51
|
Park J, An G, You J, Park H, Hong T, Song G, Lim W. Dimethenamid promotes oxidative stress and apoptosis leading to cardiovascular, hepatic, and pancreatic toxicities in zebrafish embryo. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109741. [PMID: 37689173 DOI: 10.1016/j.cbpc.2023.109741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Dimethenamid, one of the acetamide herbicides, is widely used on soybeans and corns to inhibit weed growth. Although other acetamide herbicides have been reported to have several toxicities in non-target organisms including developmental toxicity, the toxicity of dimethenamid has not yet been studied. In this research, we utilized the zebrafish animal model to verify the developmental toxicity of dimethenamid. It not only led to morphological abnormalities in zebrafish larvae but also reduced their viability. ROS production and inflammation responses were promoted in zebrafish larvae. Also, uncontrolled apoptosis occurred when the gene expression level related to the cell cycle and apoptosis was altered by dimethenamid. These changes resulted in toxicities in the cardiovascular system, liver, and pancreas are observed in transgenic zebrafish models including fli1a:EGFP and L-fabp:dsRed;elastase:GFP. Dimethenamid triggered morphological defects in the heart and vasculature by altering the mRNA levels related to cardiovascular development. The liver and pancreas were also damaged through not only the changes of their morphology but also through the dysregulation in their function related to metabolic activity. This study shows the developmental defects induced by dimethenamid in zebrafish larvae and the possibility of toxicity in other non-target organisms.
Collapse
Affiliation(s)
- Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jeankyoung You
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
52
|
Reis CG, Bastos LM, Chitolina R, Gallas-Lopes M, Zanona QK, Becker SZ, Herrmann AP, Piato A. Neurobehavioral effects of fungicides in zebrafish: a systematic review and meta-analysis. Sci Rep 2023; 13:18142. [PMID: 37875532 PMCID: PMC10598008 DOI: 10.1038/s41598-023-45350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/18/2023] [Indexed: 10/26/2023] Open
Abstract
Pesticides are widely used in global agriculture to achieve high productivity levels. Among them, fungicides are specifically designed to inhibit fungal growth in crops and seeds. However, their application often results in environmental contamination, as these chemicals can persistently be detected in surface waters. This poses a potential threat to non-target organisms, including humans, that inhabit the affected ecosystems. In toxicologic research, the zebrafish (Danio rerio) is the most commonly used fish species to assess the potential effects of fungicide exposure, and numerous and sometimes conflicting findings have been reported. To address this, we conducted a systematic review and meta-analysis focusing on the neurobehavioral effects of fungicides in zebrafish. Our search encompassed three databases (PubMed, Scopus, and Web of Science), and the screening process followed predefined inclusion/exclusion criteria. We extracted qualitative and quantitative data, as well as assessed reporting quality, from 60 included studies. Meta-analyses were performed for the outcomes of distance traveled in larvae and adults and spontaneous movements in embryos. The results revealed a significant overall effect of fungicide exposure on distance, with a lower distance traveled in the exposed versus control group. No significant effect was observed for spontaneous movements. The overall heterogeneity was high for distance and moderate for spontaneous movements. The poor reporting practices in the field hindered a critical evaluation of the studies. Nevertheless, a sensitivity analysis did not identify any studies skewing the meta-analyses. This review underscores the necessity for better-designed and reported experiments in this field.
Collapse
Affiliation(s)
- Carlos G Reis
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Leonardo M Bastos
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rafael Chitolina
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Matheus Gallas-Lopes
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and Meta-Analysis (BRISA) Collaboration, Rio de Janeiro, Brazil
| | - Querusche K Zanona
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Neurofisiologia e Neuroquímica da Excitabilidade Neuronal e Plasticidade Sináptica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Sofia Z Becker
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana P Herrmann
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and Meta-Analysis (BRISA) Collaboration, Rio de Janeiro, Brazil
| | - Angelo Piato
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
53
|
Wang X, Chen F, Lu J, Wu M, Cheng J, Xu W, Li Z, Zhang Y. Developmental and cardiovascular toxicities of acetochlor and its chiral isomers in zebrafish embryos through oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165296. [PMID: 37406693 DOI: 10.1016/j.scitotenv.2023.165296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Acetochlor (ACT) is a widely used pesticide, yet the environmental and health safety of its chiral isomers remains inadequately evaluated. In this study, we evaluated the toxicity of ACT and its chiral isomers in a zebrafish model. Our findings demonstrate that ACT and its chiral isomers disrupt early zebrafish embryo development, inducing oxidative stress, abnormal lipid metabolism, and apoptosis. Additionally, ACT and its chiral isomers lead to cardiovascular damage, including reduced heart rate, decreased red blood cell (RBC) flow rate, and vascular damage. We further observed that (+)-S-ACT has a significant impact on the transcription of genes involved in cardiac and vascular development, including tbx5, hand2, nkx2.5, gata4, vegfa, dll4, cdh5, and vegfc. Our study highlights the potential risk posed by different conformations of chiral isomeric pesticides and raises concerns regarding their impact on human health. Overall, our results suggest that the chiral isomers of ACT induce developmental defects and cardiovascular toxicity in zebrafish, with (+)-S-ACT being considerably more toxic to zebrafish than (-)-R-ACT.
Collapse
Affiliation(s)
- Xin Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Fan Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Lu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mengqi Wu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
54
|
Wan X, Wang H, Qian Q, Yan J. MiR-133b as a crucial regulator of TCS-induced cardiotoxicity via activating β-adrenergic receptor signaling pathway in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122199. [PMID: 37467918 DOI: 10.1016/j.envpol.2023.122199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/02/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
As a commonly used antibacterial agent in daily consumer products, triclosan (TCS) has attracted significant attention due to its potential environmental risks. In this study, we investigated the toxic effects of TCS exposure (1.4 μM) on heart development in zebrafish embryos. Our findings revealed that TCS exposure caused significant cardiac dysfunction, characterized by pericardial edema, malformations in the heart structure, and a slow heart rate. Additionally, TCS exposure induced oxidative damage and abnormal apoptosis in heart cells through the up-regulation of β-adrenergic receptor (β-AR) signaling pathway genes (adrb1, adrb2a, arrb2b), similar to the effects induced by β-AR agonists. Notably, the adverse effects of TCS exposure were alleviated by β-AR antagonists. Using high-throughput transcriptome miRNA sequencing and targeted miRNA screening, we focused on miR-133b, which targets adrb1 and was down-regulated by TCS exposure, as a potential contributor to TCS-induced cardiotoxicity. Inhibition of miR-133b produced similar toxic effects as TCS exposure, while overexpression of miR-133b down-regulated the β-AR signaling pathway and rescued heart defects caused by TCS. In summary, our findings provide new insights into the mechanisms underlying the cardiotoxic effects of TCS. We suggest that targeting the β-AR pathway and miR-133b may be effective strategies for pharmacotherapy in cardiotoxicity induced by environmental pollutants such as TCS.
Collapse
Affiliation(s)
- Xiancheng Wan
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jin Yan
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
55
|
Komatsu V, Cooper B, Yim P, Chan K, Gong W, Wheatley L, Rohs R, Fraser SE, Trinh LA. Hand2 represses non-cardiac cell fates through chromatin remodeling at cis- regulatory elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559156. [PMID: 37790542 PMCID: PMC10542161 DOI: 10.1101/2023.09.23.559156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Developmental studies have revealed the importance of the transcription factor Hand2 in cardiac development. Hand2 promotes cardiac progenitor differentiation and epithelial maturation, while repressing other tissue types. The mechanisms underlying the promotion of cardiac fates are far better understood than those underlying the repression of alternative fates. Here, we assess Hand2-dependent changes in gene expression and chromatin remodeling in cardiac progenitors of zebrafish embryos. Cell-type specific transcriptome analysis shows a dual function for Hand2 in activation of cardiac differentiation genes and repression of pronephric pathways. We identify functional cis- regulatory elements whose chromatin accessibility are increased in hand2 mutant cells. These regulatory elements associate with non-cardiac gene expression, and drive reporter gene expression in tissues associated with Hand2-repressed genes. We find that functional Hand2 is sufficient to reduce non-cardiac reporter expression in cardiac lineages. Taken together, our data support a model of Hand2-dependent coordination of transcriptional programs, not only through transcriptional activation of cardiac and epithelial maturation genes, but also through repressive chromatin remodeling at the DNA regulatory elements of non-cardiac genes.
Collapse
|
56
|
Paolini A, Sharipova D, Lange T, Abdelilah-Seyfried S. Wnt9 directs zebrafish heart tube assembly via a combination of canonical and non-canonical pathway signaling. Development 2023; 150:dev201707. [PMID: 37680191 PMCID: PMC10560569 DOI: 10.1242/dev.201707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
During zebrafish heart formation, cardiac progenitor cells converge at the embryonic midline where they form the cardiac cone. Subsequently, this structure transforms into a heart tube. Little is known about the molecular mechanisms that control these morphogenetic processes. Here, we use light-sheet microscopy and combine genetic, molecular biological and pharmacological tools to show that the paralogous genes wnt9a/b are required for the assembly of the nascent heart tube. In wnt9a/b double mutants, cardiomyocyte progenitor cells are delayed in their convergence towards the embryonic midline, the formation of the heart cone is impaired and the transformation into an elongated heart tube fails. The same cardiac phenotype occurs when both canonical and non-canonical Wnt signaling pathways are simultaneously blocked by pharmacological inhibition. This demonstrates that Wnt9a/b and canonical and non-canonical Wnt signaling regulate the migration of cardiomyocyte progenitor cells and control the formation of the cardiac tube. This can be partly attributed to their regulation of the timing of cardiac progenitor cell differentiation. Our study demonstrates how these morphogens activate a combination of downstream pathways to direct cardiac morphogenesis.
Collapse
Affiliation(s)
- Alessio Paolini
- Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
| | - Dinara Sharipova
- Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
| | - Tim Lange
- Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
| | | |
Collapse
|
57
|
Ruijmbeek CW, Housley F, Idrees H, Housley MP, Pestel J, Keller L, Lai JK, van der Linde HC, Willemsen R, Piesker J, Al-Hassnan ZN, Almesned A, Dalinghaus M, van den Bersselaar LM, van Slegtenhorst MA, Tessadori F, Bakkers J, van Ham TJ, Stainier DY, Verhagen JM, Reischauer S. Biallelic variants in FLII cause pediatric cardiomyopathy by disrupting cardiomyocyte cell adhesion and myofibril organization. JCI Insight 2023; 8:e168247. [PMID: 37561591 PMCID: PMC10544232 DOI: 10.1172/jci.insight.168247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/20/2023] [Indexed: 08/12/2023] Open
Abstract
Pediatric cardiomyopathy (CM) represents a group of rare, severe disorders that affect the myocardium. To date, the etiology and mechanisms underlying pediatric CM are incompletely understood, hampering accurate diagnosis and individualized therapy development. Here, we identified biallelic variants in the highly conserved flightless-I (FLII) gene in 3 families with idiopathic, early-onset dilated CM. We demonstrated that patient-specific FLII variants, when brought into the zebrafish genome using CRISPR/Cas9 genome editing, resulted in the manifestation of key aspects of morphological and functional abnormalities of the heart, as observed in our patients. Importantly, using these genetic animal models, complemented with in-depth loss-of-function studies, we provided insights into the function of Flii during ventricular chamber morphogenesis in vivo, including myofibril organization and cardiomyocyte cell adhesion, as well as trabeculation. In addition, we identified Flii function to be important for the regulation of Notch and Hippo signaling, crucial pathways associated with cardiac morphogenesis and function. Taken together, our data provide experimental evidence for a role for FLII in the pathogenesis of pediatric CM and report biallelic variants as a genetic cause of pediatric CM.
Collapse
Affiliation(s)
- Claudine W.B. Ruijmbeek
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Filomena Housley
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hafiza Idrees
- Medical Clinic I (Cardiology/Angiology) and Campus Kerckhoff, Justus-Liebig-University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen/Bad Nauheim, Germany
| | - Michael P. Housley
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jenny Pestel
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Leonie Keller
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jason K.H. Lai
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Herma C. van der Linde
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Janett Piesker
- Scientific Service Group Microscopy, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Zuhair N. Al-Hassnan
- Department of Medical Genetics, and
- Cardiovascular Genetics Program, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | | | - Michiel Dalinghaus
- Department of Pediatric Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Lisa M. van den Bersselaar
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marjon A. van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Federico Tessadori
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
- Department of Pediatric Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Tjakko J. van Ham
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Didier Y.R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen/Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), RheinMain partner site, Bad Nauheim, Germany
| | - Judith M.A. Verhagen
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sven Reischauer
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Medical Clinic I (Cardiology/Angiology) and Campus Kerckhoff, Justus-Liebig-University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen/Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), RheinMain partner site, Bad Nauheim, Germany
| |
Collapse
|
58
|
Gafranek JT, D'Aniello E, Ravisankar P, Thakkar K, Vagnozzi RJ, Lim HW, Salomonis N, Waxman JS. Sinus venosus adaptation models prolonged cardiovascular disease and reveals insights into evolutionary transitions of the vertebrate heart. Nat Commun 2023; 14:5509. [PMID: 37679366 PMCID: PMC10485058 DOI: 10.1038/s41467-023-41184-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
How two-chambered hearts in basal vertebrates have evolved from single-chamber hearts found in ancestral chordates remains unclear. Here, we show that the teleost sinus venosus (SV) is a chamber-like vessel comprised of an outer layer of smooth muscle cells. We find that in adult zebrafish nr2f1a mutants, which lack atria, the SV comes to physically resemble the thicker bulbus arteriosus (BA) at the arterial pole of the heart through an adaptive, hypertensive response involving smooth muscle proliferation due to aberrant hemodynamic flow. Single cell transcriptomics show that smooth muscle and endothelial cell populations within the adapting SV also take on arterial signatures. Bulk transcriptomics of the blood sinuses flanking the tunicate heart reinforce a model of greater equivalency in ancestral chordate BA and SV precursors. Our data simultaneously reveal that secondary complications from congenital heart defects can develop in adult zebrafish similar to those in humans and that the foundation of equivalency between flanking auxiliary vessels may remain latent within basal vertebrate hearts.
Collapse
Affiliation(s)
- Jacob T Gafranek
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Division of Molecular Cardiovascular Biology and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Enrico D'Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121, Napoli, Italy
| | - Padmapriyadarshini Ravisankar
- Division of Molecular Cardiovascular Biology and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Kairavee Thakkar
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA
| | - Ronald J Vagnozzi
- Division of Cardiology, Gates Center for Regenerative Medicine, Consortium for Fibrosis Research and Translation (CFReT), University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA
| | - Joshua S Waxman
- Division of Molecular Cardiovascular Biology and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
59
|
Subramanian S. Zebrafish as a model organism - can a fish mimic human? J Basic Clin Physiol Pharmacol 2023; 34:559-575. [PMID: 34662932 DOI: 10.1515/jbcpp-2021-0113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023]
Abstract
From pre-historic era, all scientific discoveries have evolved around a concept - THINK BIG but for a change zebrafish as a model organism in research had managed to halt the entire medical community and made us realize that it's time to think small. From a barely imagined being in research few years ago to around 4,000 publications in just last year, zebrafish has definitely come a long way. Through these tiny fish, scientists have managed to find genes that caused human diseases and have also developed various specific models to know more about the pathology behind such diseases. This review will focus on zebrafish as a model organism from the time it was introduced to the most novel targets with particular emphasis on central nervous system (CNS) as it is rapidly evolving branch in zebrafish research these days. This review will try to shed light on the early stages of zebrafish as a model organism and will try to cover the journey of it developing as a successful model organism to map many diseases like diabetes, Alzheimer's and autism describing the rationale for using this specific model and briefly the techniques under each category and finally will summarize the pros and cons of the model with its expected future directions.
Collapse
|
60
|
Giardoglou P, Deloukas P, Dedoussis G, Beis D. Cfdp1 Is Essential for Cardiac Development and Function. Cells 2023; 12:1994. [PMID: 37566073 PMCID: PMC10417793 DOI: 10.3390/cells12151994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the prevalent cause of mortality worldwide. A combination of environmental and genetic effectors modulates the risk of developing them. Thus, it is vital to identify candidate genes and elucidate their role in the manifestation of the disease. Large-scale human studies have revealed the implication of Craniofacial Development Protein 1 (CFDP1) in Coronary Artery Disease (CAD). CFDP1 belongs to the evolutionary conserved Bucentaur (BCNT) family, and to date, its function and mechanism of action in Cardiovascular Development are still unclear. We utilized zebrafish to investigate the role of cfdp1 in the developing heart due to the high genomic homology, similarity in heart physiology, and ease of experimental manipulations. We showed that cfdp1 was expressed during development, and we tested two morpholinos and generated a cfdp1 mutant line. The cfdp1-/- embryos developed arrhythmic hearts and exhibited defective cardiac performance, which led to a lethal phenotype. Findings from both knockdown and knockout experiments showed that abrogation of cfdp1 leads to downregulation of Wnt signaling in embryonic hearts during valve development but without affecting Notch activation in this process. The cfdp1 zebrafish mutant line provides a valuable tool for unveiling the novel mechanism of regulating cardiac physiology and function. cfdp1 is essential for cardiac development, a previously unreported phenotype most likely due to early lethality in mice. The detected phenotype of bradycardia and arrhythmias is an observation with potential clinical relevance for humans carrying heterozygous CFDP1 mutations and their risk of developing CAD.
Collapse
Affiliation(s)
- Panagiota Giardoglou
- Zebrafish Disease Model Laboratory, Center for Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece;
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, 17676 Athens, Greece;
| | - Panos Deloukas
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London Medical School, Queen Mary University of London, London E1 4NS, UK;
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, 17676 Athens, Greece;
| | - Dimitris Beis
- Zebrafish Disease Model Laboratory, Center for Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece;
- Laboratory of Biological Chemistry, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
61
|
Doering L, Cornean A, Thumberger T, Benjaminsen J, Wittbrodt B, Kellner T, Hammouda OT, Gorenflo M, Wittbrodt J, Gierten J. CRISPR-based knockout and base editing confirm the role of MYRF in heart development and congenital heart disease. Dis Model Mech 2023; 16:dmm049811. [PMID: 37584388 PMCID: PMC10445736 DOI: 10.1242/dmm.049811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 07/21/2023] [Indexed: 08/17/2023] Open
Abstract
High-throughput DNA sequencing studies increasingly associate DNA variants with congenital heart disease (CHD). However, functional modeling is a crucial prerequisite for translating genomic data into clinical care. We used CRISPR-Cas9-mediated targeting of 12 candidate genes in the vertebrate model medaka (Oryzias latipes), five of which displayed a novel cardiovascular phenotype spectrum in F0 (crispants): mapre2, smg7, cdc42bpab, ankrd11 and myrf, encoding a transcription factor recently linked to cardiac-urogenital syndrome. Our myrf mutant line showed particularly prominent embryonic cardiac defects recapitulating phenotypes of pediatric patients, including hypoplastic ventricle. Mimicking human mutations, we edited three sites to generate specific myrf single-nucleotide variants via cytosine and adenine base editors. The Glu749Lys missense mutation in the conserved intramolecular chaperon autocleavage domain fully recapitulated the characteristic myrf mutant phenotype with high penetrance, underlining the crucial function of this protein domain. The efficiency and scalability of base editing to model specific point mutations accelerate gene validation studies and the generation of human-relevant disease models.
Collapse
Affiliation(s)
- Lino Doering
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
- Department of Pediatric Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Alex Cornean
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, 69120 Heidelberg, Germany
| | - Thomas Thumberger
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Joergen Benjaminsen
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Beate Wittbrodt
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Tanja Kellner
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Omar T. Hammouda
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Matthias Gorenflo
- Department of Pediatric Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Jakob Gierten
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
- Department of Pediatric Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| |
Collapse
|
62
|
Wang H, He J, Han X, Wu X, Ye X, Lv W, Zu Y. hoxa1a-Null Zebrafish as a Model for Studying HOXA1-Associated Heart Malformation in Bosley-Salih-Alorainy Syndrome. BIOLOGY 2023; 12:899. [PMID: 37508332 PMCID: PMC10376578 DOI: 10.3390/biology12070899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 07/30/2023]
Abstract
Mutations in HOXA1 can lead to diseases such as Bosley-Salih-Alorainy syndrome, involving severe cardiovascular malformations. However, the role of HOXA1 in cardiac morphogenesis remains unclear. hoxa1a is a homologous gene to human HOXA1 in zebrafish. We used CRISPR to make hoxa1a-null zebrafish that exhibited multiple heart malformations. In situ hybridization and sections revealed the morphological changes in mutants: enlarged ventricle with thickened myocardium and increased trabeculae, intensified OFT and inadequate heart looping, with electrocardiography supporting these pathological changes. High-speed photography captured cardiac pumping and revealed a significant decrease in cardiac output. Furthermore, lacking hoxa1a led to posterior body abnormality that affected movement ability, corresponding with the motor development delay in patients. Upregulation of hox paralogues in hoxa1a-null fish implied a compensatory mechanism between hox genes. Accordingly, we successfully constructed a hoxa1a-null model with a cardiac disease pattern which occurred in human HOXA1-associated heart malformation. The study of hoxa1a in zebrafish can further promote the understanding of hox genes and related diseases.
Collapse
Affiliation(s)
- Hongjie Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jingwei He
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xuemei Han
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xiuzhi Wu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xuebin Ye
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China
| | - Wenchao Lv
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yao Zu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China
| |
Collapse
|
63
|
Petroni D, Fabbri C, Babboni S, Menichetti L, Basta G, Del Turco S. Extracellular Vesicles and Intercellular Communication: Challenges for In Vivo Molecular Imaging and Tracking. Pharmaceutics 2023; 15:1639. [PMID: 37376087 PMCID: PMC10301899 DOI: 10.3390/pharmaceutics15061639] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous class of cell-derived membrane vesicles released by various cell types that serve as mediators of intercellular signaling. When released into circulation, EVs may convey their cargo and serve as intermediaries for intracellular communication, reaching nearby cells and possibly also distant organs. In cardiovascular biology, EVs released by activated or apoptotic endothelial cells (EC-EVs) disseminate biological information at short and long distances, contributing to the development and progression of cardiovascular disease and related disorders. The significance of EC-EVs as mediators of cell-cell communication has advanced, but a thorough knowledge of the role that intercommunication plays in healthy and vascular disease is still lacking. Most data on EVs derive from in vitro studies, but there are still little reliable data available on biodistribution and specific homing EVs in vivo tissues. Molecular imaging techniques for EVs are crucial to monitoring in vivo biodistribution and the homing of EVs and their communication networks both in basal and pathological circumstances. This narrative review provides an overview of EC-EVs, trying to highlight their role as messengers of cell-cell interaction in vascular homeostasis and disease, and describes emerging applications of various imaging modalities for EVs visualization in vivo.
Collapse
Affiliation(s)
- Debora Petroni
- Institute of Clinical Physiology, CNR San Cataldo Research Area, Via Moruzzi 1, 56124 Pisa, Italy
| | - Costanza Fabbri
- Institute of Clinical Physiology, CNR San Cataldo Research Area, Via Moruzzi 1, 56124 Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Serena Babboni
- Institute of Clinical Physiology, CNR San Cataldo Research Area, Via Moruzzi 1, 56124 Pisa, Italy
| | - Luca Menichetti
- Institute of Clinical Physiology, CNR San Cataldo Research Area, Via Moruzzi 1, 56124 Pisa, Italy
| | - Giuseppina Basta
- Institute of Clinical Physiology, CNR San Cataldo Research Area, Via Moruzzi 1, 56124 Pisa, Italy
| | - Serena Del Turco
- Institute of Clinical Physiology, CNR San Cataldo Research Area, Via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
64
|
O'Riordan CE, Trochet P, Steiner M, Fuchs D. Standardisation and future of preclinical echocardiography. Mamm Genome 2023; 34:123-155. [PMID: 37160810 DOI: 10.1007/s00335-023-09981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/31/2023] [Indexed: 05/11/2023]
Abstract
Echocardiography is a non-invasive imaging technique providing real-time information to assess the structure and function of the heart. Due to advancements in technology, ultra-high-frequency transducers have enabled the translation of ultrasound from humans to small animals due to resolutions down to 30 µm. Most studies are performed using mice and rats, with ages ranging from embryonic, to neonatal, and adult. In addition, alternative models such as zebrafish and chicken embryos are becoming more frequently used. With the achieved high temporal and spatial resolution in real-time, cardiac function can now be monitored throughout the lifespan of these small animals to investigate the origin and treatment of a range of acute and chronic pathological conditions. With the increased relevance of in vivo real-time imaging, there is still an unmet need for the standardisation of small animal echocardiography and the appropriate cardiac measurements that should be reported in preclinical cardiac models. This review focuses on the development of standardisation in preclinical echocardiography and reports appropriate cardiac measurements throughout the lifespan of rodents: embryonic, neonatal, ageing, and acute and chronic pathologies. Lastly, we will discuss the future of cardiac preclinical ultrasound.
Collapse
Affiliation(s)
| | | | | | - Dieter Fuchs
- FUJIFILM VisualSonics, Inc, Amsterdam, The Netherlands.
| |
Collapse
|
65
|
Sree Kumar H, Wisner AS, Refsnider JM, Martyniuk CJ, Zubcevic J. Small fish, big discoveries: zebrafish shed light on microbial biomarkers for neuro-immune-cardiovascular health. Front Physiol 2023; 14:1186645. [PMID: 37324381 PMCID: PMC10267477 DOI: 10.3389/fphys.2023.1186645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Zebrafish (Danio rerio) have emerged as a powerful model to study the gut microbiome in the context of human conditions, including hypertension, cardiovascular disease, neurological disorders, and immune dysfunction. Here, we highlight zebrafish as a tool to bridge the gap in knowledge in linking the gut microbiome and physiological homeostasis of cardiovascular, neural, and immune systems, both independently and as an integrated axis. Drawing on zebrafish studies to date, we discuss challenges in microbiota transplant techniques and gnotobiotic husbandry practices. We present advantages and current limitations in zebrafish microbiome research and discuss the use of zebrafish in identification of microbial enterotypes in health and disease. We also highlight the versatility of zebrafish studies to further explore the function of human conditions relevant to gut dysbiosis and reveal novel therapeutic targets.
Collapse
Affiliation(s)
- Hemaa Sree Kumar
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, United States
- Department of Neuroscience and Neurological Disorders, University of Toledo, Toledo, OH, United States
| | - Alexander S. Wisner
- Department of Medicinal and Biological Chemistry, University of Toledo, Toledo, OH, United States
- Center for Drug Design and Development, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Jeanine M. Refsnider
- Department of Environmental Sciences, University of Toledo, Toledo, OH, United States
| | - Christopher J. Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, OH, United States
| | - Jasenka Zubcevic
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, United States
| |
Collapse
|
66
|
Jeon HJ, Cho Y, Kim K, Kim C, Lee SE. Combined toxicity of 3,5,6-trichloro-2-pyridinol and 2-(bromomethyl)naphthalene in the early stages of zebrafish (Danio rerio) embryos: Abnormal heart development at lower concentrations via differential expression of heart forming-related genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121450. [PMID: 36940914 DOI: 10.1016/j.envpol.2023.121450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Combined toxicity can occur in the environment according to the combination of single substances, and the combination works additively or in a synergistic or antagonistic mode. In our study, 3,5,6-trichloro-2-pyridinol (TCP) and 2-(bromomethyl)naphthalene (2-BMN) were used to measure combined toxicity in zebrafish (Danio rerio) embryos. As the lethal concentration (LC) values were obtained through single toxicity, the lethal effects at all combinational concentrations were considered synergistic by the Independent Action model. At 96 hpf, the combined toxicity of TCP LC10 + 2-BMN LC10, the lowest combinational concentration, resulted in high mortality, strong inhibition of hatching, and various morphological changes in zebrafish embryos. Combined treatment resulted in the downregulation of cyp1a, leading to reduced detoxification of the treated chemicals in embryos. These combinations may enhance endocrine-disrupting properties via upregulation of vtg1 in embryos, and inflammatory responses and endoplasmic reticulum stress were found to upregulate il-β, atf4, and atf6. These combinations might induce severe abnormal cardiac development in embryos via downregulation of myl7, cacna1c, edn1, and vmhc expression, and upregulation of the nppa gene. Therefore, the combined toxicity of these two chemicals was observed in zebrafish embryos, which proves that similar substances can exhibit stronger combined toxicity than single toxicity.
Collapse
Affiliation(s)
- Hwang-Ju Jeon
- Red River Research Station, Louisiana State University Agricultural Center, Bossier City, LA, USA
| | - Yerin Cho
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kyeongnam Kim
- Institute of Quality and Safety Evaluation of Agricultural Products, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Chaeeun Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sung-Eun Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea; Institute of Quality and Safety Evaluation of Agricultural Products, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Integrative Biology, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
67
|
Park J, An G, Park H, Hong T, Lim W, Song G. Developmental defects induced by thiabendazole are mediated via apoptosis, oxidative stress and alteration in PI3K/Akt and MAPK pathways in zebrafish. ENVIRONMENT INTERNATIONAL 2023; 176:107973. [PMID: 37196567 DOI: 10.1016/j.envint.2023.107973] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
Thiabendazole, a benzimidazole fungicide, is widely used to prevent yield loss in agricultural land by inhibiting plant diseases derived from fungi. As thiabendazole has a stable benzimidazole ring structure, it remains in the environment for an extended period, and its toxic effects on non-target organisms have been reported, indicating the possibility that it could threaten public health. However, little research has been conducted to elucidate the comprehensive mechanisms of its developmental toxicity. Therefore, we used zebrafish, a representative toxicological model that can predict toxicity in aquatic organisms and mammals, to demonstrate the developmental toxicity of thiabendazole. Various morphological malformations were observed, including decreased body length, eye size, and increased heart and yolk sac edema. Apoptosis, reactive oxygen species (ROS) production, and inflammatory response were also triggered by thiabendazole exposure in zebrafish larvae. Furthermore, PI3K/Akt and MAPK signaling pathways important for appropriate organogenesis were significantly changed by thiabendazole. These results led to toxicity in various organs and a reduction in the expression of related genes, including cardiovascular toxicity, neurotoxicity, and hepatic and pancreatic toxicity, which were detected in flk1:eGFP, olig2:dsRED, and L-fabp:dsRed;elastase:GFP transgenic zebrafish models, respectively. Overall, this study partly determined the developmental toxicity of thiabendazole in zebrafish and provided evidence of the environmental hazards of this fungicide.
Collapse
Affiliation(s)
- Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
68
|
Ren S, Zhang Z, Song Q, Ren Z, Xiao J, Li L, Zhang Q. Metabolic exploration of the developmental abnormalities and neurotoxicity of Esculentoside B, the main toxic factor in Phytolaccae radix. Food Chem Toxicol 2023; 176:113777. [PMID: 37080526 DOI: 10.1016/j.fct.2023.113777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/22/2023]
Abstract
P: radix is a perennial herb, and its extracts have various biological properties that make it a potential candidate for the treatment of tumors, edema, and lymphatic stasis. However, the main factor contributing to its toxicity are not clear. Here, we used a zebrafish toxicological model to study the main toxicity factor of P. radix and explore the potential mechanisms involved. The results revealed that Esculentoside B was the major toxic factor of P. radix. Exposure of zebrafish larvae to Esculentoside B caused developmental abnormalities, neurotoxicity and altered locomotor behavior. The combination of AChE activity and the expression levels of genes relevant to CNS development demonstrated that Esculentoside B is neurotoxic to zebrafish larvae, impairs their CNS development, and that AChE may be a toxic target of Esculentoside B. Metabolomic analysis has revealed that Esculentoside B exposure can disrupt D-Amino acid metabolism, protein export, autophagy, and mTOR signaling pathways in zebrafish larvae. These findings provide insights into the molecular mechanisms underlying EsB-induced neurotoxicity in zebrafish, which can facilitate further research and development of P. radix for safe consumption.
Collapse
Affiliation(s)
- Sipei Ren
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Zhichao Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Qinyang Song
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Zhaoyang Ren
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Jian Xiao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China.
| | - Luqi Li
- Life Science Research Core Services, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shanxi, China; Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China.
| |
Collapse
|
69
|
DeMoya RA, Forman-Rubinsky RE, Fontaine D, Shin J, Watkins SC, Lo C, Tsang M. Sin3a Associated Protein 130kDa, sap130, plays an evolutionary conserved role in zebrafish heart development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534737. [PMID: 37034673 PMCID: PMC10081270 DOI: 10.1101/2023.03.30.534737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Hypoplastic left heart syndrome (HLHS) is a congenital heart disease where the left ventricle is reduced in size. A forward genetic screen in mice identified SIN3A associated protein 130kDa ( Sap130 ), a protein in the chromatin modifying SIN3A/HDAC1 complex, as a gene contributing to the digenic etiology of HLHS. Here, we report the role of zebrafish sap130 genes in heart development. Loss of sap130a, one of two Sap130 orthologs, resulted in smaller ventricle size, a phenotype reminiscent to the hypoplastic left ventricle in mice. While cardiac progenitors were normal during somitogenesis, diminution of the ventricle size suggest the Second Heart Field (SHF) was the source of the defect. To explore the role of sap130a in gene regulation, transcriptome profiling was performed after the heart tube formation to identify candidate pathways and genes responsible for the small ventricle phenotype. Genes involved in cardiac differentiation and cell communication were dysregulated in sap130a , but not in sap130b mutants. Confocal light sheet analysis measured deficits in cardiac output in MZsap130a supporting the notion that cardiomyocyte maturation was disrupted. Lineage tracing experiments revealed a significant reduction of SHF cells in the ventricle that resulted in increased outflow tract size. These data suggest that sap130a is involved in cardiogenesis via regulating the accretion of SHF cells to the growing ventricle and in their subsequent maturation for cardiac function. Further, genetic studies revealed an interaction between hdac1 and sap130a , in the incidence of small ventricles. These studies highlight the conserved role of Sap130a and Hdac1 in zebrafish cardiogenesis.
Collapse
Affiliation(s)
- Ricardo A DeMoya
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh PA 15213, USA
| | - Rachel E Forman-Rubinsky
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh PA 15213, USA
| | - Deon Fontaine
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh PA 15213, USA
| | - Joseph Shin
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh PA 15213, USA
| | - Simon C Watkins
- Department of Cell Biology and Molecular Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Cecilia Lo
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh PA 15213, USA
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh PA 15213, USA
| |
Collapse
|
70
|
Raiola M, Sendra M, Torres M. Imaging Approaches and the Quantitative Analysis of Heart Development. J Cardiovasc Dev Dis 2023; 10:145. [PMID: 37103024 PMCID: PMC10144158 DOI: 10.3390/jcdd10040145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Heart morphogenesis is a complex and dynamic process that has captivated researchers for almost a century. This process involves three main stages, during which the heart undergoes growth and folding on itself to form its common chambered shape. However, imaging heart development presents significant challenges due to the rapid and dynamic changes in heart morphology. Researchers have used different model organisms and developed various imaging techniques to obtain high-resolution images of heart development. Advanced imaging techniques have allowed the integration of multiscale live imaging approaches with genetic labeling, enabling the quantitative analysis of cardiac morphogenesis. Here, we discuss the various imaging techniques used to obtain high-resolution images of whole-heart development. We also review the mathematical approaches used to quantify cardiac morphogenesis from 3D and 3D+time images and to model its dynamics at the tissue and cellular levels.
Collapse
Affiliation(s)
- Morena Raiola
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (M.R.); (M.S.)
- Departamento de Ingeniería Biomedica, ETSI de Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Miquel Sendra
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (M.R.); (M.S.)
| | - Miguel Torres
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (M.R.); (M.S.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| |
Collapse
|
71
|
Baillie JS, Gendernalik A, Garrity DM, Bark D, Quinn TA. The in vivo study of cardiac mechano-electric and mechano-mechanical coupling during heart development in zebrafish. Front Physiol 2023; 14:1086050. [PMID: 37007999 PMCID: PMC10060984 DOI: 10.3389/fphys.2023.1086050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
In the adult heart, acute adaptation of electrical and mechanical activity to changes in mechanical load occurs via feedback processes known as “mechano-electric coupling” and “mechano-mechanical coupling.” Whether this occurs during cardiac development is ill-defined, as acutely altering the heart’s mechanical load while measuring functional responses in traditional experimental models is difficult, as embryogenesis occurs in utero, making the heart inaccessible. These limitations can be overcome with zebrafish, as larvae develop in a dish and are nearly transparent, allowing for in vivo manipulation and measurement of cardiac structure and function. Here we present a novel approach for the in vivo study of mechano-electric and mechano-mechanical coupling in the developing zebrafish heart. This innovative methodology involves acute in vivo atrial dilation (i.e., increased atrial preload) in larval zebrafish by injection of a controlled volume into the venous circulation immediately upstream of the heart, combined with optical measurement of the acute electrical (change in heart rate) and mechanical (change in stroke area) response. In proof-of-concept experiments, we applied our new method to 48 h post-fertilisation zebrafish, which revealed differences between the electrical and mechanical response to atrial dilation. In response to an acute increase in atrial preload there is a large increase in atrial stroke area but no change in heart rate, demonstrating that in contrast to the fully developed heart, during early cardiac development mechano-mechanical coupling alone drives the adaptive increase in atrial output. Overall, in this methodological paper we present our new experimental approach for the study of mechano-electric and mechano-mechanical coupling during cardiac development and demonstrate its potential for understanding the essential adaptation of heart function to acute changes in mechanical load.
Collapse
Affiliation(s)
| | - Alex Gendernalik
- Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
| | | | - David Bark
- Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
- Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, United States
| | - T. Alexander Quinn
- Physiology & Biophysics, Dalhousie University, Halifax, NS, Canada
- Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
- *Correspondence: T. Alexander Quinn,
| |
Collapse
|
72
|
Coppola A, Lombari P, Mazzella E, Capolongo G, Simeoni M, Perna AF, Ingrosso D, Borriello M. Zebrafish as a Model of Cardiac Pathology and Toxicity: Spotlight on Uremic Toxins. Int J Mol Sci 2023; 24:ijms24065656. [PMID: 36982730 PMCID: PMC10052014 DOI: 10.3390/ijms24065656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Chronic kidney disease (CKD) is an increasing health care problem. About 10% of the general population is affected by CKD, representing the sixth cause of death in the world. Cardiovascular events are the main mortality cause in CKD, with a cardiovascular risk 10 times higher in these patients than the rate observed in healthy subjects. The gradual decline of the kidney leads to the accumulation of uremic solutes with a negative effect on every organ, especially on the cardiovascular system. Mammalian models, sharing structural and functional similarities with humans, have been widely used to study cardiovascular disease mechanisms and test new therapies, but many of them are rather expensive and difficult to manipulate. Over the last few decades, zebrafish has become a powerful non-mammalian model to study alterations associated with human disease. The high conservation of gene function, low cost, small size, rapid growth, and easiness of genetic manipulation are just some of the features of this experimental model. More specifically, embryonic cardiac development and physiological responses to exposure to numerous toxin substances are similar to those observed in mammals, making zebrafish an ideal model to study cardiac development, toxicity, and cardiovascular disease.
Collapse
Affiliation(s)
- Annapaola Coppola
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Patrizia Lombari
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Elvira Mazzella
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giovanna Capolongo
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Mariadelina Simeoni
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Alessandra F. Perna
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Diego Ingrosso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Margherita Borriello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence:
| |
Collapse
|
73
|
Rajesh V, Kokilavani A, Jayaseelan S, Gomathi S, Vishali K, Kumudhavalli MV. Embryonic exposure to acetyl-L-carnitine protects against valproic acid-induced cardiac malformation in zebrafish model. Amino Acids 2023:10.1007/s00726-023-03256-7. [PMID: 36894749 DOI: 10.1007/s00726-023-03256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023]
Abstract
Worldwide, estimated counts of about 7.9 million children are born with serious birth defects. In addition to genetic factors, prenatal exposure to drugs and environmental toxicants represents a major contributing factor to congenital malformations. In earlier investigation, we explored cardiac malformation caused by valproic acid (VPA) during early developing stages of zebrafish. Since heart depends on mitochondrial fatty acid oxidative metabolism for energy demands in which carnitine shuttle has a major role, the present study aimed to investigate the effect of acetyl-L-carnitine (AC) against VPA-induced cardiac malformation in developing zebrafish. Initially, AC was subjected to toxicological evaluation, and two micromolar concentrations (25 µM and 50 µM) were selected for evaluation. A sub-lethal concentration of VPA (50 µM) was selected to induce cardiac malformation. The embryos were grouped and the drug exposures were made at 2.5 h post-fertilization (hpf). The cardiac development and functioning was monitored. A progressive decline in cardiac functioning was noted in group exposed to VPA 50 µM. At 96 hpf and 120 hpf, the morphology of heart was severely affected with the chambers which became elongated and string-like accompanied by histological changes. Acridine orange staining showed accumulation of apoptotic cells. Group exposed to VPA 50 µM with AC 50 µM showed a significant reduction in pericardial sac edema with morphological, functional and histological recovery in developing heart. Moreover, reduced number of apoptotic cells was noted. The improvement with AC might be due to restoration of carnitine homeostasis for cardiac energy metabolism in developing heart.
Collapse
Affiliation(s)
- Venugopalan Rajesh
- Department of Pharmacology, The Erode College of Pharmacy and Research Institute, Veppampalayam, Vallipurathampalayam (Po), Erode, Tamil Nadu, 638112, India.
| | - Annadurai Kokilavani
- Department of Pharmacology, The Erode College of Pharmacy and Research Institute, Veppampalayam, Vallipurathampalayam (Po), Erode, Tamil Nadu, 638112, India
| | - Subramanian Jayaseelan
- Department of Pharmaceutical Analysis, The Erode College of Pharmacy and Research Institute, Veppampalayam, Vallipurathampalayam (Po), Erode, Tamil Nadu, 638112, India
| | - Swaminathan Gomathi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Ottacamund, Nilgiris District, Ooty, Tamil Nadu, 643001, India
| | - Korrapati Vishali
- Department of Pharmacology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur, Andhra Pradesh, 522213, India
| | - Manni Venkatachari Kumudhavalli
- Department of Pharmaceutical Chemistry, Vinayaka Mission's College of Pharmacy, Kondappanaickenpatti, Yercaud Main Road, Salem, Tamil Nadu, 636008, India
| |
Collapse
|
74
|
Park J, Hong T, An G, Park H, Song G, Lim W. Triadimenol promotes the production of reactive oxygen species and apoptosis with cardiotoxicity and developmental abnormalities in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160761. [PMID: 36502969 DOI: 10.1016/j.scitotenv.2022.160761] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Various types of fungicides, especially triazole fungicides, are used to prevent fungal diseases on farmlands. However, the developmental toxicity of one of the triazole fungicides, triadimenol, remains unclear. Therefore, we used the zebrafish animal model, a representative toxicological model, to investigate it. Triadimenol induced morphological alterations in the eyes and body length along with yolk sac and heart edema. It also stimulated the production of reactive oxygen species and expression of inflammation-related genes and caused apoptosis in the anterior regions of zebrafish, especially in the heart. The phosphorylation levels of Akt, ERK, JNK, and p38 proteins involved in the PI3K and MAPK pathways, which are important for the development process, were also reduced by triadimenol. These changes led to malformation of the heart and vascular structures, as observed in the flk1:eGFP transgenic zebrafish models and a reduction in the heart rate. In addition, the expression of genes associated with cardiac and vascular development was also reduced. Therefore, we elucidated the mechanisms associated with triadimenol toxicity that leads to various abnormalities and developmental toxicity in zebrafish.
Collapse
Affiliation(s)
- Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
75
|
Liu S, Tu X, Chen X, Mo L, Liu Y, Xu J, Deng M, Wu Y. Effects of single and combined exposure to zinc and two tetracycline antibiotics on zebrafish at the early stage. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109522. [PMID: 36427668 DOI: 10.1016/j.cbpc.2022.109522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/20/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Tetracycline antibiotics (TCs) and heavy metals are commonly used in livestock and poultry farming, leading to their coexistence in the aquatic environment. This coexistence causes combined toxicity to aquatic organisms. Here, zebrafish embryos were exposed to chlortetracycline (CTC), oxytetracycline (OTC), zinc chloride (ZnCl2), and their combinations for 120 h to evaluate their adverse effects on the growth, antioxidant system, immune system, and endocrine system during the early stage of life. OTC/ZnCl2 combined exposure significantly reduced the body weight, whereas the TCs/ZnCl2 combination significantly increased the heart rate of zebrafish larvae, suggesting growth impairment induced by TCs and ZnCl2. Further, combined groups showed more prominent toxicity to the antioxidant system than single groups, as revealed by related levels of enzyme activity and gene expression. In addition, the levels of most pro-inflammatory genes were downregulated, and those of NF-κB-related genes were upregulated in all treatment groups, indicating an immunosuppressive response and the potential role of NF-κB signaling, while the combined treatment was not more toxic than TCs or ZnCl2 alone. Similarly, hormone and endocrine related gene levels were determined. Although both single and combined exposures caused certain endocrine-disrupting effects, the combined exposure did not result in higher toxicity than a single exposure. Our findings showed that a mixture of TCs and ZnCl2 might exert greater toxic effects as compared to a single compound on some systems, providing fundamental data on the toxic effects of single and combined TC and ZnCl2 exposure on aquatic organisms, although studies are needed to explore the underlying mechanisms.
Collapse
Affiliation(s)
- Shuai Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Xun Tu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China; School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xi Chen
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China; College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Limin Mo
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China; College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Yu Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Jiaojiao Xu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Mi Deng
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China.
| | - Yongming Wu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China.
| |
Collapse
|
76
|
Brown W, Wesalo J, Tsang M, Deiters A. Engineering Small Molecule Switches of Protein Function in Zebrafish Embryos. J Am Chem Soc 2023; 145:2395-2403. [PMID: 36662675 DOI: 10.1021/jacs.2c11366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Precise temporally regulated protein function directs the highly complex processes that make up embryo development. The zebrafish embryo is an excellent model organism to study development, and conditional control over enzymatic activity is desirable to target chemical intervention to specific developmental events and to investigate biological mechanisms. Surprisingly few, generally applicable small molecule switches of protein function exist in zebrafish. Genetic code expansion allows for site-specific incorporation of unnatural amino acids into proteins that contain caging groups that are removed through addition of small molecule triggers such as phosphines or tetrazines. This broadly applicable control of protein function was applied to activate several enzymes, including a GTPase and a protease, with temporal precision in zebrafish embryos. Simple addition of the small molecule to the media produces robust and tunable protein activation, which was used to gain insight into the development of a congenital heart defect from a RASopathy mutant of NRAS and to control DNA and protein cleavage events catalyzed by a viral recombinase and a viral protease, respectively.
Collapse
Affiliation(s)
- Wes Brown
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Joshua Wesalo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
77
|
Prill K, Jones MR, Steffensen K, Teng GZ, Dawson JF. Increasing the calcium sensitivity of muscle using trifluoperazine-induced manipulations in silico, in vitro and in vivo systems. Arch Biochem Biophys 2023; 735:109521. [PMID: 36657606 DOI: 10.1016/j.abb.2023.109521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 01/09/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
Many therapeutics for cardiomyopathy treat the symptoms of the disease rather than the underlying mechanism. The mechanism of cardiomyopathy onset is believed to include two means: calcium sensitivity changes and myosin activity alteration. Trifluoperazine is a compound that binds troponin, and other components of the calcium pathway, which impacts calcium regulation of contraction. Here, the ability of TFP to shift calcium sensitivity was examined in vitro with purified proteins and the impact of TFP on heart function was assessed in vivo using embryonic zebrafish. The binding of TFP to troponin was modeled in silico and a model of zebrafish troponin was generated. TFP increased regulated cardiac actomyosin activity in vitro and elevated embryonic zebrafish heart rates at effective drug concentrations. Troponin structural changes predicted in silico suggest altered protein interactions within thin filaments that would affect the regulation of heart function.
Collapse
Affiliation(s)
- Kendal Prill
- From the Department of Molecular & Cellular Biology, University of Guelph; Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Michael R Jones
- From the Department of Molecular & Cellular Biology, University of Guelph; Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Karl Steffensen
- From the Department of Molecular & Cellular Biology, University of Guelph; Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Grace Zi Teng
- From the Department of Molecular & Cellular Biology, University of Guelph; Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - John F Dawson
- From the Department of Molecular & Cellular Biology, University of Guelph; Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
78
|
Wanting H, Jian Z, Chaoxin X, Cheng Y, Chengjian Z, Lin Z, Dan C. Using a zebrafish xenograft tumor model to compare the efficacy and safety of VEGFR-TKIs. J Cancer Res Clin Oncol 2023:10.1007/s00432-022-04560-7. [PMID: 36609710 DOI: 10.1007/s00432-022-04560-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/24/2022] [Indexed: 01/09/2023]
Abstract
PURPOSE We constructed a zebrafish xenograft tumor model to compare and quantify the antiangiogenic efficacy and safety of nine vascular endothelial growth factor receptor-tyrosine kinase inhibitors (VEGFR-TKIs), axitinib, lenvatinib, pazopanib, apatinib, cabozantinib, sunitinib, semaxanib, sorafenib, and regorafenib, in parallel. METHODS CT26 and GL261 tumor cells were implanted into the perivitelline space of Tg (flk1: eGFP) zebrafish to construct a xenograft tumor model. VEGFR-TKIs' antiangiogenic efficacy was quantified using AngioTool software, and the median effective dose (ED50) was calculated. The toxicity was evaluated by calculating the median lethal dose (LD50) and gross morphological changes. Cardiac toxicity was further assessed by heart rate, heart rhythm, the distance between the sinus venosus (SV) and bulbus arteriosus (BA), and pericardial edema. RESULTS Using the zebrafish xenograft tumor model, we found that all nine VEGFR-TKIs exhibited antiangiogenic abilities, but the effectiveness of semaxanib was worse than that of other VEGFR-TKIs. Meanwhile, the zebrafish toxicity assay showed that all tested VEGFR-TKIs were associated with cardiac-related toxicity, especially apatinib and axitinib, which caused serious pericardial edema in zebrafish at relatively low concentrations. A narrow therapeutic window was found for most VEGFR-TKIs, and the simultaneous occurrence of toxic effects of semaxanib was recognized. CONCLUSION Our findings showed the potential of using a zebrafish xenograft tumor model to accelerate VEGFR-TKI screening and further the development of more efficient and less toxic VEGFR-TKIs.
Collapse
Affiliation(s)
- Hou Wanting
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Zhong Jian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province, People's Republic of China
| | - Xiao Chaoxin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province, People's Republic of China
| | - Yi Cheng
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Zhao Chengjian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province, People's Republic of China
| | - Zhou Lin
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China.
| | - Cao Dan
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China.
| |
Collapse
|
79
|
Wei YL, Lei YQ, Ye ZJ, Zhuang XD, Zhu LP, Wang XR, Cao H. Effects of bepridil on early cardiac development of zebrafish. Cell Tissue Res 2023; 391:375-391. [PMID: 36422735 PMCID: PMC9686465 DOI: 10.1007/s00441-022-03706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 11/06/2022] [Indexed: 11/27/2022]
Abstract
Bepridil is a commonly used medication for arrhythmia and heart failure. It primarily exerts hemodynamic effects by inhibiting Na+/K+ movement and regulating the Na+/Ca2+ exchange. In comparison to other Ca2+ inhibitors, bepridil has a long half-life and a complex pharmacology. Additionally, it is widely used in antiviral research and the treatment of various diseases. However, the toxicity of this compound and its other possible effects on embryonic development are unknown. In this study, we investigated the toxicity of bepridil on rat myocardial H9c2 cells. After treatment with bepridil, the cells became overloaded with Ca2+ and entered a state of cytoplasmic vacuolization and nuclear abnormality. Bepridil treatment resulted in several morphological abnormalities in zebrafish embryo models, including pericardium enlargement, yolk sac swelling, and growth stunting. The hemodynamic effects on fetal development resulted in abnormal cardiovascular circulation and myocardial weakness. After inhibiting the Ca2+ transmembrane, the liver of zebrafish larvae also displayed an ectopic and deficient spatial location. Additionally, the results of the RNA-seq analysis revealed the detailed gene expression profiles and metabolic responses to bepridil treatment in zebrafish embryonic development. Taken together, our study provides an important evaluation of antiarrhythmic agents for clinical use in prenatal heart patients.
Collapse
Affiliation(s)
- Ya-Lan Wei
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350013, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350122, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, China
| | - Yu-Qing Lei
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350013, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350122, China
| | - Zhou-Jie Ye
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350013, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350122, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, China
| | - Xu-Dong Zhuang
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350013, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350122, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, China
| | - Li-Ping Zhu
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350013, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350122, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, China
| | - Xin-Rui Wang
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350013, China.
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350122, China.
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, China.
| | - Hua Cao
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350013, China.
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350122, China.
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, China.
| |
Collapse
|
80
|
Folkerts EJ, Alessi DS, Goss GG. Latent impacts on juvenile rainbow trout (Oncorhynchus mykiss) cardio-respiratory function and swimming performance following embryonic exposures to hydraulic fracturing flowback and produced water. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106372. [PMID: 36512985 DOI: 10.1016/j.aquatox.2022.106372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Technologies associated with hydraulic fracturing continue to be prevalent in many regions worldwide. As a result, the production of flowback and produced water (FPW) - a wastewater generated once pressure is released from subterranean wellbores - continues to rise in regions experiencing fracturing activities, while waste management strategies attempt to mitigate compounding burdens of increased FPW production. The heightened production of FPW increases the potential for release to the environment. However, relatively few studies have directly investigated how ecosystems and organisms may be latently affected long after exposures occur. The current study examines rainbow trout exposed in ovo at select critical cardiac developmental time points to differing dilutions and lengths of time (acute versus chronic) to determine how FPW-mediated exposure in ovo may alter later cardiac function and development. After exposure, we allowed fish to grow for ∼ 8 months post-fertilization and measured fish swimming performance, aerobic scope, and cardiac structure of juvenile trout. Acute 48 h embryonic 5% FPW exposure at either 3 days post-fertilization (dpf) or 10 dpf significantly reduced later swimming performance and aerobic scope in juvenile trout. In ovo exposure to 2.5% FPW at 3 dpf yielded significant decreases in these metrics as well, while exposing trout to 2.5% FPW at 10 dpf did not induce as significant effects. Morphometric analyses of heart muscle tissue in all treatments decreased compact myocardium thickness. Chronic 1% FPW in ovo exposure for 28 days induced similar reductions in swimming performance, aerobic scope, and decreased compact myocardium thickness as acute exposures. Overall, our results demonstrate that FPW exposure during egg development ultimately results in persistently impaired heart morphology and resulting physiological (swimming) performance.
Collapse
Affiliation(s)
- Erik J Folkerts
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; NRC- University of Alberta Nanotechnology Initiative, Edmonton, AB T6G 2M9, Canada
| |
Collapse
|
81
|
Zheng Y, Chen B, Zhang M, Ma Y, Wang L, Zhang J, Jiang J. Autophagic degradation of LOX-1 is involved in the maintenance of vascular integrity injured by oxLDL and protected by Berberine. Int J Biol Sci 2023; 19:1813-1830. [PMID: 37063419 PMCID: PMC10092756 DOI: 10.7150/ijbs.80958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/07/2023] [Indexed: 04/18/2023] Open
Abstract
Damage to vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs) caused by oxidized low-density lipoprotein (oxLDL) contributes to cardiovascular and cerebrovascular diseases. Protection effects of Berberine (BBR) on the cardiovascular system have been reported, however, the molecular mechanism of vascular protection is still unclear. In this study, we established two hyperlipidemia models in zebrafish and VEC-VSMC co-culture using high-cholesterol food (HCF) and oxLDL, respectively. We demonstrated that HCF doubled total cholesterol and total glyceride levels, and BBR decreased these indices in a concentration-dependent manner. Lipid staining and hematoxylin-eosin staining revealed that BBR inhibited oxLDL-induced VSMC bulge-like proliferation and migration toward VECs and prevented the HCF-induced trunk vascular obstruction in zebrafish. Immunoblot analysis, cell immunofluorescence, co-immunoprecipitation assays, and transmission electron microscopy showed that oxLDL/HCF increased lectin-like oxLDL receptor-1 (LOX-1) expression at least 5-fold and significantly inhibited autophagolysosome formation in the blood vessel cells and in zebrafish. These observations were associated with endothelial-to-mesenchymal transition (EMT) in VECs and triggered VE-cadherin ectopic expression in VSMCs, and they were responsible for aberrant VSMC migration and vascular occlusion. However, BBR, by promoting autolysosome formation and degradation of LOX-1, reversed the above events and maintained intracellular homeostasis of vessel cells and vascular integrity. In conclusion, regulation of autophagy may be an effective approach to treating oxLDL-induced cardiovascular diseases by reducing LOX-1 protein level. BBR can protect blood vessels by adjusting the oxLDL-LOX-1-EMT-autophagy axis. This study is a step toward the development of new applications of BBR.
Collapse
Affiliation(s)
| | | | | | | | - Lulu Wang
- ✉ Corresponding authors: Lulu Wang, & Jingpu Zhang, ; . Tel.: 0861063186645
| | - Jingpu Zhang
- ✉ Corresponding authors: Lulu Wang, & Jingpu Zhang, ; . Tel.: 0861063186645
| | | |
Collapse
|
82
|
Bai C, Tang M. Progress on the toxicity of quantum dots to model organism-zebrafish. J Appl Toxicol 2023; 43:89-106. [PMID: 35441386 DOI: 10.1002/jat.4333] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 12/16/2022]
Abstract
In vivo toxicological studies are currently necessary to analyze the probable dangers of quantum dots (QDs) to the environment and human safety, due to the fast expansion of QDs in a range of applications. Because of its high fecundity, cost-effectiveness, well-defined developmental phases, and optical transparency, zebrafish has long been considered the "gold standard" for biosafety assessment of chemical substances and pollutants. In this review, the advantages of using zebrafish in QD toxicity assessment were explored. Then, the target organ toxicities such as developmental toxicity, immunotoxicity, cardiovascular toxicity, neurotoxicity, and hepatotoxicity were summarized. The hazardous effects of different QDs, including cadmium-containing QDs like CdTe, CdSe, and CdSe/ZnS, as well as cadmium-free QDs like graphene QDs (GQDs), graphene oxide QDs (GOQDs), and others, were emphasized and described in detail, as well as the underlying mechanisms of QDs generating these effects. Furthermore, general physicochemical parameters determining QD-induced toxicity in zebrafish were introduced, such as chemical composition and surface coating/modification. The limitations and special concerns of using zebrafish in QD toxicity studies were also mentioned. Finally, we predicted that the utilization of high-throughput screening assays and omics, such as transcriptome sequencing, proteomics, and metabolomics will be popular topic in nanotoxicology.
Collapse
Affiliation(s)
- Changcun Bai
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
83
|
Ma J, Gu Y, Liu J, Song J, Zhou T, Jiang M, Wen Y, Guo X, Zhou Z, Sha J, He J, Hu Z, Luo L, Liu M. Functional screening of congenital heart disease risk loci identifies 5 genes essential for heart development in zebrafish. Cell Mol Life Sci 2022; 80:19. [PMID: 36574072 PMCID: PMC11073085 DOI: 10.1007/s00018-022-04669-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/28/2022]
Abstract
Congenital heart disease (CHD) is the most common birth defect worldwide and a main cause of perinatal and infant mortality. Our previous genome-wide association study identified 53 SNPs that associated with CHD in the Han Chinese population. Here, we performed functional screening of 27 orthologous genes in zebrafish using injection of antisense morpholino oligos. From this screen, 5 genes were identified as essential for heart development, including iqgap2, ptprt, ptpn22, tbck and maml3. Presumptive roles of the novel CHD-related genes include heart chamber formation (iqgap2 and ptprt) and atrioventricular canal formation (ptpn22 and tbck). While deficiency of maml3 led to defective cardiac trabeculation and consequent heart failure in zebrafish embryos. Furthermore, we found that maml3 mutants showed decreased cardiomyocyte proliferation which caused a reduction in cardiac trabeculae due to inhibition of Notch signaling. Together, our study identifies 5 novel CHD-related genes that are essential for heart development in zebrafish and first demonstrates that maml3 is required for Notch signaling in vivo.
Collapse
Affiliation(s)
- Jianlong Ma
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, 400715, China
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211100, China
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211100, China
| | - Juanjuan Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211100, China
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211100, China
| | - Jingmei Song
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, 400715, China
| | - Tao Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211100, China
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211100, China
| | - Min Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211100, China
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211100, China
| | - Yang Wen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211100, China
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211100, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211100, China
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211100, China
| | - Zuomin Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211100, China
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211100, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211100, China
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211100, China
| | - Jianbo He
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, 400715, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211100, China
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211100, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 211100, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, 400715, China.
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing, 211100, China.
| |
Collapse
|
84
|
Yang X, Wang C, Zheng Q, Liu Q, Wawryk NJP, Li XF. Emerging Disinfection Byproduct 2,6-Dichlorobenzoquinone-Induced Cardiovascular Developmental Toxicity of Embryonic Zebrafish and Larvae: Imaging and Transcriptome Analysis. ACS OMEGA 2022; 7:45642-45653. [PMID: 36530307 PMCID: PMC9753109 DOI: 10.1021/acsomega.2c06296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Epidemiological studies have observed the potential association of water disinfection byproduct (DBP) exposure with cardiac defects. Aromatic DBPs represent a significant portion of total DBPs, but their effects on cardiovascular development are unclear. In this study, we examined the effects of an aromatic DBP, 2,6-dichlorobenzoquinone (DCBQ), on the cardiovascular development of zebrafish embryos. After exposure to 2, 4, and 8 μM DCBQ, morphological images of growing zebrafish embryos clearly showed cardiovascular malformation. Fluorescent images of transgenic zebrafish strains with fluorescently labeled heart and blood vessels show that DCBQ exposure resulted in deformed atrium-ventricle looping, degenerated abdomen and trunk vessels, pericardial edema, and decreased blood flow. Furthermore, the expression of the marker gene myl7 (essential for the differentiation and motility of cardiomyocytes) was inhibited in a dose-dependent manner by DCBQ exposure. Finally, transcriptome analysis found that in the 4 μM DCBQ exposure group, the numbers of differentially expressed genes (DEGs) were 113 (50 upregulated and 63 downregulated) at 24 hpf, 2123 (762 upregulated and 1361 downregulated) at 48 hpf, and 61 (11 upregulated and 50 downregulated) at 120 hpf; in the 8 μM DCBQ exposure group, the number of DEGs was 1407 (647 upregulated and 760 downregulated) at 120 hpf. The FoxO signaling pathway was significantly altered. The in vivo results demonstrate the effects of 2,6-DCBQ (0-8 μM) on cardiovascular development, contributing to the understanding of the developmental toxicity of aromatic DBP halobenzoquinones (HBQs).
Collapse
Affiliation(s)
- Xue Yang
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Chang Wang
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Qi Zheng
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Qiongyu Liu
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Nicholas J. P. Wawryk
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Xing-Fang Li
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
85
|
van der Velden J, Asselbergs FW, Bakkers J, Batkai S, Bertrand L, Bezzina CR, Bot I, Brundel BJJM, Carrier L, Chamuleau S, Ciccarelli M, Dawson D, Davidson SM, Dendorfer A, Duncker DJ, Eschenhagen T, Fabritz L, Falcão-Pires I, Ferdinandy P, Giacca M, Girao H, Gollmann-Tepeköylü C, Gyongyosi M, Guzik TJ, Hamdani N, Heymans S, Hilfiker A, Hilfiker-Kleiner D, Hoekstra AG, Hulot JS, Kuster DWD, van Laake LW, Lecour S, Leiner T, Linke WA, Lumens J, Lutgens E, Madonna R, Maegdefessel L, Mayr M, van der Meer P, Passier R, Perbellini F, Perrino C, Pesce M, Priori S, Remme CA, Rosenhahn B, Schotten U, Schulz R, Sipido KR, Sluijter JPG, van Steenbeek F, Steffens S, Terracciano CM, Tocchetti CG, Vlasman P, Yeung KK, Zacchigna S, Zwaagman D, Thum T. Animal models and animal-free innovations for cardiovascular research: current status and routes to be explored. Consensus document of the ESC Working Group on Myocardial Function and the ESC Working Group on Cellular Biology of the Heart. Cardiovasc Res 2022; 118:3016-3051. [PMID: 34999816 PMCID: PMC9732557 DOI: 10.1093/cvr/cvab370] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 01/05/2022] [Indexed: 01/09/2023] Open
Abstract
Cardiovascular diseases represent a major cause of morbidity and mortality, necessitating research to improve diagnostics, and to discover and test novel preventive and curative therapies, all of which warrant experimental models that recapitulate human disease. The translation of basic science results to clinical practice is a challenging task, in particular for complex conditions such as cardiovascular diseases, which often result from multiple risk factors and comorbidities. This difficulty might lead some individuals to question the value of animal research, citing the translational 'valley of death', which largely reflects the fact that studies in rodents are difficult to translate to humans. This is also influenced by the fact that new, human-derived in vitro models can recapitulate aspects of disease processes. However, it would be a mistake to think that animal models do not represent a vital step in the translational pathway as they do provide important pathophysiological insights into disease mechanisms particularly on an organ and systemic level. While stem cell-derived human models have the potential to become key in testing toxicity and effectiveness of new drugs, we need to be realistic, and carefully validate all new human-like disease models. In this position paper, we highlight recent advances in trying to reduce the number of animals for cardiovascular research ranging from stem cell-derived models to in situ modelling of heart properties, bioinformatic models based on large datasets, and state-of-the-art animal models, which show clinically relevant characteristics observed in patients with a cardiovascular disease. We aim to provide a guide to help researchers in their experimental design to translate bench findings to clinical routine taking the replacement, reduction, and refinement (3R) as a guiding concept.
Collapse
Grants
- R01 HL150359 NHLBI NIH HHS
- RG/16/14/32397 British Heart Foundation
- FS/18/37/33642 British Heart Foundation
- PG/17/64/33205 British Heart Foundation
- PG/15/88/31780 British Heart Foundation
- FS/RTF/20/30009, NH/19/1/34595, PG/18/35/33786, CS/17/4/32960, PG/15/88/31780, and PG/17/64/33205 British Heart Foundation
- NC/T001488/1 National Centre for the Replacement, Refinement and Reduction of Animals in Research
- PG/18/44/33790 British Heart Foundation
- CH/16/3/32406 British Heart Foundation
- FS/RTF/20/30009 British Heart Foundation
- NWO-ZonMW
- ZonMW and Heart Foundation for the translational research program
- Dutch Cardiovascular Alliance (DCVA)
- Leducq Foundation
- Dutch Research Council
- Association of Collaborating Health Foundations (SGF)
- UCL Hospitals NIHR Biomedical Research Centre, and the DCVA
- Netherlands CardioVascular Research Initiative CVON
- Stichting Hartekind and the Dutch Research Counsel (NWO) (OCENW.GROOT.2019.029)
- National Fund for Scientific Research, Belgium and Action de Recherche Concertée de la Communauté Wallonie-Bruxelles, Belgium
- Netherlands CardioVascular Research Initiative CVON (PREDICT2 and CONCOR-genes projects), the Leducq Foundation
- ERA PerMed (PROCEED study)
- Netherlands Cardiovascular Research Initiative
- Dutch Heart Foundation
- German Centre of Cardiovascular Research (DZHH)
- Chest Heart and Stroke Scotland
- Tenovus Scotland
- Friends of Anchor and Grampian NHS-Endowments
- National Institute for Health Research University College London Hospitals Biomedical Research Centre
- German Centre for Cardiovascular Research
- European Research Council (ERC-AG IndivuHeart), the Deutsche Forschungsgemeinschaft
- European Union Horizon 2020 (REANIMA and TRAINHEART)
- German Ministry of Education and Research (BMBF)
- Centre for Cardiovascular Research (DZHK)
- European Union Horizon 2020
- DFG
- National Research, Development and Innovation Office of Hungary
- Research Excellence Program—TKP; National Heart Program
- Austrian Science Fund
- European Union Commission’s Seventh Framework programme
- CVON2016-Early HFPEF
- CVON She-PREDICTS
- CVON Arena-PRIME
- European Union’s Horizon 2020 research and innovation programme
- Deutsche Forschungsgemeinschaft
- Volkswagenstiftung
- French National Research Agency
- ERA-Net-CVD
- Fédération Française de Cardiologie, the Fondation pour la Recherche Médicale
- French PIA Project
- University Research Federation against heart failure
- Netherlands Heart Foundation
- Dekker Senior Clinical Scientist
- Health Holland TKI-LSH
- TUe/UMCU/UU Alliance Fund
- south African National Foundation
- Cancer Association of South Africa and Winetech
- Netherlands Heart Foundation/Applied & Engineering Sciences
- Dutch Technology Foundation
- Pie Medical Imaging
- Netherlands Organisation for Scientific Research
- Dr. Dekker Program
- Netherlands CardioVascular Research Initiative: the Dutch Heart Foundation
- Dutch Federation of University Medical Centres
- Netherlands Organization for Health Research and Development and the Royal Netherlands Academy of Sciences for the GENIUS-II project
- Netherlands Organization for Scientific Research (NWO) (VICI grant); the European Research Council
- Incyte s.r.l. and from Ministero dell’Istruzione, Università e Ricerca Scientifica
- German Center for Cardiovascular Research (Junior Research Group & Translational Research Project), the European Research Council (ERC Starting Grant NORVAS),
- Swedish Heart-Lung-Foundation
- Swedish Research Council
- National Institutes of Health
- Bavarian State Ministry of Health and Care through the research project DigiMed Bayern
- ERC
- ERA-CVD
- Dutch Heart Foundation, ZonMw
- the NWO Gravitation project
- Ministero dell'Istruzione, Università e Ricerca Scientifica
- Regione Lombardia
- Netherlands Organisation for Health Research and Development
- ITN Network Personalize AF: Personalized Therapies for Atrial Fibrillation: a translational network
- MAESTRIA: Machine Learning Artificial Intelligence Early Detection Stroke Atrial Fibrillation
- REPAIR: Restoring cardiac mechanical function by polymeric artificial muscular tissue
- Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
- European Union H2020 program to the project TECHNOBEAT
- EVICARE
- BRAV3
- ZonMw
- German Centre for Cardiovascular Research (DZHK)
- British Heart Foundation Centre for Cardiac Regeneration
- British Heart Foundation studentship
- NC3Rs
- Interreg ITA-AUS project InCARDIO
- Italian Association for Cancer Research
Collapse
Affiliation(s)
- Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Faculty of Population Health Sciences, Institute of Cardiovascular Science and Institute of Health Informatics, University College London, London, UK
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Sandor Batkai
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
| | - Luc Bertrand
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
| | - Connie R Bezzina
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Ilze Bot
- Heart Center, Department of Experimental Cardiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Bianca J J M Brundel
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Steven Chamuleau
- Amsterdam UMC, Heart Center, Cardiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Odontology, University of Salerno, Fisciano (SA), Italy
| | - Dana Dawson
- Department of Cardiology, Aberdeen Cardiovascular and Diabetes Centre, Aberdeen Royal Infirmary and University of Aberdeen, Aberdeen, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| | - Andreas Dendorfer
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Larissa Fabritz
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
- University Center of Cardiovascular Sciences and Department of Cardiology, University Heart Center Hamburg, Germany and Institute of Cardiovascular Sciences, University of Birmingham, UK
| | - Ines Falcão-Pires
- UnIC - Cardiovascular Research and Development Centre, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Portugal
| | - Péter Ferdinandy
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Mauro Giacca
- Department of Medicine, Surgery and Health Sciences and Cardiovascular Department, Centre for Translational Cardiology, Azienda Sanitaria Universitaria Integrata Trieste, Trieste, Italy
- International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- King’s British Heart Foundation Centre, King’s College London, London, UK
| | - Henrique Girao
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology, Faculty of Medicine, Coimbra, Portugal
- Clinical Academic Centre of Coimbra, Coimbra, Portugal
| | | | - Mariann Gyongyosi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Tomasz J Guzik
- Instutute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Nazha Hamdani
- Division Cardiology, Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Stephane Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Andres Hilfiker
- Department for Cardiothoracic, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Denise Hilfiker-Kleiner
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany
- Department of Cardiovascular Complications in Pregnancy and in Oncologic Therapies, Comprehensive Cancer Centre, Philipps-Universität Marburg, Germany
| | - Alfons G Hoekstra
- Computational Science Lab, Informatics Institute, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Jean-Sébastien Hulot
- Université de Paris, INSERM, PARCC, F-75015 Paris, France
- CIC1418 and DMU CARTE, AP-HP, Hôpital Européen Georges-Pompidou, F-75015 Paris, France
| | - Diederik W D Kuster
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Linda W van Laake
- Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sandrine Lecour
- Department of Medicine, Hatter Institute for Cardiovascular Research in Africa and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Tim Leiner
- Department of Radiology, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster, Robert-Koch-Str. 27B, 48149 Muenster, Germany
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Esther Lutgens
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany
| | - Rosalinda Madonna
- Department of Pathology, Cardiology Division, University of Pisa, 56124 Pisa, Italy
- Department of Internal Medicine, Cardiology Division, University of Texas Medical School in Houston, Houston, TX, USA
| | - Lars Maegdefessel
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Mayr
- King’s British Heart Foundation Centre, King’s College London, London, UK
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Robert Passier
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500AE Enschede, The Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| | - Filippo Perbellini
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro cardiologico Monzino, IRCCS, Milan, Italy
| | - Silvia Priori
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, Pavia, Italy
- University of Pavia, Pavia, Italy
| | - Carol Ann Remme
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Bodo Rosenhahn
- Institute for information Processing, Leibniz University of Hanover, 30167 Hannover, Germany
| | - Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Karin R Sipido
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, Department of Cardiology, Regenerative Medicine Center Utrecht, Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank van Steenbeek
- Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany
| | | | - Carlo Gabriele Tocchetti
- Cardio-Oncology Unit, Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center for Clinical and Translational Research (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Patricia Vlasman
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Kak Khee Yeung
- Amsterdam UMC, Vrije Universiteit, Surgery, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Serena Zacchigna
- Department of Medicine, Surgery and Health Sciences and Cardiovascular Department, Centre for Translational Cardiology, Azienda Sanitaria Universitaria Integrata Trieste, Trieste, Italy
- International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Dayenne Zwaagman
- Amsterdam UMC, Heart Center, Cardiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Thomas Thum
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| |
Collapse
|
86
|
Li W, Guo S, Miao N. Transcriptional responses of fluxapyroxad-induced dysfunctional heart in zebrafish (Danio rerio) embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90034-90045. [PMID: 35864390 DOI: 10.1007/s11356-022-21981-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Fluxapyroxad (FLU) is a succinate dehydrogenase inhibitor (SDHI) fungicide used in controlling crop diseases. Potential toxicity to aquatic organisms is not known. We exposed zebrafish to 1, 2, and 4 μM FLU for 3 days. The embryonic zebrafish showed developmental cardiac defects, including heart malformation, pericardial edema, and heart rate reduction. Compared with the controls, cardiac-specific transcription factors (nkx2.5, myh7, myl7, and myh6) exhibited dysregulated expression patterns after FLU treatment. We next used transcriptome and qRT-PCR analyses to explore the molecular mechanism of FLU cardiotoxicity. The transcriptome analysis and interaction network showed that the downregulated genes were enriched in calcium signaling pathways, adrenergic signaling in cardiomyocytes, and cardiac muscle contraction. FLU exposure repressed the cardio-related calcium signaling pathway, associated with apoptosis in the heart and other manifestations of cardiotoxicity. Thus, the findings provide valuable evidence that FLU exposure causes disruption of cardiac development in zebrafish embryos. Our findings will help to promote a better understanding of the toxicity mechanisms of FLU and act as a reference to explore the rational use and safety of FLU in agriculture.
Collapse
Affiliation(s)
- Wenhua Li
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Shanshan Guo
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Nan Miao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, 668 Jimei Road, Xiamen, 361021, People's Republic of China.
| |
Collapse
|
87
|
Yang X, Li L, Shi Y, Wang X, Zhang Y, Jin M, Chen X, Wang R, Liu K. Neurotoxicity of sanguinarine via inhibiting mitophagy and activating apoptosis in zebrafish and PC12 cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105259. [PMID: 36464364 DOI: 10.1016/j.pestbp.2022.105259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/20/2022] [Accepted: 10/06/2022] [Indexed: 06/17/2023]
Abstract
Sanguinarine, a plant-derived phytoalexin, displays various biological activities, such as insecticidal, antimicrobial, anti-inflammatory, anti-angiogenesis and antitumor effects. But its potential neurotoxicity and the underlying mechanisms has rarely been investigated. Therefore, we aimed to assess the neurotoxicity of sanguinarine using zebrafish model and PC12 cells in this study. The results showed that sanguinarine induced the reduction of the length of dopamine neurons and inhibited the blood vessel in the head area of the zebrafish. Further studies demonstrated that the behavioral phenotype of the larval zebrafish was changed by sanguinarine. In addition, there were more apoptotic cells in the larval zebrafish head area. The mRNA expression levels of β-syn, th, pink1 and parkin, closely related to the nervous function, were changed after sanguinarine treatment. The in vitro studies show that notably increases of ROS and apoptosis levels in PC12 cells were observed after sanguinarine treatment. Moreover, the protein expression of Caspase3, Parp, Bax, Bcl2, α-Syn, Th, PINK1 and Parkin were also altered by sanguinarine. Our data indicated that the inhibition of mitophagy, ROS elevation and apoptosis were involved in the neurotoxicity of sanguinarine. These findings will be useful to understand the toxicity induced by sanguinarine.
Collapse
Affiliation(s)
- Xueliang Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Lei Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Yuxin Shi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Xue Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Xiqiang Chen
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China.
| |
Collapse
|
88
|
Porretti M, Arrigo F, Di Bella G, Faggio C. Impact of pharmaceutical products on zebrafish: An effective tool to assess aquatic pollution. Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109439. [PMID: 35961532 DOI: 10.1016/j.cbpc.2022.109439] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/29/2022] [Accepted: 08/07/2022] [Indexed: 11/20/2022]
Abstract
Overuse of pharmaceuticals products (PPs) and sometimes ineffective wastewater purification systems have led to the accumulation of these residues in aquatic systems. Raising concerns about the likely harmful effects of these substances both to ecosystems and to human health. Animals as model organisms are nowadays increasingly used to track the health of environmental system around the world. They can be used to understand biological processes, to obtain information on the health status of the environment, and to better understand the effects of xenobiotics on organisms. Among model organisms, the zebrafish (Danio rerio) is one of the best models for studying evolution biology, cancer, toxicology, drug discovery, and genetics. This fish is a multipurpose model organism, due to its easy of maintenance and keeping and the transparency of the embryo during the early stages of development. In this paper, the toxicological effects of typical PPs, and their effects on zebrafish are reviewed. Many PPs have been found to be toxic or even fatal to zebrafish. Showing how these pharmaceuticals compound can affect zebrafish from the larval stage and even in the adult stage. Zebrafish is thus a model for how we can better understand how medications affect not only individual fish but the entire aquatic ecosystem, bringing about perturbations in their behaviour and putting their survival at risk.
Collapse
Affiliation(s)
- Miriam Porretti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences of the University of Messina, Messina, Italy
| | - Federica Arrigo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences of the University of Messina, Messina, Italy
| | - Giuseppa Di Bella
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences of the University of Messina, Messina, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences of the University of Messina, Messina, Italy.
| |
Collapse
|
89
|
Ding Y, Lang D, Yan J, Bu H, Li H, Jiao K, Yang J, Ni H, Morotti S, Le T, Clark KJ, Port J, Ekker SC, Cao H, Zhang Y, Wang J, Grandi E, Li Z, Shi Y, Li Y, Glukhov AV, Xu X. A phenotype-based forward genetic screen identifies Dnajb6 as a sick sinus syndrome gene. eLife 2022; 11:e77327. [PMID: 36255053 PMCID: PMC9642998 DOI: 10.7554/elife.77327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Previously we showed the generation of a protein trap library made with the gene-break transposon (GBT) in zebrafish (Danio rerio) that could be used to facilitate novel functional genome annotation towards understanding molecular underpinnings of human diseases (Ichino et al, 2020). Here, we report a significant application of this library for discovering essential genes for heart rhythm disorders such as sick sinus syndrome (SSS). SSS is a group of heart rhythm disorders caused by malfunction of the sinus node, the heart's primary pacemaker. Partially owing to its aging-associated phenotypic manifestation and low expressivity, molecular mechanisms of SSS remain difficult to decipher. From 609 GBT lines screened, we generated a collection of 35 zebrafish insertional cardiac (ZIC) mutants in which each mutant traps a gene with cardiac expression. We further employed electrocardiographic measurements to screen these 35 ZIC lines and identified three GBT mutants with SSS-like phenotypes. More detailed functional studies on one of the arrhythmogenic mutants, GBT411, in both zebrafish and mouse models unveiled Dnajb6 as a novel SSS causative gene with a unique expression pattern within the subpopulation of sinus node pacemaker cells that partially overlaps with the expression of hyperpolarization activated cyclic nucleotide gated channel 4 (HCN4), supporting heterogeneity of the cardiac pacemaker cells.
Collapse
Affiliation(s)
- Yonghe Ding
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao UniversityQingdaoChina
| | - Di Lang
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
- Department of Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Jianhua Yan
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
- Division of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School Of MedicineShanghaiChina
| | - Haisong Bu
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
- Department of Cardiothoracic Surgery, Xiangya Hospital, Central South UniversityChangshaChina
| | - Hongsong Li
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
- Department of Cardiovascular Medicine, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health ScienceShanghaiChina
| | - Kunli Jiao
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
- Division of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School Of MedicineShanghaiChina
| | - Jingchun Yang
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
| | - Haibo Ni
- Department of Pharmacology, University of California, DavisDavisUnited States
| | - Stefano Morotti
- Department of Pharmacology, University of California, DavisDavisUnited States
| | - Tai Le
- Department of Biomedical Engineering, University of California, IrvineIrvineUnited States
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
| | - Jenna Port
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
| | - Hung Cao
- Department of Biomedical Engineering, University of California, IrvineIrvineUnited States
- Department of Electrical Engineering and Computer Science, University of California, IrvineIrvineUnited States
| | - Yuji Zhang
- Department of Epidemiology and Public Health, University of Maryland School of MedicineBaltimoreUnited States
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at HoustonHoustonUnited States
| | - Eleonora Grandi
- Department of Pharmacology, University of California, DavisDavisUnited States
| | - Zhiqiang Li
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao UniversityQingdaoChina
| | - Yongyong Shi
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao UniversityQingdaoChina
| | - Yigang Li
- Division of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School Of MedicineShanghaiChina
| | - Alexey V Glukhov
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
| |
Collapse
|
90
|
Han X, Xu X, Yu T, Li M, Liu Y, Lai J, Mao H, Hu C, Wang S. Diflubenzuron Induces Cardiotoxicity in Zebrafish Embryos. Int J Mol Sci 2022; 23:11932. [PMID: 36233243 PMCID: PMC9570284 DOI: 10.3390/ijms231911932] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Diflubenzuron is an insecticide that serves as a chitin inhibitor to restrict the growth of many harmful larvae, including mosquito larvae, cotton bollworm and flies. The residue of diflubenzuron is often detected in aquaculture, but its potential toxicity to aquatic organisms is still obscure. In this study, zebrafish embryos (from 6 h to 96 h post-fertilization, hpf) were exposed to different concentrations of diflubenzuron (0, 0.5, 1.5, 2.5, 3.5 and 4.5 mg/L), and the morphologic changes, mortality rate, hatchability rate and average heart rate were calculated. Diflubenzuron exposure increased the distance between the venous sinus and bulbar artery (SV-BA), inhibited proliferation of myocardial cells and damaged vascular development. In addition, diflubenzuron exposure also induced contents of reactive oxygen species (ROS) and malondialdehyde (MDA) and inhibited the activity of antioxidants, including SOD (superoxide dismutase) and CAT (catalase). Moreover, acridine orange (AO) staining showed that diflubenzuron exposure increased the apoptotic cells in the heart. Q-PCR also indicated that diflubenzuron exposure promoted the expression of apoptosis-related genes (bax, bcl2, p53, caspase3 and caspase9). However, the expression of some heart-related genes were inhibited. The oxidative stress-induced apoptosis damaged the cardiac development of zebrafish embryos. Therefore, diflubenzuron exposure induced severe cardiotoxicity in zebrafish embryos. The results contribute to a more comprehensive understanding of the safety use of diflubenzuron.
Collapse
Affiliation(s)
- Xue Han
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Xiaowen Xu
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Tingting Yu
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Meifeng Li
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Yulong Liu
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Jingli Lai
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Huiling Mao
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Chengyu Hu
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Shanghong Wang
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|
91
|
Intrinsic myocardial defects underlie an Rbfox-deficient zebrafish model of hypoplastic left heart syndrome. Nat Commun 2022; 13:5877. [PMID: 36198703 PMCID: PMC9534849 DOI: 10.1038/s41467-022-32982-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/18/2022] [Indexed: 02/03/2023] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is characterized by underdevelopment of left sided structures including the ventricle, valves, and aorta. Prevailing paradigm suggests that HLHS is a multigenic disease of co-occurring phenotypes. Here, we report that zebrafish lacking two orthologs of the RNA binding protein RBFOX2, a gene linked to HLHS in humans, display cardiovascular defects overlapping those in HLHS patients including ventricular, valve, and aortic deficiencies. In contrast to current models, we demonstrate that these structural deficits arise secondary to impaired pump function as these phenotypes are rescued when Rbfox is specifically expressed in the myocardium. Mechanistically, we find diminished expression and alternative splicing of sarcomere and mitochondrial components that compromise sarcomere assembly and mitochondrial respiration, respectively. Injection of human RBFOX2 mRNA restores cardiovascular development in rbfox mutant zebrafish, while HLHS-linked RBFOX2 variants fail to rescue. This work supports an emerging paradigm for HLHS pathogenesis that centers on myocardial intrinsic defects.
Collapse
|
92
|
Du Z, Hou K, Zhou T, Shi B, Zhang C, Zhu L, Li B, Wang J, Wang J. Polyhalogenated carbazoles (PHCZs) induce cardiotoxicity and behavioral changes in zebrafish at early developmental stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156738. [PMID: 35716752 DOI: 10.1016/j.scitotenv.2022.156738] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Polyhalogenated carbazoles (PHCZs) are widely present in the environment, and their health risks are of increasing concern. Available studies primarily confirm their dioxin-like toxicity mechanism based on biomarkers, such as aryl hydrocarbon receptor (AHR) and CYP1A1, while few studies have investigated their actual toxic effects at the level of individual organisms. In the present study, the developmental toxicity of two typical PHCZs with a high detection rate and high concentration in the environment (3,6-dichlorocarbazol (3,6-DCCZ) and 3,6-dibromocarbazole (3,6-DBCZ)) was investigated based on a fish embryo acute toxicity test (FET, zebrafish) and transcriptomics analysis. The 96 h LC50 values of 3,6-DCCZ and 3,6-DBCZ were 0.636 mg/L and 1.167 mg/L, respectively. Both tested PHCZs reduced the zebrafish heart rate and blocked heart looping at concentrations of 0.5 mg/L or higher. The swimming/escaping behavior of zebrafish larvae was more vulnerable to 3,6-DBCZ than 3,6-DCCZ. Transcriptomics assays showed that multiple pathways linked to organ development, immunization, metabolism and protein synthesis were disturbed in PHCZ-exposed fish, which might be the internal mechanism of the adverse effects. The present study provides evidence that PHCZs cause cardiac developmental toxicity and behavioral changes and improves our understanding of their health risks.
Collapse
Affiliation(s)
- Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, PR China.
| | - Kaixuan Hou
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, PR China.
| | - Tongtong Zhou
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, PR China
| | - Baihui Shi
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, PR China.
| | - Cheng Zhang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, PR China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, PR China
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, PR China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, PR China.
| |
Collapse
|
93
|
Folkerts EJ, Snihur KN, Zhang Y, Martin JW, Alessi DS, Goss GG. Embryonic cardio-respiratory impairments in rainbow trout (Oncorhynchus mykiss) following exposure to hydraulic fracturing flowback and produced water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119886. [PMID: 35934150 DOI: 10.1016/j.envpol.2022.119886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
During hydraulic fracturing, wastewaters - termed flowback and produced water (FPW) - are created as a by-product during hydrocarbon extraction. Given the large volumes of FPW that a single well can produce, and the history of FPW release to surface water bodies, it is imperative to understand the hazards that hydraulic fracturing and FPW pose to aquatic biota. Using rainbow trout embryos as model organisms, we investigated impacts to cardio-respiratory system development and function following acute (48 h) and sub-chronic (28-day) FPW exposure by examining occurrences of developmental deformities, rates of embryonic respiration (MO2), and changes in expression of critical cardiac-specific genes. FPW-exposed embryos had significantly increased rates of pericardial edema, yolk-sac edema, and tail/trunk curvatures at hatch. Furthermore, when exposed at three days post-fertilization (dpf), acute 5% FPW exposures significantly increased embryonic MO2 through development until 15 dpf, where a switch to significantly reduced MO2 rates was subsequently recorded. A similar trend was observed during sub-chronic 1% FPW exposures. Interestingly, at certain specific developmental timepoints, previous salinity exposure seemed to affect embryonic MO2; a result not previously observed. Following acute FPW exposures, embryonic genes for cardiac development and function were significantly altered, although at termination of sub-chronic exposures, significant changes to these same genes were not found. Together, our evidence of induced developmental deformities, modified embryonic MO2, and altered cardiac transcript expression suggest that cardio-respiratory tissues are toxicologically targeted following FPW exposure in developing rainbow trout. These results may be helpful to regulatory bodies when developing hazard identification and risk management protocols concerning hydraulic fracturing activities.
Collapse
Affiliation(s)
- Erik J Folkerts
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| | - Katherine N Snihur
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Yifeng Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, T6G 2G3, Alberta, Canada
| | - Jonathan W Martin
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, T6G 2G3, Alberta, Canada; Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada; NRC- University of Alberta Nanotechnology Initiative, Edmonton, AB, T6G 2M9, Canada
| |
Collapse
|
94
|
Nodal signaling regulates asymmetric cellular behaviors, driving clockwise rotation of the heart tube in zebrafish. Commun Biol 2022; 5:996. [PMID: 36131094 PMCID: PMC9492702 DOI: 10.1038/s42003-022-03826-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
Clockwise rotation of the primitive heart tube, a process regulated by restricted left-sided Nodal signaling, is the first morphological manifestation of left-right asymmetry. How Nodal regulates cell behaviors to drive asymmetric morphogenesis remains poorly understood. Here, using high-resolution live imaging of zebrafish embryos, we simultaneously visualized cellular dynamics underlying early heart morphogenesis and resulting changes in tissue shape, to identify two key cell behaviors: cell rearrangement and cell shape change, which convert initially flat heart primordia into a tube through convergent extension. Interestingly, left cells were more active in these behaviors than right cells, driving more rapid convergence of the left primordium, and thereby rotating the heart tube. Loss of Nodal signaling abolished the asymmetric cell behaviors as well as the asymmetric convergence of the left and right heart primordia. Collectively, our results demonstrate that Nodal signaling regulates the magnitude of morphological changes by acting on basic cellular behaviors underlying heart tube formation, driving asymmetric deformation and rotation of the heart tube.
Collapse
|
95
|
Qin XJ, Xu MM, Ye JJ, Niu YW, Wu YR, Xu R, Li F, Fu QH, Chen S, Sun K, Xu YJ. De novo disruptive heterozygous MMP21 variants are potential predisposing genetic risk factors in Chinese Han heterotaxy children. Hum Genomics 2022; 16:41. [PMID: 36123719 PMCID: PMC9484203 DOI: 10.1186/s40246-022-00409-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
Background Heterotaxy syndrome (HTX) is caused by aberrant left–right patterning early in embryonic development, which results in abnormal positioning and morphology of the thoracic and abdominal organs. Currently, genetic testing discerns the underlying genetic cause in less than 20% of sporadic HTX cases, indicating that genetic pathogenesis remains poorly understood. In this study, we aim to garner a deeper understanding of the genetic factors of this disease by documenting the effect of different matrix metalloproteinase 21 (MMP21) variants on disease occurrence and pathogenesis. Methods Eighty-one HTX patients with complex congenital heart defects and 89 healthy children were enrolled, and we investigated the pathogenetic variants related to patients with HTX by exome sequencing. Zebrafish splice-blocking Morpholino oligo-mediated transient suppression assays were performed to confirm the potential pathogenicity of missense variants found in these patients with HTX. Results Three MMP21 heterozygous non-synonymous variants (c.731G > A (p.G244E), c.829C > T (p.L277F), and c.1459A > G (p.K487E)) were identified in three unrelated Chinese Han patients with HTX and complex congenital heart defects. Sanger sequencing confirmed that all variants were de novo. Cell transfection assay showed that none of the variants affect mRNA and protein expression levels of MMP21. Knockdown expression of mmp21 by splice-blocking Morpholino oligo in zebrafish embryos revealed a heart looping disorder, and mutant human MMP21 mRNA (c.731G > A, c.1459A > G, heterozygous mRNA (wild-type&c.731G > A), as well as heterozygous mRNA (wild-type& c.1459A > G) could not effectively rescue the heart looping defects. A patient with the MMP21 p.G244E variant was identified with other potential HTX-causing missense mutations, whereas the patient with the MMP21 p.K487E variant had no genetic mutations in other causative genes related to HTX. Conclusion Our study highlights the role of the disruptive heterozygous MMP21 variant (p.K487E) in the etiology of HTX with complex cardiac malformations and expands the current mutation spectrum of MMP21 in HTX. Supplementary Information The online version contains supplementary material available at 10.1186/s40246-022-00409-9.
Collapse
Affiliation(s)
- Xi-Ji Qin
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Room 505, Scientific Building, Shanghai, 200092, China
| | - Meng-Meng Xu
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Room 505, Scientific Building, Shanghai, 200092, China.,Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jia-Jun Ye
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Room 505, Scientific Building, Shanghai, 200092, China
| | - Yi-Wei Niu
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Room 505, Scientific Building, Shanghai, 200092, China
| | - Yu-Rong Wu
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Room 505, Scientific Building, Shanghai, 200092, China
| | - Rang Xu
- Scientific Research Center, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Fen Li
- Department of Pediatric Cardiology, Shanghai Children's Medical Center, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Qi-Hua Fu
- Medical Laboratory, Shanghai Children's Medical Center, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Sun Chen
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Room 505, Scientific Building, Shanghai, 200092, China.
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Room 505, Scientific Building, Shanghai, 200092, China.
| | - Yue-Juan Xu
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Room 505, Scientific Building, Shanghai, 200092, China.
| |
Collapse
|
96
|
Abdullah NR, Mohd Nasir MH, Azizan NH, Wan-Mohtar WAAQI, Sharif F. Bioreactor-grown exo- and endo-β-glucan from Malaysian Ganoderma lucidum: An in vitro and in vivo study for potential antidiabetic treatment. Front Bioeng Biotechnol 2022; 10:960320. [PMID: 36091430 PMCID: PMC9452895 DOI: 10.3389/fbioe.2022.960320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
This study aims to identify the roles of exo-β-glucan (EPS-BG) and endo-β-glucan (ENS-BG) extracted from Ganoderma lucidum (GL) in inhibiting the alpha-glucosidase enzyme, a target mechanism for postprandial hyperglycaemia regulation. Upscale production of GL was carried out using a 10 L bioreactor. The zebrafish embryo toxicity test (ZFET) was carried out based on OECD guidelines. The hatching rate, survival rate, heart rate, morphological malformation, and teratogenic defects were observed and determined every 24 h from 0–120 h of post-exposure (hpe). For diabetes induction, adult zebrafish (3–4 months of age) were overfed and induced with three doses of 350 mg/kg streptozotocin (STZ) by intraperitoneal injection (IP) on three different days (days 1, 3, and 5). The oral sucrose tolerance test (OSTT) and anti-diabetic activity of EPS-BG and ENS-BG were evaluated (day 7) using the developed model (n = 15). This study showed that EPS is the most potent compound with the highest inhibitory effect toward the alpha-glucosidase enzyme with an IC50 value of 0.1575 mg/ml compared to ENS extracts (IC50 = 0.3479 mg/ml). Both EPS-BG and ENS-BG demonstrated a strong inhibition of alpha-glucosidase activity similar to the clinically approved alpha-glucosidase inhibitor, acarbose (IC50 = 0.8107 mg/ml). ENS-BG is non-toxic toward zebrafish embryos with LC50 of 0.92 mg/ml and showed no significant changes in ZE hatching and normal heart rate as compared to untreated embryos (161 beats/min). Teratogenic effects of ENS-BG (<1.0 mg/ml) on zebrafish embryonic development were not observed. The DM model of zebrafish was acquired after the third dose of STZ with a fasting BGL of 8.98 ± 0.28 mmol/L compared to the normal healthy group (4.23 ± 0.62 mmol/L). The BGL of DM zebrafish after 30 min treated with EPS-BG and ENS-BG showed a significant reduction (p < 0.0001). Both EPS-BG and ENS-BG significantly reduced DM zebrafish’s peak blood glucose and the area under the curve (AUC) in OSTT. Hence, EPS-BG and ENS-BG extracted from GL showed promising inhibition of the alpha-glucosidase enzyme and are considered non-toxic in ZE. Moreover, EPS-BG and ENS-BG reduced blood glucose levels and inhibited hyperglycemia in DM zebrafish.
Collapse
Affiliation(s)
- Nur Raihan Abdullah
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
| | - Mohd Hamzah Mohd Nasir
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
| | - Nur Hafizah Azizan
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Faez Sharif
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
- *Correspondence: Faez Sharif,
| |
Collapse
|
97
|
Zakaria ZZ, Eisa-Beygi S, Benslimane FM, Ramchandran R, Yalcin HC. Design and Microinjection of Morpholino Antisense Oligonucleotides and mRNA into Zebrafish Embryos to Elucidate Specific Gene Function in Heart Development. J Vis Exp 2022:10.3791/63324. [PMID: 36036621 PMCID: PMC10388372 DOI: 10.3791/63324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023] Open
Abstract
The morpholino oligomer-based knockdown system has been used to identify the function of various gene products through loss or reduced expression. Morpholinos (MOs) have the advantage in biological stability over DNA oligos because they are not susceptible to enzymatic degradation. For optimal effectiveness, MOs are injected into 1-4 cell stage embryos. The temporal efficacy of knockdown is variable, but MOs are believed to lose their effects due to dilution eventually. Morpholino dilution and injection amount should be closely controlled to minimize the occurrence of off-target effects while maintaining on-target efficacy. Additional complementary tools, such as CRISPR/Cas9 should be performed against the target gene of interest to generate mutant lines and to confirm the morphant phenotype with these lines. This article will demonstrate how to design, prepare, and microinject a translation-blocking morpholino against hand2 into the yolk of 1-4 cell stage zebrafish embryos to knockdown hand2 function and rescue these "morphants" by co-injection of mRNA encoding the corresponding cDNA. Subsequently, the efficacy of the morpholino microinjections is assessed by first verifying the presence of morpholino in the yolk (co-injected with phenol red) and then by phenotypic analysis. Moreover, cardiac functional analysis to test for knockdown efficacy will be discussed. Finally, assessing the effect of morpholino-induced blockage of gene translation via western blotting will be explained.
Collapse
Affiliation(s)
- Zain Zaki Zakaria
- Biomedical Research Center, Qatar University, Doha, Qatar; Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Shahram Eisa-Beygi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin
| | | | | | | |
Collapse
|
98
|
Kent ME, Hu B, Eggleston TM, Squires RS, Zimmerman KA, Weiss RM, Roghair RD, Lin F, Cornell RA, Haskell SE. Hypersensitivity of Zebrafish htr2b Mutant Embryos to Sertraline Indicates a Role for Serotonin Signaling in Cardiac Development. J Cardiovasc Pharmacol 2022; 80:261-269. [PMID: 35904815 PMCID: PMC9354722 DOI: 10.1097/fjc.0000000000001297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/05/2022] [Indexed: 11/09/2022]
Abstract
ABSTRACT Selective serotonin reuptake inhibitors (SSRIs) are antidepressants prescribed in 10% of pregnancies in the United States. Maternal use of SSRIs has been linked to an elevated rate of congenital heart defects, but the exact mechanism of pathogenesis is unknown. Previously, we have shown a decrease in cardiomyocyte proliferation, left ventricle size, and reduced cardiac expression of the serotonin receptor 5-HT 2B in offspring of mice exposed to the SSRI sertraline during pregnancy, relative to offspring of untreated mice. These results suggest that disruption of serotonin signaling leads to heart defects. Supporting this conclusion, we show here that zebrafish embryos exposed to sertraline develop with a smaller ventricle, reduced cardiomyocyte number, and lower cardiac expression of htr2b relative to untreated embryos. Moreover, zebrafish embryos homozygous for a nonsense mutation of htr2b ( htr2bsa16649 ) were sensitized to sertraline treatment relative to wild-type embryos. Specifically, the ventricle area was reduced in the homozygous htr2b mutants treated with sertraline compared with wild-type embryos treated with sertraline and homozygous htr2b mutants treated with vehicle control. Whereas long-term effects on left ventricle shortening fraction and stroke volume were observed by echocardiography in adult mice exposed to sertraline in utero, echocardiograms of adult zebrafish exposed to sertraline as embryos were normal. These results implicate the 5-HT 2B receptor functions in heart development and suggest zebrafish are a relevant animal model that can be used to investigate the connection between maternal SSRI use and elevated risk of congenital heart defects.
Collapse
Affiliation(s)
| | - Bo Hu
- Anatomy and Cell Biology; and
| | | | | | - Kathy A. Zimmerman
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Robert M. Weiss
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA
| | | | | | | | | |
Collapse
|
99
|
Yan R, Ding J, Wei Y, Yang Q, Zhang X, Huang H, Shi Z, Feng Y, Li H, Zhang H, Ding W, An Y. Melatonin Prevents NaAsO2-Induced Developmental Cardiotoxicity in Zebrafish through Regulating Oxidative Stress and Apoptosis. Antioxidants (Basel) 2022; 11:antiox11071301. [PMID: 35883792 PMCID: PMC9311860 DOI: 10.3390/antiox11071301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 11/16/2022] Open
Abstract
Melatonin is an indoleamine hormone secreted by the pineal gland. It has antioxidation and anti-apoptosis effects and a clear protective effect against cardiovascular diseases. Our previous studies demonstrated that embryonic exposure to sodium arsenite (NaAsO2) can lead to an abnormal cardiac development. The aim of this study was to determine whether melatonin could protect against NaAsO2-induced generation of reactive oxygen species (ROS), oxidative stress, apoptosis, and abnormal cardiac development in a zebrafish (Danio rerio) model. We found that melatonin decreased NaAsO2-induced zebrafish embryonic heart malformations and abnormal heart rates at a melatonin concentration as low as 10−9 mol/L. The NaAsO2-induced oxidative stress was counteracted by melatonin supplementation. Melatonin blunted the NaAsO2-induced overproduction of ROS, the upregulation of oxidative stress-related genes (sod2, cat, gpx, nrf2, ho-1), and the production of antioxidant enzymes (Total SOD, SOD1, SOD2, CAT). Melatonin attenuated the NaAsO2-induced oxidative damage, DNA damage, and apoptosis, based on malonaldehyde and 8-OHdG levels and apoptosis-related gene expression (caspase-3, bax, bcl-2), respectively. Melatonin also maintained the control levels of heart development-related genes (nkx2.5, sox9b) affected by NaAsO2. In conclusion, melatonin protected against NaAsO2-induced heart malformations by inhibiting the oxidative stress and apoptosis in zebrafish.
Collapse
Affiliation(s)
- Rui Yan
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou 215123, China; (R.Y.); (J.D.); (Y.W.); (Q.Y.); (X.Z.); (H.H.); (Z.S.); (Y.F.)
| | - Jie Ding
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou 215123, China; (R.Y.); (J.D.); (Y.W.); (Q.Y.); (X.Z.); (H.H.); (Z.S.); (Y.F.)
| | - Yuanjie Wei
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou 215123, China; (R.Y.); (J.D.); (Y.W.); (Q.Y.); (X.Z.); (H.H.); (Z.S.); (Y.F.)
| | - Qianlei Yang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou 215123, China; (R.Y.); (J.D.); (Y.W.); (Q.Y.); (X.Z.); (H.H.); (Z.S.); (Y.F.)
| | - Xiaoyun Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou 215123, China; (R.Y.); (J.D.); (Y.W.); (Q.Y.); (X.Z.); (H.H.); (Z.S.); (Y.F.)
| | - Hairu Huang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou 215123, China; (R.Y.); (J.D.); (Y.W.); (Q.Y.); (X.Z.); (H.H.); (Z.S.); (Y.F.)
| | - Zhuoyue Shi
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou 215123, China; (R.Y.); (J.D.); (Y.W.); (Q.Y.); (X.Z.); (H.H.); (Z.S.); (Y.F.)
| | - Yue Feng
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou 215123, China; (R.Y.); (J.D.); (Y.W.); (Q.Y.); (X.Z.); (H.H.); (Z.S.); (Y.F.)
| | - Heran Li
- Microwants International Ltd., Hong Kong, China;
| | - Hengdong Zhang
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Preventive Medicine Association, Nanjing 210028, China;
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Correspondence: (W.D.); (Y.A.)
| | - Yan An
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou 215123, China; (R.Y.); (J.D.); (Y.W.); (Q.Y.); (X.Z.); (H.H.); (Z.S.); (Y.F.)
- Correspondence: (W.D.); (Y.A.)
| |
Collapse
|
100
|
Can Blebbistatin block the hypertrophy status in the zebrafish exvivo cardiac model? Biochim Biophys Acta Mol Basis Dis 2022; 1868:166471. [PMID: 35750268 DOI: 10.1016/j.bbadis.2022.166471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/31/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022]
Abstract
Ex-vivo simple models are powered tools to study cardiac hypertrophy. It is possible to control the activation of critical genes and thus test the effects of drug therapies before the in vivo tests. A zebrafish cardiac hypertrophy developed by 500 μM phenylephrine (PE) treatment in ex vivo culture has been demonstrated to activate the essential expression of the embryonal genes. These genes are the same as those described in several previous pieces of research on hypertrophic pathology in humans. The efficacy of the chemical drug Blebbistatin (BL) on hypertrophy induced ex vivo cultured hearts is studied in this research. BL can inhibit the myosins and the calcium wave in counteracting the hypertrophy status caused by PE. Samples treated with PE, BL and PE simultaneously, or pre/post-treatment with BL, have been analysed for the embryonal gene activation concerning the hypertrophy status. The qRTPCR has shown an inhibitory effect of BL treatments on the microRNAs downregulation with the consequent low expression of essential embryonal genes. In particular, BL seems to be effective in blocking the hyperplasia of the epicardium but less effective in myocardium hypertrophy. The model can make it possible to obtain knowledge on the transduction pathways activated by BL and investigate the potential use of this drug in treating cardiac hypertrophy in humans.
Collapse
|