51
|
Wechsler T, Kümmerli R, Dobay A. Understanding policing as a mechanism of cheater control in cooperating bacteria. J Evol Biol 2019; 32:412-424. [PMID: 30724418 PMCID: PMC6520251 DOI: 10.1111/jeb.13423] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/17/2022]
Abstract
Policing occurs in insect, animal and human societies, where it evolved as a mechanism maintaining cooperation. Recently, it has been suggested that policing might even be relevant in enforcing cooperation in much simpler organisms such as bacteria. Here, we used individual-based modelling to develop an evolutionary concept for policing in bacteria and identify the conditions under which it can be adaptive. We modelled interactions between cooperators, producing a beneficial public good, cheaters, exploiting the public good without contributing to it, and public good-producing policers that secrete a toxin to selectively target cheaters. We found that toxin-mediated policing is favoured when (a) toxins are potent and durable, (b) toxins are cheap to produce, (c) cell and public good diffusion is intermediate, and (d) toxins diffuse farther than the public good. Although our simulations identify the parameter space where toxin-mediated policing can evolve, we further found that policing decays when the genetic linkage between public good and toxin production breaks. This is because policing is itself a public good, offering protection to toxin-resistant mutants that still produce public goods, yet no longer invest in toxins. Our work thus highlights that not only specific environmental conditions are required for toxin-mediated policing to evolve, but also strong genetic linkage between the expression of public goods, toxins and toxin resistance is essential for this mechanism to remain evolutionarily stable in the long run.
Collapse
Affiliation(s)
- Tobias Wechsler
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Akos Dobay
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
52
|
Resistance to leukocytes ties benefits of quorum sensing dysfunctionality to biofilm infection. Nat Microbiol 2019; 4:1114-1119. [PMID: 30936487 PMCID: PMC6588452 DOI: 10.1038/s41564-019-0413-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 02/14/2019] [Indexed: 12/27/2022]
Abstract
Social interactions play an increasingly recognized key role in bacterial physiology1. One of the best studied is quorum sensing (QS), a mechanism by which bacteria sense and respond to the status of cell density2. While QS is generally deemed crucial for bacterial survival, QS-dysfunctional mutants frequently arise in in-vitro culture. This has been explained by the fitness cost an individual mutant, a “quorum cheater”, saves at the expense of the community3. QS mutants are also often isolated from biofilm-associated infections, including cystic fibrosis lung infection4, as well as medical device infection and associated bacteremia5–7. However, despite the frequently proposed use of QS blockers to control virulence8, the mechanisms underlying QS dysfunctionality during infection have remained poorly understood. Here we show that in the major human pathogen Staphylococcus aureus, QS-dysfunctional mutants arise exclusively in biofilm infection, while in non-biofilm-associated infection there is a high selective pressure to maintain QS control. We demonstrate that this infection-type dependence is due to QS-dysfunctional bacteria having a significant survival advantage in biofilm infection, because they form dense and enlarged biofilms that provide resistance to phagocyte attacks. Our results link the benefit of QS-dysfunctional mutants in vivo to biofilm-mediated immune evasion, thus to mechanisms that are specific to the in-vivo setting. Notably, our findings explain why QS mutants are frequently isolated from biofilm-associated infections and provide guidance for the therapeutic application of QS blockers.
Collapse
|
53
|
Zhao K, Liu L, Chen X, Huang T, Du L, Lin J, Yuan Y, Zhou Y, Yue B, Wei K, Chu Y. Behavioral heterogeneity in quorum sensing can stabilize social cooperation in microbial populations. BMC Biol 2019; 17:20. [PMID: 30841874 PMCID: PMC6889464 DOI: 10.1186/s12915-019-0639-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/19/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Microbial communities are susceptible to the public goods dilemma, whereby individuals can gain an advantage within a group by utilizing, but not sharing the cost of producing, public goods. In bacteria, the development of quorum sensing (QS) can establish a cooperation system in a population by coordinating the production of costly and sharable extracellular products (public goods). Cooperators with intact QS system and robust ability in producing public goods are vulnerable to being undermined by QS-deficient defectors that escape from QS but benefit from the cooperation of others. Although microorganisms have evolved several mechanisms to resist cheating invasion in the public goods game, it is not clear why cooperators frequently coexist with defectors and how they form a relatively stable equilibrium during evolution. RESULTS We show that in Pseudomonas aeruginosa, QS-directed social cooperation can select a conditional defection strategy prior to the emergence of QS-mutant defectors, depending on resource availability. Conditional defectors represent a QS-inactive state of wild type (cooperator) individual and can invade QS-activated cooperators by adopting a cheating strategy, and then revert to cooperating when there are abundant nutrient supplies irrespective of the exploitation of QS-mutant defector. Our mathematical modeling further demonstrates that the incorporation of conditional defection strategy into the framework of iterated public goods game with sound punishment mechanism can lead to the coexistence of cooperator, conditional defector, and defector in a rock-paper-scissors dynamics. CONCLUSIONS These findings highlight the importance of behavioral heterogeneity in stabilizing the population structure and provide a potential reasonable explanation for the maintenance and evolution of cooperation in microbial communities.
Collapse
Affiliation(s)
- Kelei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 168, Huaguan Road, Chengdu, 610052 Sichuan China
| | - Linjie Liu
- School of Mathematical Sciences, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue, Chengdu, 611731 Sichuan China
| | - Xiaojie Chen
- School of Mathematical Sciences, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue, Chengdu, 611731 Sichuan China
| | - Ting Huang
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Lianming Du
- Institute for Advanced Study, Chengdu University, Chengdu, China
| | - Jiafu Lin
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 168, Huaguan Road, Chengdu, 610052 Sichuan China
| | - Yang Yuan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 168, Huaguan Road, Chengdu, 610052 Sichuan China
| | - Yingshun Zhou
- Department of Pathogenic Biology, College of Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Bisong Yue
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Kun Wei
- School of Mathematical Sciences, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue, Chengdu, 611731 Sichuan China
| | - Yiwen Chu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 168, Huaguan Road, Chengdu, 610052 Sichuan China
| |
Collapse
|
54
|
Wellington S, Greenberg EP. Quorum Sensing Signal Selectivity and the Potential for Interspecies Cross Talk. mBio 2019; 10:e00146-19. [PMID: 30837333 PMCID: PMC6401477 DOI: 10.1128/mbio.00146-19] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 01/03/2023] Open
Abstract
Many species of proteobacteria communicate with kin and coordinate group behaviors through a form of cell-cell signaling called acyl-homoserine lactone (AHL) quorum sensing (QS). Most AHL receptors are thought to be specific for their cognate signal, ensuring that bacteria cooperate and share resources only with closely related kin cells. Although specificity is considered fundamental to QS, there are reports of "promiscuous" receptors that respond broadly to nonself signals. These promiscuous responses expand the function of QS systems to include interspecies interactions and have been implicated in both interspecies competition and cooperation. Because bacteria are frequently members of polymicrobial communities, AHL cross talk between species could have profound impacts. To better understand the prevalence of QS promiscuity, we measured the activity of seven QS receptors in their native host organisms. To facilitate comparison of our results to previous studies, we also measured receptor activity using heterologous expression in Escherichia coli We found that the standard E. coli methods consistently overestimate receptor promiscuity and sensitivity and that overexpression of the receptors is sufficient to account for the discrepancy between native and E. coli reporters. Additionally, receptor overexpression resulted in AHL-independent activity in Pseudomonas aeruginosa Using our activation data, we developed a quantitative score of receptor selectivity. We find that the receptors display a wide range of selectivity and that most receptors respond sensitively and strongly to at least one nonself signal, suggesting a broad potential for cross talk between QS systems.IMPORTANCE Specific recognition of cognate signals is considered fundamental to cell signaling circuits as it creates fidelity in the communication system. In bacterial quorum sensing (QS), receptor specificity ensures that bacteria cooperate only with kin. There are examples, however, of QS receptors that respond promiscuously to multiple signals. "Eavesdropping" by these promiscuous receptors can be beneficial in both interspecies competition and cooperation. Despite their potential significance, we know little about the prevalence of promiscuous QS receptors. Further, many studies rely on methods requiring receptor overexpression, which is known to increase apparent promiscuity. By systematically studying QS receptors in their natural parent strains, we find that the receptors display a wide range of selectivity and that there is potential for significant cross talk between QS systems. Our results provide a basis for hypotheses about the evolution and function of promiscuous signal receptors and for predictions about interspecies interactions in complex microbial communities.
Collapse
Affiliation(s)
- Samantha Wellington
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - E Peter Greenberg
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
55
|
Schiessl KT, Ross-Gillespie A, Cornforth DM, Weigert M, Bigosch C, Brown SP, Ackermann M, Kümmerli R. Individual- versus group-optimality in the production of secreted bacterial compounds. Evolution 2019; 73:675-688. [PMID: 30793292 DOI: 10.1111/evo.13701] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/01/2019] [Indexed: 01/10/2023]
Abstract
How unicellular organisms optimize the production of compounds is a fundamental biological question. While it is typically thought that production is optimized at the individual-cell level, secreted compounds could also allow for optimization at the group level, leading to a division of labor where a subset of cells produces and shares the compound with everyone. Using mathematical modeling, we show that the evolution of such division of labor depends on the cost function of compound production. Specifically, for any trait with saturating benefits, linear costs promote the evolution of uniform production levels across cells. Conversely, production costs that diminish with higher output levels favor the evolution of specialization-especially when compound shareability is high. When experimentally testing these predictions with pyoverdine, a secreted iron-scavenging compound produced by Pseudomonas aeruginosa, we found linear costs and, consistent with our model, detected uniform pyoverdine production levels across cells. We conclude that for shared compounds with saturating benefits, the evolution of division of labor is facilitated by a diminishing cost function. More generally, we note that shifts in the level of selection from individuals to groups do not solely require cooperation, but critically depend on mechanistic factors, including the distribution of compound synthesis costs.
Collapse
Affiliation(s)
- Konstanze T Schiessl
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, 8600, Switzerland.,Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH Zurich), Zürich, 8092, Switzerland.,Current Address: Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, 10027, New York
| | - Adin Ross-Gillespie
- Department of Plant and Microbial Biology, University of Zürich, Zürich, 8057, Switzerland
| | - Daniel M Cornforth
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332, Georgia
| | - Michael Weigert
- Department of Plant and Microbial Biology, University of Zürich, Zürich, 8057, Switzerland
| | - Colette Bigosch
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zurich), Zürich, 8092, Switzerland
| | - Sam P Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332, Georgia
| | - Martin Ackermann
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, 8600, Switzerland.,Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH Zurich), Zürich, 8092, Switzerland
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zürich, Zürich, 8057, Switzerland.,Department of Quantitative Biomedicine, University of Zürich, Zürich, 8057, Switzerland
| |
Collapse
|
56
|
Andersen SB, Ghoul M, Marvig RL, Lee ZB, Molin S, Johansen HK, Griffin AS. Privatisation rescues function following loss of cooperation. eLife 2018; 7:e38594. [PMID: 30558711 PMCID: PMC6298776 DOI: 10.7554/elife.38594] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/17/2018] [Indexed: 12/11/2022] Open
Abstract
A single cheating mutant can lead to the invasion and eventual eradication of cooperation from a population. Consequently, cheat invasion is often considered equal to extinction in empirical and theoretical studies of cooperator-cheat dynamics. But does cheat invasion necessarily equate extinction in nature? By following the social dynamics of iron metabolism in Pseudomonas aeruginosa during cystic fibrosis lung infection, we observed that individuals evolved to replace cooperation with a 'private' behaviour. Phenotypic assays showed that cooperative iron acquisition frequently was upregulated early in infection, which, however, increased the risk of cheat invasion. With whole-genome sequencing we showed that if, and only if, cooperative iron acquisition is lost from the population, a private system was upregulated. The benefit of upregulation depended on iron availability. These findings highlight the importance of social dynamics of natural populations and emphasizes the potential impact of past social interaction on the evolution of private traits.
Collapse
Affiliation(s)
- Sandra Breum Andersen
- Department of ZoologyUniversity of OxfordOxfordUnited Kingdom
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| | - Melanie Ghoul
- Department of ZoologyUniversity of OxfordOxfordUnited Kingdom
| | | | - Zhuo-Bin Lee
- Department of ZoologyUniversity of OxfordOxfordUnited Kingdom
| | - Søren Molin
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| | - Helle Krogh Johansen
- Department of Clinical MicrobiologyRigshospitaletCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | | |
Collapse
|
57
|
Liu Y, Qin Q, Defoirdt T. Does quorum sensing interference affect the fitness of bacterial pathogens in the real world? Environ Microbiol 2018; 20:3918-3926. [DOI: 10.1111/1462-2920.14446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Yiying Liu
- College of Marine Sciences, South China Agricultural University; Guangzhou China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University; Guangzhou China
| | - Tom Defoirdt
- Center for Microbial Ecology and Technology (CMET); Ghent University; Ghent Belgium
| |
Collapse
|
58
|
Zhao K, Du L, Lin J, Yuan Y, Wang X, Yue B, Wang X, Guo Y, Chu Y, Zhou Y. Pseudomonas aeruginosa Quorum-Sensing and Type VI Secretion System Can Direct Interspecific Coexistence During Evolution. Front Microbiol 2018; 9:2287. [PMID: 30364310 PMCID: PMC6193480 DOI: 10.3389/fmicb.2018.02287] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/07/2018] [Indexed: 11/13/2022] Open
Abstract
It is reported that a wide range of bacterial infections are polymicrobial, and the members in a local microcommunity can influence the growth of neighbors through physical and chemical interactions. Pseudomonas aeruginosa is an important opportunistic pathogen that normally causes a variety of acute and chronic infections, and clinical evidences suggest that P. aeruginosa can be frequently coisolated with other pathogens from the patients with chronic infections. However, the interspecific interaction and the coexisting mechanism of P. aeruginosa with coinfecting bacterial species during evolution still remain largely unclear. In this study, the relationships of P. aeruginosa with other Gram-positive (Staphylococcus aureus) and Gram-negative (Klebsiella pneumoniae) are investigated by using a series of on-plate proximity assay, in vitro coevolution assay, and RNA-sequencing. We find that although the development of a quorum-sensing system contributes P. aeruginosa a significant growth advantage to compete with S. aureus and K. pneumoniae, the quorum-sensing regulation of P. aeruginosa will be decreased during evolution and thus provides a basis for the formation of interspecific coexistence. The results of comparative transcriptomic analyses suggest that the persistent survival of S. aureus in the microcommunity has no significant effect on the intracellular transcriptional pattern of P. aeruginosa, while a more detailed competition happens between P. aeruginosa and K. pneumoniae. Specifically, the population of P. aeruginosa with decreased quorum-sensing regulation can still restrict the proportion increase of K. pneumoniae by enhancing the type VI secretion system-elicited cell aggressivity during further coevolution. These findings provide a general explanation for the formation of a dynamic stable microcommunity consisting of more than two bacterial species, and may contribute to the development of population biology and clinical therapy.
Collapse
Affiliation(s)
- Kelei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Lianming Du
- Institute for Advanced Study, Chengdu University, Chengdu, China
| | - Jiafu Lin
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Yang Yuan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Xiwei Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Bisong Yue
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinrong Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Yidong Guo
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Yiwen Chu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Yingshun Zhou
- Department of Pathogenic Biology, College of Preclinical Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
59
|
dos Santos M, Ghoul M, West SA. Pleiotropy, cooperation, and the social evolution of genetic architecture. PLoS Biol 2018; 16:e2006671. [PMID: 30359363 PMCID: PMC6219813 DOI: 10.1371/journal.pbio.2006671] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/06/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
Pleiotropy has been suggested as a novel mechanism for stabilising cooperation in bacteria and other microbes. The hypothesis is that linking cooperation with a trait that provides a personal (private) benefit can outweigh the cost of cooperation in situations when cooperation would not be favoured by mechanisms such as kin selection. We analysed the theoretical plausibility of this hypothesis, with analytical models and individual-based simulations. We found that (1) pleiotropy does not stabilise cooperation, unless the cooperative and private traits are linked via a genetic architecture that cannot evolve (mutational constraint); (2) if the genetic architecture is constrained in this way, then pleiotropy favours any type of trait and not especially cooperation; (3) if the genetic architecture can evolve, then pleiotropy does not favour cooperation; and (4) there are several alternative explanations for why traits may be linked, and causality can even be predicted in the opposite direction, with cooperation favouring pleiotropy. Our results suggest that pleiotropy could only explain cooperation under restrictive conditions and instead show how social evolution can shape the genetic architecture.
Collapse
Affiliation(s)
| | - Melanie Ghoul
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Stuart A. West
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
60
|
Vibrio parahaemolyticus RhsP represents a widespread group of pro-effectors for type VI secretion systems. Nat Commun 2018; 9:3899. [PMID: 30254227 PMCID: PMC6156420 DOI: 10.1038/s41467-018-06201-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/20/2018] [Indexed: 12/31/2022] Open
Abstract
Type VI secretion systems (T6SSs) translocate effector proteins, such as Rhs toxins, to eukaryotic cells or prokaryotic competitors. All T6SS Rhs-type effectors characterized thus far contain a PAAR motif or a similar structure. Here, we describe a T6SS-dependent delivery mechanism for a subset of Rhs proteins that lack a PAAR motif. We show that the N-terminal Rhs domain of protein RhsP (or VP1517) from Vibrio parahaemolyticus inhibits the activity of the C-terminal DNase domain. Upon auto-proteolysis, the Rhs fragment remains inside the cells, and the C-terminal region interacts with PAAR2 and is secreted by T6SS2; therefore, RhsP acts as a pro-effector. Furthermore, we show that RhsP contributes to the control of certain “social cheaters” (opaR mutants). Genes encoding proteins with similar Rhs and PAAR-interacting domains, but diverse C-terminal regions, are widely distributed among Vibrio species. It is unclear how Rhs toxins lacking a PAAR motif are secreted by Type VI secretion systems. Here, the authors show for one of these proteins that the mechanism requires removal of an N-terminal fragment by auto-proteolysis, followed by interaction with a PAAR protein and then secretion.
Collapse
|
61
|
Cell-to-cell bacterial interactions promoted by drier conditions on soil surfaces. Proc Natl Acad Sci U S A 2018; 115:9791-9796. [PMID: 30209211 DOI: 10.1073/pnas.1808274115] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial cell-to-cell interactions are in the core of evolutionary and ecological processes in soil and other environments. Under most conditions, natural soils are unsaturated where the fragmented aqueous habitats and thin liquid films confine bacterial cells within small volumes and close proximity for prolonged periods. We report effects of a range of hydration conditions on bacterial cell-level interactions that are marked by plasmid transfer between donor and recipient cells within populations of the soil bacterium Pseudomonas putida Using hydration-controlled sand microcosms, we demonstrate that the frequency of cell-to-cell contacts under prescribed hydration increases with lowering water potential values (i.e., under drier conditions where the aqueous phase shrinks and fragments). These observations were supported using a mechanistic individual-based model for linking macroscopic soil water potential to microscopic distribution of liquid phase and explicit bacterial cell interactions in a simplified porous medium. Model results are in good agreement with observations and inspire confidence in the underlying mechanisms. The study highlights important physical factors that control short-range bacterial cell interactions in soil and on surfaces, specifically, the central role of the aqueous phase in mediating bacterial interactions and conditions that promote genetic information transfer in support of soil microbial diversity.
Collapse
|
62
|
Asfahl KL, Dandekar AA. Social Evolution: Selection on Multiple Cooperative Traits Optimizes Cost-Benefit Relationships. Curr Biol 2018; 28:R752-R755. [PMID: 29990460 DOI: 10.1016/j.cub.2018.05.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cooperation is potentially risky in a population where non-producing cheats can reap benefits from and gain a fitness advantage over cooperators. A new study shows that cooperation can be safeguarded by selection on multiple traits.
Collapse
Affiliation(s)
- Kyle L Asfahl
- Department of Medicine University of Washington, Seattle, WA 98195, USA
| | - Ajai A Dandekar
- Department of Medicine University of Washington, Seattle, WA 98195, USA; Department of Microbiology University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
63
|
Zúñiga A, Fuente FDL, Federici F, Lionne C, Bônnet J, de Lorenzo V, González B. An Engineered Device for Indoleacetic Acid Production under Quorum Sensing Signals Enables Cupriavidus pinatubonensis JMP134 To Stimulate Plant Growth. ACS Synth Biol 2018; 7:1519-1527. [PMID: 29746094 DOI: 10.1021/acssynbio.8b00002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The environmental effects of chemical fertilizers and pesticides have encouraged the quest for new strategies to increase crop productivity with minimal impacts on the natural medium. Plant growth promoting rhizobacteria (PGPR) can contribute to this endeavor by improving fitness through better nutrition acquisition and stress tolerance. Using the neutral (non PGPR) rhizobacterium Cupriavidus pinatubonensis JMP134 as the host, we engineered a regulatory forward loop that triggered the synthesis of the phytohormone indole-3-acetic acid (IAA) in a manner dependent on quorum sensing (QS) signals. Implementation of the device in JMP134 yielded synthesis of IAA in an autoregulated manner, improving the growth of the roots of inoculated Arabidopsis thaliana. These results not only demonstrated the value of the designed genetic module, but also validated C. pinatubonensis JMP134 as a suitable vehicle for agricultural applications, as it is amenable to genetic manipulations.
Collapse
Affiliation(s)
- Ana Zúñiga
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez—Center of Applied Ecology and Sustainability, Santiago de Chile, 2640, Chile
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
| | - Francisco de la Fuente
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez—Center of Applied Ecology and Sustainability, Santiago de Chile, 2640, Chile
- R2B Catalyst, Research Center, Andrés Bello 2299, Santiago, Chile
| | - Fernán Federici
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Fondo de Desarrollo de Áreas Prioritarias, Center for Genome Regulation, Millennium Institute for Integrative Systems and Synthetic Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Corinne Lionne
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
| | - Jérome Bônnet
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
| | | | - Bernardo González
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez—Center of Applied Ecology and Sustainability, Santiago de Chile, 2640, Chile
| |
Collapse
|
64
|
van de Water JAJM, Allemand D, Ferrier-Pagès C. Host-microbe interactions in octocoral holobionts - recent advances and perspectives. MICROBIOME 2018; 6:64. [PMID: 29609655 PMCID: PMC5880021 DOI: 10.1186/s40168-018-0431-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/01/2018] [Indexed: 05/05/2023]
Abstract
Octocorals are one of the most ubiquitous benthic organisms in marine ecosystems from the shallow tropics to the Antarctic deep sea, providing habitat for numerous organisms as well as ecosystem services for humans. In contrast to the holobionts of reef-building scleractinian corals, the holobionts of octocorals have received relatively little attention, despite the devastating effects of disease outbreaks on many populations. Recent advances have shown that octocorals possess remarkably stable bacterial communities on geographical and temporal scales as well as under environmental stress. This may be the result of their high capacity to regulate their microbiome through the production of antimicrobial and quorum-sensing interfering compounds. Despite decades of research relating to octocoral-microbe interactions, a synthesis of this expanding field has not been conducted to date. We therefore provide an urgently needed review on our current knowledge about octocoral holobionts. Specifically, we briefly introduce the ecological role of octocorals and the concept of holobiont before providing detailed overviews of (I) the symbiosis between octocorals and the algal symbiont Symbiodinium; (II) the main fungal, viral, and bacterial taxa associated with octocorals; (III) the dominance of the microbial assemblages by a few microbial species, the stability of these associations, and their evolutionary history with the host organism; (IV) octocoral diseases; (V) how octocorals use their immune system to fight pathogens; (VI) microbiome regulation by the octocoral and its associated microbes; and (VII) the discovery of natural products with microbiome regulatory activities. Finally, we present our perspectives on how the field of octocoral research should move forward, and the recognition that these organisms may be suitable model organisms to study coral-microbe symbioses.
Collapse
Affiliation(s)
| | - Denis Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, Monaco
| | | |
Collapse
|
65
|
Role of RpoS in stress resistance, quorum sensing and spoilage potential of Pseudomonas fluorescens. Int J Food Microbiol 2018; 270:31-38. [DOI: 10.1016/j.ijfoodmicro.2018.02.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/04/2018] [Accepted: 02/11/2018] [Indexed: 01/02/2023]
|
66
|
Antibiotic Hybrids: the Next Generation of Agents and Adjuvants against Gram-Negative Pathogens? Clin Microbiol Rev 2018. [PMID: 29540434 DOI: 10.1128/cmr.00077-17] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The global incidence of drug-resistant Gram-negative bacillary infections has been increasing, and there is a dire need to develop novel strategies to overcome this problem. Intrinsic resistance in Gram-negative bacteria, such as their protective outer membrane and constitutively overexpressed efflux pumps, is a major survival weapon that renders them refractory to current antibiotics. Several potential avenues to overcome this problem have been at the heart of antibiotic drug discovery in the past few decades. We review some of these strategies, with emphasis on antibiotic hybrids either as stand-alone antibacterial agents or as adjuvants that potentiate a primary antibiotic in Gram-negative bacteria. Antibiotic hybrid is defined in this review as a synthetic construct of two or more pharmacophores belonging to an established agent known to elicit a desired antimicrobial effect. The concepts, advances, and challenges of antibiotic hybrids are elaborated in this article. Moreover, we discuss several antibiotic hybrids that were or are in clinical evaluation. Mechanistic insights into how tobramycin-based antibiotic hybrids are able to potentiate legacy antibiotics in multidrug-resistant Gram-negative bacilli are also highlighted. Antibiotic hybrids indeed have a promising future as a therapeutic strategy to overcome drug resistance in Gram-negative pathogens and/or expand the usefulness of our current antibiotic arsenal.
Collapse
|
67
|
Asfahl KL, Schuster M. Additive Effects of Quorum Sensing Anti-Activators on Pseudomonas aeruginosa Virulence Traits and Transcriptome. Front Microbiol 2018; 8:2654. [PMID: 29375519 PMCID: PMC5767178 DOI: 10.3389/fmicb.2017.02654] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/20/2017] [Indexed: 11/13/2022] Open
Abstract
In the opportunistic pathogen Pseudomonas aeruginosa, quorum sensing (QS) via acyl-homoserine lactone (AHL) signals coordinates virulence gene expression. AHL signals must reach a critical threshold before enough is bound by cognate regulators LasR and RhlR to drive transcription of target genes. In addition, three anti-activator proteins, QteE, QscR, and QslA, sequester QS regulators to increase the threshold for induction and delay expression of QS target genes. It remains unclear how multiple anti-activators work together to achieve the quorum threshold. Here, we employed a combination of mutational, kinetic, phenotypic, and transcriptomic analysis to examine regulatory effects and interactions of the three distinct anti-activators. We observed combinatorial, additive effects on QS gene expression. As measured by reporter gene fusion, individual deletion of each anti-activator gene increased lasB expression and QS-controlled virulence factor production. Deletion of qslA in combination with the deletion of any other anti-activator gene resulted in the greatest increase and earliest activation of lasB gene expression. Western analysis revealed that relative increases in soluble LasR in anti-activator mutants correlate with increased lasB expression and QS-controlled virulence factor production. RNA-seq of the previously uncharacterized QslA and QteE regulons revealed overlapping, yet distinct groups of differentially expressed genes. Simultaneous inactivation of qteE and qslA had the largest effect on gene expression with 999 genes induced and 798 genes repressed in the double mutant vs. wild-type. We found that LasR and RhlR-activated QS genes formed a subset of the genes induced in the qteE, qslA, and double mutant. The activation of almost all of these QS genes was advanced from stationary phase to log phase in the qteE qslA double mutant. Taken together, our results identify additive effects of anti-activation on QS gene expression, likely via LasR and RhlR, but do not rule out QS-independent effects.
Collapse
Affiliation(s)
- Kyle L Asfahl
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Martin Schuster
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
68
|
Abstract
We present a proof of principle for the phenomenon of the tragedy of the commons that is at the center of many theories on the evolution of cooperation. Whereas the tragedy is commonly set in a game theoretical context, and attributed to an underlying Prisoner’s Dilemma, we take an alternative approach based on basic mechanistic principles of species growth that does not rely on the specification of payoffs which may be difficult to determine in practice. We establish the tragedy in the context of a general chemostat model with two species, the cooperator and the cheater. Both species have the same growth rate function and yield constant, but the cooperator allocates a portion of the nutrient uptake towards the production of a public good -the “Commons” in the Tragedy- which is needed to digest the externally supplied nutrient. The cheater on the other hand does not produce this enzyme, and allocates all nutrient uptake towards its own growth. We prove that when the cheater is present initially, both the cooperator and the cheater will eventually go extinct, hereby confirming the occurrence of the tragedy. We also show that without the cheater, the cooperator can survive indefinitely, provided that at least a low level of public good or processed nutrient is available initially. Our results provide a predictive framework for the analysis of cooperator-cheater dynamics in a powerful model system of experimental evolution.
Collapse
|
69
|
Quorum-Sensing Systems as Targets for Antivirulence Therapy. Trends Microbiol 2017; 26:313-328. [PMID: 29132819 DOI: 10.1016/j.tim.2017.10.005] [Citation(s) in RCA: 286] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/26/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
Abstract
The development of novel therapies to control diseases caused by antibiotic-resistant pathogens is one of the major challenges we are currently facing. Many important plant, animal, and human pathogens regulate virulence by quorum sensing, bacterial cell-to-cell communication with small signal molecules. Consequently, a significant research effort is being undertaken to identify and use quorum-sensing-interfering agents in order to control diseases caused by these pathogens. In this review, an overview of our current knowledge of quorum-sensing systems of Gram-negative model pathogens is presented as well as the link with virulence of these pathogens, and recent advances and challenges in the development of quorum-sensing-interfering therapies are discussed.
Collapse
|
70
|
Wu X, Lv X, Lu J, Yu S, Jin Y, Hu J, Zuo J, Mi R, Huang Y, Qi K, Chen Z, Han X. The role of the ptsI gene on AI-2 internalization and pathogenesis of avian pathogenic Escherichia coli. Microb Pathog 2017; 113:321-329. [PMID: 29111323 DOI: 10.1016/j.micpath.2017.10.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 10/18/2022]
Abstract
The LuxS/AI-2 quorum sensing mechanism can regulate the physiological functions of avian pathogenic Escherichia coli (APEC) through internalization of the small molecule autoinducer-2 (AI-2). The ptsI gene encodes enzyme I, which participates in the phosphotransferase system (PTS) that regulates the virulence and AI-2 internalization of bacteria. The aim of the present study was to determine the effect of ptsI on AI-2 internalization and other pathogenesis process in APEC using a ptsI mutant of the APEC strain DE17 (serotype O2), namely DE17ΔptsI. The results showed that deletion of the ptsI gene changed the rdar (red dry and rough) morphotype and decreased motility and biofilm formation in APEC (p < 0.05). Furthermore, scanning electron microscopy showed that the biofilm structure of DE17ΔptsI became sparse and more extracellular, as compared with the wild-type strain DE17. Moreover, AI-2 assay showed that AI-2 was internalized by DE17ΔptsI, while the recombinant PtsI protein had no AI-2 binding activity. Furthermore, deletion of the ptsI gene in APEC significantly increased adherence to DF-1 cells (p < 0.05). The 50% lethal dose of DE17ΔptsI was decreased by 17.8-fold and the bacterial loads of DE17ΔptsI were decreased by 13600-, 68.5-, 131-, and 3600-fold in the blood, liver, spleen, and kidney, respectively, as compared to the DE17. Moreover, histopathological analysis showed that the mutant DE17ΔptsI was associated with reduced pathological changes in the heart, liver, spleen, and kidney of ducklings, respectively, as compared to the wild-type strain DE17. The results of this study will benefit further studies on the functions of the ptsI in APEC.
Collapse
Affiliation(s)
- Xiaoka Wu
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China
| | - Xiaolong Lv
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China; College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China
| | - Jinye Lu
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 225300, PR China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China
| | - Yawei Jin
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China
| | - Jiangang Hu
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China
| | - Jiakun Zuo
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China
| | - Rongsheng Mi
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China
| | - Yan Huang
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China
| | - Kezong Qi
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China
| | - Zhaoguo Chen
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China.
| | - Xiangan Han
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China.
| |
Collapse
|
71
|
Bornikoel J, Carrión A, Fan Q, Flores E, Forchhammer K, Mariscal V, Mullineaux CW, Perez R, Silber N, Wolk CP, Maldener I. Role of Two Cell Wall Amidases in Septal Junction and Nanopore Formation in the Multicellular Cyanobacterium Anabaena sp. PCC 7120. Front Cell Infect Microbiol 2017; 7:386. [PMID: 28929086 PMCID: PMC5591844 DOI: 10.3389/fcimb.2017.00386] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/15/2017] [Indexed: 01/11/2023] Open
Abstract
Filamentous cyanobacteria have developed a strategy to perform incompatible processes in one filament by differentiating specialized cell types, N2-fixing heterocysts and CO2-fixing, photosynthetic, vegetative cells. These bacteria can be considered true multicellular organisms with cells exchanging metabolites and signaling molecules via septal junctions, involving the SepJ and FraCD proteins. Previously, it was shown that the cell wall lytic N-acetylmuramyl-L-alanine amidase, AmiC2, is essential for cell-cell communication in Nostoc punctiforme. This enzyme perforates the septal peptidoglycan creating an array of nanopores, which may be the framework for septal junction complexes. In Anabaena sp. PCC 7120, two homologs of AmiC2, encoded by amiC1 and amiC2, were identified and investigated in two different studies. Here, we compare the function of both AmiC proteins by characterizing different Anabaena amiC mutants, which was not possible in N. punctiforme, because there the amiC1 gene could not be inactivated. This study shows the different impact of each protein on nanopore array formation, the process of cell-cell communication, septal protein localization, and heterocyst differentiation. Inactivation of either amidase resulted in significant reduction in nanopore count and in the rate of fluorescent tracer exchange between neighboring cells measured by FRAP analysis. In an amiC1 amiC2 double mutant, filament morphology was affected and heterocyst differentiation was abolished. Furthermore, the inactivation of amiC1 influenced SepJ localization and prevented the filament-fragmentation phenotype that is characteristic of sepJ or fraC fraD mutants. Our findings suggest that both amidases are to some extent redundant in their function, and describe a functional relationship of AmiC1 and septal proteins SepJ and FraCD.
Collapse
Affiliation(s)
- Jan Bornikoel
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of TübingenTübingen, Germany
| | - Alejandro Carrión
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de SevillaSeville, Spain
| | - Qing Fan
- Department of Microbiology-Immunology, Feinberg School of Medicine of Northwestern UniversityChicago, IL, United States
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de SevillaSeville, Spain
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of TübingenTübingen, Germany
| | - Vicente Mariscal
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de SevillaSeville, Spain
| | - Conrad W Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of LondonLondon, United Kingdom
| | - Rebeca Perez
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of TübingenTübingen, Germany
| | - Nadine Silber
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of TübingenTübingen, Germany
| | - C Peter Wolk
- MSU-DOE Plant Research Laboratory and Department of Plant Biology, Michigan State UniversityEast Lansing, MI, United States
| | - Iris Maldener
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of TübingenTübingen, Germany
| |
Collapse
|
72
|
Maintenance of Microbial Cooperation Mediated by Public Goods in Single- and Multiple-Trait Scenarios. J Bacteriol 2017; 199:JB.00297-17. [PMID: 28847922 DOI: 10.1128/jb.00297-17] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Microbes often form densely populated communities, which favor competitive and cooperative interactions. Cooperation among bacteria often occurs through the production of metabolically costly molecules produced by certain individuals that become available to other neighboring individuals; such molecules are called public goods. This type of cooperation is susceptible to exploitation, since nonproducers of a public good can benefit from it while saving the cost of its production (cheating), gaining a fitness advantage over producers (cooperators). Thus, in mixed cultures, cheaters can increase in frequency in the population, relative to cooperators. Sometimes, and as predicted by simple game-theoretic arguments, such increases in the frequency of cheaters cause loss of the cooperative traits by exhaustion of the public goods, eventually leading to a collapse of the entire population. In other cases, however, both cooperators and cheaters remain in coexistence. This raises the question of how cooperation is maintained in microbial populations. Several strategies to prevent cheating have been studied in the context of a single trait and a unique environmental constraint. In this review, we describe current knowledge on the evolutionary stability of microbial cooperation and discuss recent discoveries describing the mechanisms operating in multiple-trait and multiple-constraint settings. We conclude with a consideration of the consequences of these complex interactions, and we briefly discuss the potential role of social interactions involving multiple traits and multiple environmental constraints in the evolution of specialization and division of labor in microbes.
Collapse
|
73
|
Zeng Y, Wang Y, Yu Z, Huang Y. Hypersensitive Response of Plasmid-Encoded AHL Synthase Gene to Lifestyle and Nutrient by Ensifer adhaerens X097. Front Microbiol 2017; 8:1160. [PMID: 28702008 PMCID: PMC5487405 DOI: 10.3389/fmicb.2017.01160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/07/2017] [Indexed: 11/16/2022] Open
Abstract
It is known that some bacteria, especially members of the family Rhizobiaceae, have multiple N-acyl homoserine lactones (AHL) synthase genes and produce multiple AHL signals. However, how bacteria selectively utilize these multiple genes and signals to cope with changing environments is poorly understood. Ensifer adhaerens is an important microorganism in terms of biotechnology, ecology and evolutionary. In this study, we investigated the AHL-based QS system of E. adhaerens X097 and its response to different lifestyles or nutrients. Draft genome sequence data indicated that X097 harbored three distinct AHL synthase genes (ensI1, 2, 3) and seven luxR homologs, which was different from other E. adhaerens strains. In vitro expression indicated that plasmid-encoded ensI1 and ensI2 directed production of multiple AHLs, while chromosome-encoded ensI3 only directed production of C14-HSL. Predicted three dimensional structure of EnsI3 was quite different from that of EnsI1 and EnsI2. X097 produced different AHL profiles in Luria-Bertani (LB) and NFB medium, under biofilm and planktonic lifestyle, respectively. Notably, expression of ensI1 and ensI2 but not ensI3 is hypersensitive to different lifestyles and nutrients. The hypersensitive response of plasmid-encoded AHL synthase genes to different culture conditions may shed a light on the phylogenetic development of AHL synthase genes in Rhizobiaceae family.
Collapse
Affiliation(s)
- Yanhua Zeng
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang UniversityHangzhou, China
| | - Yanli Wang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang UniversityHangzhou, China
| | - Zhiliang Yu
- College of Biotechnology and Bioengineering, Zhejiang University of TechnologyHangzhou, China
| | - Yili Huang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang UniversityHangzhou, China
| |
Collapse
|
74
|
Schuster M, Sexton DJ, Hense BA. Why Quorum Sensing Controls Private Goods. Front Microbiol 2017; 8:885. [PMID: 28579979 PMCID: PMC5437708 DOI: 10.3389/fmicb.2017.00885] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/02/2017] [Indexed: 12/22/2022] Open
Abstract
Cell-cell communication, also termed quorum sensing (QS), is a widespread process that coordinates gene expression in bacterial populations. The generally accepted view is that QS optimizes the cell density-dependent benefit attained from cooperative behaviors, often in the form of secreted products referred to as "public goods." This view is challenged by an increasing number of cell-associated products or "private goods" reported to be under QS-control for which a collective benefit is not apparent. A prominent example is nucleoside hydrolase from Pseudomonas aeruginosa, a periplasmic enzyme that catabolizes adenosine. Several recent studies have shown that private goods can function to stabilize cooperation by co-regulated public goods, seemingly explaining their control by QS. Here we argue that this property is a by-product of selection for other benefits rather than an adaptation. Emphasizing ecophysiological context, we propose alternative explanations for the QS control of private goods. We suggest that the benefit attained from private goods is associated with high cell density, either because a relevant ecological condition correlates with density, or because the private good is, directly or indirectly, involved in cooperative behavior. Our analysis helps guide a systems approach to QS, with implications for antivirulence drug design and synthetic biology.
Collapse
Affiliation(s)
- Martin Schuster
- Department of Microbiology, Oregon State UniversityCorvallis, OR, United States
| | - D Joseph Sexton
- Department of Microbiology, Oregon State UniversityCorvallis, OR, United States
| | - Burkhard A Hense
- Institute of Computational Biology, Helmholtz Zentrum MünchenNeuherberg, Germany
| |
Collapse
|
75
|
Westhoff S, van Wezel GP, Rozen DE. Distance-dependent danger responses in bacteria. Curr Opin Microbiol 2017; 36:95-101. [PMID: 28258981 DOI: 10.1016/j.mib.2017.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/27/2017] [Accepted: 02/01/2017] [Indexed: 12/23/2022]
Abstract
The last decade has seen a resurgence in our understanding of the diverse mechanisms that bacteria use to kill one another. We are also beginning to uncover the responses and countermeasures that bacteria use when faced with specific threats or general cues of potential danger from bacterial competitors. In this Perspective, we propose that diverse offensive and defensive responses in bacteria have evolved to offset dangers detected at different distances. Thus, while volatile organic compounds provide bacterial cells with a warning at the greatest distance, diffusible compounds like antibiotics or contact mediated killing systems, indicate a more pressing danger warranting highly-specific responses. In the competitive environments in which bacteria live, it is crucial that cells are able to detect real or potential dangers from other cells. By utilizing mechanisms of detection that can infer the distance from danger, bacteria can fine-tune aggressive interactions so that they can optimally respond to threats occurring with distinct levels of risk.
Collapse
Affiliation(s)
- Sanne Westhoff
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2300 BE Leiden, The Netherlands.
| | - Gilles P van Wezel
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2300 BE Leiden, The Netherlands
| | - Daniel E Rozen
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2300 BE Leiden, The Netherlands
| |
Collapse
|