51
|
Martin-Pozas T, Fernandez-Cortes A, Cuezva S, Cañaveras JC, Benavente D, Duarte E, Saiz-Jimenez C, Sanchez-Moral S. New insights into the structure, microbial diversity and ecology of yellow biofilms in a Paleolithic rock art cave (Pindal Cave, Asturias, Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165218. [PMID: 37419360 DOI: 10.1016/j.scitotenv.2023.165218] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
In the absence of sunlight, caves harbor a great diversity of microbial colonies to extensive biofilms with different sizes and colors visible to the naked eye. One of the most widespread and visible types of biofilm are those with yellow hues that can constitute a serious problem for the conservation of cultural heritage in many caves, such as Pindal Cave (Asturias, Spain). This cave, declared a World Heritage Site by UNESCO for its Paleolithic parietal art, shows a high degree of development of yellow biofilms that represents a real threat to the conservation of painted and engraved figures. This study aims to: 1) identify the microbial structures and the most characteristic taxa composing the yellow biofilms, 2) seek the linked microbiome reservoir primarily contributing to their growth; 3) seed light on the driving vectors that contribute to their formation and determine the subsequent proliferation and spatial distribution. To achieve this goal, we used amplicon-based massive sequencing, in combination with other techniques such as microscopy, in situ hybridization and environmental monitoring, to compare the microbial communities of yellow biofilms with those of drip waters, cave sediments and exterior soil. The results revealed microbial structures related to the phylum Actinomycetota and the most characteristic bacteria in yellow biofilms, represented by the genera wb1-P19, Crossiella, Nitrospira, and Arenimonas. Our findings suggest that sediments serve as potential reservoirs and colonization sites for these bacteria that can develop into biofilms under favorable environmental and substrate conditions, with a particular affinity for speleothems and rugged-surfaced rocks found in condensation-prone areas. This study presents an exhaustive study of microbial communities of yellow biofilms in a cave, which could be used as a procedure for the identification of similar biofilms in other caves and to design effective conservation strategies in caves with valuable cultural heritage.
Collapse
Affiliation(s)
- Tamara Martin-Pozas
- Department of Geology, National Museum of Natural Sciences (MNCN-CSIC), 28006 Madrid, Spain.
| | | | - Soledad Cuezva
- Department of Geology, Geography and Environment, University of Alcala, Campus Cientifico-Tecnologico, 28802 Alcala de Henares, Spain.
| | - Juan Carlos Cañaveras
- Department of Environmental and Earth Sciences, University of Alicante, Campus San Vicente del Raspeig, 03690 Alicante, Spain.
| | - David Benavente
- Department of Environmental and Earth Sciences, University of Alicante, Campus San Vicente del Raspeig, 03690 Alicante, Spain.
| | - Elsa Duarte
- Department of History, University of Oviedo, 33011 Oviedo, Spain.
| | - Cesareo Saiz-Jimenez
- Department of Agrochemistry, Environmental Microbiology and Soil and Water Protection, Institute of Natural Resources and Agricultural Biology (IRNAS-CSIC), 41012 Seville, Spain.
| | - Sergio Sanchez-Moral
- Department of Geology, National Museum of Natural Sciences (MNCN-CSIC), 28006 Madrid, Spain.
| |
Collapse
|
52
|
Fan X, Ji M, Mu D, Zeng X, Tian Z, Sun K, Gao R, Liu Y, He X, Wu L, Li Q. Global diversity and biogeography of DNA viral communities in activated sludge systems. MICROBIOME 2023; 11:234. [PMID: 37865788 PMCID: PMC10589946 DOI: 10.1186/s40168-023-01672-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/21/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Activated sludge (AS) systems in wastewater treatment plants (WWTPs) harbor enormous viruses that regulate microbial metabolism and nutrient cycling, significantly influencing the stability of AS systems. However, our knowledge about the diversity of viral taxonomic groups and functional traits in global AS systems is still limited. To address this gap, we investigated the global diversity and biogeography of DNA viral communities in AS systems using 85,114 viral operational taxonomic units (vOTUs) recovered from 144 AS samples collected across 54 WWTPs from 13 different countries. RESULTS AS viral communities and their functional traits exhibited distance-decay relationship (DDR) at the global scale and latitudinal diversity gradient (LDG) from equator to mid-latitude. Furthermore, it was observed that AS viral community and functional gene structures were largely driven by the geographic factors and wastewater types, of which the geographic factors were more important. Carrying and disseminating auxiliary metabolic genes (AMGs) associated with the degradation of polysaccharides, sulfate reduction, denitrification, and organic phosphoester hydrolysis, as well as the lysis of crucial functional microbes that govern biogeochemical cycles were two major ways by which viruses could regulate AS functions. It was worth noting that our study revealed a high abundance of antibiotic resistance genes (ARGs) in viral genomes, suggesting that viruses were key reservoirs of ARGs in AS systems. CONCLUSIONS Our results demonstrated the highly diverse taxonomic groups and functional traits of viruses in AS systems. Viral lysis of host microbes and virus-mediated HGT can regulate the biogeochemical and nutrient cycles, thus affecting the performance of AS systems. These findings provide important insights into the viral diversity, function, and ecology in AS systems on a global scale. Video Abstract.
Collapse
Affiliation(s)
- Xiangyu Fan
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China.
- Artificial Intelligence Institute, University of Jinan, Jinan, Shandong Province, China.
| | - Mengzhi Ji
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong Province, China
| | - Dashuai Mu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong Province, China
- Marine College, Shandong University, Weihai, Shandong Province, China
| | - Xianghe Zeng
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China
| | - Zhen Tian
- Artificial Intelligence Institute, University of Jinan, Jinan, Shandong Province, China
| | - Kaili Sun
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China
| | - Rongfeng Gao
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China
| | - Yang Liu
- Artificial Intelligence Institute, University of Jinan, Jinan, Shandong Province, China
| | - Xinyuan He
- Artificial Intelligence Institute, University of Jinan, Jinan, Shandong Province, China
| | - Linwei Wu
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China.
| | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China.
| |
Collapse
|
53
|
Kumar G, Kallscheuer N, Jogler M, Wiegand S, Heuer A, Boedeker C, Rohde M, Jogler C. Stratiformator vulcanicus gen. nov., sp. nov., a marine member of the family Planctomycetaceae isolated from a red biofilm in the Tyrrhenian Sea close to the volcanic island Panarea. Antonie Van Leeuwenhoek 2023; 116:995-1007. [PMID: 37584762 PMCID: PMC10509075 DOI: 10.1007/s10482-023-01860-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023]
Abstract
A novel planctomycetal strain, designated Pan189T, was isolated from biofilm material sampled close to Panarea Island in the Tyrrhenian Sea. Cells of strain Pan189T are round grain rice-shaped, form pink colonies and display typical planctomycetal characteristics including asymmetric cell division through polar budding and presence of crateriform structures. Cells bear a stalk opposite to the division pole and fimbriae cover the cell surface. Strain Pan189T has a mesophilic (optimum at 24 °C) and neutrophilic (optimum at pH 7.5) growth profile, is aerobic and heterotrophic. Under laboratory-scale cultivation conditions, it reached a generation time of 102 h (µmax = 0.0068 h-1), which places the strain among the slowest growing members of the phylum Planctomycetota characterized so far. The genome size of the strain is with 5.23 Mb at the lower limit among the family Planctomycetaceae (5.1-8.9 Mb). Phylogenetically, the strain represents a novel genus and species in the family Planctomycetaceae, order Planctomycetales, class Planctomycetia. We propose the name Stratiformator vulcanicus gen. nov., sp. nov. for the novel taxon, that is represented by the type strain Pan189T (= DSM 101711 T = CECT 30699 T).
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Microbial Interactions, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
| | - Nicolai Kallscheuer
- Department of Microbial Interactions, Friedrich Schiller University, Jena, Germany
| | - Mareike Jogler
- Department of Microbial Interactions, Friedrich Schiller University, Jena, Germany
| | - Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Anja Heuer
- Leibniz Institute DSMZ, Brunswick, Germany
| | | | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Friedrich Schiller University, Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
54
|
Campos MA, Zhang Q, Acuña JJ, Rilling JI, Ruiz T, Carrazana E, Reyno C, Hollenback A, Gray K, Jaisi DP, Ogram A, Bai J, Zhang L, Xiao R, Elias M, Sadowsky MJ, Hu J, Jorquera MA. Structure and Functional Properties of Bacterial Communities in Surface Sediments of the Recently Declared Nutrient-Saturated Lake Villarrica in Southern Chile. MICROBIAL ECOLOGY 2023; 86:1513-1533. [PMID: 36752910 DOI: 10.1007/s00248-023-02173-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Lake Villarrica, one of Chile's main freshwater water bodies, was recently declared a nutrient-saturated lake due to increased phosphorus (P) and nitrogen (N) levels. Although a decontamination plan based on environmental parameters is being established, it does not consider microbial parameters. Here, we conducted high-throughput DNA sequencing and quantitative polymerase chain reaction (qPCR) analyses to reveal the structure and functional properties of bacterial communities in surface sediments collected from sites with contrasting anthropogenic pressures in Lake Villarrica. Alpha diversity revealed an elevated bacterial richness and diversity in the more anthropogenized sediments. The phylum Proteobacteria, Bacteroidetes, Acidobacteria, and Actinobacteria dominated the community. The principal coordinate analysis (PCoA) and redundancy analysis (RDA) showed significant differences in bacterial communities of sampling sites. Predicted functional analysis showed that N cycling functions (e.g., nitrification and denitrification) were significant. The microbial co-occurrence networks analysis suggested Chitinophagaceae, Caldilineaceae, Planctomycetaceae, and Phycisphaerae families as keystone taxa. Bacterial functional genes related to P (phoC, phoD, and phoX) and N (nifH and nosZ) cycling were detected in all samples by qPCR. In addition, an RDA related to N and P cycling revealed that physicochemical properties and functional genes were positively correlated with several nitrite-oxidizing, ammonia-oxidizing, and N-fixing bacterial genera. Finally, denitrifying gene (nosZ) was the most significant factor influencing the topological characteristics of co-occurrence networks and bacterial interactions. Our results represent one of a few approaches to elucidate the structure and role of bacterial communities in Chilean lake sediments, which might be helpful in conservation and decontamination plans.
Collapse
Affiliation(s)
- Marco A Campos
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Qian Zhang
- The BioTechnology Institute, University of Minnesota, 140 Gortner Lab, 1479 Gortner Ave., St Paul, MN, 55108-6106, USA
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361100, People's Republic of China
| | - Jacquelinne J Acuña
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Joaquin I Rilling
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Tay Ruiz
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
- Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Elizabeth Carrazana
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
- Doctorado en Ciencias mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Cristóbal Reyno
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
- Doctorado en Ciencias mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Anthony Hollenback
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Katelyn Gray
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Deb P Jaisi
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Andrew Ogram
- Soil and Water Sciences Department, University of Florida, PO Box 110290, Gainesville, FL, 32608-32611, USA
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Ling Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Rong Xiao
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Mikael Elias
- The BioTechnology Institute, University of Minnesota, 140 Gortner Lab, 1479 Gortner Ave., St Paul, MN, 55108-6106, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 140 Gortner Lab, 1479 Gortner Ave., St Paul, MN, 55108-6106, USA
| | - Michael J Sadowsky
- The BioTechnology Institute, University of Minnesota, 140 Gortner Lab, 1479 Gortner Ave., St Paul, MN, 55108-6106, USA
| | - Jingming Hu
- College of the Environment & Ecology, Xiamen University, Xiamen, 361100, People's Republic of China
| | - Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile.
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile.
| |
Collapse
|
55
|
Padayhag BM, Nada MAL, Baquiran JIP, Sison-Mangus MP, San Diego-McGlone ML, Cabaitan PC, Conaco C. Microbial community structure and settlement induction capacity of marine biofilms developed under varied reef conditions. MARINE POLLUTION BULLETIN 2023; 193:115138. [PMID: 37321001 DOI: 10.1016/j.marpolbul.2023.115138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Coral larval settlement relies on biogenic cues such as those elicited by microbial biofilm communities, a crucial element of coral recruitment. Eutrophication can modify these biofilm-associated communities, but studies on how this affects coral larval settlement are limited. In this study, we developed biofilm communities on glass slides at four sites with increasing distance from a mariculture zone. Biofilms farthest from the mariculture area were more effective at inducing the settlement of Acropora tenuis larvae. These biofilms were characterized by a greater proportion of crustose coralline algae (CCA) and gammaproteobacterial taxa compared to biofilms from sites closer to the mariculture zone, which had a greater proportion of cyanobacteria and no CCA. These findings suggest that nutrient enrichment due to mariculture activities alters the composition of biofilm-associated microbiome at nearby reef sites and indirectly causes poor coral larval settlement.
Collapse
Affiliation(s)
- Blaire M Padayhag
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | - Michael Angelou L Nada
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | - Jake Ivan P Baquiran
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | | | | | - Patrick C Cabaitan
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | - Cecilia Conaco
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines.
| |
Collapse
|
56
|
Li D, Dong Y, Li S, Jiang P, Zhang J. Biological carbon promotes the recovery of anammox granular sludge after starvation. BIORESOURCE TECHNOLOGY 2023:129305. [PMID: 37311527 DOI: 10.1016/j.biortech.2023.129305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
This article adopts the strategy of adding biochar and increasing HRT to accelerate the performance and particle morphology recovery of anaerobic ammonia oxidation granular sludge stored at room temperature for 68 days. The results showed that biochar accelerated the death of heterotrophic bacteria, shortened the cell lysis and lag period of the recovery process by 4 days, and it only took 28 days for the nitrogen removal performance of the reactor to recover to the original level, and 56 days for re-granulation. Biochar promoted the secretion of EPS (56.96 mg gVSS-1), and the sludge volume and nitrogen removal performance of the bioreactor remain stable. Biochar also accelerated the growth of Anammox bacteria. The abundance of Anammox bacteria in the biochar reactor reached 38.76% on the 28th day. The high abundance of functional bacteria and the optimized community structure of biochar made system (Candidatus_Kuenenia: 38.30%) more risk-resistant than control reactor.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China.
| | - Yiwen Dong
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Shuai Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Pengfei Jiang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Jie Zhang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
57
|
Agger JW, Madsen MS, Martinsen LK, Martins PA, Barrett K, Meyer AS. New insights to diversity and enzyme-substrate interactions of fungal glucuronoyl esterases. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12575-4. [PMID: 37256329 DOI: 10.1007/s00253-023-12575-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/01/2023]
Abstract
Glucuronoyl esterases (GEs) (EC 3.1.1.117) catalyze the cleavage of ester-linked lignin-carbohydrate complexes that has high impact on the plant cell wall integrity. The GEs are among the very few known types of hydrolytic enzymes that act at the interface of lignin, or which may potentially interact with lignin itself. In this review, we provide the latest update of the current knowledge on GEs with a special focus on the fungal variants. In addition, we have established the phylogenetic relationship between all GEs and this reveals that the fungal enzymes largely fall into one major branch, together with only a minor subset of bacterial enzymes. About 22% of the fungal proteins carry an additional domain, which is almost exclusively a CBM1 binding domain. We address how GEs may interact with the lignin-side of their substrate by molecular docking experiments based on the known structure of the Cerrena unicolor GE (CuGE). The docking studies indicate that there are no direct interactions between the enzyme and the lignin polymer, that the lignin-moiety is facing away from the protein surface and that an elongated carbon-chain between the ester-linkage and the first phenyl of lignin is preferable. Much basic research on these enzymes has been done over the past 15 years, but the next big step forward for these enzymes is connected to application and how these enzymes can facilitate the use of lignocellulose as a renewable resource. KEY POINTS: Fungal GEs are closely related and are sometimes linked to a binding module Molecular docking suggests good accommodation of lignin-like substructures GEs could be among the first expressed enzymes during fungal growth on biomass.
Collapse
Affiliation(s)
- Jane Wittrup Agger
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800, Kongens Lyngby, Denmark.
| | - Michael Schmidt Madsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800, Kongens Lyngby, Denmark
| | - Line Korte Martinsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800, Kongens Lyngby, Denmark
| | - Pedro Alves Martins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800, Kongens Lyngby, Denmark
| | - Kristian Barrett
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800, Kongens Lyngby, Denmark
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
58
|
Costa GMD, Costa SS, Baraúna RA, Castilho BP, Pinheiro IC, Silva A, Schaan AP, Ribeiro-Dos-Santos Â, Graças DAD. Effects of Degradation on Microbial Communities of an Amazonian Mangrove. Microorganisms 2023; 11:1389. [PMID: 37374891 DOI: 10.3390/microorganisms11061389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 06/29/2023] Open
Abstract
Mangroves provide a unique ecological environment for complex microbial communities, which play important roles in biogeochemical cycles, such as those for carbon, sulfur, and nitrogen. Microbial diversity analyses of these ecosystems help us understand the changes caused by external influences. Amazonian mangroves occupy an area of 9000 km2, corresponding to 70% of the mangroves in Brazil, on which studies of microbial biodiversity are extremely scarce. The present study aimed to determine changes in microbial community structure along the PA-458 highway, which fragmented a mangrove zone. Mangrove samples were collected from three zones, (i) degraded, (ii) in the process of recovery, and (iii) preserved. Total DNA was extracted and submitted for 16S rDNA amplification and sequencing on an MiSeq platform. Subsequently, reads were processed for quality control and biodiversity analyses. The most abundant phyla were Proteobacteria, Firmicutes, and Bacteroidetes in all three mangrove locations, but in significantly different proportions. We observed a considerable reduction in diversity in the degraded zone. Important genera involved in sulfur, carbon, and nitrogen metabolism were absent or dramatically reduced in this zone. Our results show that human impact in the mangrove areas, caused by the construction of the PA-458 highway, has resulted in a loss of biodiversity.
Collapse
Affiliation(s)
- Gleyciane Machado da Costa
- Laboratory of Biological Engineering, Guamá Science and Technology Park, Belém 66075-750, Brazil
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Sávio Souza Costa
- Laboratory of Biological Engineering, Guamá Science and Technology Park, Belém 66075-750, Brazil
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Rafael Azevedo Baraúna
- Laboratory of Biological Engineering, Guamá Science and Technology Park, Belém 66075-750, Brazil
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Bruno Pureza Castilho
- Laboratory of Biological Engineering, Guamá Science and Technology Park, Belém 66075-750, Brazil
| | - Izabel Cruz Pinheiro
- Laboratory of Biological Engineering, Guamá Science and Technology Park, Belém 66075-750, Brazil
| | - Artur Silva
- Laboratory of Biological Engineering, Guamá Science and Technology Park, Belém 66075-750, Brazil
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Ana Paula Schaan
- Laboratory of Medical and Human Genetics, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Ândrea Ribeiro-Dos-Santos
- Laboratory of Medical and Human Genetics, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Diego Assis das Graças
- Laboratory of Biological Engineering, Guamá Science and Technology Park, Belém 66075-750, Brazil
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| |
Collapse
|
59
|
Wang S, Gong Z, Wang Y, Cheng F, Lu X. An anoxic-aerobic system combined with integrated vertical-flow constructed wetland to highly enhance simultaneous organics and nutrients removal in rural China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117349. [PMID: 36738718 DOI: 10.1016/j.jenvman.2023.117349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
The biggest problem in the treatment of rural domestic sewage is that the existing treatment projects require the big investment and the high operation and maintenance costs. To overcome this problem, cost-effective, low-consuming, resource-recovering and easy-maintenance technologies are urgently demanded. To this end, a novel anoxic-aerobic system combined with integrated vertical-flow constructed wetland (IVFCW) with source separation was proposed for treating rural sewage in this study. The anoxic-aerobic system contained the anoxic filter (ANF), two-stage waterwheel driving rotating biological contactors (ts-WDRBCs). Key parameters of ts-WDRBCs were identified to be 0.6 m drop height and 4 r/min rotational speed found on oxygenated clean water experiments. Then, the optimal operating parameters were determined to be 200% reflux ratio and 3 h hydraulic retention time of ts-WDRBCs. During the 80-day operation, 91.58 ± 1.86% COD, 96.17 ± 0.92% NH4+-N, 82.71 ± 3.92% TN and 92.28 ± 2.78% TP were removed under the optimal operating parameters. Compared with other treatment technologies, this combined bio-ecological system could achieve the higher simultaneous organics and nutrients removal. The effluent NO3--N/NH4+-N concentration ratio of ts-WDRBCs was 2.15 ± 0.54, which was proved to be beneficial for plants growth. The microbial communities coexisted in each section ensured the desired removal performance of combined bio-ecological system. Summarily, high performance together with low investment costs and cheap operation costs are characteristics that make this system a promising and competitive alternative for rural sewage treatment.
Collapse
Affiliation(s)
- Siyu Wang
- Southeast University, School Energy and Environment, 2 Sipailou Road, Nanjing, 210096, Jiangsu, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Road, Wuxi, 214135, PR China
| | - Ziao Gong
- Southeast University, School Energy and Environment, 2 Sipailou Road, Nanjing, 210096, Jiangsu, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Road, Wuxi, 214135, PR China
| | - Yunchen Wang
- Southeast University, School Energy and Environment, 2 Sipailou Road, Nanjing, 210096, Jiangsu, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Road, Wuxi, 214135, PR China
| | - Fangkui Cheng
- Southeast University, School Energy and Environment, 2 Sipailou Road, Nanjing, 210096, Jiangsu, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Road, Wuxi, 214135, PR China
| | - Xiwu Lu
- Southeast University, School Energy and Environment, 2 Sipailou Road, Nanjing, 210096, Jiangsu, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Road, Wuxi, 214135, PR China.
| |
Collapse
|
60
|
Adhikari NP, Adhikari S. First report on the bacterial community composition, diversity, and functions in Ramsar site of Central Himalayas, Nepal. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:573. [PMID: 37060391 DOI: 10.1007/s10661-023-11158-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Wetland bacterial communities are highly sensitive to altered hydrology and the associated change in water physicochemical and biological properties leading to shifts in community composition and diversity, hence affecting the ecological roles. However, relevant studies are lacking in the wetlands of central Himalayas Nepal. Thus, we aimed to explore the variation of bacterial communities, diversity, and ecologic functions in the wet and dry periods of a wetland (designed as Ramsar site, Ramsar no 2257) by using 16S rRNA gene-based Illumina MiSeq sequencing. We reported a pronounced variation in water physicochemical and biological properties (temperature, pH, Chla, DOC, and TN), bacterial diversity, and community composition. Bacterial communities in the dry season harbored significantly higher alpha diversity, while significantly higher richness and abundance were reflected in the wet season. Our results uncovered the effect of nutrients on bacterial abundance, richness, and community composition. Fourteen percent of the total OTUs were shared in two hydrological periods, and the largest portion of unique OTUs (58%) was observed in the dry season. Planctomycetes and Bacteroidetes dominated the wet season exclusive OTUs; meanwhile, Actinobacteria dominated the dry season exclusive OTUs. Bacteria in these wetlands exhibited divergent ecological functions during the dry and wet seasons. By disclosing the variation of water bacterial communities in different hydrologic periods and their relationship with environmental factors, this first-hand work in the Ramsar site of Nepal will develop a baseline dataset for the scientific community that will assist in understanding the wetland's microbial ecology and biogeography.
Collapse
Affiliation(s)
- Namita Paudel Adhikari
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- Institute of Tibetan Plateau Research Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Subash Adhikari
- Policy and Planning Commission, Government of Gandaki Province, Pokhara, 33700, Nepal.
| |
Collapse
|
61
|
Golder HM, Thomson J, Rehberger J, Smith AH, Block E, Lean IJ. Associations among the genome, rumen metabolome, ruminal bacteria, and milk production in early-lactation Holsteins. J Dairy Sci 2023; 106:3176-3191. [PMID: 36894426 DOI: 10.3168/jds.2022-22573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/19/2022] [Indexed: 03/09/2023]
Abstract
A multicenter observational study to evaluate genome-wide association was conducted in early-lactation Holstein cows (n = 293) from 36 herds in Canada, the USA, and Australia. Phenotypic observations included rumen metabolome, acidosis risk, ruminal bacterial taxa, and milk composition and yield measures. Diets ranged from pasture supplemented with concentrates to total mixed rations (nonfiber carbohydrates = 17 to 47, and neutral detergent fiber = 27 to 58% of dry matter). Rumen samples were collected <3 h after feeding and analyzed for pH, ammonia, d- and l-lactate, volatile fatty acid (VFA) concentrations, and abundance of bacterial phyla and families. Eigenvectors were produced using cluster and discriminant analyses from a combination of pH and ammonia, d-lactate, and VFA concentrations, and were used to estimate the probability of the risk of ruminal acidosis based on proximity to the centroid of 3 clusters, termed high (24.0% of cows), medium (24.2%), and low risk (51.8%) for acidosis. DNA of sufficient quality was successfully extracted from whole blood (218 cows) or hair (65 cows) collected simultaneously with the rumen samples and sequenced using the Geneseek Genomic Profiler Bovine 150K Illumina SNPchip. Genome-wide association used an additive model and linear regression with principal component analysis (PCA) population stratification and a Bonferroni correction for multiple comparisons. Population structure was visualized using PCA plots. Single genomic markers were associated with milk protein percent and the center logged ratio abundance of the phyla Chloroflexi, SR1, and Spirochaetes, and tended to be associated with milk fat yield, rumen acetate, butyrate, and isovalerate concentrations and with the probability of being in the low-risk acidosis group. More than one genomic marker was associated or tended to be associated with rumen isobutyrate and caproate concentrations, and the center log ratio of the phyla Bacteroidetes and Firmicutes and center log ratio of the families Prevotellaceae, BS11, S24-7, Acidaminococcaceae, Carnobacteriaceae, Lactobacillaceae, Leuconostocaceae, and Streptococcaceae. The provisional NTN4 gene, involved in several functions, had pleiotropy with 10 bacterial families, the phyla Bacteroidetes and Firmicutes, and butyrate. The ATP2CA1 gene, involved in the ATPase secretory pathway for Ca2+ transport, overlapped for the families Prevotellaceae, S24-7, and Streptococcaceae, the phylum Bacteroidetes, and isobutyrate. No genomic markers were associated with milk yield, fat percentage, protein yield, total solids, energy-corrected milk, somatic cell count, rumen pH, ammonia, propionate, valerate, total VFA, and d-, l-, or total lactate concentrations, or probability of being in the high- or medium-risk acidosis groups. Genome-wide associations with the rumen metabolome, microbial taxa, and milk composition were present across a wide geographical and management range of herds, suggesting the existence of markers for the rumen environment but not for acidosis susceptibility. The variation in pathogenesis of ruminal acidosis in the small population of cattle in the high risk for acidosis group and the dynamic nature of the rumen as cows cycle through a bout of acidosis may have precluded the identification of markers for acidosis susceptibility. Despite a limited sample size, this study provides evidence of interactions between the mammalian genome, the rumen metabolome, ruminal bacteria, and milk protein percentage.
Collapse
Affiliation(s)
- H M Golder
- Scibus, Camden, NSW, Australia, 2570; Sydney Institute of Agriculture, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, Australia, 2570
| | - J Thomson
- Department of Animal and Range Sciences, Montana State University, Bozeman 59717
| | - J Rehberger
- Arm & Hammer Animal and Food Production, Princeton, NJ 08540
| | - A H Smith
- Arm & Hammer Animal and Food Production, Princeton, NJ 08540
| | - E Block
- Arm & Hammer Animal and Food Production, Princeton, NJ 08540
| | - I J Lean
- Scibus, Camden, NSW, Australia, 2570; Sydney Institute of Agriculture, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, Australia, 2570.
| |
Collapse
|
62
|
Blastopirellula sediminis sp. nov. a new member of Pirellulaceae isolated from the Andaman and Nicobar Islands. Antonie Van Leeuwenhoek 2023; 116:463-475. [PMID: 36867270 DOI: 10.1007/s10482-023-01818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Two cream-coloured strains (JC732T, JC733) of Gram-stain negative, mesophilic, catalase and oxidase positive, aerobic bacteria which divide by budding, form crateriform structures, and cell aggregates were isolated from marine habitats of Andaman and Nicobar Islands, India. Both strains had genome size of 7.1 Mb and G + C content of 58.9%. Both strains showed highest 16S rRNA gene-based similarity with Blastopirellula retiformator Enr8T (98.7%). Strains JC732T and JC733 shared 100% identity of 16S rRNA gene and genome sequences. The coherence of both strains with the genus Blastopirellula was supported by the 16S rRNA gene based and the phylogenomic trees. Further, the chemo-taxonomic characters and the genome relatedness indices [ANI (82.4%), AAI (80.4%) and dDDH (25.2%)] also support the delineation at the species level. Both strains have the capability to degrade chitin and genome analysis shows the ability to fix N2. Based on the phylogenetic, phylogenomic, comparative genomic, morphological, physiological, and biochemical characteristics, strain JC732T is described as a new species of the genus Blastopirellula for which the name Blastopirellula sediminis sp. nov. is proposed, with strain JC733 as an additional strain.
Collapse
|
63
|
Sreya P, Suresh G, Rai A, Ria B, Vighnesh L, Agre VC, Jagadeeshwari U, Sasikala C, Ramana CV. Revisiting the taxonomy of the genus Rhodopirellula with the proposal for reclassification of the genus to Rhodopirellula sensu stricto, Aporhodopirellula gen. nov., Allorhodopirellula gen. nov. and Neorhodopirellula gen. nov. Antonie Van Leeuwenhoek 2023; 116:243-264. [PMID: 36547858 DOI: 10.1007/s10482-022-01801-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
The current genus Rhodopirellula consists of marine bacteria which belong to the family Pirellulaceae of the phylum Planctomycetota. Members of the genus Rhodopirellula are aerobic, mesophiles and chemoheterotrophs. The here conducted analysis built on 16S rRNA gene sequence and multi-locus sequence analysis based phylogenomic trees suggested that the genus is subdivided into four clades. Existing Rhodopirellula species were studied extensively based on phenotypic, genomic and chemotaxonomic parameters. The heterogeneity was further confirmed by overall genome-related indices (OGRI) including digital DNA-DNA hybridization (dDDH), average nucleotide identity (ANI), average amino acid identity (AAI), and percentage of conserved proteins (POCP). AAI and POCP values between the clades of the genus Rhodopirellula were 62.2-69.6% and 49.5-62.5%, respectively. Comparative genomic approaches like pan-genome analysis and conserved signature indels (CSIs) also support the division of the clades. The genomic incoherence of the members of the genus is further supported by variations in phenotypic characteristics. Thus, with the here applied integrated comparative genomic and polyphasic approaches, we propose the reclassification of the genus Rhodopirellula to three new genera: Aporhodopirellula gen. nov., Allorhodopirellula gen. nov., and Neorhodopirellula gen. nov.
Collapse
Affiliation(s)
- Pannikurungottu Sreya
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500 046, India
| | - Gandham Suresh
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500 046, India
| | - Anusha Rai
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500 046, India
| | - Biswas Ria
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500 046, India
| | - Lakshmanan Vighnesh
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500 046, India
| | - Vaibhav Chandrakant Agre
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500 046, India
| | - Uppada Jagadeeshwari
- Bacterial Discovery Laboratory, Centre for Environment, IST, JNT University Hyderabad, Kukatpally, Hyderabad, 500 085, India
| | - Chintalapati Sasikala
- Bacterial Discovery Laboratory, Centre for Environment, IST, JNT University Hyderabad, Kukatpally, Hyderabad, 500 085, India.
| | - Chintalapati Venkata Ramana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500 046, India.
| |
Collapse
|
64
|
Bhat S, Kaur H, Verma P, Pamposh. Characterization of the Sediment Bacterial Community Structure and Composition in Najafgarh Lake and Adjoining Dhansa Barrage. Indian J Microbiol 2023; 63:25-32. [PMID: 37188234 PMCID: PMC10172446 DOI: 10.1007/s12088-022-01053-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022] Open
Abstract
This study was undertaken to assess the changes in the community structure, diversity, and composition of sediment bacteria in a shallow lake, Najafgarh Lake (NL), that receives untreated sewage effluent through drains connected to it. These changes were analyzed by comparing the sediment bacterial community structure of NL to the sediment bacterial community structure of Dhansa Barrage (DB), which receives no such effluents. 16S rRNA amplicon was used for bacterial community analysis. Water and sediment samples were also analyzed and compared revealing high conductivity, ammonia, nitrite content, and low dissolved oxygen in NL. The organic matter content is also higher in the sediments of NL. Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria are the predominant phyla in both sites and account for 91% of total bacterial abundance in DB and only 77% in the case of NL. Proteobacteria have the highest relative abundance, accounting for around 42% of the total bacterial population in the case of DB and Firmicutes has the highest relative abundance in Najafgarh at 30%. The diversity analysis found significant differences in the community structure at the two sites. The variation in the bacterial communities in the two wetlands is significantly associated with two water parameters (conductivity and temperature) and two sediment parameters (Sediment Nitrogen and Sediment Organic Matter). Correlation Analysis showed that high ammonia, nitrite, and conductance in NL resulted in bacterial communities shifting towards phyla abundant in degraded ecosystems like Acidobacteria, Choloroflexi, Caldiserica, Aminicenantes, Thaumarchaeota, and Planctomycetes.
Collapse
Affiliation(s)
- Sandhya Bhat
- University School of Environment Management, GGSIP University, Sector-16C, Dwarka, New Delhi, 110078 India
| | - Harbinder Kaur
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, JNU Ring Rd, New Delhi, 110067 India
| | - Priyanka Verma
- University School of Environment Management, GGSIP University, Sector-16C, Dwarka, New Delhi, 110078 India
| | - Pamposh
- University School of Environment Management, GGSIP University, Sector-16C, Dwarka, New Delhi, 110078 India
| |
Collapse
|
65
|
Chiriac MC, Haber M, Salcher MM. Adaptive genetic traits in pelagic freshwater microbes. Environ Microbiol 2023; 25:606-641. [PMID: 36513610 DOI: 10.1111/1462-2920.16313] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Pelagic microbes have adopted distinct strategies to inhabit the pelagial of lakes and oceans and can be broadly categorized in two groups: free-living, specialized oligotrophs and patch-associated generalists or copiotrophs. In this review, we aim to identify genomic traits that enable pelagic freshwater microbes to thrive in their habitat. To do so, we discuss the main genetic differences of pelagic marine and freshwater microbes that are both dominated by specialized oligotrophs and the difference to freshwater sediment microbes, where copiotrophs are more prevalent. We phylogenomically analysed a collection of >7700 metagenome-assembled genomes, classified habitat preferences on different taxonomic levels, and compared the metabolic traits of pelagic freshwater, marine, and freshwater sediment microbes. Metabolic differences are mainly associated with transport functions, environmental information processing, components of the electron transport chain, osmoregulation and the isoelectric point of proteins. Several lineages with known habitat transitions (Nitrososphaeria, SAR11, Methylophilaceae, Synechococcales, Flavobacteriaceae, Planctomycetota) and the underlying mechanisms in this process are discussed in this review. Additionally, the distribution, ecology and genomic make-up of the most abundant freshwater prokaryotes are described in details in separate chapters for Actinobacteriota, Bacteroidota, Burkholderiales, Verrucomicrobiota, Chloroflexota, and 'Ca. Patescibacteria'.
Collapse
Affiliation(s)
| | - Markus Haber
- Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czechia
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czechia
| |
Collapse
|
66
|
Suarez C, Hackl T, Wilen BM, Persson F, Hagelia P, Jetten MSM, Dalcin Martins P. Novel and unusual genes for nitrogen and metal cycling in Planctomycetota- and KSB1-affiliated metagenome-assembled genomes reconstructed from a marine subsea tunnel. FEMS Microbiol Lett 2023; 370:fnad049. [PMID: 37291701 PMCID: PMC10732223 DOI: 10.1093/femsle/fnad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/10/2023] Open
Abstract
The Oslofjord subsea road tunnel is a unique environment in which the typically anoxic marine deep subsurface is exposed to oxygen. Concrete biodeterioration and steel corrosion in the tunnel have been linked to the growth of iron- and manganese-oxidizing biofilms in areas of saline water seepage. Surprisingly, previous 16S rRNA gene surveys of biofilm samples revealed microbial communities dominated by sequences affiliated with nitrogen-cycling microorganisms. This study aimed to identify microbial genomes with metabolic potential for novel nitrogen- and metal-cycling reactions, representing biofilm microorganisms that could link these cycles and play a role in concrete biodeterioration. We reconstructed 33 abundant, novel metagenome-assembled genomes (MAGs) affiliated with the phylum Planctomycetota and the candidate phylum KSB1. We identified novel and unusual genes and gene clusters in these MAGs related to anaerobic ammonium oxidation, nitrite oxidation, and other nitrogen-cycling reactions. Additionally, 26 of 33 MAGs also had the potential for iron, manganese, and arsenite cycling, suggesting that bacteria represented by these genomes might couple these reactions. Our results expand the diversity of microorganisms putatively involved in nitrogen and metal cycling, and contribute to our understanding of potential biofilm impacts on built infrastructure.
Collapse
Affiliation(s)
- Carolina Suarez
- Division of Water Resources Engineering, Faculty of Engineering LTH, Lund University, Lund 221 00, Sweden
| | - Thomas Hackl
- Microbial Ecology Cluster, GELIFES, University of Groningen, Groningen 9747 AG, Netherlands
| | - Britt-Marie Wilen
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Frank Persson
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Per Hagelia
- Construction Division, The Norwegian Public Roads, Administration, Oslo 0667, Norway
| | - Mike S M Jetten
- Department of Microbiology, RIBES, Radboud University, Nijmegen 6525 AJ, Netherlands
| | - Paula Dalcin Martins
- Microbial Ecology Cluster, GELIFES, University of Groningen, Groningen 9747 AG, Netherlands
| |
Collapse
|
67
|
Thompson AW, Sweeney CP, Sutherland KR. Selective and differential feeding on marine prokaryotes by mucous mesh feeders. Environ Microbiol 2023; 25:880-893. [PMID: 36594240 DOI: 10.1111/1462-2920.16334] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023]
Abstract
Microbial mortality impacts the structure of food webs, carbon flow, and the interactions that create dynamic patterns of abundance across gradients in space and time in diverse ecosystems. In the oceans, estimates of microbial mortality by viruses, protists, and small zooplankton do not account fully for observations of loss, suggesting the existence of underappreciated mortality sources. We examined how ubiquitous mucous mesh feeders (i.e. gelatinous zooplankton) could contribute to microbial mortality in the open ocean. We coupled capture of live animals by blue-water diving to sequence-based approaches to measure the enrichment and selectivity of feeding by two coexisting mucous grazer taxa (pteropods and salps) on numerically dominant marine prokaryotes. We show that mucous mesh grazers consume a variety of marine prokaryotes and select between coexisting lineages and similar cell sizes. We show that Prochlorococcus may evade filtration more than other cells and that planktonic archaea are consumed by macrozooplanktonic grazers. Discovery of these feeding relationships identifies a new source of mortality for Earth's dominant marine microbes and alters our understanding of how top-down processes shape microbial community and function.
Collapse
Affiliation(s)
- Anne W Thompson
- Department of Biology, Portland State University, Portland, Oregon, USA
| | - Carey P Sweeney
- Department of Biology, Portland State University, Portland, Oregon, USA
| | - Kelly R Sutherland
- Oregon Institute of Marine Biology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
68
|
Abstract
The intestinal lining is protected by a mucous barrier composed predominantly of complex carbohydrates. Gut microbes employ diverse glycoside hydrolases (GHs) to liberate mucosal sugars as a nutrient source to facilitate host colonization. Intensive catabolism of mucosal glycans, however, may contribute to barrier erosion, pathogen encroachment, and inflammation. Sialic acid is an acidic sugar featured at terminal positions of host glycans. Characterized sialidases from the microbiome belong to the GH33 family, according to CAZy (Carbohydrate-Active enZYmes Database). In 2018 a functional metagenomics screen using thermal spring DNA uncovered the founding member of the GH156 sialidase family, the presence of which has yet to be reported in the context of the human microbiome. A subset of GH156 sequences from the CAZy database containing key sialidase residues was used to build a hidden Markov model. HMMsearch against public databases revealed ~10× more putative GH156 sialidases than currently cataloged by CAZy. Represented phyla include Bacteroidota, Verrucomicrobiota, and Firmicutes_A from human microbiomes, all of which play notable roles in carbohydrate fermentation. Analyses of metagenomic data sets revealed that GH156s are frequently encoded in metagenomes, with a greater variety and abundance of GH156 genes observed in traditional hunter-gatherer or agriculturalist societies than in industrialized societies, particularly relative to individuals with inflammatory bowel disease (IBD). Nineteen GH156s were recombinantly expressed and assayed for sialidase activity. The five GH156 sialidases identified here share limited sequence identity to each other or the founding GH156 family member and are representative of a large subset of the family. IMPORTANCE Sialic acids occupy terminal positions of human glycans where they act as receptors for microbes, toxins, and immune signaling molecules. Microbial enzymes that remove sialic acids, sialidases, are abundant in the human microbiome where they may contribute to shaping the microbiota community structure or contribute to pathology. Furthermore, sialidases have proven to hold therapeutic potential for cancer therapy. Here, we examined the sequence space of a sialidase family of enzymes, GH156, previously unknown in the human gut environment. Our analyses suggest that human populations with disparate dietary practices harbor distinct varieties and abundances of GH156-encoding genes. Furthermore, we demonstrate the sialidase activity of 5 gut-derived GH156s. These results expand the diversity of sialidases that may contribute to host glycan degradation, and these sequences may have biotechnological or clinical utility.
Collapse
|
69
|
Genomic diversity and biosynthetic capabilities of sponge-associated chlamydiae. THE ISME JOURNAL 2022; 16:2725-2740. [PMID: 36042324 PMCID: PMC9666466 DOI: 10.1038/s41396-022-01305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/24/2022] [Accepted: 08/02/2022] [Indexed: 12/15/2022]
Abstract
Sponge microbiomes contribute to host health, nutrition, and defense through the production of secondary metabolites. Chlamydiae, a phylum of obligate intracellular bacteria ranging from animal pathogens to endosymbionts of microbial eukaryotes, are frequently found associated with sponges. However, sponge-associated chlamydial diversity has not yet been investigated at the genomic level and host interactions thus far remain unexplored. Here, we sequenced the microbiomes of three sponge species and found high, though variable, Chlamydiae relative abundances of up to 18.7% of bacteria. Using genome-resolved metagenomics 18 high-quality sponge-associated chlamydial genomes were reconstructed, covering four chlamydial families. Among these, Candidatus Sororchlamydiaceae shares a common ancestor with Chlamydiaceae animal pathogens, suggesting long-term co-evolution with animals. Based on gene content, sponge-associated chlamydiae resemble members from the same family more than sponge-associated chlamydiae of other families, and have greater metabolic versatility than known chlamydial animal pathogens. Sponge-associated chlamydiae are also enriched in genes for degrading diverse compounds found in sponges. Unexpectedly, we identified widespread genetic potential for secondary metabolite biosynthesis across Chlamydiae, which may represent an unexplored source of novel natural products. This finding suggests that Chlamydiae members may partake in defensive symbioses and that secondary metabolites play a wider role in mediating intracellular interactions. Furthermore, sponge-associated chlamydiae relatives were found in other marine invertebrates, pointing towards wider impacts of the Chlamydiae phylum on marine ecosystems.
Collapse
|
70
|
Gahan J, O’Sullivan O, Cotter PD, Schmalenberger A. Arbuscular Mycorrhiza Support Plant Sulfur Supply through Organosulfur Mobilizing Bacteria in the Hypho- and Rhizosphere. PLANTS (BASEL, SWITZERLAND) 2022; 11:3050. [PMID: 36432779 PMCID: PMC9694294 DOI: 10.3390/plants11223050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to elucidate the role of bacteria colonising mycorrhizal hyphae in organically bound sulfur mobilisation, the dominant soil sulfur source that is not directly plant available. The effect of an intact mycorrhizal symbiosis with access to stable isotope organo-34S enriched soils encased in 35 µm mesh cores was tested in microcosms with Agrostis stolonifera and Plantago lanceolata. Hyphae and associated soil were sampled from static mesh cores with mycorrhizal ingrowth and rotating mesh cores that exclude mycorrhizal ingrowth as well as corresponding rhizosphere soil, while plant shoots were analysed for 34S uptake. Static cores increased uptake of 34S at early stages of plant growth when sulfur demand appeared to be high and harboured significantly larger populations of sulfonate mobilising bacteria. Bacterial and fungal communities were significantly different in the hyphospheres of static cores when compared to rotating cores, not associated with plant hosts. Shifts in bacterial and fungal communities occurred not only in rotated cores but also in the rhizosphere. Arylsulfatase activity was significantly higher in the rhizosphere when cores stayed static, while atsA and asfA gene diversity was distinct in the microcosms with static and rotating cores. This study demonstrated that AM symbioses can promote organo-S mobilization and plant uptake through interactions with hyphospheric bacteria, enabling AM fungal ingrowth into static cores creating a positive feedback-loop, detectable in the microbial rhizosphere communities.
Collapse
Affiliation(s)
- Jacinta Gahan
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, V94 T9PX Limerick, Ireland
| | - Orla O’Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, and APC Microbiome Ireland, P61 C996 Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, and APC Microbiome Ireland, P61 C996 Cork, Ireland
| | - Achim Schmalenberger
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
71
|
Podosokorskaya OA, Elcheninov AG, Novikov AA, Kublanov IV. Fontivita pretiosa gen. nov., sp. nov., a thermophilic planctomycete of the order Tepidisphaerales from a hot spring of Baikal lake region. Syst Appl Microbiol 2022; 45:126375. [DOI: 10.1016/j.syapm.2022.126375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/09/2022]
|
72
|
Vitorino IR, Klimek D, Calusinska M, Lobo-da-Cunha A, Vasconcelos V, Lage OM. Stieleria sedimenti sp. nov., a Novel Member of the Family Pirellulaceae with Antimicrobial Activity Isolated in Portugal from Brackish Sediments. Microorganisms 2022; 10:2151. [PMID: 36363743 PMCID: PMC9692418 DOI: 10.3390/microorganisms10112151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 09/23/2023] Open
Abstract
The phylum Planctomycetota is known for having uncommon biological features. Recently, biotechnological applications of its members have started to be explored, namely in the genus Stieleria. Here, we formally describe a novel Stieleriaisolate designated as strain ICT_E10.1T, obtained from sediments collected in the Tagus estuary (Portugal). Strain ICT_E10.1T is pink-pigmented, spherical to ovoid in shape, and 1.7 µm ± 0.3 × 1.4 µm ± 0.3 in size. Cells cluster strongly in aggregates or small chains, divide by budding, and have prominent fimbriae. Strain ICT_E10.1T is heterotrophic and aerobic. Growth occurs from 20 to 30 °C, from 0.5 to 3% (w/v) NaCl, and from pH 6.5 to 11.0. The analysis of the 16S rRNA gene sequence placed strain ICT_E10.1T into the genus Stieleria with Stieleria neptunia Enr13T as the closest validly described relative. The genome size is 9,813,311 bp and the DNA G+C content is 58.8 mol%. Morphological, physiological, and genomic analyses support the separation of this strain into a novel species, for which we propose the name Stieleria sedimenti represented by strain ICT_E10.1T as the type of strain (=CECT 30514T= DSM 113784T). Furthermore, this isolate showed biotechnological potential by displaying relevant biosynthetic gene clusters and potent activity against Staphylococcus aureus.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Dominika Klimek
- The Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxemburg
- The Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, 2 Avenue de l’Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Magdalena Calusinska
- The Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxemburg
| | - Alexandre Lobo-da-Cunha
- Laboratório de Biologia Celular, Instituto de Ciências Biomédicas Abel Salazar, ICBAS, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Vasconcelos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
73
|
Espinoza JL, Dupont CL. VEBA: a modular end-to-end suite for in silico recovery, clustering, and analysis of prokaryotic, microeukaryotic, and viral genomes from metagenomes. BMC Bioinformatics 2022; 23:419. [PMID: 36224545 PMCID: PMC9554839 DOI: 10.1186/s12859-022-04973-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND With the advent of metagenomics, the importance of microorganisms and how their interactions are relevant to ecosystem resilience, sustainability, and human health has become evident. Cataloging and preserving biodiversity is paramount not only for the Earth's natural systems but also for discovering solutions to challenges that we face as a growing civilization. Metagenomics pertains to the in silico study of all microorganisms within an ecological community in situ, however, many software suites recover only prokaryotes and have limited to no support for viruses and eukaryotes. RESULTS In this study, we introduce the Viral Eukaryotic Bacterial Archaeal (VEBA) open-source software suite developed to recover genomes from all domains. To our knowledge, VEBA is the first end-to-end metagenomics suite that can directly recover, quality assess, and classify prokaryotic, eukaryotic, and viral genomes from metagenomes. VEBA implements a novel iterative binning procedure and hybrid sample-specific/multi-sample framework that yields more genomes than any existing methodology alone. VEBA includes a consensus microeukaryotic database containing proteins from existing databases to optimize microeukaryotic gene modeling and taxonomic classification. VEBA also provides a unique clustering-based dereplication strategy allowing for sample-specific genomes and genes to be directly compared across non-overlapping biological samples. Finally, VEBA is the only pipeline that automates the detection of candidate phyla radiation bacteria and implements the appropriate genome quality assessments. VEBA's capabilities are demonstrated by reanalyzing 3 existing public datasets which recovered a total of 948 MAGs (458 prokaryotic, 8 eukaryotic, and 482 viral) including several uncharacterized organisms and organisms with no public genome representatives. CONCLUSIONS The VEBA software suite allows for the in silico recovery of microorganisms from all domains of life by integrating cutting edge algorithms in novel ways. VEBA fully integrates both end-to-end and task-specific metagenomic analysis in a modular architecture that minimizes dependencies and maximizes productivity. The contributions of VEBA to the metagenomics community includes seamless end-to-end metagenomics analysis but also provides users with the flexibility to perform specific analytical tasks. VEBA allows for the automation of several metagenomics steps and shows that new information can be recovered from existing datasets.
Collapse
Affiliation(s)
- Josh L. Espinoza
- Department of Environment and Sustainability, J. Craig Venter Institute, 4120 Capricorn Ln, La Jolla, CA 92037 USA
- Department of Human Biology and Genomic Medicine, J. Craig Venter Institute, La Jolla, CA 92037 USA
| | - Chris L. Dupont
- Department of Environment and Sustainability, J. Craig Venter Institute, 4120 Capricorn Ln, La Jolla, CA 92037 USA
- Department of Human Biology and Genomic Medicine, J. Craig Venter Institute, La Jolla, CA 92037 USA
| |
Collapse
|
74
|
Testerman T, Beka L, Reichley SR, King S, Welch TJ, Wiens GD, Graf J. A large-scale, multi-year microbial community survey of a freshwater trout aquaculture facility. FEMS Microbiol Ecol 2022; 98:6680245. [PMID: 36047934 DOI: 10.1093/femsec/fiac101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022] Open
Abstract
Aquaculture is an important tool for solving the growing worldwide food demand, but infectious diseases of farmed animals represent a serious roadblock to continued industry growth. Therefore, it is essential to understand the microbial communities that reside within the built environments of aquaculture facilities to identify reservoirs of bacterial pathogens and potential correlations between commensal species and specific disease agents. Here, we present the results from 3 years of sampling a commercial rainbow trout aquaculture facility. We observed that the microbial communities residing on the abiotic surfaces within the hatchery were distinct from those residing on the surfaces at the facility's water source as well as the production raceways, despite similar communities in the water column at each location. Also, a subset of the water community seeds the biofilm communities. Lastly, we detected a common fish pathogen, Flavobacterium columnare, within the hatchery, including at the source water inlet. Importantly, the relative abundance of this pathogen was correlated with clinical disease. Our results characterized the microbial communities in an aquaculture facility, established that the hatchery environment contains a unique community composition and demonstrated that a specific fish pathogen resides within abiotic surface biofilms and is seeded from the natural water source.
Collapse
Affiliation(s)
- Todd Testerman
- University of Connecticut, Department of Molecular and Cell Biology, Storrs, CT, 06269, USA
| | - Lidia Beka
- University of Connecticut, Department of Molecular and Cell Biology, Storrs, CT, 06269, USA
| | | | - Stacy King
- Riverence Provisions LLC, Buhl, ID 83316, USA
| | - Timothy J Welch
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service/U.S. Department of Agriculture, Kearneysville, WV, 25430, USA
| | - Gregory D Wiens
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service/U.S. Department of Agriculture, Kearneysville, WV, 25430, USA
| | - Joerg Graf
- University of Connecticut, Department of Molecular and Cell Biology, Storrs, CT, 06269, USA
| |
Collapse
|
75
|
Vaksmaa A, Egger M, Lüke C, Martins PD, Rosselli R, Asbun AA, Niemann H. Microbial communities on plastic particles in surface waters differ from subsurface waters of the North Pacific Subtropical Gyre. MARINE POLLUTION BULLETIN 2022; 182:113949. [PMID: 35932724 DOI: 10.1016/j.marpolbul.2022.113949] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The long-term fate of plastics in the ocean and their interactions with marine microorganisms remain poorly understood. In particular, the role of sinking plastic particles as a transport vector for surface microbes towards the deep sea has not been investigated. Here, we present the first data on the composition of microbial communities on floating and suspended plastic particles recovered from the surface to the bathypelagic water column (0-2000 m water depth) of the North Pacific Subtropical Gyre. Microbial community composition of suspended plastic particles differed from that of plastic particles afloat at the sea surface. However, in both compartments, a diversity of hydrocarbon-degrading bacteria was identified. These findings indicate that microbial community members initially present on floating plastics are quickly replaced by microorganisms acquired from deeper water layers, thus suggesting a limited efficiency of sinking plastic particles to vertically transport microorganisms in the North Pacific Subtropical Gyre.
Collapse
Affiliation(s)
- Annika Vaksmaa
- Department of Marine Microbiology & Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 't Horntje, the Netherlands.
| | - Matthias Egger
- The Ocean Cleanup, Rotterdam, the Netherlands; Egger Research and Consulting, St. Gallen, Switzerland
| | - Claudia Lüke
- Radboud University, Department of Microbiology, Nijmegen, the Netherlands
| | | | - Riccardo Rosselli
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Spain; LABAQUA S.A.U, C/Dracma 16-18, Pol. Ind. Las Atalayas, 03114 Alicante, Spain
| | - Alejandro Abdala Asbun
- Department of Marine Microbiology & Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 't Horntje, the Netherlands
| | - Helge Niemann
- Department of Marine Microbiology & Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 't Horntje, the Netherlands; Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
76
|
Okazaki Y, Nakano SI, Toyoda A, Tamaki H. Long-Read-Resolved, Ecosystem-Wide Exploration of Nucleotide and Structural Microdiversity of Lake Bacterioplankton Genomes. mSystems 2022; 7:e0043322. [PMID: 35938717 PMCID: PMC9426551 DOI: 10.1128/msystems.00433-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
Reconstruction of metagenome-assembled genomes (MAGs) has become a fundamental approach in microbial ecology. However, a MAG is hardly complete and overlooks genomic microdiversity because metagenomic assembly fails to resolve microvariants among closely related genotypes. Aiming at understanding the universal factors that drive or constrain prokaryotic genome diversification, we performed an ecosystem-wide high-resolution metagenomic exploration of microdiversity by combining spatiotemporal (2 depths × 12 months) sampling from a pelagic freshwater system, high-quality MAG reconstruction using long- and short-read metagenomic sequences, and profiling of single nucleotide variants (SNVs) and structural variants (SVs) through mapping of short and long reads to the MAGs, respectively. We reconstructed 575 MAGs, including 29 circular assemblies, providing high-quality reference genomes of freshwater bacterioplankton. Read mapping against these MAGs identified 100 to 101,781 SNVs/Mb and 0 to 305 insertions, 0 to 467 deletions, 0 to 41 duplications, and 0 to 6 inversions for each MAG. Nonsynonymous SNVs were accumulated in genes potentially involved in cell surface structural modification to evade phage recognition. Most (80.2%) deletions overlapped with a gene coding region, and genes of prokaryotic defense systems were most frequently (>8% of the genes) overlapped with a deletion. Some such deletions exhibited a monthly shift in their allele frequency, suggesting a rapid turnover of genotypes in response to phage predation. MAGs with extremely low microdiversity were either rare or opportunistic bloomers, suggesting that population persistency is key to their genomic diversification. The results concluded that prokaryotic genomic diversification is driven primarily by viral load and constrained by a population bottleneck. IMPORTANCE Identifying intraspecies genomic diversity (microdiversity) is crucial to understanding microbial ecology and evolution. However, microdiversity among environmental assemblages is not well investigated, because most microbes are difficult to culture. In this study, we performed cultivation-independent exploration of bacterial genomic microdiversity in a lake ecosystem using a combination of short- and long-read metagenomic analyses. The results revealed the broad spectrum of genomic microdiversity among the diverse bacterial species in the ecosystem, which has been overlooked by conventional approaches. Our ecosystem-wide exploration further allowed comparative analysis among the genomes and genes and revealed factors behind microbial genomic diversification, namely, that diversification is driven primarily by resistance against viral infection and constrained by the population size.
Collapse
Affiliation(s)
- Yusuke Okazaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Shin-ichi Nakano
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima City, Shizuoka, Japan
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| |
Collapse
|
77
|
Javal M, Terblanche JS, Benoit L, Conlong DE, Lloyd JR, Smit C, Chapuis MP. Does Host Plant Drive Variation in Microbial Gut Communities in a Recently Shifted Pest? MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02100-x. [PMID: 35997797 DOI: 10.1007/s00248-022-02100-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Biotic interactions can modulate the responses of organisms to environmental stresses, including diet changes. Gut microbes have substantial effects on diverse ecological and evolutionary traits of their hosts, and microbial communities can be highly dynamic within and between individuals in space and time. Modulations of the gut microbiome composition and their potential role in the success of a species to maintain itself in a new environment have been poorly studied to date. Here we examine this question in a large wood-boring beetle Cacosceles newmannii (Cerambycidae), that was recently found thriving on a newly colonized host plant. Using 16S metabarcoding, we assessed the gut bacterial community composition of larvae collected in an infested field and in "common garden" conditions, fed under laboratory-controlled conditions on four either suspected or known hosts (sugarcane, tea tree, wattle, and eucalyptus). We analysed microbiome variation (i.e. diversity and differentiation), measured fitness-related larval growth, and studied host plant lignin and cellulose contents, since their degradation is especially challenging for wood-boring insects. We show that sugarcane seems to be a much more favourable host for larval growth. Bacterial diversity level was the highest in field-collected larvae, whereas lab-reared larvae fed on sugarcane showed a relatively low level of diversity but very specific bacterial variants. Bacterial communities were mainly dominated by Proteobacteria, but were significantly different between sugarcane-fed lab-reared larvae and any other hosts or field-collected larvae. We identified changes in the gut microbiome associated with different hosts over a short time frame, which support the hypothesis of a role of the microbiome in host switches.
Collapse
Affiliation(s)
- Marion Javal
- Department of Conservation Ecology & Entomology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa.
- Current Address: CEFE, Univ Montpellier, CNRS, EPHE, Montpellier, IRD, France.
| | - John S Terblanche
- Department of Conservation Ecology & Entomology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - Laure Benoit
- CBGP, Cirad, Montpellier SupAgro, INRA, IRD, Univ. Montpellier, Montpellier, France
| | - Desmond E Conlong
- Department of Conservation Ecology & Entomology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
- South African Sugarcane Research Institute, Mount Edgecombe, South Africa
| | - James R Lloyd
- Institute for Plant Biotechnology, Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Chantelle Smit
- Department of Conservation Ecology & Entomology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - Marie-Pierre Chapuis
- CBGP, Cirad, Montpellier SupAgro, INRA, IRD, Univ. Montpellier, Montpellier, France
| |
Collapse
|
78
|
Lyu Q, Luo Y, Liu S, Zhang Y, Li X, Hou G, Chen G, Zhao K, Fan C, Li X. Forest gaps alter the soil bacterial community of weeping cypress plantations by modulating the understory plant diversity. FRONTIERS IN PLANT SCIENCE 2022; 13:920905. [PMID: 36061809 PMCID: PMC9437579 DOI: 10.3389/fpls.2022.920905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Weeping cypress is an endemic tree species that is widely planted in China, and the simple stand structure and fragile ecosystem of its plantation are common issues. Exploring the effect of different gap sizes on the soil bacterial community structure of weeping cypress plantations can provide a theoretical basis for the near-natural management of forest plantations. We, therefore, constructed three kinds of forest gaps with different sizes in weeping cypress plantations, namely, small (50-100 m2), medium (100-200 m2), and large gaps (400-667 m2), for identifying the key factors that affect soil bacterial communities following the construction of forest gaps. The results suggested that the herb layer was more sensitive than the shrub layer, while the Simpson, Shannon, and richness indices of the herb layer in plots with gaps were significantly higher than those of designated sampling plots without any gaps (CK). The presence of large gaps significantly increased the understory plant diversity and the Shannon and Simpson indices of the soil bacterial alpha diversity. There were obvious changes in the community composition of soil bacteria following the construction of forest gaps. The dominant bacterial phyla, orders, and functions were similar across the plots with different gap sizes. Of the indicator bacterial species, the abundance of the nitrogen-fixing bacteria, Lysobacter_ yangpyeongensis, and Ensifer_meliloti, was significantly different across plots with different gap sizes and accounted for a large proportion of the bacterial population of plots with medium and large gaps. The understory plant diversity was mostly related to the soil bacterial community than to other soil factors. The results of structural equation modeling indicated that the understory plant diversity was the most important environmental factor in driving the composition and diversity of bacterial communities. The construction of forest gaps significantly improved the understory plant diversity, physicochemical properties of the soil, and bacterial diversity in weeping cypress plantations, and the results of the comprehensive evaluation were in the order: large gaps > small gaps > medium gaps > CK. Our results suggested that large gaps are beneficial for the diversity of above-ground plant communities and underground soil bacterial communities.
Collapse
Affiliation(s)
- Qian Lyu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yan Luo
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Size Liu
- Sichuan Academy of Forestry, Chengdu, China
| | - Yan Zhang
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Xiangjun Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Guirong Hou
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of National Forestry and Prairie Bureau on Forest Resources Conservation and Ecological Security in the Upper Reaches of Yangtze River, Sichuan Agricultural University, Chengdu, China
- Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Gang Chen
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of National Forestry and Prairie Bureau on Forest Resources Conservation and Ecological Security in the Upper Reaches of Yangtze River, Sichuan Agricultural University, Chengdu, China
- Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Kuangji Zhao
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of National Forestry and Prairie Bureau on Forest Resources Conservation and Ecological Security in the Upper Reaches of Yangtze River, Sichuan Agricultural University, Chengdu, China
- Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Chuan Fan
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of National Forestry and Prairie Bureau on Forest Resources Conservation and Ecological Security in the Upper Reaches of Yangtze River, Sichuan Agricultural University, Chengdu, China
- Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xianwei Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of National Forestry and Prairie Bureau on Forest Resources Conservation and Ecological Security in the Upper Reaches of Yangtze River, Sichuan Agricultural University, Chengdu, China
- Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
79
|
Anatilimnocola floriformis sp. nov., a novel member of the family Pirellulaceae from a boreal lake, and emended description of the genus Anatilimnocola. Antonie Van Leeuwenhoek 2022; 115:1253-1264. [DOI: 10.1007/s10482-022-01769-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
|
80
|
Koletti A, Dervisi I, Kalloniati C, Zografaki ME, Rennenberg H, Roussis A, Flemetakis E. Selenium-binding Protein 1 (SBD1): A stress response regulator in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2022; 189:2368-2381. [PMID: 35579367 PMCID: PMC9342975 DOI: 10.1093/plphys/kiac230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/04/2022] [Indexed: 05/20/2023]
Abstract
Selenium-binding proteins (SBPs) represent a ubiquitous protein family implicated in various environmental stress responses, although the exact molecular and physiological role of the SBP family remains elusive. In this work, we report the identification and characterization of CrSBD1, an SBP homolog from the model microalgae Chlamydomonas reinhardtii. Growth analysis of the C. reinhardtii sbd1 mutant strain revealed that the absence of a functional CrSBD1 resulted in increased growth under mild oxidative stress conditions, although cell viability rapidly declined at higher hydrogen peroxide (H2O2) concentrations. Furthermore, a combined global transcriptomic and metabolomic analysis indicated that the sbd1 mutant exhibited a dramatic quenching of the molecular and biochemical responses upon H2O2-induced oxidative stress when compared to the wild-type. Our results indicate that CrSBD1 represents a cell regulator, which is involved in the modulation of C. reinhardtii early responses to oxidative stress. We assert that CrSBD1 acts as a member of an extensive and conserved protein-protein interaction network including Fructose-bisphosphate aldolase 3, Cysteine endopeptidase 2, and Glutaredoxin 6 proteins, as indicated by yeast two-hybrid assays.
Collapse
Affiliation(s)
- Aikaterini Koletti
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens 11855, Greece
| | - Irene Dervisi
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, Athens 15784, Greece
| | - Chrysanthi Kalloniati
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens 11855, Greece
| | - Maria-Eleftheria Zografaki
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens 11855, Greece
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Chongqing 400715, China
| | - Andreas Roussis
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, Athens 15784, Greece
| | - Emmanouil Flemetakis
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens 11855, Greece
| |
Collapse
|
81
|
Wang Y, Cheng X, Wang H, Zhou J, Liu X, Tuovinen OH. The Characterization of Microbiome and Interactions on Weathered Rocks in a Subsurface Karst Cave, Central China. Front Microbiol 2022; 13:909494. [PMID: 35847118 PMCID: PMC9277220 DOI: 10.3389/fmicb.2022.909494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Karst caves are a natural oligotrophic subsurface biosphere widely distributed in southern China. Despite the progress in bacterial and fungal diversity, the knowledge about interactions between bacteria, fungi, and minerals is still limited in caves. Hence, for the first time, we investigated the interaction between bacteria and fungi living on weathered rocks in the Heshang Cave via high-throughput sequencing of 16S rRNA and ITS1 genes, and co-occurrence analysis. The mineral compositions of weathered rocks were analyzed by X-ray diffraction. Bacterial communities were dominated by Actinobacteria (33.68%), followed by Alphaproteobacteria (8.78%), and Planctomycetia (8.73%). In contrast, fungal communities were dominated by Sordariomycetes (21.08%) and Dothideomycetes (14.06%). Mineral substrata, particularly phosphorus-bearing minerals, significantly impacted bacterial (hydroxyapatite) and fungal (fluorapatite) communities as indicated by the redundancy analysis. In comparison with fungi, the development of bacterial communities was more controlled by the environmental selection indicated by the overwhelming contribution of deterministic processes. Co-occurrence network analysis showed that all nodes were positively linked, indicating ubiquitous cooperation within bacterial groups and fungal groups, as well as between bacteria and fungi under oligotrophic conditions in the subsurface biosphere. In total, 19 bacterial ASVs and 34 fungal OTUs were identified as keystone taxa, suggesting the fundamental role of fungi in maintaining the microbial ecosystem on weathered rocks. Ascomycota was most dominant in keystone taxa, accounting for 26.42%, followed by Actinobacteria in bacteria (24.53%). Collectively, our results confirmed the highly diverse bacterial and fungal communities on weathered rocks, and their close cooperation to sustain the subsurface ecosystem. Phosphorus-bearing minerals were of significance in shaping epipetreous bacterial and fungal communities. These observations provide new knowledge about microbial interactions between bacteria, fungi, and minerals in the subterranean biosphere.
Collapse
Affiliation(s)
- Yiheng Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.,School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Xiaoyu Cheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.,School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.,School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Jianping Zhou
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Xiaoyan Liu
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Olli H Tuovinen
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
82
|
Lhingjakim KL, Smita N, Kumar G, Jagadeeshwari U, Ahamad S, Sasikala C, Ramana CV. Paludisphaera rhizosphaereae sp. nov., a new member of the family Isosphaeraceae, isolated from the rhizosphere soil of Erianthus ravennae. Antonie Van Leeuwenhoek 2022; 115:1073-1084. [PMID: 35778640 DOI: 10.1007/s10482-022-01758-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
Two axenic cultures of Planctomycetota were isolated from distinct geographical locations of India. Strain JC665T was isolated from a rhizosphere soil of Loktak lake, Manipur, whereas strain JC747 was isolated from a soil sediment at Pallikkara village, Kerala, India. The two closely related strains shared the highest 16S rRNA gene sequence identity (94.6%) with Paludisphaera borealis PX4T, while the 16S rRNA gene sequence identity between both strains was 100%. Both strains grow aerobically, stain Gram negative, colonies are light pink-coloured, cells are non-motile, spherical to oval-shaped and tolerate NaCl up to 2% (w/v). While strain JC665T grows well up to pH 9.0, strain JC747 grows only up to pH 8.0. The respiratory quinone in both strains is MK-6. C16:0, C18:1ω9c and C18:0 are the major fatty acids. Phosphatidylcholine, two unidentified glycolipids, seven unidentified lipids and two unidentified phospholipids made up the polar lipid composition of both strains. Both strains have genome sizes of about 8.0 Mb and a DNA G + C content of 66.4 mol%. Both strains contain genes coding for enzymes putatively involved in the production of lycopene-related carotenoids. The phylogenetic position together with the results of the analysis of morphological, physiological and genomic features support the classification of strain JC665T as a new species of the genus Paludisphaera, for which we propose the name Paludisphaera rhizosphaerae sp. nov. Strain JC665T (= KCTC 72671 T = NBRC 114305 T) and JC747 are the type and non-type strain of the new species, respectively.
Collapse
Affiliation(s)
- Khongsai L Lhingjakim
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, India
| | - Nandardhane Smita
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, India
| | - Gaurav Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, India.,Department of Microbiology, School of Sciences, ITM (SLS) Baroda University, Halol, Vadodara, Gujarat, 391510, India
| | - Uppada Jagadeeshwari
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, JNT University Hyderabad, Kukatpally, Hyderabad, 500085, India
| | - Shabbir Ahamad
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, India
| | - Chintalapati Sasikala
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, JNT University Hyderabad, Kukatpally, Hyderabad, 500085, India.
| | - Chintalapati Venkata Ramana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, India.
| |
Collapse
|
83
|
Vitorino IR, Lobo-da-Cunha A, Vasconcelos V, Vicente F, Lage OM. Isolation, diversity and antimicrobial activity of planctomycetes from the Tejo river estuary (Portugal). FEMS Microbiol Ecol 2022; 98:6609431. [PMID: 35709427 DOI: 10.1093/femsec/fiac066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/18/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
The discovery of new bioactive compounds is an invaluable aid to the development of new drugs. Strategies for finding novel molecules can focus on the exploitation of less studied organisms and ecosystems such as planctomycetes and brackish habitats. The unique cell biology of the underexplored Planctomycetota mean it is of particular interest. In this study, we aimed to isolate planctomycetes from the estuary of the Tejo river (Portugal). To reach this goal, macroalgae, water and sediments were sampled and diverse media and isolation techniques applied. Sixty-nine planctomycetal strains were brought into pure culture. An analysis of the 16S rRNA genes found that the majority of the isolates were affiliated to the genus Rhodopirellula. Putative novel taxa belonging to genera Stieleria and Rhodopirellula were also isolated and characterized morphologically. Enterobacterial Repetitive Intergenic Consensus fingerprinting analyses showed higher diversity and different genotypes within close strains. Relevant biosynthetic gene clusters were found in most isolates and acetone extracts from representative strains exhibited mild antimicrobial activities against Escherichia coli and Staphylococcus aureus. Our work has not only enlarged the number and diversity of cultured planctomycetes but also shown the potential for the discovery of bioactive compounds from the novel taxa.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007 Porto, Portugal.,CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Alexandre Lobo-da-Cunha
- Laboratório de Biologia Celular, Instituto de Ciências Biomédicas Abel Salazar, ICBAS, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Vasconcelos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007 Porto, Portugal.,CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento 34, Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007 Porto, Portugal.,CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
84
|
Vitorino IR, Lobo-da-Cunha A, Vasconcelos V, Lage OM. Rubinisphaera margarita sp. nov., a novel planctomycete isolated from marine sediments collected in the Portuguese north coast. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The phylum
Planctomycetota
is constituted by bacteria with unique features that are well adapted to a vast range of habitats. Here, we describe a novel planctomycete isolated from marine sediments collected on a beach in Matosinhos (Portugal) using an iChip-based culturing technique. Strain ICM_H10T forms beige-coloured colonies in modified M14 medium and its cells are spherical to ovoid in shape, stalked, rosette-forming and showing motility in a phase of the life cycle. Transmission electron microscopy observations showed a typical planctomycetal cell plan and cell division by budding. This strain requires salt for growth and grows in the range of 2.0–5.0 % (w/v) NaCl, from 20 to 37 °C, within a pH of 6.0–9.0 and is able to use diverse nitrogen and carbon sources. It is heterotrophic, aerobic and capable of microaerobic growth. This strain has a genome size of approximately 6.0 Mb and a G+C content of 58.1 mol%. A 16S rRNA gene-based phylogenetic analysis supports the association of strain ICM_H10T to the phylum
Planctomycetota
and the family
Planctomycetaceae
, as it shares only 96.8 and 96.4% similarity to its closest relatives
Rubinisphaera italica
Pan54T and
Rubinisphaera brasiliensis
IFAM 1448T, respectively. Other phylogenetic markers also support the separation of this strain into a novel species. Morphological, physiological and genomic comparisons between strain ICM_H10T and its closest relatives strongly suggest that ICM_H10T represents a new species of the genus
Rubinisphaera
, for which we propose the name Rubinisphaera margarita sp. nov., with ICM_H10T (=CECT 30326T=LMG 32234T) as type strain.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto,, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Alexandre Lobo-da-Cunha
- Laboratório de Biologia Celular, Instituto de Ciências Biomédicas Abel Salazar, ICBAS, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Vasconcelos
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto,, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Olga Maria Lage
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto,, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
85
|
A genomic overview including polyphasic taxonomy of Thalassoroseus pseudoceratinae gen. nov., sp. nov. isolated from a marine sponge, Pseudoceratina sp. Antonie van Leeuwenhoek 2022; 115:843-856. [PMID: 35587321 DOI: 10.1007/s10482-022-01738-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/02/2022] [Indexed: 10/18/2022]
Abstract
A pink-coloured, salt- and alkali-tolerant planctomycetal strain (JC658T) with oval to pear-shaped, motile, aerobic, Gram-negative stained cells was isolated from a marine sponge, Pseudoceratina sp. Strain JC658T shares the highest 16S rRNA gene sequence identity with Maioricimonas rarisocia Mal4T (< 89.2%) in the family Planctomycetaceae. The genomic analysis of the new strain indicates its biotechnological potential for the production of various industrially important enzymes, notably sulfatases and carbohydrate-active enzymes (CAZymes), and also potential antimicrobial compounds. Several genes encoding restriction-modification (RM) and CRISPR-CAS systems are also present. NaCl is obligate for growth, of which strain JC658T can tolerate a concentration up to 6% (w/v). Optimum pH and temperature for growth are 8.0 (range 7.0-9.0) and 25 ºC (range 10-40 °C), respectively. The major respiratory quinone of strain JC658T is MK6. Major fatty acids are C16:1ω7c/C16:1ω6c, C18:0 and C16:0. Major polar lipids are phosphatidylcholine, phosphatidyl-dimethylethanolamine and phosphatidyl-monomethylethanolamine. The genomic size of strain JC658T is 7.36 Mb with a DNA G + C content of 54.6 mol%. Based on phylogenetic, genomic (ANI, AAI, POCP, dDDH), chemotaxonomic, physiological and biochemical characteristics, we conclude that strain JC658T belongs to a novel genus and constitutes a novel species within the family Planctomycetaceae, for which we propose the name Thalassoroseus pseudoceratinae gen. nov., sp. nov. The novel species is represented by the type strain JC658T (= KCTC 72881 T = NBRC 114371 T).
Collapse
|
86
|
Jaffe AL, Fuster M, Schoelmerich MC, Chen LX, Colombet J, Billard H, Sime-Ngando T, Banfield JF. Long-Term Incubation of Lake Water Enables Genomic Sampling of Consortia Involving Planctomycetes and Candidate Phyla Radiation Bacteria. mSystems 2022; 7:e0022322. [PMID: 35353011 PMCID: PMC9040852 DOI: 10.1128/msystems.00223-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 11/30/2022] Open
Abstract
Microbial communities in lakes can profoundly impact biogeochemical processes through their individual activities and collective interactions. However, the complexity of these communities poses challenges, particularly for studying rare organisms such as Candidate Phyla Radiation bacteria (CPR) and enigmatic entities such as aster-like nanoparticles (ALNs). Here, a reactor was inoculated with water from Lake Fargette, France, and maintained under dark conditions at 4°C for 31 months and enriched for ALNs, diverse Planctomycetes, and CPR bacteria. We reconstructed draft genomes and predicted metabolic traits for 12 diverse Planctomycetes and 9 CPR bacteria, some of which are likely representatives of undescribed families or genera. One CPR genome representing the little-studied lineage "Candidatus Peribacter" was curated to completion (1.239 Mbp) and unexpectedly encodes the full gluconeogenesis pathway. Metatranscriptomic data indicate that some planctomycetes and CPR bacteria were active under the culture conditions, accounting for ∼30% and ∼1% of RNA reads mapping to the genome set, respectively. We also reconstructed genomes and obtained transmission electron microscope images for numerous viruses, including one with a >300-kbp genome and several predicted to infect Planctomycetes. Together, our analyses suggest that freshwater Planctomycetes are central players in a subsystem that includes ALNs, symbiotic CPR bacteria, and viruses. IMPORTANCE Laboratory incubations of natural microbial communities can aid in the study of member organisms and their networks of interaction. This is particularly important for understudied lineages for which key elements of basic biology are still emerging. Using genomics and microscopy, we found that members of the bacterial lineage Planctomycetes may be central players in a subset of a freshwater lake microbiome that includes other bacteria, archaea, viruses, and mysterious entities, called aster-like nanoparticles (ALNs), whose origin is unknown. Our results help constrain the possible origins of ALNs and provide insight into possible interactions within a complex lake ecosystem.
Collapse
Affiliation(s)
- Alexander L. Jaffe
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Maxime Fuster
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, Clermont-Ferrand, France
| | | | - Lin-Xing Chen
- Department of Earth and Planetary Science, University of California, Berkeley, California, USA
| | - Jonathan Colombet
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, Clermont-Ferrand, France
| | - Hermine Billard
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, Clermont-Ferrand, France
| | - Télesphore Sime-Ngando
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, Clermont-Ferrand, France
| | - Jillian F. Banfield
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Department of Earth and Planetary Science, University of California, Berkeley, California, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
87
|
Rodriguez V, Moskwa LM, Oses R, Kühn P, Riveras-Muñoz N, Seguel O, Scholten T, Wagner D. Impact of Climate and Slope Aspects on the Composition of Soil Bacterial Communities Involved in Pedogenetic Processes along the Chilean Coastal Cordillera. Microorganisms 2022; 10:847. [PMID: 35630293 PMCID: PMC9143490 DOI: 10.3390/microorganisms10050847] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 02/04/2023] Open
Abstract
Soil bacteria play a fundamental role in pedogenesis. However, knowledge about both the impact of climate and slope aspects on microbial communities and the consequences of these items in pedogenesis is lacking. Therefore, soil-bacterial communities from four sites and two different aspects along the climate gradient of the Chilean Coastal Cordillera were investigated. Using a combination of microbiological and physicochemical methods, soils that developed in arid, semi-arid, mediterranean, and humid climates were analyzed. Proteobacteria, Acidobacteria, Chloroflexi, Verrucomicrobia, and Planctomycetes were found to increase in abundance from arid to humid climates, while Actinobacteria and Gemmatimonadetes decreased along the transect. Bacterial-community structure varied with climate and aspect and was influenced by pH, bulk density, plant-available phosphorus, clay, and total organic-matter content. Higher bacterial specialization was found in arid and humid climates and on the south-facing slope and was likely promoted by stable microclimatic conditions. The presence of specialists was associated with ecosystem-functional traits, which shifted from pioneers that accumulated organic matter in arid climates to organic decomposers in humid climates. These findings provide new perspectives on how climate and slope aspects influence the composition and functional capabilities of bacteria, with most of these capabilities being involved in pedogenetic processes.
Collapse
Affiliation(s)
- Victoria Rodriguez
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany; (V.R.); (L.-M.M.)
| | - Lisa-Marie Moskwa
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany; (V.R.); (L.-M.M.)
| | - Rómulo Oses
- Centro Regional de Investigación y Desarrollo Sustentable de Atacama, Universidad de Atacama (CRIDESAT UDA), Copayapu 484, Copiapó 1530000, Chile;
| | - Peter Kühn
- Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, 72070 Tübingen, Germany; (P.K.); (N.R.-M.); (T.S.)
| | - Nicolás Riveras-Muñoz
- Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, 72070 Tübingen, Germany; (P.K.); (N.R.-M.); (T.S.)
| | - Oscar Seguel
- Facultad de Ciencias Agronómicas, Universidad de Chile, Av. Santa Rosa #11315, La Pintana, Santiago 8820808, Chile;
| | - Thomas Scholten
- Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, 72070 Tübingen, Germany; (P.K.); (N.R.-M.); (T.S.)
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany; (V.R.); (L.-M.M.)
- Institute of Geosciences, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
88
|
Kruppa O, Czermak P. Screening for Biofilm-Stimulating Factors in the Freshwater Planctomycete Planctopirus limnophila to Improve Sessile Growth in a Chemically Defined Medium. Microorganisms 2022; 10:microorganisms10040801. [PMID: 35456851 PMCID: PMC9028447 DOI: 10.3390/microorganisms10040801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 12/26/2022] Open
Abstract
Planctomycetes such as Planctopirus limnophila offer a promising source of bioactive molecules, particularly when they switch from planktonic to sessile growth, but little is known about the corresponding biosynthetic gene clusters and how they are activated. We therefore screened for factors that promote sessile growth and biofilm formation to enable the cultivation of P. limnophila in a fixed-bed reactor. We carried out screening in microtiter plates focusing on biofilm formation and changes in optical density in response to various C:N ratios, metal ions, and oxidative stress. We used MTT assays and crystal violet staining to quantify biofilm formation. Positive factors were then validated in a fixed-bed bioreactor. The initial screen showed that D1ASO medium supplemented with NH4Cl to achieve a C:N ratio of 5.7:1, as well as 50 µM FeSO4 or CuSO4, increased the biofilm formation relative to the control medium. Exposure to H2O2 did not affect cell viability but stimulated biofilm formation. However, the same results were not replicated in the fixed-bed bioreactor, probably reflecting conditions that are unique to this environment such as the controlled pH and more vigorous aeration. Although we were able to cultivate P. limnophila in a fixed-bed bioreactor using a chemically defined medium, the factors that stimulate biofilm formation and inhibit planktonic growth were only identified in microtiter plates and further evaluation is required to establish optimal growth conditions in the bioreactor system.
Collapse
Affiliation(s)
- Oscar Kruppa
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, 35390 Giessen, Germany;
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, 35390 Giessen, Germany;
- Faculty of Biology and Chemistry, Justus-Liebig University of Giessen, 35390 Giessen, Germany
- Correspondence:
| |
Collapse
|
89
|
Kaluzhnaya OV, Itskovich VB. Features of Diversity of Polyketide Synthase Genes in the Community of Freshwater Sponge Baikalospongia fungiformis. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422030061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
90
|
Variation in the Structure and Composition of Bacterial Communities within Drinking Water Fountains in Melbourne, Australia. WATER 2022. [DOI: 10.3390/w14060908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Modern drinking water distributions systems (DWDSs) have been designed to transport treated or untreated water safely to the consumer. DWDSs are complex environments where microorganisms are able to create their own niches within water, biofilm or sediment. This study was conducted on twelve drinking fountains (of three different types, namely types A, B and C) within the Melbourne (Australia) city area with the aim to (i) characterize the water quality and viable and total counts at each fountain, (ii) compare the differences in the structure and diversity of the bacterial community between bulk water and biofilm and (iii) determine differences between the bacterial communities based on fountain type. Samples of water and biofilm were assessed using both culture-dependent and culture-independent techniques. Heterotrophic plate counts of water samples ranged from 0.5 to 107.5 CFU mL−1, and as expected, total cell counts (cells mL−1) were, on average, 2.9 orders of magnitude higher. Based on the mean relative abundance of operational taxonomic units (OTUs), ANOSIM showed that the structure of the bacterial communities in drinking water and biofilm varied significantly (R = 0.58, p = 0.001). Additionally, ANOSIM showed that across fountain types (in water), the bacterial community was more diverse in fountain type C compared to type A (p < 0.001) and type B (p < 0.001). 16S rRNA next-generation sequencing revealed that the bacterial communities in both water and biofilm were dominated by only seven phyla, with Proteobacteria accounting for 71.3% of reads in water and 68.9% in biofilm. The next most abundant phylum was Actinobacteria (10.4% water; 11.7% biofilm). In water, the genus with the highest overall mean relative abundance was Sphingomonas (24.2%), while Methylobacterium had the highest mean relative abundance in biofilm samples (54.7%). At the level of genus and higher, significant differences in dominance were found across fountain types. In water, Solirubrobacterales (order) were present in type C fountains at a relative abundance of 17%, while the mean relative abundance of Sphingomonas sp. in type C fountains was less than half that in types A (25%) and B (43%). In biofilm, the relative abundance of Sphingomonas sp. was more than double in type A (10%) fountains compared to types B (4%) and C (5%), and Sandarakinorhabdus sp. were high in type A fountains (6%) and low in types B and C (1%). Overall this research showed that there were significant differences in the composition of bacterial communities in water and biofilm from the same site. Furthermore, significant variation exists between microbial communities present in the fountain types, which may be related to age. Long-established environments may lead to a greater chance of certain bacteria gaining abilities such as increased disinfection resistance. Variations between the structure of the bacterial community residing in water and biofilm and differences between fountain types show that it is essential to regularly test samples from individual locations to determine microbial quality.
Collapse
|
91
|
A synthetic bacterial microcompartment as production platform for pyruvate from formate and acetate. Proc Natl Acad Sci U S A 2022; 119:2201330119. [PMID: 35217629 PMCID: PMC8892506 DOI: 10.1073/pnas.2201330119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
92
|
Kallscheuer N, Jogler C, Peeters SH, Boedeker C, Jogler M, Heuer A, Jetten MSM, Rohde M, Wiegand S. Mucisphaera calidilacus gen. nov., sp. nov., a novel planctomycete of the class Phycisphaerae isolated in the shallow sea hydrothermal system of the Lipari Islands. Antonie van Leeuwenhoek 2022; 115:407-420. [PMID: 35050438 PMCID: PMC8882080 DOI: 10.1007/s10482-021-01707-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/29/2021] [Indexed: 02/07/2023]
Abstract
For extending the current collection of axenic cultures of planctomycetes, we describe in this study the isolation and characterisation of strain Pan265T obtained from a red biofilm in the hydrothermal vent system close to the Lipari Islands in the Tyrrhenian Sea, north of Sicily, Italy. The strain forms light pink colonies on solid medium and grows as a viscous colloid in liquid culture, likely as the result of formation of a dense extracellular matrix observed during electron microscopy. Cells of the novel isolate are spherical, motile and divide by binary fission. Strain Pan265T is mesophilic (temperature optimum 30-33 °C), neutrophilic (pH optimum 7.0-8.0), aerobic and heterotrophic. The strain has a genome size of 3.49 Mb and a DNA G + C content of 63.9%. Phylogenetically, the strain belongs to the family Phycisphaeraceae, order Phycisphaerales, class Phycisphaerae. Our polyphasic analysis supports the delineation of strain Pan265T from the known genera in this family. Therefore, we conclude to assign strain Pan265T to a novel species within a novel genus, for which we propose the name Mucisphaera calidilacus gen. nov., sp. nov. The novel species is the type species of the novel genus and is represented by strain Pan265T (= DSM 100697T = CECT 30425T) as type strain.
Collapse
Affiliation(s)
- Nicolai Kallscheuer
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands.
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| | - Stijn H Peeters
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | | | - Mareike Jogler
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Anja Heuer
- Leibniz Institute DSMZ, Braunschweig, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sandra Wiegand
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
93
|
Vitorino IR, Lage OM. The Planctomycetia: an overview of the currently largest class within the phylum Planctomycetes. Antonie van Leeuwenhoek 2022; 115:169-201. [PMID: 35037113 DOI: 10.1007/s10482-021-01699-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 01/21/2023]
Abstract
The phylum Planctomycetes comprises bacteria with uncommon features among prokaryotes, such as cell division by budding, absence of the bacterial tubulin-homolog cell division protein FtsZ and complex cell plans with invaginations of the cytoplasmic membrane. Although planctomycetes are ubiquitous, the number of described species and isolated strains available as axenic cultures is still low compared to the diversity observed in metagenomes or environmental studies. An increasing interest in planctomycetes is reflected by the recent description of a large number of new species and their increasing accessibility in terms of pure cultures. In this review, data from all taxonomically described species belonging to Planctomycetia, the class with the currently highest number of characterized members within the phylum Planctomycetes, is summarized. Phylogeny, morphology, physiology, ecology and genomic traits of its members are discussed. This comprehensive overview will help to acknowledge several aspects of the biology of these fascinating bacteria.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| |
Collapse
|
94
|
Abstract
The SUP05 clade of gammaproteobacteria (Thioglobaceae) comprises both primary producers and primary consumers of organic carbon in the oceans. Host-associated autotrophs are a principal source of carbon and other nutrients for deep-sea eukaryotes at hydrothermal vents, and their free-living relatives are a primary source of organic matter in seawater at vents and in marine oxygen minimum zones. Similar to other abundant marine heterotrophs, such as SAR11 and Roseobacter, heterotrophic Thioglobaceae use the dilute pool of osmolytes produced by phytoplankton for growth, including methylated amines and sulfonates. Heterotrophic members are common throughout the ocean, and autotrophic members are abundant at hydrothermal vents and in anoxic waters; combined, they can account for more than 50% of the total bacterial community. Studies of both cultured and uncultured representatives from this diverse family are providing novel insights into the shifting biogeochemical roles of autotrophic and heterotrophic bacteria that cross oxic-anoxic boundary layers in the ocean.
Collapse
Affiliation(s)
- Robert M Morris
- School of Oceanography, University of Washington, Seattle, Washington 98195, USA;
| | - Rachel L Spietz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717, USA;
| |
Collapse
|
95
|
Kamel HL, Hanora A, Solyman SM. Metataxanomic, bioactivity and microbiome analysis of Red Sea marine sponges from Egypt. Mar Genomics 2021; 61:100920. [PMID: 34973527 DOI: 10.1016/j.margen.2021.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
Abstract
Red Sea marine sponges (phylum Porifera) and associated microorganisms harbor a wide range of microorganisms, which are considered an essential source of bioactive products. In this study, we screened both the crude extracts of Red Sea marine sponges and their associated bacterial extract for antimicrobial activity and antiviral activity. Molecular characterization of bioactive producers was performed using16S rRNA sequencing, in addition to metagenomic analysis of three representative sponges utilizing the 16S rRNA gene V3-V4 region sequencing in two different seasons. Twelve samples were collected from five different sponge species by scuba diving, and all the crude extracts of sponges showed antimicrobial activity except Negombata corticata. Moreover, 84 out of 110 bacterial isolates extracts demonstrated antimicrobial activity against at least one tested microorganism. These results revealed the bioactivity and biodiversity of the Red Sea marine invertebrates-associated bacteria. It was found that the bioactive isolates belong to several bacterial groups. The bacterial communities of Negombata magnifica, Negombata corticata, and Siphonochalina siphonella were shown with great diversity and differences in the bacterial percentage, diversity, and unique community composition at different seasons in each sponge species. Unique microenvironment for each sponge species may be linked to the production of specific bioactive product.
Collapse
Affiliation(s)
- Hasnaa L Kamel
- Department of Microbiology & Immunology, College of Pharmacy, Suez Canal University, Ismailia, Egypt; Department of Microbiology & Immunology, College of Pharmacy, Sinai University, Ismailia, Egypt.
| | - Amro Hanora
- Department of Microbiology & Immunology, College of Pharmacy, Suez Canal University, Ismailia, Egypt.
| | - Samar M Solyman
- Department of Microbiology & Immunology, College of Pharmacy, Suez Canal University, Ismailia, Egypt; Department of Microbiology & Immunology, College of Pharmacy, Sinai University, Ismailia, Egypt.
| |
Collapse
|
96
|
Pollution impact on microbial communities composition in natural and anthropogenically modified soils of Southern Russia. Microbiol Res 2021; 254:126913. [PMID: 34798540 DOI: 10.1016/j.micres.2021.126913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 01/24/2023]
Abstract
Metagenomic studies of soil microbocenoses are extremely relevant nowadays. The study of pollution impact on soil microbiomes is of particular interest. The structure of microbial communities in soils with different levels of pollution by polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs) was studied. High bacterial biodiversity was found in all the studied soil samples, but its lowest values are found in soil samples taken on the territory of technogenically polluted Lake Atamanskoye. Assessment of soil pollution showed the highest content of polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs) for the soils Lake Atamanskoye. The high content of pollutants negatively affects the abundance of representatives of the phyla Actinobacteria, Planctomycetes, Verrucomicrobia, and Nitrospirae. Such phyla as Proteobacteria, Candidate Divisions TM7, OD1, WPS-2, Chlamydiae, Cyanobacteria are characterized by positive direct correlation with the content of pollutants, especially with PAHs. A cooperative effect of decrease in the number of Actinobacteria and Proteobacteria with an increase in Armatimonadetes probably corresponds to PTEs contamination. The proportion of Candidate Division OD1, Chlamydiae, Cyanobacteria, and Candidate Division WPS-2 was increased in the soil microbiome under the influence of severe combined pollution. Pollutants negatively affect the abundance of dominant unclassified_o__Gaiellales and unclassified_o__WD2101 genera. Iamia, Salinibacterium, Arthrobacter, Kaistobacter, Thiobacillus genera are characterized by a low abundance, but they are presumably the most resistant to soil pollution. It was revealed that the level of soil pollution largely determines the composition and diversity of bacterial communities in the soils of the studied territories. Operating taxonomic units have been established that have prognostic value for assessing the state, level of soil pollution, and their biological safety.
Collapse
|
97
|
Seeger C, Dyrhage K, Mahajan M, Odelgard A, Lind SB, Andersson SGE. The Subcellular Proteome of a Planctomycetes Bacterium Shows That Newly Evolved Proteins Have Distinct Fractionation Patterns. Front Microbiol 2021; 12:643045. [PMID: 34745019 PMCID: PMC8567305 DOI: 10.3389/fmicb.2021.643045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
The Planctomycetes bacteria have unique cell architectures with heavily invaginated membranes as confirmed by three-dimensional models reconstructed from FIB-SEM images of Tuwongella immobilis and Gemmata obscuriglobus. The subcellular proteome of T. immobilis was examined by differential solubilization followed by LC-MS/MS analysis, which identified 1569 proteins in total. The Tris-soluble fraction contained mostly cytoplasmic proteins, while inner and outer membrane proteins were found in the Triton X-100 and SDS-soluble fractions, respectively. For comparisons, the subcellular proteome of Escherichia coli was also examined using the same methodology. A notable difference in the overall fractionation pattern of the two species was a fivefold higher number of predicted cytoplasmic proteins in the SDS-soluble fraction in T. immobilis. One category of such proteins is represented by innovations in the Planctomycetes lineage, including unique sets of serine/threonine kinases and extracytoplasmic sigma factors with WD40 repeat domains for which no homologs are present in E. coli. Other such proteins are members of recently expanded protein families in which the newly evolved paralog with a new domain structure is recovered from the SDS-soluble fraction, while other paralogs may have similar domain structures and fractionation patterns as the single homolog in E. coli. The expanded protein families in T. immobilis include enzymes involved in replication-repair processes as well as in rRNA and tRNA modification and degradation. These results show that paralogization and domain shuffling have yielded new proteins with distinct fractionation characteristics. Understanding the molecular intricacies of these adaptive changes might aid in the development of a model for the evolution of cellular complexity.
Collapse
Affiliation(s)
- Christian Seeger
- Science for Life Laboratory, Molecular Evolution, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Karl Dyrhage
- Science for Life Laboratory, Molecular Evolution, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Mayank Mahajan
- Science for Life Laboratory, Molecular Evolution, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Anna Odelgard
- Science for Life Laboratory, Molecular Evolution, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Sara Bergström Lind
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Siv G E Andersson
- Science for Life Laboratory, Molecular Evolution, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
98
|
Kruppa OC, Gerlach D, Fan R, Czermak P. Development of a chemically defined medium for Planctopirus limnophila to increase biomass production. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
99
|
Ivanova AA, Kulichevskaya IS, Dedysh SN. Gemmata palustris sp. nov., a Novel Planctomycete from a Fen in Northwestern Russia. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721050076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
100
|
Vitorino I, Santos JDN, Godinho O, Vicente F, Vasconcelos V, Lage OM. Novel and Conventional Isolation Techniques to Obtain Planctomycetes from Marine Environments. Microorganisms 2021; 9:2078. [PMID: 34683399 PMCID: PMC8541047 DOI: 10.3390/microorganisms9102078] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Bacteria from the distinctive Planctomycetes phylum are well spread around the globe; they are capable of colonizing many habitats, including marine, freshwater, terrestrial, and even extreme habitats such as hydrothermal vents and hot springs. They can also be found living in association with other organisms, such as macroalgae, plants, and invertebrates. While ubiquitous, only a small fraction of the known diversity includes axenic cultures. In this study, we aimed to apply conventional techniques to isolate, in diverse culture media, planctomycetes from two beaches of the Portuguese north-coast by using sediments, red, green, and brown macroalgae, the shell of the mussel Mytilus edulis, an anemone belonging to the species Actinia equina, and seawater as sources. With this approach, thirty-seven isolates closely related to seven species from the families Planctomycetaceae and Pirellulaceae (class Planctomycetia) were brought into pure culture. Moreover, we applied an iChip inspired in-situ culturing technique to successfully retrieve planctomycetes from marine sediments, which resulted in the isolation of three additional strains, two affiliated to the species Novipirellula caenicola and one to a putative novel Rubinisphaera. This work enlarges the number of isolated planctomycetal strains and shows the adequacy of a novel methodology for planctomycetes isolation.
Collapse
Affiliation(s)
- Inês Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| | - José Diogo Neves Santos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| | - Ofélia Godinho
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, 18016 Granada, Spain;
| | - Vítor Vasconcelos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| |
Collapse
|