51
|
Young SA, Smith TK. The essential neutral sphingomyelinase is involved in the trafficking of the variant surface glycoprotein in the bloodstream form of Trypanosoma brucei. Mol Microbiol 2010; 76:1461-82. [PMID: 20398210 PMCID: PMC2904498 DOI: 10.1111/j.1365-2958.2010.07151.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2010] [Indexed: 12/26/2022]
Abstract
Sphingomyelin is the main sphingolipid in Trypanosoma brucei, the causative agent of African sleeping sickness. In vitro and in vivo characterization of the T. brucei neutral sphingomyelinase demonstrates that it is directly involved in sphingomyelin catabolism. Gene knockout studies in the bloodstream form of the parasite indicate that the neutral sphingomyelinase is essential for growth and survival, thus highlighting that the de novo biosynthesis of ceramide is unable to compensate for the loss of sphingomyelin catabolism. The phenotype of the conditional knockout has given new insights into the highly active endocytic and exocytic pathways in the bloodstream form of T. brucei. Hence, the formation of ceramide in the endoplasmic reticulum affects post-Golgi sorting and rate of deposition of newly synthesized GPI-anchored variant surface glycoprotein on the cell surface. This directly influences the corresponding rate of endocytosis, via the recycling endosomes, of pre-existing cell surface variant surface glycoprotein. The trypanosomes use this coupled endocytic and exocytic mechanism to maintain the cell density of its crucial variant surface glycoprotein protective coat. TbnSMase is therefore genetically validated as a drug target against African trypanosomes, and suggests that interfering with the endocytic transport of variant surface glycoprotein is a highly desirable strategy for drug development against African trypanosomasis.
Collapse
Affiliation(s)
- Simon A Young
- Biomolecular Science, The North Haugh, The University, St. AndrewsFife Scotland KY16 9ST, UK
| | - Terry K Smith
- Biomolecular Science, The North Haugh, The University, St. AndrewsFife Scotland KY16 9ST, UK
| |
Collapse
|
52
|
Lipid metabolism in Trypanosoma brucei. Mol Biochem Parasitol 2010; 172:66-79. [PMID: 20382188 DOI: 10.1016/j.molbiopara.2010.04.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 03/31/2010] [Accepted: 04/01/2010] [Indexed: 11/28/2022]
Abstract
Trypanosoma brucei membranes consist of all major eukaryotic glycerophospholipid and sphingolipid classes. These are de novo synthesized from precursors obtained either from the host or from catabolised endocytosed lipids. In recent years, substantial progress has been made in the molecular and biochemical characterisation of several of these lipid biosynthetic pathways, using gene knockout or RNA interference strategies or by enzymatic characterization of individual reactions. Together with the completed genome, these studies have highlighted several possible differences between mammalian and trypanosome lipid biosynthesis that could be exploited for the development of drugs against the diseases caused by these parasites.
Collapse
|
53
|
Tull D, Naderer T, Spurck T, Mertens HDT, Heng J, McFadden GI, Gooley PR, McConville MJ. Membrane protein SMP-1 is required for normal flagellum function in Leishmania. J Cell Sci 2010; 123:544-54. [PMID: 20086045 DOI: 10.1242/jcs.059097] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic flagella and cilia are surrounded by a membrane that is continuous with, but distinct from, the rest of the plasma membrane. In Leishmania parasites, the inner leaflet of the flagellar membrane is coated with the acylated membrane protein, SMP-1. Here, we provide evidence that SMP-1 stabilizes the flagellar membrane and is required for flagella elongation and function. The expression and flagella targeting of SMP-1 is tightly associated with flagella elongation during amastigote to promastigote differentiation. Deletion of the genes encoding SMP-1 and the flagellar pocket protein SMP-2, led to the production of short flagella and defects in motility. Alterations in the physical properties of the smp-1/smp-2(-/-) flagellar membrane were suggested by: (1) the accumulation of membrane vesicles in the flagellar matrix, and (2) further retraction of flagella following partial inhibition of sterol and sphingolipid biosynthesis. The flagella phenotype of the smp-1/smp-2(-/-) null mutant was reversed by re-expression of SMP-1, but not SMP-2. SMP-1 contains a jelly-roll beta-sheet structure that is probably conserved in all SMP proteins, and forms stable homo-oligomers in vivo. We propose that the SMP-1 coat generates and/or stabilizes sterol- and sphingolipid-rich domains in the flagellar membrane.
Collapse
Affiliation(s)
- Dedreia Tull
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Zhang K, Bangs JD, Beverley SM. Sphingolipids in Parasitic Protozoa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 688:238-48. [DOI: 10.1007/978-1-4419-6741-1_17] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
55
|
Zhang K, Beverley SM. Phospholipid and sphingolipid metabolism in Leishmania. Mol Biochem Parasitol 2009; 170:55-64. [PMID: 20026359 DOI: 10.1016/j.molbiopara.2009.12.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/09/2009] [Accepted: 12/09/2009] [Indexed: 01/15/2023]
Abstract
In many eukaryotes, phospholipids (PLs) and sphingolipids (SLs) are abundant membrane components and reservoirs for important signaling molecules. In Leishmania, the composition, metabolism, and function of PLs and SLs differ significantly from those in mammalian cells. Although only a handful of enzymes have been experimentally characterized, available data suggest many steps of PL/SL metabolism are critical for Leishmania viability and/or virulence, and could be a source for new drug targets. Further studies of genes involved in the synthesis (de novo and salvage) and degradation of PLs and SLs will reveal their diverse effects on Leishmania pathogenesis.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| | | |
Collapse
|
56
|
Zhang O, Wilson MC, Xu W, Hsu FF, Turk J, Kuhlmann FM, Wang Y, Soong L, Key P, Beverley SM, Zhang K. Degradation of host sphingomyelin is essential for Leishmania virulence. PLoS Pathog 2009; 5:e1000692. [PMID: 20011126 PMCID: PMC2784226 DOI: 10.1371/journal.ppat.1000692] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 11/13/2009] [Indexed: 12/21/2022] Open
Abstract
In eukaryotes, sphingolipids (SLs) are important membrane components and powerful signaling molecules. In Leishmania, the major group of SLs is inositol phosphorylceramide (IPC), which is common in yeast and Trypanosomatids but absent in mammals. In contrast, sphingomyelin is not synthesized by Leishmania but is abundant in mammals. In the promastigote stage in vitro, Leishmania use SL metabolism as a major pathway to produce ethanolamine (EtN), a metabolite essential for survival and differentiation from non-virulent procyclics to highly virulent metacyclics. To further probe SL metabolism, we identified a gene encoding a putative neutral sphingomyelinase (SMase) and/or IPC hydrolase (IPCase), designated ISCL (Inositol phosphoSphingolipid phospholipase C-Like). Despite the lack of sphingomyelin synthesis, L. major promastigotes exhibited a potent SMase activity which was abolished upon deletion of ISCL, and increased following over-expression by episomal complementation. ISCL-dependent activity with sphingomyelin was about 20 fold greater than that seen with IPC. Null mutants of ISCL (iscl(-)) showed modest accumulation of IPC, but grew and differentiated normally in vitro. Interestingly, iscl(-) mutants did not induce lesion pathology in the susceptible BALB/c mice, yet persisted indefinitely at low levels at the site of infection. Notably, the acute virulence of iscl(-) was completely restored by the expression of ISCL or heterologous mammalian or fungal SMases, but not by fungal proteins exhibiting only IPCase activity. Together, these findings strongly suggest that degradation of host-derived sphingomyelin plays a pivotal role in the proliferation of Leishmania in mammalian hosts and the manifestation of acute disease pathology.
Collapse
Affiliation(s)
- Ou Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Mattie C. Wilson
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Wei Xu
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Fong-Fu Hsu
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John Turk
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - F. Matthew Kuhlmann
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Yingwei Wang
- Department of Microbiology and Immunology, Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Department of Microbiology and Immunology, Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Phillip Key
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
57
|
Jain R, Ghoshal A, Mandal C, Shaha C. Leishmania cell surface prohibitin: role in host-parasite interaction. Cell Microbiol 2009; 12:432-52. [PMID: 19888987 DOI: 10.1111/j.1462-5822.2009.01406.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Proteins selectively upregulated in infective parasitic forms could be critical for disease pathogenesis. A mammalian prohibitin orthologue is upregulated in infective metacyclic promastigotes of Leishmania donovani, a parasite that causes visceral leishmaniasis. Leishmania donovani prohibitin shares 41% similarity with mammalian prohibitin and 95-100% within the genus. Prohibitin is concentrated at the surface of the flagellar and the aflagellar pole, the aflagellar pole being a region through which host-parasite interactions occur. Prohibitin is attached to the membrane through a GPI anchor. Overexpression of wild-type prohibitin increases protein surface density resulting in parasites with higher infectivity. However, parasites overexpressing a mutant prohibitin with an amino acid substitution at the GPI anchor site to prevent surface expression through GPI-link show lesser surface expression and lower infective abilities. Furthermore, the presence of anti-prohibitin antibodies during macrophage-Leishmania interaction in vitro reduces infection. The cognate binding partner for Leishmania prohibitin on the host cell appears to be macrophage surface HSP70, siRNA mediated downregulation of which abrogates the capability of the macrophage to bind to parasites. Leishmania prohibitin is able to generate a strong humoral response in visceral leishmaniasis patients. The above observations suggest that prohibitin plays an important role in events leading to Leishmania-host interaction.
Collapse
Affiliation(s)
- Rohit Jain
- Cell Death and Differentiation Research Laboratory, National Institute of Immunology, New Delhi-110067, India
| | | | | | | |
Collapse
|
58
|
Zufferey R, Al-Ani GK, Dunlap K. Leishmania dihydroxyacetonephosphate acyltransferase LmDAT is important for ether lipid biosynthesis but not for the integrity of detergent resistant membranes. Mol Biochem Parasitol 2009; 168:177-85. [PMID: 19720088 DOI: 10.1016/j.molbiopara.2009.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 08/11/2009] [Accepted: 08/21/2009] [Indexed: 11/18/2022]
Abstract
Glycerolipid biosynthesis in Leishmania initiates with the acylation of glycerol-3-phosphate by a single glycerol-3-phosphate acyltransferase, LmGAT, or of dihydroxyacetonephosphate by a dihydroxyacetonephosphate acyltransferase, LmDAT. We previously reported that acylation of the precursor dihydroxyacetonephosphate rather than glycerol-3-phosphate is the physiologically relevant pathway for Leishmania parasites. We demonstrated that LmDAT is important for normal growth, survival during the stationary phase, and for virulence. Here, we assessed the role of LmDAT in glycerolipid metabolism and metacyclogenesis. LmDAT was found to be implicated in the biosynthesis of ether glycerolipids, including the ether lipid derived virulence factor lipophosphoglycan and glycosylphosphatidylinositol-anchored proteins. The null mutant produced longer lipophosphoglycan molecules that were not released in the medium, and augmented levels of glycosylphosphatidylinositol-anchored proteins. In addition, the integrity of detergent resistant membranes was not affected by the absence of the LmDAT gene. Further, our genetic analyses strongly suggest that LmDAT was synthetic lethal with the glycerol-3-phosphate acyltransferase encoding gene LmGAT, implying that Leishmania expresses only two acyltransferases that initiate the biosynthesis of its cellular glycerolipids. Last, despite the fact that LmDAT is important for virulence the null mutant still exhibited the typical characteristics of metacyclics.
Collapse
Affiliation(s)
- Rachel Zufferey
- Department of Biological Sciences, St John's University, 8000 Utopia Parkway, Jamaica, NY 11439, USA.
| | | | | |
Collapse
|
59
|
Sterol Biosynthesis Pathway as Target for Anti-trypanosomatid Drugs. Interdiscip Perspect Infect Dis 2009; 2009:642502. [PMID: 19680554 PMCID: PMC2721973 DOI: 10.1155/2009/642502] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 04/27/2009] [Indexed: 12/03/2022] Open
Abstract
Sterols are constituents of the cellular membranes that are essential for their normal structure and function. In mammalian cells, cholesterol is the main sterol found in the various membranes. However, other sterols predominate in eukaryotic microorganisms such as fungi and protozoa. It is now well established that an important metabolic pathway in fungi and in members of the Trypanosomatidae family is one that produces a special class of sterols, including ergosterol, and other 24-methyl sterols, which are required for parasitic growth and viability, but are absent from mammalian host cells. Currently, there are several drugs that interfere with sterol biosynthesis (SB) that are in use to treat diseases such as high cholesterol in humans and fungal infections. In this review, we analyze the effects of drugs such as (a) statins, which act on the mevalonate pathway by inhibiting HMG-CoA reductase, (b) bisphosphonates, which interfere with the isoprenoid pathway in the step catalyzed by farnesyl diphosphate synthase, (c) zaragozic acids and quinuclidines, inhibitors of squalene synthase (SQS), which catalyzes the first committed step in sterol biosynthesis, (d) allylamines, inhibitors of squalene epoxidase, (e) azoles, which inhibit C14α-demethylase, and (f) azasterols, which inhibit Δ24(25)-sterol methyltransferase (SMT). Inhibition of this last step appears to have high selectivity for fungi and trypanosomatids, since this enzyme is not found in mammalian cells. We review here the IC50 values of these various inhibitors, their effects on the growth of trypanosomatids (both in axenic cultures and in cell cultures), and their effects on protozoan structural organization (as evaluted by light and electron microscopy) and lipid composition. The results show that the mitochondrial membrane as well as the membrane lining the protozoan cell body and flagellum are the main targets. Probably as a consequence of these primary effects, other important changes take place in the organization of the kinetoplast DNA network and on the protozoan cell cycle. In addition, apoptosis-like and autophagic processes induced by several of the inhibitors tested led to parasite death.
Collapse
|
60
|
Mina JG, Pan SY, Wansadhipathi NK, Bruce CR, Shams-Eldin H, Schwarz RT, Steel PG, Denny PW. The Trypanosoma brucei sphingolipid synthase, an essential enzyme and drug target. Mol Biochem Parasitol 2009; 168:16-23. [PMID: 19545591 DOI: 10.1016/j.molbiopara.2009.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 06/10/2009] [Accepted: 06/11/2009] [Indexed: 12/29/2022]
Abstract
Sphingolipids are important components of eukaryotic membranes, particularly the plasma membrane, and are involved in a diverse array of signal transduction processes. In the Eukaryota the biosynthetic pathway for the formation of these lipid species is largely conserved. However, in contrast to mammals which produce sphingomyelin (SM), several pathogenic fungi and protozoa synthesize inositol phosphorylceramide (IPC) as the primary phosphosphingolipid. This process is catalyzed by the enzyme IPC synthase, a recognized target for anti-fungals encoded by the AUR1 gene in yeast. Recently, functional orthologues of the AUR1p have been identified in a group of insect vector-borne pathogenic protozoa, the Kinetoplastida, which are responsible for a range of so-called neglected diseases. Of these the Trypanosoma brucei species are the causative agents of human African trypanosomiasis in many of the most under-developed regions of Africa. The available treatments for these diseases are limited, of decreasing efficacy, and often demonstrate severe side-effects. Against this background the T. brucei sphingolipid synthase, an orthologue of the yeast AUR1p, may represent a promising target for novel anti-protozoals. Our studies identify an isoform of this protein as a novel bi-functional enzyme capable of catalyzing the synthesis of both IPC and SM, both known to be present in the parasite. Furthermore, the synthase is essential for parasite growth and can be inhibited by a known anti-fungal at low nanomolar levels in vitro. Most notably this drug demonstrates trypanocidal activity against cultured bloodstream form parasites. Thus, the T. brucei sphingolipid synthase represents a valid and promising drug target.
Collapse
Affiliation(s)
- John G Mina
- Centre for Bioactive Chemistry, Department of Chemistry and School of Biological and Biomedical Sciences, Durham University, Durham, UK
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Tyler KM, Fridberg A, Toriello KM, Olson CL, Cieslak JA, Hazlett TL, Engman DM. Flagellar membrane localization via association with lipid rafts. J Cell Sci 2009; 122:859-66. [PMID: 19240119 DOI: 10.1242/jcs.037721] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The eukaryotic flagellar membrane has a distinct composition from other domains of the plasmalemma. Our work shows that the specialized composition of the trypanosome flagellar membrane reflects increased concentrations of sterols and saturated fatty acids, correlating with direct observation of high liquid order by laurdan fluorescence microscopy. These findings indicate that the trypanosome flagellar membrane possesses high concentrations of lipid rafts: discrete regions of lateral heterogeneity in plasma membranes that serve to sequester and organize specialized protein complexes. Consistent with this, a dually acylated Ca(2+) sensor that is concentrated in the flagellum is found in detergent-resistant membranes and mislocalizes if the lipid rafts are disrupted. Detergent-extracted cells have discrete membrane patches localized on the surface of the flagellar axoneme, suggestive of intraflagellar transport particles. Together, these results provide biophysical and biochemical evidence to indicate that lipid rafts are enriched in the trypanosome flagellar membrane, providing a unique mechanism for flagellar protein localization and illustrating a novel means by which specialized cellular functions may be partitioned to discrete membrane domains.
Collapse
Affiliation(s)
- Kevin M Tyler
- BioMedical Research Centre, School of Medicine, Health Policy and Practice, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| | | | | | | | | | | | | |
Collapse
|
62
|
In vitro activities of ER-119884 and E5700, two potent squalene synthase inhibitors, against Leishmania amazonensis: antiproliferative, biochemical, and ultrastructural effects. Antimicrob Agents Chemother 2008; 52:4098-114. [PMID: 18765694 DOI: 10.1128/aac.01616-07] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ER-119884 and E5700, novel arylquinuclidine derivatives developed as cholesterol-lowering agents, were potent in vitro growth inhibitors of both proliferative stages of Leishmania amazonensis, the main causative agent of cutaneous leishmaniasis in South America, with the 50% inhibitory concentrations (IC(50)s) being in the low-nanomolar to subnanomolar range. The compounds were very potent noncompetitive inhibitors of native L. amazonensis squalene synthase (SQS), with inhibition constants also being in the nanomolar to subnanomolar range. Growth inhibition was strictly associated with the depletion of the parasite's main endogenous sterols and the concomitant accumulation of exogenous cholesterol. Using electron microscopy, we identified the intracellular structures affected by the compounds. A large number of lipid inclusions displaying different shapes and electron densities were observed after treatment with both SQS inhibitors, and these inclusions were associated with an intense disorganization of the membrane that surrounds the cell body and flagellum, as well as the endoplasmic reticulum and the Golgi complex. Cells treated with ER-119884 but not those treated with E5700 had an altered cytoskeleton organization due to an abnormal distribution of tubulin, and many were arrested at cytokinesis. A prominent contractile vacuole and a phenotype typical of programmed cell death were frequently found in drug-treated cells. The selectivity of the drugs was demonstrated with the JC-1 mitochondrial fluorescent label and by trypan blue exclusion tests with macrophages, which showed that the IC(50)s against the host cells were 4 to 5 orders of magnitude greater that those against the intracellular parasites. Taken together, our results show that ER-119884 and E5700 are unusually potent and selective inhibitors of the growth of Leishmania amazonensis, probably because of their inhibitory effects on de novo sterol biosynthesis at the level of SQS, but some of our observations indicate that ER-119884 may also interfere with other cellular processes.
Collapse
|
63
|
Sutterwala SS, Hsu FF, Sevova ES, Schwartz KJ, Zhang K, Key P, Turk J, Beverley SM, Bangs JD. Developmentally regulated sphingolipid synthesis in African trypanosomes. Mol Microbiol 2008; 70:281-96. [PMID: 18699867 PMCID: PMC2629665 DOI: 10.1111/j.1365-2958.2008.06393.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sphingolipids are essential components of eukaryotic membranes, and many unicellular eukaryotes, including kinetoplastid protozoa, are thought to synthesize exclusively inositol phosphorylceramide (IPC). Here we characterize sphingolipids from Trypanosoma brucei, and a trypanosome sphingolipid synthase gene family (TbSLS1-4) that is orthologous to Leishmania IPC synthase. Procyclic trypanosomes contain IPC, but also sphingomyelin, while surprisingly bloodstream-stage parasites contain sphingomyelin and ethanolamine phosphorylceramide (EPC), but no detectable IPC. In vivo fluorescent ceramide labelling confirmed stage-specific biosynthesis of both sphingomyelin and IPC. Expression of TbSLS4 in Leishmania resulted in production of sphingomyelin and EPC suggesting that the TbSLS gene family has bi-functional synthase activity. RNAi silencing of TbSLS1-4 in bloodstream trypanosomes led to rapid growth arrest and eventual cell death. Ceramide levels were increased more than threefold by silencing suggesting a toxic downstream effect mediated by this potent intracellular messenger. Topology predictions support a revised six-transmembrane domain model for the kinetoplastid sphingolipid synthases consistent with the proposed mammalian sphingomyelin synthase structure. This work reveals novel diversity and regulation in sphingolipid metabolism in this important group of human parasites.
Collapse
Affiliation(s)
- Shaheen S Sutterwala
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, 1550 Linden Drive, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Leishmania adaptor protein-1 subunits are required for normal lysosome traffic, flagellum biogenesis, lipid homeostasis, and adaptation to temperatures encountered in the mammalian host. EUKARYOTIC CELL 2008; 7:1256-67. [PMID: 18515754 DOI: 10.1128/ec.00090-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The adaptor protein-1 (AP-1) complex is involved in membrane transport between the Golgi apparatus and endosomes. In the protozoan parasite Leishmania mexicana mexicana, the AP-1 mu1 and sigma1 subunits are not required for growth at 27 degrees C but are essential for infectivity in the mammalian host. In this study, we have investigated the function of these AP-1 subunits in order to understand the molecular basis for this loss of virulence. The mu1 and sigma1 subunits were localized to late Golgi and endosome membranes of the major parasite stages. Parasite mutants lacking either AP-1 subunit lacked obvious defects in Golgi structure, endocytosis, or exocytic transport. However, these mutants displayed reduced rates of endosome-to-lysosome transport and accumulated fragmented, sterol-rich lysosomes. Defects in flagellum biogenesis were also evident in nondividing promastigote stages, and this phenotype was exacerbated by inhibitors of sterol and sphingolipid biosynthesis. Furthermore, both AP-1 mutants were hypersensitive to elevated temperature and perturbations in membrane lipid composition. The pleiotropic requirements for AP-1 in membrane trafficking and temperature stress responses explain the loss of virulence of these mutants in the mammalian host.
Collapse
|
65
|
Novel role of sphingolipid synthesis genes in regulating giardial encystation. Infect Immun 2008; 76:2939-49. [PMID: 18426892 DOI: 10.1128/iai.00116-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although encystation (cyst formation) is important for the survival of Giardia lamblia outside its human host, the molecular events that prompt encystation have not been fully elucidated. Here, we demonstrate that sphingolipids (SLs), which are important for the growth and differentiation of many eukaryotes, play key roles in giardial encystation. Transcriptional analyses showed that only three genes in the SL biosynthesis pathways are expressed and transcribed differentially in nonencysting and encysting Giardia trophozoites. While the putative homologues of giardial serine palmitoyltransferase (gSPT) subunit genes (gspt-1 and -2) are differentially expressed in nonencysting and encysting trophozoites, the giardial ceramide glucosyltransferase 1 gene (gglct-1) is transcribed only in encysting cells. l-Cycloserine, an inhibitor of gSPT, inhibited the endocytosis and endoplasmic reticulum/perinuclear targeting of bodipy-ceramide in trophozoites, and this could be reversed by 3-ketosphinganine. On the other hand, D-threo-1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP), an inhibitor of glucosylceramide synthesis, blocked karyokinesis and reduced cyst production in culture. PPMP also altered the expression of cyst wall protein transcripts in encysting cells. Phylogenetic analyses revealed that the gspt genes are paralogs derived from an ancestral spt sequence that underwent gene duplication early in eukaryotic history. This ancestral sequence, in turn, was probably derived from prokaryotic aminoacyl transferases. In contrast, gglct-1 is found in both prokaryotes and eukaryotes without any evidence of gene duplication. These studies indicate that SL synthesis genes are involved in key events in giardial biology and could serve as potential targets for developing new therapies against giardiasis.
Collapse
|
66
|
Dietrich CR, Han G, Chen M, Berg RH, Dunn TM, Cahoon EB. Loss-of-function mutations and inducible RNAi suppression of Arabidopsis LCB2 genes reveal the critical role of sphingolipids in gametophytic and sporophytic cell viability. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:284-98. [PMID: 18208516 DOI: 10.1111/j.1365-313x.2008.03420.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Serine palmitoyltransferase (SPT) catalyzes the first step in sphingolipid biosynthesis, and downregulation of this enzyme provides a means for exploring sphingolipid function in cells. We have previously demonstrated that Arabidopsis SPT requires LCB1 and LCB2 subunits for activity, as is the case in other eukaryotes. In this study, we show that Arabidopsis has two genes (AtLCB2a and AtLCB2b) that encode functional isoforms of the LCB2 subunit. No alterations in sphingolipid content or growth were observed in T-DNA mutants for either gene, but homozygous double mutants were not recoverable, suggesting that these genes are functionally redundant. Reciprocal crosses conducted with Atlcb2a and Atlcb2b mutants indicated that lethality is associated primarily with the inability to transmit the lcb2 null genotype through the haploid pollen. Consistent with this, approximately 50% of the pollen obtained from plants homozygous for a mutation in one gene and heterozygous for a mutation in the second gene arrested during transition from uni-nucleate microspore to bicellular pollen. Ultrastructural analyses revealed that these pollen grains contained aberrant endomembranes and lacked an intine layer. To examine sphingolipid function in sporophytic cells, Arabidopsis lines were generated that allowed inducible RNAi silencing of AtLCB2b in an Atlcb2a mutant background. Studies conducted with these lines demonstrated that sphingolipids are essential throughout plant development, and that lethality resulting from LCB2 silencing in seedlings could be partially rescued by supplying exogenous long-chain bases. Overall, these studies provide insights into the genetic and biochemical properties of SPT and sphingolipid function in Arabidopsis.
Collapse
Affiliation(s)
- Charles R Dietrich
- USDA-ARS Plant Genetics Research Unit, Donald Danforth Plant Science Center, 975 N. Warson Road, St Louis, MO 63132, USA
| | | | | | | | | | | |
Collapse
|
67
|
Chavali AK, Whittemore JD, Eddy JA, Williams KT, Papin JA. Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major. Mol Syst Biol 2008; 4:177. [PMID: 18364711 PMCID: PMC2290936 DOI: 10.1038/msb.2008.15] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 02/06/2008] [Indexed: 12/18/2022] Open
Abstract
Systems analyses have facilitated the characterization of metabolic networks of several organisms. We have reconstructed the metabolic network of Leishmania major, a poorly characterized organism that causes cutaneous leishmaniasis in mammalian hosts. This network reconstruction accounts for 560 genes, 1112 reactions, 1101 metabolites and 8 unique subcellular localizations. Using a systems-based approach, we hypothesized a comprehensive set of lethal single and double gene deletions, some of which were validated using published data with approximately 70% accuracy. Additionally, we generated hypothetical annotations to dozens of previously uncharacterized genes in the L. major genome and proposed a minimal medium for growth. We further demonstrated the utility of a network reconstruction with two proof-of-concept examples that yielded insight into robustness of the network in the presence of enzymatic inhibitors and delineation of promastigote/amastigote stage-specific metabolism. This reconstruction and the associated network analyses of L. major is the first of its kind for a protozoan. It can serve as a tool for clarifying discrepancies between data sources, generating hypotheses that can be experimentally validated and identifying ideal therapeutic targets.
Collapse
Affiliation(s)
- Arvind K Chavali
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Jeffrey D Whittemore
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - James A Eddy
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Kyle T Williams
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
68
|
Fridberg A, Olson CL, Nakayasu ES, Tyler KM, Almeida IC, Engman DM. Sphingolipid synthesis is necessary for kinetoplast segregation and cytokinesis in Trypanosoma brucei. J Cell Sci 2008; 121:522-35. [PMID: 18230649 DOI: 10.1242/jcs.016741] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sphingolipids and their metabolites have been thought crucial for cell growth and cell cycle progression, membrane and protein trafficking, signal transduction, and formation of lipid rafts; however, recent studies in trypanosomes point to the dispensability of sphingolipids in some of these processes. In this study, we explore the requirements for de novo sphingolipid biosynthesis in the insect life cycle stage of the African trypanosome Trypanosoma brucei by inhibiting the enzyme serine palmitoyltransferase (SPT2) by using RNA interference or treatment with a potent SPT2 inhibitor myriocin. Mass spectrometry revealed that upon SPT2 inhibition, the parasites contained substantially reduced levels of inositolphosphorylceramide. Although phosphatidylcholine and cholesterol levels were increased to compensate for this loss, the cells were ultimately not viable. The most striking result of sphingolipid reduction in procyclic T. brucei was aberrant cytokinesis, characterized by incomplete cleavage-furrow formation, delayed kinetoplast segregation and emergence of cells with abnormal DNA content. Organelle replication continued despite sphingolipid depletion, indicating that sphingolipids act as second messengers regulating cellular proliferation and completion of cytokinesis. Distention of the mitochondrial membrane, formation of multilamellar structures within the mitochondrion and near the nucleus, accumulation of lipid bodies and, less commonly, disruption of the Golgi complex were observed after prolonged sphingolipid depletion. These findings suggest that some aspects of vesicular trafficking may be compromised. However, flagellar membrane targeting and the association of the flagellar membrane protein calflagin with detergent-resistant membranes were not affected, indicating that the vesicular trafficking defects were mild. Our studies indicate that sphingolipid biosynthesis is vital for cell cycle progression and cell survival, but not essential for the normal trafficking of flagellar membrane-associated proteins or lipid raft formation in procyclic T. brucei.
Collapse
Affiliation(s)
- Alina Fridberg
- Department of Pathology and Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
69
|
Majumdar KN, Banerjee A, Ratha J, Mandal M, Sarkar RN, Saha KD. Leishmanial lipid suppresses tumor necrosis factor α, interleukin-1β, and nitric oxide production by adherent synovial fluid mononuclear cells in rheumatoid arthritis patients and induces apoptosis through the mitochondrial-mediated pathway. ACTA ACUST UNITED AC 2008; 58:696-706. [DOI: 10.1002/art.23295] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
70
|
Salto ML, Kuhlenschmidt T, Kuhlenschmidt M, de Lederkremer RM, Docampo R. Phospholipid and glycolipid composition of acidocalcisomes of Trypanosoma cruzi. Mol Biochem Parasitol 2007; 158:120-30. [PMID: 18207579 DOI: 10.1016/j.molbiopara.2007.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 11/28/2007] [Accepted: 12/01/2007] [Indexed: 10/22/2022]
Abstract
Highly purified acidocalcisomes from Trypanosoma cruzi epimastigotes were obtained by differential centrifugation and iodixanol gradient ultracentrifugation. Lipid analysis of acidocalcisomes revealed the presence of low amounts of 3beta-hydroxysterols and predominance of phospholipids. Alkylacyl phosphatidylinositol (16:0/18:2), diacyl phosphatidylinositol (18:0/18:2), diacyl phosphatidylcholine (16:0/18:2; 16:1/18:2; 16:2/18:2; 18:1/18:2 and 18:2/18:2), and diacyl phosphatidylethanolamine (16:0/18:2 and 16:1/18:2) were the only phospholipids characterized by electrospray ionization-mass spectrometry (ESI-MS). Incubation of epimastigotes with [(3)H]-mannose and isolation of acidocalcisomes allowed the detection of a glycoinositolphospholipid (GIPL) in these organelles. The sugar content of the acidocalcisomal GIPL was similar to that of the GIPL present in a microsomal fraction but the amount of galactofuranose and inositol with respect to the other monosaccharides was lower, suggesting a different chemical structure. Taken together, these results indicate that acidocalcisomes of T. cruzi have a distinct lipid and carbohydrate composition.
Collapse
Affiliation(s)
- María Laura Salto
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | | | | | | | | |
Collapse
|
71
|
Sphingolipids and membrane biology as determined from genetic models. Prostaglandins Other Lipid Mediat 2007; 85:1-16. [PMID: 18035569 DOI: 10.1016/j.prostaglandins.2007.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 10/05/2007] [Accepted: 10/07/2007] [Indexed: 12/20/2022]
Abstract
The importance of sphingolipids in membrane biology was appreciated early in the twentieth century when several human inborn errors of metabolism were linked to defects in sphingolipid degradation. The past two decades have seen an explosion of information linking sphingolipids with cellular processes. Studies have unraveled mechanistic details of the sphingolipid metabolic pathways, and these findings are being exploited in the development of novel therapies, some now in clinical trials. Pioneering work in yeast has laid the foundation for identifying genes encoding the enzymes of the pathways. The advent of the era of genomics and bioinformatics has led to the identification of homologous genes in other species and the subsequent creation of animal knock-out lines for these genes. Discoveries from these efforts have re-kindled interest in the role of sphingolipids in membrane biology. This review highlights some of the recent advances in understanding sphingolipids' roles in membrane biology as determined from genetic models.
Collapse
|
72
|
Trypanosomatid and fungal glycolipids and sphingolipids as infectivity factors and potential targets for development of new therapeutic strategies. Biochim Biophys Acta Gen Subj 2007; 1780:362-9. [PMID: 17976917 DOI: 10.1016/j.bbagen.2007.09.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 09/12/2007] [Accepted: 09/12/2007] [Indexed: 11/20/2022]
Abstract
Several (glyco)(sphingo)lipids from different human pathogens have been characterized, and frequently many of these molecules are participating in host-pathogen interaction. In Leishmania (Leishmania) amazonensis, for example, amastigotes present on their surface glycosphingolipids (GSLs) with the structure Galbeta1-3Galalpha, which is recognized by 30 kDa receptor of macrophages. Furthermore, other Leishmania species, such as Leishmania (Leishmania) major and Leishmania (Viannia) braziliensis present glycosylinositolphospholipids (GIPLs) which are involved in Leishmania-macrophage interaction. It is worth to mention that these antigens are not expressed in mammalian cells. Leishmania promastigotes also present inositol phosphorylceramide (IPC), a unique sphingolipid characteristic of fungi and plants. It was observed that IPC synthesis is essential for parasite division, since Aureobasidin A, an inhibitor of IPC synthase, inhibited significantly promastigote and amastigote growths. Recently, it was also demonstrated that GIPLs, IPC and sterols are preferentially present in the parasite membrane microdomains resistant to Triton X-100 at 4 degrees C. The disruption of these microdomains by incubating parasites with methyl-beta-cyclodextrin inhibited significantly macrophage infectivity by Leishmania. Other pathogens, such as fungi, also present unique glycolipids which may have an important role for the fungal development and/or disease establishment. Taking together these results, this review will discuss different biological roles for (glyco)(sphingo)lipids of different pathogens.
Collapse
|
73
|
Hsu FF, Turk J, Zhang K, Beverley SM. Characterization of inositol phosphorylceramides from Leishmania major by tandem mass spectrometry with electrospray ionization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:1591-604. [PMID: 17627842 PMCID: PMC2065762 DOI: 10.1016/j.jasms.2007.05.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 05/22/2007] [Accepted: 05/23/2007] [Indexed: 05/11/2023]
Abstract
We describe tandem mass spectrometric approaches, including multiple stage ion-trap and source collisionally activated dissociation (CAD) tandem mass spectrometry with electrospray ionization (ESI) to characterize inositol phosphorylceramide (IPC) species seen as [M - H](-) and [M - 2H + Li](-) ions in the negative-ion mode as well as [M + H](+), [M + Li](+), and [M - H + 2Li](+) ions in the positive-ion mode. Following CAD in an ion-trap or a triple-stage quadrupole instrument, the [M - H](-) ions of IPC yielded fragment ions reflecting only the inositol and the fatty acyl substituent of the molecule. In contrast, the mass spectra from MS(3) of [M - H - Inositol](-) ions contained abundant ions that are readily applicable for assignment of the fatty acid and long-chain base (LCB) moieties. Both the product-ion spectra from MS(2) and MS(3) of the [M - 2H + Alk](-), [M + H](+), [M + Alk](+), and [M - H + 2Alk](+) ions also contained rich fragment ions informative for unambiguous assignment of the fatty acyl substituent and the LCB. However, the sensitivity of the ions observed in the forms of [M - 2H + Alk](-), [M + H](+), [M + Alk](+), and [M - H + 2Alk](+) (Alk = Li, Na) is nearly 10 times less than that observed in the [M - H](-) form. In addition to the major fragmentation pathways leading to elimination of the inositol or inositol monophosphate moiety, several structurally informative ions resulting from rearrangement processes were observed. The fragmentation processes are similar to those previously reported for ceramides. While the tandem mass spectrometric approach using MS(n) (n = 2, 3) permits the structures of the Leishmania major IPCs consisting of two isomeric structures to be unveiled in detail, tandem mass spectra from constant neutral loss scans may provide a simple method for detecting IPC in mixtures.
Collapse
Affiliation(s)
- Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
74
|
Capul AA, Hickerson S, Barron T, Turco SJ, Beverley SM. Comparisons of mutants lacking the Golgi UDP-galactose or GDP-mannose transporters establish that phosphoglycans are important for promastigote but not amastigote virulence in Leishmania major. Infect Immun 2007; 75:4629-37. [PMID: 17606605 PMCID: PMC1951182 DOI: 10.1128/iai.00735-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abundant surface Leishmania phosphoglycans (PGs) containing [Gal(beta1,4)Man(alpha1-PO(4))]-derived repeating units are important at several points in the infectious cycle of this protozoan parasite. PG synthesis requires transport of activated nucleotide-sugar precursors from the cytoplasm to the Golgi apparatus. Correspondingly, null mutants of the L. major GDP-mannose transporter LPG2 lack PGs and are severely compromised in macrophage survival and induction of acute pathology in susceptible mice, yet they are able to persist indefinitely and induce protective immunity. However, lpg2(-) L. mexicana amastigotes similarly lacking PGs but otherwise normal in known glycoconjugates remain able to induce acute pathology. To explore this further, we tested the infectivity of a new PG-null L. major mutant, which is inactivated in the two UDP-galactose transporter genes LPG5A and LPG5B. Surprisingly this mutant did not recapitulate the phenotype of L. major lpg2(-), instead resembling the L. major lipophosphoglycan-deficient lpg1(-) mutant. Metacyclic lpg5A(-)/lpg5B(-) promastigotes showed strong defects in the initial steps of macrophage infection and survival. However, after a modest delay, the lpg5A(-)/lpg5B(-) mutant induced lesion pathology in infected mice, which thereafter progressed normally. Amastigotes recovered from these lesions were fully infective in mice and in macrophages despite the continued absence of PGs. This suggests that another LPG2-dependent metabolite is responsible for the L. major amastigote virulence defect, although further studies ruled out cytoplasmic mannans. These data thus resolve the distinct phenotypes seen among lpg2(-) Leishmania species by emphasizing the role of glycoconjugates other than PGs in amastigote virulence, while providing further support for the role of PGs in metacyclic promastigote virulence.
Collapse
Affiliation(s)
- Althea A Capul
- Department of Molecular Microbiology, Washington University School of Medicine, Campus Box 8230, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
75
|
Zhang K, Pompey JM, Hsu FF, Key P, Bandhuvula P, Saba JD, Turk J, Beverley SM. Redirection of sphingolipid metabolism toward de novo synthesis of ethanolamine in Leishmania. EMBO J 2007; 26:1094-104. [PMID: 17290222 PMCID: PMC1852826 DOI: 10.1038/sj.emboj.7601565] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 12/20/2006] [Indexed: 11/09/2022] Open
Abstract
In most eukaryotes, sphingolipids (SLs) are critical membrane components and signaling molecules. However, mutants of the trypanosomatid protozoan Leishmania lacking serine palmitoyltransferase (spt2-) and SLs grow well, although they are defective in stationary phase differentiation and virulence. Similar phenotypes were observed in sphingolipid (SL) mutant lacking the degradatory enzyme sphingosine 1-phosphate lyase (spl-). This epistatic interaction suggested that a metabolite downstream of SLs was responsible. Here we show that unlike other organisms, the Leishmania SL pathway has evolved to be the major route for ethanolamine (EtN) synthesis, as EtN supplementation completely reversed the viability and differentiation defects of both mutants. Thus Leishmania has undergone two major metabolic shifts: first in de-emphasizing the metabolic roles of SLs themselves in growth, signaling, and maintenance of membrane microdomains, which may arise from the unique combination of abundant parasite lipids; Second, freed of typical SL functional constraints and a lack of alternative routes to produce EtN, Leishmania redirected SL metabolism toward bulk EtN synthesis. Our results thus reveal a striking example of remodeling of the SL metabolic pathway in Leishmania.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Justine M Pompey
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Fong-Fu Hsu
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Phillip Key
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Padmavathi Bandhuvula
- Children's Hospital Oakland Research Institute, Center for Cancer Research, Oakland, CA, USA
| | - Julie D Saba
- Children's Hospital Oakland Research Institute, Center for Cancer Research, Oakland, CA, USA
| | - John Turk
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Stephen M Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Ave., Box 8230, St Louis, MO 63110, USA. Tel.: +1 314 747 2630; Fax: +1 314 747 2634; E-mail:
| |
Collapse
|
76
|
Tanaka AK, Valero VB, Takahashi HK, Straus AH. Inhibition of Leishmania (Leishmania) amazonensis growth and infectivity by aureobasidin A. J Antimicrob Chemother 2007; 59:487-92. [PMID: 17242034 DOI: 10.1093/jac/dkl518] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES To study the effect of aureobasidin A, an inhibitor of inositol phosphorylceramide (IPC) synthase, on Leishmania growth and infectivity. METHODS Effects of aureobasidin A were determined for: (i) promastigote growth in axenic culture; (ii) promastigote infectivity in macrophage monolayers; (iii) development of footpad lesions in BALB/c mice; (iv) differentiation of amastigotes into promastigotes. RESULTS Aureobasidin A (20 microM) inhibited 90% of Leishmania (Leishmania) amazonensis promastigote growth in axenic culture, but the parasites remained viable, i.e. growth curves returned to normal after aureobasidin A was removed from culture medium. The aureobasidin A IC50 was determined by MTT assay as 4.1 microM for L. (L.) amazonensis promastigotes, 12.6 microM for Leishmania (Leishmania) major and 13.7 microM for Leishmania (Viannia) braziliensis. There was a significant delay in infection when L. (L.) amazonensis promastigotes pre-treated with aureobasidin A were inoculated into BALB/c mouse footpads. When aureobasidin A was added to cultured macrophages infected with amastigotes, the number of infected macrophages was reduced by >90%. CONCLUSIONS Aureobasidin A is an interesting pharmacological tool to investigate the effect of lipid metabolism inhibition in Leishmania spp.
Collapse
Affiliation(s)
- Ameria K Tanaka
- Department of Biochemistry, Universidade Federal de São Paulo/Escola Paulista de Medicina, Rua Botucatu 862, São Paulo, SP, 04023-900, Brazil
| | | | | | | |
Collapse
|
77
|
Sutterwala SS, Creswell CH, Sanyal S, Menon AK, Bangs JD. De novo sphingolipid synthesis is essential for viability, but not for transport of glycosylphosphatidylinositol-anchored proteins, in African trypanosomes. EUKARYOTIC CELL 2007; 6:454-64. [PMID: 17220466 PMCID: PMC1828920 DOI: 10.1128/ec.00283-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
De novo sphingolipid synthesis is required for the exit of glycosylphosphatidylinositol (GPI)-anchored membrane proteins from the endoplasmic reticulum in yeast. Using a pharmacological approach, we test the generality of this phenomenon by analyzing the transport of GPI-anchored cargo in widely divergent eukaryotic systems represented by African trypanosomes and HeLa cells. Myriocin, which blocks the first step of sphingolipid synthesis (serine + palmitate --> 3-ketodihydrosphingosine), inhibited the growth of cultured bloodstream parasites, and growth was rescued with exogenous 3-ketodihydrosphingosine. Myriocin also blocked metabolic incorporation of [3H]serine into base-resistant sphingolipids. Biochemical analyses indicate that the radiolabeled lipids are not sphingomyelin or inositol phosphorylceramide, suggesting that bloodstream trypanosomes synthesize novel sphingolipids. Inhibition of de novo sphingolipid synthesis with myriocin had no adverse effect on either general secretory trafficking or GPI-dependent trafficking in trypanosomes, and similar results were obtained with HeLa cells. A mild effect on endocytosis was seen for bloodstream trypanosomes after prolonged incubation with myriocin. These results indicate that de novo synthesis of sphingolipids is not a general requirement for secretory trafficking in eukaryotic cells. However, in contrast to the closely related kinetoplastid Leishmania major, de novo sphingolipid synthesis is essential for the viability of bloodstream-stage African trypanosomes.
Collapse
Affiliation(s)
- Shaheen S Sutterwala
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
78
|
Squina FM, Pedrosa AL, Nunes VS, Cruz AK, Tosi LRO. Shuttle mutagenesis and targeted disruption of a telomere-located essential gene of Leishmania. Parasitology 2006; 134:511-22. [PMID: 17169165 DOI: 10.1017/s0031182006001892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 10/06/2006] [Accepted: 10/10/2006] [Indexed: 11/06/2022]
Abstract
Leishmania mutants have contributed greatly to extend our knowledge of this parasite's biology. Here we report the use of the mariner in vitro transposition system as a source of reagents for shuttle mutagenesis and targeted disruption of Leishmania genes. The locus-specific integration was achieved by the disruption of the subtelomeric gene encoding a DNA-directed RNA polymerase III subunit (RPC2). Further inactivation of RPC2 alleles required the complementation of the intact gene, which was transfected in an episomal context. However, attempts to generate a RPC2 chromosomal null mutant resulted in genomic rearrangements that maintained copies of the intact locus in the genome. The maintenance of the RPC2 chromosomal locus in complemented mutants was not mediated by an increase in the number of copies and did not involve chromosomal translocations, which are the typical characteristics of the genomic plasticity of this parasite. Unlike the endogenous locus, the selectable marker used to disrupt RPC2 did not display a tendency to remain in its chromosomal location but was targeted into supernumerary episomal molecules.
Collapse
Affiliation(s)
- F M Squina
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brasil
| | | | | | | | | |
Collapse
|
79
|
Leprohon P, Légaré D, Girard I, Papadopoulou B, Ouellette M. Modulation of Leishmania ABC protein gene expression through life stages and among drug-resistant parasites. EUKARYOTIC CELL 2006; 5:1713-25. [PMID: 17030997 PMCID: PMC1595339 DOI: 10.1128/ec.00152-06] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ATP-binding cassette (ABC) protein superfamily is one of the largest evolutionarily conserved families and is found in all kingdoms of life. The recent completion of the Leishmania genome sequence allowed us to analyze and classify its encoded ABC proteins. The complete sequence predicts a data set of 42 open reading frames (ORFs) coding for proteins belonging to the ABC superfamily, with representative members of every major subfamily (from ABCA to ABCH) commonly found in eukaryotes. Comparative analysis showed that the same ABC data set is found between Leishmania major and Leishmania infantum and that some orthologues are found in the genome of the related parasites Trypanosoma brucei and Trypanosoma cruzi. Customized DNA microarrays were made to assess ABC gene expression profiling throughout the two main Leishmania life stages. Two ABC genes (ABCA3 and ABCG3) are preferentially expressed in the amastigote stage, whereas one ABC gene (ABCF3) is more abundantly expressed in promastigotes. Microarray-based expression profiling experiments also revealed that three ABC genes (ABCA3, ABCC3, and ABCH1) are overexpressed in two independent antimony-resistant strains compared to the parental sensitive strain. All microarray results were confirmed by real-time reverse transcription-PCR assays. The present study provides a thorough phylogenic classification of the Leishmania ABC proteins and sets the basis for further functional studies on this important class of proteins.
Collapse
Affiliation(s)
- Philippe Leprohon
- Centre de Recherche en Infectiologie, 2705 Boul. Laurier, Québec, Québec G1V 4G2, Canada
| | | | | | | | | |
Collapse
|
80
|
Chen M, Han G, Dietrich CR, Dunn TM, Cahoon EB. The essential nature of sphingolipids in plants as revealed by the functional identification and characterization of the Arabidopsis LCB1 subunit of serine palmitoyltransferase. THE PLANT CELL 2006; 18:3576-93. [PMID: 17194770 PMCID: PMC1785403 DOI: 10.1105/tpc.105.040774] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2005] [Revised: 10/24/2006] [Accepted: 11/10/2006] [Indexed: 05/13/2023]
Abstract
Serine palmitoyltransferase (SPT) catalyzes the first step of sphingolipid biosynthesis. In yeast and mammalian cells, SPT is a heterodimer that consists of LCB1 and LCB2 subunits, which together form the active site of this enzyme. We show that the predicted gene for Arabidopsis thaliana LCB1 encodes a genuine subunit of SPT that rescues the sphingolipid long-chain base auxotrophy of Saccharomyces cerevisiae SPT mutants when coexpressed with Arabidopsis LCB2. In addition, homozygous T-DNA insertion mutants for At LCB1 were not recoverable, but viability was restored by complementation with the wild-type At LCB1 gene. Furthermore, partial RNA interference (RNAi) suppression of At LCB1 expression was accompanied by a marked reduction in plant size that resulted primarily from reduced cell expansion. Sphingolipid content on a weight basis was not changed significantly in the RNAi suppression plants, suggesting that plants compensate for the downregulation of sphingolipid synthesis by reduced growth. At LCB1 RNAi suppression plants also displayed altered leaf morphology and increases in relative amounts of saturated sphingolipid long-chain bases. These results demonstrate that plant SPT is a heteromeric enzyme and that sphingolipids are essential components of plant cells and contribute to growth and development.
Collapse
Affiliation(s)
- Ming Chen
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | | | | | | | | |
Collapse
|
81
|
Fridberg A, Buchanan KT, Engman DM. Flagellar membrane trafficking in kinetoplastids. Parasitol Res 2006; 100:205-12. [PMID: 17058110 DOI: 10.1007/s00436-006-0329-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2006] [Accepted: 08/29/2006] [Indexed: 10/24/2022]
Affiliation(s)
- Alina Fridberg
- Department of Pathology, Northwestern University Feinberg School of Medicine, Ward Building 6-140, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
82
|
Williams RA, Tetley L, Mottram JC, Coombs GH. Cysteine peptidases CPA and CPB are vital for autophagy and differentiation in Leishmania mexicana. Mol Microbiol 2006; 61:655-74. [PMID: 16803590 DOI: 10.1111/j.1365-2958.2006.05274.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the past, ultrastructural investigations of Leishmania mexicana amastigotes revealed structures that were tentatively identified as autophagosomes. This study has now provided definitive data that autophagy occurs in the parasite during differentiation both to metacyclic promastigotes and to amastigotes, autophagosomes being particularly numerous during metacyclic to amastigote form transformation. Moreover, the results demonstrate that inhibiting two major lysosomal cysteine peptidases (CPA and CPB) or removing their genes not only interferes with the autophagy pathway but also prevents metacyclogenesis and transformation to amastigotes, thus adding support to the hypothesis that autophagy is required for cell differentiation. The study suggests that L. mexicana CPA and CPB perform similar roles to the aspartic peptidase PEP4 and the serine peptidase PRB1 in Saccharomyces cerevisiae. The results also provide an explanation for why L. mexicana CPA/CPB-deficient mutants transform to amastigotes very poorly and lack virulence in macrophages and mice.
Collapse
Affiliation(s)
- Roderick A Williams
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences and Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8TA, UK
| | | | | | | |
Collapse
|
83
|
Affiliation(s)
- Lena J Heung
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., BSB 503, Charleston, SC 29425, USA
| | | | | |
Collapse
|
84
|
Stewart J, Curtis J, Spurck TP, Ilg T, Garami A, Baldwin T, Courret N, McFadden GI, Davis A, Handman E. Characterisation of a Leishmania mexicana knockout lacking guanosine diphosphate-mannose pyrophosphorylase. Int J Parasitol 2006; 35:861-73. [PMID: 15936761 DOI: 10.1016/j.ijpara.2005.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 03/09/2005] [Accepted: 03/11/2005] [Indexed: 10/25/2022]
Abstract
In eukaryotes, the enzyme GDP-mannose pyrophosphorylase (GDP-MP) is essential for the formation of GDP-mannose, the donor of activated mannose for all glycosylation reactions. Unlike other eukaryotes, where deletion of GDP-mannose pyrophosphorylase is lethal, deletion of this gene in Leishmania mexicana has no effect on viability, but leads to the generation of avirulent parasites. In this study, we show that the null mutants have a perturbed morphology and cytokinesis, retarded growth and increased adherence to the substratum where they form large colonies. The null mutants attach avidly to mouse macrophages, but unlike the wild type organisms, they do not bind to the complement receptor 3 and are slow to induce phagocytosis. Once internalised, they localise to the phagolysosome, but in contrast to wild type organisms which transform into the intracellular amastigote and establish in the macrophage, they are cleared by 24 h in culture and by 5 h in vivo. The null mutants are hypersensitive to human but not mouse complement and to temperature and acidic pH. Surprisingly, in view of the lack of several known host-protective antigens, injection of the mutant parasites into BALB/c mice confers significant and long lasting protection against infection, suggesting that these temperature sensitive mutants are an attractive candidate for a live attenuated vaccine.
Collapse
Affiliation(s)
- James Stewart
- The University of Melbourne, Parkville, Vic. 3052, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Zufferey R, Ben Mamoun C. Leishmania major expresses a single dihydroxyacetone phosphate acyltransferase localized in the glycosome, important for rapid growth and survival at high cell density and essential for virulence. J Biol Chem 2006; 281:7952-9. [PMID: 16423830 DOI: 10.1074/jbc.m512911200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite major advances in the understanding of pathogenesis of the human protozoan parasite Leishmania major, little is known about the enzymes and the primary precursors involved in the initial steps of synthesis of its major glycerolipids including those involved in virulence. We have previously demonstrated that the initial step of acylation of the precursor glycerol 3-phosphate is not essential for the synthesis of ester and ether phospholipids in this parasite. Here we show that Leishmania expresses a single acyltransferase with high specificity for the precursor dihydroxyacetone phosphate and shows the best activity in the presence of palmitoyl-CoA. We have identified and characterized the LmDAT gene encoding this activity. LmDAT complements the lethality resulting from the loss of both dihydroxyacetone phosphate and glycerol-3-phosphate acyltransferase activities in yeast. Recombinant LmDAT exhibits biochemical properties similar to those of the native enzyme of the promastigote stage parasites. We show that LmDAT is a glycosomal enzyme and its loss in a delta lmdat/delta lmdat null mutant results in complete abrogation of the parasite dihydroxyacetone phosphate acyltransferase activity. Furthermore, lack of LmDAT causes a major alteration in parasite division during the logarithmic phase of growth, an accelerated cell death during stationary phase, and loss of virulence. Together, our results demonstrate that LmDAT is the only dihydroxyacetone phosphate acyltransferase of the L. major localized in the peroxisome, important for growth and survival and essential for virulence.
Collapse
Affiliation(s)
- Rachel Zufferey
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030-3301, USA
| | | |
Collapse
|
86
|
Sonda S, Hehl AB. Lipid biology of Apicomplexa: perspectives for new drug targets, particularly for Toxoplasma gondii. Trends Parasitol 2005; 22:41-7. [PMID: 16300997 DOI: 10.1016/j.pt.2005.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 09/20/2005] [Accepted: 11/07/2005] [Indexed: 11/19/2022]
Abstract
Development of effective therapies for intracellular eukaryotic pathogens is a serious challenge, given the protected location of these pathogens and the similarity of their biology to that of the host. Identifying cellular processes that are unique to the parasite is therefore a crucial step towards defining appropriate drug targets. In the case of the apicomplexan parasite Toxoplasma gondii, the need to find alternative treatments is imperative because of the poor tolerability and frequent side-effects associated with existing therapeutic strategies. The discovery that the parasite uses lipid synthetic pathways which are different from, or absent in, the mammalian host is now driving a renewed interest in T. gondii lipid biology. Recent achievements in this field are promising and suggest that the elucidation of lipid pathways will provide new opportunities for designing potent antiparasitic strategies.
Collapse
Affiliation(s)
- Sabrina Sonda
- Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, CH-8057 Zurich, Switzerland.
| | | |
Collapse
|
87
|
Espiau B, Lemercier G, Ambit A, Bringaud F, Merlin G, Baltz T, Bakalara N. A soluble pyrophosphatase, a key enzyme for polyphosphate metabolism in Leishmania. J Biol Chem 2005; 281:1516-23. [PMID: 16291745 DOI: 10.1074/jbc.m506947200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We report the functional characterization in Leishmania amazonensis of a soluble pyrophosphatase (LaVSP1) that localizes in acidocalcisomes, a vesicular acidic compartment. LaVSP1 is preferentially expressed in metacyclic forms. Experiments with dominant negative mutants show the requirement of LaVSP1 functional expression for metacyclogenesis and virulence in mice. Depending on the pH and the cofactors Mg2+ or Zn2+, both present in acidocalcisomes, LaVSP1 hydrolyzes either inorganic pyrophosphate (Km = 92 microM, kcat = 125 s(-1)), tripolyphosphate (Km = 1153 microM, kcat = 131 s(-1)), or polyphosphate of 28 residues (Km = 123 microM, kcat = 8 s(-1)). Predicted structural analysis suggests that the structural orientation of the residue Lys78 in LaVSP1 accounts for the observed increase in Km compared with the yeast pyrophosphatase and for the ability of trypanosomatid VSP1 enzymes to hydrolyze polyphosphate. These results make the VSP1 enzyme an attractive drug target against trypanosomatid parasites.
Collapse
Affiliation(s)
- Benoît Espiau
- Laboratoire de Génomique Fonctionnelle des Trypanosomatides, Université Victor Segalen Bordeaux 2, UMR-CNRS 5162, 146 rue Léo Saignat, 33076 Bordeaux, France
| | | | | | | | | | | | | |
Collapse
|
88
|
Zhang K, Hsu FF, Scott DA, Docampo R, Turk J, Beverley SM. Leishmania salvage and remodelling of host sphingolipids in amastigote survival and acidocalcisome biogenesis. Mol Microbiol 2005; 55:1566-78. [PMID: 15720561 PMCID: PMC3803142 DOI: 10.1111/j.1365-2958.2005.04493.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sphingolipids (SLs) play essential roles in most eukaryotes, but in the trypanosomatid protozoan Leishmania major their functions differ significantly. Previously we showed that null mutants defective in de novo sphingoid base synthesis (spt2-) lacked SLs but grew well and retained lipid rafts while replicating as promastigotes in vitro. However, they experienced catastrophic defects in membrane trafficking on entry into stationary phase, and failed to differentiate to the infective metacyclic form. Here we showed this mutant retained the ability to enter macrophages silently and inhibit activation, although as expected most parasites were destroyed. However, in mouse infections, after a delay rapidly progressive lesions appeared, and purified amastigotes were fully virulent to macrophages and mice. Mass spectrometry of spt2- amastigote lipids revealed the presence of high levels of parasite-specific inositol phosphorylceramides (IPCs) not synthesized by the mammalian hosts. Inhibitor studies showed that salvage occurs at the level of complex SLs, suggesting that parasites carry out 'headgroup' remodelling. Additionally, we describe a new defect of the spt2- promastigotes involving 'empty' acidocalcisomes (ACs), which may point to the origin of this organelle from the lysosome-related organelle/multivesicular body biogenesis pathway. However, ACs in spt2- amastigotes appeared quantitatively and morphologically normal. Thus salvage of SLs and other molecules by intracellular amastigotes play key roles in AC biogenesis and parasite survival in the host.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Molecular Microbiology, Box 8230, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Fong-Fu Hsu
- Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - David A. Scott
- Department of Molecular Microbiology, Box 8230, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Department of Pathobiology and Center for Zoonoses Research, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Roberto Docampo
- Department of Pathobiology and Center for Zoonoses Research, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - John Turk
- Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Box 8230, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- For correspondence. ; Tel. (+1) 314 747 2630; Fax: (+1) 314 747 2634
| |
Collapse
|
89
|
Yao C, Luo J, Hsiao C, Donelson JE, Wilson ME. Internal and surface subpopulations of the major surface protease (MSP) of Leishmania chagasi. Mol Biochem Parasitol 2005; 139:173-83. [PMID: 15664652 DOI: 10.1016/j.molbiopara.2004.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 10/19/2004] [Accepted: 11/03/2004] [Indexed: 11/21/2022]
Abstract
Major surface protease (MSP) facilitates Leishmania promastigote evasion of complement-mediated lysis in the mammalian host and enhances host macrophage phagocytosis of the promastigotes. We previously showed that the steady-state abundance of MSP protein increases 14-fold during in vitro cultivation of L. chagasi promastigotes from logarithmic to stationary phase, despite the fact that the total amount of MSP mRNA does not increase. Furthermore, 10 major MSP isoforms are differentially expressed in different promastigote growth phases, and attenuation of parasites by long-term in vitro cultivation influences MSP isoform expression. Herein, we report that although about two-thirds of newly synthesized MSP becomes surface localized, the rest of the MSP does not reach the promastigote surface. This internal MSP is stable without detectable decrease in abundance up to 6 days after biosynthesis. Furthermore, surface-localized MSP is released at different rates from logarithmic and stationary phase virulent Leishmania promastigotes. These data are consistent with the hypothesis that the major mechanism regulating MSP abundance is the rate of loss of surface-localized MSP from the promastigote surface, and that internally localized MSP is very stable.
Collapse
Affiliation(s)
- Chaoqun Yao
- VA Medical Center, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | |
Collapse
|
90
|
Zufferey R, Mamoun CB. The initial step of glycerolipid metabolism inLeishmania majorpromastigotes involves a single glycerol-3-phosphate acyltransferase enzyme important for the synthesis of triacylglycerol but not essential for virulence. Mol Microbiol 2005; 56:800-10. [PMID: 15819633 DOI: 10.1111/j.1365-2958.2005.04579.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The synthesis of the major phospholipids, including those that play an essential role in Leishmania virulence, initiates with the acylation of glycerol-3-phosphate and dihydroxyacetonephosphate at the sn-1 position by glycerol-3-phosphate and dihydroxyacetonephosphate acyltransferases respectively. In this study, we show that Leishmania major promastigotes express a single glycerol-3-phosphate acyltransferase activity important for triacylglycerol synthesis but not essential for virulence. The encoding gene, LmGAT, expressed in yeast results in full complementation of the lethality of a mutant, gat1Deltagat2Delta, lacking glycerol-3-phosphate activity. Biochemical analyses revealed that LmGAT is a low-affinity glycerol-3-phosphate acyltransferase and exhibits higher specific activity with unsaturated long fatty acyl-CoA donors. A L. major null mutant, Deltalmgat/Deltalmgat, was created and a thorough analysis of its lipid composition was performed. Deletion of LmGAT resulted in a complete loss of Leishmania glycerol-3-phosphate acyltransferase activity and a major reduction in triacylglycerol synthesis. Consistent with the specificity of LmGAT for glycerol-3-phosphate but not dihydroxyacetonephosphate, Deltalmgat/Deltalmgat mutant expressed normal levels of the ether-lipid derivatives and virulence factors, lipophosphoglycan and GPI-anchored proteins, gp63, and its virulence was not affected in mice.
Collapse
Affiliation(s)
- Rachel Zufferey
- Center for Microbial Pathogenesis, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT 06030, USA
| | | |
Collapse
|
91
|
Abstract
Summary relatively large rafts are a feature of activated mammalian cells. These studies allow us to consider the functional role of lipid rafts in kinetoplastid parasites, which are particularly rich in lipid-anchored surface molecules. Morphological, biochemical and genetic studies indicate that lipid rafts (and sphingolipid biosythesis) are important in the differentiation of extracellular Leishmania to mammalian-infective metacyclic promastigotes, perhaps orchestrating the clearly observable reorganization of the plasma membrane during this process that leads to an activated metacyclic primed for invasion. However, the first step in the sphingolipid biosynthetic pathway (mediated by serine palmitoyltransferase), and at least regulated, de novo sphingoid base and ceramide synthesis, are not essential for the pathogenesis of intramacrophage Leishmania amastigotes.
Collapse
Affiliation(s)
- Paul W Denny
- Wellcome Trust Laboratories for Molecular Parasitology, Centre for Molecular Microbiology and Infection, Department of Biological Sciences, Imperial College London, SW7 2AZ, UK
| | | |
Collapse
|
92
|
Tull D, Vince JE, Callaghan JM, Naderer T, Spurck T, McFadden GI, Currie G, Ferguson K, Bacic A, McConville MJ. SMP-1, a member of a new family of small myristoylated proteins in kinetoplastid parasites, is targeted to the flagellum membrane in Leishmania. Mol Biol Cell 2004; 15:4775-86. [PMID: 15342784 PMCID: PMC524726 DOI: 10.1091/mbc.e04-06-0457] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The mechanisms by which proteins are targeted to the membrane of eukaryotic flagella and cilia are largely uncharacterized. We have identified a new family of small myristoylated proteins (SMPs) that are present in Leishmania spp and related trypanosomatid parasites. One of these proteins, termed SMP-1, is targeted to the Leishmania flagellum. SMP-1 is myristoylated and palmitoylated in vivo, and mutation of Gly-2 and Cys-3 residues showed that both fatty acids are required for flagellar localization. SMP-1 is associated with detergent-resistant membranes based on its recovery in the buoyant fraction after Triton X-100 extraction and sucrose density centrifugation and coextraction with the major surface glycolipids in Triton X-114. However, the flagellar localization of SMP-1 was not affected when sterol biosynthesis and the properties of detergent-resistant membranes were perturbed with ketoconazole. Remarkably, treatment of Leishmania with ketoconazole and myriocin (an inhibitor of sphingolipid biosynthesis) also had no affect on SMP-1 localization, despite causing the massive distension of the flagellum membrane and the partial or complete loss of internal axoneme and paraflagellar rod structures, respectively. These data suggest that flagellar membrane targeting of SMP-1 is not dependent on axonemal structures and that alterations in flagellar membrane lipid composition disrupt axoneme extension.
Collapse
Affiliation(s)
- Dedreia Tull
- Department of Biochemistry and Molecular Biology, University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Abstract
Gene-specific silencing by RNA interference is a valuable tool for analysis of gene function in the protozoan parasite Trypanosoma brucei. The development of tetracycline-regulated vectors for production of double-stranded RNA has facilitated its widespread use. RNA interference provides a fast and efficient method for determining whether a gene is essential for growth and viability, reveals mechanistic information on gene function, and has greatly enhanced our understanding of complex biological processes. Finally, the creation of an RNA interference-based library has allowed, for the first time, an approach for conducting forward genetic experiments in this organism.
Collapse
Affiliation(s)
- Shawn A Motyka
- Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, Maryland 21205, USA
| | | |
Collapse
|
94
|
Denny PW, Goulding D, Ferguson MAJ, Smith DF. Sphingolipid-free Leishmania are defective in membrane trafficking, differentiation and infectivity. Mol Microbiol 2004; 52:313-27. [PMID: 15066023 DOI: 10.1111/j.1365-2958.2003.03975.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sphingolipids are structural components of the eukaryotic plasma membrane that are involved, together with cholesterol, in the formation of lipid microdomains (rafts). Additionally, sphingolipid metabolites have been shown to modulate a wide variety of cellular events, including differentiation and apoptosis. To investigate the role of de novo sphingolipid biosynthesis in Leishmania, we have focused on serine palmitoyltransferase (SPT), which catalyses the first, rate-limiting step in the synthetic pathway. Genetic ablation of one SPT subunit, LmLCB2, yields viable null parasites that can no longer synthesize ceramide and sphingolipids de novo. Unexpectedly, LmLCB2 expression (and sphingolipid biosynthesis) is stage regulated in Leishmania, being undetectable in intramacrophage parasites. As expected from this observation, the LmLCB2 null mutants maintain infectivity in vivo. However, they are compromised in their ability to form infective extracellular parasites, correlating with a defect in association of the virulence factor, leishmanolysin or GP63, with lipid rafts during exocytosis and an observed relocalization of a second virulence factor, lipophosphogycan, during differentiation. Thus, de novo sphingolipid biosynthesis is critical for membrane trafficking events in extracellular Leishmania but has at best a minor role in intracellular pathogenesis.
Collapse
Affiliation(s)
- Paul W Denny
- Wellcome Trust Laboratories for Molecular Parasitology, Centre for Molecular Microbiology and Infection, Department of Biological Sciences, Imperial College London, London SW7 2AZ, UK.
| | | | | | | |
Collapse
|
95
|
Späth GF, Lye LF, Segawa H, Turco SJ, Beverley SM. Identification of a compensatory mutant (lpg2-REV) of Leishmania major able to survive as amastigotes within macrophages without LPG2-dependent glycoconjugates and its significance to virulence and immunization strategies. Infect Immun 2004; 72:3622-7. [PMID: 15155672 PMCID: PMC415719 DOI: 10.1128/iai.72.6.3622-3627.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Different Leishmania species rely to different extents on abundant glycoconjugates, such as lipophosphoglycan (LPG) and related molecules, in mammalian infections. Previously, we showed that Leishmania major deletion mutants lacking the Golgi GDP-mannose transporter LPG2, which is required for assembly of the dominant phosphoglycan (PG) repeats of LPG, were unable to survive in macrophages. These lpg2- mutants, however, retained the ability to generate asymptomatic, persistent infections in mice. In contrast, Ilg and colleagues showed that Leishmania mexicana LPG2 mutants retained virulence for mice. Here we identified a partial revertant population of the L. major lpg2- mutants (designated lpg2(-)REV) that had regained the ability to replicate in macrophages and induce disease pathology through a compensatory change. Like the lpg2 parent, the lpg2(-)REV revertant was unable to synthesize LPG2-dependent PGs in the promastigote stage and thus remained highly attenuated in the ability to induce infection. However, after considerable delay lpg2(-)REV revertant-infected mice exhibited lesions, and amastigotes isolated from these lesions were able to replicate within macrophages despite the fact that they were unable to synthesize PGs. Thus, in some respects, the lpg2(-)REV amastigotes resemble L. mexicana amastigotes. Future studies of the gene(s) responsible may shed light on the mechanisms employed by L. major to survive in the absence of LPG2-dependent glycoconjugates and may also improve the potential of the lpg2- L. major line to serve as a live parasite vaccine by overcoming its tendency to revert toward virulence.
Collapse
Affiliation(s)
- Gerald F Späth
- Department of Molecular Microbiology, Washington University Medical School, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|