51
|
Lee AQ, Li Y, Gong Z. Inducible Liver Cancer Models in Transgenic Zebrafish to Investigate Cancer Biology. Cancers (Basel) 2021; 13:5148. [PMID: 34680297 PMCID: PMC8533791 DOI: 10.3390/cancers13205148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/20/2022] Open
Abstract
Primary liver cancer is one of the most prevalent and deadly cancers, which incidence continues to increase while treatment response remains poor; thus, in-depth understanding of tumour events is necessary to develop more effective therapies. Animal models for liver cancer are powerful tools to reach this goal. Over the past decade, our laboratory has established multiple oncogene transgenic zebrafish lines that can be robustly induced to develop liver cancer. Histological, transcriptomic and molecular analyses validate the use of these transgenic zebrafish as experimental models for liver cancer. In this review, we provide a comprehensive summary of our findings with these inducible zebrafish liver cancer models in tumour initiation, oncogene addiction, tumour microenvironment, gender disparity, cancer cachexia, drug screening and others. Induced oncogene expression causes a rapid change of the tumour microenvironment such as inflammatory responses, increased vascularisation and rapid hepatic growth. In several models, histologically-proven carcinoma can be induced within one week of chemical inducer administration. Interestingly, the induced liver tumours show the ability to regress when the transgenic oncogene is suppressed by the withdrawal of the chemical inducer. Like human liver cancer, there is a strong bias of liver cancer severity in male zebrafish. After long-term tumour progression, liver cancer-bearing zebrafish also show symptoms of cancer cachexia such as muscle-wasting. In addition, the zebrafish models have been used to screen for anti-metastasis drugs as well as to evaluate environmental toxicants in carcinogenesis. These findings demonstrated that these inducible zebrafish liver cancer models provide rapid and convenient experimental tools for further investigation of fundamental cancer biology, with the potential for the discovery of new therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 119077, Singapore; (A.Q.L.); (Y.L.)
| |
Collapse
|
52
|
Precision modeling of mitochondrial diseases in zebrafish via DdCBE-mediated mtDNA base editing. Cell Discov 2021; 7:78. [PMID: 34480028 PMCID: PMC8417030 DOI: 10.1038/s41421-021-00307-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/13/2021] [Indexed: 11/08/2022] Open
|
53
|
Morales Fénero C, Amaral MA, Xavier IK, Padovani BN, Paredes LC, Takiishi T, Lopes-Ferreira M, Lima C, Colombo A, Saraiva Câmara NO. Short chain fatty acids (SCFAs) improves TNBS-induced colitis in zebrafish. CURRENT RESEARCH IN IMMUNOLOGY 2021; 2:142-154. [PMID: 35492385 PMCID: PMC9040093 DOI: 10.1016/j.crimmu.2021.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022] Open
Abstract
The short-chain fatty acids (SCFAs) are metabolites originated from the fermentation of dietary fibers and amino acids produced by the bacteria of the intestinal microbiota. The most abundant SCFAs, acetate, propionate, and butyrate, have been proposed as a treatment for inflammatory bowel diseases (IBDs) due to their anti-inflammatory properties. This work aimed to analyze the effects of the treatment of three combined SCFAs in TNBS-induced intestinal inflammation in zebrafish larvae. Here, we demonstrated that SCFAs significantly increased the survival of TNBS-exposed larvae, preserved the intestinal endocytic function, reduced the expression of inflammatory cytokines and the intestinal recruitment of neutrophils caused by TNBS. However, SCFAs treatment did not appear to avoid TNBS-induced tissue damage in the intestinal wall and did not restore the number of mucus-producing goblet cells. Finally, exposure to TNBS induced dysbiosis of the microbiota with an increase in Betaproteobacteria and Actinobacteria, while the treatment with SCFAs maintained these population levels similar to control. Thus, we demonstrate that the treatment of three combined SCFAs presented anti-inflammatory properties previously seen in mammals, opening an opportunity to use zebrafish to explore the potential benefit of these and other metabolites to treat inflammation.
Collapse
Affiliation(s)
- Camila Morales Fénero
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Izabella Karina Xavier
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Barbara Nunes Padovani
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lais Cavalieri Paredes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tatiana Takiishi
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Mônica Lopes-Ferreira
- Center of Toxins, Immune Response and Cellular Signalling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Carla Lima
- Center of Toxins, Immune Response and Cellular Signalling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Alicia Colombo
- Department of Pathologic Anatomy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Medicine, Nephrology Division, Federal University of São Paulo, Brazil
| |
Collapse
|
54
|
Zebrafish larvae as experimental model to expedite the search for new biomarkers and treatments for neonatal sepsis. J Clin Transl Sci 2021; 5:e140. [PMID: 34422320 PMCID: PMC8358844 DOI: 10.1017/cts.2021.803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/22/2022] Open
Abstract
Neonatal sepsis is a major cause of death and disability in newborns. Commonly used biomarkers for diagnosis and evaluation of treatment response lack sufficient sensitivity or specificity. Additionally, new targets to treat the dysregulated immune response are needed, as are methods to effectively screen drugs for these targets. Available research methods have hitherto not yielded the breakthroughs required to significantly improve disease outcomes, we therefore describe the potential of zebrafish (Danio rerio) larvae as preclinical model for neonatal sepsis. In biomedical research, zebrafish larvae combine the complexity of a whole organism with the convenience and high-throughput potential of in vitro methods. This paper illustrates that zebrafish exhibit an immune system that is remarkably similar to humans, both in terms of types of immune cells and signaling pathways. Moreover, the developmental state of the larval immune system is highly similar to human neonates. We provide examples of zebrafish larvae being used to study infections with pathogens commonly causing neonatal sepsis and discuss known limitations. We believe this species could expedite research into immune regulation during neonatal sepsis and may hold keys for the discovery of new biomarkers and novel treatment targets as well as for screening of targeted drug therapies.
Collapse
|
55
|
Patton EE, Zon LI, Langenau DM. Zebrafish disease models in drug discovery: from preclinical modelling to clinical trials. Nat Rev Drug Discov 2021; 20:611-628. [PMID: 34117457 PMCID: PMC9210578 DOI: 10.1038/s41573-021-00210-8] [Citation(s) in RCA: 211] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 02/03/2023]
Abstract
Numerous drug treatments that have recently entered the clinic or clinical trials have their genesis in zebrafish. Zebrafish are well established for their contribution to developmental biology and have now emerged as a powerful preclinical model for human disease, as their disease characteristics, aetiology and progression, and molecular mechanisms are clinically relevant and highly conserved. Zebrafish respond to small molecules and drug treatments at physiologically relevant dose ranges and, when combined with cell-specific or tissue-specific reporters and gene editing technologies, drug activity can be studied at single-cell resolution within the complexity of a whole animal, across tissues and over an extended timescale. These features enable high-throughput and high-content phenotypic drug screening, repurposing of available drugs for personalized and compassionate use, and even the development of new drug classes. Often, drugs and drug leads explored in zebrafish have an inter-organ mechanism of action and would otherwise not be identified through targeted screening approaches. Here, we discuss how zebrafish is an important model for drug discovery, the process of how these discoveries emerge and future opportunities for maximizing zebrafish potential in medical discoveries.
Collapse
Affiliation(s)
- E Elizabeth Patton
- MRC Human Genetics Unit and Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Cancer, Western General Hospital Campus, University of Edinburgh, Edinburgh, UK.
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School; Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA.
| | - David M Langenau
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, USA.
- Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Boston, MA, USA.
- Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
56
|
Muñiz-Ramirez A, Garcia-Campoy AH, Pérez Gutiérrez RM, Garcia Báez EV, Mota Flores JM. Evaluation of the Antidiabetic and Antihyperlipidemic Activity of Spondias purpurea Seeds in a Diabetic Zebrafish Model. PLANTS (BASEL, SWITZERLAND) 2021; 10:1417. [PMID: 34371620 PMCID: PMC8309283 DOI: 10.3390/plants10071417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 05/05/2023]
Abstract
Diabetes mellitus (DM) is a serious chronic degenerative disease characterized by high levels of glucose in the blood. It is associated with an absolute or relative deficiency in the production and/or action of insulin. Some of the complications associated with DM are heart disease, retinopathy, kidney disease, and neuropathy; therefore, new natural alternatives are being sought to control the disease. In this work, we evaluate the antidiabetic effect of Spondias purpurea seed methanol extract (CSM) in vitro and in a glucose-induced diabetic zebrafish model. CSM is capable of lowering blood glucose and cholesterol levels, as well as forming advanced glycation end-products, while not presenting toxic effects at the concentrations evaluated. These data show that CSM has a promising antidiabetic effect and may be useful in reducing some of the pathologies associated with diabetes mellitus.
Collapse
Affiliation(s)
- Alethia Muñiz-Ramirez
- CONACYT-IPICYT/CIIDZA, Camino a la Presa de San José 2055, Colonia, Lomas 4 Sección, San Luis Potosí CP 78216, Mexico
| | - Abraham Heriberto Garcia-Campoy
- Laboratorio de Investigación de Productos Naturales, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Ciudad de México CP 07708, Mexico; (R.M.P.G.); (J.M.M.F.)
| | - Rosa Martha Pérez Gutiérrez
- Laboratorio de Investigación de Productos Naturales, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Ciudad de México CP 07708, Mexico; (R.M.P.G.); (J.M.M.F.)
| | - Efrén Venancio Garcia Báez
- Laboratorio de Química Supramolecular y Nanociencias, Instituto Politécnico Nacional, Acueducto S/N, Barrio la laguna Ticomán, Ciudad de México CP 07340, Mexico;
| | - José María Mota Flores
- Laboratorio de Investigación de Productos Naturales, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Ciudad de México CP 07708, Mexico; (R.M.P.G.); (J.M.M.F.)
| |
Collapse
|
57
|
Subendran S, Wang YC, Lu YH, Chen CY. The evaluation of zebrafish cardiovascular and behavioral functions through microfluidics. Sci Rep 2021; 11:13801. [PMID: 34226579 PMCID: PMC8257654 DOI: 10.1038/s41598-021-93078-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
This study proposed a new experimental approach for the vascular and phenotype evaluation of the non-anesthetized zebrafish with representative imaging orientations for heart, pectoral fin beating, and vasculature views by means of the designed microfluidic device through inducing the optomotor response and hydrodynamic pressure control. In order to provide the visual cues for better positioning of zebrafish, computer-animated moving grids were generated by an in-house control interface which was powered by the larval optomotor response, in conjunction with the pressure suction control. The presented platform provided a comprehensive evaluation of internal circulation and the linked external behaviors of zebrafish in response to the cardiovascular parameter changes. The insights from these imaging sections was extended to identify the linkage between the cardiac parameters and behavioral endpoints. In addition, selected chemicals such as ethanol and caffeine were employed for the treatment of zebrafish. The obtained findings can be applicable for future investigation in behavioral drug screening serving as the forefront in psychopharmacological and cognition research.
Collapse
Affiliation(s)
- Satishkumar Subendran
- Department of Mechanical Engineering, National Cheng Kung University, No. 1 University Road, Tainan, 701, Taiwan
| | - Yi-Chieh Wang
- Department of Mechanical Engineering, National Cheng Kung University, No. 1 University Road, Tainan, 701, Taiwan
| | - Yueh-Hsun Lu
- Department of Radiology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Department of Radiology, National Yang-Ming University School of Medicine, Taipei, 112, Taiwan
| | - Chia-Yuan Chen
- Department of Mechanical Engineering, National Cheng Kung University, No. 1 University Road, Tainan, 701, Taiwan.
| |
Collapse
|
58
|
Aluru N, Krick KS, McDonald AM, Karchner SI. Developmental Exposure to PCB153 (2,2',4,4',5,5'-Hexachlorobiphenyl) Alters Circadian Rhythms and the Expression of Clock and Metabolic Genes. Toxicol Sci 2021; 173:41-52. [PMID: 31621872 DOI: 10.1093/toxsci/kfz217] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) are highly persistent and ubiquitously distributed environmental pollutants. Based on their chemical structure, PCBs are classified into non-ortho-substituted and ortho-substituted congeners. Non-ortho-substituted PCBs are structurally similar to dioxin and their toxic effects and mode of action are well-established. In contrast, very little is known about the effects of ortho-substituted PCBs, particularly, during early development. The objective of this study is to investigate the effects of exposure to an environmentally prominent ortho-substituted PCB (2,2',4,4',5,5'-hexachlorobiphenyl; PCB153) on zebrafish embryos. We exposed zebrafish embryos to 3 different concentrations of PCB153 starting from 4 to 120 hours post-fertilization (hpf). We quantified gross morphological changes, behavioral phenotypes, gene expression changes, and circadian behavior in the larvae. There were no developmental defects during the exposure period, but starting at 7 dpf, we observed spinal deformity in the 10 μM PCB153 treated group. A total of 633, 2227, and 3378 differentially expressed genes were observed in 0.1 μM (0.036 μg/ml), 1 μM (0.36 μg/ml), and 10 μM (3.6 μg/ml) PCB153-treated embryos, respectively. Of these, 301 genes were common to all treatment groups. KEGG pathway analysis revealed enrichment of genes related to circadian rhythm, FoxO signaling, and insulin resistance pathways. Behavioral analysis revealed that PCB153 exposure significantly alters circadian behavior. Disruption of circadian rhythms has been associated with the development of metabolic and neurological diseases. Thus, understanding the mechanisms of action of environmental chemicals in disrupting metabolism and other physiological processes is essential.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology Department, Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Keegan S Krick
- Biology Department, Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Adriane M McDonald
- Biology Department, Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543.,Biology Department, Spelman College, Atlanta, Georgia 30314
| | - Sibel I Karchner
- Biology Department, Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| |
Collapse
|
59
|
Renwick S, Ganobis CM, Elder RA, Gianetto-Hill C, Higgins G, Robinson AV, Vancuren SJ, Wilde J, Allen-Vercoe E. Culturing Human Gut Microbiomes in the Laboratory. Annu Rev Microbiol 2021; 75:49-69. [PMID: 34038159 DOI: 10.1146/annurev-micro-031021-084116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human gut microbiota is a complex community of prokaryotic and eukaryotic microbes and viral particles that is increasingly associated with many aspects of host physiology and health. However, the classical microbiology approach of axenic culture cannot provide a complete picture of the complex interactions between microbes and their hosts in vivo. As such, recently there has been much interest in the culture of gut microbial ecosystems in the laboratory as a strategy to better understand their compositions and functions. In this review, we discuss the model platforms and methods available in the contemporary microbiology laboratory to study human gut microbiomes, as well as current knowledge surrounding the isolation of human gut microbes for the potential construction of defined communities for use in model systems. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Simone Renwick
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada; , , , , , , , ,
| | - Caroline M Ganobis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada; , , , , , , , ,
| | - Riley A Elder
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada; , , , , , , , ,
| | - Connor Gianetto-Hill
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada; , , , , , , , ,
| | - Gregory Higgins
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada; , , , , , , , ,
| | - Avery V Robinson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada; , , , , , , , ,
| | - Sarah J Vancuren
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada; , , , , , , , ,
| | - Jacob Wilde
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada; , , , , , , , ,
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada; , , , , , , , ,
| |
Collapse
|
60
|
Caffeine-Cyclodextrin Complexes as Solids: Synthesis, Biological and Physicochemical Characterization. Int J Mol Sci 2021; 22:ijms22084191. [PMID: 33919556 PMCID: PMC8073077 DOI: 10.3390/ijms22084191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022] Open
Abstract
Mechanochemical and in-solution synthesis of caffeine complexes with α-, β-, and γ-cyclodextrins was optimized. It was found that short-duration, low-energy cogrinding, and evaporation (instead of freeze-drying) are effective methods for the formation and isolation of these complexes. The products obtained, their pure components, and their mixtures were examined by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), FT-IR and Raman spectroscopy. Moreover, molecular modeling provided an improved understanding of the association process between the guest and host molecules in these complexes. The complexes were found to exhibit high toxicity in zebrafish (Danio rerio) embryos, in contrast to pure caffeine and cyclodextrins at the same molar concentrations. HPLC measurements of the caffeine levels in zebrafish embryos showed that the observed cytotoxicity is not caused by an increased caffeine concentration in the body of the organism, as the concentrations are similar regardless of the administered caffeine form. Therefore, the observed high toxicity could be the result of the synergistic effect of caffeine and cyclodextrins.
Collapse
|
61
|
Migocka-Patrzałek M, Elias M. Muscle Glycogen Phosphorylase and Its Functional Partners in Health and Disease. Cells 2021; 10:cells10040883. [PMID: 33924466 PMCID: PMC8070155 DOI: 10.3390/cells10040883] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 02/07/2023] Open
Abstract
Glycogen phosphorylase (PG) is a key enzyme taking part in the first step of glycogenolysis. Muscle glycogen phosphorylase (PYGM) differs from other PG isoforms in expression pattern and biochemical properties. The main role of PYGM is providing sufficient energy for muscle contraction. However, it is expressed in tissues other than muscle, such as the brain, lymphoid tissues, and blood. PYGM is important not only in glycogen metabolism, but also in such diverse processes as the insulin and glucagon signaling pathway, insulin resistance, necroptosis, immune response, and phototransduction. PYGM is implicated in several pathological states, such as muscle glycogen phosphorylase deficiency (McArdle disease), schizophrenia, and cancer. Here we attempt to analyze the available data regarding the protein partners of PYGM to shed light on its possible interactions and functions. We also underline the potential for zebrafish to become a convenient and applicable model to study PYGM functions, especially because of its unique features that can complement data obtained from other approaches.
Collapse
|
62
|
Fluorescence based rapid optical volume screening system (OVSS) for interrogating multicellular organisms. Sci Rep 2021; 11:7616. [PMID: 33828140 PMCID: PMC8027194 DOI: 10.1038/s41598-021-86951-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/22/2021] [Indexed: 11/08/2022] Open
Abstract
Continuous monitoring of large specimens for long durations requires fast volume imaging. This is essential for understanding the processes occurring during the developmental stages of multicellular organisms. One of the key obstacles of fluorescence based prolonged monitoring and data collection is photobleaching. To capture the biological processes and simultaneously overcome the effect of bleaching, we developed single- and multi-color lightsheet based OVSS imaging technique that enables rapid screening of multiple tissues in an organism. Our approach based on OVSS imaging employs quantized step rotation of the specimen to record 2D angular data that reduces data acquisition time when compared to the existing light sheet imaging system (SPIM). A co-planar multicolor light sheet PSF is introduced to illuminate the tissues labelled with spectrally-separated fluorescent probes. The detection is carried out using a dual-channel sub-system that can simultaneously record spectrally separate volume stacks of the target organ. Arduino-based control systems were employed to automatize and control the volume data acquisition process. To illustrate the advantages of our approach, we have noninvasively imaged the Drosophila larvae and Zebrafish embryo. Dynamic studies of multiple organs (muscle and yolk-sac) in Zebrafish for a prolonged duration (5 days) were carried out to understand muscle structuring (Dystrophin, microfibers), primitive Macrophages (in yolk-sac) and inter-dependent lipid and protein-based metabolism. The volume-based study, intensity line-plots and inter-dependence ratio analysis allowed us to understand the transition from lipid-based metabolism to protein-based metabolism during early development (Pharyngula period with a critical transition time, [Formula: see text] h post-fertilization) in Zebrafish. The advantage of multicolor lightsheet illumination, fast volume scanning, simultaneous visualization of multiple organs and an order-less photobleaching makes OVSS imaging the system of choice for rapid monitoring and real-time assessment of macroscopic biological organisms with microscopic resolution.
Collapse
|
63
|
Castellanos BS, Reyes-Nava NG, Quintana AM. Knockdown of hspg2 is associated with abnormal mandibular joint formation and neural crest cell dysfunction in zebrafish. BMC DEVELOPMENTAL BIOLOGY 2021; 21:7. [PMID: 33678174 PMCID: PMC7938484 DOI: 10.1186/s12861-021-00238-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Heparan sulfate proteoglycan 2 (HSPG2) encodes for perlecan, a large proteoglycan that plays an important role in cartilage formation, cell adhesion, and basement membrane stability. Mutations in HSPG2 have been associated with Schwartz-Jampel Syndrome (SJS) and Dyssegmental Dysplasia Silverman-Handmaker Type (DDSH), two disorders characterized by skeletal abnormalities. These data indicate a function for HSPG2 in cartilage development/maintenance. However, the mechanisms in which HSPG2 regulates cartilage development are not completely understood. Here, we explored the relationship between this gene and craniofacial development through morpholino-mediated knockdown of hspg2 using zebrafish. RESULTS Knockdown of hspg2 resulted in abnormal development of the mandibular jaw joint at 5 days post fertilization (DPF). We surmised that defects in mandible development were a consequence of neural crest cell (NCC) dysfunction, as these multipotent progenitors produce the cartilage of the head. Early NCC development was normal in morphant animals as measured by distal-less homeobox 2a (dlx2a) and SRY-box transcription factor 10 (sox10) expression at 1 DPF. However, subsequent analysis at later stages of development (4 DPF) revealed a decrease in the number of Sox10 + and Collagen, type II, alpha 1a (Col2a1a)+ cells within the mandibular jaw joint region of morphants relative to random control injected embryos. Concurrently, morphants showed a decreased expression of nkx3.2, a marker of jaw joint formation, at 4 DPF. CONCLUSIONS Collectively, these data suggest a complex role for hspg2 in jaw joint formation and late stage NCC differentiation.
Collapse
Affiliation(s)
| | - Nayeli G. Reyes-Nava
- Department of Biological Sciences, University of Texas El Paso, El Paso, TX 79968 USA
| | - Anita M. Quintana
- Department of Biological Sciences, University of Texas El Paso, El Paso, TX 79968 USA
| |
Collapse
|
64
|
Vimalraj S, Yuvashree R, Hariprabu G, Subramanian R, Murali P, Veeraiyan DN, Thangavelu L. Zebrafish as a potential biomaterial testing platform for bone tissue engineering application: A special note on chitosan based bioactive materials. Int J Biol Macromol 2021; 175:379-395. [PMID: 33556401 DOI: 10.1016/j.ijbiomac.2021.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
Biomaterials function as an essential aspect of tissue engineering and have a profound impact on cell growth and subsequent tissue regeneration. The development of new biomaterials requires a potential platform to understand the host-biomaterial interaction, which is crucial for successful biomaterial implantation. Biomaterials analyzed in rodent models for in vivo research are cost-effective but tedious, and the practice has many technical difficulties. As an alternative, zebrafish provide an excellent biomaterial testing platform over the current rodent models. During growth and recovery, zebrafish bone morphogenesis shows a variety of inductive signals involved in the cycle that are close to those influencing differentiation of bone and cartilage in mammals, including humans. This platform is cheap, optically transparent, quick to change genes, and provides reliable reproducibility on short life cycles. Chitosan is a well-known biomaterial in the field of tissue engineering. In view of its documented use in bone regeneration, the biological characterization of chitosan-based bioactive materials in the zebrafish model has been featured in an outstanding note. We, therefore, outlined this review of the zebrafish as a potential in vivo research model for the rapid characterization of the biological properties of new biomaterials for bone tissue engineering applications.
Collapse
Affiliation(s)
- Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India; Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamil Nadu, India.
| | | | - Gopal Hariprabu
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India
| | - Raghunandhakumar Subramanian
- Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamil Nadu, India
| | - Palraju Murali
- Department of Zoology, N.M.S.S. Vellaichamy Nadar College, Nagamalai, Madurai, Tamil Nadu, India
| | - Deepak Nallaswamy Veeraiyan
- Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamil Nadu, India
| | - Lakshmi Thangavelu
- Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamil Nadu, India
| |
Collapse
|
65
|
Corkins ME, Krneta-Stankic V, Kloc M, Miller RK. Aquatic models of human ciliary diseases. Genesis 2021; 59:e23410. [PMID: 33496382 PMCID: PMC8593908 DOI: 10.1002/dvg.23410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 11/06/2022]
Abstract
Cilia are microtubule-based structures that either transmit information into the cell or move fluid outside of the cell. There are many human diseases that arise from malfunctioning cilia. Although mammalian models provide vital insights into the underlying pathology of these diseases, aquatic organisms such as Xenopus and zebrafish provide valuable tools to help screen and dissect out the underlying causes of these diseases. In this review we focus on recent studies that identify or describe different types of human ciliopathies and outline how aquatic organisms have aided our understanding of these diseases.
Collapse
Affiliation(s)
- Mark E. Corkins
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston Texas 77030
| | - Vanja Krneta-Stankic
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston Texas 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genes & Development, Houston Texas 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics & Epigenetics, Houston, Texas 77030
| | - Malgorzata Kloc
- Houston Methodist, Research Institute, Houston Texas 77030
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston Texas 77030
| | - Rachel K. Miller
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston Texas 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics & Epigenetics, Houston, Texas 77030
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston Texas 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Biochemistry & Cell Biology, Houston Texas 77030
| |
Collapse
|
66
|
de Latouliere L, Manni I, Ferrari L, Pisati F, Totaro MG, Gurtner A, Marra E, Pacello L, Pozzoli O, Aurisicchio L, Capogrossi MC, Deflorian G, Piaggio G. MITO-Luc/GFP zebrafish model to assess spatial and temporal evolution of cell proliferation in vivo. Sci Rep 2021; 11:671. [PMID: 33436662 PMCID: PMC7804000 DOI: 10.1038/s41598-020-79530-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/09/2020] [Indexed: 01/05/2023] Open
Abstract
We developed a novel reporter transgenic zebrafish model called MITO-Luc/GFP zebrafish in which GFP and luciferase expression are under the control of the master regulator of proliferation NF-Y. In MITO-Luc/GFP zebrafish it is possible to visualize cell proliferation in vivo by fluorescence and bioluminescence. In this animal model, GFP and luciferase expression occur in early living embryos, becoming tissue specific in juvenile and adult zebrafish. By in vitro and ex vivo experiments we demonstrate that luciferase activity in adult animals occurs in intestine, kidney and gonads, where detectable proliferating cells are located. Further, by time lapse experiments in live embryos, we observed a wave of GFP positive cells following fin clip. In adult zebrafish, in addition to a bright bioluminescence signal on the regenerating tail, an early unexpected signal coming from the kidney occurs indicating not only a fin cell proliferation, but also a systemic response to tissue damage. Finally, we observed that luciferase activity was inhibited by anti-proliferative interventions, i.e. 5FU, cell cycle inhibitors and X-Rays. In conclusion, MITO-Luc/GFP zebrafish is a novel animal model that may be crucial to assess the spatial and temporal evolution of cell proliferation in vivo.
Collapse
Affiliation(s)
- Luisa de Latouliere
- UOSD SAFU, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Isabella Manni
- UOSD SAFU, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Laura Ferrari
- IFOM - FIRC Institute of Molecular Oncology, Milan, Italy
| | - Federica Pisati
- Histopathology Unit, Cogentech S.C.a.R.L, 20139, Milan, Italy
| | | | - Aymone Gurtner
- UOSD SAFU, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.,Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Emanuele Marra
- Takis s.r.l., via Castel Romano 100, 00128, Rome, Italy.,VITARES -APS, via Castel Romano 100, 00128, Rome, Italy
| | | | - Ombretta Pozzoli
- Laboratorio Di Biologia Vascolare e Medicina Rigenerativa - Centro Cardiologico Monzino - IRCCS (Istituto Di Ricovero E Cura a Carattere Scientifico), Milan, Italy.,Pfizer Italia, Via A.M. Mozzoni 12, 20152, Milan, Italy
| | - Luigi Aurisicchio
- Takis s.r.l., via Castel Romano 100, 00128, Rome, Italy.,VITARES -APS, via Castel Romano 100, 00128, Rome, Italy
| | - Maurizio C Capogrossi
- Johns Hopkins University School of Medicine, Division of Cardiology, 301 Building, Suite 2400, 4940 Eastern Avenue, Baltimore, MD, 21224, USA.,Laboratory of Cardiovascular Sciences, National Institute on Aging/National Institutes of Health, Baltimore, MD, 21224, USA
| | - Gianluca Deflorian
- IFOM - FIRC Institute of Molecular Oncology, Milan, Italy.,Cogentech SRL - Benefit Corporation, Milan, Italy
| | - Giulia Piaggio
- UOSD SAFU, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| |
Collapse
|
67
|
Aluru N, Karchner SI. PCB126 Exposure Revealed Alterations in m6A RNA Modifications in Transcripts Associated With AHR Activation. Toxicol Sci 2021; 179:84-94. [PMID: 33064826 PMCID: PMC8453794 DOI: 10.1093/toxsci/kfaa158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chemical modifications of proteins, DNA, and RNA moieties play critical roles in regulating gene expression. Emerging evidence suggests the RNA modifications (epitranscriptomics) have substantive roles in basic biological processes. One of the most common modifications in mRNA and noncoding RNAs is N6-methyladenosine (m6A). In a subset of mRNAs, m6A sites are preferentially enriched near stop codons, in 3' UTRs, and within exons, suggesting an important role in the regulation of mRNA processing and function including alternative splicing and gene expression. Very little is known about the effect of environmental chemical exposure on m6A modifications. As many of the commonly occurring environmental contaminants alter gene expression profiles and have detrimental effects on physiological processes, it is important to understand the effects of exposure on this important layer of gene regulation. Hence, the objective of this study was to characterize the acute effects of developmental exposure to PCB126, an environmentally relevant dioxin-like PCB, on m6A methylation patterns. We exposed zebrafish embryos to PCB126 for 6 h starting from 72 h post fertilization and profiled m6A RNA using methylated RNA immunoprecipitation followed by sequencing (MeRIP-seq). Our analysis revealed 117 and 217 m6A peaks in the DMSO and PCB126 samples (false discovery rate 5%), respectively. The majority of the peaks were preferentially located around the 3' UTR and stop codons. Statistical analysis revealed 15 m6A marked transcripts to be differentially methylated by PCB126 exposure. These include transcripts that are known to be activated by AHR agonists (eg, ahrra, tiparp, nfe2l2b) as well as others that are important for normal development (vgf, cebpd, sned1). These results suggest that environmental chemicals such as dioxin-like PCBs could affect developmental gene expression patterns by altering m6A levels. Further studies are necessary to understand the functional consequences of exposure-associated alterations in m6A levels.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Sibel I Karchner
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| |
Collapse
|
68
|
Abstract
Inherited cardiac arrhythmias contribute substantially to sudden cardiac death in the young. The underlying pathophysiology remains incompletely understood because of the lack of representative study models and the labour-intensive nature of electrophysiological patch clamp experiments. Whereas patch clamp is still considered the gold standard for investigating electrical properties in a cell, optical mapping of voltage and calcium transients has paved the way for high-throughput studies. Moreover, the development of human-induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) has enabled the study of patient specific cell lines capturing the full genomic background. Nevertheless, hiPSC-CMs do not fully address the complex interactions between various cell types in the heart. Studies using in vivo models, are therefore necessary. Given the analogies between the human and zebrafish cardiovascular system, zebrafish has emerged as a cost-efficient model for arrhythmogenic diseases. In this review, we describe how hiPSC-CM and zebrafish are employed as models to study primary electrical disorders. We provide an overview of the contemporary electrophysiological phenotyping tools and discuss in more depth the different strategies available for optical mapping. We consider the current advantages and disadvantages of both hiPSC-CM and zebrafish as a model and optical mapping as phenotyping tool and propose strategies for further improvement. Overall, the combination of experimental readouts at cellular (hiPSC-CM) and whole organ (zebrafish) level can raise our understanding of the complexity of inherited cardiac arrhythmia disorders to the next level.
Collapse
|
69
|
Lebedeva L, Zhumabayeva B, Gebauer T, Kisselev I, Aitasheva Z. Zebrafish ( Danio rerio) as a Model for Understanding the Process of Caudal Fin Regeneration. Zebrafish 2020; 17:359-372. [PMID: 33259770 DOI: 10.1089/zeb.2020.1926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
After its introduction for scientific investigation in the 1950s, the cypriniform zebrafish, Danio rerio, has become a valuable model for the study of regenerative processes and mechanisms. Zebrafish exhibit epimorphic regeneration, in which a nondifferentiated cell mass formed after amputation is able to fully regenerate lost tissue such as limbs, heart muscle, brain, retina, and spinal cord. The process of limb regeneration in zebrafish comprises several stages characterized by the activation of specific signaling pathways and gene expression. We review current research on key factors in limb regeneration using zebrafish as a model.
Collapse
Affiliation(s)
- Lina Lebedeva
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty, The Republic of Kazakhstan
| | - Beibitgul Zhumabayeva
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty, The Republic of Kazakhstan
| | - Tatyana Gebauer
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, České Budějovice, Czech Republic
| | - Ilya Kisselev
- Institute of General Genetics and Cytology, Almaty, The Republic of Kazakhstan
| | - Zaure Aitasheva
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty, The Republic of Kazakhstan
| |
Collapse
|
70
|
Zabegalov KN, Wang D, Yang L, Wang J, Hu G, Serikuly N, Alpyshov ET, Khatsko SL, Zhdanov A, Demin KA, Galstyan DS, Volgin AD, de Abreu MS, Strekalova T, Song C, Amstislavskaya TG, Sysoev Y, Musienko PE, Kalueff AV. Decoding the role of zebrafish neuroglia in CNS disease modeling. Brain Res Bull 2020; 166:44-53. [PMID: 33027679 DOI: 10.1016/j.brainresbull.2020.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/14/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022]
Abstract
Neuroglia, including microglia and astrocytes, is a critical component of the central nervous system (CNS) that interacts with neurons to modulate brain activity, development, metabolism and signaling pathways. Thus, a better understanding of the role of neuroglia in the brain is critical. Complementing clinical and rodent data, the zebrafish (Danio rerio) is rapidly becoming an important model organism to probe the role of neuroglia in brain disorders. With high genetic and physiological similarity to humans and rodents, zebrafish possess some common (shared), as well as some specific molecular biomarkers and features of neuroglia development and functioning. Studying these common and zebrafish-specific aspects of neuroglia may generate important insights into key brain mechanisms, including neurodevelopmental, neurodegenerative, neuroregenerative and neurological processes. Here, we discuss the biology of neuroglia in humans, rodents and fish, its role in various CNS functions, and further directions of translational research into the role of neuroglia in CNS disorders using zebrafish models.
Collapse
Affiliation(s)
- Konstantin N Zabegalov
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia
| | - Dongmei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - LongEn Yang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Jingtao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Guojun Hu
- School of Pharmacy, Southwest University, Chongqing, China
| | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing, China
| | | | | | | | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - David S Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Andrey D Volgin
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia.
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia; Division of Molecular Psychiatry, Centre of Mental Health, University of Würzburg, Würzburg, Germany
| | - Cai Song
- Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, China; Marine Medicine Development Center, Shenzhen Institute, Guangdong Ocean University, Shenzhen, China
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia; Zelman Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Yury Sysoev
- Laboratory of Neuroprosthetics, Institute of Translational Biomedicine, Petersburg State University, St. Petersburg, Russia; Department of Pharmacology and Clinical Pharmacology, St. Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia
| | - Pavel E Musienko
- Laboratory of Neuroprosthetics, Institute of Translational Biomedicine, Petersburg State University, St. Petersburg, Russia; Institute of Phthisiopulmonology, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
71
|
Zebrafish as a Model for Fish Diseases in Aquaculture. Pathogens 2020; 9:pathogens9080609. [PMID: 32726918 PMCID: PMC7460226 DOI: 10.3390/pathogens9080609] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
The use of zebrafish as a model for human conditions is widely recognized. Within the last couple of decades, the zebrafish has furthermore increasingly been utilized as a model for diseases in aquacultured fish species. The unique tools available in zebrafish present advantages compared to other animal models and unprecedented in vivo imaging and the use of transgenic zebrafish lines have contributed with novel knowledge to this field. In this review, investigations conducted in zebrafish on economically important diseases in aquacultured fish species are included. Studies are summarized on bacterial, viral and parasitic diseases and described in relation to prophylactic approaches, immunology and infection biology. Considerable attention has been assigned to innate and adaptive immunological responses. Finally, advantages and drawbacks of using the zebrafish as a model for aquacultured fish species are discussed.
Collapse
|
72
|
Potter G, Smith AS, Vo NT, Muster J, Weston W, Bertero A, Maves L, Mack DL, Rostain A. A More Open Approach Is Needed to Develop Cell-Based Fish Technology: It Starts with Zebrafish. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.oneear.2020.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
73
|
Balitaan JNI, Hsiao CD, Yeh JM, Santiago KS. Innovation inspired by nature: Biocompatible self-healing injectable hydrogels based on modified-β-chitin for wound healing. Int J Biol Macromol 2020; 162:723-736. [PMID: 32553972 DOI: 10.1016/j.ijbiomac.2020.06.129] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/24/2022]
Abstract
Remarkable properties of hydrogels are compromised by failure to recover from damage, bringing their intended functions to an end. To address this, hydrogels can be functionalized with self-healing property to enable them to restore themselves after damage, thus, extending their lifetime. Herein, hydrogels were prepared by cross-linking acrylamide-modified β-chitin (Am-β-Chn) with alginate dialdehyde (ADA) to form Schiff base, showing IR characteristic peak at 1650 cm-1, attributed to the stretching vibration of CN. The dynamic Schiff base and H-bond rendered the double crosslinked hydrogels self-healing as demonstrated by continuous step strain rheology. Characterization of the hydrogels revealed excellent biocompatibility, biodegradability, injectability and self-healing properties. Furthermore, the wound healing property of the hydrogels was investigated in vivo using zebrafish as a model system. Indirect application of Am-β-Chn/ADA hydrogel remarkably led to ~87% wound healing as compared to control which gave ~50%, suggesting that hydrogels are effective in accelerating wound healing. However, a clear understanding of the exact mechanism of its wound healing property remains to be investigated. To the best of our knowledge, this is the first innovation of developing novel double crosslinked Am-β-Chn/ADA hydrogels with both self-healing and accelerated wound healing properties, directly from marine-food wastes.
Collapse
Affiliation(s)
- Jolleen Natalie I Balitaan
- The Graduate School, University of Santo Tomas, España Boulevard, Manila 1008, Philippines; Department of Chemistry, College of Science, España Boulevard, Manila 1008, Philippines
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung Li 32023, Taiwan, ROC
| | - Jui-Ming Yeh
- Department of Chemistry, Chung Yuan Christian University, Chung Li 32023, Taiwan, ROC; Center for Nanotechnology, Chung Yuan Christian University, Chung Li 32023, Taiwan, ROC; R&D Center for Membrane Technology, Chung Yuan Christian University, Chung Li 32023, Taiwan, ROC
| | - Karen S Santiago
- The Graduate School, University of Santo Tomas, España Boulevard, Manila 1008, Philippines; Department of Chemistry, College of Science, España Boulevard, Manila 1008, Philippines; Research Center for Natural and Applied Sciences, University of Santo Tomas, España Boulevard, Manila 1008, Philippines.
| |
Collapse
|
74
|
Ruzicka L, Howe DG, Ramachandran S, Toro S, Van Slyke CE, Bradford YM, Eagle A, Fashena D, Frazer K, Kalita P, Mani P, Martin R, Moxon ST, Paddock H, Pich C, Schaper K, Shao X, Singer A, Westerfield M. The Zebrafish Information Network: new support for non-coding genes, richer Gene Ontology annotations and the Alliance of Genome Resources. Nucleic Acids Res 2020; 47:D867-D873. [PMID: 30407545 PMCID: PMC6323962 DOI: 10.1093/nar/gky1090] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 10/25/2018] [Indexed: 11/13/2022] Open
Abstract
The Zebrafish Information Network (ZFIN) (https://zfin.org/) is the database for the model organism, zebrafish (Danio rerio). ZFIN expertly curates, organizes and provides a wide array of zebrafish genetic and genomic data, including genes, alleles, transgenic lines, gene expression, gene function, mutant phenotypes, orthology, human disease models, nomenclature and reagents. New features at ZFIN include increased support for genomic regions and for non-coding genes, and support for more expressive Gene Ontology annotations. ZFIN has recently taken over maintenance of the zebrafish reference genome sequence as part of the Genome Reference Consortium. ZFIN is also a founding member of the Alliance of Genome Resources, a collaboration of six model organism databases (MODs) and the Gene Ontology Consortium (GO). The recently launched Alliance portal (https://alliancegenome.org) provides a unified, comparative view of MOD, GO, and human data, and facilitates foundational and translational biomedical research.
Collapse
Affiliation(s)
- Leyla Ruzicka
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Douglas G Howe
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | | | - Sabrina Toro
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Ceri E Van Slyke
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Yvonne M Bradford
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Anne Eagle
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - David Fashena
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Ken Frazer
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Patrick Kalita
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Prita Mani
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Ryan Martin
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Sierra Taylor Moxon
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Holly Paddock
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Christian Pich
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Kevin Schaper
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Xiang Shao
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Amy Singer
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Monte Westerfield
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| |
Collapse
|
75
|
Abstract
PURPOSE OF REVIEW The availability of organs for transplant fails to meet the demand and this shortage is growing worse every year. As the cost of not getting a suitable donor organ can mean death for patients, new tools and approaches that allows us to make advances in transplantation faster and provide a different vantage point are required. To address this need, we introduce the concept of using the zebrafish (Danio rerio) as a new model system in organ transplantation. The zebrafish community offers decades of research experience in disease modeling and a rich toolbox of approaches for interrogating complex pathological states. We provide examples of how already existing zebrafish assays/tools from cancer, regenerative medicine, immunology, and others, could be leveraged to fuel new discoveries in pursuit of solving the organ shortage. RECENT FINDINGS Important innovations have enabled several types of transplants to be successfully performed in zebrafish, including stem cells, tumors, parenchymal cells, and even a partial heart transplant. These innovations have been performed against a backdrop of an expansive and impressive list of tools designed to uncover the biology of complex systems that include a wide array of fluorescent transgenic fish that label specific cell types and mutant lines that are transparent, immune-deficient. Allogeneic transplants can also be accomplished using immune suppressed and syngeneic fish. Each of these innovations within the zebrafish community would provide several helpful tools that could be applied to transplant research. SUMMARY We highlight some examples of existing tools and assays developed in the zebrafish community that could be leveraged to overcome barriers in organ transplantation, including ischemia-reperfusion, short preservation durations, regeneration of marginal grafts, and acute and chronic rejection.
Collapse
|
76
|
Dhar P, Samarasinghe RM, Shigdar S. Antibodies, Nanobodies, or Aptamers-Which Is Best for Deciphering the Proteomes of Non-Model Species? Int J Mol Sci 2020; 21:E2485. [PMID: 32260091 PMCID: PMC7177290 DOI: 10.3390/ijms21072485] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
This planet is home to countless species, some more well-known than the others. While we have developed many techniques to be able to interrogate some of the "omics", proteomics is becoming recognized as a very important part of the puzzle, given how important the protein is as a functional part of the cell. Within human health, the proteome is fairly well-established, with numerous reagents being available to decipher cellular pathways. Recent research advancements have assisted in characterizing the proteomes of some model (non-human) species, however, in many other species, we are only just touching the surface. This review considers three main reagent classes-antibodies, aptamers, and nanobodies-as a means of continuing to investigate the proteomes of non-model species without the complications of understanding the full protein signature of a species. Considerations of ease of production, potential applications, and the necessity for producing a new reagent depending on homology are presented.
Collapse
Affiliation(s)
- Poshmaal Dhar
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia; (P.D.); (R.M.S.)
- Centre for Molecular and Medical Research, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Rasika M. Samarasinghe
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia; (P.D.); (R.M.S.)
- Centre for Molecular and Medical Research, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Sarah Shigdar
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia; (P.D.); (R.M.S.)
- Centre for Molecular and Medical Research, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| |
Collapse
|
77
|
Generation and Characterization of a CRISPR/Cas9 -Induced 3-mst Deficient Zebrafish. Biomolecules 2020; 10:biom10020317. [PMID: 32079278 PMCID: PMC7072312 DOI: 10.3390/biom10020317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
3-mercaptopyruvate sulfurtransferase (3-MST) is an enzyme capable of synthesizing hydrogen sulfide (H2S) and polysulfides. In spite of its ubiquitous presence in mammalian cells, very few studies have investigated its contribution to homeostasis and disease development, thus the role of 3-MST remains largely unexplored. Here, we present a clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated protein-9 (Cas9) induced 3-mst mutant zebrafish line, which will allow the study of 3-MST's role in several biological processes. The 3-mst zebrafish orthologue was identified using a bioinformatic approach and verified by its ability to produce H2S in the presence of 3-mercaptopyruvate (3-MP). Its expression pattern was analyzed during zebrafish early development, indicating predominantly an expression in the heart and central nervous system. As expected, no detectable levels of 3-Mst protein were observed in homozygous mutant larvae. In line with this, H2S levels were reduced in 3-mst-/- zebrafish. Although the mutants showed no obvious morphological deficiencies, they exhibited increased lethality under oxidative stress conditions. The elevated levels of reactive oxygen species, detected following 3-mst deletion, are likely to drive this phenotype. In line with the increased ROS, we observed accelerated fin regenerative capacity in 3-mst deficient zebrafish. Overall, we provide evidence for the expression of 3-mst in zebrafish, confirm its important role in redox homeostasis and indicate the enzyme's possible involvement in the regeneration processes.
Collapse
|
78
|
Mourabit S, Fitzgerald JA, Ellis RP, Takesono A, Porteus CS, Trznadel M, Metz J, Winter MJ, Kudoh T, Tyler CR. New insights into organ-specific oxidative stress mechanisms using a novel biosensor zebrafish. ENVIRONMENT INTERNATIONAL 2019; 133:105138. [PMID: 31645010 DOI: 10.1016/j.envint.2019.105138] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/08/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Reactive oxygen species (ROS) arise as a result from, and are essential in, numerous cellular processes. ROS, however, are highly reactive and if left unneutralised by endogenous antioxidant systems, can result in extensive cellular damage and/or pathogenesis. In addition, exposure to a wide range of environmental stressors can also result in surplus ROS production leading to oxidative stress (OS) and downstream tissue toxicity. OBJECTIVES Our aim was to produce a stable transgenic zebrafish line, unrestricted by tissue-specific gene regulation, which was capable of providing a whole organismal, real-time read-out of tissue-specific OS following exposure to a wide range of OS-inducing environmental contaminants and conditions. This model could, therefore, serve as a sensitive and specific mechanistic in vivo biomarker for all environmental conditions that result in OS. METHODS To achieve this aim, we exploited the pivotal role of the electrophile response element (EpRE) as a globally-acting master regulator of the cellular response to OS. To test tissue specificity and quantitative capacity, we selected a range of chemical contaminants known to induce OS in specific organs or tissues, and assessed dose-responsiveness in each using microscopic measures of mCherry fluorescence intensity. RESULTS We produced the first stable transgenic zebrafish line Tg (3EpRE:hsp70:mCherry) with high sensitivity for the detection of cellular RedOx imbalances, in vivo in near-real time. We applied this new model to quantify OS after exposure to a range of environmental conditions with high resolution and provided quantification both of compound- and tissue-specific ROS-induced toxicity. DISCUSSION Our model has an extremely diverse range of potential applications not only for biomonitoring of toxicants in aqueous environments, but also in biomedicine for identifying ROS-mediated mechanisms involved in the progression of a number of important human diseases, including cancer.
Collapse
Affiliation(s)
- Sulayman Mourabit
- Biosciences, College of Life and Environmental Sciences, University of Exeter, UK.
| | | | - Robert P Ellis
- Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
| | - Aya Takesono
- Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
| | - Cosima S Porteus
- Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
| | - Maciej Trznadel
- Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
| | - Jeremy Metz
- Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
| | - Matthew J Winter
- Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
| | - Tetsuhiro Kudoh
- Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, UK.
| |
Collapse
|
79
|
Zhang W, Zhang H, Yang H, Li M, Xie Z, Li W. Computational resources associating diseases with genotypes, phenotypes and exposures. Brief Bioinform 2019; 20:2098-2115. [PMID: 30102366 PMCID: PMC6954426 DOI: 10.1093/bib/bby071] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/01/2018] [Indexed: 12/16/2022] Open
Abstract
The causes of a disease and its therapies are not only related to genotypes, but also associated with other factors, including phenotypes, environmental exposures, drugs and chemical molecules. Distinguishing disease-related factors from many neutral factors is critical as well as difficult. Over the past two decades, bioinformaticians have developed many computational resources to integrate the omics data and discover associations among these factors. However, researchers and clinicians are experiencing difficulties in choosing appropriate resources from hundreds of relevant databases and software tools. Here, in order to assist the researchers and clinicians, we systematically review the public computational resources of human diseases related to genotypes, phenotypes, environment factors, drugs and chemical exposures. We briefly describe the development history of these computational resources, followed by the details of the relevant databases and software tools. We finally conclude with a discussion of current challenges and future opportunities as well as prospects on this topic.
Collapse
Affiliation(s)
- Wenliang Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Haiyue Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Huan Yang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Miaoxin Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhi Xie
- State Key Lab of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 500040, China
| | - Weizhong Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
80
|
Allen TA, Asad D, Amu E, Hensley MT, Cores J, Vandergriff A, Tang J, Dinh PU, Shen D, Qiao L, Su T, Hu S, Liang H, Shive H, Harrell E, Campbell C, Peng X, Yoder JA, Cheng K. Circulating tumor cells exit circulation while maintaining multicellularity, augmenting metastatic potential. J Cell Sci 2019; 132:jcs231563. [PMID: 31409692 PMCID: PMC6771143 DOI: 10.1242/jcs.231563] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/25/2019] [Indexed: 12/31/2022] Open
Abstract
Metastasis accounts for the majority of all cancer deaths, yet the process remains poorly understood. A pivotal step in the metastasis process is the exiting of tumor cells from the circulation, a process known as extravasation. However, it is unclear how tumor cells extravasate and whether multicellular clusters of tumor cells possess the ability to exit as a whole or must first disassociate. In this study, we use in vivo zebrafish and mouse models to elucidate the mechanism tumor cells use to extravasate. We found that circulating tumor cells exit the circulation using the recently identified extravasation mechanism, angiopellosis, and do so as both clusters and individual cells. We further show that when melanoma and cervical cancer cells utilize this extravasation method to exit as clusters, they exhibit an increased ability to form tumors at distant sites through the expression of unique genetic profiles. Collectively, we present a new model for tumor cell extravasation of both individual and multicellular circulating tumor cells.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Tyler A Allen
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Dana Asad
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27607, USA
| | - Emmanuel Amu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - M Taylor Hensley
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Jhon Cores
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27607, USA
| | - Adam Vandergriff
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27607, USA
| | - Junnan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Phuong-Uyen Dinh
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Deliang Shen
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Li Qiao
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Teng Su
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27607, USA
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Hongxia Liang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Heather Shive
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Erin Harrell
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Connor Campbell
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Xinxia Peng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27607, USA
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC 27607, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27607, USA
| |
Collapse
|
81
|
Patel BB, Clark KL, Kozik EM, Dash L, Kuhlman JA, Sakaguchi DS. Isolation and culture of primary embryonic zebrafish neural tissue. J Neurosci Methods 2019; 328:108419. [PMID: 31472190 DOI: 10.1016/j.jneumeth.2019.108419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Primary cell culture is a valuable tool to utilize in parallel with in vivo studies in order to maximize our understanding of the mechanisms surrounding neurogenesis and central nervous system (CNS) regeneration and plasticity. The zebrafish is an important model for biomedical research and primary neural cells are readily obtainable from their embryonic stages viatissue dissociation. Further, transgenic reporter lines with cell type-specific expression allows for observation of distinct cell populations within the dissociated tissue. NEW METHOD Here, we define an efficient method for ex vivo quantification and characterization of neuronal and glial tissue dissociated from embryonic zebrafish. RESULTS Zebrafish brain dissociated cells have been documented to survive in culture for at least 9 days in vitro (div). Anti-HuC/D and anti-Acetylated Tubulin antibodies were used to identify neurons in culture; at 3 div approximately 48% of cells were HuC/D positive and 85% expressed serotonin, suggesting our protocol can efficiently isolate neurons from whole embryonic zebrafish brains. Live time-lapse imaging was also carried out to analyze cell migration in vitro. COMPARISON WITH EXISTING METHODS Primary cultures of zebrafish neural cells typically have low rates of survivability in vitro. We have developed a culture system that has long term cell viability, enabling direct analysis of cell-cell and cell-extracellular matrix interactions. CONCLUSIONS These results demonstrate a practical method for isolating, dissociating and culturing of embryonic zebrafish neural tissue. This approach could further be utilized to better understand zebrafish regeneration in vitro.
Collapse
Affiliation(s)
- Bhavika B Patel
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, United States; Neuroscience Program, United States
| | - Kendra L Clark
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States; Genetics and Genomics Program, United States
| | - Emily M Kozik
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, United States
| | - Linkan Dash
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, United States; Genetics and Genomics Program, United States
| | - Julie A Kuhlman
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, United States.
| | - Donald S Sakaguchi
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, United States; Neuroscience Program, United States.
| |
Collapse
|
82
|
Martínez-Navarro FJ, Martínez-Menchón T, Mulero V, Galindo-Villegas J. Models of human psoriasis: Zebrafish the newly appointed player. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 97:76-87. [PMID: 30953679 DOI: 10.1016/j.dci.2019.03.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/26/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Psoriasis is a human chronic, immune disease with severe cutaneous and systemic manifestations. Its prevalence, among the world population, highly varies with ethnicity and geography, but not sex from remarkable low levels in Asia to 2.3% in Spain, or an impressive 11.5% in Norway. The pathogenesis of psoriasis derives from complex genetic and environmental interactions, which creates aberrant crosstalk between keratinocytes and variated immune cell, resulting in open amplified inflammatory and pro-proliferative circuits. Both, innate and adaptive immune systems are known to be involved in the response at the cellular and humoral levels. Nevertheless, the exact molecular mechanisms are still under debate. Therefore, discovering useful therapeutic targets to stretch the molecular gaps in psoriasis pathogenesis and its associated comorbidities is still mandatory. So far, some mutagenic or pharmacological studies in vitro or using comparative vertebrate models have provided critical molecular insights and directed the human research. Although highly feasible in rodents, the versatile physiology, genetic similarity to humans and outstanding molecular toolbox available, suggest that elaborate forward genetic screenings are far easier to be conducted using the zebrafish model. Thus, in this review, we intend to briefly overview psoriasis and revise in a digested fashion the preclinical research models available, emphasizing the zebrafish as a powerful tool in the study of immune effectors on the same, and how it supports the discovering of new therapies that may help in controlling this widespread disease around the globe.
Collapse
Affiliation(s)
- F J Martínez-Navarro
- Department of Cell Biology and Histology, Faculty of Biology, Institute of Biomedical Research of Murcia-Arrixaca, Campus Universitario de Espinardo, University of Murcia, 30100, Murcia, Spain
| | - T Martínez-Menchón
- Dermatology Service, Clinical University Hospital Virgen de la Arrixaca, Institute of Biomedical Research of Murcia (IMIB-Arrixaca), El Palmar, 30120, Murcia, Spain
| | - V Mulero
- Department of Cell Biology and Histology, Faculty of Biology, Institute of Biomedical Research of Murcia-Arrixaca, Campus Universitario de Espinardo, University of Murcia, 30100, Murcia, Spain
| | | |
Collapse
|
83
|
van Rooij J, Kalkman J. Large-scale high-sensitivity optical diffraction tomography of zebrafish. BIOMEDICAL OPTICS EXPRESS 2019; 10:1782-1793. [PMID: 31086704 PMCID: PMC6484977 DOI: 10.1364/boe.10.001782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 05/27/2023]
Abstract
In this work we demonstrate large-scale high-sensitivity optical diffraction tomography (ODT) of zebrafish. We make this possible by three improvements. First, we obtain a large field of view while still maintaining a high resolution by using a high magnification over numerical aperture ratio digital holography set-up. With the inclusion of phase shifting we operate close to the optimum magnification over numerical aperture ratio. Second, we decrease the noise in the reconstructed images by implementing off-axis sample placement and numerical focus tracking in combination with the acquisition of a large number of projections. Although both techniques lead to an increase in sensitivity independently, we show that combining them is necessary in order to make optimal use of the potential gain offered by each respective method and obtain a refractive index (RI) sensitivity of 8 ⋅ 10 - 5 . Third, we optimize the optical clearing procedure to prevent scattering and refraction to occur. We demonstrate our technique by imaging a zebrafish larva over 13 mm 3 field of view with 4 micrometer resolution. Finally, we demonstrate a clinical application of our technique by imaging an entire adult cryoinjured zebrafish heart.
Collapse
|
84
|
Loontiens S, Depestel L, Vanhauwaert S, Dewyn G, Gistelinck C, Verboom K, Van Loocke W, Matthijssens F, Willaert A, Vandesompele J, Speleman F, Durinck K. Purification of high-quality RNA from a small number of fluorescence activated cell sorted zebrafish cells for RNA sequencing purposes. BMC Genomics 2019; 20:228. [PMID: 30894119 PMCID: PMC6425699 DOI: 10.1186/s12864-019-5608-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/14/2019] [Indexed: 11/30/2022] Open
Abstract
Background Transgenic zebrafish lines with the expression of a fluorescent reporter under the control of a cell-type specific promoter, enable transcriptome analysis of FACS sorted cell populations. RNA quality and yield are key determinant factors for accurate expression profiling. Limited cell number and FACS induced cellular stress make RNA isolation of sorted zebrafish cells a delicate process. We aimed to optimize a workflow to extract sufficient amounts of high-quality RNA from a limited number of FACS sorted cells from Tg(fli1a:GFP) zebrafish embryos, which can be used for accurate gene expression analysis. Results We evaluated two suitable RNA isolation kits (the RNAqueous micro and the RNeasy plus micro kit) and determined that sorting cells directly into lysis buffer is a critical step for success. For low cell numbers, this ensures direct cell lysis, protects RNA from degradation and results in a higher RNA quality and yield. We showed that this works well up to 0.5× dilution of the lysis buffer with sorted cells. In our sort settings, this corresponded to 30,000 and 75,000 cells for the RNAqueous micro kit and RNeasy plus micro kit respectively. Sorting more cells dilutes the lysis buffer too much and requires the use of a collection buffer. We also demonstrated that an additional genomic DNA removal step after RNA isolation is required to completely clear the RNA from any contaminating genomic DNA. For cDNA synthesis and library preparation, we combined SmartSeq v4 full length cDNA library amplification, Nextera XT tagmentation and sample barcoding. Using this workflow, we were able to generate highly reproducible RNA sequencing results. Conclusions The presented optimized workflow enables to generate high quality RNA and allows accurate transcriptome profiling of small populations of sorted zebrafish cells. Electronic supplementary material The online version of this article (10.1186/s12864-019-5608-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Siebe Loontiens
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Lisa Depestel
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Suzanne Vanhauwaert
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Givani Dewyn
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Charlotte Gistelinck
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium.,Department of Orthopedics and Sports Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Karen Verboom
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Wouter Van Loocke
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Filip Matthijssens
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Andy Willaert
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium
| | - Jo Vandesompele
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Frank Speleman
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Kaat Durinck
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium. .,Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium.
| |
Collapse
|
85
|
Pandey G, Westhoff JH, Schaefer F, Gehrig J. A Smart Imaging Workflow for Organ-Specific Screening in a Cystic Kidney Zebrafish Disease Model. Int J Mol Sci 2019; 20:ijms20061290. [PMID: 30875791 PMCID: PMC6471943 DOI: 10.3390/ijms20061290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/25/2019] [Accepted: 03/10/2019] [Indexed: 12/19/2022] Open
Abstract
The zebrafish is being increasingly used in biomedical research and drug discovery to conduct large-scale compound screening. However, there is a lack of accessible methodologies to enable automated imaging and scoring of tissue-specific phenotypes at enhanced resolution. Here, we present the development of an automated imaging pipeline to identify chemical modifiers of glomerular cyst formation in a zebrafish model for human cystic kidney disease. Morpholino-mediated knockdown of intraflagellar transport protein Ift172 in Tg(wt1b:EGFP) embryos was used to induce large glomerular cysts representing a robustly scorable phenotypic readout. Compound-treated embryos were consistently aligned within the cavities of agarose-filled microplates. By interfacing feature detection algorithms with automated microscopy, a smart imaging workflow for detection, centring and zooming in on regions of interests was established, which enabled the automated capturing of standardised higher resolution datasets of pronephric areas. High-content screening datasets were processed and analysed using custom-developed heuristic algorithms implemented in common open-source image analysis software. The workflow enables highly efficient profiling of entire compound libraries and scoring of kidney-specific morphological phenotypes in thousands of zebrafish embryos. The demonstrated toolset covers all the aspects of a complex whole organism screening assay and can be adapted to other organs, specimens or applications.
Collapse
Affiliation(s)
- Gunjan Pandey
- Acquifer is a division of Ditabis, Digital Biomedical Imaging Systems AG, 75179 Pforzheim, Germany.
- Department of Pediatrics I, University Children's Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Jens H Westhoff
- Department of Pediatrics I, University Children's Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Franz Schaefer
- Department of Pediatrics I, University Children's Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Jochen Gehrig
- Acquifer is a division of Ditabis, Digital Biomedical Imaging Systems AG, 75179 Pforzheim, Germany.
| |
Collapse
|
86
|
Liu K, Petree C, Requena T, Varshney P, Varshney GK. Expanding the CRISPR Toolbox in Zebrafish for Studying Development and Disease. Front Cell Dev Biol 2019; 7:13. [PMID: 30886848 PMCID: PMC6409501 DOI: 10.3389/fcell.2019.00013] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/24/2019] [Indexed: 12/13/2022] Open
Abstract
The study of model organisms has revolutionized our understanding of the mechanisms underlying normal development, adult homeostasis, and human disease. Much of what we know about gene function in model organisms (and its application to humans) has come from gene knockouts: the ability to show analogous phenotypes upon gene inactivation in animal models. The zebrafish (Danio rerio) has become a popular model organism for many reasons, including the fact that it is amenable to various forms of genetic manipulation. The RNA-guided CRISPR/Cas9-mediated targeted mutagenesis approaches have provided powerful tools to manipulate the genome toward developing new disease models and understanding the pathophysiology of human diseases. CRISPR-based approaches are being used for the generation of both knockout and knock-in alleles, and also for applications including transcriptional modulation, epigenome editing, live imaging of the genome, and lineage tracing. Currently, substantial effort is being made to improve the specificity of Cas9, and to expand the target coverage of the Cas9 enzymes. Novel types of naturally occurring CRISPR systems [Cas12a (Cpf1); engineered variants of Cas9, such as xCas9 and SpCas9-NG], are being studied and applied to genome editing. Since the majority of pathogenic mutations are single point mutations, development of base editors to convert C:G to T:A or A:T to G:C has further strengthened the CRISPR toolbox. In this review, we provide an overview of the increasing number of novel CRISPR-based tools and approaches, including lineage tracing and base editing.
Collapse
Affiliation(s)
| | | | | | | | - Gaurav K. Varshney
- Functional and Chemical Genomics Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| |
Collapse
|
87
|
Fuentes R, Letelier J, Tajer B, Valdivia LE, Mullins MC. Fishing forward and reverse: Advances in zebrafish phenomics. Mech Dev 2018; 154:296-308. [PMID: 30130581 PMCID: PMC6289646 DOI: 10.1016/j.mod.2018.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/06/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022]
Abstract
Understanding how the genome instructs the phenotypic characteristics of an organism is one of the major scientific endeavors of our time. Advances in genetics have progressively deciphered the inheritance, identity and biological relevance of genetically encoded information, contributing to the rise of several, complementary omic disciplines. One of them is phenomics, an emergent area of biology dedicated to the systematic multi-scale analysis of phenotypic traits. This discipline provides valuable gene function information to the rapidly evolving field of genetics. Current molecular tools enable genome-wide analyses that link gene sequence to function in multi-cellular organisms, illuminating the genome-phenome relationship. Among vertebrates, zebrafish has emerged as an outstanding model organism for high-throughput phenotyping and modeling of human disorders. Advances in both systematic mutagenesis and phenotypic analyses of embryonic and post-embryonic stages in zebrafish have revealed the function of a valuable collection of genes and the general structure of several complex traits. In this review, we summarize multiple large-scale genetic efforts addressing parental, embryonic, and adult phenotyping in the zebrafish. The genetic and quantitative tools available in the zebrafish model, coupled with the broad spectrum of phenotypes that can be assayed, make it a powerful model for phenomics, well suited for the dissection of genotype-phenotype associations in development, physiology, health and disease.
Collapse
Affiliation(s)
- Ricardo Fuentes
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joaquín Letelier
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), Seville, Spain; Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Benjamin Tajer
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leonardo E Valdivia
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.
| | - Mary C Mullins
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
88
|
Clark TS, Pandolfo LM, Marshall CM, Mitra AK, Schech JM. Body Condition Scoring for Adult Zebrafish ( Danio rerio). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2018; 57:698-702. [PMID: 30360771 PMCID: PMC6241379 DOI: 10.30802/aalas-jaalas-18-000045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/11/2018] [Accepted: 06/14/2018] [Indexed: 01/21/2023]
Abstract
Body condition scoring (BCS) is a simple, rapid, noninvasive tool used to assess body condition in animals. In this study, we developed and validated a diagram-based BCS for adult zebrafish (Danio rerio), a popular research model. After receiving 20 min of hands-on training regarding the scoring system, 5 people each rated 95 adult zebrafish. The fish then were euthanized and measured to establish body condition indices (BMI and the Fulton K factor). Both condition indices were highly correlated with fish width. Using correlation data and observed trends in fish width, we established expected BCS definitions. We validated the BCS definitions in 2 ways. First, we calculated the Pearson correlation coefficient between the average observed BCS and expected BCS; this statistic revealed very strong correlation between observed and expected BCS. In addition, we assessed the predictive power of BCS by using multinomial logistic regression and then applied the fitted model to evaluate the accuracy of the predictions (BCS compared with BMI, 85%; BCS compared with K factor, 61%). Finally, to determine the robustness of BCS to variation among raters, we calculated the intraclass correlation coefficient and demonstrated high interrater reliability. In conclusion, adult zebrafish BCS can be used to quickly identify animals with different body condition indices (thin to obese). In addition, the diagram-based chart is easy to use and implement accurately, with minimal training.
Collapse
Affiliation(s)
- Tannia S Clark
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Division of Intramural Research, Research Animal Management Branch (RAMB), Bethesda, Maryland, USA.
| | - Lauren M Pandolfo
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Division of Intramural Research, Research Animal Management Branch (RAMB), Bethesda, Maryland, USA
| | - Christopher M Marshall
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Division of Intramural Research, Research Animal Management Branch (RAMB), Bethesda, Maryland, USA
| | - Apratim K Mitra
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Division of Intramural Research, Research Animal Management Branch (RAMB), Bethesda, Maryland, USA
| | - Joseph M Schech
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Division of Intramural Research, Research Animal Management Branch (RAMB), Bethesda, Maryland, USA
| |
Collapse
|
89
|
Farr GH, Imani K, Pouv D, Maves L. Functional testing of a human PBX3 variant in zebrafish reveals a potential modifier role in congenital heart defects. Dis Model Mech 2018; 11:dmm035972. [PMID: 30355621 PMCID: PMC6215422 DOI: 10.1242/dmm.035972] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022] Open
Abstract
Whole-genome and exome sequencing efforts are increasingly identifying candidate genetic variants associated with human disease. However, predicting and testing the pathogenicity of a genetic variant remains challenging. Genome editing allows for the rigorous functional testing of human genetic variants in animal models. Congenital heart defects (CHDs) are a prominent example of a human disorder with complex genetics. An inherited sequence variant in the human PBX3 gene (PBX3 p.A136V) has previously been shown to be enriched in a CHD patient cohort, indicating that the PBX3 p.A136V variant could be a modifier allele for CHDs. Pbx genes encode three-amino-acid loop extension (TALE)-class homeodomain-containing DNA-binding proteins with diverse roles in development and disease, and are required for heart development in mouse and zebrafish. Here, we used CRISPR-Cas9 genome editing to directly test whether this Pbx gene variant acts as a genetic modifier in zebrafish heart development. We used a single-stranded oligodeoxynucleotide to precisely introduce the human PBX3 p.A136V variant in the homologous zebrafish pbx4 gene (pbx4 p.A131V). We observed that zebrafish that are homozygous for pbx4 p.A131V are viable as adults. However, the pbx4 p.A131V variant enhances the embryonic cardiac morphogenesis phenotype caused by loss of the known cardiac specification factor, Hand2. Our study is the first example of using precision genome editing in zebrafish to demonstrate a function for a human disease-associated single nucleotide variant of unknown significance. Our work underscores the importance of testing the roles of inherited variants, not just de novo variants, as genetic modifiers of CHDs. Our study provides a novel approach toward advancing our understanding of the complex genetics of CHDs.
Collapse
Affiliation(s)
- Gist H Farr
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Kimia Imani
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
- University of Washington, Seattle, WA 98195, USA
| | - Darren Pouv
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
- University of Washington, Seattle, WA 98195, USA
| | - Lisa Maves
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
90
|
Howe DG, Blake JA, Bradford YM, Bult CJ, Calvi BR, Engel SR, Kadin JA, Kaufman TC, Kishore R, Laulederkind SJF, Lewis SE, Moxon SAT, Richardson JE, Smith C. Model organism data evolving in support of translational medicine. Lab Anim (NY) 2018; 47:277-289. [PMID: 30224793 PMCID: PMC6322546 DOI: 10.1038/s41684-018-0150-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
Abstract
Model organism databases (MODs) have been collecting and integrating biomedical research data for 30 years and were designed to meet specific needs of each model organism research community. The contributions of model organism research to understanding biological systems would be hard to overstate. Modern molecular biology methods and cost reductions in nucleotide sequencing have opened avenues for direct application of model organism research to elucidating mechanisms of human diseases. Thus, the mandate for model organism research and databases has now grown to include facilitating use of these data in translational applications. Challenges in meeting this opportunity include the distribution of research data across many databases and websites, a lack of data format standards for some data types, and sustainability of scale and cost for genomic database resources like MODs. The issues of widely distributed data and application of data standards are some of the challenges addressed by FAIR (Findable, Accessible, Interoperable, and Re-usable) data principles. The Alliance of Genome Resources is now moving to address these challenges by bringing together expertly curated research data from fly, mouse, rat, worm, yeast, zebrafish, and the Gene Ontology consortium. Centralized multi-species data access, integration, and format standardization will lower the data utilization barrier in comparative genomics and translational applications and will provide a framework in which sustainable scale and cost can be addressed. This article presents a brief historical perspective on how the Alliance model organisms are complementary and how they have already contributed to understanding the etiology of human diseases. In addition, we discuss four challenges for using data from MODs in translational applications and how the Alliance is working to address them, in part by applying FAIR data principles. Ultimately, combined data from these animal models are more powerful than the sum of the parts.
Collapse
Affiliation(s)
- Douglas G Howe
- The Institute of Neuroscience, University of Oregon, Eugene, OR, USA.
| | | | - Yvonne M Bradford
- The Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | | | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Stacia R Engel
- Department of Genetics, Stanford University, Palo Alto, CA, USA
| | | | | | - Ranjana Kishore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Stanley J F Laulederkind
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, USA
| | - Suzanna E Lewis
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sierra A T Moxon
- The Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | | | | |
Collapse
|
91
|
Rissone A, Burgess SM. Rare Genetic Blood Disease Modeling in Zebrafish. Front Genet 2018; 9:348. [PMID: 30233640 PMCID: PMC6127601 DOI: 10.3389/fgene.2018.00348] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/09/2018] [Indexed: 01/06/2023] Open
Abstract
Hematopoiesis results in the correct formation of all the different blood cell types. In mammals, it starts from specific hematopoietic stem and precursor cells residing in the bone marrow. Mature blood cells are responsible for supplying oxygen to every cell of the organism and for the protection against pathogens. Therefore, inherited or de novo genetic mutations affecting blood cell formation or the regulation of their activity are responsible for numerous diseases including anemia, immunodeficiency, autoimmunity, hyper- or hypo-inflammation, and cancer. By definition, an animal disease model is an analogous version of a specific clinical condition developed by researchers to gain information about its pathophysiology. Among all the model species used in comparative medicine, mice continue to be the most common and accepted model for biomedical research. However, because of the complexity of human diseases and the intrinsic differences between humans and other species, the use of several models (possibly in distinct species) can often be more helpful and informative than the use of a single model. In recent decades, the zebrafish (Danio rerio) has become increasingly popular among researchers, because it represents an inexpensive alternative compared to mammalian models, such as mice. Numerous advantages make it an excellent animal model to be used in genetic studies and in particular in modeling human blood diseases. Comparing zebrafish hematopoiesis to mammals, it is highly conserved with few, significant differences. In addition, the zebrafish model has a high-quality, complete genomic sequence available that shows a high level of evolutionary conservation with the human genome, empowering genetic and genomic approaches. Moreover, the external fertilization, the high fecundity and the transparency of their embryos facilitate rapid, in vivo analysis of phenotypes. In addition, the ability to manipulate its genome using the last genome editing technologies, provides powerful tools for developing new disease models and understanding the pathophysiology of human disorders. This review provides an overview of the different approaches and techniques that can be used to model genetic diseases in zebrafish, discussing how this animal model has contributed to the understanding of genetic diseases, with a specific focus on the blood disorders.
Collapse
Affiliation(s)
- Alberto Rissone
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
92
|
Van Slyke CE, Bradford YM, Howe DG, Fashena DS, Ramachandran S, Ruzicka L. Using ZFIN: Data Types, Organization, and Retrieval. Methods Mol Biol 2018; 1757:307-347. [PMID: 29761463 PMCID: PMC6319390 DOI: 10.1007/978-1-4939-7737-6_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Zebrafish Model Organism Database (ZFIN; zfin.org) was established in 1994 as the primary genetic and genomic resource for the zebrafish research community. Some of the earliest records in ZFIN were for people and laboratories. Since that time, services and data types provided by ZFIN have grown considerably. Today, ZFIN provides the official nomenclature for zebrafish genes, mutants, and transgenics and curates many data types including gene expression, phenotypes, Gene Ontology, models of human disease, orthology, knockdown reagents, transgenic constructs, and antibodies. Ontologies are used throughout ZFIN to structure these expertly curated data. An integrated genome browser provides genomic context for genes, transgenics, mutants, and knockdown reagents. ZFIN also supports a community wiki where the research community can post new antibody records and research protocols. Data in ZFIN are accessible via web pages, download files, and the ZebrafishMine (zebrafishmine.org), an installation of the InterMine data warehousing software. Searching for data at ZFIN utilizes both parameterized search forms and a single box search for searching or browsing data quickly. This chapter aims to describe the primary ZFIN data and services, and provide insight into how to use and interpret ZFIN searches, data, and web pages.
Collapse
Affiliation(s)
- Ceri E Van Slyke
- The Zebrafish Information Network, University of Oregon, Eugene, OR, USA.
| | - Yvonne M Bradford
- The Zebrafish Information Network, University of Oregon, Eugene, OR, USA
| | - Douglas G Howe
- The Zebrafish Information Network, University of Oregon, Eugene, OR, USA
| | - David S Fashena
- The Zebrafish Information Network, University of Oregon, Eugene, OR, USA
| | | | - Leyla Ruzicka
- The Zebrafish Information Network, University of Oregon, Eugene, OR, USA
| |
Collapse
|
93
|
Zeiss CJ, Johnson LK. Bridging the Gap between Reproducibility and Translation: Data Resources and Approaches. ILAR J 2017; 58:1-3. [PMID: 28586416 DOI: 10.1093/ilar/ilx017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Indexed: 12/21/2022] Open
Abstract
Animal research has constituted a fundamental means to achieve groundbreaking therapies for human disease. However, for complex diseases, promising preclinical results have failed to translate to the clinic. Reasons for this disparity are multifactorial. These include the challenges inherent in modeling complex disease in animals, as well issues of study design, reproducibility and operational norms within the biomedical research enterprise. In this issue, we explore the range of information resources available for the comparative study of disease, as well as challenges to the ultimate translation of preclinical findings. Genomics resources in support of translational research are described for zebrafish, mice, rats and non-human primates. The utility of transcriptomics to explore the temporal basis of lesion development in toxicologic pathology is reviewed. Integration of the ever-increasing volume of text-based and bioinformatics data is a significant challenge, and in this issue, informatics resources and general text mining methodologies to explore and aggregate text data are described. Finally, factors contributing to both reproducibility and translatability are examined. Guidelines designed to address reproducibility are essential to improving individual studies. To this end, a viewpoint from the National Institutes of Health on measures needed to enhance rigor and reproducibility is given, as well as an overview of the role of the Institutional Animal Care and Use Committee in this regard. The challenge of improving generalizability of animal experiments so that their findings can be more frequently extended to the intended human population remains. Reasons why models that replicate key aspects of human disease fail to be predictive in humans are explored in two fields in which translation has been a challenge: sepsis and neurodegeneration.
Collapse
Affiliation(s)
- Caroline J Zeiss
- Yale University School of Medicine, New Haven, Connecticut. University of Colorado, Anschutz Medical Campus in Aurora, Colorado
| | - Linda K Johnson
- Yale University School of Medicine, New Haven, Connecticut. University of Colorado, Anschutz Medical Campus in Aurora, Colorado
| |
Collapse
|