51
|
Velásquez ZD, Conejeros I, Larrazabal C, Kerner K, Hermosilla C, Taubert A. Toxoplasma gondii-induced host cellular cell cycle dysregulation is linked to chromosome missegregation and cytokinesis failure in primary endothelial host cells. Sci Rep 2019; 9:12496. [PMID: 31467333 PMCID: PMC6715697 DOI: 10.1038/s41598-019-48961-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 08/14/2019] [Indexed: 12/31/2022] Open
Abstract
Toxoplasma gondii is a zoonotic and intracellular parasite with fast proliferating properties leading to rapid host cell lysis. T. gondii modulates its host cell on numerous functional levels. T. gondii was previously reported to influence host cellular cell cycle and to dampen host cell division. By using primary endothelial host cells, we show for the first time that T. gondii tachyzoite infections led to increased host cell proliferation and to an enhanced number of multi-nucleated host cells. As detected on DNA content level, parasite infections induced a G2/M cell cycle arrest without affecting expression of G2-specific cyclin B1. In line, parasite-driven impairment mainly concerned mitotic phase of host cells by propagating several functional alterations, such as chromosome segregation errors, mitotic spindle alteration and blockage of cytokinesis progression, with the latter most likely being mediated by the downregulation of the Aurora B kinase expression.
Collapse
Affiliation(s)
- Zahady D Velásquez
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany.
| | - Iván Conejeros
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Camilo Larrazabal
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Katharina Kerner
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig-University, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
52
|
Cobanoglu H, Coskun M, Coskun M, Çayir A. Results of buccal micronucleus cytome assay in pesticide-exposed and non-exposed group. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:19676-19683. [PMID: 31079294 DOI: 10.1007/s11356-019-05249-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Since many different pesticides have been used occupationally, there have been inconsistent results regarding DNA damages among greenhouse workers. Thus, the aim of the study is to evaluate DNA damages, cell death, and chromosomal instability by using the buccal micronucleus cytome (BMcyt) assay in greenhouse workers and to compare those with a non-exposed group. The BMcyt assay was applied to the exfoliated buccal cell samples collected from 66 pesticide-exposed and 50 non-exposed individuals. We evaluated the frequency of micronucleus (MN), nuclear bud (NBUD), binucleated (BN) cells, and karyolitic (KL), pyknotic (PY), and karyorrhectic (KH) cells. The results showed that the MN, BN, PY, and KH frequencies of the pesticide-exposed group were significantly higher than those of the controls (P ˂ 0.05, P ˂ 0.05, P ˂ 0.01, and P ˂ 0.05, respectively). We observed that the MN, BN, PY, and KH frequencies in the autumn were statistically different compared with those in the control group (P = 0.037 for MN, P = 0.001 for BN, P = 0.016 for PY, and P = 0.033 for KH). The same comparison was done in the spring for the control, and there was a statistically significant difference for MN (P = 0.046) and PY (P = 0.014). We can conclude that pesticide exposure in greenhouse workers was one of the factors that altered DNA damages, cell death, and chromosomal instability in oral mucosa cells.
Collapse
Affiliation(s)
- Hayal Cobanoglu
- Health Services Vocational College, Çanakkale Onsekiz Mart University, 17100, Çanakkale, Turkey
| | - Munevver Coskun
- Health Services Vocational College, Çanakkale Onsekiz Mart University, 17100, Çanakkale, Turkey
| | - Mahmut Coskun
- Faculty of Medicine, Department of Medical Biology, Çanakkale Onsekiz Mart University, Terzioglu Campus, 17100, Çanakkale, Turkey
| | - Akin Çayir
- Health Services Vocational College, Çanakkale Onsekiz Mart University, 17100, Çanakkale, Turkey.
| |
Collapse
|
53
|
Tanwar G, Purohit R. Gain of native conformation of Aurora A S155R mutant by small molecules. J Cell Biochem 2019; 120:11104-11114. [PMID: 30746758 DOI: 10.1002/jcb.28387] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 11/28/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023]
Abstract
Aurora A is a mitotic serine/threonine kinase protein that is a proposed target of the first-line anticancer drug design. It has been found to be overexpressed in many human cancer cells, including hematological, breast, and colorectal. Here, we focus on a particular somatic mutant S155R of Aurora kinase A protein, whose activity decreases because of loss of interaction with a TPX2 protein that results in ectopic expression of the Aurora kinase A protein, which contributes chromosome instability, centrosome amplification, and oncogenic transformation. The primary target of this study is to select a drug molecule whose binding results in gaining S155R mutant interaction with TPX2. The computational methodology applied in this study involves mapping of hotspots (for uncompetitive binding), virtual screening, protein-ligand docking, postdocking optimization, and protein-protein docking approach. In this study, we screen and validate ZINC968264, which acts as a potential molecule that can improve the loss of function occurred because of mutation (S155R) in Aurora A. Our approaches pave a suitable path to design a potential drug against physiological condition manifested because of S155R mutant in Aurora A.
Collapse
Affiliation(s)
- Garima Tanwar
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India.,Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India.,Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-IHBT Campus, Palampur, Himachal Pradesh, India
| |
Collapse
|
54
|
Lin TC, Yeh YM, Fan WL, Chang YC, Lin WM, Yang TY, Hsiao M. Ghrelin Upregulates Oncogenic Aurora A to Promote Renal Cell Carcinoma Invasion. Cancers (Basel) 2019; 11:cancers11030303. [PMID: 30836712 PMCID: PMC6468656 DOI: 10.3390/cancers11030303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 02/06/2023] Open
Abstract
Ghrelin is a peptide hormone, originally identified from the stomach, that functions as an endogenous ligand of the growth hormone secretagogue receptor (GHSR) and promotes growth hormone (GH) release and food intake. Increasing reports point out ghrelin’s role in cancer progression. We previously characterized ghrelin’s prognostic significance in the clear cell subtype of renal cell carcinoma (ccRCC), and its pro-metastatic ability via Snail-dependent cell migration. However, ghrelin’s activity in promoting cell invasion remains obscure. In this study, an Ingenuity Pathway Analysis (IPA)-based investigation of differentially expressed genes in Cancer Cell Line Encyclopedia (CCLE) dataset indicated the potential association of Aurora A with ghrelin in ccRCC metastasis. In addition, a significant correlation between ghrelin and Aurora A expression level in 15 ccRCC cell line was confirmed by variant probes. ccRCC patients with high ghrelin and Aurora A status were clinically associated with poor outcome. We further observed that ghrelin upregulated Aurora A at the protein and RNA levels and that ghrelin-induced ccRCC in vitro invasion and in vivo metastasis occurred in an Aurora A-dependent manner. Furthermore, MMP1, 2, 9 and 10 expressions are associated with poor outcome. In particular, MMP10 is significantly upregulated and required for the ghrelin-Aurora A axis to promote ccRCC invasion. The results of this study indicated a novel signaling mechanism in ccRCC metastasis.
Collapse
Affiliation(s)
- Tsung-Chieh Lin
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou 33305, Taiwan.
| | - Yuan-Ming Yeh
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou 33305, Taiwan.
| | - Wen-Lang Fan
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou 33305, Taiwan.
| | - Yu-Chan Chang
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.
| | - Wei-Ming Lin
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi Branch, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan.
| | - Tse-Yen Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan.
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
55
|
Wang F, Chen Y, Wang Y, Yin Y, Qu G, Song M, Wang H. Ultra-long silver nanowires induced mitotic abnormalities and cytokinetic failure in A549 cells. Nanotoxicology 2019; 13:543-557. [DOI: 10.1080/17435390.2019.1571645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fengbang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
56
|
Potential involvement of RITA in the activation of Aurora A at spindle poles during mitosis. Oncogene 2019; 38:4199-4214. [PMID: 30705408 DOI: 10.1038/s41388-019-0716-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/27/2018] [Accepted: 12/14/2018] [Indexed: 12/22/2022]
Abstract
The mitotic kinase Aurora A is crucial for various mitotic events. Its activation has been intensively investigated and is not yet completely understood. RITA, the RBP-J interacting and tubulin-associated protein, has been shown to modulate microtubule dynamics in mitosis. We asked if RITA could be related to the activation of Aurora A. We show here that RITA is colocalized with Aurora A and its activator TPX2 at spindle poles during mitosis. FLAG-RITA is precipitated with the complex of Aurora A, TPX2 and tubulin. Depletion of RITA increases exclusively active Aurora A and TPX2 at spindle poles in diverse cancer cell lines and in RITA knockout mouse embryonic fibroblasts. The enhanced active Aurora A, its substrate p-TACC3 and TPX2 are restored by adding back of RITA but not its Δtub mutant with an impaired tubulin-binding capability, indicating that RITA's role as Aurora A's modulator is mediated through its interaction with tubulin. Also, the mitotic failures in cells depleted of RITA are rescued by the inhibition of Aurora A. RITA itself does not directly interfere with the catalytic activity of Aurora A, instead, affects the microtubule binding of its activator TPX2. Moreover, Aurora A's activation correlates with microtubule stabilization induced by the microtubule stabilizer paclitaxel, implicating that stabilized microtubules caused by RITA depletion could also account for increased active Aurora A. Our data suggest a potential role for RITA in the activation of Aurora A at spindle poles by modulating the microtubule binding of TPX2 and the microtubule stability during mitosis.
Collapse
|
57
|
Abstract
Centrosome amplification is a feature of multiple tumour types and has been postulated to contribute to both tumour initiation and tumour progression. This chapter focuses on the mechanisms by which an increase in centrosome number might lead to an increase or decrease in tumour progression and the role of proteins that regulate centrosome number in driving tumorigenesis.
Collapse
Affiliation(s)
- Arunabha Bose
- KS215, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sorab N Dalal
- KS215, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India.
- Homi Bhabha National Institute, Mumbai, Maharashtra, India.
| |
Collapse
|
58
|
Abstract
Whole-genome and centrosome duplication as a consequence of cytokinesis failure can drive tumorigenesis in experimental model systems. However, whether cytokinesis failure is in fact an important cause of human cancers has remained unclear. In this Review, we summarize evidence that whole-genome-doubling events are frequently observed in human cancers and discuss the contribution that cytokinesis defects can make to tumorigenesis. We provide an overview of the potential causes of cytokinesis failure and discuss how tetraploid cells that are generated through cytokinesis defects are used in cancer as a transitory state on the route to aneuploidy. Finally, we discuss how cytokinesis defects can facilitate genetic diversification within the tumour to promote cancer development and could constitute the path of least resistance in tumour evolution.
Collapse
Affiliation(s)
- Susanne M A Lens
- Oncode Institute, Utrecht, Netherlands.
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.
| | - René H Medema
- Oncode Institute, Utrecht, Netherlands.
- Division of Cell Biology and Cancer Genomics Center, The Netherlands Cancer Institute, Amsterdam, Netherlands.
| |
Collapse
|
59
|
Batra A, Winquist E. Emerging cell cycle inhibitors for treating metastatic castration-resistant prostate cancer. Expert Opin Emerg Drugs 2018; 23:271-282. [PMID: 30422005 DOI: 10.1080/14728214.2018.1547707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Disease progression despite androgen suppression defines lethal castration-resistant prostate cancer (CRPC). Most of these cancers remain androgen receptor (AR)-signaling dependent. Therapy for metastatic CRPC includes abiraterone acetate, enzalutamide, docetaxel, cabazitaxel, sipuleucel-T, and radium-223. However, survival remains modest for men with progressive disease despite AR-targeted therapy and docetaxel, and therefore novel treatments are needed. Areas covered: Recent evidence of genomic heterogeneity and sensitivity to PARP inhibitors supports investigation of targeted agents in CRPC. Cell cycle inhibitors are therefore logical molecules to investigate. Review of the current literature identified cell cycle inhibitors under study in early phase clinical trials targeting the G1 (palbociclib, ribociclib, AZD-5363, ipatasertib), S (M-6620, prexasertib), G2 (adavosertib), and M (alisertib) phases of the cell cycle. Expert opinion: Strategies combining cell cycle inhibitors with active agents in CRPC are most likely to have clinical impact with CDK4/6 and Wee1 inhibitors appearing most promising. Identification of predictive biomarkers may be essential and currently trials are testing circulating cell-free DNA as an approach. Incremental toxicities such as neutropenia are important in this population. Results from most current clinical trials of cell cycle inhibitors in CRPC are still pending but it is anticipated they will provide important insights into the heterogeneous biology of CRPC.
Collapse
Affiliation(s)
- Anupam Batra
- a Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry , Western University and London Health Sciences Centre , London , ON , Canada
| | - Eric Winquist
- a Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry , Western University and London Health Sciences Centre , London , ON , Canada
| |
Collapse
|
60
|
Lu YC, Wang P, Wang J, Ma R, Lee SC. PCNA and JNK1-Stat3 pathways respectively promotes and inhibits diabetes-associated centrosome amplification by targeting at the ROCK1/14-3-3σ complex in human colon cancer HCT116 cells. J Cell Physiol 2018; 234:11511-11523. [PMID: 30478982 PMCID: PMC6587713 DOI: 10.1002/jcp.27813] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022]
Abstract
We have recently reported that type 2 diabetes promotes centrosome amplification via enhancing the expression, biding, and centrosome translocation of rho‐associated coiled‐coil containing protein kinase 1 (ROCK1)/14‐3‐3σ complex in HCT116 cells. In the functional proteomic study, we further investigated the molecular pathways underlying the centrosome amplification using HCT116 cells. We found that treatment of HCT116 cells with high glucose, insulin, and palmitic acid triggered the centrosome amplification and increased the expressions of proliferating cell nuclear antigen (PCNA), nucleophosmin (NPM), and 14‐3‐3σ. Individual knockdown of PCNA, NPM, or 14‐3‐3σ inhibited the centrosome amplification. Knockdown of PCNA inhibited the treatment‐increased expression of ROCK1, whereas knockdown of ROCK1 did not affect the PCNA expression. High glucose, insulin, and palmitic acid also increased the expressions of c‐Jun N‐terminal kinase‐1 (JNK1) and signal transducer and activator of transcription 3 (Stat3), individual knockdown of which upregulated the treatment‐increased expression of 14‐3‐3σ and promoted the centrosome amplification. In contrast, overexpression of JNK1 inhibited the centrosome amplification. Knockdown of Stat3 enhanced the centrosome translocation of 14‐3‐3σ. Moreover, we showed that knockdown of JNK1 inhibited the treatment‐increased expression of Stat3. Knockdown of PCNA, JNK1, or Stat3 did not have an effect on NPM and vice versa. In conclusion, our results suggest that PCNA and JNK1‐Stat3 pathways respectively promotes and feedback inhibits the centrosome amplification by targeting at the ROCK1/14‐3‐3σ complex, and NPM serves as an independent signal for the centrosome amplification.
Collapse
Affiliation(s)
- Yu Cheng Lu
- School of Life Sciences, Shanxi University, Taiyuan, Shanxi, China.,Central Laboratory, Linyi People's Hospital, Linyi, Shandong, China
| | - Pu Wang
- School of Life Sciences, Shanxi University, Taiyuan, Shanxi, China
| | - Jie Wang
- School of Acupuncture and Moxibustion, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Ronald Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Shao Chin Lee
- School of Life Sciences, Shanxi University, Taiyuan, Shanxi, China.,School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|
61
|
Willems E, Dedobbeleer M, Digregorio M, Lombard A, Lumapat PN, Rogister B. The functional diversity of Aurora kinases: a comprehensive review. Cell Div 2018; 13:7. [PMID: 30250494 PMCID: PMC6146527 DOI: 10.1186/s13008-018-0040-6] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023] Open
Abstract
Aurora kinases are serine/threonine kinases essential for the onset and progression of mitosis. Aurora members share a similar protein structure and kinase activity, but exhibit distinct cellular and subcellular localization. AurA favors the G2/M transition by promoting centrosome maturation and mitotic spindle assembly. AurB and AurC are chromosome-passenger complex proteins, crucial for chromosome binding to kinetochores and segregation of chromosomes. Cellular distribution of AurB is ubiquitous, while AurC expression is mainly restricted to meiotically-active germ cells. In human tumors, all Aurora kinase members play oncogenic roles related to their mitotic activity and promote cancer cell survival and proliferation. Furthermore, AurA plays tumor-promoting roles unrelated to mitosis, including tumor stemness, epithelial-to-mesenchymal transition and invasion. In this review, we aim to understand the functional interplay of Aurora kinases in various types of human cells, including tumor cells. The understanding of the functional diversity of Aurora kinases could help to evaluate their relevance as potential therapeutic targets in cancer.
Collapse
Affiliation(s)
- Estelle Willems
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium
| | - Matthias Dedobbeleer
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium
| | - Marina Digregorio
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium
| | - Arnaud Lombard
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium.,2Department of Neurosurgery, CHU of Liège, Liège, Belgium
| | - Paul Noel Lumapat
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium.,3Department of Neurology, CHU of Liège, Liège, Belgium
| | - Bernard Rogister
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium.,3Department of Neurology, CHU of Liège, Liège, Belgium
| |
Collapse
|
62
|
Prakash A, Garcia-Moreno JF, Brown JAL, Bourke E. Clinically Applicable Inhibitors Impacting Genome Stability. Molecules 2018; 23:E1166. [PMID: 29757235 PMCID: PMC6100577 DOI: 10.3390/molecules23051166] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022] Open
Abstract
Advances in technology have facilitated the molecular profiling (genomic and transcriptomic) of tumours, and has led to improved stratification of patients and the individualisation of treatment regimes. To fully realize the potential of truly personalised treatment options, we need targeted therapies that precisely disrupt the compensatory pathways identified by profiling which allow tumours to survive or gain resistance to treatments. Here, we discuss recent advances in novel therapies that impact the genome (chromosomes and chromatin), pathways targeted and the stage of the pathways targeted. The current state of research will be discussed, with a focus on compounds that have advanced into trials (clinical and pre-clinical). We will discuss inhibitors of specific DNA damage responses and other genome stability pathways, including those in development, which are likely to synergistically combine with current therapeutic options. Tumour profiling data, combined with the knowledge of new treatments that affect the regulation of essential tumour signalling pathways, is revealing fundamental insights into cancer progression and resistance mechanisms. This is the forefront of the next evolution of advanced oncology medicine that will ultimately lead to improved survival and may, one day, result in many cancers becoming chronic conditions, rather than fatal diseases.
Collapse
Affiliation(s)
- Anu Prakash
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - Juan F Garcia-Moreno
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - James A L Brown
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - Emer Bourke
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| |
Collapse
|
63
|
Nigg EA, Schnerch D, Ganier O. Impact of Centrosome Aberrations on Chromosome Segregation and Tissue Architecture in Cancer. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 82:137-144. [PMID: 29610243 DOI: 10.1101/sqb.2017.82.034421] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Centrosomes determine the disposition of microtubule networks and thereby contribute to regulate cell shape, polarity, and motility, as well as chromosome segregation during cell division. Additionally, centrioles, the core components of centrosomes, are required for the formation of cilia and flagella. Mutations in genes coding for centrosomal and centriolar proteins are responsible for several human diseases, foremost ciliopathies and developmental disorders resulting in small brains (primary microcephaly) or small body size (dwarfism). Moreover, a long-standing postulate implicates numerical and/or structural centrosome aberrations in the etiology of cancer. In this review, we will discuss recent work on the role of centrosome aberrations in the promotion of genome instability and the disruption of tissue architecture, two hallmarks of human cancers. We will emphasize recent studies on the impact of centrosome aberrations on the polarity of epithelial cells cultured in three-dimensional spheroid models. Collectively, the results from these in vitro systems suggest that different types of centrosome aberrations can promote invasive behavior through different pathways. Particularly exciting is recent evidence indicating that centrosome aberrations may trigger the dissemination of potentially metastatic cells through a non-cell-autonomous mechanism.
Collapse
Affiliation(s)
- Erich A Nigg
- Biozentrum, University of Basel, Basel CH-4056, Switzerland
| | | | - Olivier Ganier
- Biozentrum, University of Basel, Basel CH-4056, Switzerland
| |
Collapse
|
64
|
Over-elongation of centrioles in cancer promotes centriole amplification and chromosome missegregation. Nat Commun 2018; 9:1258. [PMID: 29593297 PMCID: PMC5871873 DOI: 10.1038/s41467-018-03641-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/02/2018] [Indexed: 12/16/2022] Open
Abstract
Centrosomes are the major microtubule organising centres of animal cells. Deregulation in their number occurs in cancer and was shown to trigger tumorigenesis in mice. However, the incidence, consequence and origins of this abnormality are poorly understood. Here, we screened the NCI-60 panel of human cancer cell lines to systematically analyse centriole number and structure. Our screen shows that centriole amplification is widespread in cancer cell lines and highly prevalent in aggressive breast carcinomas. Moreover, we identify another recurrent feature of cancer cells: centriole size deregulation. Further experiments demonstrate that severe centriole over-elongation can promote amplification through both centriole fragmentation and ectopic procentriole formation. Furthermore, we show that overly long centrioles form over-active centrosomes that nucleate more microtubules, a known cause of invasiveness, and perturb chromosome segregation. Our screen establishes centriole amplification and size deregulation as recurrent features of cancer cells and identifies novel causes and consequences of those abnormalities. Cancer cells are characterised by abnormalities in the number of centrosomes and this phenotype is linked with tumorigenesis. Here the authors report centriole length deregulation in a subset of cancer cell lines and suggest a link with subsequent alterations in centriole numbers and chromosomal instability.
Collapse
|
65
|
Rogne M, Svaerd O, Madsen-Østerbye J, Hashim A, Tjønnfjord GE, Staerk J. Cytokinesis arrest and multiple centrosomes in B cell chronic lymphocytic leukaemia. J Cell Mol Med 2018. [PMID: 29516674 PMCID: PMC5908127 DOI: 10.1111/jcmm.13579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cytokinesis failure leads to the emergence of tetraploid cells and multiple centrosomes. Chronic lymphocytic leukaemia (CLL) is the most common haematological malignancy in adults and is characterized by clonal B cell expansion. Here, we show that a significant number of peripheral blood CLL cells are arrested in cytokinesis and that this event occurred after nuclear envelope reformation and before cytoplasmic abscission. mRNA expression data showed that several genes known to be crucial for cell cycle regulation, checkpoint and centromere function, such as ING4, ING5, CDKN1A and CDK4, were significantly dysregulated in CLL samples. Our results demonstrate that CLL cells exhibit difficulties in completing mitosis, which is different from but may, at least in part, explain the previously reported accumulation of CLL cells in G0/1.
Collapse
Affiliation(s)
- Marie Rogne
- Centre for Molecular Medicine Norway, Nordic European Molecular Laboratory Partnership, University of Oslo, Oslo, Norway
| | - Oksana Svaerd
- Centre for Molecular Medicine Norway, Nordic European Molecular Laboratory Partnership, University of Oslo, Oslo, Norway
| | - Julia Madsen-Østerbye
- Centre for Molecular Medicine Norway, Nordic European Molecular Laboratory Partnership, University of Oslo, Oslo, Norway
| | - Adnan Hashim
- Centre for Molecular Medicine Norway, Nordic European Molecular Laboratory Partnership, University of Oslo, Oslo, Norway
| | - Geir E Tjønnfjord
- Department of Haematology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Judith Staerk
- Centre for Molecular Medicine Norway, Nordic European Molecular Laboratory Partnership, University of Oslo, Oslo, Norway.,Department of Haematology, Oslo University Hospital, Oslo, Norway.,Norwegian Center for Stem Cell Research, Department of Immunology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
66
|
Gavriilidis P, Poutahidis T, Giakoustidis A, Makedou K, Angelopoulou K, Hardas A, Andreani P, Zacharioudaki A, Saridis G, Gargavanis A, Louri E, Antoniadis N, Karampela E, Psychalakis N, Michalopoulos A, Papalois A, Iliadis S, Mudan S, Azoulay D, Giakoustidis D. Targeting hepatocarcinogenesis model in C56BL6 mice with pan-aurora kinase inhibitor Danusertib. J Cancer 2018; 9:914-922. [PMID: 29581770 PMCID: PMC5868156 DOI: 10.7150/jca.22329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/29/2018] [Indexed: 12/23/2022] Open
Abstract
Background: To elucidate the expression of Aurora kinases (AURK) and the anticancer effects of pan-aurora kinase inhibitor Danusertib in hepatocarcinogenesis model in C56Bl6 mice. Methods: Thirty mice C56Bl6 were randomly divided into Group A or control, Group B animals who underwent experimental hepatocarcinogenesis with diethylnitrosamine (DEN), and Group C animals with DEN-induced hepatocarcinogenenesis that treated with pan-aurora kinase inhibitor Danusertib. Primary antibodies for immunochistochemistry (IHC) included rabbit antibodies against Ki-67, DKK1, INCENP, cleaved caspase-3, NF-κB p65, c-Jun, β-catenin. Hepatocyte growth factor receptor (C-MET/HGFR) and Bcl-2 antagonist of cell death (BAD) serum levels were determined using a quantitative sandwich enzyme immunoassay technique. Results: Inhibition of AURK reduced the number of DEN-induced liver tumours. Apoptosis and proliferation was very low in both DEN-induced and anti- AURK groups respectively. The hepatocellular adenoma cells of DEN-treated mice uniformly had ample nuclear INCENP whereas in anti- AURK markedly decreased. Expression of β-catenin, NF-kB and c-Jun did not differ in liver tumors of both AURK -depleted and non-depleted mice. Conclusions: Depletion of AURK reduced the number of DEN-induced hepatic tumours. However, their size did not differ significantly between the groups.
Collapse
Affiliation(s)
- Paschalis Gavriilidis
- Department of Hepato-Pancreato-Biliary and Liver Transplant surgery, Queen Elizabeth University Hospitals Birmingham NHS Foundation Trust, B15 1NU, UK.,Division of Transplant Surgery, Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University and Hippokration General Hospital, Thessaloniki, Greece
| | - Theofilos Poutahidis
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki
| | | | - Kali Makedou
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki
| | - Katerina Angelopoulou
- Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki
| | - Alexander Hardas
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki
| | - Paola Andreani
- Service de Chirurgie Digestive et Hépatobiliaire, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris-Université Paris-Est, Créteil, France
| | | | - George Saridis
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki
| | - Athanasios Gargavanis
- Division of Transplant Surgery, Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University and Hippokration General Hospital, Thessaloniki, Greece
| | - Eleni Louri
- Academic Department of Surgery, The Royal Marsden Hospital, London, UK
| | - Nikolaos Antoniadis
- Division of Transplant Surgery, Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University and Hippokration General Hospital, Thessaloniki, Greece
| | | | | | - Antonios Michalopoulos
- Propaedeutic Division of Surgery, Department of Surgery School of Medicine, Faculty of Health Sciences, Aristotle University and AHEPA University Hospital, Thessaloniki, Greece
| | | | - Stavros Iliadis
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki
| | - Satvinder Mudan
- Academic Department of Surgery, The Royal Marsden Hospital, London, UK
| | - Daniel Azoulay
- Service de Chirurgie Digestive et Hépatobiliaire, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris-Université Paris-Est, Créteil, France
| | - Dimitrios Giakoustidis
- Division of Transplant Surgery, Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University and Hippokration General Hospital, Thessaloniki, Greece
| |
Collapse
|
67
|
Simi AK, Anlaş AA, Stallings-Mann M, Zhang S, Hsia T, Cichon M, Radisky DC, Nelson CM. A Soft Microenvironment Protects from Failure of Midbody Abscission and Multinucleation Downstream of the EMT-Promoting Transcription Factor Snail. Cancer Res 2018; 78:2277-2289. [PMID: 29483094 DOI: 10.1158/0008-5472.can-17-2899] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/08/2018] [Accepted: 02/20/2018] [Indexed: 02/07/2023]
Abstract
Multinucleation is found in more than one third of tumors and is linked to increased tolerance for mutation, resistance to chemotherapy, and invasive potential. The integrity of the genome depends on proper execution of the cell cycle, which can be altered through mechanotransduction pathways as the tumor microenvironment stiffens during tumorigenesis. Here, we show that signaling downstream of matrix metalloproteinase-3 (MMP3) or TGFβ, known inducers of epithelial-mesenchymal transition (EMT), also promotes multinucleation in stiff microenvironments through Snail-dependent expression of the filament-forming protein septin-6, resulting in midbody persistence, abscission failure, and multinucleation. Consistently, we observed elevated expression of Snail and septin-6 as well as multinucleation in a human patient sample of metaplastic carcinoma of the breast, a rare classification characterized by deposition of collagen fibers and active EMT. In contrast, a soft microenvironment protected mammary epithelial cells from becoming multinucleated by preventing Snail-induced upregulation of septin-6. Our data suggest that tissue stiffening during tumorigenesis synergizes with oncogenic signaling to promote genomic abnormalities that drive cancer progression.Significance: These findings reveal tissue stiffening during tumorigenesis synergizes with oncogenic signaling to promote genomic abnormalities that drive cancer progression. Cancer Res; 78(9); 2277-89. ©2018 AACR.
Collapse
Affiliation(s)
- Allison K Simi
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | - Alişya A Anlaş
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | | | - Sherry Zhang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | - Tiffaney Hsia
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | - Magdalena Cichon
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, Florida
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, Florida
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey. .,Department of Molecular Biology, Princeton University, Princeton, New Jersey
| |
Collapse
|
68
|
Pitts TM, Bradshaw-Pierce EL, Bagby SM, Hyatt SL, Selby HM, Spreafico A, Tentler JJ, McPhillips K, Klauck PJ, Capasso A, Diamond JR, Davis SL, Tan AC, Arcaroli JJ, Purkey A, Messersmith WA, Ecsedy JA, Eckhardt SG. Antitumor activity of the aurora a selective kinase inhibitor, alisertib, against preclinical models of colorectal cancer. Oncotarget 2018; 7:50290-50301. [PMID: 27385211 PMCID: PMC5226583 DOI: 10.18632/oncotarget.10366] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/17/2016] [Indexed: 12/19/2022] Open
Abstract
Background The Aurora kinases are a family of serine/threonine kinases comprised of Aurora A, B, and C which execute critical steps in mitotic and meiotic progression. Alisertib (MLN8237) is an investigational Aurora A selective inhibitor that has demonstrated activity against a wide variety of tumor types in vitro and in vivo, including CRC. Results CRC cell lines demonstrated varying sensitivity to alisertib with IC50 values ranging from 0.06 to > 5 umol/L. Following exposure to alisertib we observed a decrease in pAurora A, B and C in four CRC cell lines. We also observed an increase in p53 and p21 in a sensitive p53 wildtype cell line in contrast to the p53 mutant cell line or the resistant cell lines. The addition of alisertib to standard CRC treatments demonstrated improvement over single agent arms; however, the benefit was largely less than additive, but not antagonistic. Methods Forty-seven CRC cell lines were exposed to alisertib and IC50s were calculated. Twenty-one PDX models were treated with alisertib and the Tumor Growth Inhibition Index was assessed. Additionally, 5 KRAS wildtype and mutant PDX models were treated with alisertib as single agent or in combination with cetuximab or irinotecan, respectively. Conclusion Alisertib demonstrated anti-proliferative effects against CRC cell lines and PDX models. Our data suggest that the addition of alisertib to standard therapies in colorectal cancer if pursued clinically, will require further investigation of patient selection strategies and these combinations may facilitate future clinical studies.
Collapse
Affiliation(s)
- Todd M Pitts
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Erica L Bradshaw-Pierce
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Takeda California, San Diego, CA, USA
| | - Stacey M Bagby
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Stephanie L Hyatt
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Heather M Selby
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Anna Spreafico
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - John J Tentler
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kelly McPhillips
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Peter J Klauck
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Anna Capasso
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer R Diamond
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - S Lindsey Davis
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Aik Choon Tan
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John J Arcaroli
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alicia Purkey
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Wells A Messersmith
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jeffery A Ecsedy
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - S Gail Eckhardt
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
69
|
McKenzie C, D'Avino PP. Investigating cytokinesis failure as a strategy in cancer therapy. Oncotarget 2018; 7:87323-87341. [PMID: 27895316 PMCID: PMC5349991 DOI: 10.18632/oncotarget.13556] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022] Open
Abstract
Effective therapeutics exploit common characteristics shared amongst cancers. As many cancers present chromosomal instability (CIN), one possible approach to treat these cancers could be to increase their CIN above a threshold that would affect their viability. Here, we investigated whether causing polyploidy by cytokinesis failure could represent a useful approach. We show that cytokinesis failure caused by depletion of Citron kinase (CIT-K) dramatically decreased cell proliferation in breast, cervical and colorectal cancer cells. CIT-K depletion activated the Hippo tumor suppressor pathway in normal, but not in cancer cells, indicating that cancer cells have evolved mechanisms to bypass this control. CIT-K depleted cancer cells died via apoptosis in a caspase 7 dependent manner and, consistent with this, p53-deficient HCT116 colon carcinoma cells failed to induce apoptosis after cytokinesis failure. However, other p53-mutated cancer cells were able to initiate apoptosis, indicating that cytokinesis failure can trigger apoptosis through a p53-independent mechanism. Finally, we found that actively dividing and, in some cases, polyploid cancer cells were more susceptible to CIT-K depletion. In sum, our findings indicate that inducing cytokinesis failure could be a promising anti-cancer therapeutic approach for a wide range of cancers, especially those characterized by fast cell proliferation and polyploidy.
Collapse
Affiliation(s)
- Callum McKenzie
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Pier Paolo D'Avino
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| |
Collapse
|
70
|
Tanaka S. Precision medicine based on surgical oncology in the era of genome-scale analysis and genome editing technology. Ann Gastroenterol Surg 2018; 2:106-115. [PMID: 29863171 PMCID: PMC5881373 DOI: 10.1002/ags3.12059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/21/2017] [Indexed: 12/25/2022] Open
Abstract
Accumulated evidence suggests that multiple molecular and cellular interactions promote cancer evolution in vivo. Surgical oncology is of growing significance to a comprehensive understanding of the malignant diseases for therapeutic application. We have analyzed more than 1000 clinical samples from surgically resected tissue to identify molecular biomarkers and therapeutic targets for advanced malignancies. Cancer stemness and mitotic instability were then determined as the essential predictors of aggressive phenotype with poor prognosis. Recently, whole genome/exome sequencing showed a mutational landscape underlying phenotype heterogeneity in caners. In addition, integrated genomic, epigenomic, transcriptomic, metabolic, proteomic and phenomic analyses elucidated several molecular subtypes that cluster in liver, pancreatic, biliary, esophageal and gastroenterological cancers. Identification of each molecular subtype is expected to realize the precise medicine targeting subtype‐specific molecules; however, there are obstacle limitations to determine matching druggable targets or synthetic lethal interactions. Current breakthroughs in genome editing technology can provide us with unprecedented opportunity to recapitulate subtype‐specific pathophysiology in vitro and in vivo. Given a great potential, on‐demand editing system can design actionable strategy and revolutionize precision cancer medicine based on surgical oncology.
Collapse
Affiliation(s)
- Shinji Tanaka
- Department of Molecular Oncology Tokyo Medical and Dental University Tokyo Japan
| |
Collapse
|
71
|
Thaiparambil J, Mansour O, El-Zein R. Effect of Benzo[a]Pyrene on Spindle Misorientation and Fidelity of Chromosome Segregation in Lung Epithelial BEAS-2B Cells. Toxicol Sci 2017; 162:167-176. [DOI: 10.1093/toxsci/kfx229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Jose Thaiparambil
- Department of Radiology, Houston Methodist Research Institute, Houston, Texas
| | - Oula Mansour
- Department of Radiology, Houston Methodist Research Institute, Houston, Texas
| | - Randa El-Zein
- Department of Radiology, Houston Methodist Research Institute, Houston, Texas
| |
Collapse
|
72
|
Dicitrinone D, an antimitotic polyketide isolated from the marine-derived fungus Penicillium citrinum. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.08.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
73
|
Yang TY, Teng CLJ, Lin TCC, Chen KC, Hsu SL, Wu CC. Transcriptional repression of Aurora-A gene by wild-type p53 through directly binding to its promoter with histone deacetylase 1 and mSin3a. Int J Cancer 2017; 142:92-108. [PMID: 28884479 DOI: 10.1002/ijc.31035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/06/2017] [Accepted: 08/21/2017] [Indexed: 01/18/2023]
Abstract
In this study, we firstly showed that p53 transcriptionally represses Aurora-A gene expression through directly binding to its promoter. DNA affinity precipitation assay and chromatin immunoprecipitation assay indicated that p53 physically bound to the Aurora-A promoter. Moreover, the in vitro and in vivo assays showed that p53 directly bound to the Aurora-A promoter together with histone deacetylase 1 (HDAC1) and mSin3a as corepressors. Furthermore, we identified that the nucleotides -360 to -354 (CCTGCCC), upstream of the Aurora-A transcriptional start site, was responsible for the p53-mediated repression. Mutation within this site disrupted its interaction with p53, mSin3a and HDAC1, as well as attenuated the repressive effect of p53 on Aurora-A promoter activity. Treatment with trichostatin A (TSA), a HDAC1 inhibitor, disrupted the interaction of p53-HDAC1-mSin3a complex with the nucleotides -365∼-345 region, and enhanced the Aurora-A promoter activity and gene expression. Additionally, knockdown of p53 or mSin3a also drastically blocked the formation of p53-HDAC1-mSin3a repressive complex onto this promoter region and elevated the Aurora-A promoter activity and gene expression. Moreover, the p53-HDAC1-mSin3a repressive complex also involved in the inhibition of Aurora-A gene expression upon cisplatin treatment. Finally, the clinical investigation showed that Aurora-A and p53 exhibited an inverse correlation in both the expression level and prognostic status, and the low p53/high Aurora-A showed the poorest prognosis of NSCLC patients. Our findings showed novel regulatory mechanisms of p53 in regulating Aurora-A gene expression in NSCLC cells.
Collapse
Affiliation(s)
- Tsung-Ying Yang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, 407, Taiwan, Republic of China
| | - Chieh-Lin Jerry Teng
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China.,Department of Life Science, Tunghai University, Taichung, Taiwan, Republic of China.,Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Tsung-Chieh Chester Lin
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan, Republic of China
| | - Kun-Chieh Chen
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, 407, Taiwan, Republic of China
| | - Shih-Lan Hsu
- Department of Education & Research, Taichung Veterans General Hospital, Taichung, 407, Taiwan, Republic of China
| | - Chun-Chi Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China.,Department of Medical Research, Chung-Shan Medical University Hospital, Taichung, Taiwan, Republic of China
| |
Collapse
|
74
|
Currier MA, Sprague L, Rizvi TA, Nartker B, Chen CY, Wang PY, Hutzen BJ, Franczek MR, Patel AV, Chaney KE, Streby KA, Ecsedy JA, Conner J, Ratner N, Cripe TP. Aurora A kinase inhibition enhances oncolytic herpes virotherapy through cytotoxic synergy and innate cellular immune modulation. Oncotarget 2017; 8:17412-17427. [PMID: 28147331 PMCID: PMC5392259 DOI: 10.18632/oncotarget.14885] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/17/2017] [Indexed: 12/31/2022] Open
Abstract
Malignant peripheral nerve sheath tumor (MPNST) and neuroblastoma models respond to the investigational small molecule Aurora A kinase inhibitor, alisertib. We previously reported that MPNST and neuroblastomas are also susceptible to oncolytic herpes virus (oHSV) therapy. Herein, we show that combination of alisertib and HSV1716, a virus derived from HSV-1 and attenuated by deletion of RL1, exhibits significantly increased antitumor efficacy compared to either monotherapy. Alisertib and HSV1716 reduced tumor growth and increased survival in two xenograft models of MPNST and neuroblastoma. We found the enhanced antitumor effect was due to multiple mechanisms that likely each contribute to the combination effect. First, oncolytic herpes virus increased the sensitivity of uninfected cells to alisertib cytotoxicity, a process we term virus-induced therapeutic adjuvant (VITA). Second, alisertib increased peak virus production and slowed virus clearance from tumors, both likely a consequence of it preventing virus-mediated increase of intratumoral NK cells. We also found that alisertib inhibited virus-induced accumulation of intratumoral myeloid derived suppressor cells, which normally are protumorigenic. Our data suggest that clinical trials of the combination of oHSV and alisertib are warranted in patients with neuroblastoma or MPNST.
Collapse
Affiliation(s)
- Mark A Currier
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Les Sprague
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Tilat A Rizvi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center; Cincinnati, Ohio, USA
| | - Brooke Nartker
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Chun-Yu Chen
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Pin-Yi Wang
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Brian J Hutzen
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Meghan R Franczek
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Ami V Patel
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center; Cincinnati, Ohio, USA
| | - Katherine E Chaney
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center; Cincinnati, Ohio, USA
| | - Keri A Streby
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA.,Division of Hematology/Oncology/Blood and Marrow Transplantation, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | | | - Joe Conner
- Virttu Biologics, Ltd, Biocity, Scotland, Newhouse, United Kingdom
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center; Cincinnati, Ohio, USA
| | - Timothy P Cripe
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA.,Division of Hematology/Oncology/Blood and Marrow Transplantation, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
75
|
Heterogeneity in sarcoma cell lines reveals enhanced motility of tetraploid versus diploid cells. Oncotarget 2017; 8:16669-16689. [PMID: 28035071 PMCID: PMC5369993 DOI: 10.18632/oncotarget.14291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022] Open
Abstract
Soft tissue sarcomas with complex genomics are very heterogeneous tumors lacking simple prognosis markers or targeted therapies. Overexpression of a subset of mitotic genes from a signature called CINSARC is of bad prognosis, but the significance of this signature remains elusive. Here we precisely measure the cell cycle and mitosis duration of sarcoma cell lines and we found that the mitotic gene products overexpression does not reflect variation in the time spent during mitosis or G2/M. We also found that the CINSARC cell lines, we studied, are composed of a mixture of aneuploid, diploid, and tetraploid cells that are highly motile in vitro. After sorting diploid and tetraploid cells, we showed that the tetraploid cell clones do not possess a proliferative advantage, but are strikingly more motile and invasive than their diploid counterparts. This is correlated with higher levels of mitotic proteins overexpression. Owing that mitotic proteins are almost systematically degraded at the end of mitosis, we propose that it is the abnormal activity of the mitotic proteins during interphase that boosts the sarcoma cells migratory properties by affecting their cytoskeleton. To test this hypothesis, we designed a screen for mitotic or cytoskeleton protein inhibitors affecting the sarcoma cell migration potential independently of cytotoxic activities. We found that inhibition of several mitotic kinases drastically impairs the CINSARC cell invasive and migratory properties. This finding could provide a handle by which to selectively inhibit the most invasive cells.
Collapse
|
76
|
Morris EJ, Kawamura E, Gillespie JA, Balgi A, Kannan N, Muller WJ, Roberge M, Dedhar S. Stat3 regulates centrosome clustering in cancer cells via Stathmin/PLK1. Nat Commun 2017; 8:15289. [PMID: 28474672 PMCID: PMC5424153 DOI: 10.1038/ncomms15289] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 03/14/2017] [Indexed: 12/17/2022] Open
Abstract
Cancer cells frequently have amplified centrosomes that must be clustered together to form a bipolar mitotic spindle, and targeting centrosome clustering is considered a promising therapeutic strategy. A high-content chemical screen for inhibitors of centrosome clustering identified Stattic, a Stat3 inhibitor. Stat3 depletion and inhibition in cancer cell lines and in tumours in vivo caused significant inhibition of centrosome clustering and viability. Here we describe a transcription-independent mechanism for Stat3-mediated centrosome clustering that involves Stathmin, a Stat3 interactor involved in microtubule depolymerization, and the mitotic kinase PLK1. Furthermore, PLK4-driven centrosome amplified breast tumour cells are highly sensitive to Stat3 inhibitors. We have identified an unexpected role of Stat3 in the regulation of centrosome clustering, and this role of Stat3 may be critical in identifying tumours that are sensitive to Stat3 inhibitors.
Collapse
Affiliation(s)
- Edward J. Morris
- Department of Integrative Oncology, BC Cancer Research Centre, BC Cancer Agency, Vancouver, British Columbia, Canada V5Z 1L3
| | - Eiko Kawamura
- Department of Integrative Oncology, BC Cancer Research Centre, BC Cancer Agency, Vancouver, British Columbia, Canada V5Z 1L3
| | - Jordan A. Gillespie
- Department of Integrative Oncology, BC Cancer Research Centre, BC Cancer Agency, Vancouver, British Columbia, Canada V5Z 1L3
| | - Aruna Balgi
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6E 4A2
| | - Nagarajan Kannan
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada V5Z 1L3
| | - William J. Muller
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada H3A 1A3
| | - Michel Roberge
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6E 4A2
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Centre, BC Cancer Agency, Vancouver, British Columbia, Canada V5Z 1L3
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6E 4A2
| |
Collapse
|
77
|
Maleki SS, Röcken C. Chromosomal Instability in Gastric Cancer Biology. Neoplasia 2017; 19:412-420. [PMID: 28431273 PMCID: PMC5397576 DOI: 10.1016/j.neo.2017.02.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 02/21/2017] [Indexed: 02/08/2023] Open
Abstract
Gastric cancer (GC) is the fifth most common cancer in the world and accounts for 7% of the total cancer incidence. The prognosis of GC is dismal in Western countries due to late diagnosis: approximately 70% of the patients die within 5 years following initial diagnosis. Recently, integrative genomic analyses led to the proposal of a molecular classification of GC into four subtypes, i.e.,microsatellite-instable, Epstein-Barr virus–positive, chromosomal-instable (CIN), and genomically stable GCs. Molecular classification of GC advances our knowledge of the biology of GC and may have implications for diagnostics and patient treatment. Diagnosis of microsatellite-instable GC and Epstein-Barr virus–positive GC is more or less straightforward. Microsatellite instability can be tested by immunohistochemistry (MLH1, PMS2, MSH2, and MSH6) and/or molecular-biological analysis. Epstein-Barr virus–positive GC can be tested by in situ hybridization (Epstein-Barr virus encoded small RNA). However, with regard to CIN, testing may be more complicated and may require a more in-depth knowledge of the underlying mechanism leading to CIN. In addition, CIN GC may not constitute a distinct subgroup but may rather be a compilation of a more heterogeneous group of tumors. In this review, we aim to clarify the definition of CIN and to point out the molecular mechanisms leading to this molecular phenotype and the challenges faced in characterizing this type of cancer.
Collapse
Affiliation(s)
| | - Christoph Röcken
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany.
| |
Collapse
|
78
|
Prognostic value of CA20, a score based on centrosome amplification-associated genes, in breast tumors. Sci Rep 2017; 7:262. [PMID: 28325915 PMCID: PMC5428291 DOI: 10.1038/s41598-017-00363-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/20/2017] [Indexed: 11/08/2022] Open
Abstract
Centrosome amplification (CA) is a hallmark of cancer, observable in ≥75% of breast tumors. CA drives aggressive cellular phenotypes such as chromosomal instability (CIN) and invasiveness. Thus, assessment of CA may offer insights into the prognosis of breast cancer and identify patients who might benefit from centrosome declustering agents. However, it remains unclear whether CA is correlated with clinical outcomes after adjusting for confounding factors. To gain insights, we developed a signature, “CA20”, comprising centrosome structural genes and genes whose dysregulation is implicated in inducing CA. We found that CA20 was a significant independent predictor of worse survival in two large independent datasets after adjusting for potentially confounding factors. In multivariable analyses including both CA20 and CIN25 (a gene expression-based score that correlates with aneuploidy and has prognostic value in many types of cancer), only CA20 was significant, suggesting CA20 captures the risk-predictive information of CIN25 and offers information beyond it. CA20 correlated strongly with CIN25, so a high CA20 score may reflect tumors with high CIN and potentially other aggressive features that may require more aggressive treatment. Finally, we identified processes and pathways differing between CA20-low and high groups that may be valuable therapeutic targets.
Collapse
|
79
|
Abstract
Cancer is characterized by uncontrolled tumour cell proliferation resulting from aberrant activity of various cell cycle proteins. Therefore, cell cycle regulators are considered attractive targets in cancer therapy. Intriguingly, animal models demonstrate that some of these proteins are not essential for proliferation of non-transformed cells and development of most tissues. By contrast, many cancers are uniquely dependent on these proteins and hence are selectively sensitive to their inhibition. After decades of research on the physiological functions of cell cycle proteins and their relevance for cancer, this knowledge recently translated into the first approved cancer therapeutic targeting of a direct regulator of the cell cycle. In this Review, we focus on proteins that directly regulate cell cycle progression (such as cyclin-dependent kinases (CDKs)), as well as checkpoint kinases, Aurora kinases and Polo-like kinases (PLKs). We discuss the role of cell cycle proteins in cancer, the rationale for targeting them in cancer treatment and results of clinical trials, as well as the future therapeutic potential of various cell cycle inhibitors.
Collapse
Affiliation(s)
- Tobias Otto
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02215, USA
- Department of Internal Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
80
|
Links between DNA Replication, Stem Cells and Cancer. Genes (Basel) 2017; 8:genes8020045. [PMID: 28125050 PMCID: PMC5333035 DOI: 10.3390/genes8020045] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/02/2017] [Accepted: 01/12/2017] [Indexed: 12/31/2022] Open
Abstract
Cancers can be categorized into two groups: those whose frequency increases with age, and those resulting from errors during mammalian development. The first group is linked to DNA replication through the accumulation of genetic mutations that occur during proliferation of developmentally acquired stem cells that give rise to and maintain tissues and organs. These mutations, which result from DNA replication errors as well as environmental insults, fall into two categories; cancer driver mutations that initiate carcinogenesis and genome destabilizing mutations that promote aneuploidy through excess genome duplication and chromatid missegregation. Increased genome instability results in accelerated clonal evolution leading to the appearance of more aggressive clones with increased drug resistance. The second group of cancers, termed germ cell neoplasia, results from the mislocation of pluripotent stem cells during early development. During normal development, pluripotent stem cells that originate in early embryos give rise to all of the cell lineages in the embryo and adult, but when they mislocate to ectopic sites, they produce tumors. Remarkably, pluripotent stem cells, like many cancer cells, depend on the Geminin protein to prevent excess DNA replication from triggering DNA damage-dependent apoptosis. This link between the control of DNA replication during early development and germ cell neoplasia reveals Geminin as a potential chemotherapeutic target in the eradication of cancer progenitor cells.
Collapse
|
81
|
Effect of Food on the Pharmacokinetics of the Investigational Aurora A Kinase Inhibitor Alisertib (MLN8237) in Patients with Advanced Solid Tumors. Drugs R D 2016; 16:45-52. [PMID: 26689566 PMCID: PMC4767718 DOI: 10.1007/s40268-015-0114-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Objective This study was conducted to characterize the effects of food on single-dose pharmacokinetics (PK) of the investigational Aurora A kinase inhibitor alisertib (MLN8237) in patients with advanced solid tumors. Methods Following overnight fasting for 10 h, a single 50 mg enteric-coated tablet (ECT) of alisertib was administered under either fasted (alisertib with 240 mL of water) or fed (high-fat meal consumed 30 min before receiving alisertib with 240 mL of water) conditions using a two-cycle, two-way crossover design. Patients on both arms were not allowed food for 4 h post-dose. Water was allowed as desired, except for 1 h before and after alisertib administration. Results Twenty-four patients were enrolled and 14 patients were PK-evaluable (ten patients were not PK-evaluable due to insufficient data). Following a single oral dose of alisertib, median tmax was 6 h and 3 h under fed and fasted conditions, respectively. The geometric mean ratio of AUCinf (fed- vs. fasted-state dosing) was 0.94 [90 % confidence interval (CI) 0.68–1.32]. The geometric mean Cmax under fed conditions was 84 % of that under fasted conditions (90 % CI 66–106). Alisertib was generally well-tolerated; most common drug-related grade 3/4 adverse events included neutropenia (50 %), leukopenia (38 %), and thrombocytopenia (21 %). Conclusions Systemic exposures achieved following a single 50 mg dose of alisertib administered as an ECT formulation after a high-fat meal are similar to those observed in the fasted state. Alisertib 50 mg ECT can be administered without regard for food. ClinicalTrials.gov Identifier NCT00962091.
Collapse
|
82
|
Abstract
The centrosome is the main microtubule organizing center of animal cells. It contributes to spindle assembly and orientation during mitosis and to ciliogenesis in interphase. Numerical and structural defects in this organelle are known to be associated with developmental disorders such as dwarfism and microcephaly, but only recently, the molecular mechanisms linking centrosome aberrations to altered physiology are being elucidated. Defects in centrosome number or structure have also been described in cancer. These opposite clinical outcomes--arising from reduced proliferation and overproliferation respectively--can be explained in light of the tissue- and developmental-specific requirements for centrosome functions. The pathological outcomes of centrosome deficiencies have become clearer when considering its consequences. Among them, there are genetic instability (mainly aneuploidy, a defect in chromosome number), defects in the symmetry of cell division (important for cell fate specification and tissue architecture) and impaired ciliogenesis. In this review, we discuss the origins and the consequences of centrosome flaws, with particular attention on how they contribute to developmental diseases.
Collapse
Affiliation(s)
- Maddalena Nano
- Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, 75005, Paris, France
| | - Renata Basto
- Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, 75005, Paris, France.
| |
Collapse
|
83
|
Abstract
Here, we review how DNA damage affects the centrosome and how centrosomes communicate with the DNA damage response (DDR) apparatus. We discuss how several proteins of the DDR are found at centrosomes, including the ATM, ATR, CHK1 and CHK2 kinases, the BRCA1 ubiquitin ligase complex and several members of the poly(ADP-ribose) polymerase family. Stereotypical centrosome organisation, in which two centriole barrels are orthogonally arranged in a roughly toroidal pericentriolar material (PCM), is strongly affected by exposure to DNA-damaging agents. We describe the genetic dependencies and mechanisms for how the centrioles lose their close association, and the PCM both expands and distorts after DNA damage. Another consequence of genotoxic stress is that centrosomes undergo duplication outside the normal cell cycle stage, meaning that centrosome amplification is commonly seen after DNA damage. We discuss several potential mechanisms for how centrosome numbers become dysregulated after DNA damage and explore the links between the DDR and the PLK1- and separase-dependent mechanisms that drive centriole separation and reduplication. We also describe how centrosome components, such as centrin2, are directly involved in responding to DNA damage. This review outlines current questions on the involvement of centrosomes in the DDR.
Collapse
Affiliation(s)
- Lisa I Mullee
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Biosciences Building, Dangan, Galway, Ireland
| | - Ciaran G Morrison
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Biosciences Building, Dangan, Galway, Ireland.
| |
Collapse
|
84
|
Cosenza MR, Krämer A. Centrosome amplification, chromosomal instability and cancer: mechanistic, clinical and therapeutic issues. Chromosome Res 2016; 24:105-26. [PMID: 26645976 DOI: 10.1007/s10577-015-9505-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Centrosomes, the main microtubule-organizing centers in most animal cells, are of crucial importance for the assembly of a bipolar mitotic spindle and subsequent faithful segregation of chromosomes into two daughter cells. Centrosome abnormalities can be found in virtually all cancer types and have been linked to chromosomal instability (CIN) and tumorigenesis. Although our knowledge on centrosome structure, replication, and amplification has greatly increased within recent years, still only very little is known on nature, causes, and consequences of centrosome aberrations in primary tumor tissues. In this review, we summarize our current insights into the mechanistic link between centrosome aberrations, aneuploidy, CIN and tumorigenesis. Mechanisms of induction and cellular consequences of aneuploidy, tetraploidization and CIN, as well as origin and effects of supernumerary centrosomes will be discussed. In addition, animal models for both CIN and centrosome amplification will be outlined. Finally, we describe approaches to exploit centrosome amplification, aneuploidy and CIN for novel and specific anticancer treatment strategies based on the modulation of chromosome missegregation rates.
Collapse
Affiliation(s)
- Marco Raffaele Cosenza
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
85
|
Abstract
Centrosome amplification is a common feature of both solid and hematological human malignancies. Extra centrosomes are not merely innocent bystanders in cancer cells, but rather promote tumor progression by disrupting normal cellular architecture and generating chromosome instability. Consequently, centrosome amplification correlates with advanced tumor grade and overall poor clinical prognosis. By contrast, extra centrosomes are adversely tolerated in non-transformed cells and hinder cell proliferation. This suggests that in addition to acquiring extra centrosomes, cancer cells must also adapt to overcome the deleterious consequences associated with them. Here, we review evidence that implicates core components of the Hippo tumor suppressor pathway as having key roles in both the direct and indirect regulation of centrosome number. Intriguingly, functional inactivation of the Hippo pathway, which is common across broad spectrum of human cancers, likely represents one key adaptation that enables cancer cells to tolerate extra centrosomes.
Collapse
|
86
|
Abstract
For over a century, the abnormal movement or number of centrosomes has been linked with errors of chromosomes distribution in mitosis. While not essential for the formation of the mitotic spindle, the presence and location of centrosomes has a major influence on the manner in which microtubules interact with the kinetochores of replicated sister chromatids and the accuracy with which they migrate to resulting daughter cells. A complex network has evolved to ensure that cells contain the proper number of centrosomes and that their location is optimal for effective attachment of emanating spindle fibers with the kinetochores. The components of this network are regulated through a series of post-translational modifications, including ubiquitin and ubiquitin-like modifiers, which coordinate the timing and strength of signaling events key to the centrosome cycle. In this review, we examine the role of the ubiquitin system in the events relating to centriole duplication and centrosome separation, and discuss how the disruption of these functions impacts chromosome segregation.
Collapse
|
87
|
Sahni JM, Gayle SS, Bonk KLW, Vite LC, Yori JL, Webb B, Ramos EK, Seachrist DD, Landis MD, Chang JC, Bradner JE, Keri RA. Bromodomain and Extraterminal Protein Inhibition Blocks Growth of Triple-negative Breast Cancers through the Suppression of Aurora Kinases. J Biol Chem 2016; 291:23756-23768. [PMID: 27650498 DOI: 10.1074/jbc.m116.738666] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Indexed: 12/15/2022] Open
Abstract
Bromodomain and extraterminal (BET) proteins are epigenetic "readers" that recognize acetylated histones and mark areas of the genome for transcription. BRD4, a BET family member protein, has been implicated in a number of types of cancer, and BET protein inhibitors (BETi) are efficacious in many preclinical cancer models. However, the drivers of response to BETi vary depending on tumor type, and little is known regarding the target genes conveying BETi activity in triple-negative breast cancer (TNBC). Here, we show that BETi repress growth of multiple in vitro and in vivo models of TNBC by inducing two terminal responses: apoptosis and senescence. Unlike in other cancers, response to BETi in TNBC is not dependent upon suppression of MYC Instead, both end points are preceded by the appearance of polyploid cells caused by the suppression of Aurora kinases A and B (AURKA/B), which are critical mediators of mitosis. In addition, AURKA/B inhibitors phenocopy the effects of BETi. These results indicate that Aurora kinases play an important role in the growth suppressive activity of BETi in TNBC. Elucidating the mechanism of response to BETi in TNBC should 1) facilitate the prediction of how distinct TNBC tumors will respond to BETi and 2) inform the rational design of drug combination therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Bryan Webb
- From the Departments of Pharmacology and
| | | | | | - Melissa D Landis
- the Methodist Cancer Center, Houston Methodist Hospital, Houston, Texas 77030, and
| | - Jenny C Chang
- the Methodist Cancer Center, Houston Methodist Hospital, Houston, Texas 77030, and
| | - James E Bradner
- the Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Ruth A Keri
- From the Departments of Pharmacology and .,Genetics and Genome Sciences and General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
88
|
Centrosome aberrations in human mammary epithelial cells driven by cooperative interactions between p16INK4a deficiency and telomere-dependent genotoxic stress. Oncotarget 2016; 6:28238-56. [PMID: 26318587 PMCID: PMC4695057 DOI: 10.18632/oncotarget.4958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 07/07/2015] [Indexed: 01/11/2023] Open
Abstract
Virtually all human cancers display chromosome instability (CIN), a condition in which chromosomes are gained or lost at a high rate. CIN occurs early in cancer development where it may undermine the advance of the neoplastic disease. With the aim of establishing the mechanisms underlying CIN in cancer, we investigated possible links between telomere-dysfunction and centrosome defects, which were seen to coincide in early in breast carcinogenesis using human mammary epithelial cells (HMECs). In this study, we show that TP53 proficient vHMECs cells develop centrosome aberrations when telomere-dysfunction genotoxic stress is produced in the presence of a defective p16INK4a setting and in parallel with an activation of the DNA damage checkpoint response. These aberrations consist of the accumulation of centrosomes in polyploid vHMECs, plus centriole overduplication in both diploid and polyploid cells, thus reflecting that distinct mechanisms underlie the generation of centrosome aberrations in vHMECs. Transduction of vHMEC with hTERT, which rescued the telomere dysfunction phenotype and consequently reduced DNA damage checkpoint activation, led to a progressive reduction of centrosome aberrations with cell culture, both in diploid and in polyploid vHMECs. Radiation-induced DNA damage also raised centrosome aberrations in vHMEC-hTERT. Collectively, our results, using vHMECs define a model where p16INK4a deficiency along with short dysfunctional telomeres cooperatively engenders centrosome abnormalities before p53 function is compromised.
Collapse
|
89
|
Tambe MB, Narvi E, Kallio M. Reduced levels of Dusp3/Vhr phosphatase impair normal spindle bipolarity in an Erk1/2 activity-dependent manner. FEBS Lett 2016; 590:2757-67. [PMID: 27423135 DOI: 10.1002/1873-3468.12310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/16/2022]
Abstract
Dual specificity phosphatase-3 (Dusp3/Vhr) regulates cell cycle progression by counteracting the effects of mitogen-activated protein kinases (Mapk) Erk1/2 and Jnk. Despite the known upregulation of Dusp3 at M phase in mammalian cells, its mitotic functions are poorly characterized. Here, we report that loss of Dusp3 by RNAi leads to the formation of multipolar spindles in human mitotic cancer cells in an Erk1/2-dependent manner. In the phosphatase-silenced cells, the normal bipolar spindle structure was restored by chemical inhibition of Erk1/2 and ectopic overexpression of Dusp3. We propose that at M phase Dusp3 keeps Erk1/2 activity in check to facilitate normal mitosis.
Collapse
Affiliation(s)
- Mahesh Balasaheb Tambe
- Department of Physiology, Institute of Biomedicine, University of Turku, Finland.,Centre for Biotechnology, University of Turku, Finland.,Drug Research Doctoral Programme and FinPharma Doctoral Program Drug Discovery, University of Turku, Finland
| | - Elli Narvi
- Department of Medical Biochemistry and Genetics, Institute of Biomedicine, University of Turku, Finland
| | - Marko Kallio
- Department of Physiology, Institute of Biomedicine, University of Turku, Finland.,Centre for Biotechnology, University of Turku, Finland
| |
Collapse
|
90
|
Guo Y, Ma J, Zheng Y, Li L, Gui X, Wang Q, Meng X, Shang H. HPV16 E6 upregulates Aurora A expression. Oncol Lett 2016; 12:1387-1393. [PMID: 27446442 PMCID: PMC4950527 DOI: 10.3892/ol.2016.4786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/13/2016] [Indexed: 12/26/2022] Open
Abstract
Overexpression of Aurora A kinase occurs in certain types of cancer, and therefore results in chromosome instability and phosphorylation-mediated ubiquitylation and degradation of p53 for tumorigenesis. The high-risk subtype human papillomavirus (HPV)16 early oncoprotein E6 is a major contributor inducing host cell immortalization and transformation through interaction with a number of cellular factors. In the present study, co-immunoprecipitation, glutathione S-transferase pull-down and immunostaining were used to show that HPV16 E6 and Aurora A bind to each other in vivo and in vitro. Western blotting and reverse transcription-polymerase chain reaction were used to reveal that HPV16 E6 inhibited cell apoptosis by stabilizing Aurora A expression. The present study may report a new mechanism for the involvement of HPV16 E6 in carcinogenesis, as HPV16 E6 elevates Aurora A expression and the latter may be a common target for oncogenic viruses that result in cell carcinogenesis.
Collapse
Affiliation(s)
- Yi Guo
- Department of Gynecology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jiaming Ma
- Department of Pain Management, Shengjing Hospital, Shenyang, Liaoning 110022, P.R. China
| | - Yahong Zheng
- Department of Gynecology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lu Li
- Department of Gynecology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaowei Gui
- Department of Gynecology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Qian Wang
- Key Laboratory of AIDS Immunology of Ministry of Health, Department of Laboratory Medicine, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiangkai Meng
- Department of Gynecology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hong Shang
- Key Laboratory of AIDS Immunology of Ministry of Health, Department of Laboratory Medicine, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
91
|
Duhamel S, Girondel C, Dorn JF, Tanguay PL, Voisin L, Smits R, Maddox PS, Meloche S. Deregulated ERK1/2 MAP kinase signaling promotes aneuploidy by a Fbxw7β-Aurora A pathway. Cell Cycle 2016; 15:1631-42. [PMID: 27152455 DOI: 10.1080/15384101.2016.1183851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aneuploidy is a common feature of human solid tumors and is often associated with poor prognosis. There is growing evidence that oncogenic signaling pathways, which are universally dysregulated in cancer, contribute to the promotion of aneuploidy. However, the mechanisms connecting signaling pathways to the execution of mitosis and cytokinesis are not well understood. Here, we show that hyperactivation of the ERK1/2 MAP kinase pathway in epithelial cells impairs cytokinesis, leading to polyploidization and aneuploidy. Mechanistically, deregulated ERK1/2 signaling specifically downregulates expression of the F-box protein Fbxw7β, a substrate-binding subunit of the SCF(Fbxw7) ubiquitin ligase, resulting in the accumulation of the mitotic kinase Aurora A. Reduction of Aurora A levels by RNA interference or pharmacological inhibition of MEK1/2 reverts the defect in cytokinesis and decreases the frequency of abnormal cell divisions induced by oncogenic H-Ras(V12). Reciprocally, overexpression of Aurora A or silencing of Fbxw7β phenocopies the effect of H-Ras(V12) on cell division. In vivo, conditional activation of MEK2 in the mouse intestine lowers Fbxw7β expression, resulting in the accumulation of cells with enlarged nuclei. We propose that the ERK1/2/ Fbxw7β/Aurora A axis identified in this study contributes to genomic instability and tumor progression.
Collapse
Affiliation(s)
- Stéphanie Duhamel
- a Institute for Research in Immunology and Cancer, Université de Montréal , Montreal , Quebec , Canada.,b Program of Molecular Biology, Université de Montréal , Montreal , Quebec , Canada
| | - Charlotte Girondel
- a Institute for Research in Immunology and Cancer, Université de Montréal , Montreal , Quebec , Canada.,c Department of Pharmacology , Université de Montréal , Montreal , Quebec , Canada
| | - Jonas F Dorn
- a Institute for Research in Immunology and Cancer, Université de Montréal , Montreal , Quebec , Canada
| | - Pierre-Luc Tanguay
- a Institute for Research in Immunology and Cancer, Université de Montréal , Montreal , Quebec , Canada
| | - Laure Voisin
- a Institute for Research in Immunology and Cancer, Université de Montréal , Montreal , Quebec , Canada
| | - Ron Smits
- d Department of Gastroenterology and Hepatology , Erasmus MC , Rotterdam , The Netherlands
| | - Paul S Maddox
- a Institute for Research in Immunology and Cancer, Université de Montréal , Montreal , Quebec , Canada.,e Department of Pathology and Cell Biology , Université de Montréal , Montreal , Quebec , Canada
| | - Sylvain Meloche
- a Institute for Research in Immunology and Cancer, Université de Montréal , Montreal , Quebec , Canada.,b Program of Molecular Biology, Université de Montréal , Montreal , Quebec , Canada.,c Department of Pharmacology , Université de Montréal , Montreal , Quebec , Canada
| |
Collapse
|
92
|
Rios AC, Fu NY, Jamieson PR, Pal B, Whitehead L, Nicholas KR, Lindeman GJ, Visvader JE. Essential role for a novel population of binucleated mammary epithelial cells in lactation. Nat Commun 2016; 7:11400. [PMID: 27102712 PMCID: PMC4844753 DOI: 10.1038/ncomms11400] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/21/2016] [Indexed: 12/11/2022] Open
Abstract
The mammary gland represents a unique tissue to study organogenesis as it predominantly develops in the post-natal animal and undergoes dramatic morphogenetic changes during puberty and the reproductive cycle. The physiological function of the mammary gland is to produce milk to sustain the newborn. Here we view the lactating gland through three-dimensional confocal imaging of intact tissue. We observed that the majority of secretory alveolar cells are binucleated. These cells first arise in very late pregnancy due to failure of cytokinesis and are larger than mononucleated cells. Augmented expression of Aurora kinase-A and Polo-like kinase-1 at the lactogenic switch likely mediates the formation of binucleated cells. Our findings demonstrate an important physiological role for polyploid mammary epithelial cells in lactation, and based on their presence in five different species, suggest that binucleated cells evolved to maximize milk production and promote the survival of offspring across all mammalian species.
Collapse
Affiliation(s)
- Anne C. Rios
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nai Yang Fu
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Paul R. Jamieson
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Bhupinder Pal
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lachlan Whitehead
- Imaging Laboratory, Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Kevin R. Nicholas
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Geoffrey J. Lindeman
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Familial Cancer Centre and Department of Medical Oncology, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jane E. Visvader
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
93
|
de Sousa JT, Allen SK, Baker H, Matt JL. Aneuploid progeny of the American oyster, Crassostrea virginica, produced by tetraploid × diploid crosses: another example of chromosome instability in polyploid oysters. Genome 2016; 59:327-38. [PMID: 27070368 DOI: 10.1139/gen-2015-0222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The commercial production of triploids, and the creation of tetraploid broodstock to support it, has become an important technique in aquaculture of the eastern oyster, Crassostrea virginica. Tetraploids are produced by cytogenetic manipulation of embryos and have been shown to undergo chromosome loss (to become a mosaic) with unknown consequences for breeding. Our objective was to determine the extent of aneuploidy in triploid progeny produced from both mosaic and non-mosaic tetraploids. Six families of triploids were produced using a single diploid female and crossed with three mosaic and non-mosaic tetraploid male oysters. A second set of crosses was performed with the reciprocals. Chromosome counts of the resultant embryos were tallied at 2-4 cell stage and as 6-hour(h)-old embryos. A significant level of aneuploidy was observed in 6-h-old embryos. For crosses using tetraploid males, aneuploidy ranged from 53% to 77% of observed metaphases, compared to 36% in the diploid control. For crosses using tetraploid females, 51%-71% of metaphases were aneuploidy versus 53% in the diploid control. We conclude that somatic chromosome loss may be a regular feature of early development in triploids, and perhaps polyploid oysters in general. Other aspects of chromosome loss in polyploid oysters are also discussed.
Collapse
Affiliation(s)
- Joana Teixeira de Sousa
- a Virginia Institute of Marine Science, College of William & Mary, P.O. Box 1346, Gloucester Point, VA 23062, USA
| | - Standish K Allen
- a Virginia Institute of Marine Science, College of William & Mary, P.O. Box 1346, Gloucester Point, VA 23062, USA
| | - Haley Baker
- b The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Joseph L Matt
- a Virginia Institute of Marine Science, College of William & Mary, P.O. Box 1346, Gloucester Point, VA 23062, USA
| |
Collapse
|
94
|
Ohshima S, Seyama A. Establishment of proliferative tetraploid cells from telomerase-immortalized normal human fibroblasts. Genes Chromosomes Cancer 2016; 55:522-30. [PMID: 26917432 DOI: 10.1002/gcc.22354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 12/15/2022] Open
Abstract
Aneuploidy is observed in the majority of human cancers and is considered to be causally related to carcinogenesis. Although malignant aneuploid cells are suggested to develop from polyploid cells formed in precancerous lesions, the mechanisms of this process remain elusive. This is partly because no experimental model is available where nontransformed polyploid human cells propagate in vitro. We previously showed that proliferative tetraploid cells can be established from normal human fibroblasts by treatment with the spindle poison demecolcine (DC). However, the limited lifespan of these cells hampered detailed analysis of a link between chromosomal instability and the oncogenic transformation of polyploid cells. Here, we report the establishment of proliferative tetraploid cells from the telomerase-immortalized normal human fibroblast cell line TIG-1. Treatment of immortalized diploid cells with DC for 4 days resulted in proliferation of cells with tetraploid DNA content and near-tetraploid/tetraploid chromosome counts. Established tetraploid cells had functional TP53 despite growing at almost the same rate as diploid cells. The frequency of clonal and sporadic chromosome aberrations in tetraploid cells was higher than in diploid cells and in one experiment, gradually increased with repeated subculture. This study suggests that tetraploid cells established from telomerase-immortalized normal human fibroblasts can be a valuable model for studying chromosomal instability and the oncogenic potential of polyploid cells. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Susumu Ohshima
- Division of Morphological Science, Biomedical Research Center, Saitama Medical University, Morohongo, Moroyama, Iruma, Saitama, Japan
| | - Atsushi Seyama
- Department of Pathology, International Medical Center, Saitama Medical University, Yamane, Hidaka, Saitama, Japan
| |
Collapse
|
95
|
Sharma A, Luxami V, Saxena S, Paul K. Benzimidazole-Based Quinazolines: In Vitro Evaluation, Quantitative Structure-Activity Relationship, and Molecular Modeling as Aurora Kinase Inhibitors. Arch Pharm (Weinheim) 2016; 349:193-201. [PMID: 26773437 DOI: 10.1002/ardp.201500281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/03/2015] [Accepted: 12/11/2015] [Indexed: 11/09/2022]
Abstract
A series of benzimidazole-based quinazoline derivatives with different substitutions of primary and secondary amines at the C2 position (1-12) were evaluated for their Aurora kinase inhibitory activities. All compounds except for 3 and 6 showed good activity against Aurora kinase inhibitors, with IC50 values in the range of 0.035-0.532 μM. The ligand efficiency (LE) of the compounds with Aurora A kinase was also determined. The structure-activity relationship and the quantitative structure-activity relationship revealed that the Aurora inhibitory activities of these derivatives primarily depend on the different substitutions of the amine present at the C2 position of the quinazoline core. Molecular docking studies in the active binding site also provided theoretical support for the experimental biological data acquired. The current study identifies a novel class of Aurora kinase inhibitors, which can further be used for the treatment of cancer.
Collapse
Affiliation(s)
- Alka Sharma
- School of Chemistry and Biochemistry, Thapar University, Patiala, India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar University, Patiala, India
| | - Sanjai Saxena
- Department of Biotechnology, Thapar University, Patiala, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar University, Patiala, India
| |
Collapse
|
96
|
Nikonova AS, Deneka AY, Eckman L, Kopp MC, Hensley HH, Egleston BL, Golemis EA. Opposing Effects of Inhibitors of Aurora-A and EGFR in Autosomal-Dominant Polycystic Kidney Disease. Front Oncol 2015; 5:228. [PMID: 26528438 PMCID: PMC4607875 DOI: 10.3389/fonc.2015.00228] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/01/2015] [Indexed: 01/24/2023] Open
Abstract
Aurora-A kinase (AURKA) overexpression in numerous tumors induces aneuploidy, in part because of cytokinetic defects. Alisertib and other small-molecule inhibitors targeting AURKA are effective in some patients as monotherapies or combination therapies. Epidermal growth factor receptor (EGFR) pro-proliferative signaling activity is commonly elevated in cancer, and the EGFR inhibitor erlotinib is commonly used as a standard of care agent for cancer. An erlotinib/alisertib combination therapy is currently under assessment in clinical trials, following pre-clinical studies that indicated synergy of these drugs in cancer. We were interested in further exploring the activity of this drug combination. Beyond well-established functions for AURKA in mitotic progression, additional non-mitotic AURKA functions include control of ciliary stability and calcium signaling. Interestingly, alisertib exacerbates the disease phenotype in mouse models for autosomal-dominant polycystic kidney disease (ADPKD), a common inherited syndrome induced by aberrant signaling from PKD1 and PKD2, cilia-localized proteins that have calcium channel activity. EGFR is also more active in ADPKD, making erlotinib also of potential interest in this disease setting. In this study, we have explored the interaction of alisertib and erlotinib in an ADPKD model. These experiments indicated erlotinib-restrained cystogenesis, opposing alisertib action. Erlotinib also interacted with alisertib to regulate proliferative signaling proteins, albeit in a complicated manner. Results suggest a nuanced role of AURKA signaling in different pathogenic conditions and inform the clinical use of AURKA inhibitors in cancer patients with comorbidities.
Collapse
Affiliation(s)
- Anna S Nikonova
- Program in Molecular Therapeutics, Fox Chase Cancer Center , Philadelphia, PA , USA
| | - Alexander Y Deneka
- Program in Molecular Therapeutics, Fox Chase Cancer Center , Philadelphia, PA , USA ; Cancer Biology, Drexel University College of Medicine , Philadelphia, PA , USA
| | - Louisa Eckman
- Program in Molecular Therapeutics, Fox Chase Cancer Center , Philadelphia, PA , USA
| | - Meghan C Kopp
- Cancer Biology, Drexel University College of Medicine , Philadelphia, PA , USA
| | - Harvey H Hensley
- Program in Molecular Therapeutics, Fox Chase Cancer Center , Philadelphia, PA , USA
| | - Brian L Egleston
- Program in Molecular Therapeutics, Fox Chase Cancer Center , Philadelphia, PA , USA
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center , Philadelphia, PA , USA
| |
Collapse
|
97
|
NDRG1 links p53 with proliferation-mediated centrosome homeostasis and genome stability. Proc Natl Acad Sci U S A 2015; 112:11583-8. [PMID: 26324937 DOI: 10.1073/pnas.1503683112] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The tumor protein 53 (TP53) tumor suppressor gene is the most frequently somatically altered gene in human cancers. Here we show expression of N-Myc down-regulated gene 1 (NDRG1) is induced by p53 during physiologic low proliferative states, and mediates centrosome homeostasis, thus maintaining genome stability. When placed in physiologic low-proliferating conditions, human TP53 null cells fail to increase expression of NDRG1 compared with isogenic wild-type controls and TP53 R248W knockin cells. Overexpression and RNA interference studies demonstrate that NDRG1 regulates centrosome number and amplification. Mechanistically, NDRG1 physically associates with γ-tubulin, a key component of the centrosome, with reduced association in p53 null cells. Strikingly, TP53 homozygous loss was mutually exclusive of NDRG1 overexpression in over 96% of human cancers, supporting the broad applicability of these results. Our study elucidates a mechanism of how TP53 loss leads to abnormal centrosome numbers and genomic instability mediated by NDRG1.
Collapse
|
98
|
Tsunematsu T, Arakaki R, Yamada A, Ishimaru N, Kudo Y. The Non-Canonical Role of Aurora-A in DNA Replication. Front Oncol 2015; 5:187. [PMID: 26380219 PMCID: PMC4548192 DOI: 10.3389/fonc.2015.00187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/05/2015] [Indexed: 12/04/2022] Open
Abstract
Aurora-A is a well-known mitotic kinase that regulates mitotic entry, spindle formation, and chromosome maturation as a canonical role. During mitosis, Aurora-A protein is stabilized by its phosphorylation at Ser51 via blocking anaphase-promoting complex/cyclosome-mediated proteolysis. Importantly, overexpression and/or hyperactivation of Aurora-A is involved in tumorigenesis via aneuploidy and genomic instability. Recently, the novel function of Aurora-A for DNA replication has been revealed. In mammalian cells, DNA replication is strictly regulated for preventing over-replication. Pre-replication complex (pre-RC) formation is required for DNA replication as an initiation step occurring at the origin of replication. The timing of pre-RC formation depends on the protein level of geminin, which is controlled by the ubiquitin–proteasome pathway. Aurora-A phosphorylates geminin to prevent its ubiquitin-mediated proteolysis at the mitotic phase to ensure proper pre-RC formation and ensuing DNA replication. In this review, we introduce the novel non-canonical role of Aurora-A in DNA replication.
Collapse
Affiliation(s)
- Takaaki Tsunematsu
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Rieko Arakaki
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Akiko Yamada
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Yasusei Kudo
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| |
Collapse
|
99
|
Gavriilidis P, Giakoustidis A, Giakoustidis D. Aurora Kinases and Potential Medical Applications of Aurora Kinase Inhibitors: A Review. J Clin Med Res 2015; 7:742-51. [PMID: 26345296 PMCID: PMC4554212 DOI: 10.14740/jocmr2295w] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2015] [Indexed: 12/17/2022] Open
Abstract
Aurora kinases (AKs) represent a novel group of serine/threonine kinases. They were originally described in 1995 by David Glover in the course of studies of mutant alleles characterized with unusual spindle pole configuration in Drosophila melanogaster. Thus far, three AKs A, B, and C have been discovered in human healthy and neoplastic cells. Each one locates in different subcellular locations and they are all nuclear proteins. AKs are playing an essential role in mitotic events such as monitoring of the mitotic checkpoint, creation of bipolar mitotic spindle and alignment of centrosomes on it, also regulating centrosome separation, bio-orientation of chromosomes and cytokinesis. Any inactivation of them can have catastrophic consequences on mitotic events of spindle formation, alignment of centrosomes and cytokinesis, resulting in apoptosis. Overexpression of AKs has been detected in diverse solid and hematological cancers and has been linked with a dismal prognosis. After discovery and identification of the first aurora kinase inhibitor (AKI) ZM447439 as a potential drug for targeted therapy in cancer treatment, approximately 30 AKIs have been introduced in cancer treatment.
Collapse
Affiliation(s)
- Paschalis Gavriilidis
- Department of Surgical Oncology, Theageneio Anticancer Hospital, Thessaloniki, Greece
| | - Alexandros Giakoustidis
- Department of Transplantation Surgery, Hippokrateion University Hospital, Thessaloniki, Greece
| | - Dimitrios Giakoustidis
- Department of Transplantation Surgery, Hippokrateion University Hospital, Thessaloniki, Greece
| |
Collapse
|
100
|
TRIM28 Is an E3 Ligase for ARF-Mediated NPM1/B23 SUMOylation That Represses Centrosome Amplification. Mol Cell Biol 2015; 35:2851-63. [PMID: 26055329 DOI: 10.1128/mcb.01064-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 06/03/2015] [Indexed: 01/04/2023] Open
Abstract
The tumor suppressor ARF enhances the SUMOylation of target proteins; however, the physiological function of ARF-mediated SUMOylation has been unclear due to the lack of a known, associated E3 SUMO ligase. Here we uncover TRIM28/KAP1 as a novel ARF-binding protein and SUMO E3 ligase for NPM1/B23. ARF and TRIM28 cooperate to SUMOylate NPM1, a nucleolar protein that regulates centrosome duplication and genomic stability. ARF-mediated SUMOylation of NPM1 was attenuated by TRIM28 depletion and enhanced by TRIM28 overexpression. Coexpression of ARF and TRIM28 promoted NPM1 centrosomal localization by enhancing its SUMOylation and suppressed centrosome amplification; these functions required the E3 ligase activity of TRIM28. Conversely, depletion of ARF or TRIM28 increased centrosome amplification. ARF also counteracted oncogenic Ras-induced centrosome amplification. Centrosome amplification is often induced by oncogenic insults, leading to genomic instability. However, the mechanisms employed by tumor suppressors to protect the genome are poorly understood. Our findings suggest a novel role for ARF in maintaining genome integrity by facilitating TRIM28-mediated SUMOylation of NPM1, thus preventing centrosome amplification.
Collapse
|