51
|
Goodman AM, Langner BM, Jackson N, Alex C, McMahon LL. Heightened Hippocampal β-Adrenergic Receptor Function Drives Synaptic Potentiation and Supports Learning and Memory in the TgF344-AD Rat Model during Prodromal Alzheimer's Disease. J Neurosci 2021; 41:5747-5761. [PMID: 33952633 PMCID: PMC8244969 DOI: 10.1523/jneurosci.0119-21.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/23/2021] [Accepted: 04/28/2021] [Indexed: 01/27/2023] Open
Abstract
The central noradrenergic (NA) system is critical for the maintenance of attention, behavioral flexibility, spatial navigation, and learning and memory, those cognitive functions lost first in early Alzheimer's disease (AD). In fact, the locus coeruleus (LC), the sole source of norepinephrine (NE) for >90% of the brain, is the first site of pathologic tau accumulation in human AD with axon loss throughout forebrain, including hippocampus. The dentate gyrus is heavily innervated by LC-NA axons, where released NE acts on β-adrenergic receptors (ARs) at excitatory synapses from entorhinal cortex to facilitate long-term synaptic plasticity and memory formation. These synapses experience dysfunction in early AD before cognitive impairment. In the TgF344-AD rat model of AD, degeneration of LC-NA axons in hippocampus recapitulates human AD, providing a preclinical model to investigate synaptic and behavioral consequences. Using immunohistochemistry, Western blot analysis, and brain slice electrophysiology in 6- to 9-month-old wild-type and TgF344-AD rats, we discovered that the loss of LC-NA axons coincides with the heightened β-AR function at medial perforant path-dentate granule cell synapses that is responsible for the increase in LTP magnitude at these synapses. Furthermore, novel object recognition is facilitated in TgF344-AD rats that requires β-ARs, and pharmacological blockade of β-ARs unmasks a deficit in extinction learning only in TgF344-AD rats, indicating a greater reliance on β-ARs in both behaviors. Thus, a compensatory increase in β-AR function during prodromal AD in TgF344-AD rats heightens synaptic plasticity and preserves some forms of learning and memory.SIGNIFICANCE STATEMENT The locus coeruleus (LC), a brain region located in the brainstem which is responsible for attention and arousal, is damaged first by Alzheimer's disease (AD) pathology. The LC sends axons to hippocampus where released norepinephrine (NE) modulates synaptic function required for learning and memory. How degeneration of LC axons and loss of NE in hippocampus in early AD impacts synaptic function and learning and memory is not well understood despite the importance of LC in cognitive function. We used a transgenic AD rat model with LC axon degeneration mimicking human AD and found that heightened function of β-adrenergic receptors in the dentate gyrus increased synaptic plasticity and preserved learning and memory in early stages of the disease.
Collapse
Affiliation(s)
- Anthoni M Goodman
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
| | - Bethany M Langner
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
| | - Nateka Jackson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
| | - Capri Alex
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
| | - Lori L McMahon
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
| |
Collapse
|
52
|
Leal Santos S, Stackmann M, Muñoz Zamora A, Mastrodonato A, De Landri AV, Vaughan N, Chen BK, Lanio M, Denny CA. Propranolol Decreases Fear Expression by Modulating Fear Memory Traces. Biol Psychiatry 2021; 89:1150-1161. [PMID: 33766406 PMCID: PMC8201901 DOI: 10.1016/j.biopsych.2021.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND Posttraumatic stress disorder can develop after a traumatic event and results in heightened, inappropriate fear and anxiety. Although approximately 8% of the U.S. population is affected by posttraumatic stress disorder, only two drugs have been approved by the Food and Drug Administration to treat it, both with limited efficacy. Propranolol, a nonselective β-adrenergic antagonist, has shown efficacy in decreasing exaggerated fear, and there has been renewed interest in using it to treat fear disorders. METHODS Here, we sought to determine the mechanisms by which propranolol attenuates fear by utilizing an activity-dependent tagging system, ArcCreERT2 x eYFP mice. 129S6/SvEv mice were administered a 4-shock contextual fear conditioning paradigm followed by immediate or delayed context reexposures. Saline or propranolol was administered either before or after the first context reexposure. To quantify hippocampal, prefrontal, and amygdalar memory traces, ArcCreERT2 x eYFP mice were administered a delayed context reexposure with either a saline or propranolol injection before context reexposure. RESULTS Propranolol decreased fear expression only when administered before a delayed context reexposure. Fear memory traces were affected in the dorsal dentate gyrus and basolateral amygdala after propranolol administration in the ArcCreERT2 x eYFP mice. Propranolol acutely altered functional connectivity between the hippocampal, cortical, and amygdalar regions. CONCLUSIONS These data indicate that propranolol may decrease fear expression by altering network-correlated activity and by weakening the reactivation of the initial traumatic memory trace. This work contributes to the understanding of noradrenergic drugs as therapeutic aids for patients with posttraumatic stress disorder.
Collapse
Affiliation(s)
- Sofia Leal Santos
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York; Division of Systems Neuroscience, Research Foundation for Mental Hygiene Inc/New York State Psychiatric Institute, New York, New York; Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Michelle Stackmann
- Neurobiology and Behavior Graduate Program, Columbia University, New York, New York
| | - Andrea Muñoz Zamora
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene Inc/New York State Psychiatric Institute, New York, New York
| | - Alessia Mastrodonato
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York; Division of Systems Neuroscience, Research Foundation for Mental Hygiene Inc/New York State Psychiatric Institute, New York, New York
| | - Allegra V De Landri
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene Inc/New York State Psychiatric Institute, New York, New York; Columbia College, Columbia University, New York, New York
| | - Nick Vaughan
- Columbia College, Columbia University, New York, New York
| | - Briana K Chen
- Neurobiology and Behavior Graduate Program, Columbia University, New York, New York
| | - Marcos Lanio
- Medical Scientist Training Program, Columbia University Irving Medical Center, New York, New York; Neurobiology and Behavior Graduate Program, Columbia University, New York, New York
| | - Christine A Denny
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York; Division of Systems Neuroscience, Research Foundation for Mental Hygiene Inc/New York State Psychiatric Institute, New York, New York.
| |
Collapse
|
53
|
Buurstede JC, van Weert LTCM, Colucci P, Gentenaar M, Viho EMG, Koorneef LL, Schoonderwoerd RA, Lanooij SD, Moustakas I, Balog J, Mei H, Kielbasa SM, Campolongo P, Roozendaal B, Meijer OC. Hippocampal glucocorticoid target genes associated with enhancement of memory consolidation. Eur J Neurosci 2021; 55:2666-2683. [PMID: 33840130 PMCID: PMC9292385 DOI: 10.1111/ejn.15226] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/04/2021] [Indexed: 12/16/2022]
Abstract
Glucocorticoids enhance memory consolidation of emotionally arousing events via largely unknown molecular mechanisms. This glucocorticoid effect on the consolidation process also requires central noradrenergic neurotransmission. The intracellular pathways of these two stress mediators converge on two transcription factors: the glucocorticoid receptor (GR) and phosphorylated cAMP response element‐binding protein (pCREB). We therefore investigated, in male rats, whether glucocorticoid effects on memory are associated with genomic interactions between the GR and pCREB in the hippocampus. In a two‐by‐two design, object exploration training or no training was combined with post‐training administration of a memory‐enhancing dose of corticosterone or vehicle. Genomic effects were studied by chromatin immunoprecipitation followed by sequencing (ChIP‐seq) of GR and pCREB 45 min after training and transcriptome analysis after 3 hr. Corticosterone administration induced differential GR DNA‐binding and regulation of target genes within the hippocampus, largely independent of training. Training alone did not result in long‐term memory nor did it affect GR or pCREB DNA‐binding and gene expression. No strong evidence was found for an interaction between GR and pCREB. Combination of the GR DNA‐binding and transcriptome data identified a set of novel, likely direct, GR target genes that are candidate mediators of corticosterone effects on memory consolidation. Cell‐specific expression of the identified target genes using single‐cell expression data suggests that the effects of corticosterone reflect in part non‐neuronal cells. Together, our data identified new GR targets associated with memory consolidation that reflect effects in both neuronal and non‐neuronal cells.
Collapse
Affiliation(s)
- Jacobus C Buurstede
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa T C M van Weert
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Paola Colucci
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Max Gentenaar
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Eva M G Viho
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa L Koorneef
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Robin A Schoonderwoerd
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Suzanne D Lanooij
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ioannis Moustakas
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Judit Balog
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Szymon M Kielbasa
- Department of Medical Statistics and Bioinformatics, Bioinformatics Center of Expertise, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Benno Roozendaal
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Onno C Meijer
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
54
|
Walther T, Diekmann N, Vijayabaskaran S, Donoso JR, Manahan-Vaughan D, Wiskott L, Cheng S. Context-dependent extinction learning emerging from raw sensory inputs: a reinforcement learning approach. Sci Rep 2021; 11:2713. [PMID: 33526840 PMCID: PMC7851139 DOI: 10.1038/s41598-021-81157-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/08/2020] [Indexed: 11/09/2022] Open
Abstract
The context-dependence of extinction learning has been well studied and requires the hippocampus. However, the underlying neural mechanisms are still poorly understood. Using memory-driven reinforcement learning and deep neural networks, we developed a model that learns to navigate autonomously in biologically realistic virtual reality environments based on raw camera inputs alone. Neither is context represented explicitly in our model, nor is context change signaled. We find that memory-intact agents learn distinct context representations, and develop ABA renewal, whereas memory-impaired agents do not. These findings reproduce the behavior of control and hippocampal animals, respectively. We therefore propose that the role of the hippocampus in the context-dependence of extinction learning might stem from its function in episodic-like memory and not in context-representation per se. We conclude that context-dependence can emerge from raw visual inputs.
Collapse
Affiliation(s)
- Thomas Walther
- Institute for Neural Computation, Ruhr University Bochum, Bochum, Germany
| | - Nicolas Diekmann
- Institute for Neural Computation, Ruhr University Bochum, Bochum, Germany
| | | | - José R Donoso
- Institute for Neural Computation, Ruhr University Bochum, Bochum, Germany
| | | | - Laurenz Wiskott
- Institute for Neural Computation, Ruhr University Bochum, Bochum, Germany
| | - Sen Cheng
- Institute for Neural Computation, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
55
|
Klimek A, Rogalska J. Extremely Low-Frequency Magnetic Field as a Stress Factor-Really Detrimental?-Insight into Literature from the Last Decade. Brain Sci 2021; 11:174. [PMID: 33572550 PMCID: PMC7912337 DOI: 10.3390/brainsci11020174] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Biological effects of extremely low-frequency magnetic field (ELF-MF) and its consequences on human health have become the subject of important and recurrent public debate. ELF-MF evokes cell/organism responses that are characteristic to a general stress reaction, thus it can be regarded as a stress factor. Exposure to ELF-MF "turns on" different intracellular mechanisms into both directions: compensatory or deleterious ones. ELF-MF can provoke morphological and physiological changes in stress-related systems, mainly nervous, hormonal, and immunological ones. This review summarizes the ELF-MF-mediated changes at various levels of the organism organization. Special attention is placed on the review of literature from the last decade. Most studies on ELF-MF effects concentrate on its negative influence, e.g., impairment of behavior towards depressive and anxiety disorders; however, in the last decade there was an increase in the number of research studies showing stimulating impact of ELF-MF on neuroplasticity and neurorehabilitation. In the face of numerous studies on the ELF-MF action, it is necessary to systematize the knowledge for a better understanding of the phenomenon, in order to reduce the risk associated with the exposure to this factor and to recognize the possibility of using it as a therapeutic agent.
Collapse
Affiliation(s)
| | - Justyna Rogalska
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland;
| |
Collapse
|
56
|
Bekdash RA. The Cholinergic System, the Adrenergic System and the Neuropathology of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22031273. [PMID: 33525357 PMCID: PMC7865740 DOI: 10.3390/ijms22031273] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative diseases are a major public health problem worldwide with a wide spectrum of symptoms and physiological effects. It has been long reported that the dysregulation of the cholinergic system and the adrenergic system are linked to the etiology of Alzheimer’s disease. Cholinergic neurons are widely distributed in brain regions that play a role in cognitive functions and normal cholinergic signaling related to learning and memory is dependent on acetylcholine. The Locus Coeruleus norepinephrine (LC-NE) is the main noradrenergic nucleus that projects and supplies norepinephrine to different brain regions. Norepinephrine has been shown to be neuroprotective against neurodegeneration and plays a role in behavior and cognition. Cholinergic and adrenergic signaling are dysregulated in Alzheimer’s disease. The degeneration of cholinergic neurons in nucleus basalis of Meynert in the basal forebrain and the degeneration of LC-NE neurons were reported in Alzheimer’s disease. The aim of this review is to describe current literature on the role of the cholinergic system and the adrenergic system (LC-NE) in the pathology of Alzheimer’s disease and potential therapeutic implications.
Collapse
Affiliation(s)
- Rola A Bekdash
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
57
|
Wang W, Liu X, Yang Z, Shen H, Liu L, Yu Y, Zhang T. Levodopa Improves Cognitive Function and the Deficits of Structural Synaptic Plasticity in Hippocampus Induced by Global Cerebral Ischemia/Reperfusion Injury in Rats. Front Neurosci 2020; 14:586321. [PMID: 33328857 PMCID: PMC7734175 DOI: 10.3389/fnins.2020.586321] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022] Open
Abstract
The cognitive impairment caused by cerebral ischemia/reperfusion is an unsolved problem in the field of international neural rehabilitation. Not only ameliorates the consciousness level of certain patients who suffered from ischemia-reperfusion injury and were comatose for a long time period after cerebral resuscitation treatment, but levodopa also improves the symptoms of neurological deficits in rats with global cerebral ischemia-reperfusion injury. However, Levodopa has not been widely used as a brain protection drug after cardiopulmonary resuscitation, because of its unclear repair mechanism. Levodopa was used to study the neuroplasticity in the hippocampus of global cerebral ischemia/reperfusion injury rat model, established by Pulsinelli's four-vessel occlusion method. Levodopa was injected intraperitoneally at 50 mg/kg/d for 7 consecutive days after 1st day of surgery. The modified neurological function score, Morris water maze, magnetic resonance imaging, Nissl and TH staining, electron microscopy and western blot were used in the present study. The results showed that levodopa improved the neurological function and learning and memory of rats after global cerebral ischemia/reperfusion injury, improved the integrity of white matter, and density of gray matter in the hippocampus, increased the number of synapses, reduced the delayed neuronal death, and increased the expression of synaptic plasticity-related proteins (BDNF, TrkB, PSD95, and Drebrin) in the hippocampus. In conclusion, levodopa can improve cognitive function after global cerebral ischemia/reperfusion injury by enhancing the synaptic plasticity in the hippocampus.
Collapse
Affiliation(s)
- Wenzhu Wang
- Chinese Institute of Rehabilitation Science, China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Xu Liu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Zhengyi Yang
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Hui Shen
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Lixu Liu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Yan Yu
- Chinese Institute of Rehabilitation Science, China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Tong Zhang
- Chinese Institute of Rehabilitation Science, China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, China Rehabilitation Research Center, Beijing, China.,Institute of Automation, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
58
|
|
59
|
Méndez-Couz M, Manahan-Vaughan D, Silva AP, González-Pardo H, Arias JL, Conejo NM. Metaplastic contribution of neuropeptide Y receptors to spatial memory acquisition. Behav Brain Res 2020; 396:112864. [PMID: 32827566 DOI: 10.1016/j.bbr.2020.112864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022]
Abstract
Neuropeptide Y (NPY) is highly abundant in the brain and is released as a co-transmitter with plasticity-related neurotransmitters such as glutamate, GABA and noradrenaline. Functionally, its release is associated with appetite, anxiety, and stress regulation. NPY acting on Y2 receptors (Y2R), facilitates fear extinction, suggesting a role in associative memory. Here, we explored to what extent NPY action at Y2R contributes to hippocampus-dependent spatial memory and found that dorsal intrahippocampal receptor antagonism improved spatial reference memory acquired in a water maze in rats, without affecting anxiety levels, or spontaneous motor activity. Water maze training resulted in an increase of Y2R, but not Y1R expression in the hippocampus. By contrast, in the prefrontal cortex there was a decrease in Y2R, and an increase of Y1R expression. Our results indicate that neuropeptide Y2R are significantly involved in hippocampus-dependent spatial memory and that receptor expression is dynamically regulated by this learning experience. Effects are consistent with a metaplastic contribution of NPY receptors to cumulative spatial learning.
Collapse
Affiliation(s)
- Marta Méndez-Couz
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Spain; Ruhr University Bochum, Medical Faculty, Dept. Neurophysiology, Bochum, Germany.
| | | | - Ana Paula Silva
- Laboratory of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
| | - Héctor González-Pardo
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Spain
| | - Jorge Luis Arias
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Spain
| | - Nélida María Conejo
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Spain
| |
Collapse
|
60
|
Depression-Associated Gene Negr1-Fgfr2 Pathway Is Altered by Antidepressant Treatment. Cells 2020; 9:cells9081818. [PMID: 32751911 PMCID: PMC7464991 DOI: 10.3390/cells9081818] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
The Negr1 gene has been significantly associated with major depression in genetic studies. Negr1 encodes for a cell adhesion molecule cleaved by the protease Adam10, thus activating Fgfr2 and promoting neuronal spine plasticity. We investigated whether antidepressants modulate the expression of genes belonging to Negr1-Fgfr2 pathway in Flinders sensitive line (FSL) rats, in a corticosterone-treated mouse model of depression, and in mouse primary neurons. Negr1 and Adam10 were the genes mostly affected by antidepressant treatment, and in opposite directions. Negr1 was down-regulated by escitalopram in the hypothalamus of FSL rats, by fluoxetine in the hippocampal dentate gyrus of corticosterone-treated mice, and by nortriptyline in hippocampal primary neurons. Adam10 mRNA was increased by nortriptyline administration in the hypothalamus, by escitalopram in the hippocampus of FSL rats, and by fluoxetine in mouse dorsal dentate gyrus. Similarly, nortriptyline increased Adam10 expression in hippocampal cultures. Fgfr2 expression was increased by nortriptyline in the hypothalamus of FSL rats and in hippocampal neurons. Lsamp, another IgLON family protein, increased in mouse dentate gyrus after fluoxetine treatment. These findings suggest that Negr1-Fgfr2 pathway plays a role in the modulation of synaptic plasticity induced by antidepressant treatment to promote therapeutic efficacy by rearranging connectivity in corticolimbic circuits impaired in depression.
Collapse
|
61
|
Gaidin SG, Zinchenko VP, Sergeev AI, Teplov IY, Mal'tseva VN, Kosenkov AM. Activation of alpha‐2 adrenergic receptors stimulates GABA release by astrocytes. Glia 2020; 68:1114-1130. [DOI: 10.1002/glia.23763] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Sergei G. Gaidin
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Valery P. Zinchenko
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Alexander I. Sergeev
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Ilia Y. Teplov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Valentina N. Mal'tseva
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Artem M. Kosenkov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| |
Collapse
|
62
|
Emili M, Stagni F, Salvalai ME, Uguagliati B, Giacomini A, Albac C, Potier MC, Grilli M, Bartesaghi R, Guidi S. Neonatal therapy with clenbuterol and salmeterol restores spinogenesis and dendritic complexity in the dentate gyrus of the Ts65Dn model of Down syndrome. Neurobiol Dis 2020; 140:104874. [PMID: 32325119 DOI: 10.1016/j.nbd.2020.104874] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/09/2020] [Accepted: 04/19/2020] [Indexed: 11/19/2022] Open
Abstract
Down syndrome (DS), a neurodevelopmental disorder caused by triplication of chromosome 21, is characterized by intellectual disability. In DS, defective neurogenesis causes an overall reduction in the number of neurons populating the brain and defective neuron maturation causes dendritic hypotrophy and reduction in the density of dendritic spines. No effective therapy currently exists for the improvement of brain development in individuals with DS. Drug repurposing is a strategy for identifying new medical use for approved drugs. A drug screening campaign showed that the β2-adrenergic receptor (β2-AR) agonists clenbuterol hydrochloride (CLEN) and salmeterol xinafoate (SALM) increase the proliferation rate of neural progenitor cells from the Ts65Dn model of DS. The goal of the current study was to establish their efficacy in vivo, in the Ts65Dn model. We found that, at variance with the in vitro experiments, treatment with CLEN or SALM did not restore neurogenesis in the hippocampus of Ts65Dn mice treated during the postnatal (P) period P3-P15. In Ts65Dn mice treated with CLEN or SALM, however, dendritic spine density and dendritic arborization of the hippocampal granule cells were restored and the lowest dose tested here (0.01 mg/kg/day) was sufficient to elicit these effects. CLEN and SALM are used in children as therapy for asthma and, importantly, they pass the blood-brain barrier. Our study suggests that treatment with these β2-AR agonists may be a therapy of choice in order to correct dendritic development in DS but is not suitable to rescue neurogenesis.
Collapse
Affiliation(s)
- Marco Emili
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Fiorenza Stagni
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | | | - Beatrice Uguagliati
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Andrea Giacomini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Christelle Albac
- Institut du Cerveau et de la Moelle- CNRS UMR7225 - INSERM U1127 - Sorbonne University, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Marie-Claude Potier
- Institut du Cerveau et de la Moelle- CNRS UMR7225 - INSERM U1127 - Sorbonne University, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Mariagrazia Grilli
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| | - Sandra Guidi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
63
|
Nishimura M, Nomura Y, Egi M, Obata N, Tsunoda M, Mizobuchi S. Suppression of behavioral activity and hippocampal noradrenaline caused by surgical stress in type 2 diabetes model mice. BMC Neurosci 2020; 21:8. [PMID: 32066381 PMCID: PMC7027121 DOI: 10.1186/s12868-020-0556-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/10/2020] [Indexed: 02/08/2023] Open
Abstract
Background There has been much discussion recently about the occurrence of neuropsychological complications during the perioperative period. Diabetes is known to be one of the metabolic risk factors. Although the number of patients with diabetes mellitus (DM) has been increasing, the pathophysiology of postoperative neuropsychological dysfunction in DM patients is still unclear. Recently, a deficiency of neurotransmitters, such as monoamines, was reported to be associated with mental disorders. Therefore, we investigated the effects of surgical stress on behavioral activity and hippocampal noradrenaline (NA) level in type 2 diabetes mellitus model (T2DM) mice. Methods Eighty-four 6-week-old male C57BL/6J mice were divided into four groups (non-diabetes, non-diabetes with surgery, T2DM, and T2DM with surgery groups). T2DM mice were established by feeding a high-fat diet (HFD) for 8 weeks. At 14 weeks of age, fifteen mice in each group underwent a series of behavioral tests including an open field (OF) test, a novel object recognition (NOR) test and a light–dark (LD) test. In the surgery groups, open abdominal surgery with manipulation of the intestine was performed 24 h before the behavioral tests as a surgical stress. Hippocampal noradrenaline (NA) concentration was examined in six mice in each group by high-performance liquid chromatography. The data were analyzed by the Mann–Whitney U test, and p values less than 0.05 were considered significant. Results The T2DM group showed significantly increased explorative activity in the NOR test (P = 0.0016) and significantly increased frequency of transition in the LD test (P = 0.043) compared with those in the non-diabetic group before surgery. In T2DM mice, surgical stress resulted in decreased total distance in the OF test, decreased explorative activity in the NOR test, and decreased frequency of transition in the LD test (OF: P = 0.015, NOR: P = 0.009, LD: P = 0.007) and decreased hippocampal NA (P = 0.015), but such differences were not observed in the non-diabetic mice. Conclusions Mice with T2DM induced by feeding an HFD showed increased behavioral activities, and surgical stress in T2DM mice caused postoperative hypoactivity and reduction of the hippocampal NA level.
Collapse
Affiliation(s)
- Momoka Nishimura
- Division of Anesthesiology, Department of Surgery Related, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan.
| | - Yuki Nomura
- Division of Anesthesiology, Department of Surgery Related, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Moritoki Egi
- Division of Anesthesiology, Department of Surgery Related, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Norihiko Obata
- Division of Anesthesiology, Department of Surgery Related, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Makoto Tsunoda
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongou, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Satoshi Mizobuchi
- Division of Anesthesiology, Department of Surgery Related, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
64
|
Shao X, Zhu G. Associations Among Monoamine Neurotransmitter Pathways, Personality Traits, and Major Depressive Disorder. Front Psychiatry 2020; 11:381. [PMID: 32477180 PMCID: PMC7237722 DOI: 10.3389/fpsyt.2020.00381] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
Major depressive disorder (MDD) is a complex psychiatric disease requiring multidisciplinary approaches to identify specific risk factors and establish more efficacious treatment strategies. Although the etiology and pathophysiology of MDD are not clear until these days, it is acknowledged that they are almost certainly multifactorial and comprehensive. Monoamine neurotransmitter system dysfunction and specific personality traits are independent risk factors for depression and suicide. These factors also demonstrate complex interactions that influence MDD pathogenesis and symptom expression. In this review, we assess these relationships with the aim of providing a reference for the development of precision medicine.
Collapse
Affiliation(s)
- Xiaojun Shao
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Gang Zhu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China.,Central Laboratory, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
65
|
Dyer-Reaves K, Goodman AM, Nelson AR, McMahon LL. Alpha1-Adrenergic Receptor Mediated Long-Term Depression at CA3-CA1 Synapses Can Be Induced via Accumulation of Endogenous Norepinephrine and Is Preserved Following Noradrenergic Denervation. Front Synaptic Neurosci 2019; 11:27. [PMID: 31649525 PMCID: PMC6794465 DOI: 10.3389/fnsyn.2019.00027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/20/2019] [Indexed: 12/27/2022] Open
Abstract
Locus coeruleus (LC) provides the sole source of noradrenergic (NA) innervation to hippocampus, and it undergoes significant degeneration early in Alzheimer's disease (AD). Norepinephrine (NE) modulates synaptic transmission and plasticity at hippocampal synapses which likely contributes to hippocampus-dependent learning and memory. We previously reported that pharmacological activation of α1 adrenergic receptors (α1ARs) induces long-term depression (LTD) at CA3-CA1 synapses. Here, we investigated whether accumulation of endogenous NE via pharmacological blockade of norepinephrine transporters (NETs) and the NE degradative enzyme, monoamine oxidase (MAO), can induce α1AR LTD, as these inhibitors are used clinically. Further, we sought to determine how degeneration of hippocampal NA innervation, as occurs in AD, impacts α1AR function and α1AR LTD. Bath application of NET and MAO inhibitors in slices from control rats reliably induced α1AR LTD when β adrenergic receptors were inhibited. To induce degeneration of LC-NA innervation, rats were treated with the specific NA neurotoxin DSP-4 and recordings performed 1-3 weeks later when NA axon degeneration had stabilized. Even with 85% loss of hippocampal NA innervation, α1AR LTD was successfully induced using either the α1AR agonist phenylephrine or the combined NET and MAO inhibitors, and importantly, the LTD magnitude was not different from saline-treated control. These data suggest that despite significant decreases in NA input to hippocampus, the mechanisms necessary for the induction of α1AR LTD remain functional. Furthermore, we posit that α1AR activation could be a viable therapeutic target for pharmacological intervention in AD and other diseases involving malfunctions of NA neurotransmission.
Collapse
Affiliation(s)
- Katie Dyer-Reaves
- Department of Cell, Developmental, and Integrative Biology (CDIB), School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anthoni M. Goodman
- Department of Cell, Developmental, and Integrative Biology (CDIB), School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Amy R. Nelson
- Department of Cell, Developmental, and Integrative Biology (CDIB), School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lori L. McMahon
- Department of Cell, Developmental, and Integrative Biology (CDIB), School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
66
|
Kim MH, Leem YH. Neurogenic effect of exercise via the thioredoxin-1/ extracellular regulated kinase/β-catenin signaling pathway mediated by β2-adrenergic receptors in chronically stressed dentate gyrus. J Exerc Nutrition Biochem 2019; 23:13-21. [PMID: 31743979 PMCID: PMC6823649 DOI: 10.20463/jenb.2019.0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 11/24/2022] Open
|
67
|
Zelek-Molik A, Costanzi M, Rafa-Zabłocka K, Kreiner G, Roman A, Vetulani J, Rossi-Arnaud C, Cestari V, Nalepa I. Fear memory-induced alterations in the mRNA expression of G proteins in the mouse brain and the impact of immediate posttraining treatment with morphine. Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:221-231. [PMID: 30953677 DOI: 10.1016/j.pnpbp.2019.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 10/27/2022]
Abstract
Disturbances in fear-evoked signal transduction in the hippocampus (HP), the nuclei of the amygdala (AMY), and the prefrontal cortex (PFC) underlie anxiety-related disorders. However, the molecular mechanisms underlying these effects remain elusive. Heterotrimeric G proteins (GPs) are divided into the following four families based on the intracellular activity of their alpha subunit (Gα): Gα(s) proteins stimulate cyclic AMP (cAMP) generation, Gα(i/o) proteins inhibit the cAMP pathway, Gα(q/11) proteins increase the intracellular Ca++ concentration and the inositol trisphosphate level, and Gα(12/13) proteins activate monomeric GP-Rho. In the present study, we assessed the effects of a fear memory procedure on the mRNA expression of the Gα subunits of all four GP families in the HP, AMY and PFC. C57BL/6 J mice were subjected to a fear conditioning (FC) procedure followed by a contextual or cued fear memory test (CTX-R and CS-R, respectively). Morphine (MOR, 1 mg/kg/ip) was injected immediately after FC to prevent the fear consolidation process. Real-time quantitative PCR was used to measure the mRNA expression levels of Gα subunits at 1 h after FC, 24 h after FC, and 1 h after the CTX-R or CS-R. In the HP, the mRNA levels of Gα(s), Gα(12) and Gα(11) were higher at 1 h after training. Gα(s) levels were slightly lower when consolidation was stabilized and after the CS-R. The mRNA levels of Gα(12) were increased at 1 h after FC, returned to control levels at 24 h after FC and increased again with the CTX-R. The increase in the Gα(11) level persisted at 24 h after FC and after CTX-R. In the AMY, no specific changes were induced by FC. In the PFC, CTX-R was accompanied by a decrease in Gα(i/o) mRNA levels; however, only Gα(i2) downregulation was prevented by MOR treatment. Hence, the FC-evoked changes in Gα mRNA expression were observed mainly in the HP and connected primarily to contextual learning. These results suggest that the activation of signaling pathways by Gα(s) and Gα(12) is required to begin the fear memory consolidation process in the HP, while signal transduction via Gα(11) is implicated in the maintenance of fear consolidation. In the PFC, the downregulation of Gα(i2) appears to be related to the contextual learning of fear.
Collapse
Affiliation(s)
- Agnieszka Zelek-Molik
- Institute of Pharmacology, Polish Academy of Sciences, Department of Brain Biochemistry, 31-343 Krakow, Smętna Street 12, Poland
| | - Marco Costanzi
- Free University Maria Ss. Assunta (LUMSA), Department of Human Sciences, Rome, Italy
| | - Katarzyna Rafa-Zabłocka
- Institute of Pharmacology, Polish Academy of Sciences, Department of Brain Biochemistry, 31-343 Krakow, Smętna Street 12, Poland
| | - Grzegorz Kreiner
- Institute of Pharmacology, Polish Academy of Sciences, Department of Brain Biochemistry, 31-343 Krakow, Smętna Street 12, Poland
| | - Adam Roman
- Institute of Pharmacology, Polish Academy of Sciences, Department of Brain Biochemistry, 31-343 Krakow, Smętna Street 12, Poland
| | - Jerzy Vetulani
- Institute of Pharmacology, Polish Academy of Sciences, Department of Brain Biochemistry, 31-343 Krakow, Smętna Street 12, Poland
| | | | - Vincenzo Cestari
- Sapienza University Rome, Department of Psychology, Rome, Italy.
| | - Irena Nalepa
- Institute of Pharmacology, Polish Academy of Sciences, Department of Brain Biochemistry, 31-343 Krakow, Smętna Street 12, Poland.
| |
Collapse
|
68
|
Zong MM, Zhou ZQ, Ji MH, Jia M, Tang H, Yang JJ. Activation of β2-Adrenoceptor Attenuates Sepsis-Induced Hippocampus-Dependent Cognitive Impairments by Reversing Neuroinflammation and Synaptic Abnormalities. Front Cell Neurosci 2019; 13:293. [PMID: 31354429 PMCID: PMC6636546 DOI: 10.3389/fncel.2019.00293] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/17/2019] [Indexed: 12/26/2022] Open
Abstract
Sepsis-associated encephalopathy induces cognitive dysfunction via mechanisms that commonly involve neuroinflammation and synaptic plasticity impairment of the hippocampus. The β2-adrenoceptor (β2-AR) is a G-protein coupled receptor that regulates immune response and synaptic plasticity, whereas its dysfunction has been implicated in various neurodegenerative diseases. Thus, we hypothesized abnormal β2-AR signaling is involved in sepsis-induced cognitive impairment. In the present study, C57BL/6 mice were subjected to cecal ligation and puncture (CLP) to mimic the clinical human sepsis-associated encephalopathy. The levels of hippocampal β2-AR, proinflammatory cytokines tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), IL-6, cAMP-response element binding protein (CREB), brain derived neurotrophic factor (BDNF), post-synaptic density protein 95 (PSD95), and NMDA receptor 2 B subtypes (GluN2B) were determined at 6, 12, 24 h and 7 and 16 days after CLP. For the interventional study, mice were treated with β2-AR agonist clenbuterol in two ways: early treatment (immediately following CLP) and delayed treatment (on the 8th day following CLP). Neurobehavioral performances were assessed by open field and fear conditioning tests. Here, we found that hippocampal β2-AR expression was significantly decreased starting from 12 h and persisted until 16 days following CLP. Besides, sepsis mice also exhibited increasing neuroinflammation, down-regulated CREB/BDNF, decreasing PSD95 and GluN2B expression, and displayed hippocampus-dependent cognitive impairments. Notably, early clenbuterol treatment alleviated sepsis-induced cognitive deficits by polarizing microglia toward an anti-inflammatory phenotype, reducing proinflammatory cytokines including IL-1β, TNF-α, and up-regulating CREB/BDNF, PSD95, and GluN2B. Intriguingly, delayed clenbuterol treatment also improved cognitive impairments by normalization of hippocampal CREB/BDNF, PSD95, and GluN2B. In summary, our results support the beneficial effects of both early and delayed clenbuterol treatment, which suggests that activation of β2-AR has a translational value in sepsis-associated organ dysfunction including cognitive impairments.
Collapse
Affiliation(s)
- Man-Man Zong
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Zhi-Qiang Zhou
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Mu-Huo Ji
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Min Jia
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Hui Tang
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jian-Jun Yang
- Department of Anesthesiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
69
|
Schicknick H, Henschke JU, Budinger E, Ohl FW, Gundelfinger ED, Tischmeyer W. β-adrenergic modulation of discrimination learning and memory in the auditory cortex. Eur J Neurosci 2019; 50:3141-3163. [PMID: 31162753 PMCID: PMC6900137 DOI: 10.1111/ejn.14480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 01/11/2023]
Abstract
Despite vast literature on catecholaminergic neuromodulation of auditory cortex functioning in general, knowledge about its role for long‐term memory formation is scarce. Our previous pharmacological studies on cortex‐dependent frequency‐modulated tone‐sweep discrimination learning of Mongolian gerbils showed that auditory‐cortical D1/5‐dopamine receptor activity facilitates memory consolidation and anterograde memory formation. Considering overlapping functions of D1/5‐dopamine receptors and β‐adrenoceptors, we hypothesised a role of β‐adrenergic signalling in the auditory cortex for sweep discrimination learning and memory. Supporting this hypothesis, the β1/2‐adrenoceptor antagonist propranolol bilaterally applied to the gerbil auditory cortex after task acquisition prevented the discrimination increment that was normally monitored 1 day later. The increment in the total number of hurdle crossings performed in response to the sweeps per se was normal. Propranolol infusion after the seventh training session suppressed the previously established sweep discrimination. The suppressive effect required antagonist injection in a narrow post‐session time window. When applied to the auditory cortex 1 day before initial conditioning, β1‐adrenoceptor‐antagonising and β1‐adrenoceptor‐stimulating agents retarded and facilitated, respectively, sweep discrimination learning, whereas β2‐selective drugs were ineffective. In contrast, single‐sweep detection learning was normal after propranolol infusion. By immunohistochemistry, β1‐ and β2‐adrenoceptors were identified on the neuropil and somata of pyramidal and non‐pyramidal neurons of the gerbil auditory cortex. The present findings suggest that β‐adrenergic signalling in the auditory cortex has task‐related importance for discrimination learning of complex sounds: as previously shown for D1/5‐dopamine receptor signalling, β‐adrenoceptor activity supports long‐term memory consolidation and reconsolidation; additionally, tonic input through β1‐adrenoceptors may control mechanisms permissive for memory acquisition.
Collapse
Affiliation(s)
- Horst Schicknick
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Julia U Henschke
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Eike Budinger
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Frank W Ohl
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Eckart D Gundelfinger
- Center for Behavioral Brain Sciences, Magdeburg, Germany.,Department Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Molecular Neurobiology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Wolfgang Tischmeyer
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
70
|
Toledo C, Andrade DC, Díaz HS, Inestrosa NC, Del Rio R. Neurocognitive Disorders in Heart Failure: Novel Pathophysiological Mechanisms Underpinning Memory Loss and Learning Impairment. Mol Neurobiol 2019; 56:8035-8051. [PMID: 31165973 DOI: 10.1007/s12035-019-01655-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/20/2019] [Indexed: 01/01/2023]
Abstract
Heart failure (HF) is a major public health issue affecting more than 26 million people worldwide. HF is the most common cardiovascular disease in elder population; and it is associated with neurocognitive function decline, which represent underlying brain pathology diminishing learning and memory faculties. Both HF and neurocognitive impairment are associated with recurrent hospitalization episodes and increased mortality rate in older people, but particularly when they occur simultaneously. Overall, the published studies seem to confirm that HF patients display functional impairments relating to attention, memory, concentration, learning, and executive functioning compared with age-matched controls. However, little is known about the molecular mechanisms underpinning neurocognitive decline in HF. The present review round step recent evidence related to the possible molecular mechanism involved in the establishment of neurocognitive disorders during HF. We will make a special focus on cerebral ischemia, neuroinflammation and oxidative stress, Wnt signaling, and mitochondrial DNA alterations as possible mechanisms associated with cognitive decline in HF. Also, we provide an integrative mechanism linking pathophysiological hallmarks of altered cardiorespiratory control and the development of cognitive dysfunction in HF patients. Graphical Abstract Main molecular mechanisms involved in the establishment of cognitive impairment during heart failure. Heart failure is characterized by chronic activation of brain areas responsible for increasing cardiac sympathetic load. In addition, HF patients also show neurocognitive impairment, suggesting that the overall mechanisms that underpin cardiac sympathoexcitation may be related to the development of cognitive disorders in HF. In low cardiac output, HF cerebral infarction due to cardiac mural emboli and cerebral ischemia due to chronic or intermittent cerebral hypoperfusion has been described as a major mechanism related to the development of CI. In addition, while acute norepinephrine (NE) release may be relevant to induce neural plasticity in the hippocampus, chronic or tonic release of NE may exert the opposite effects due to desensitization of the adrenergic signaling pathway due to receptor internalization. Enhanced chemoreflex drive is a major source of sympathoexcitation in HF, and this phenomenon elevates brain ROS levels and induces neuroinflammation through breathing instability. Importantly, both oxidative stress and neuroinflammation can induce mitochondrial dysfunction and vice versa. Then, this ROS inflammatory pathway may propagate within the brain and potentially contribute to the development of cognitive impairment in HF through the activation/inhibition of key molecular pathways involved in neurocognitive decline such as the Wnt signaling pathway.
Collapse
Affiliation(s)
- C Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Center for Aging and Regeneration (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - D C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de investigación en fisiología del ejercicio, Universidad Mayor, Santiago, Chile
| | - H S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - N C Inestrosa
- Center for Aging and Regeneration (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - R Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Center for Aging and Regeneration (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
71
|
Kim JW, Han KR, Kim W, Jung HY, Nam SM, Yoo DY, Hwang IK, Seong JK, Yoon YS. Adult Hippocampal Neurogenesis Can Be Enhanced by Cold Challenge Independently From Beigeing Effects. Front Neurosci 2019; 13:92. [PMID: 30890905 PMCID: PMC6411820 DOI: 10.3389/fnins.2019.00092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/25/2019] [Indexed: 12/24/2022] Open
Abstract
In this study, we investigated the effects of cold challenge on adult hippocampal neurogenesis (AHN) and hippocampal gene expression and whether these are mediated by beigeing of peripheral fat tissues. Cold challenge (6 ± 2°C) for 1 and 4 weeks was found to induce beigeing effects in inguinal white adipose tissue based on hematoxylin and eosin staining as well as uncoupled protein-1 immunohistochemical staining. In the hippocampus, cold challenge for 1 or 4 weeks increased dentate gyrus neurogenesis and expression of genes related to AHN, including notch signaling, G protein-coupled receptor signaling, and adrenergic beta receptor-1. However, this enhancement of neurogenesis and gene expression by cold challenge was not shown by administration of CL 316,243, which induces peripheral beigeing similar to cold challenge but does not cross the blood-brain barrier. These results suggest that cold challenge promotes AHN and central expression of AHN-related, signaling, and β1-adrenergic receptors genes, and that peripheral beigeing by itself is not sufficient to mediate these effects. Considering the increase in AHN and gene expression changes, cold challenge may offer a novel approach to hippocampal modulation.
Collapse
Affiliation(s)
- Jong Whi Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Kyu Ri Han
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Woosuk Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Sung Min Nam
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Dae Young Yoo
- Department of Anatomy, College of Medicine, Soonchunhyang University, Asan, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, South Korea
| | - Je Kyung Seong
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, South Korea
| |
Collapse
|
72
|
From membrane receptors to protein synthesis and actin cytoskeleton: Mechanisms underlying long lasting forms of synaptic plasticity. Semin Cell Dev Biol 2019; 95:120-129. [PMID: 30634048 DOI: 10.1016/j.semcdb.2019.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/13/2022]
Abstract
Synaptic plasticity, the activity dependent change in synaptic strength, forms the molecular foundation of learning and memory. Synaptic plasticity includes structural changes, with spines changing their size to accomodate insertion and removal of postynaptic receptors, which are correlated with functional changes. Of particular relevance for memory storage are the long lasting forms of synaptic plasticity which are protein synthesis dependent. Due to the importance of spine structural plasticity and protein synthesis, this review focuses on the signaling pathways that connect synaptic stimulation with regulation of protein synthesis and remodeling of the actin cytoskeleton. We also review computational models that implement novel aspects of molecular signaling in synaptic plasticity, such as the role of neuromodulators and spatial microdomains, as well as highlight the need for computational models that connect activation of memory kinases with spine actin dynamics.
Collapse
|
73
|
Kelly SC, McKay EC, Beck JS, Collier TJ, Dorrance AM, Counts SE. Locus Coeruleus Degeneration Induces Forebrain Vascular Pathology in a Transgenic Rat Model of Alzheimer's Disease. J Alzheimers Dis 2019; 70:371-388. [PMID: 31177220 PMCID: PMC6929678 DOI: 10.3233/jad-190090] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Noradrenergic locus coeruleus (LC) neuron loss is a significant feature of mild cognitive impairment and Alzheimer's disease (AD). The LC is the primary source of norepinephrine in the forebrain, where it modulates attention and memory in vulnerable cognitive regions such as prefrontal cortex (PFC) and hippocampus. Furthermore, LC-mediated norepinephrine signaling is thought to play a role in blood-brain barrier (BBB) maintenance and neurovascular coupling, suggesting that LC degeneration may impact the high comorbidity of cerebrovascular disease and AD. However, the extent to which LC projection system degeneration influences vascular pathology is not fully understood. To address this question in vivo, we stereotactically lesioned LC projection neurons innervating the PFC of six-month-old Tg344-19 AD rats using the noradrenergic immunotoxin, dopamine-β-hydroxylase IgG-saporin (DBH-sap), or an untargeted control IgG-saporin (IgG-sap). DBH-sap-lesioned animals performed significantly worse than IgG-sap animals on the Barnes maze task in measures of both spatial and working memory. DBH-sap-lesioned rats also displayed increased amyloid and inflammation pathology compared to IgG-sap controls. However, we also discovered prominent parenchymal albumin extravasation with DBH-sap lesions indicative of BBB breakdown. Moreover, microvessel wall-to-lumen ratios were increased in the PFC of DBH-sap compared to IgG-sap rats, suggesting that LC deafferentation results in vascular remodeling. Finally, we noted an early emergence of amyloid angiopathy in the DBH-sap-lesioned Tg344-19 AD rats. Taken together, these data indicate that LC projection system degeneration is a nexus lesion that compromises both vascular and neuronal function in cognitive brain areas during the prodromal stages of AD.
Collapse
Affiliation(s)
- Sarah C. Kelly
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
| | - Erin C. McKay
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - John S. Beck
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Timothy J. Collier
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Anne M. Dorrance
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Scott E. Counts
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Department of Family Medicine, Michigan State University, Grand Rapids, MI, USA
- Hauenstein Neurosciences Center, Mercy Health Saint Mary’s Hospital, Grand Rapids, MI, USA
- Michigan Alzheimer’s Disease Core Center, Ann Arbor, MI, USA
| |
Collapse
|
74
|
Wotjak CT. Sound check, stage design and screen plot - how to increase the comparability of fear conditioning and fear extinction experiments. Psychopharmacology (Berl) 2019; 236:33-48. [PMID: 30470861 PMCID: PMC6373201 DOI: 10.1007/s00213-018-5111-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/05/2018] [Indexed: 11/16/2022]
Abstract
In the recent decade, fear conditioning has evolved as a standard procedure for testing cognitive abilities such as memory acquisition, consolidation, recall, reconsolidation, and extinction, preferentially in genetically modified mice. The reasons for the popularity of this powerful approach are its ease to perform, the short duration of training and testing, and its well-described neural basis. So why to bother about flaws in standardization of test procedures and analytical routines? Simplicity does not preclude the existence of fallacies. A short survey of the literature revealed an indifferent use of acoustic stimuli in terms of quality (i.e., white noise vs. sine wave), duration, and intensity. The same applies to the shock procedures. In the present article, I will provide evidence for the importance of qualitative and quantitative parameters of conditioned and unconditioned stimuli for the experimental outcome. Moreover, I will challenge frequently applied interpretations of short-term vs. long-term extinction and spontaneous recovery. On the basis of these concerns, I suggest a guideline for standardization of fear conditioning experiments in mice to improve the comparability of the experimental data.
Collapse
Affiliation(s)
- Carsten T. Wotjak
- 0000 0000 9497 5095grid.419548.5Max Planck Institute of Psychiatry, RG “Neuronal Plasticity”, Kraepelinstr. 2-10, 80804 Munich, Germany
| |
Collapse
|
75
|
Locus Coeruleus Phasic, But Not Tonic, Activation Initiates Global Remapping in a Familiar Environment. J Neurosci 2018; 39:445-455. [PMID: 30478033 DOI: 10.1523/jneurosci.1956-18.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022] Open
Abstract
Locus coeruleus (LC) neurons, the source of hippocampal norepinephrine (NE), are activated by novelty and changes in environmental contingencies. Based on the role of monoamines in reconfiguring invertebrate networks, and data from mammalian systems, a network reset hypothesis for the effects of LC activation has been proposed. We used the cellular compartmental analysis of temporal FISH technique based on the cellular distribution of immediate early genes to examine the effect of LC activation and inactivation, on regional hippocampal maps in male rats, when LC activity was manipulated just before placement in a second familiar (A/A) and/or novel environment (A/B). We found that bilateral phasic, but not tonic, activation of LC reset hippocampal maps in the A/A condition, whereas silencing the LC with clonidine before placement in the A/B condition blocked map reset and a familiar map emerged in the dentate gyrus, proximal and distal CA1, and CA3c. However, CA3a and CA3b encoded the novel environment. These results support a role for phasic LC responses in generating novel hippocampal sequences during memory encoding and, potentially, memory updating. The silencing experiments suggest that novel environments may not be recognized as different by dentate gyrus and CA1 without LC input. The functional distinction between phasic and tonic LC activity argues that these parameters are critical for determining network changes. These data are consistent with the hippocampus activating internal network representations to encode novel experiential episodes and suggest LC input is critical for this role.SIGNIFICANCE STATEMENT Burst activation of the broadly projecting novelty signaling system of the locus coeruleus initiates new network representations throughout the hippocampus despite unchanged external environments. Tonic activation does not alter network representations in the same condition. This suggests differences in the temporal parameters of neuromodulator network activation are critical for neuromodulator function. Silencing this novelty signaling system prevented the appearance of new network representations in a novel environment. Instead, familiar representations were expressed in a subset of hippocampal areas, with another subset encoding the novel environment. This "being in two places at once" argues for independent functional regions within the hippocampus. These experiments strengthen the view that internal states are major determinants of the brain's construction of environmental representations.
Collapse
|
76
|
Leanza G, Gulino R, Zorec R. Noradrenergic Hypothesis Linking Neurodegeneration-Based Cognitive Decline and Astroglia. Front Mol Neurosci 2018; 11:254. [PMID: 30100866 PMCID: PMC6072880 DOI: 10.3389/fnmol.2018.00254] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/05/2018] [Indexed: 12/31/2022] Open
Abstract
In the past, manipulation of the cholinergic system was seen as the most likely therapeutic for neurodegeneration-based cognitive decline in Alzheimer's disease (AD) (Whitehouse et al., 1982). However, targeting the noradrenergic system also seems a promising strategy, since more recent studies revealed that in post-mortem tissue from patients with AD and other neurodegenerative disorders there is a robust correlation between cognitive decline and loss of neurons from the Locus coeruleus (LC), a system with diffuse noradrenaline (NA) innervation in the central nervous system (CNS). Therefore, the hypothesis has been considered that increasing NA signaling in the CNS will prevent, or at least halt the progression of neurodegeneration and cognitive decline. A hallmark of the age- and neurodegeneration-related cognitive decline is reduced neurogenesis. We here discuss noradrenergic dysfunction in AD-related cognitive decline in humans and its potential involvement in AD pathology and disease progression. We also focus on animal models to allow the validation of the noradrenergic hypothesis of AD, including those based upon the immunotoxin-mediated ablation of LC based on saporin, a protein synthesis interfering agent, which offers selective and graded demise of LC neurons, Finally, we address how astrocytes, an abundant and functionally heterogeneous cell type of neuroglia maintaining homeostasis, may participate in the regulation of neurogenesis, a new strategy for preventing LC neuron loss.
Collapse
Affiliation(s)
- Giampiero Leanza
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
77
|
Persistent Stress-Induced Neuroplastic Changes in the Locus Coeruleus/Norepinephrine System. Neural Plast 2018; 2018:1892570. [PMID: 30008741 PMCID: PMC6020552 DOI: 10.1155/2018/1892570] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/09/2018] [Accepted: 05/27/2018] [Indexed: 11/25/2022] Open
Abstract
Neural plasticity plays a critical role in mediating short- and long-term brain responses to environmental stimuli. A major effector of plasticity throughout many regions of the brain is stress. Activation of the locus coeruleus (LC) is a critical step in mediating the neuroendocrine and behavioral limbs of the stress response. During stressor exposure, activation of the hypothalamic-pituitary-adrenal axis promotes release of corticotropin-releasing factor in LC, where its signaling promotes a number of physiological and cellular changes. While the acute effects of stress on LC physiology have been described, its long-term effects are less clear. This review will describe how stress changes LC neuronal physiology, function, and morphology from a genetic, cellular, and neuronal circuitry/transmission perspective. Specifically, we describe morphological changes of LC neurons in response to stressful stimuli and signal transduction pathways underlying them. Also, we will review changes in excitatory glutamatergic synaptic transmission in LC neurons and possible stress-induced modifications of AMPA receptors. This review will also address stress-related behavioral adaptations and specific noradrenergic receptors responsible for them. Finally, we summarize the results of several human studies which suggest a link between stress, altered LC function, and pathogenesis of posttraumatic stress disorder.
Collapse
|
78
|
Schümann D, Sommer T. Dissociable contributions of the amygdala to the immediate and delayed effects of emotional arousal on memory. ACTA ACUST UNITED AC 2018; 25:283-293. [PMID: 29764974 PMCID: PMC5959227 DOI: 10.1101/lm.047282.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/04/2018] [Indexed: 12/15/2022]
Abstract
Emotional arousal enhances memory encoding and consolidation leading to better immediate and delayed memory. Although the central noradrenergic system and the amygdala play critical roles in both effects of emotional arousal, we have recently shown that these effects are at least partly independent of each other, suggesting distinct underlying neural mechanisms. Here we aim to dissociate the neural substrates of both effects in 70 female participants using an emotional memory paradigm to investigate how neural activity, as measured by fMRI, and a polymorphism in the α2B-noradrenoceptor vary for these effects. To also test whether the immediate and delayed effects of emotional arousal on memory are stable traits, we invited back participants who were a part of a large-scale behavioral memory study ∼3.5 yr ago. We replicated the low correlation of the immediate and delayed emotional enhancement of memory across participants (r = 0.16) and observed, moreover, that only the delayed effect was, to some degree, stable over time (r = 0.23). Bilateral amygdala activity, as well as its coupling with the visual cortex and the fusiform gyrus, was related to the preferential encoding of emotional stimuli, which is consistent with affect-biased attention. Moreover, the adrenoceptor genotype modulated the bilateral amygdala activity associated with this effect. The left amygdala and its coupling with the hippocampus was specifically associated with the more efficient consolidation of emotional stimuli, which is consistent with amygdalar modulation of hippocampal consolidation.
Collapse
Affiliation(s)
- Dirk Schümann
- Institute for Systems Neuroscience, Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Sommer
- Institute for Systems Neuroscience, Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
79
|
Lim CS, Kim JI, Kwak C, Lee J, Jang EH, Oh J, Kaang BK. β-Adrenergic signaling is required for the induction of a labile state during memory reconsolidation. Brain Res Bull 2018; 141:50-57. [PMID: 29680772 DOI: 10.1016/j.brainresbull.2018.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 03/26/2018] [Accepted: 04/18/2018] [Indexed: 01/14/2023]
Abstract
Memory reconsolidation is the process by which previously consolidated memories reenter a labile state through reactivation of the memory trace and are actively consolidated through de novo protein synthesis. Although extensive studies have shown that β-adrenergic signaling plays a critical role in the restabilization of reactivated memory, its role in the destabilization of long-term memory is not well-studied. In this study, we found that membrane excitability increased in hippocampal CA1 neurons immediately after the retrieval of contextual fear memory. Interestingly, this increase in membrane excitability diminished after treatment with propranolol (a β-adrenergic receptor antagonist), an NMDA receptor antagonist, and a PKA inhibitor. In addition, we found that administration of propranolol prior to, but not after, the retrieval of fear memory ameliorated the memory impairment caused by anisomycin, indicating that inhibition of β-adrenergic signaling blocks the destabilization of contextual fear memory. Taken together, these results indicate that β-adrenergic signaling via NMDA receptors and PKA signaling pathway induces a labile state of long-term memory through increased neuronal membrane excitability.
Collapse
Affiliation(s)
- Chae-Seok Lim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea; Department of Pharmacology, Wonkwang University School of Medicine, Iksan 54538, South Korea
| | - Jae-Ick Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Chuljung Kwak
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jaehyun Lee
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Eun Hae Jang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jihae Oh
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
80
|
β-adrenergic receptors reduce the threshold for induction and stabilization of LTP and enhance its magnitude via multiple mechanisms in the ventral but not the dorsal hippocampus. Neurobiol Learn Mem 2018; 151:71-84. [PMID: 29653257 DOI: 10.1016/j.nlm.2018.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 03/19/2018] [Accepted: 04/07/2018] [Indexed: 12/27/2022]
Abstract
The hippocampus is a functionally heterogeneous structure with the cognitive and emotional signal processing ascribed to the dorsal (DH) and the ventral hippocampus (VH) respectively. However, the underlying mechanisms are poorly understood. Noradrenaline is released in hippocampus during emotional arousal modulating synaptic plasticity and memory consolidation through activation of β adrenergic receptors (β-ARs). Using recordings of field excitatory postsynaptic potentials from the CA1 field of adult rat hippocampal slices we demonstrate that long-term potentiation (LTP) induced either by theta-burst stimulation (TBS) that mimics a physiological firing pattern of hippocampal neurons or by high-frequency stimulation is remarkably more sensitive to β-AR activation in VH than in DH. Thus, pairing of subthreshold primed burst stimulation with activation of β-ARs by their agonist isoproterenol (1 μM) resulted in a reliable induction of NMDA receptor-dependent LTP in the VH without affecting LTP in the DH. Activation of β-ARs by isoproterenol during application of intense TBS increased the magnitude of LTP in both hippocampal segments but facilitated voltage-gated calcium channel-dependent LTP in VH only. Endogenous β-AR activation contributed to the stabilization and the magnitude of LTP in VH but not DH as demonstrated by the effects of the β-ARs antagonist propranolol (10 μM). Exogenous (but not endogenous) β-AR activation strongly increased TBS-induced facilitation of postsynaptic excitability in VH. In DH, isoproterenol only produced a moderate and GABAergic inhibition-dependent enhancement in the facilitation of synaptic burst responses. Paired-pulse facilitation did not change with LTP at any experimental condition suggesting that expression of LTP does not involve presynaptic mechanisms. These findings suggest that β-AR may act as a switch that selectively promotes synaptic plasticity in VH through multiple ways and provide thus a first clue to mechanisms that underlie VH involvement in emotionality.
Collapse
|
81
|
Zhao L, Ge Y, Xiong C, Tang L, Yan Y, Law P, Qiu Y, Chen H. M1 muscarinic receptor facilitates cognitive function by interplay with AMPA receptor GluAl subunit. FASEB J 2018; 32:4247-4257. [DOI: 10.1096/fj.201800029r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Lan‐Xue Zhao
- Department of Pharmacology and Chemical BiologyInstitute of Medical SciencesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yan‐Hui Ge
- Department of Pharmacology and Chemical BiologyInstitute of Medical SciencesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Cai‐Hong Xiong
- Department of Pharmacology and Chemical BiologyInstitute of Medical SciencesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ling Tang
- Department of Pharmacology and Chemical BiologyInstitute of Medical SciencesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ying‐Hui Yan
- Department of Pharmacology and Chemical BiologyInstitute of Medical SciencesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ping‐Yee Law
- Department of PharmacologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Yu Qiu
- Department of Pharmacology and Chemical BiologyInstitute of Medical SciencesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hong‐Zhuan Chen
- Department of Pharmacology and Chemical BiologyInstitute of Medical SciencesShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
82
|
Reboreda A, Theissen FM, Valero-Aracama MJ, Arboit A, Corbu MA, Yoshida M. Do TRPC channels support working memory? Comparing modulations of TRPC channels and working memory through G-protein coupled receptors and neuromodulators. Behav Brain Res 2018; 354:64-83. [PMID: 29501506 DOI: 10.1016/j.bbr.2018.02.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 12/11/2022]
Abstract
Working memory is a crucial ability we use in daily life. However, the cellular mechanisms supporting working memory still remain largely unclear. A key component of working memory is persistent neural firing which is believed to serve short-term (hundreds of milliseconds up to tens of seconds) maintenance of necessary information. In this review, we will focus on the role of transient receptor potential canonical (TRPC) channels as a mechanism underlying persistent firing. Many years of in vitro work have been suggesting a crucial role of TRPC channels in working memory and temporal association tasks. If TRPC channels are indeed a central mechanism for working memory, manipulations which impair or facilitate working memory should have a similar effect on TRPC channel modulation. However, modulations of working memory and TRPC channels were never systematically compared, and it remains unanswered whether TRPC channels indeed contribute to working memory in vivo or not. In this article, we review the effects of G-protein coupled receptors (GPCR) and neuromodulators, including acetylcholine, noradrenalin, serotonin and dopamine, on working memory and TRPC channels. Based on comparisons, we argue that GPCR and downstream signaling pathways that activate TRPC, generally support working memory, while those that suppress TRPC channels impair it. However, depending on the channel types, areas, and systems tested, this is not the case in all studies. Further work to clarify involvement of specific TRPC channels in working memory tasks and how they are affected by neuromodulators is still necessary in the future.
Collapse
Affiliation(s)
- Antonio Reboreda
- Leibniz Institute for Neurobiology (LIN) Magdeburg, Brenneckestraße 6, 39118 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str. 44/Haus 64, 39120, Magdeburg, Germany.
| | - Frederik M Theissen
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str. 44/Haus 64, 39120, Magdeburg, Germany
| | - Maria J Valero-Aracama
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 17, 91054 Erlangen, Germany
| | - Alberto Arboit
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str. 44/Haus 64, 39120, Magdeburg, Germany
| | - Mihaela A Corbu
- Ruhr University Bochum (RUB), Universitätsstraße 150, 44801, Bochum, Germany
| | - Motoharu Yoshida
- Leibniz Institute for Neurobiology (LIN) Magdeburg, Brenneckestraße 6, 39118 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str. 44/Haus 64, 39120, Magdeburg, Germany; Center for Behavioral Brain Sciences, 39106, Magdeburg, Germany.
| |
Collapse
|
83
|
Xiao LY, Wang XR, Yang JW, Ye Y, Zhu W, Cao Y, Ma SM, Liu CZ. Acupuncture Prevents the Impairment of Hippocampal LTP Through β1-AR in Vascular Dementia Rats. Mol Neurobiol 2018; 55:7677-7690. [PMID: 29435917 DOI: 10.1007/s12035-018-0943-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 01/29/2018] [Indexed: 02/06/2023]
Abstract
It is widely accepted that the synaptic dysfunction and synapse loss contribute to the cognitive deficits of vascular dementia (VD) patients. We have previously reported that acupuncture improved cognitive function in rats with VD. However, the mechanisms involved in acupuncture improving cognitive ability remain to be elucidated. The present study aims to investigate the pathways and molecules involved in the neuroprotective effect of acupuncture. We assessed the effects of acupuncture on hippocampal long-term potentiation (LTP), the most prominent cellular model of memory formation. Acupuncture enhanced LTP and norepinephrine (NE) levels in the hippocampus. Inhibition of the β-adrenergic receptor (AR), but not the α-AR, was able to block the effects of acupuncture on hippocampal LTP. Furthermore, inhibition of β1-AR, not β2-AR, abolished the enhanced LTP induced by acupuncture. The expression analysis revealed a significant upregulation of β1-AR and unchanged β2-AR with acupuncture, which supported the above findings. Specifically, increased β1-ARs in the dentate gyrus were expressed on neurons exclusively. Taken together, the present data supports a beneficial role of acupuncture in synaptic plasticity challenged with VD. A likely mechanism is the increase of NE and activation of β1-AR in the hippocampus.
Collapse
Affiliation(s)
- Ling-Yong Xiao
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, China.,Department of Acupuncture and Moxibustion, Dongfang Hospital, Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing, 100078, China
| | - Xue-Rui Wang
- Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, China
| | - Jing-Wen Yang
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, China
| | - Yang Ye
- Department of Acupuncture and Moxibustion, Dongfang Hospital, Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing, 100078, China
| | - Wen Zhu
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, China
| | - Yan Cao
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, China
| | - Si-Ming Ma
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, China
| | - Cun-Zhi Liu
- Department of Acupuncture and Moxibustion, Dongfang Hospital, Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing, 100078, China.
| |
Collapse
|
84
|
Dissociation of immediate and delayed effects of emotional arousal on episodic memory. Neurobiol Learn Mem 2018; 148:11-19. [DOI: 10.1016/j.nlm.2017.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 12/06/2017] [Accepted: 12/27/2017] [Indexed: 12/25/2022]
|
85
|
Mhillaj E, Morgese MG, Tucci P, Furiano A, Luongo L, Bove M, Maione S, Cuomo V, Schiavone S, Trabace L. Celecoxib Prevents Cognitive Impairment and Neuroinflammation in Soluble Amyloid β-treated Rats. Neuroscience 2018; 372:58-73. [PMID: 29306052 DOI: 10.1016/j.neuroscience.2017.12.046] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/11/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Abstract
Recent findings suggest that soluble forms of amyloid-β (sAβ) peptide contribute to synaptic and cognitive dysfunctions in early stages of Alzheimer's disease (AD). On the other hand, neuroinflammation and cyclooxygenase-2 (COX-2) enzyme have gained increased interest as key factors involved early in AD, although the signaling pathways and pathophysiologic mechanisms underlying a link between sAβ-induced neurotoxicity and inflammation are still unclear. Here, we investigated the effects of selective COX-2 enzyme inhibition on neuropathological alterations induced by sAβ administration in rats. To this purpose, animals received an intracerebroventricular (icv) injection of predominantly monomeric forms of sAβ and, 7 days after, behavioral as well as biochemical parameters and neurotransmitter alterations were evaluated. During this period, rats also received a sub-chronic treatment with celecoxib. Biochemical results demonstrated that icv sAβ injection significantly increased both COX-2 and pro-inflammatory cytokines expression in the hippocampus (Hipp) of treated rats. In addition, the number of hypertrophic microglial cells and astrocytes were upregulated in sAβ-treated group. Interestingly, rats treated with sAβ showed long-term memory deficits, as confirmed by a significant reduction of discrimination index in the novel object recognition test, along with reduced brain-derived neurotrophic factor expression and increased noradrenaline levels in the Hipp. Systemic administration of celecoxib prevented behavioral dysfunctions, as well as biochemical and neurotransmitter alterations. In conclusion, our results suggest that sAβ neurotoxicity might be associated to COX-2-mediated inflammatory pathways and that early treatment with selective COX-2 inhibitor might provide potential remedies to counterbalance the sAβ-induced effects.
Collapse
Affiliation(s)
- Emanuela Mhillaj
- Dept. of Physiology and Pharmacology, "Sapienza" University of Rome, Rome, Italy
| | - Maria Grazia Morgese
- Dept. of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Paolo Tucci
- Dept. of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Anna Furiano
- Dept. of Experimental Medicine, The Second University of Naples, Naples, Italy
| | - Livio Luongo
- Dept. of Experimental Medicine, The Second University of Naples, Naples, Italy
| | - Maria Bove
- Dept. of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Sabatino Maione
- Dept. of Experimental Medicine, The Second University of Naples, Naples, Italy
| | - Vincenzo Cuomo
- Dept. of Physiology and Pharmacology, "Sapienza" University of Rome, Rome, Italy
| | - Stefania Schiavone
- Dept. of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luigia Trabace
- Dept. of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| |
Collapse
|
86
|
Recording Field Potentials and Synaptic Plasticity From Freely Behaving Rodents. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2018. [DOI: 10.1016/b978-0-12-812028-6.00001-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
87
|
Item-Place Encoding Through Hippocampal Long-Term Depression. HANDBOOK OF OBJECT NOVELTY RECOGNITION 2018. [DOI: 10.1016/b978-0-12-812012-5.00019-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
88
|
Dinse HR, Tegenthoff M. Repetitive Sensory Stimulation—A Canonical Approach to Control the Induction of Human Learning at a Behavioral and Neural Level. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2018. [DOI: 10.1016/b978-0-12-812028-6.00021-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
89
|
Xiao LY, Wang XR, Yang Y, Yang JW, Cao Y, Ma SM, Li TR, Liu CZ. Applications of Acupuncture Therapy in Modulating Plasticity of Central Nervous System. Neuromodulation 2017; 21:762-776. [PMID: 29111577 DOI: 10.1111/ner.12724] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Acupuncture is widely applied for treatment of various neurological disorders. This manuscript will review the preclinical evidence of acupuncture in mediating neural plasticity, the mechanisms involved. MATERIALS AND METHODS We searched acupuncture, plasticity, and other potential related words at the following sites: PubMed, EMBASE, Cochrane Library, Chinese National Knowledge Infrastructure (CNKI), and VIP information data base. The following keywords were used: acupuncture, electroacupuncture, plasticity, neural plasticity, neuroplasticity, neurogenesis, neuroblast, stem cell, progenitor cell, BrdU, synapse, synapse structure, synaptogenesis, axon, axon regeneration, synaptic plasticity, LTP, LTD, neurotrophin, neurotrophic factor, BDNF, GDNF, VEGF, bFGF, EGF, NT-3, NT-4, NT-5, p75NTR, neurotransmitter, acetylcholine, norepinephrine, noradrenaline, dopamine, monamine. We assessed the effects of acupuncture on plasticity under pathological conditions in this review. RESULTS Relevant references were reviewed and presented to reflect the effects of acupuncture on neural plasticity. The acquired literatures mainly focused on neurogenesis, alterations of synapses, neurotrophins (NTs), and neurotranimitters. Acupuncture methods mentioned in this article include manual acupuncture and electroacupuncture. CONCLUSIONS The cumulative evidences demonstrated that acupuncture could induce neural plasticity in rodents exposed to cerebral ischemia. Neural plasticity mediated by acupuncture in other neural disorders, such as Alzheimer's disease, Parkinson's disease, and depression, were also investigated and there is evidence of positive role of acupuncture induced plasticity in these disorders as well. Mediation of neural plasticity by acupuncture is likely associated with its modulation on NTs and neurotransmitters. The exact mechanisms underlying acupuncture's effects on neural plasticity remain to be elucidated. Neural plasticity may be the potential bridge between acupuncture and the treatment of various neurological diseases.
Collapse
Affiliation(s)
- Ling-Yong Xiao
- Beijing University of Chinese Medicine, Beijing, China.,Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, China
| | - Xue-Rui Wang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, China
| | - Ye Yang
- Beijing University of Chinese Medicine, Beijing, China
| | - Jing-Wen Yang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, China
| | - Yan Cao
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, China
| | - Si-Ming Ma
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, China
| | - Tian-Ran Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Cun-Zhi Liu
- Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
90
|
Rorabaugh JM, Chalermpalanupap T, Botz-Zapp CA, Fu VM, Lembeck NA, Cohen RM, Weinshenker D. Chemogenetic locus coeruleus activation restores reversal learning in a rat model of Alzheimer's disease. Brain 2017; 140:3023-3038. [PMID: 29053824 PMCID: PMC5841201 DOI: 10.1093/brain/awx232] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 01/17/2023] Open
Abstract
See Grinberg and Heinsen (doi:10.1093/brain/awx261) for a scientific commentary on this article. Clinical evidence suggests that aberrant tau accumulation in the locus coeruleus and noradrenergic dysfunction may be a critical early step in Alzheimer’s disease progression. Yet, an accurate preclinical model of these phenotypes that includes early pretangle tau accrual in the locus coeruleus, loss of locus coeruleus innervation and deficits locus coeruleus/norepinephrine modulated behaviours, does not exist, hampering the identification of underlying mechanisms and the development of locus coeruleus-based therapies. Here, a transgenic rat (TgF344-AD) expressing disease-causing mutant amyloid precursor protein (APPsw) and presenilin-1 (PS1ΔE9) was characterized for histological and behavioural signs of locus coeruleus dysfunction reminiscent of mild cognitive impairment/early Alzheimer’s disease. In TgF344-AD rats, hyperphosphorylated tau was detected in the locus coeruleus prior to accrual in the medial entorhinal cortex or hippocampus, and tau pathology in the locus coeruleus was negatively correlated with noradrenergic innervation in the medial entorhinal cortex. Likewise, TgF344-AD rats displayed progressive loss of hippocampal norepinephrine levels and locus coeruleus fibres in the medial entorhinal cortex and dentate gyrus, with no frank noradrenergic cell body loss. Cultured mouse locus coeruleus neurons expressing hyperphosphorylation-prone mutant human tau had shorter neurites than control neurons, but similar cell viability, suggesting a causal link between pretangle tau accrual and altered locus coeruleus fibre morphology. TgF344-AD rats had impaired reversal learning in the Morris water maze compared to their wild-type littermates, which was rescued by chemogenetic locus coeruleus activation via designer receptors exclusively activated by designer drugs (DREADDs). Our results indicate that TgF344-AD rats uniquely meet several key criteria for a suitable model of locus coeruleus pathology and dysfunction early in Alzheimer’s disease progression, and suggest that a substantial window of opportunity for locus coeruleus/ norepinephrine-based therapeutics exists.
Collapse
Affiliation(s)
- Jacki M Rorabaugh
- Department of Human Genetics, Emory University School of Medicine, Atlanta GA 30322, USA
| | | | - Christian A Botz-Zapp
- Department of Human Genetics, Emory University School of Medicine, Atlanta GA 30322, USA
| | - Vanessa M Fu
- Department of Human Genetics, Emory University School of Medicine, Atlanta GA 30322, USA
| | - Natalie A Lembeck
- Department of Human Genetics, Emory University School of Medicine, Atlanta GA 30322, USA
| | - Robert M Cohen
- Departments of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta GA 30322, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta GA 30322, USA
| |
Collapse
|
91
|
Activation of β-adrenoceptor facilitates active avoidance learning through enhancement of glutamate levels in the hippocampal dentate gyrus. Neuroreport 2017; 28:973-979. [DOI: 10.1097/wnr.0000000000000868] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
92
|
Hesse S, Müller U, Rullmann M, Luthardt J, Bresch A, Becker GA, Zientek F, Patt M, Meyer PM, Blüher M, Strauß M, Fenske W, Hankir M, Ding YS, Hilbert A, Sabri O. The association between in vivo central noradrenaline transporter availability and trait impulsivity. Psychiatry Res Neuroimaging 2017; 267:9-14. [PMID: 28675825 DOI: 10.1016/j.pscychresns.2017.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 11/30/2022]
Abstract
The brain noradrenaline (NA) system, particularly NA transporters (NAT), are thought to play an important role in modulating impulsive behavior. Impaired impulsivity is implicated in a variety of neuropsychiatric conditions; however, an in vivo link between central NAT availability and human impulsivity has not been shown. Using positron emission tomography (PET) and S,S-[11C]O-methylreboxetine (MRB), we tested whether NAT availability is associated with this basic behavioral trait based on the Barratt Impulsiveness Scale (BIS-11) in twenty healthy individuals (12 females, 33.8±9.3, 21-52 years of age) with a body mass index (BMI) ranging from 21.7kg/m2 to 47.8kg/m2. Applying both voxel-wise and volume-of-interest (VOI) based analyses, we found that distribution volume ratios (DVR) used as PET outcome measures negatively correlated with BIS-11 total scores in the orbitofrontal cortex (OFC) and in the hippocampus as well as in parts of the cerebellar cortex. These associations however did not remain after correction for multiple testing. Thus, although it appears that low NAT availability is associated with greater scores of impaired behavioral control, this needs to be confirmed in a larger series of individuals with highly impulsive behavior.
Collapse
Affiliation(s)
- Swen Hesse
- Integrated Treatment and Research Centre (IFB) AdiposityDiseases, Leipzig University Medical Centre, Liebigstraße 20, 04103 Leipzig, Germany; Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany.
| | - Ulrich Müller
- Department of Psychiatry and Behavioural and Clinical Neuroscience Institute, University of Cambridge Downing Street, Cambridge CB2 3EB, UK
| | - Michael Rullmann
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Julia Luthardt
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Anke Bresch
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Georg-Alexander Becker
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Franziska Zientek
- Integrated Treatment and Research Centre (IFB) AdiposityDiseases, Leipzig University Medical Centre, Liebigstraße 20, 04103 Leipzig, Germany; Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Philipp M Meyer
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Matthias Blüher
- Integrated Treatment and Research Centre (IFB) AdiposityDiseases, Leipzig University Medical Centre, Liebigstraße 20, 04103 Leipzig, Germany; Department of Internal Medicine, University of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
| | - Maria Strauß
- Department of Psychiatry and Psychotherapy, University of Leipzig, Semmelweisstraße 10, 04103 Leipzig, Germany
| | - Wiebke Fenske
- Integrated Treatment and Research Centre (IFB) AdiposityDiseases, Leipzig University Medical Centre, Liebigstraße 20, 04103 Leipzig, Germany; Department of Internal Medicine, University of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
| | - Mohammed Hankir
- Integrated Treatment and Research Centre (IFB) AdiposityDiseases, Leipzig University Medical Centre, Liebigstraße 20, 04103 Leipzig, Germany
| | - Yu-Shin Ding
- Departments of Radiology and Psychiatry, New York University School of Medicine, 550 1st Avenue, New York 10016, USA
| | - Anja Hilbert
- Integrated Treatment and Research Centre (IFB) AdiposityDiseases, Leipzig University Medical Centre, Liebigstraße 20, 04103 Leipzig, Germany; Department of Medical Psychology and Medical Sociology and Department of Psychosomatic Medicine and Psychotherapy, University of Leipzig, Philipp-Rosenthal-Straße 55, 04103 Leipzig, Germany
| | - Osama Sabri
- Integrated Treatment and Research Centre (IFB) AdiposityDiseases, Leipzig University Medical Centre, Liebigstraße 20, 04103 Leipzig, Germany; Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| |
Collapse
|
93
|
Mykytyn K, Askwith C. G-Protein-Coupled Receptor Signaling in Cilia. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028183. [PMID: 28159877 DOI: 10.1101/cshperspect.a028183] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
G-protein-coupled receptors (GPCRs) are the largest and most versatile family of signaling receptors in humans. They respond to diverse external signals, such as photons, proteins, peptides, chemicals, hormones, lipids, and sugars, and mediate a myriad of functions in the human body. Signaling through GPCRs can be optimized by enriching receptors and downstream effectors in discrete cellular domains. Many GPCRs have been found to be selectively targeted to cilia on numerous mammalian cell types. Moreover, investigations into the pathophysiology of human ciliopathies have implicated GPCR ciliary signaling in a number of developmental and cellular pathways. Thus, cilia are now appreciated as an increasingly important nexus for GPCR signaling. Yet, we are just beginning to understand the precise signaling pathways mediated by most ciliary GPCRs and how they impact cellular function and mammalian physiology.
Collapse
Affiliation(s)
- Kirk Mykytyn
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Ohio 43210.,Neuroscience Research Institute, The Ohio State University, Ohio 43210
| | - Candice Askwith
- Neuroscience Research Institute, The Ohio State University, Ohio 43210.,Department of Neuroscience, The Ohio State University, Ohio 43210
| |
Collapse
|
94
|
Role of G Protein-Coupled Receptors in the Regulation of Structural Plasticity and Cognitive Function. Molecules 2017; 22:molecules22071239. [PMID: 28737723 PMCID: PMC6152405 DOI: 10.3390/molecules22071239] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/14/2017] [Indexed: 12/26/2022] Open
Abstract
Cognition and other higher brain functions are known to be intricately associated with the capacity of neural circuits to undergo structural reorganization. Structural remodelling of neural circuits, or structural plasticity, in the hippocampus plays a major role in learning and memory. Dynamic modifications of neuronal connectivity in the form of dendritic spine morphology alteration, as well as synapse formation and elimination, often result in the strengthening or weakening of specific neural circuits that determine synaptic plasticity. Changes in dendritic complexity and synapse number are mediated by cellular processes that are regulated by extracellular signals such as neurotransmitters and neurotrophic factors. As many neurotransmitters act on G protein-coupled receptors (GPCRs), it has become increasingly apparent that GPCRs can regulate structural plasticity through a myriad of G protein-dependent pathways and non-canonical signals. A thorough understanding of how GPCRs exert their regulatory influence on dendritic spine morphogenesis may provide new insights for treating cognitive impairment and decline in various age-related diseases. In this article, we review the evidence of GPCR-mediated regulation of structural plasticity, with a special emphasis on the involvement of common as well as distinct signalling pathways that are regulated by major neurotransmitters.
Collapse
|
95
|
|
96
|
Noradrenergic Modulation of Cognition in Health and Disease. Neural Plast 2017; 2017:6031478. [PMID: 28596922 PMCID: PMC5450174 DOI: 10.1155/2017/6031478] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/18/2017] [Indexed: 12/15/2022] Open
Abstract
Norepinephrine released by the locus coeruleus modulates cellular processes and synaptic transmission in the central nervous system through its actions at a number of pre- and postsynaptic receptors. This transmitter system facilitates sensory signal detection and promotes waking and arousal, processes which are necessary for navigating a complex and dynamic sensory environment. In addition to its effects on sensory processing and waking behavior, norepinephrine is now recognized as a contributor to various aspects of cognition, including attention, behavioral flexibility, working memory, and long-term mnemonic processes. Two areas of dense noradrenergic innervation, the prefrontal cortex and the hippocampus, are particularly important with regard to these functions. Due to its role in mediating normal cognitive function, it is reasonable to expect that noradrenergic transmission becomes dysfunctional in a number of neuropsychiatric and neurodegenerative diseases characterized by cognitive deficits. In this review, we summarize the unique role that norepinephrine plays in prefrontal cortical and hippocampal function and how its interaction with its various receptors contribute to cognitive behaviors. We further assess the changes that occur in the noradrenergic system in Alzheimer's disease, Parkinson's disease, attention-deficit/hyperactivity disorder, and schizophrenia and how these changes contribute to cognitive decline in these pathologies.
Collapse
|
97
|
Ul Haq R, Anderson M, Liotta A, Shafiq M, Sherkheli MA, Heinemann U. Pretreatment with β-adrenergic receptor agonists facilitates induction of LTP and sharp wave ripple complexes in rodent hippocampus. Hippocampus 2016; 26:1486-1492. [PMID: 27699900 DOI: 10.1002/hipo.22665] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/14/2016] [Accepted: 09/30/2016] [Indexed: 12/21/2022]
Abstract
Norepinephrine, is involved in the enhancement of learning and memory formation by regulating synaptic mechanisms through its ability to activate pre- and post-synaptic adrenergic receptors. Here we show that β-agonists of norepinephrine facilitate the induction of both associational LTP and sharp wave ripples (SPW-Rs) in acute slices of rat hippocampus in area CA3. Surprisingly, this facilitating effect persists when slices are only pretreated with β-receptor agonists followed by wash out and application of the unspecific β-adrenoreceptor (βAR) antagonist propranolol. During application of βAR agonists repeated stimulation resulted in facilitated induction of SPW-Rs. Since SPW-Rs are thought to be involved in memory replay we studied the effects of βAR-agonists on spontaneous SPW-Rs in murine hippocampus and found that amplitude and incidence of SPW-Rs increased. These effects involve cyclic-AMP and the activation of protein kinase A and suggest a supportive role in memory consolidation. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rizwan Ul Haq
- Neuroscience Research Center, Charite Universitatsmedizin Berlin, Germany.,Department of Pharmacy, Abbottabad University of Science & Technology, Abbottabad, Pakistan
| | - Marlene Anderson
- Neuroscience Research Center, Charite Universitatsmedizin Berlin, Germany
| | - Agustin Liotta
- Neuroscience Research Center, Charite Universitatsmedizin Berlin, Germany
| | - Maria Shafiq
- Department of Pharmacy, Abbottabad University of Science & Technology, Abbottabad, Pakistan
| | | | - Uwe Heinemann
- Neuroscience Research Center, Charite Universitatsmedizin Berlin, Germany
| |
Collapse
|
98
|
Chlorella sorokiniana Extract Improves Short-Term Memory in Rats. Molecules 2016; 21:molecules21101311. [PMID: 27689989 PMCID: PMC6274193 DOI: 10.3390/molecules21101311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 01/28/2023] Open
Abstract
Increasing evidence shows that eukaryotic microalgae and, in particular, the green microalga Chlorella, can be used as natural sources to obtain a whole variety of compounds, such as omega (ω)-3 and ω-6 polyunsatured fatty acids (PUFAs). Although either beneficial or toxic effects of Chlorella sorokiniana have been mainly attributed to its specific ω-3 and ω-6 PUFAs content, the underlying molecular pathways remain to be elucidated yet. Here, we investigate the effects of an acute oral administration of a lipid extract of Chlorella sorokiniana, containing mainly ω-3 and ω-6 PUFAs, on cognitive, emotional and social behaviour in rats, analysing possible underlying neurochemical alterations. Our results showed improved short-term memory in Chlorella sorokiniana-treated rats compared to controls, without any differences in exploratory performance, locomotor activity, anxiety profile and depressive-like behaviour. On the other hand, while the social behaviour of Chlorella sorokiniana-treated animals was significantly decreased, no effects on aggressivity were observed. Neurochemical investigations showed region-specific effects, consisting in an elevation of noradrenaline (NA) and serotonin (5-HT) content in hippocampus, but not in the prefrontal cortex and striatum. In conclusion, our results point towards a beneficial effect of Chlorella sorokiniana extract on short-term memory, but also highlight the need of caution in the use of this natural supplement due to its possible masked toxic effects.
Collapse
|
99
|
Twarkowski H, Manahan-Vaughan D. Loss of Catecholaminergic Neuromodulation of Persistent Forms of Hippocampal Synaptic Plasticity with Increasing Age. Front Synaptic Neurosci 2016; 8:30. [PMID: 27725799 PMCID: PMC5035743 DOI: 10.3389/fnsyn.2016.00030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/06/2016] [Indexed: 12/31/2022] Open
Abstract
Neuromodulation by means of the catecholaminergic system is a key component of motivation-driven learning and behaviorally modulated hippocampal synaptic plasticity. In particular, dopamine acting on D1/D5 receptors and noradrenaline acting on beta-adrenergic receptors exert a very potent regulation of forms of hippocampal synaptic plasticity that last for very long-periods of time (>24 h), and occur in conjunction with novel spatial learning. Antagonism of these receptors not only prevents long-term potentiation (LTP) and long-term depression (LTD), but prevents the memory of the spatial event that, under normal circumstances, leads to the perpetuation of these plasticity forms. Spatial learning behavior that normally comes easily to rats, such as object-place learning and spatial reference learning, becomes increasingly impaired with aging. Middle-aged animals display aging-related deficits of specific, but not all, components of spatial learning, and one possibility is that this initial manifestation of decrements in learning ability that become apparent in middle-age relate to changes in motivation, attention and/or the regulation by neuromodulatory systems of these behavioral states. Here, we compared the regulation by dopaminergic D1/D5 and beta-adrenergic receptors of persistent LTP in young (2-4 month old) and middle-aged (8-14 month old) rats. We observed in young rats, that weak potentiation that typically lasts for ca. 2 h could be strengthened into persistent (>24 h) LTP by pharmacological activation of either D1/D5 or beta-adrenergic receptors. By contrast, no such facilitation occurred in middle-aged rats. This difference was not related to an ostensible learning deficit: a facilitation of weak potentiation into LTP by spatial learning was possible both in young and middle-aged rats. It was also not directly linked to deficits in LTP: strong afferent stimulation resulted in equivalent LTP in both age groups. We postulate that this change in catecholaminergic control of synaptic plasticity that emerges with aging, does not relate to a learning deficit per se, rather it derives from an increase in behavioral thresholds for novelty and motivation that emerge with increasing age that impact, in turn, on learning efficacy.
Collapse
Affiliation(s)
- Hannah Twarkowski
- Department of Neurophysiology, Medical Faculty, Ruhr University BochumBochum, Germany; International Graduate School of Neuroscience, Ruhr University BochumBochum, Germany
| | | |
Collapse
|
100
|
Rajkumar R, Kumar JR, Dawe GS. Priming locus coeruleus noradrenergic modulation of medial perforant path-dentate gyrus synaptic plasticity. Neurobiol Learn Mem 2016; 138:215-225. [PMID: 27400867 DOI: 10.1016/j.nlm.2016.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/30/2016] [Accepted: 07/06/2016] [Indexed: 01/09/2023]
Abstract
Priming phenomenon, in which an earlier exposure to a stimulus or condition alters synaptic plasticity in response to a subsequent stimulus or condition, known as a challenge, is an example of metaplasticity. In this review, we make the case that the locus coeruleus noradrenergic system-medial perforant path-dentate gyrus pathway is a neural ensemble amenable to studying priming-challenge effects on synaptic plasticity. Accumulating evidence points to a tyrosine hydroxylase-dependent priming effect achieved by pharmacological (nicotine and antipsychotics) or physiological (septal theta driving) manipulations of the locus coeruleus noradrenergic system that can facilitate noradrenaline-induced synaptic plasticity in the dentate gyrus of the hippocampus. The evidence suggests the hypothesis that behavioural experiences inducing tyrosine hydroxylase expression in the locus coeruleus may be sufficient to prime this form of metaplasticity. We propose exploring this phenomenon of priming and challenge physiologically, to determine whether behavioural experiences are sufficient to prime the locus coeruleus, enabling subsequent pharmacological or behavioural challenge conditions that increase locus coeruleus firing to release sufficient noradrenaline to induce long-lasting potentiation in the dentate gyrus. Such an approach may contribute to unravelling mechanisms underlying this form of metaplasticity and its importance in stress-related mnemonic processes.
Collapse
Affiliation(s)
- Ramamoorthy Rajkumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore
| | - Jigna Rajesh Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore; NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, 117456, Singapore
| | - Gavin S Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore; NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, 117456, Singapore.
| |
Collapse
|