and suggest future directions. The existing findings show that distinct limbic and cortical activations, as measured by hemodynamic responses, underlie dyspnea, however, the time-scale of these activations is not well understood. The recent findings of oscillatory neural activity coupled with the respiratory rhythm could provide the solution to this problem, however, more research with a focus on dyspnea is needed. We also touch on the findings of distinct spectral patterns underlying the changes in breathing due to experimental manipulations, meditation and disease. Subsequently, we suggest general research directions and specific research designs to supplement the current knowledge using neural oscillation techniques. We argue for the benefits of interdisciplinary collaboration and the converging of neuroimaging and behavioral methods to best explain the emergence of the subjective and aversive individual experience of dyspnea.
Collapse
Affiliation(s)
- Valentina Jelinčić
- Research Group Health Psychology, Department of Psychology, KU Leuven, Leuven, Belgium
| | - Ilse Van Diest
- Research Group Health Psychology, Department of Psychology, KU Leuven, Leuven, Belgium
| | - Diana M Torta
- Research Group Health Psychology, Department of Psychology, KU Leuven, Leuven, Belgium
| | - Andreas von Leupoldt
- Research Group Health Psychology, Department of Psychology, KU Leuven, Leuven, Belgium
| |
Collapse
|
64
|
Temporal structure of brain oscillations predicts learned nocebo responses to pain. Sci Rep 2021; 11:9807. [PMID: 33963251 PMCID: PMC8105329 DOI: 10.1038/s41598-021-89368-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/19/2021] [Indexed: 02/03/2023] Open
Abstract
This study aimed to identify electrophysiological correlates of nocebo-augmented pain. Nocebo hyperalgesia (i.e., increases in perceived pain resulting from negative expectations) has been found to impact how healthy and patient populations experience pain and is a phenomenon that could be better understood in terms of its neurophysiological underpinnings. In this study, nocebo hyperalgesia was induced in 36 healthy participants through classical conditioning and negative suggestions. Electroencephalography was recorded during rest (pre- and post-acquisition) and during pain stimulation (baseline, acquisition, evocation) First, participants received baseline high thermal pain stimulations. During nocebo acquisition, participants learned to associate an inert gel applied to their forearm with administered high pain stimuli, relative to moderate intensity control stimuli administered without gel. During evocation, all stimuli were accompanied by moderate pain, to measure nocebo responses to the inert gel. Pre- to post-acquisition beta-band alterations in long-range temporal correlations (LRTC) were negatively associated with nocebo magnitudes. Individuals with strong resting LRTC showed larger nocebo responses than those with weaker LRTC. Nocebo acquisition trials showed reduced alpha power. Alpha power was higher while LRTC were lower during nocebo-augmented pain, compared to baseline. These findings support nocebo learning theories and highlight a role of nocebo-induced cognitive processing.
Collapse
|
65
|
Liebisch AP, Eggert T, Shindy A, Valentini E, Irving S, Stankewitz A, Schulz E. A novel tool for the removal of muscle artefacts from EEG: Improving data quality in the gamma frequency range. J Neurosci Methods 2021; 358:109217. [PMID: 33964345 DOI: 10.1016/j.jneumeth.2021.109217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/07/2021] [Accepted: 05/02/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND The past two decades have seen a particular focus towards high-frequency neural activity in the gamma band (>30 Hz). However, gamma band activity shares frequency range with unwanted artefacts from muscular activity. NEW METHOD We developed a novel approach to remove muscle artefacts from neurophysiological data. We re-analysed existing EEG data that were decomposed by a blind source separation method (independent component analysis, ICA), which helped to better spatially and temporally separate single muscle spikes. We then applied an adapting algorithm that detects these singled-out muscle spikes. RESULTS We obtained data almost free from muscle artefacts; we needed to remove significantly fewer artefact components from the ICA and we included more trials for the statistical analysis compared to standard ICA artefact removal. All pain-related cortical effects in the gamma band have been preserved, which underlines the high efficacy and precision of this algorithm. CONCLUSIONS Our results show a significant improvement of data quality by preserving task-relevant gamma oscillations of presumed cortical origin. We were able to precisely detect, gauge, and carve out single muscle spikes from the time course of neurophysiological measures without perturbing cortical gamma. We advocate the application of the tool for studies investigating gamma activity that contain a rather low number of trials, as well as for data that are highly contaminated with muscle artefacts. This validation of our tool allows for the application on event-free continuous EEG, for which the artefact removal is more challenging.
Collapse
Affiliation(s)
| | - Thomas Eggert
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Alina Shindy
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Elia Valentini
- Department of Psychology and Centre for Brain Science, University of Essex, Colchester, UK
| | - Stephanie Irving
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anne Stankewitz
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Enrico Schulz
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany; Department of Medical Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
66
|
Gamma-band activities in the context of pain: A signal from brain or muscle? Neurophysiol Clin 2021; 51:287-289. [PMID: 33895067 DOI: 10.1016/j.neucli.2021.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 11/23/2022] Open
|
67
|
Rustamov N, Sharma L, Chiang SN, Burk C, Haroutounian S, Leuthardt EC. Spatial and Frequency-specific Electrophysiological Signatures of Tonic Pain Recovery in Humans. Neuroscience 2021; 465:23-37. [PMID: 33894311 DOI: 10.1016/j.neuroscience.2021.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/19/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022]
Abstract
The objective of this study was to comprehensively investigate patterns of brain activities associated with pain recovery following experimental tonic pain in humans. Specific electrophysiological features of pain recovery may either be monitored or be modulated through neurofeedback (NF) as a novel chronic pain treatment. The cold pressor test was applied with simultaneous electroencephalogram (EEG) recording. EEG data were acquired, and analyzed to define: (1) EEG power topography patterns of pain recovery; (2) source generators of pain recovery at cortical level; (3) changes in functional connectivity associated with pain recovery; (4) features of phase-amplitude coupling (PAC) as it relates to pain recovery. The novel finding of this study is that recovery from pain was characterized by significant theta power rebound at the left fronto-central area. The sources of theta power over-recovery were located in the left dorsolateral prefrontal cortex (DLPFC), cingulate cortex, left insula and contralateral sensorimotor cortex. These effects were paralleled by theta band connectivity increase within hemispheres in a prefrontal-somatosensory network and interhemispherically between prefrontal and parietal areas. In addition, this study revealed significant reduction in PAC between theta/alpha and gamma oscillations during recovery period following tonic pain. These findings have largely been replicated across two identical sessions. Our study emphasizes the association between pain recovery and left lateral prefrontal theta power rebound, and significant over-recovery of functional connectivity in prefrontal-sensorimotor neural network synchronized at theta frequencies. These findings may provide basis for chronic pain treatment by modulating neural oscillations at theta frequencies in left prefrontal cortex.
Collapse
Affiliation(s)
- Nabi Rustamov
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA; Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lokesh Sharma
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sarah N Chiang
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA; Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St. Louis, MO, USA
| | - Carrie Burk
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, St. Louis, MO, USA
| | - Simon Haroutounian
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, St. Louis, MO, USA.
| | - Eric C Leuthardt
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA; Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St. Louis, MO, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, Louis, MO, USA
| |
Collapse
|
68
|
The Prediction of Acute Postoperative Pain Based on Neural Oscillations Measured before the Surgery. Neural Plast 2021; 2021:5543974. [PMID: 33897775 PMCID: PMC8052183 DOI: 10.1155/2021/5543974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/05/2021] [Accepted: 03/16/2021] [Indexed: 11/17/2022] Open
Abstract
Even with an improved understanding of pain mechanisms and advances in perioperative pain management, inadequately controlled postoperative pain remains. Predicting acute postoperative pain based on presurgery physiological measures could provide valuable insights into individualized, effective analgesic strategies, thus helping improve the analgesic efficacy. Considering the strong correlation between pain perception and neural oscillations, we hypothesize that acute postoperative pain could be predicted by neural oscillations measured shortly before the surgery. Here, we explored the relationship between neural oscillations 2 hours before the thoracoscopic surgery and the subjective intensity of acute postoperative pain. The spectral power density of resting-state beta and gamma band oscillations at the frontocentral region was significantly different between patients with different levels of acute postoperative pain (i.e., low pain vs. moderate/high pain). A positive correlation was also observed between the spectral power density of resting-state beta and gamma band oscillations and subjective reports of postoperative pain. Then, we predicted the level of acute postoperative pain based on features of neural oscillations using machine learning techniques, which achieved a prediction accuracy of 92.54% and a correlation coefficient between the real pain intensities and the predicted pain intensities of 0.84. Altogether, the prediction of acute postoperative pain based on neural oscillations measured before the surgery is feasible and could meet the clinical needs in the future for better control of postoperative pain and other unwanted negative effects. The study was registered on the Clinical Trial Registry (https://clinicaltrials.gov/ct2/show/NCT03761576?term=NCT03761576&draw=2&rank=1) with the registration number NCT03761576.
Collapse
|
69
|
Chouchou F, Perchet C, Garcia-Larrea L. EEG changes reflecting pain: is alpha suppression better than gamma enhancement? Neurophysiol Clin 2021; 51:209-218. [PMID: 33741256 DOI: 10.1016/j.neucli.2021.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Suppression of alpha and enhancement of gamma electroencephalographic (EEG) power have both been suggested as objective indicators of cortical pain processing. While gamma activity has been emphasized as the best potential marker, its spectral overlap with pain-related muscular responses is a potential drawback. Since muscle contractions are almost universal concomitants of physical pain, here we investigated alpha and gamma scalp-recorded activities during either tonic pain or voluntary facial grimaces mimicking those triggered by pain. METHODS High-density EEG (128 electrodes) was recorded while 14 healthy participants either underwent a cold pressor test (painful hand immersion in 10 °C water) or produced stereotyped facial/nuchal contractions (grimaces) mimicking those evoked by pain. The scalp distribution of spectral EEG changes was quantified via vector-transformation of maps and compared between the pain and grimacing conditions by calculating the cosine of the angle between the two corresponding topographies. RESULTS Painful stimuli significantly enhanced gamma power bilaterally in fronto-temporal regions and decreased alpha power in the contralateral central scalp. Sustained cervico-facial contractions (grimaces) gave also rise to significant gamma power increase in fronto-temporal regions but did not decrease central scalp alpha. While changes in alpha topography significantly differed between the pain and grimace situations, the scalp topography of gamma power was statistically indistinguishable from that occurring during grimaces. CONCLUSION Gamma power induced by painful stimuli or voluntary facial-cervical muscle contractions had overlapping topography. Pain-related alpha decrease in contralateral central scalp was less disturbed by muscle activity and may therefore prove more discriminant as an ancillary pain biomarker.
Collapse
Affiliation(s)
- Florian Chouchou
- NeuroPain Lab, Lyon Neuroscience Research Centre, CRNL - Inserm U 1028/CNRS UMR 5292, University of Lyon, France; IRISSE Laboratory (EA4075), UFR SHE, University of La Réunion, Le Tampon, France.
| | - Caroline Perchet
- NeuroPain Lab, Lyon Neuroscience Research Centre, CRNL - Inserm U 1028/CNRS UMR 5292, University of Lyon, France
| | - Luis Garcia-Larrea
- NeuroPain Lab, Lyon Neuroscience Research Centre, CRNL - Inserm U 1028/CNRS UMR 5292, University of Lyon, France
| |
Collapse
|
70
|
Tian Z, Yin T, Xiao Q, Dong X, Yang Y, Wang M, Ha G, Chen J, Liang F, Zeng F, Lan L. The Altered Functional Connectivity With Pain Features Integration and Interaction in Migraine Without Aura. Front Neurosci 2021; 15:646538. [PMID: 33746709 PMCID: PMC7969893 DOI: 10.3389/fnins.2021.646538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/15/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction Migraine without aura (MwoA) is a primary type of migraine, a common disabling disorder, and a disabling neurological condition. The headache is a complex experience, a common form of pain, in which multiple sensory information dimensions are combined to provide a unified conscious event. Migraine ictal have unique neuroimage biomarkers, but the brain is also affected during the inter-ictal phase. According to the current studies, a hypothesis was constructed that the altered integration of pain spatial and intensity information impacts headache intensity in the inter-ictal period. Methods In this study, we applied theory-based region-to-region functional connectivity (FC) analyses to compare the differences in resting-state FC between MwoA participants and healthy controls with the pain integration hypothesis. After the correlation matrices between FC edges and clinical symptoms were constructed, the moderating effect and simple slope tests were investigated to explain whether and how the dysfunction of pain features discrimination affects the clinical symptoms. Results Functional connectivity analyses showed significantly decreased FC edges between the left dorsolateral superior frontal gyrus (SFGdor) and left insula, and an increased FC edge between the left SFGdor and bilateral angular gyrus. The correlation matrix showed no significant correlation between significantly altered FC edge and headache duration, frequency, Zung self-rating anxiety scale, and Zung self-rating depression scale. Only one significantly altered edge in the MwoA condition was significantly correlated with headache intensity. Moderating Module 1 and 2 manifested the moderator variable (altered rs-FC edge) moderated the link between the normal edges and headache intensity. Conclusion The pain features integration processes in migraineurs vary from HCs, related to the clinical symptoms during a migraine attack. Moreover, the clinical symptoms will be affected by one or more discrimination modules. And the spatial or intensity discrimination modules have a higher impact when combined with another module on clinical symptoms than the single module.
Collapse
Affiliation(s)
- Zilei Tian
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Yin
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingqing Xiao
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohui Dong
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunhong Yang
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Menglin Wang
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guodong Ha
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiyao Chen
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fanrong Liang
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu, China
| | - Fang Zeng
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu, China
| | - Lei Lan
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
71
|
Völker JM, Arguissain FG, Andersen OK, Biurrun Manresa J. Variability and effect sizes of intracranial current source density estimations during pain: Systematic review, experimental findings, and future perspectives. Hum Brain Mapp 2021; 42:2461-2476. [PMID: 33605512 PMCID: PMC8090781 DOI: 10.1002/hbm.25380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
Pain arises from the integration of sensory and cognitive processes in the brain, resulting in specific patterns of neural oscillations that can be characterized by measuring electrical brain activity. Current source density (CSD) estimation from low-resolution brain electromagnetic tomography (LORETA) and its standardized (sLORETA) and exact (eLORETA) variants, is a common approach to identify the spatiotemporal dynamics of the brain sources in physiological and pathological pain-related conditions. However, there is no consensus on the magnitude and variability of clinically or experimentally relevant effects for CSD estimations. Here, we systematically examined reports of sample size calculations and effect size estimations in all studies that included the keywords pain, and LORETA, sLORETA, or eLORETA in Scopus and PubMed. We also assessed the reliability of LORETA CSD estimations during non-painful and painful conditions to estimate hypothetical sample sizes for future experiments using CSD estimations. We found that none of the studies included in the systematic review reported sample size calculations, and less than 20% reported measures of central tendency and dispersion, which are necessary to estimate effect sizes. Based on these data and our experimental results, we determined that sample sizes commonly used in pain studies using CSD estimations are suitable to detect medium and large effect sizes in crossover designs and only large effects in parallel designs. These results provide a comprehensive summary of the effect sizes observed using LORETA in pain research, and this information can be used by clinicians and researchers to improve settings and designs of future pain studies.
Collapse
Affiliation(s)
- Juan Manuel Völker
- Integrative Neuroscience Group, Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Federico Gabriel Arguissain
- Integrative Neuroscience Group, Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ole Kaeseler Andersen
- Integrative Neuroscience Group, Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - José Biurrun Manresa
- Integrative Neuroscience Group, Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.,Institute for Research and Development in Bioengineering and Bioinformatics (IBB), National Scientific and Technical Research Council (CONICET) and National University of Entre Ríos (UNER), Oro Verde, Argentina
| |
Collapse
|
72
|
Strube A, Rose M, Fazeli S, Büchel C. The temporal and spectral characteristics of expectations and prediction errors in pain and thermoception. eLife 2021; 10:62809. [PMID: 33594976 PMCID: PMC7924946 DOI: 10.7554/elife.62809] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
In the context of a generative model, such as predictive coding, pain and heat perception can be construed as the integration of expectation and input with their difference denoted as a prediction error. In a previous neuroimaging study (Geuter et al., 2017) we observed an important role of the insula in such a model but could not establish its temporal aspects. Here, we employed electroencephalography to investigate neural representations of predictions and prediction errors in heat and pain processing. Our data show that alpha-to-beta activity was associated with stimulus intensity expectation, followed by a negative modulation of gamma band activity by absolute prediction errors. This is in contrast to prediction errors in visual and auditory perception, which are associated with increased gamma band activity, but is in agreement with observations in working memory and word matching, which show gamma band activity for correct, rather than violated, predictions.
Collapse
Affiliation(s)
- Andreas Strube
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Rose
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sepideh Fazeli
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
73
|
Song Y, Yao M, Kemprecos H, Byrne A, Xiao Z, Zhang Q, Singh A, Wang J, Chen ZS. Predictive coding models for pain perception. J Comput Neurosci 2021; 49:107-127. [PMID: 33595765 DOI: 10.1007/s10827-021-00780-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/14/2020] [Accepted: 01/29/2021] [Indexed: 12/31/2022]
Abstract
Pain is a complex, multidimensional experience that involves dynamic interactions between sensory-discriminative and affective-emotional processes. Pain experiences have a high degree of variability depending on their context and prior anticipation. Viewing pain perception as a perceptual inference problem, we propose a predictive coding paradigm to characterize evoked and non-evoked pain. We record the local field potentials (LFPs) from the primary somatosensory cortex (S1) and the anterior cingulate cortex (ACC) of freely behaving rats-two regions known to encode the sensory-discriminative and affective-emotional aspects of pain, respectively. We further use predictive coding to investigate the temporal coordination of oscillatory activity between the S1 and ACC. Specifically, we develop a phenomenological predictive coding model to describe the macroscopic dynamics of bottom-up and top-down activity. Supported by recent experimental data, we also develop a biophysical neural mass model to describe the mesoscopic neural dynamics in the S1 and ACC populations, in both naive and chronic pain-treated animals. Our proposed predictive coding models not only replicate important experimental findings, but also provide new prediction about the impact of the model parameters on the physiological or behavioral read-out-thereby yielding mechanistic insight into the uncertainty of expectation, placebo or nocebo effect, and chronic pain.
Collapse
Affiliation(s)
- Yuru Song
- Department of Psychiatry, New York University School of Medicine, New York, USA.,Department of Biology, University of California, San Diego, USA
| | - Mingchen Yao
- Department of Psychiatry, New York University School of Medicine, New York, USA.,Kuang Yaming Honors School, Nanjing University, Nanjing, China
| | - Helen Kemprecos
- Department of Biochemistry, New York University, New York, USA
| | - Aine Byrne
- Center for Neural Science, New York University, New York, USA
| | - Zhengdong Xiao
- Department of Psychiatry, New York University School of Medicine, New York, USA
| | - Qiaosheng Zhang
- Department of Anesthesiology, Pain and Operative Medicine, New York University School of Medicine, New York, USA
| | - Amrita Singh
- Department of Anesthesiology, Pain and Operative Medicine, New York University School of Medicine, New York, USA
| | - Jing Wang
- Department of Anesthesiology, Pain and Operative Medicine, New York University School of Medicine, New York, USA.,Department of Neuroscience and Physiology, New York University School of Medicine, New York, USA.,Neuroscience Institute, New York University School of Medicine, New York, USA
| | - Zhe S Chen
- Department of Psychiatry, New York University School of Medicine, New York, USA. .,Department of Neuroscience and Physiology, New York University School of Medicine, New York, USA. .,Neuroscience Institute, New York University School of Medicine, New York, USA.
| |
Collapse
|
74
|
Tottrup L, Atashzar SF, Farina D, Kamavuako EN, Jensen W. Nerve Injury Decreases Hyperacute Resting-State Connectivity Between the Anterior Cingulate and Primary Somatosensory Cortex in Anesthetized Rats. IEEE Trans Neural Syst Rehabil Eng 2021; 28:2691-2698. [PMID: 33237862 DOI: 10.1109/tnsre.2020.3039854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A better understanding of neural pain processing and of the development of pain over time, is critical to identify objective measures of pain and to evaluate the effect of pain alleviation therapies. One issue is, that the brain areas known to be related to pain processing are not exclusively responding to painful stimuli, and the neuronal activity is also influenced by other brain areas. Functional connectivity reflects synchrony or covariation of activation between groups of neurons. Previous studies found changes in connectivity days or weeks after pain induction. However, less in known on the temporal development of pain. Our objective was therefore to investigate the interaction between the anterior cingulate cortex (ACC) and primary somatosensory cortex (SI) in the hyperacute (minute) and sustained (hours) response in an animal model of neuropathic pain. Intra-cortical local field potentials (LFP) were recorded in 18 rats. In 10 rats the spared nerve injury model was used as an intervention. The intra-cortical activity was recorded before, immediately after, and three hours after the intervention. The interaction was quantified as the calculated correlation and coherence. The results from the intervention group showed a decrease in correlation between ACC and SI activity, which was most pronounced in the hyperacute phase but a longer time frame may be required for plastic changes to occur. This indicated that both SI and ACC are involved in hyperacute pain processing.
Collapse
|
75
|
Völker JM, Arguissain FG, Manresa JB, Andersen OK. Characterization of Source-Localized EEG Activity During Sustained Deep-Tissue Pain. Brain Topogr 2021; 34:192-206. [PMID: 33403561 DOI: 10.1007/s10548-020-00815-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
Musculoskeletal pain is a clinical condition that is characterized by ongoing pain and discomfort in the deep tissues such as muscle, bones, ligaments, nerves, and tendons. In the last decades, it was subject to extensive research due to its high prevalence. Still, a quantitative description of the electrical brain activity during musculoskeletal pain is lacking. This study aimed to characterize intracranial current source density (CSD) estimations during sustained deep-tissue experimental pain. Twenty-three healthy volunteers received three types of tonic stimuli for three minutes each: computer-controlled cuff pressure (1) below pain threshold (sustained deep-tissue no-pain, SDTnP), (2) above pain threshold (sustained deep-tissue pain, SDTP) and (3) vibrotactile stimulation (VT). The CSD in response to these stimuli was calculated in seven regions of interest (ROIs) likely involved in pain processing: contralateral anterior cingulate cortex, contralateral primary somatosensory cortex, bilateral anterior insula, contralateral dorsolateral prefrontal cortex, posterior parietal cortex and contralateral premotor cortex. Results showed that participants exhibited an overall increase in spectral power during SDTP in all seven ROIs compared to both SDTnP and VT, likely reflecting the differences in the salience of these stimuli. Moreover, we observed a difference is CSD due to the type of stimulus, likely reflecting somatosensory discrimination of stimulus intensity. These results describe the different contributions of neural oscillations within these brain regions in the processing of sustained deep-tissue pain.
Collapse
Affiliation(s)
- Juan Manuel Völker
- Department of Health Science and Technology, Integrative Neuroscience Group, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark.
| | - Federico Gabriel Arguissain
- Department of Health Science and Technology, Integrative Neuroscience Group, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| | - José Biurrun Manresa
- Department of Health Science and Technology, Integrative Neuroscience Group, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark.,Institute for Research and Development in Bioengineering and Bioinformatics (IBB), CONICET-UNER, Oro Verde, Argentina
| | - Ole Kæseler Andersen
- Department of Health Science and Technology, Integrative Neuroscience Group, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| |
Collapse
|
76
|
Sun G, Wen Z, Ok D, Doan L, Wang J, Chen ZS. Detecting acute pain signals from human EEG. J Neurosci Methods 2021; 347:108964. [PMID: 33010301 PMCID: PMC7744433 DOI: 10.1016/j.jneumeth.2020.108964] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Advances in human neuroimaging has enabled us to study functional connections among various brain regions in pain states. Despite a wealth of studies at high anatomic resolution, the exact neural signals for the timing of pain remain little known. Identifying the onset of pain signals from distributed cortical circuits may reveal the temporal dynamics of pain responses and subsequently provide important feedback for closed-loop neuromodulation for pain. NEW METHOD Here we developed an unsupervised learning method for sequential detection of acute pain signals based on multichannel human EEG recordings. Following EEG source localization, we used a state-space model (SSM) to detect the onset of acute pain signals based on the localized regions of interest (ROIs). RESULTS We validated the SSM-based detection strategy using two human EEG datasets, including one public EEG recordings of 50 subjects. We found that the detection accuracy varied across tested subjects and detection methods. We also demonstrated the feasibility for cross-subject and cross-modality prediction of detecting the acute pain signals. COMPARISON WITH EXISTING METHODS In contrast to the batch supervised learning analysis based on a support vector machine (SVM) classifier, the unsupervised learning method requires fewer number of training trials in the online experiment, and shows comparable or improved performance than the supervised method. CONCLUSIONS Our unsupervised SSM-based method combined with EEG source localization showed robust performance in detecting the onset of acute pain signals.
Collapse
Affiliation(s)
- Guanghao Sun
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States
| | - Zhenfu Wen
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States
| | - Deborah Ok
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, New York University School of Medicine, New York, NY, United States
| | - Lisa Doan
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, New York University School of Medicine, New York, NY, United States
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, New York University School of Medicine, New York, NY, United States; Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, United States; The Neuroscience Institute, New York University School of Medicine, New York, NY, United States.
| | - Zhe Sage Chen
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States; Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, United States; The Neuroscience Institute, New York University School of Medicine, New York, NY, United States.
| |
Collapse
|
77
|
Stomp M, d’Ingeo S, Henry S, Lesimple C, Cousillas H, Hausberger M. EEG individual power profiles correlate with tension along spine in horses. PLoS One 2020; 15:e0243970. [PMID: 33315932 PMCID: PMC7735639 DOI: 10.1371/journal.pone.0243970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/01/2020] [Indexed: 11/19/2022] Open
Abstract
Assessing chronic pain is a challenge given its subjective dimension. In humans, resting state electroencephalography (EEG) is a promising tool although the results of various studies are contradictory. Spontaneous chronic pain is understudied in animals but could be of the highest interest for a comparative study. Riding horses show a very high prevalence of back disorders thought to be associated with chronic pain. Moreover, horses with known back problems show cognitive alterations, such as a lower attentional engagement. Therefore, we hypothesized that the individual EEG power profiles resting state (i.e. quiet standing) of different horses could reflect the state of their back, that we measured using static sEMG, a tool first promoted to assess lower back pain in human patients. Results show that 1) EEG profiles are highly stable at the intra-individual level, 2) horses with elevated back tension showed resting state EEG profiles characterized by more fast (beta and gamma) and less slow (theta and alpha) waves. The proportion of theta waves was particularly negatively correlated with muscular tension along the spine. Moreover, elevated back tension was positively correlated with the frequency of stereotypic behaviours (an "addictive- like" repetitive behavior) performed by the horses in their stall. Resting state quantitative EEG appears therefore as a very promising tool that may allow to assess individual subjective chronic pain experience, beyond more objective measures of tension. These results open new lines of research for a multi-species comparative approach and might reveal very important in the context of animal welfare.
Collapse
Affiliation(s)
- Mathilde Stomp
- Univ Rennes, Normandie Univ, CNRS, EthoS (Éthologie animale et humaine)—UMR 6552, Paimpont, France
| | - Serenella d’Ingeo
- Univ Rennes, Normandie Univ, CNRS, EthoS (Éthologie animale et humaine)—UMR 6552, Paimpont, France
- Department of Veterinary Medicine, Section of Animal Physiology and Behaviour, University of Bari “Aldo Moro”, Bari, Italy
| | - Séverine Henry
- Univ Rennes, Normandie Univ, CNRS, EthoS (Éthologie animale et humaine)—UMR 6552, Paimpont, France
| | - Clémence Lesimple
- Univ Rennes, Normandie Univ, CNRS, EthoS (Éthologie animale et humaine)—UMR 6552, Paimpont, France
| | - Hugo Cousillas
- Univ Rennes, Normandie Univ, CNRS, EthoS (Éthologie animale et humaine)—UMR 6552, Paimpont, France
| | - Martine Hausberger
- Univ Rennes, Normandie Univ, CNRS, EthoS (Éthologie animale et humaine)—UMR 6552, Paimpont, France
| |
Collapse
|
78
|
Wang WE, Ho RLM, Ribeiro-Dasilva MC, Fillingim RB, Coombes SA. Chronic jaw pain attenuates neural oscillations during motor-evoked pain. Brain Res 2020; 1748:147085. [PMID: 32898506 DOI: 10.1016/j.brainres.2020.147085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 08/04/2020] [Accepted: 08/25/2020] [Indexed: 11/15/2022]
Abstract
Motor- and pain-related processes separately induce a reduction in alpha and beta power. When movement and pain occur simultaneously but are independent of each other, the effects on alpha and beta power are additive. It is not clear whether this additive effect is evident during motor-evoked pain in individuals with chronic pain. We combined highdensity electroencephalography (EEG) with a paradigm in which motor-evoked pain was induced during a jaw force task. Participants with chronic jaw pain and pain-free controls produced jaw force at 2% and 15% of their maximum voluntary contraction. The chronic jaw pain group showed exacerbated motor-evoked pain as force amplitude increased and showed increased motor variability and motor error irrespective of force amplitude. The chronic jaw pain group had an attenuated decrease in power in alpha and lower-beta frequencies in the occipital cortex during the anticipation and experience of motor-evoked pain. Rather than being additive, motor-evoked pain attenuated the modulation of alpha and beta power, and this was most evident in occipital cortex. Our findings provide the first evidence of changes in neural oscillations in the cortex during motor-evoked jaw pain.
Collapse
Affiliation(s)
- Wei-En Wang
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Rachel L M Ho
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | | | - Roger B Fillingim
- Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL, USA
| | - Stephen A Coombes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
79
|
Baroni A, Severini G, Straudi S, Buja S, Borsato S, Basaglia N. Hyperalgesia and Central Sensitization in Subjects With Chronic Orofacial Pain: Analysis of Pain Thresholds and EEG Biomarkers. Front Neurosci 2020; 14:552650. [PMID: 33281540 PMCID: PMC7689025 DOI: 10.3389/fnins.2020.552650] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: The presence of a temporomandibular disorder is one of the most frequent causes of orofacial pain (OFP). When pain continues beyond tissue healing time, it becomes chronic and may be caused, among other factors, by the sensitization of higher-order neurons. The aim of this study is to describe psychological characteristics of patients with chronic OFP, their peripheral pain threshold, and electroencephalography (EEG) recording, looking for possible signs of central sensitization (CS). Materials and methods: Twenty-four subjects with chronic OFP caused by temporomandibular disorder were evaluated using the Research Diagnostic Criteria for Temporomandibular Disorders Axis I and Axis II. Pain intensity, catastrophizing, and presence of CS were assessed through self-reported questionnaires. Pressure pain threshold (PPT) was recorded in facial and peripheral sites; EEG activity was recorded during open and closed eyes resting state and also during the pain threshold assessment. Pain thresholds and EEG recordings were compared with a cohort of pain-free age- and sex-matched healthy subjects. Results: Patients with chronic OFP showed a significant reduction in their pain threshold compared to healthy subjects in all sites assessed. Greater reduction in pain threshold was recorded in patients with more severe psychological symptoms. Decreased alpha and increased gamma activity was recorded in central and frontal regions of all subjects, although no significant differences were observed between groups. Discussion: A general reduction in PPT was recorded in people who suffer from chronic OFP. This result may be explained by sensitization of the central nervous system due to chronic pain conditions. Abnormal EEG activity was recorded during painful stimulation compared to the relaxed condition in both chronic OFP subjects and healthy controls.
Collapse
Affiliation(s)
- Andrea Baroni
- Translational Neurosciences and Neurotechnologies, Ferrara University, Ferrara, Italy.,Department of Neuroscience and Rehabilitation, University Hospital of Ferrara, Ferrara, Italy
| | - Giacomo Severini
- School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland.,Centre for Biomedical Engineering, University College Dublin, Dublin, Ireland
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, University Hospital of Ferrara, Ferrara, Italy
| | - Sergio Buja
- Department of Neuroscience and Rehabilitation, University Hospital of Ferrara, Ferrara, Italy
| | - Silvia Borsato
- Department of Neuroscience and Rehabilitation, University Hospital of Ferrara, Ferrara, Italy
| | - Nino Basaglia
- Translational Neurosciences and Neurotechnologies, Ferrara University, Ferrara, Italy.,Department of Neuroscience and Rehabilitation, University Hospital of Ferrara, Ferrara, Italy
| |
Collapse
|
80
|
Tøttrup L, Diaz-Valencia G, Kamavuako EN, Jensen W. Modulation of SI and ACC response to noxious and non-noxious electrical stimuli after the spared nerve injury model of neuropathic pain. Eur J Pain 2020; 25:612-623. [PMID: 33166003 DOI: 10.1002/ejp.1697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/14/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND The current knowledge on the role of SI and ACC in acute pain processing and how these contribute to the development of chronic pain is limited. Our objective was to investigate differences in and modulation of intracortical responses from SI and ACC in response to different intensities of peripheral presumed noxious and non-noxious stimuli in the acute time frame of a peripheral nerve injury in rats. METHODS We applied non-noxious and noxious electrical stimulation pulses through a cuff electrode placed around the sciatic nerve and measured the cortical responses (six electrodes in each cortical area) before and after the spared nerve injury model. RESULTS We found that the peak response correlated with the stimulation intensity and that SI and ACC differed in both amplitude and latency of cortical response. The cortical response to both noxious and non-noxious stimulation showed a trend towards faster processing of non-noxious stimuli in ACC and increased cortical processing of non-noxious stimuli in SI after SNI. CONCLUSIONS We found different responses in SI and ACC to different intensity electrical stimulations based on two features and changes in these features following peripheral nerve injury. We believe that these features may be able to assist to track cortical changes during the chronification of pain in future animal studies. SIGNIFICANCE This study showed distinct cortical processing of noxious and non-noxious peripheral stimuli in SI and ACC. The processing latency in ACC and accumulated spiking activity in SI appeared to be modulated by peripheral nerve injury, which elaborated on the function of these two areas in the processing of nociception.
Collapse
Affiliation(s)
- Lea Tøttrup
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Gabriela Diaz-Valencia
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ernest N Kamavuako
- Department of Engineering, King's College London, London, UK.,Faculté de Médecine, Université de Kindu, Maniema, D.R Congo
| | - Winnie Jensen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
81
|
Wang WE, Ho RLM, Gatto B, van der Veen SM, Underation MK, Thomas JS, Antony AB, Coombes SA. Cortical dynamics of movement-evoked pain in chronic low back pain. J Physiol 2020; 599:289-305. [PMID: 33067807 DOI: 10.1113/jp280735] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/13/2020] [Indexed: 01/22/2023] Open
Abstract
KEY POINTS Cortical activity underlying movement-evoked pain is not well understood, despite being a key symptom of chronic musculoskeletal pain. We combined high-density electroencephalography with a full-body reaching protocol in a virtual reality environment to assess cortical activity during movement-evoked pain in chronic low back pain. Movement-evoked pain in individuals with chronic low back pain was associated with longer reaction times, delayed peak velocity and greater movement variability. Movement-evoked pain was associated with attenuated disinhibition in prefrontal motor areas, as evidenced by an attenuated reduction in beta power in the premotor cortex and supplementary motor area. ABSTRACT Although experimental pain alters neural activity in the cortex, evidence of changes in neural activity in individuals with chronic low back pain (cLBP) remains scarce and results are inconsistent. One of the challenges in studying cLBP is that the clinical pain fluctuates over time and often changes during movement. The goal of the present study was to address this challenge by recording high-density electroencephalography (HD-EEG) data during a full-body reaching task to understand neural activity during movement-evoked pain. HD-EEG data were analysed using independent component analyses, source localization and measure projection analyses to compare neural oscillations between individuals with cLBP who experienced movement-evoked pain and pain-free controls. We report two novel findings. First, movement-evoked pain in individuals with cLBP was associated with longer reaction times, delayed peak velocity and greater movement variability. Second, movement-evoked pain was associated with an attenuated reduction in beta power in the premotor cortex and supplementary motor area. Our observations move the field forward by revealing attenuated disinhibition in prefrontal motor areas during movement-evoked pain in cLBP.
Collapse
Affiliation(s)
- Wei-En Wang
- Department of Applied Physiology and Kinesiology, Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, FL, USA
| | - Rachel L M Ho
- Department of Applied Physiology and Kinesiology, Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, FL, USA
| | - Bryan Gatto
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Susanne M van der Veen
- Department of Physical Therapy, College of Health Professions, Virginia Commonwealth University, VA, USA
| | - Matthew K Underation
- Department of Physical Therapy, College of Health Professions, Virginia Commonwealth University, VA, USA
| | - James S Thomas
- Department of Physical Therapy, College of Health Professions, Virginia Commonwealth University, VA, USA
| | | | - Stephen A Coombes
- Department of Applied Physiology and Kinesiology, Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, FL, USA
| |
Collapse
|
82
|
Kim JA, Bosma RL, Hemington KS, Rogachov A, Osborne NR, Cheng JC, Dunkley BT, Davis KD. Sex-differences in network level brain dynamics associated with pain sensitivity and pain interference. Hum Brain Mapp 2020; 42:598-614. [PMID: 33068500 PMCID: PMC7814771 DOI: 10.1002/hbm.25245] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/22/2020] [Accepted: 10/05/2020] [Indexed: 01/13/2023] Open
Abstract
Neural dynamics can shape human experience, including pain. Pain has been linked to dynamic functional connectivity within and across brain regions of the dynamic pain connectome (consisting of the ascending nociceptive pathway (Asc), descending antinociceptive pathway (Desc), salience network (SN), and the default mode network (DMN)), and also shows sex differences. These linkages are based on fMRI‐derived slow hemodynamics. Here, we utilized the fine temporal resolution of magnetoencephalography (MEG) to measure resting state functional coupling (FCp) related to individual pain perception and pain interference in 50 healthy individuals (26 women, 24 men). We found that pain sensitivity and pain interference were linked to within‐ and cross‐network broadband FCp across the Asc and SN. We also identified sex differences in these relationships: (a) women exhibited greater within‐network static FCp, whereas men had greater dynamic FCp within the dynamic pain connectome; (b) relationship between pain sensitivity and pain interference with FCp in women was commonly found in theta, whereas in men, these relationships were predominantly in the beta and low gamma bands. These findings indicate that dynamic interactions of brain networks underlying pain involve fast brain communication in men but slower communication in women.
Collapse
Affiliation(s)
- Junseok A Kim
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research, Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rachael L Bosma
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research, Institute, University Health Network, Toronto, Ontario, Canada
| | - Kasey S Hemington
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research, Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anton Rogachov
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research, Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Natalie R Osborne
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research, Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Joshua C Cheng
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research, Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin T Dunkley
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada.,Neurosciences & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Karen D Davis
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research, Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
83
|
Abstract
Neural oscillations play an important role in the integration and segregation of brain regions that are important for brain functions, including pain. Disturbances in oscillatory activity are associated with several disease states, including chronic pain. Studies of neural oscillations related to pain have identified several functional bands, especially alpha, beta, and gamma bands, implicated in nociceptive processing. In this review, we introduce several properties of neural oscillations that are important to understand the role of brain oscillations in nociceptive processing. We also discuss the role of neural oscillations in the maintenance of efficient communication in the brain. Finally, we discuss the role of neural oscillations in healthy and chronic pain nociceptive processing. These data and concepts illustrate the key role of regional and interregional neural oscillations in nociceptive processing underlying acute and chronic pains.
Collapse
Affiliation(s)
- Junseok A. Kim
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Karen D. Davis
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
84
|
Schulz E, Stankewitz A, Winkler AM, Irving S, Witkovský V, Tracey I. Ultra-high-field imaging reveals increased whole brain connectivity underpins cognitive strategies that attenuate pain. eLife 2020; 9:55028. [PMID: 32876049 PMCID: PMC7498261 DOI: 10.7554/elife.55028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 08/28/2020] [Indexed: 11/24/2022] Open
Abstract
We investigated how the attenuation of pain with cognitive interventions affects brain connectivity using neuroimaging and a whole brain novel analysis approach. While receiving tonic cold pain, 20 healthy participants performed three different pain attenuation strategies during simultaneous collection of functional imaging data at seven tesla. Participants were asked to rate their pain after each trial. We related the trial-by-trial variability of the attenuation performance to the trial-by-trial functional connectivity strength change of brain data. Across all conditions, we found that a higher performance of pain attenuation was predominantly associated with higher functional connectivity. Of note, we observed an association between low pain and high connectivity for regions that belong to brain regions long associated with pain processing, the insular and cingulate cortices. For one of the cognitive strategies (safe place), the performance of pain attenuation was explained by diffusion tensor imaging metrics of increased white matter integrity.
Collapse
Affiliation(s)
- Enrico Schulz
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anne Stankewitz
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anderson M Winkler
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Stephanie Irving
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Viktor Witkovský
- Department of Theoretical Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Irene Tracey
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
85
|
Ponsel S, Zhang J, Pilz M, Yanovsky Y, Brankačk J, Draguhn A. Alterations of distributed neuronal network oscillations during acute pain in freely-moving mice. IBRO Rep 2020; 9:195-206. [PMID: 32944670 PMCID: PMC7481812 DOI: 10.1016/j.ibror.2020.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/07/2020] [Indexed: 01/01/2023] Open
Abstract
Injection of capsaicine in mice causes prolonged acute pain and characteristic changes in neuronal network oscillations. Changes are most prominent in higher-order phenomena like interregional oscillation coherence. Power in standard frequency bands is largely unaltered. Behavioral states related to acute pain can be predicted from network activity by a logistic regression classifier.
The experience of pain involves the activation of multiple brain areas. Pain-specific activity patterns within and between these local networks remain, however, largely unknown. We measured neuronal network oscillations in different relevant regions of the mouse brain during acute pain, induced by subcutaneous injection of capsaicin into the left hind paw. Field potentials were recorded from primary somatosensory cortex, anterior cingulate cortex (ACC), posterior insula, ventral posterolateral thalamic nucleus, parietal cortex, central nucleus of the amygdala and olfactory bulb. Analysis included power spectra of local signals as well as interregional coherences and cross-frequency coupling (CFC). Capsaicin injection caused hypersensitivity to mechanical stimuli for at least one hour. At the same time, CFC between low (1−12 Hz) and fast frequencies (80−120 Hz) was increased in the ACC, as well as interregional coherence of low frequency oscillations (< 30 Hz) between several networks. However, these changes were not significant anymore after multiple comparison corrections. Using a variable selection method (elastic net) and a logistic regression classifier, however, the pain state was reliably predicted by combining parameters of power and coherence from various regions. Distinction between capsaicin and saline injection was also possible when data were restricted to frequencies <30 Hz, as used in clinical electroencephalography (EEG). Our findings indicate that changes of distributed brain oscillations may provide a functional signature of acute pain or pain-related alterations in activity.
Collapse
Affiliation(s)
- Simon Ponsel
- Institute for Physiology and Pathophysiology, Heidelberg University, Germany
| | - Jiaojiao Zhang
- Institute for Physiology and Pathophysiology, Heidelberg University, Germany
| | - Maximilian Pilz
- Institute of Medical Biometry and Informatics, Heidelberg University, Germany
| | - Yevgenij Yanovsky
- Institute for Physiology and Pathophysiology, Heidelberg University, Germany
| | - Jurij Brankačk
- Institute for Physiology and Pathophysiology, Heidelberg University, Germany
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, Heidelberg University, Germany
| |
Collapse
|
86
|
Milner R, Lewandowska M, Ganc M, Nikadon J, Niedziałek I, Jędrzejczak WW, Skarżyński H. Electrophysiological correlates of focused attention on low- and high-distressed tinnitus. PLoS One 2020; 15:e0236521. [PMID: 32756593 PMCID: PMC7406215 DOI: 10.1371/journal.pone.0236521] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/07/2020] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES The study aimed at determining the EEG correlates of concentration on either low or high-distressed tinnitus. METHODS Sixty-seven patients (36 women, mean age = 50.34 ± 12.94 years) with chronic tinnitus were assigned to either a high (HD) or low (LD) tinnitus-related distress group based on THI results. All participants took part in the EEG study comprising two 3-4 min blocks of focusing on either tinnitus (Tinnitus Focus Condition, TFC) or the sensations from one's own body (Body Focus Condition, BFC). The absolute power and current density of 8 frequency bands in 7 clusters were compared between conditions and groups. RESULTS The most pronounced differences were found in the HD patients in the TFC, relative to the BFC, i.e. reduced power of frontally distributed low alpha (8-10 Hz) and posterior high alpha (10-12 Hz) as well as lower current density of 8-10 Hz rhythm over the right frontal/anterior cingulate cortex and higher middle beta (15-18 Hz) density in the precuneus. The HD, relative to LD patients, in both conditions, exhibited increased low beta (12-15 Hz) power over the left middle area and greater higher beta (15-25 Hz) power in the left posterior region. CONCLUSIONS The present study contrasted bioelectrical activity, acquired when concentrating on tinnitus with EEG data collected whilst patients focused on their body. Decreased alpha power and current density in the frontal/cingulate cortex when listening to bothersome tinnitus might reflect greater cortical arousal whereas increased beta power and density in the precuneus/posterior cingulate activity in this condition could be indicative for elevated tension or augmented cognitive/emotional processing of tinnitus sound. Enhanced beta rhythm in patients with high versus low tinnitus distress, observed independently of the study condition, may be due to greater self-focused attention or more active processing of sensations derived from the own body.
Collapse
Affiliation(s)
- Rafał Milner
- Department of Experimental Audiology, World Hearing Center, Institute of Physiology and Pathology of Hearing, Kajetany/Warsaw, Poland
| | - Monika Lewandowska
- Institute of Psychology, Faculty of Philosophy and Social Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Małgorzata Ganc
- Department of Experimental Audiology, World Hearing Center, Institute of Physiology and Pathology of Hearing, Kajetany/Warsaw, Poland
| | - Jan Nikadon
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Iwona Niedziałek
- Audiology and Phoniatrics Clinic, World Hearing Center, Institute of Physiology and Pathology of Hearing, Kajetany/Warsaw, Poland
| | - Wiesław Wiktor Jędrzejczak
- Department of Experimental Audiology, World Hearing Center, Institute of Physiology and Pathology of Hearing, Kajetany/Warsaw, Poland
| | - Henryk Skarżyński
- Oto-Rhino-Laryngology Surgery Clinic, World Hearing Center, Institute of Physiology and Pathology of Hearing, Kajetany/Warsaw, Poland
| |
Collapse
|
87
|
The Cerebral Localization of Pain: Anatomical and Functional Considerations for Targeted Electrical Therapies. J Clin Med 2020; 9:jcm9061945. [PMID: 32580436 PMCID: PMC7355617 DOI: 10.3390/jcm9061945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022] Open
Abstract
Millions of people in the United States are affected by chronic pain, and the financial cost of pain treatment is weighing on the healthcare system. In some cases, current pharmacological treatments may do more harm than good, as with the United States opioid crisis. Direct electrical stimulation of the brain is one potential non-pharmacological treatment with a long history of investigation. Yet brain stimulation has been far less successful than peripheral or spinal cord stimulation, perhaps because of our limited understanding of the neural circuits involved in pain perception. In this paper, we review the history of using electrical stimulation of the brain to treat pain, as well as contemporary studies identifying the structures involved in pain networks, such as the thalamus, insula, and anterior cingulate. We propose that the thermal grill illusion, an experimental pain model, can facilitate further investigation of these structures. Pairing this model with intracranial recording will provide insight toward disentangling the neural correlates from the described anatomic areas. Finally, the possibility of altering pain perception with brain stimulation in these regions could be highly informative for the development of novel brain stimulation therapies for chronic pain.
Collapse
|
88
|
Zhou S, Lithfous S, Després O, Pebayle T, Bi X, Dufour A. Involvement of Frontal Functions in Pain Tolerance in Aging: Evidence From Neuropsychological Assessments and Gamma-Band Oscillations. Front Aging Neurosci 2020; 12:131. [PMID: 32536860 PMCID: PMC7266988 DOI: 10.3389/fnagi.2020.00131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 04/20/2020] [Indexed: 11/13/2022] Open
Abstract
Reduced pain tolerance may be one of the possible explanations for high prevalence of chronic pain among older people. We hypothesized that age-related alterations in pain tolerance are associated with functioning deterioration of the frontal cortex during normal aging. Twenty-one young and 41 elderly healthy participants underwent a tonic heat pain test, during which cerebral activity was recorded using electroencephalography (EEG). Elderly participants were divided into two subgroups according to their scores on executive tests, high performers (HPs; n = 21) and low performers (LPs; n = 20). Pain measures [exposure times (ETs) and perceived pain ratings] and cerebral activity were compared among the three groups. ETs were significantly lower in elderly LPs than in young participants and elderly HPs. Electroencephalographic analyses showed that gamma-band oscillations (GBOs) were significantly increased in pain state for all subjects, especially in the frontal sites. Source analysis showed that GBO increase in elderly LPs was contributed not only by frontal but also by central, parietal, and occipital regions. These findings suggest that better preservation of frontal functions may result in better pain tolerance by elderly subjects.
Collapse
Affiliation(s)
- Shu Zhou
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364 - Université de Strasbourg - CNRS, Strasbourg, France.,Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Ségolène Lithfous
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364 - Université de Strasbourg - CNRS, Strasbourg, France
| | - Olivier Després
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364 - Université de Strasbourg - CNRS, Strasbourg, France
| | - Thierry Pebayle
- Centre d'Investigations Neurocognitives et Neurophysiologiques, UMS 3489 - Université de Strasbourg - CNRS, Strasbourg, France
| | - Xiaoying Bi
- Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - André Dufour
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364 - Université de Strasbourg - CNRS, Strasbourg, France.,Centre d'Investigations Neurocognitives et Neurophysiologiques, UMS 3489 - Université de Strasbourg - CNRS, Strasbourg, France
| |
Collapse
|
89
|
Kummer KK, Mitrić M, Kalpachidou T, Kress M. The Medial Prefrontal Cortex as a Central Hub for Mental Comorbidities Associated with Chronic Pain. Int J Mol Sci 2020; 21:E3440. [PMID: 32414089 PMCID: PMC7279227 DOI: 10.3390/ijms21103440] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic pain patients frequently develop and suffer from mental comorbidities such as depressive mood, impaired cognition, and other significant constraints of daily life, which can only insufficiently be overcome by medication. The emotional and cognitive components of pain are processed by the medial prefrontal cortex, which comprises the anterior cingulate cortex, the prelimbic, and the infralimbic cortex. All three subregions are significantly affected by chronic pain: magnetic resonance imaging has revealed gray matter loss in all these areas in chronic pain conditions. While the anterior cingulate cortex appears hyperactive, prelimbic, and infralimbic regions show reduced activity. The medial prefrontal cortex receives ascending, nociceptive input, but also exerts important top-down control of pain sensation: its projections are the main cortical input of the periaqueductal gray, which is part of the descending inhibitory pain control system at the spinal level. A multitude of neurotransmitter systems contributes to the fine-tuning of the local circuitry, of which cholinergic and GABAergic signaling are particularly emerging as relevant components of affective pain processing within the prefrontal cortex. Accordingly, factors such as distraction, positive mood, and anticipation of pain relief such as placebo can ameliorate pain by affecting mPFC function, making this cortical area a promising target region for medical as well as psychosocial interventions for pain therapy.
Collapse
Affiliation(s)
| | | | | | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.K.K.); (M.M.); (T.K.)
| |
Collapse
|
90
|
Song Y, Kemprecos H, Wang J, Chen Z. A Predictive Coding Model for Evoked and Spontaneous Pain Perception. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:2964-2967. [PMID: 31946512 DOI: 10.1109/embc.2019.8857298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pain is a complex multidimensional experience, and pain perception is still incompletely understood. Here we combine animal behavior, electrophysiology, and computer modeling to dissect mechanisms of evoked and spontaneous pain. We record the local field potentials (LFPs) from the primary somatosensory cortex (S1) and anterior cingulate cortex (ACC) of freely behaving rats during pain episodes, and develop a predictive coding model to investigate the temporal coordination of oscillatory activity between the S1 and ACC. Our preliminary results from computational simulations support the experimental findings and provide new predictions.
Collapse
|
91
|
Mulders D, de Bodt C, Lejeune N, Courtin A, Liberati G, Verleysen M, Mouraux A. Dynamics of the perception and EEG signals triggered by tonic warm and cool stimulation. PLoS One 2020; 15:e0231698. [PMID: 32324752 PMCID: PMC7179871 DOI: 10.1371/journal.pone.0231698] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/31/2020] [Indexed: 12/27/2022] Open
Abstract
Thermosensation is crucial for humans to probe the environment and detect threats arising from noxious heat or cold. Over the last years, EEG frequency-tagging using long-lasting periodic radiant heat stimulation has been proposed as a means to study the cortical processes underlying tonic heat perception. This approach is based on the notion that periodic modulation of a sustained stimulus can elicit synchronized periodic activity in the neuronal populations responding to the stimulus, known as a steady-state response (SSR). In this paper, we extend this approach using a contact thermode to generate both heat- and cold-evoked SSRs. Furthermore, we characterize the temporal dynamics of the elicited responses, relate these dynamics to perception, and assess the effects of displacing the stimulated skin surface to gain insight on the heat- and cold-sensitive afferents conveying these responses. Two experiments were conducted in healthy volunteers. In both experiments, noxious heat and innocuous cool stimuli were applied during 75 seconds to the forearm using a Peltier-based contact thermode, with intensities varying sinusoidally at 0.2 Hz. Displacement of the thermal stimulation on the skin surface was achieved by independently controlling the Peltier elements of the thermal probe. Continuous intensity ratings to sustained heat and cold stimulation were obtained in the first experiment with 14 subjects, and the EEG was recorded in the second experiment on 15 subjects. Both contact heat and cool stimulation elicited periodic EEG responses and percepts. Compared to heat stimulation, the responses to cool stimulation had a lower magnitude and shorter latency. All responses tended to habituate along time, and this response attenuation was most pronounced for cool compared to warm stimulation, and for stimulation delivered using a fixed surface compared to a variable surface.
Collapse
Affiliation(s)
- Dounia Mulders
- ICTEAM institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- IONS institute, Université Catholique de Louvain, Brussels, Belgium
- * E-mail:
| | - Cyril de Bodt
- ICTEAM institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Nicolas Lejeune
- IONS institute, Université Catholique de Louvain, Brussels, Belgium
| | - Arthur Courtin
- IONS institute, Université Catholique de Louvain, Brussels, Belgium
| | - Giulia Liberati
- IONS institute, Université Catholique de Louvain, Brussels, Belgium
| | - Michel Verleysen
- ICTEAM institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - André Mouraux
- IONS institute, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
92
|
Yue L, Iannetti GD, Hu L. The Neural Origin of Nociceptive-Induced Gamma-Band Oscillations. J Neurosci 2020; 40:3478-3490. [PMID: 32241836 PMCID: PMC7178916 DOI: 10.1523/jneurosci.0255-20.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/02/2020] [Accepted: 03/16/2020] [Indexed: 01/28/2023] Open
Abstract
Gamma-band oscillations (GBOs) elicited by transient nociceptive stimuli are one of the most promising biomarkers of pain across species. Still, whether these GBOs reflect stimulus encoding in the primary somatosensory cortex (S1) or nocifensive behavior in the primary motor cortex (M1) is debated. Here we recorded neural activity simultaneously from the brain surface as well as at different depths of the bilateral S1/M1 in freely-moving male rats receiving nociceptive stimulation. GBOs measured from superficial layers of S1 contralateral to the stimulated paw not only had the largest magnitude, but also showed the strongest temporal and phase coupling with epidural GBOs. Also, spiking of superficial S1 interneurons had the strongest phase coherence with epidural GBOs. These results provide the first direct demonstration that scalp GBOs, one of the most promising pain biomarkers, reflect neural activity strongly coupled with the fast spiking of interneurons in the superficial layers of the S1 contralateral to the stimulated side.SIGNIFICANCE STATEMENT Nociceptive-induced gamma-band oscillations (GBOs) measured at population level are one of the most promising biomarkers of pain perception. Our results provide the direct demonstration that these GBOs reflect neural activity coupled with the spike firing of interneurons in the superficial layers of the primary somatosensory cortex (S1) contralateral to the side of nociceptive stimulation. These results address the ongoing debate about whether nociceptive-induced GBOs recorded with scalp EEG or epidurally reflect stimulus encoding in the S1 or nocifensive behavior in the primary motor cortex (M1), and will therefore influence how experiments in pain neuroscience will be designed and interpreted.
Collapse
Affiliation(s)
- Lupeng Yue
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - G D Iannetti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, 00161, Italy
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
93
|
Guo Y, Bufacchi RJ, Novembre G, Kilintari M, Moayedi M, Hu L, Iannetti GD. Ultralow-frequency neural entrainment to pain. PLoS Biol 2020; 18:e3000491. [PMID: 32282798 PMCID: PMC7179945 DOI: 10.1371/journal.pbio.3000491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 04/23/2020] [Accepted: 03/13/2020] [Indexed: 01/08/2023] Open
Abstract
Nervous systems exploit regularities in the sensory environment to predict sensory input, adjust behavior, and thereby maximize fitness. Entrainment of neural oscillations allows retaining temporal regularities of sensory information, a prerequisite for prediction. Entrainment has been extensively described at the frequencies of periodic inputs most commonly present in visual and auditory landscapes (e.g., >0.5 Hz). An open question is whether neural entrainment also occurs for regularities at much longer timescales. Here, we exploited the fact that the temporal dynamics of thermal stimuli in natural environment can unfold very slowly. We show that ultralow-frequency neural oscillations preserved a long-lasting trace of sensory information through neural entrainment to periodic thermo-nociceptive input as low as 0.1 Hz. Importantly, revealing the functional significance of this phenomenon, both power and phase of the entrainment predicted individual pain sensitivity. In contrast, periodic auditory input at the same ultralow frequency did not entrain ultralow-frequency oscillations. These results demonstrate that a functionally significant neural entrainment can occur at temporal scales far longer than those commonly explored. The non-supramodal nature of our results suggests that ultralow-frequency entrainment might be tuned to the temporal scale of the statistical regularities characteristic of different sensory modalities.
Collapse
Affiliation(s)
- Yifei Guo
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Rory John Bufacchi
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Giacomo Novembre
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Marina Kilintari
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Massieh Moayedi
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Gian Domenico Iannetti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
94
|
Heid C, Mouraux A, Treede RD, Schuh-Hofer S, Rupp A, Baumgärtner U. Early gamma-oscillations as correlate of localized nociceptive processing in primary sensorimotor cortex. J Neurophysiol 2020; 123:1711-1726. [PMID: 32208893 DOI: 10.1152/jn.00444.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recent studies put forward the idea that stimulus-evoked gamma-band oscillations (GBOs; 30-100 Hz) play a specific role in nociception. So far, evidence for the specificity of GBOs for nociception, their possible involvement in nociceptive sensory discriminatory abilities, and knowledge regarding their cortical sources is just starting to grow. To address these questions, we used electroencephalography (EEG) to record brain activity evoked by phasic nociceptive laser stimuli and tactile stimuli applied at different intensities to the right hand and foot of 12 healthy volunteers. The EEG was analyzed in the time domain to extract phase-locked event-related brain potentials (ERPs) and in three regions of interest in the time-frequency domain (delta/theta, 40-Hz gamma, 70-Hz gamma) to extract stimulus-evoked changes in the magnitude of non-phase-locked brain oscillations. Both nociceptive and tactile stimuli, matched with respect to subjective intensity, elicited phase locked ERPs of increasing amplitude with increasing stimulus intensity. In contrast, only nociceptive stimuli elicited a significant enhancement of GBOs (65-85 Hz, 150-230 ms after stimulus onset), whose magnitude encoded stimulus intensity, whereas tactile stimuli led to a GBO decrease. Following nociceptive hand stimulation, the topographical distribution of GBOs was maximal at contralateral electrode C3, whereas maximum activity following foot stimulation was recorded at the midline electrode Cz, compatible with generation of GBOs in the representations of the hand and foot of the primary sensorimotor cortex, respectively. The differential behavior of high-frequency GBOs and low-frequency 40-Hz GBOs is indicating different functional roles and regions in sensory processing.NEW & NOTEWORTHY Gamma-band oscillations show hand-foot somatotopy compatible with generation in primary sensorimotor cortex and are present following nociceptive but not tactile stimulation of the hand and foot in humans.
Collapse
Affiliation(s)
- C Heid
- Department of Neurophysiology, Mannheim Center for Translational Neurosciences (MCTN), University of Heidelberg, Mannheim, Germany
| | - A Mouraux
- Institute of Neuroscience (IONS), Université catholique de Louvain, Brussels B-1200, Belgium
| | - R-D Treede
- Department of Neurophysiology, Mannheim Center for Translational Neurosciences (MCTN), University of Heidelberg, Mannheim, Germany
| | - S Schuh-Hofer
- Department of Neurophysiology, Mannheim Center for Translational Neurosciences (MCTN), University of Heidelberg, Mannheim, Germany
| | - A Rupp
- Department of Neurology, Section of Biomagnetism, University of Heidelberg, Heidelberg, Germany
| | - U Baumgärtner
- Department of Neurophysiology, Mannheim Center for Translational Neurosciences (MCTN), University of Heidelberg, Mannheim, Germany.,Department of Human Medicine, Faculty of Life Sciences, Medical School Hamburg (MSH), Hamburg, Germany
| |
Collapse
|
95
|
Abnormal alpha band power in the dynamic pain connectome is a marker of chronic pain with a neuropathic component. NEUROIMAGE-CLINICAL 2020; 26:102241. [PMID: 32203904 PMCID: PMC7090370 DOI: 10.1016/j.nicl.2020.102241] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/25/2020] [Accepted: 03/10/2020] [Indexed: 01/08/2023]
Abstract
High theta and low gamma activity in the dynamic pain connectome is linked to chronic pain. High alpha-band activity is present when neuropathic pain is likely. Spectral frequency band strength distinguish neuropathic from non-neuropathic pain.
We previously identified alpha frequency slowing and beta attenuation in the dynamic pain connectome related to pain severity and interference in patients with multiple sclerosis-related neuropathic pain (NP). Here, we determined whether these abnormalities, are markers of aberrant temporal dynamics in non-neuropathic inflammatory pain (non-NP) or when NP is also suspected. We measured resting-state magnetoencephalography (MEG) spectral density in 45 people (17 females, 28 males) with chronic back pain due to ankylosing spondylitis (AS) and 38 age/sex matched healthy controls. We used painDETECT scores to divide the chronic pain group into those with only non-NP (NNP) and those who likely also had a component of NP in addition to their inflammatory pain. We also assessed pain severity, pain interference, and disease activity with the Brief Pain Inventory and Bath AS Disease Activity Index (BASDAI). We examined spectral power in the dynamic pain connectome, including nodes of the ascending nociceptive pathway (ANP), default mode (DMN), and salience networks (SN). Compared to the healthy controls, the AS patients exhibited increased theta power in the DMN and decreased low-gamma power in the DMN and ANP, but did not exhibit beta-band attenuation or peak-alpha slowing. The NNP patients were not different from HCs. Compared to both healthy controls and NNP, NP patients had increased alpha power in the ANP. Increased alpha power within the ANP was associated with reduced BASDAI in the NNP group, and increased pain in the mixed-NP group within the DMN, SN, and ANP. Thus, high theta and low gamma activity may be markers of chronic pain but high alpha-band activity may relate to particular features of neuropathic chronic pain.
Collapse
|
96
|
Cross-network coupling of neural oscillations in the dynamic pain connectome reflects chronic neuropathic pain in multiple sclerosis. NEUROIMAGE-CLINICAL 2020; 26:102230. [PMID: 32143136 PMCID: PMC7056723 DOI: 10.1016/j.nicl.2020.102230] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/20/2020] [Accepted: 02/24/2020] [Indexed: 12/22/2022]
Abstract
Sensory perceptions are coded by complex neural dynamics of regional communication in the brain. Thus, sensory abnormalities such as chronic pain may occur when neural dynamics go awry. Previous studies of cross-network dynamic functional connectivity in chronic pain identified abnormalities but were based on functional MRI which only captures slow temporal features. Here we conducted a magnetoencephalography (MEG) study to investigate fine temporal dynamics of aberrant cross-regional and cross-network communication of the dynamic pain connectome in patients with chronic pain. We also introduced a novel measure, dynamic functional coupling, to quantify the variability of brain communication. The study was performed in 33 people who had chronic pain associated with multiple sclerosis and 30 healthy controls. We found that patients with chronic pain exhibited abnormalities in cross-network functional coupling across multiple frequency bands (theta, alpha, beta, gamma), between the salience network and 3 other networks: the ascending nociceptive pathway, descending anti-nociceptive pathway, and the default mode network. However, these cross-network abnormalities involved different frequency bands in patients with neuropathic versus non-neuropathic chronic pain. Furthermore, cross-network abnormalities were linked to pain severity and pain interference. Our findings implicate broadband cross-network abnormalities as hallmark features of chronic pain in multiple sclerosis.
Collapse
|
97
|
Parker T, Huang Y, Raghu AL, FitzGerald JJ, Green AL, Aziz TZ. Dorsal Root Ganglion Stimulation Modulates Cortical Gamma Activity in the Cognitive Dimension of Chronic Pain. Brain Sci 2020; 10:brainsci10020095. [PMID: 32053879 PMCID: PMC7071617 DOI: 10.3390/brainsci10020095] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 01/09/2023] Open
Abstract
A cognitive task, the n-back task, was used to interrogate the cognitive dimension of pain in patients with implanted dorsal root ganglion stimulators (DRGS). Magnetoencephalography (MEG) signals from thirteen patients with implanted DRGS were recorded at rest and while performing the n-back task at three increasing working memory loads with DRGS-OFF and the task repeated with DRGS-ON. MEG recordings were pre-processed, then power spectral analysis and source localization were conducted. DRGS resulted in a significant reduction in reported pain scores (mean 23%, p = 0.001) and gamma oscillatory activity (p = 0.036) during task performance. DRGS-induced pain relief also resulted in a significantly reduced reaction time during high working memory load (p = 0.011). A significant increase in average gamma power was observed during task performance compared to the resting state. However, patients who reported exacerbations of pain demonstrated a significantly elevated gamma power (F(3,80) = 65.011612, p < 0.001, adjusted p-value = 0.01), compared to those who reported pain relief during the task. Our findings demonstrate that gamma oscillatory activity is differentially modulated by cognitive load in the presence of pain, and this activity is predominantly localized to the prefrontal and anterior cingulate cortices in a chronic pain cohort.
Collapse
|
98
|
Moon D, Plečkaitytė G, Choi T, Seol M, Kim B, Lee D, Han J, Meyyappan M. On-Demand Printing of Wearable Thermotherapy Pad. Adv Healthc Mater 2020; 9:e1901575. [PMID: 31945277 DOI: 10.1002/adhm.201901575] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/16/2019] [Indexed: 11/07/2022]
Abstract
Thermotherapy is an effective method for pain relief, recovery from injury, and general healthcare. The ordinary heat pad used for thermotherapy at home is not usually tailored to the individual but supplied in a few different pre-fixed sizes and shapes for mass marketing. A customized wearable heat pad often requires expert support. Herein, an instant, custom-fit, and on-demand heat pad for thermotherapy is demonstrated. The heater is directly printed using silver nanoparticle ink on an off-the-shelf medical grade tape by inkjet technology. By coating the tape with silica nanoparticles as ink-absorbing layer and chloride ions as chemical sintering agent, stable heater patterns are printed without the need for subsequent high temperature sintering process. A 3D scanner is used to acquire body information, and a customized heater is produced using the information. The printed heat pad is attached to the shoulder and the effect of thermotherapy is verified objectively through electroencephalography and subjectively through survey. This printed heat pad produced by simple and low-cost fabrication provides wearable medical devices for personal thermotherapy.
Collapse
Affiliation(s)
- Dong‐Il Moon
- Center for NanotechnologyNASA Ames Research Center Mountain View CA 94035 USA
- Universities Space Research AssociationNASA Ames Research Center Mountain View CA 94035 USA
| | - Gintarė Plečkaitytė
- Center for NanotechnologyNASA Ames Research Center Mountain View CA 94035 USA
- Institute of Chemistry and GeosciencesVilnius University Vilnius LT‐03225 Lithuania
| | - Taejun Choi
- Looxid Labs 636 Montage Circle East Palo Alto CA 94303 USA
| | - Myeong‐Lok Seol
- Center for NanotechnologyNASA Ames Research Center Mountain View CA 94035 USA
- Universities Space Research AssociationNASA Ames Research Center Mountain View CA 94035 USA
| | - Beomseok Kim
- Center for NanotechnologyNASA Ames Research Center Mountain View CA 94035 USA
- Universities Space Research AssociationNASA Ames Research Center Mountain View CA 94035 USA
| | - Dongil Lee
- Center for NanotechnologyNASA Ames Research Center Mountain View CA 94035 USA
- Universities Space Research AssociationNASA Ames Research Center Mountain View CA 94035 USA
| | - Jin‐Woo Han
- Center for NanotechnologyNASA Ames Research Center Mountain View CA 94035 USA
- Universities Space Research AssociationNASA Ames Research Center Mountain View CA 94035 USA
| | - M. Meyyappan
- Center for NanotechnologyNASA Ames Research Center Mountain View CA 94035 USA
| |
Collapse
|
99
|
Bismuth J, Vialatte F, Lefaucheur JP. Relieving peripheral neuropathic pain by increasing the power-ratio of low-β over high-β activities in the central cortical region with EEG-based neurofeedback: Study protocol for a controlled pilot trial (SMRPain study). Neurophysiol Clin 2020; 50:5-20. [DOI: 10.1016/j.neucli.2019.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/27/2022] Open
|
100
|
Changes of EEG band oscillations to tonic cold pain and the behavioral inhibition and fight-flight-freeze systems. PERSONALITY NEUROSCIENCE 2019; 2:e12. [PMID: 32435747 PMCID: PMC7219698 DOI: 10.1017/pen.2019.9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 08/21/2019] [Accepted: 09/10/2019] [Indexed: 12/20/2022]
Abstract
Using electroencephalography (EEG) power measures within conventional delta, theta, alpha, beta, and gamma bands, the aims of the current study were to highlight cortical correlates of subjective perception of cold pain (CP) and the associations of these measures with behavioral inhibition system (BIS), fight-flight-freeze system (FFFS), and behavioral approach system personality traits. EEG was recorded in 55 healthy right-handed women under (i) a white noise interruption detection condition (Baseline); (ii) enduring CP induced by the cold cup test. CP and Baseline EEG band power scores within conventional frequency bands served for covariance analyses. We found that: (1) higher Pain scorers had higher EEG beta power changes at left frontal, midline central, posterior temporal leads; (2) higher BIS was associated with greater EEG delta activity changes at parietal scalp regions; (3) higher FFFS was associated with higher EEG delta activity changes at temporal and left-parietal regions, and with lower EEG gamma activity changes at right parietal regions. High FFFS, compared to Low FFFS scorers, also showed a lower gamma power across the midline, posterior temporal, and parietal regions. Results suggest a functional role of higher EEG beta activity in the subjective perception of tonic pain. EEG delta activity underpins conflict resolution system responsible for passive avoidance control of pain, while higher EEG delta and lower EEG gamma activity changes, taken together, underpin active avoidance system responsible for pain escape behavior.
Collapse
|