51
|
Dinnes J, Sharma P, Berhane S, van Wyk SS, Nyaaba N, Domen J, Taylor M, Cunningham J, Davenport C, Dittrich S, Emperador D, Hooft L, Leeflang MM, McInnes MD, Spijker R, Verbakel JY, Takwoingi Y, Taylor-Phillips S, Van den Bruel A, Deeks JJ. Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst Rev 2022; 7:CD013705. [PMID: 35866452 PMCID: PMC9305720 DOI: 10.1002/14651858.cd013705.pub3] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Accurate rapid diagnostic tests for SARS-CoV-2 infection would be a useful tool to help manage the COVID-19 pandemic. Testing strategies that use rapid antigen tests to detect current infection have the potential to increase access to testing, speed detection of infection, and inform clinical and public health management decisions to reduce transmission. This is the second update of this review, which was first published in 2020. OBJECTIVES To assess the diagnostic accuracy of rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection. We consider accuracy separately in symptomatic and asymptomatic population groups. Sources of heterogeneity investigated included setting and indication for testing, assay format, sample site, viral load, age, timing of test, and study design. SEARCH METHODS We searched the COVID-19 Open Access Project living evidence database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) on 08 March 2021. We included independent evaluations from national reference laboratories, FIND and the Diagnostics Global Health website. We did not apply language restrictions. SELECTION CRITERIA We included studies of people with either suspected SARS-CoV-2 infection, known SARS-CoV-2 infection or known absence of infection, or those who were being screened for infection. We included test accuracy studies of any design that evaluated commercially produced, rapid antigen tests. We included evaluations of single applications of a test (one test result reported per person) and evaluations of serial testing (repeated antigen testing over time). Reference standards for presence or absence of infection were any laboratory-based molecular test (primarily reverse transcription polymerase chain reaction (RT-PCR)) or pre-pandemic respiratory sample. DATA COLLECTION AND ANALYSIS We used standard screening procedures with three people. Two people independently carried out quality assessment (using the QUADAS-2 tool) and extracted study results. Other study characteristics were extracted by one review author and checked by a second. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test, and pooled data using the bivariate model. We investigated heterogeneity by including indicator variables in the random-effects logistic regression models. We tabulated results by test manufacturer and compliance with manufacturer instructions for use and according to symptom status. MAIN RESULTS We included 155 study cohorts (described in 166 study reports, with 24 as preprints). The main results relate to 152 evaluations of single test applications including 100,462 unique samples (16,822 with confirmed SARS-CoV-2). Studies were mainly conducted in Europe (101/152, 66%), and evaluated 49 different commercial antigen assays. Only 23 studies compared two or more brands of test. Risk of bias was high because of participant selection (40, 26%); interpretation of the index test (6, 4%); weaknesses in the reference standard for absence of infection (119, 78%); and participant flow and timing 41 (27%). Characteristics of participants (45, 30%) and index test delivery (47, 31%) differed from the way in which and in whom the test was intended to be used. Nearly all studies (91%) used a single RT-PCR result to define presence or absence of infection. The 152 studies of single test applications reported 228 evaluations of antigen tests. Estimates of sensitivity varied considerably between studies, with consistently high specificities. Average sensitivity was higher in symptomatic (73.0%, 95% CI 69.3% to 76.4%; 109 evaluations; 50,574 samples, 11,662 cases) compared to asymptomatic participants (54.7%, 95% CI 47.7% to 61.6%; 50 evaluations; 40,956 samples, 2641 cases). Average sensitivity was higher in the first week after symptom onset (80.9%, 95% CI 76.9% to 84.4%; 30 evaluations, 2408 cases) than in the second week of symptoms (53.8%, 95% CI 48.0% to 59.6%; 40 evaluations, 1119 cases). For those who were asymptomatic at the time of testing, sensitivity was higher when an epidemiological exposure to SARS-CoV-2 was suspected (64.3%, 95% CI 54.6% to 73.0%; 16 evaluations; 7677 samples, 703 cases) compared to where COVID-19 testing was reported to be widely available to anyone on presentation for testing (49.6%, 95% CI 42.1% to 57.1%; 26 evaluations; 31,904 samples, 1758 cases). Average specificity was similarly high for symptomatic (99.1%) or asymptomatic (99.7%) participants. We observed a steady decline in summary sensitivities as measures of sample viral load decreased. Sensitivity varied between brands. When tests were used according to manufacturer instructions, average sensitivities by brand ranged from 34.3% to 91.3% in symptomatic participants (20 assays with eligible data) and from 28.6% to 77.8% for asymptomatic participants (12 assays). For symptomatic participants, summary sensitivities for seven assays were 80% or more (meeting acceptable criteria set by the World Health Organization (WHO)). The WHO acceptable performance criterion of 97% specificity was met by 17 of 20 assays when tests were used according to manufacturer instructions, 12 of which demonstrated specificities above 99%. For asymptomatic participants the sensitivities of only two assays approached but did not meet WHO acceptable performance standards in one study each; specificities for asymptomatic participants were in a similar range to those observed for symptomatic people. At 5% prevalence using summary data in symptomatic people during the first week after symptom onset, the positive predictive value (PPV) of 89% means that 1 in 10 positive results will be a false positive, and around 1 in 5 cases will be missed. At 0.5% prevalence using summary data for asymptomatic people, where testing was widely available and where epidemiological exposure to COVID-19 was suspected, resulting PPVs would be 38% to 52%, meaning that between 2 in 5 and 1 in 2 positive results will be false positives, and between 1 in 2 and 1 in 3 cases will be missed. AUTHORS' CONCLUSIONS Antigen tests vary in sensitivity. In people with signs and symptoms of COVID-19, sensitivities are highest in the first week of illness when viral loads are higher. Assays that meet appropriate performance standards, such as those set by WHO, could replace laboratory-based RT-PCR when immediate decisions about patient care must be made, or where RT-PCR cannot be delivered in a timely manner. However, they are more suitable for use as triage to RT-PCR testing. The variable sensitivity of antigen tests means that people who test negative may still be infected. Many commercially available rapid antigen tests have not been evaluated in independent validation studies. Evidence for testing in asymptomatic cohorts has increased, however sensitivity is lower and there is a paucity of evidence for testing in different settings. Questions remain about the use of antigen test-based repeat testing strategies. Further research is needed to evaluate the effectiveness of screening programmes at reducing transmission of infection, whether mass screening or targeted approaches including schools, healthcare setting and traveller screening.
Collapse
Affiliation(s)
- Jacqueline Dinnes
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Pawana Sharma
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Sarah Berhane
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Susanna S van Wyk
- Centre for Evidence-based Health Care, Epidemiology and Biostatistics, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nicholas Nyaaba
- Infectious Disease Unit, 37 Military Hospital, Cantonments, Ghana
| | - Julie Domen
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Melissa Taylor
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jane Cunningham
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Clare Davenport
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | | | | | - Lotty Hooft
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Mariska Mg Leeflang
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | | | - René Spijker
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Medical Library, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health, Amsterdam, Netherlands
| | - Jan Y Verbakel
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Yemisi Takwoingi
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Sian Taylor-Phillips
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Ann Van den Bruel
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Jonathan J Deeks
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| |
Collapse
|
52
|
Diagnostic Performance Assessment of Saliva RT-PCR and Nasopharyngeal Antigen for the Detection of SARS-CoV-2 in Peru. Microbiol Spectr 2022; 10:e0086122. [PMID: 35867471 PMCID: PMC9430815 DOI: 10.1128/spectrum.00861-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Widely available and reliable testing for SARS-CoV-2 is essential for the public health response to the COVID-19 pandemic. We estimated the diagnostic performance of reverse transcription PCR (RT-PCR) performed on saliva and the SD Biosensor STANDARD Q antigen test performed on nasopharyngeal swab compared to the reference standard, nasopharyngeal swab (NP) RT-PCR. We enrolled participants living and/or seeking care in health facilities in North Lima, Peru from November 2020 to January 2021. Consenting participants underwent same-day RT-PCR on both saliva and nasopharyngeal swab specimens, antigen testing on a nasopharyngeal swab specimen, pulse oximetry, and standardized symptom assessment. We calculated sensitivity, specificity, and predictive values for the nasopharyngeal antigen and saliva RT-PCR compared to nasopharyngeal RT-PCR. Of 896 participants analyzed, 567 (63.3%) had acute signs/symptoms of COVID-19. The overall sensitivity and specificity of saliva RT-PCR were 85.8% and 98.1%, respectively. Among participants with and without acute signs/symptoms of COVID-19, saliva sensitivity was 87.3% and 37.5%, respectively. Saliva sensitivity was 97.4% and 56.0% among participants with cycle threshold (CT) values of ≤30 and >30 on nasopharyngeal RT-PCR, respectively. The overall sensitivity and specificity of nasopharyngeal antigen were 73.2% and 99.4%, respectively. The sensitivity of the nasopharyngeal antigen test was 75.1% and 12.5% among participants with and without acute signs/symptoms of COVID-19, and 91.2% and 26.7% among participants with CT values of ≤30 and >30 on nasopharyngeal RT-PCR, respectively. Saliva RT-PCR achieved the WHO-recommended threshold of >80% for sensitivity for the detection of SARS-CoV-2, while the SD Biosensor nasopharyngeal antigen test did not. IMPORTANCE In this diagnostic validation study of 896 participants in Peru, saliva reverse transcription PCR (RT-PCR) had >80% sensitivity for the detection of SARS-CoV-2 among all-comers and symptomatic individuals, while the SD Biosensor STANDARD Q antigen test performed on nasopharyngeal swab had <80% sensitivity, except for participants whose same-day nasopharyngeal RT-PCR results showed cycle threshold values of <30, consistent with a high viral load in the nasopharynx. The specificity was high for both tests. Our results demonstrate that saliva sampling could serve as an alternative noninvasive technique for RT-PCR diagnosis of SARS-CoV-2. The role of nasopharyngeal antigen testing is more limited; when community transmission is low, it may be used for mass screenings among asymptomatic individuals with high testing frequency. Among symptomatic individuals, the nasopharyngeal antigen test may be relied upon for 4 to 8 days after symptom onset, or in those likely to have high viral load, whereupon it showed >80% sensitivity.
Collapse
|
53
|
Wells CR, Pandey A, Moghadas SM, Singer BH, Krieger G, Heron RJL, Turner DE, Abshire JP, Phillips KM, Michael Donoghue A, Galvani AP, Townsend JP. Comparative analyses of eighteen rapid antigen tests and RT-PCR for COVID-19 quarantine and surveillance-based isolation. COMMUNICATIONS MEDICINE 2022; 2:84. [PMID: 35822105 PMCID: PMC9271059 DOI: 10.1038/s43856-022-00147-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 06/20/2022] [Indexed: 01/12/2023] Open
Abstract
Background Rapid antigen (RA) tests are being increasingly employed to detect SARS-CoV-2 infections in quarantine and surveillance. Prior research has focused on RT-PCR testing, a single RA test, or generic diagnostic characteristics of RA tests in assessing testing strategies. Methods We have conducted a comparative analysis of the post-quarantine transmission, the effective reproduction number during serial testing, and the false-positive rates for 18 RA tests with emergency use authorization from The United States Food and Drug Administration and an RT-PCR test. To quantify the extent of transmission, we developed an analytical mathematical framework informed by COVID-19 infectiousness, test specificity, and temporal diagnostic sensitivity data. Results We demonstrate that the relative effectiveness of RA tests and RT-PCR testing in reducing post-quarantine transmission depends on the quarantine duration and the turnaround time of testing results. For quarantines of two days or shorter, conducting a RA test on exit from quarantine reduces onward transmission more than a single RT-PCR test (with a 24-h delay) conducted upon exit. Applied to a complementary approach of performing serial testing at a specified frequency paired with isolation of positives, we have shown that RA tests outperform RT-PCR with a 24-h delay. The results from our modeling framework are consistent with quarantine and serial testing data collected from a remote industry setting. Conclusions These RA test-specific results are an important component of the tool set for policy decision-making, and demonstrate that judicious selection of an appropriate RA test can supply a viable alternative to RT-PCR in efforts to control the spread of disease.
Collapse
Affiliation(s)
- Chad R. Wells
- Center for Infectious Disease Modeling and Analysis (CIDMA), Yale School of Public Health, New Haven, CT USA
| | - Abhishek Pandey
- Center for Infectious Disease Modeling and Analysis (CIDMA), Yale School of Public Health, New Haven, CT USA
| | - Seyed M. Moghadas
- Agent-Based Modelling Laboratory, York University, Toronto, ON Canada
| | - Burton H. Singer
- Emerging Pathogens Institute, University of Florida, Gainesville, FL USA
| | - Gary Krieger
- NewFields E&E, Boulder, CO USA
- Skaggs School of Pharmacy and Pharmaceutical Science, , University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | | | | | | | | | | | - Alison P. Galvani
- Center for Infectious Disease Modeling and Analysis (CIDMA), Yale School of Public Health, New Haven, CT USA
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, CT USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT USA
- Program in Microbiology, Yale University, New Haven, CT USA
| |
Collapse
|
54
|
Curtis SJ, Trewin A, McDermott K, Were K, Walczynski T, Notaras L, Walsh N. An outdoor hotel quarantine facility model in Australia: best practice with optimal outcomes. Aust N Z J Public Health 2022; 46:633-639. [PMID: 35797090 PMCID: PMC9349389 DOI: 10.1111/1753-6405.13275] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 05/01/2022] [Accepted: 05/01/2022] [Indexed: 11/27/2022] Open
Abstract
Objective: To describe the operationalisation of a novel outdoor quarantine facility managed by the Australian Medical Assistance Team, the Howard Springs International Quarantine Facility (HSIQF) at the Centre for National Resilience in the Northern Territory, Australia. Methods: We collated documentation and data from HSIQF to describe policies and procedures implemented and performed a descriptive analysis of key procedures and outcomes. Results: From 23 October 2020 to 31 March 2021, 2.2% (129/5,987) of residents were confirmed COVD‐19 cases. On average per day, 82 [Interquartile Range (IQR): 29‐95] staff completed personal protective equipment (PPE) training, 94 [IQR: 90‐104] staff completed antigen testing and 51 [IQR: 32‐136] staff completed polymerase chain reaction testing. The operation focused on building a safe environment with infection prevention and control adherence and workforce sustainability. There was no leakage of SARS‐CoV‐2 to staff or the community and no PPE compromises requiring staff to quarantine for 14 days. Conclusion: HSIQF demonstrates the operationalisation of an effective, safe and replicable quarantine system. Implications for public health: Quarantine is a critical public health tool for pandemic control. The HSIQF operations may be useful to inform the establishment and management of quarantine facilities for future and current disease outbreaks.
Collapse
Affiliation(s)
- Stephanie J Curtis
- National Critical Care and Trauma Response Centre, Darwin, Northern Territory.,Research School of Population Health, The Australian National University, Canberra, Australian Capital Territory
| | - Abigail Trewin
- National Critical Care and Trauma Response Centre, Darwin, Northern Territory
| | - Kathleen McDermott
- National Critical Care and Trauma Response Centre, Darwin, Northern Territory
| | - Karen Were
- National Critical Care and Trauma Response Centre, Darwin, Northern Territory
| | - Tracy Walczynski
- National Critical Care and Trauma Response Centre, Darwin, Northern Territory
| | - Len Notaras
- National Critical Care and Trauma Response Centre, Darwin, Northern Territory
| | - Nick Walsh
- National Critical Care and Trauma Response Centre, Darwin, Northern Territory
| |
Collapse
|
55
|
Tobik ER, Kitfield-Vernon LB, Thomas RJ, Steel SA, Tan SH, Allicock OM, Choate BL, Akbarzada S, Wyllie AL. Saliva as a sample type for SARS-CoV-2 detection: implementation successes and opportunities around the globe. Expert Rev Mol Diagn 2022; 22:519-535. [PMID: 35763281 DOI: 10.1080/14737159.2022.2094250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Symptomatic testing and asymptomatic screening for SARS-CoV-2 continue to be essential tools for mitigating virus transmission. Though COVID-19 diagnostics initially defaulted to oropharyngeal or nasopharyngeal sampling, the worldwide urgency to expand testing efforts spurred innovative approaches and increased diversity of detection methods. Strengthening innovation and facilitating widespread testing remains critical for global health, especially as additional variants emerge and other mitigation strategies are recalibrated. AREAS COVERED A growing body of evidence reflects the need to expand testing efforts and further investigate the efficiency, sensitivity, and acceptability of saliva samples for SARS-CoV-2 detection. Countries have made pandemic response decisions based on resources, costs, procedures, and regional acceptability - the adoption and integration of saliva-based testing among them. Saliva has demonstrated high sensitivity and specificity while being less invasive relative to nasopharyngeal swabs, securing saliva's position as a more acceptable sample type. EXPERT OPINION Despite the accessibility and utility of saliva sampling, global implementation remains low compared to swab-based approaches. In some cases, countries have validated saliva-based methods but face challenges with testing implementation or expansion. Here, we review the localities that have demonstrated success with saliva-based SARS-CoV-2 testing approaches and can serve as models for transforming concepts into globally-implemented best practices.
Collapse
Affiliation(s)
- Emily R Tobik
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Lily B Kitfield-Vernon
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Russell J Thomas
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Sydney A Steel
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Steph H Tan
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA.,Department of Health Policy and Management, Yale School of Public Health, New Haven, Connecticut, USA
| | - Orchid M Allicock
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Brittany L Choate
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Sumaira Akbarzada
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Anne L Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
56
|
Chu VT, Schwartz NG, Donnelly MAP, Chuey MR, Soto R, Yousaf AR, Schmitt-Matzen EN, Sleweon S, Ruffin J, Thornburg N, Harcourt JL, Tamin A, Kim G, Folster JM, Hughes LJ, Tong S, Stringer G, Albanese BA, Totten SE, Hudziec MM, Matzinger SR, Dietrich EA, Sheldon SW, Stous S, McDonald EC, Austin B, Beatty ME, Staples JE, Killerby ME, Hsu CH, Tate JE, Kirking HL, Matanock A. Comparison of Home Antigen Testing With RT-PCR and Viral Culture During the Course of SARS-CoV-2 Infection. JAMA Intern Med 2022; 182:701-709. [PMID: 35486394 PMCID: PMC9055515 DOI: 10.1001/jamainternmed.2022.1827] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE As self-collected home antigen tests become widely available, a better understanding of their performance during the course of SARS-CoV-2 infection is needed. OBJECTIVE To evaluate the diagnostic performance of home antigen tests compared with reverse transcription-polymerase chain reaction (RT-PCR) and viral culture by days from illness onset, as well as user acceptability. DESIGN, SETTING, AND PARTICIPANTS This prospective cohort study was conducted from January to May 2021 in San Diego County, California, and metropolitan Denver, Colorado. The convenience sample included adults and children with RT-PCR-confirmed infection who used self-collected home antigen tests for 15 days and underwent at least 1 nasopharyngeal swab for RT-PCR, viral culture, and sequencing. EXPOSURES SARS-CoV-2 infection. MAIN OUTCOMES AND MEASURES The primary outcome was the daily sensitivity of home antigen tests to detect RT-PCR-confirmed cases. Secondary outcomes included the daily percentage of antigen test, RT-PCR, and viral culture results that were positive, and antigen test sensitivity compared with same-day RT-PCR and cultures. Antigen test use errors and acceptability were assessed for a subset of participants. RESULTS This study enrolled 225 persons with RT-PCR-confirmed infection (median [range] age, 29 [1-83] years; 117 female participants [52%]; 10 [4%] Asian, 6 [3%] Black or African American, 50 [22%] Hispanic or Latino, 3 [1%] Native Hawaiian or Other Pacific Islander, 145 [64%] White, and 11 [5%] multiracial individuals) who completed 3044 antigen tests and 642 nasopharyngeal swabs. Antigen test sensitivity was 50% (95% CI, 45%-55%) during the infectious period, 64% (95% CI, 56%-70%) compared with same-day RT-PCR, and 84% (95% CI, 75%-90%) compared with same-day cultures. Antigen test sensitivity peaked 4 days after illness onset at 77% (95% CI, 69%-83%). Antigen test sensitivity improved with a second antigen test 1 to 2 days later, particularly early in the infection. Six days after illness onset, antigen test result positivity was 61% (95% CI, 53%-68%). Almost all (216 [96%]) surveyed individuals reported that they would be more likely to get tested for SARS-CoV-2 infection if home antigen tests were available over the counter. CONCLUSIONS AND RELEVANCE The results of this cohort study of home antigen tests suggest that sensitivity for SARS-CoV-2 was moderate compared with RT-PCR and high compared with viral culture. The results also suggest that symptomatic individuals with an initial negative home antigen test result for SARS-CoV-2 infection should test again 1 to 2 days later because test sensitivity peaked several days after illness onset and improved with repeated testing.
Collapse
Affiliation(s)
- Victoria T Chu
- COVID-19 Response Team, US Centers for Disease Control and Prevention, Atlanta, Georgia.,Epidemic Intelligence Service, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Noah G Schwartz
- COVID-19 Response Team, US Centers for Disease Control and Prevention, Atlanta, Georgia.,Epidemic Intelligence Service, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Marisa A P Donnelly
- COVID-19 Response Team, US Centers for Disease Control and Prevention, Atlanta, Georgia.,Epidemic Intelligence Service, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Meagan R Chuey
- COVID-19 Response Team, US Centers for Disease Control and Prevention, Atlanta, Georgia.,Epidemic Intelligence Service, US Centers for Disease Control and Prevention, Atlanta, Georgia.,County of San Diego Health and Human Services Agency, San Diego, California
| | - Raymond Soto
- COVID-19 Response Team, US Centers for Disease Control and Prevention, Atlanta, Georgia.,Epidemic Intelligence Service, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Anna R Yousaf
- COVID-19 Response Team, US Centers for Disease Control and Prevention, Atlanta, Georgia.,Epidemic Intelligence Service, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Emily N Schmitt-Matzen
- COVID-19 Response Team, US Centers for Disease Control and Prevention, Atlanta, Georgia.,Epidemic Intelligence Service, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sadia Sleweon
- COVID-19 Response Team, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jasmine Ruffin
- COVID-19 Response Team, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Natalie Thornburg
- COVID-19 Response Team, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jennifer L Harcourt
- COVID-19 Response Team, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Azaibi Tamin
- COVID-19 Response Team, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Gimin Kim
- COVID-19 Response Team, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jennifer M Folster
- COVID-19 Response Team, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Laura J Hughes
- COVID-19 Response Team, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Suxiang Tong
- COVID-19 Response Team, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ginger Stringer
- Colorado Department of Public Health and Environment, Denver
| | | | - Sarah E Totten
- Colorado Department of Public Health and Environment, Denver
| | | | | | - Elizabeth A Dietrich
- COVID-19 Response Team, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sarah W Sheldon
- COVID-19 Response Team, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sarah Stous
- County of San Diego Health and Human Services Agency, San Diego, California
| | - Eric C McDonald
- County of San Diego Health and Human Services Agency, San Diego, California
| | - Brett Austin
- County of San Diego Health and Human Services Agency, San Diego, California
| | - Mark E Beatty
- County of San Diego Health and Human Services Agency, San Diego, California
| | - J Erin Staples
- COVID-19 Response Team, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Marie E Killerby
- COVID-19 Response Team, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Christopher H Hsu
- COVID-19 Response Team, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jacqueline E Tate
- COVID-19 Response Team, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Hannah L Kirking
- COVID-19 Response Team, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Almea Matanock
- COVID-19 Response Team, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | | |
Collapse
|
57
|
Ke R, Martinez PP, Smith RL, Gibson LL, Achenbach CJ, McFall S, Qi C, Jacob J, Dembele E, Bundy C, Simons LM, Ozer EA, Hultquist JF, Lorenzo-Redondo R, Opdycke AK, Hawkins C, Murphy RL, Mirza A, Conte M, Gallagher N, Luo CH, Jarrett J, Conte A, Zhou R, Farjo M, Rendon G, Fields CJ, Wang L, Fredrickson R, Baughman ME, Chiu KK, Choi H, Scardina KR, Owens AN, Broach J, Barton B, Lazar P, Robinson ML, Mostafa HH, Manabe YC, Pekosz A, McManus DD, Brooke CB. Longitudinal Analysis of SARS-CoV-2 Vaccine Breakthrough Infections Reveals Limited Infectious Virus Shedding and Restricted Tissue Distribution. Open Forum Infect Dis 2022; 9:ofac192. [PMID: 35791353 PMCID: PMC9047214 DOI: 10.1093/ofid/ofac192] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The global effort to vaccinate people against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during an ongoing pandemic has raised questions about how vaccine breakthrough infections compare with infections in immunologically naive individuals and the potential for vaccinated individuals to transmit the virus. METHODS We examined viral dynamics and infectious virus shedding through daily longitudinal sampling in 23 adults infected with SARS-CoV-2 at varying stages of vaccination, including 6 fully vaccinated individuals. RESULTS The durations of both infectious virus shedding and symptoms were significantly reduced in vaccinated individuals compared with unvaccinated individuals. We also observed that breakthrough infections are associated with strong tissue compartmentalization and are only detectable in saliva in some cases. CONCLUSIONS Vaccination shortens the duration of time of high transmission potential, minimizes symptom duration, and may restrict tissue dissemination.
Collapse
Affiliation(s)
- Ruian Ke
- T-6, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Pamela P Martinez
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Rebecca L Smith
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Laura L Gibson
- Division of Infectious Diseases and Immunology, Departments of Medicine and Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Chad J Achenbach
- Division of Infectious Diseases and Immunology, Departments of Medicine and Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sally McFall
- Center for Innovation in Point-of-Care Technologies for HIV/AIDS at Northwestern University, Evanston, Illinois, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Chao Qi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joshua Jacob
- Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Etienne Dembele
- Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Camille Bundy
- Institute for Sexual and Gender Minority Health and Wellbeing, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lacy M Simons
- Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Egon A Ozer
- Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Judd F Hultquist
- Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ramon Lorenzo-Redondo
- Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Anita K Opdycke
- Department of Health Service, Northwestern University, Evanston, Illinois, USA
| | - Claudia Hawkins
- Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Robert L Murphy
- Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Agha Mirza
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Madison Conte
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Gallagher
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chun Huai Luo
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Junko Jarrett
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Abigail Conte
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ruifeng Zhou
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Mireille Farjo
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Gloria Rendon
- High-Performance Biological Computing at the Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Christopher J Fields
- High-Performance Biological Computing at the Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Leyi Wang
- Veterinary Diagnostic Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Richard Fredrickson
- Veterinary Diagnostic Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Melinda E Baughman
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Karen K Chiu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Hannah Choi
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kevin R Scardina
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Alyssa N Owens
- Center for Clinical and Translational Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - John Broach
- Division of Infectious Diseases and Immunology, Departments of Medicine and Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- UMass Memorial Medical Center, Worcester, Massachusetts, USA
- Department of Emergency Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Bruce Barton
- Division of Biostatistics and Health Services Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Peter Lazar
- Division of Biostatistics and Health Services Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Matthew L Robinson
- Division of Infectious Diseases and Immunology, Departments of Medicine and Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Heba H Mostafa
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yukari C Manabe
- Division of Infectious Diseases and Immunology, Departments of Medicine and Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - David D McManus
- Division of Infectious Diseases and Immunology, Departments of Medicine and Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Division of Cardiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Christopher B Brooke
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
58
|
Hardick J, Gallagher N, Sachithanandham J, Fall A, Siddiqui Z, Pekosz A, Manabe YC, Mostafa HH. Evaluation of Four Point of Care (POC) Antigen Assays for the Detection of the SARS-CoV-2 Variant Omicron. Microbiol Spectr 2022; 10:e0102522. [PMID: 35616382 PMCID: PMC9241858 DOI: 10.1128/spectrum.01025-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/06/2022] [Indexed: 12/29/2022] Open
Abstract
Ensuring SARS-CoV-2 diagnostics that can reliably detect emerging variants has been an ongoing challenge. Due to the rapid spread of the Omicron variant, point-of-care (POC) antigen tests have become more widely used. This study aimed at (i) comparing the analytical sensitivity (LOD) of 4 POC antigen assays, BD Veritor, Abbott BinaxNow, Orasure InteliSwab and Quidel QuickVue, for the Omicron versus the Delta variant and (ii) verifying the reproducible detection of Omicron by the 4 antigen assays. The LOD for all four assays were evaluated using Omicron and Delta virus stocks quantified for infectivity and genome copies. The four assays detected all replicates of Omicron and Delta dilutions at 104 and 105 TCID50/mL, respectively. We quantified both viral stocks using droplet digital PCR (ddPCR), which revealed that the Omicron stock had equivalent copies of the N gene to Delta at a one log lower infectious virus. The Abbott BinaxNow and Orasure InteliSwab had the highest analytical sensitivity for Omicron while the Orasure InteliSwab and the Quidel QuickVue had the highest analytical sensitivity for Delta. When 14 SARS-CoV-2 real-time PCR positive nasal/nasopharyngeal swab samples (12 Omicron and 2 Delta, mean Ct = 19.1), were tested by the four assays, only the QuickVue detected all samples. Antigen test positivity correlated with recovery of infectious virus on cell culture in 9 out of 13 tested specimens from symptomatic, asymptomatic, unvaccinated, and vaccinated individuals. Although our study confirms the reduced analytical sensitivity of antigen testing compared to molecular methods, the Omicron variant was detectable by the four evaluated rapid antigen tests. IMPORTANCE In the manuscript, we report an evaluation of the capability of 4 point of care (POC) antigen assays, the BD Veritor, Abbott BinaxNow, Orasure InteliSwab and Quidel QuickVue to detect the Omicron variant of SARS-CoV-2, and we compared their analytical sensitivity for Omicron versus Delta. In this analysis we found that all four assays detected Omicron and Delta at 104 and 105 TCID50/mL, respectively. We further quantified the viral stocks used by droplet digital (ddPCR) and found that the Omicron stock had equivalent copies of the N gene to Delta at a one log lower infectious virus titer and that an increased RNA to infectious virus ratio may be contributing to discrepancies in limit of detection in Omicron compared to Delta. We evaluated 14 SARS-CoV-2 real-time PCR positive nasal/nasopharyngeal swab samples (12 Omicron and 2 Delta), with an average cycle threshold value of 19.1, and only the QuickVue showed 100% agreement.
Collapse
Affiliation(s)
- Justin Hardick
- Department of Medicine, Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nicholas Gallagher
- Department of Pathology, Division of Medical Microbiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Amary Fall
- Department of Pathology, Division of Medical Microbiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zishan Siddiqui
- Department of Medicine, Division of Hospital Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Andrew Pekosz
- Department of Medicine, Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yukari C. Manabe
- Department of Medicine, Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Heba H. Mostafa
- Department of Pathology, Division of Medical Microbiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
59
|
Limitations of Molecular and Antigen Test Performance for SARS-CoV-2 in Symptomatic and Asymptomatic COVID-19 Contacts. J Clin Microbiol 2022; 60:e0018722. [PMID: 35730949 PMCID: PMC9297839 DOI: 10.1128/jcm.00187-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
COVID-19 has brought unprecedented attention to the crucial role of diagnostics in pandemic control. We compared severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) test performance by sample type and modality in close contacts of SARS-CoV-2 cases. Close contacts of SARS-CoV-2-positive individuals were enrolled after informed consent. Clinician-collected nasopharyngeal (NP) swabs in viral transport media (VTM) were tested with a routine clinical reference nucleic acid test (NAT) and PerkinElmer real-time reverse transcription-PCR (RT-PCR) assay; positive samples were tested for infectivity using a VeroE6TMPRSS2 cell culture model. Self-collected passive drool was also tested using the PerkinElmer RT-PCR assay. For the first 4 months of study, midturbinate swabs were tested using the BD Veritor rapid antigen test. Between 17 November 2020 and 1 October 2021, 235 close contacts of SARS-CoV-2 cases were recruited, including 95 with symptoms (82% symptomatic for ≤5 days) and 140 asymptomatic individuals. Reference NATs were positive for 53 (22.6%) participants; 24/50 (48%) were culture positive. PerkinElmer testing of NP and saliva samples identified an additional 28 (11.9%) SARS-CoV-2 cases who tested negative by reference NAT. Antigen tests performed for 99 close contacts showed 83% positive percent agreement (PPA) with reference NAT among early symptomatic persons, but 18% PPA in others; antigen tests in 8 of 11 (72.7%) culture-positive participants were positive. Contacts of SARS-CoV-2 cases may be falsely negative early after contact, but more sensitive platforms may identify these cases. Repeat or serial SARS-CoV-2 testing with both antigen and molecular assays may be warranted for individuals with high pretest probability for infection.
Collapse
|
60
|
Cabrera C, Pilobello K, Dalvin S, Bobrow J, Shah D, Garg LF, Chalise S, Doyle P, Miller GA, Walt DR, Suliman S, Jolly P. Systematic Approach to Address Early Pandemic's Diagnostic Unmet Needs. Front Microbiol 2022; 13:910156. [PMID: 35783392 PMCID: PMC9247567 DOI: 10.3389/fmicb.2022.910156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
During the first few months of the global Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic, the medical research community had to expeditiously develop, select, and deploy novel diagnostic methods and tools to address the numerous testing challenges presented by the novel virus. Integrating a systematic approach to diagnostic selection with a rapid validation protocol in a clinical setting can shorten the timeline to bring new technologies to practice. In response to the urgent need to provide tools for identifying SARS-CoV-2-positive individuals, we developed a framework for assessing technologies against a set of prioritized performance metrics to guide device selection. We also developed and proposed clinical validation frameworks for the rapid screening of new technologies. The rubric described here represents a versatile approach that can be extended to future technology assessments and can be implemented in preparation for future emerging pathogens.
Collapse
Affiliation(s)
- Catherine Cabrera
- Massachusetts Institute of Technology Lincoln Laboratory, Lexington, MA, United States
| | - Kanoelani Pilobello
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Steven Dalvin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Johanna Bobrow
- Massachusetts Institute of Technology Lincoln Laboratory, Lexington, MA, United States
| | - Darshi Shah
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Lori Freed Garg
- Global Health Innovation Lab, Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Sujata Chalise
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Patrick Doyle
- Brigham and Women's Hospital, Boston, MA, United States
| | - Glenn A. Miller
- Mass General Brigham Incorporated, Boston, MA, United States
| | - David R. Walt
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Sara Suliman
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, United States
- Mass General Brigham Center for COVID Innovation, Boston, MA, United States
- Zuckerberg San Francisco General Hospital, Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Pawan Jolly
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| |
Collapse
|
61
|
Achenbach CJ, Caputo M, Hawkins C, Balmert LC, Qi C, Odorisio J, Dembele E, Jackson A, Abbas H, Frediani JK, Levy JM, Rebolledo PA, Kempker RR, Esper AM, Lam WA, Martin GS, Murphy RL. Clinical evaluation of the Diagnostic Analyzer for Selective Hybridization (DASH): A point-of-care PCR test for rapid detection of SARS-CoV-2 infection. PLoS One 2022; 17:e0270060. [PMID: 35709204 PMCID: PMC9202852 DOI: 10.1371/journal.pone.0270060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND An ideal test for COVID-19 would combine the sensitivity of laboratory-based PCR with the speed and ease of use of point-of-care (POC) or home-based rapid antigen testing. We evaluated clinical performance of the Diagnostic Analyzer for Selective Hybridization (DASH) SARS-CoV-2 POC rapid PCR test. METHODS We conducted a cross-sectional study of adults with and without symptoms of COVID-19 at four clinical sites where we collected two bilateral anterior nasal swabs and information on COVID-19 symptoms, vaccination, and exposure. One swab was tested with the DASH SARS-CoV-2 POC PCR and the second in a central laboratory using Cepheid Xpert Xpress SARS-CoV-2 PCR. We assessed test concordance and calculated sensitivity, specificity, negative and positive predictive values using Xpert as the "gold standard". RESULTS We enrolled 315 and analyzed 313 participants with median age 42 years; 65% were female, 62% symptomatic, 75% had received ≥2 doses of mRNA COVID-19 vaccine, and 16% currently SARS-CoV-2 positive. There were concordant results for 307 tests indicating an overall agreement for DASH of 0.98 [95% CI 0.96, 0.99] compared to Xpert. DASH performed at 0.96 [95% CI 0.86, 1.00] sensitivity and 0.98 [95% CI 0.96, 1.00] specificity, with a positive predictive value of 0.85 [95% CI 0.73, 0.96] and negative predictive value of 0.996 [95% CI 0.99, 1.00]. The six discordant tests between DASH and Xpert all had high Ct values (>30) on the respective positive assay. DASH and Xpert Ct values were highly correlated (R = 0.89 [95% CI 0.81, 0.94]). CONCLUSIONS DASH POC SARS-CoV-2 PCR was accurate, easy to use, and provided fast results (approximately 15 minutes) in real-life clinical settings with an overall performance similar to an EUA-approved laboratory-based PCR.
Collapse
Affiliation(s)
- Chad J. Achenbach
- Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States of America
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States of America
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States of America
| | - Matthew Caputo
- Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States of America
| | - Claudia Hawkins
- Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States of America
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States of America
| | - Lauren C. Balmert
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States of America
| | - Chao Qi
- Department of Pathology, Northwestern University, Evanston, IL, United States of America
| | - Joseph Odorisio
- Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States of America
| | - Etienne Dembele
- Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States of America
| | - Alema Jackson
- Access Community Health Network, Chicago, IL, United States of America
| | - Hiba Abbas
- Access Community Health Network, Chicago, IL, United States of America
| | - Jennifer K. Frediani
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies, Atlanta, GA, United States of America
- Emory University Nell Hodgson Woodruff School of Nursing, Atlanta, GA, United States of America
| | - Joshua M. Levy
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies, Atlanta, GA, United States of America
- Emory University Department of Otolaryngology, Atlanta, GA, United States of America
| | - Paulina A. Rebolledo
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies, Atlanta, GA, United States of America
- Emory University Division of Infectious Diseases, Atlanta, GA, United States of America
| | - Russell R. Kempker
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies, Atlanta, GA, United States of America
- Emory University Division of Infectious Diseases, Atlanta, GA, United States of America
| | - Annette M. Esper
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies, Atlanta, GA, United States of America
- Emory University Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Atlanta, GA, United States of America
| | - Wilbur A. Lam
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies, Atlanta, GA, United States of America
- Emory University Department of Pediatrics, Atlanta, GA, United States of America
| | - Greg S. Martin
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies, Atlanta, GA, United States of America
- Emory University Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Atlanta, GA, United States of America
| | - Robert L. Murphy
- Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States of America
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States of America
| |
Collapse
|
62
|
Lind ML, Schultes OL, Robertson AJ, Houde AJ, Cummings DA, Ko AI, Kennedy BS, Richeson RP. Testing Frequency Matters: An Evaluation of the Diagnostic Performance of a Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Rapid Antigen Test in US Correctional Facilities. Clin Infect Dis 2022; 76:e327-e335. [PMID: 35686341 PMCID: PMC9214176 DOI: 10.1093/cid/ciac450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The Centers for Disease Control and Prevention recommends serial rapid antigen assay collection within congregate facilities. Although modeling and observational studies from communities and long-term care facilities have shown serial collection provides adequate sensitivity and specificity, the accuracy within correctional facilities remains unknown. METHODS Using Connecticut Department of Correction data from 21 November 2020 to 15 June 2021, we estimated the accuracy of a rapid assay, BinaxNOW (Abbott), under 3 collection strategies: single test collection and serial collection of 2 and 3 tests separated by 1-4 days. The sensitivity and specificity of the first (including single), second, and third serially collected BinaxNOW tests were estimated relative to RT-PCRs collected ≤1 day of the BinaxNOW test. The accuracy metrics of the testing strategies were then estimated as the sum (sensitivity) and product (specificity) of tests in each strategy. RESULTS Of the 13 112 residents who contributed ≥1 BinaxNOW test during the study period, 3825 contributed ≥1 RT-PCR paired BinaxNOW test. In relation to RT-PCR, the 3-rapid-antigen-test strategy had a sensitivity of 95.9% (95% CI: 93.6-97.5%) and specificity of 98.3% (95% CI: 96.7-99.1%). The sensitivities of the 2- and 1-rapid-antigen-test strategies were 88.8% and 66.8%, and the specificities were 98.5% and 99.4%, respectively. The sensitivity was higher among symptomatic residents and when RT-PCRs were collected before BinaxNOW tests. CONCLUSIONS We found serial antigen test collection resulted in high diagnostic accuracy. These findings support serial collection for outbreak investigation, screening, and when rapid detection is required (such as intakes or transfers).
Collapse
Affiliation(s)
- Margaret L. Lind
- Corresponding Author: Margaret L. Lind, PhD Yale University School of Public Health 60 College Street New Haven, CT 06510 United States of America
| | - Olivia L. Schultes
- Department of Epidemiology, University of Washington’s School of Public Health, Seattle, WA, USA
| | - Alexander J. Robertson
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Amy J. Houde
- Connecticut Department of Correction, Wethersfield, CT, USA
| | - Derek A.T. Cummings
- Department of Biology, University of Florida, Gainesville, FL, USA,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | | | | | - Robert P. Richeson
- Post Publication Corresponding Author: Robert P. Richeson, DC Connecticut Department of Corrections 24 Wolcott Hill Rd. Wethersfield, CT 06109 United States of America
| |
Collapse
|
63
|
Tapari A, Braliou GG, Papaefthimiou M, Mavriki H, Kontou PI, Nikolopoulos GK, Bagos PG. Performance of Antigen Detection Tests for SARS-CoV-2: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2022; 12:1388. [PMID: 35741198 PMCID: PMC9221910 DOI: 10.3390/diagnostics12061388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) initiated global health care challenges such as the necessity for new diagnostic tests. Diagnosis by real-time PCR remains the gold-standard method, yet economical and technical issues prohibit its use in points of care (POC) or for repetitive tests in populations. A lot of effort has been exerted in developing, using, and validating antigen-based tests (ATs). Since individual studies focus on few methodological aspects of ATs, a comparison of different tests is needed. Herein, we perform a systematic review and meta-analysis of data from articles in PubMed, medRxiv and bioRxiv. The bivariate method for meta-analysis of diagnostic tests pooling sensitivities and specificities was used. Most of the AT types for SARS-CoV-2 were lateral flow immunoassays (LFIA), fluorescence immunoassays (FIA), and chemiluminescence enzyme immunoassays (CLEIA). We identified 235 articles containing data from 220,049 individuals. All ATs using nasopharyngeal samples show better performance than those with throat saliva (72% compared to 40%). Moreover, the rapid methods LFIA and FIA show about 10% lower sensitivity compared to the laboratory-based CLEIA method (72% compared to 82%). In addition, rapid ATs show higher sensitivity in symptomatic patients compared to asymptomatic patients, suggesting that viral load is a crucial parameter for ATs performed in POCs. Finally, all methods perform with very high specificity, reaching around 99%. LFIA tests, though with moderate sensitivity, appear as the most attractive method for use in POCs and for performing seroprevalence studies.
Collapse
Affiliation(s)
- Anastasia Tapari
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| | - Georgia G. Braliou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| | - Maria Papaefthimiou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| | - Helen Mavriki
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| | - Panagiota I. Kontou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| | | | - Pantelis G. Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| |
Collapse
|
64
|
Li X, Xiong M, Deng Q, Guo X, Li Y. The utility of SARS-CoV-2 nucleocapsid protein in laboratory diagnosis. J Clin Lab Anal 2022; 36:e24534. [PMID: 35657146 PMCID: PMC9279953 DOI: 10.1002/jcla.24534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/01/2022] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
Background The Coronavirus Disease 2019 (COVID‐19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), which has now become a global pandemic owing to its high transmissibility. The SARS‐CoV‐2 nucleocapsid protein tests are playing an important role in screening and diagnosing patients with COVID‐19, and studies about the utility of SARS‐CoV‐2 nucleocapsid protein tests are increasing now. Methods In this review, all the relevant original studies were assessed by searching in electronic databases including Scopus, Pubmed, Embase, and Web of Science. “SARS‐CoV‐2”, “COVID‐19”, “nucleocapsid protein”, and “antigen detection” were used as keywords. Results In this review, we summarized the utility of SARS‐CoV‐2 nucleocapsid protein in laboratory diagnosis. Among the representative researches, this review analyzed, the sensitivity of SARS‐CoV‐2 nucleocapsid protein detection varies from 13% to 87.9%, while the specificity could almost reach 100% in most studies. As a matter of fact, the sensitivity is around 50% and could be higher or lower due to the influential factors. Conclusion It is well suggested that SARS‐CoV‐2 nucleocapsid protein is a convenient method with a short turnaround time of about half an hour, and the presence of N antigen is positively related to viral transmissibility, indicating that SARS‐CoV‐2 N protein immunoassays contribute to finding out those infected people rapidly and segregating them from the uninfected people.
Collapse
Affiliation(s)
- Xinwei Li
- Class 11, Grade 2018, Medical School of Zhengzhou University, Zhengzhou, China
| | - Mengyuan Xiong
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Qiaoling Deng
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xiaobing Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
65
|
Semi-nested RT-PCR enables sensitive and high-throughput detection of SARS-CoV-2 based on melting analysis. Clin Chim Acta 2022; 531:309-317. [PMID: 35500877 PMCID: PMC9052777 DOI: 10.1016/j.cca.2022.04.997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/25/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND Asymptomatic transmission was found to be the Achilles' heel of the symptom-based screening strategy, necessitating the implementation of mass testing to efficiently contain the transmission of COVID-19 pandemic. However, the global shortage of molecular reagents and the low throughput of available realtime PCR facilities were major limiting factors. METHODS A novel semi-nested and heptaplex (7-plex) RT-PCR assay with melting analysis for detection of SARS-CoV-2 RNA has been established for either individual testing or 96-sample pooled testing. The complex melting spectrum collected from the heptaplex RT-PCR amplicons was interpreted with the support of an artificial intelligence algorithm for the detection of SARS-CoV-2 RNA. The analytical and clinical performance of the semi-nested RT-PCR assay was evaluated using RNAs synthesized in-vitro and those isolated from nasopharyngeal samples. RESULTS The LOD of the assay for individual testing was estimated to be 7.2 copies/reaction. Clinical performance evaluation indicated a sensitivity of 100% (95% CI: 97.83-100) and a specificity of 99.87% (95% CI: 99.55-99.98). More importantly, the assay supports a breakthrough sample pooling method, which makes possible parallel screening of up to 96 samples in one real-time PCR well without loss of sensitivity. As a result, up to 8,820 individual pre-amplified samples could be screened for SARS-CoV-2 within each 96-well plate of realtime PCR using the pooled testing procedure. CONCLUSION The novel semi-nested RT-PCR assay provides a solution for highly multiplex (7-plex) detection of SARS-CoV-2 and enables 96-sample pooled detection for increase of testing capacity. .
Collapse
|
66
|
Abstract
Though rapid antigen tests have historically problematic performance characteristics for the diagnosis of respiratory viral infections such as influenza, they have attained an unprecedented level of use in the context of the COVID-19 pandemic. Ease of use and scalability of rapid antigen tests has facilitated a democratization and scale of testing beyond anything reasonably achievable by traditional laboratory-based testing. In this chapter, we discuss the performance characteristics of rapid antigen testing for SARS-CoV-2 detection and their application to non-traditional uses beyond clinical diagnostic testing.
Collapse
|
67
|
Zobrist S, Oliveira-Silva M, Vieira AM, Bansil P, Gerth-Guyette E, Leader BT, Golden A, Slater H, de Lucena Cruz CD, Garbin E, Sagalovsky M, Pal S, Gupta V, Wolansky L, Vieira Dall’Acqua DS, Naveca GF, do Nascimento VA, Villalobos Salcedo JM, Drain PK, Tavares Costa AD, Domingo GJ, Pereira D. Screening for Severe Acute Respiratory Syndrome Coronavirus 2 in Close Contacts of Individuals With Confirmed Infection: Performance and Operational Considerations. J Infect Dis 2022; 226:2118-2128. [PMID: 35594905 PMCID: PMC9129181 DOI: 10.1093/infdis/jiac204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Point-of-care and decentralized testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical to inform public health responses. Performance evaluations in priority use cases such as contact tracing can highlight trade-offs in test selection and testing strategies. METHODS A prospective diagnostic accuracy study was conducted among close contacts of coronavirus disease 2019 (COVID-19) cases in Brazil. Two anterior nares swabs (ANS), a nasopharyngeal swab (NPS), and saliva were collected at all visits. Vaccination history and symptoms were assessed. Household contacts were followed longitudinally. Three rapid antigen tests and 1 molecular method were evaluated for usability and performance against reference reverse-transcription polymerase chain reaction (RT-PCR) on nasopharyngeal swab specimens. RESULTS Fifty index cases and 214 contacts (64 household) were enrolled. Sixty-five contacts were RT-PCR positive during ≥1 visit. Vaccination did not influence viral load. Gamma variants were most prevalent; Delta variants emerged increasingly during implementation. The overall sensitivity of evaluated tests ranged from 33% to 76%. Performance was higher among symptomatic cases and those with cycle threshold (Ct) values <34 and lower among oligosymptomatic or asymptomatic cases. Assuming a 24-hour time to results for RT-PCR, the cumulative sensitivity of an anterior nares swab rapid antigen test was >70% and almost 90% after 4 days. CONCLUSIONS The near-immediate time to results for antigen tests significantly offsets lower analytical sensitivity in settings where RT-PCR results are delayed or unavailable.
Collapse
Affiliation(s)
- Stephanie Zobrist
- Diagnostics, PATH, Seattle, Washington, United States,Corresponding author. Stephanie Zobrist, Tel.: 206-285-3500 , Contact Information Stephanie Zobrist 2201 Westlake Avenue, Suite 200 Seattle, WA, USA 98121 Tel.: 206-285-3500
| | | | | | - Pooja Bansil
- Diagnostics, PATH, Seattle, Washington, United States
| | | | | | | | - Hannah Slater
- Diagnostics, PATH, Seattle, Washington, United States
| | | | - Eduardo Garbin
- Centro de Pesquisa em Medicina Tropical (CEPEM), Porto Velho, Rondônia, Brazil
| | | | - Sampa Pal
- Diagnostics, PATH, Seattle, Washington, United States
| | - Vin Gupta
- Amazon.com, Seattle, Washington, United States
| | - Leo Wolansky
- The Rockefeller Foundation, Pandemic Prevention Institute, New York City, New York, United States
| | | | - Gomes Felipe Naveca
- Instituto Leônidas e Maria Deane (ILMD), Fundação Oswaldo Cruz (FIOCRUZ), Manaus, Amazonas, Brazil
| | | | | | - Paul K Drain
- Departments of Global Health and Medicine, University of Washington, Seattle, Washington, United States
| | | | | | - Dhélio Pereira
- Centro de Pesquisa em Medicina Tropical (CEPEM), Porto Velho, Rondônia, Brazil
| |
Collapse
|
68
|
Gabler J, Raabe T, Röhrl K, Gaudecker HMV. The effectiveness of testing, vaccinations and contact restrictions for containing the CoViD-19 pandemic. Sci Rep 2022; 12:8048. [PMID: 35577826 PMCID: PMC9109202 DOI: 10.1038/s41598-022-12015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
In order to slow the spread of the CoViD-19 pandemic, governments around the world have enacted a wide set of policies limiting the transmission of the disease. Initially, these focused on non-pharmaceutical interventions; more recently, vaccinations and large-scale rapid testing have started to play a major role. The objective of this study is to explain the quantitative effects of these policies on determining the course of the pandemic, allowing for factors like seasonality or virus strains with different transmission profiles. To do so, the study develops an agent-based simulation model, which explicitly takes into account test demand and behavioral changes following positive tests. The model is estimated using data for the second and the third wave of the CoViD-19 pandemic in Germany. The paper finds that during a period where vaccination rates rose from 5 to 40%, seasonality and rapid testing had the largest effect on reducing infection numbers. Frequent large-scale rapid testing should remain part of strategies to contain CoViD-19; it can substitute for many non-pharmaceutical interventions that come at a much larger cost to individuals, society, and the economy.
Collapse
Affiliation(s)
- Janoś Gabler
- Bonn Graduate School of Economics, 53113, Bonn, Germany
- IZA Institute of Labor Economics, 53113, Bonn, Germany
| | | | - Klara Röhrl
- Bonn Graduate School of Economics, 53113, Bonn, Germany
| | - Hans-Martin von Gaudecker
- IZA Institute of Labor Economics, 53113, Bonn, Germany.
- Rheinische Friedrich-Wilhelms-Universität Bonn, 53113, Bonn, Germany.
| |
Collapse
|
69
|
Ke R, Martinez PP, Smith RL, Gibson LL, Mirza A, Conte M, Gallagher N, Luo CH, Jarrett J, Zhou R, Conte A, Liu T, Farjo M, Walden KKO, Rendon G, Fields CJ, Wang L, Fredrickson R, Edmonson DC, Baughman ME, Chiu KK, Choi H, Scardina KR, Bradley S, Gloss SL, Reinhart C, Yedetore J, Quicksall J, Owens AN, Broach J, Barton B, Lazar P, Heetderks WJ, Robinson ML, Mostafa HH, Manabe YC, Pekosz A, McManus DD, Brooke CB. Daily longitudinal sampling of SARS-CoV-2 infection reveals substantial heterogeneity in infectiousness. Nat Microbiol 2022; 7:640-652. [PMID: 35484231 PMCID: PMC9084242 DOI: 10.1038/s41564-022-01105-z] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/15/2022] [Indexed: 02/07/2023]
Abstract
The dynamics of SARS-CoV-2 replication and shedding in humans remain poorly understood. We captured the dynamics of infectious virus and viral RNA shedding during acute infection through daily longitudinal sampling of 60 individuals for up to 14 days. By fitting mechanistic models, we directly estimated viral expansion and clearance rates and overall infectiousness for each individual. Significant person-to-person variation in infectious virus shedding suggests that individual-level heterogeneity in viral dynamics contributes to 'superspreading'. Viral genome loads often peaked days earlier in saliva than in nasal swabs, indicating strong tissue compartmentalization and suggesting that saliva may serve as a superior sampling site for early detection of infection. Viral loads and clearance kinetics of Alpha (B.1.1.7) and previously circulating non-variant-of-concern viruses were mostly indistinguishable, indicating that the enhanced transmissibility of this variant cannot be explained simply by higher viral loads or delayed clearance. These results provide a high-resolution portrait of SARS-CoV-2 infection dynamics and implicate individual-level heterogeneity in infectiousness in superspreading.
Collapse
Affiliation(s)
- Ruian Ke
- T-6, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Pamela P Martinez
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rebecca L Smith
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Laura L Gibson
- Division of Infectious Diseases and Immunology, Departments of Medicine and Pediatrics, University of Massachusetts Medical School, Worcester, MA, USA
| | - Agha Mirza
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Madison Conte
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nicholas Gallagher
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chun Huai Luo
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Junko Jarrett
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruifeng Zhou
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Abigail Conte
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Tongyu Liu
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mireille Farjo
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kimberly K O Walden
- High-Performance Biological Computing at the Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gloria Rendon
- High-Performance Biological Computing at the Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christopher J Fields
- High-Performance Biological Computing at the Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Leyi Wang
- Veterinary Diagnostic Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Richard Fredrickson
- Veterinary Diagnostic Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Darci C Edmonson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Melinda E Baughman
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Karen K Chiu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hannah Choi
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kevin R Scardina
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shannon Bradley
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Stacy L Gloss
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Crystal Reinhart
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jagadeesh Yedetore
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jessica Quicksall
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alyssa N Owens
- Center for Clinical and Translational Research, University of Massachusetts Medical School, Worcester, MA, USA
| | - John Broach
- UMass Memorial Medical Center, Worcester, MA, USA
- Department of Emergency Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Bruce Barton
- Division of Biostatistics and Health Services Research, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA, USA
| | - Peter Lazar
- Division of Biostatistics and Health Services Research, University of Massachusetts Medical School, Worcester, MA, USA
| | - William J Heetderks
- National Institute for Biomedical Imaging and Bioengineering, Bethesda, MD, USA
| | - Matthew L Robinson
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Heba H Mostafa
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yukari C Manabe
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - David D McManus
- Division of Cardiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Christopher B Brooke
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
70
|
Validation of GeneFinder COVID-19 Ag Plus Rapid Test and Its Potential Utility to Slowing Infection Waves: A Single-Center Laboratory Evaluation Study. Diagnostics (Basel) 2022; 12:diagnostics12051126. [PMID: 35626282 PMCID: PMC9140403 DOI: 10.3390/diagnostics12051126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Diagnostic laboratory tools are essential to keep everyone safe and track newly emerging variants; on the other hand, “filter” screening tests recognizing positivity are valuable tools to avoid hectic laboratory work that, besides COVID-19, are also part of the routine. Therefore, complementary assays, such as rapid antigen tests (RATs), are essential in controlling and monitoring virus spread within the community, especially in the asymptomatic population. A subset of nasopharyngeal swab specimens resulted in SARS-CoV-2 positive and investigated for genomic characterization were used for RAT validation. RATs were performed immediately after sampling, following the manufacturer’s instructions (reading at 15 min). RT-PCRs were carried out within 24 h of specimens’ collection. Out of 603 patients, 145 (24.05%) tested positive by RT-PCR and RAT and 451 (74.79%) tested negative by both methods; discordant results (RT-PCR+/RAT− or RT-PCR−/RAT+) were obtained in 7 patients (1.16%). RATs’ overall specificity and sensitivity were 96.03% (95%CI: 91.55–98.53%) and 99.78% (95%CI: 98.77–99.99%), respectively, taking RT-PCR as the reference. Overall, RAT negative predictive value was 98.69% (95%CI 97.17–99.40%). The GeneFinder COVID-19 Ag Plus Rapid Test performed well as a screening test for early diagnosis of COVID-19, especially in asymptomatic subjects. The data suggested that patients with RT-PCR-proven COVID-19 testing negative by RAT are unlikely to be infectious. GeneFinder COVID-19 Ag Plus Rapid Test also works on variants of concern (VOC) delta and omicron BA.1 and BA.2.
Collapse
|
71
|
Lau CS, Aw TC. SARS-CoV-2 Antigen Testing Intervals: Twice or Thrice a Week? Diagnostics (Basel) 2022; 12:1039. [PMID: 35626195 PMCID: PMC9139623 DOI: 10.3390/diagnostics12051039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Antigen testing for SARS-CoV-2 has become an increasingly prominent screening tool in the ongoing COVID-19 pandemic and can be performed multiple times a week. However, the optimal weekly frequency of antigen testing is unclear; the Centers for Disease Control and Prevention recommends 1-3 times a week, while some experts support testing 2-3 times a week. In our own laboratory, all staff (n = 161) underwent twice- and thrice-weekly antigen tests during different periods from August 2021 to the present as part of routine COVID-19 surveillance of healthcare workers. No cases of COVID-19 were detected with either regimen. While more frequent SARS-CoV-2 antigen testing may allow antigen testing to be an important surrogate for RT-PCR testing, performing SARS-CoV-2 antigen tests twice or thrice a week shows no inferiority to each other in screening for COVID-19.
Collapse
Affiliation(s)
- Chin Shern Lau
- Department of Laboratory Medicine, Changi General Hospital, Singapore 529889, Singapore;
| | - Tar-Choon Aw
- Department of Laboratory Medicine, Changi General Hospital, Singapore 529889, Singapore;
- Department of Medicine, National University of Singapore, Singapore 119077, Singapore
- Academic Pathology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
72
|
Jen GHH, Yen AMF, Hsu CY, Chen SLS, Chen THH. A pre-symptomatic incubation model for precision strategies of screening, quarantine, and isolation based on imported COVID-19 cases in Taiwan. Sci Rep 2022; 12:6053. [PMID: 35411061 PMCID: PMC8998162 DOI: 10.1038/s41598-022-09863-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/21/2022] [Indexed: 12/31/2022] Open
Abstract
Facing the emerging COVID viral variants and the uneven distribution of vaccine worldwide, imported pre-symptomatic COVID-19 cases play a pivotal role in border control strategies. A stochastic disease process and computer simulation experiments with Bayesian underpinning was therefore developed to model pre-symptomatic disease progression during incubation period on which we were based to provide precision strategies for containing the resultant epidemic caused by imported COVID-19 cases. We then applied the proposed model to data on 1051 imported COVID-19 cases among inbound passengers to Taiwan between March 2020 and April 2021. The overall daily rate (per 100,000) of pre-symptomatic COVID-19 cases was estimated as 106 (95% credible interval (CrI): 95-117) in March-June 2020, fell to 37 (95% CrI: 28-47) in July-September 2020 (p < 0.0001), resurged to 141 (95% CrI: 118-164) in October-December 2020 (p < 0.0001), and declined to 90 (95% CrI: 73-108) in January-April 2021 (p = 0.0004). Given the median dwelling time, over 82% cases would progress from pre-symptomatic to symptomatic phase in 5-day quarantine. The time required for quarantine given two real-time polymerase chain reaction (RT-PCR) tests depends on the risk of departing countries, testing and quarantine strategies, and whether the passengers have vaccine jabs. Our proposed four-compartment stochastic process and computer simulation experiments design underpinning Bayesian MCMC algorithm facilitated the development of precision strategies for imported COVID-19 cases.
Collapse
Affiliation(s)
- Grace Hsiao-Hsuan Jen
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Amy Ming-Fang Yen
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chen-Yang Hsu
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Emergency, Dachung Hospital, Miaoli, Taiwan
| | - Sam Li-Sheng Chen
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tony Hsiu-Hsi Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
73
|
Kolodziej LM, van Lelyveld SFL, Haverkort ME, Mariman R, Sluiter-Post JGC, Badoux P, de Koff EM, Koole JCD, Miellet WR, Swart AN, Coipan EC, Meijer A, Sanders EAM, Trzciński K, Euser SM, Eggink D, van Houten MA. High SARS-CoV-2 household transmission rates detected by dense saliva sampling. Clin Infect Dis 2022; 75:e10-e19. [PMID: 35385575 PMCID: PMC9047155 DOI: 10.1093/cid/ciac261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Understanding the dynamics of SARS-CoV-2 household transmission is important for adequate infection control measures in this ongoing pandemic. METHODS Households were enrolled upon a PCR-confirmed index case between October and December 2020, prior to the COVID-19 vaccination program. Saliva samples were obtained by self-sampling at day 1, 3, 5, 7, 10, 14, 21, 28, 35, and 42 from study inclusion. Nasopharyngeal swabs (NPS) and oropharyngeal swabs (OPS) were collected by the research team at day 7 and capillary blood samples at day 42. Household secondary attack rate (SAR) and per-person SAR were calculated based on at least one positive saliva, NPS, OPS, or serum sample. Whole genome sequencing was performed to investigate the possibility of multiple independent SARS-CoV-2 introductions within a household. RESULTS Eighty-five households were included consisting of 326 (unvaccinated) individuals. Comparable numbers of secondary cases were identified by saliva (133/241; 55.2%) and serum (127/213; 59.6%). The household SAR was 88.2%. The per-person SAR was 64.3%. The majority of the secondary cases tested positive in saliva at day 1 (103/150; 68.7%). Transmission from index case to household member was not affected by age or the nature of their relationship. Phylogenetic analyses suggested a single introduction for the investigated households. CONCLUSION Households have a pivotal role in SARS-CoV-2 transmission. By repeated saliva self-sampling combined with NPS, OPS, and serology, we found the highest SARS-CoV-2 household transmission rates reported to date. Salivary (self-)sampling of adults and children is suitable and attractive for near real-time monitoring of SARS-CoV-2 transmission in this setting.
Collapse
Affiliation(s)
- L M Kolodziej
- Spaarne Gasthuis Academy, Hoofddorp, The Netherlands
| | - S F L van Lelyveld
- Department of Internal Medicine, Spaarne Gasthuis Hospital, Haarlem/Hoofddorp, The Netherlands
| | - M E Haverkort
- Public Health Services Kennemerland, Haarlem, The Netherlands
| | - R Mariman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - P Badoux
- Spaarne Gasthuis Academy, Hoofddorp, The Netherlands
| | - E M de Koff
- Spaarne Gasthuis Academy, Hoofddorp, The Netherlands
| | - J C D Koole
- Spaarne Gasthuis Academy, Hoofddorp, The Netherlands.,(current affiliation) Public Health Services Amsterdam, Amsterdam, The Netherlands
| | - W R Miellet
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.,Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, The Netherlands
| | - A N Swart
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - E C Coipan
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - A Meijer
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - E A M Sanders
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - K Trzciński
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, The Netherlands
| | - S M Euser
- Regional Public Health Laboratory Kennemerland, Haarlem, The Netherlands
| | - D Eggink
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - M A van Houten
- Spaarne Gasthuis Academy, Hoofddorp, The Netherlands.,Department of Paediatrics, Spaarne Gasthuis, Haarlem/Hoofddorp, The Netherlands
| |
Collapse
|
74
|
Lim J, Stavins R, Kindratenko V, Baek J, Wang L, White K, Kumar J, Valera E, King WP, Bashir R. Microfluidic point-of-care device for detection of early strains and B.1.1.7 variant of SARS-CoV-2 virus. LAB ON A CHIP 2022; 22:1297-1309. [PMID: 35244660 DOI: 10.1039/d2lc00021k] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Since the beginning of the COVID-19 pandemic, several mutations of the SARS-CoV-2 virus have emerged. Current gold standard detection methods for detecting the virus and its variants are based on PCR-based diagnostics using complex laboratory protocols and time-consuming steps, such as RNA isolation and purification, and thermal cycling. These steps limit the translation of technology to the point-of-care and limit accessibility to under-resourced regions. While PCR-based assays currently offer the possibility of multiplexed gene detection, and commercial products of single gene PCR and isothermal LAMP at point-of-care are also now available, reports of isothermal assays at the point-of-care with detection of multiple genes are lacking. Here, we present a microfluidic assay and device to detect and differentiate the Alpha variant (B.1.1.7) from the SARS-CoV-2 virus early strains in saliva samples. The detection assay, which is based on isothermal RT-LAMP amplification, takes advantage of the S-gene target failure (SGTF) to differentiate the Alpha variant from the SARS-CoV-2 virus early strains using a binary detection system based on spatial separation of the primers specific to the N- and S-genes. We use additively manufactured plastic cartridges in a low-cost optical reader system to successfully detect the SARS-CoV-2 virus from saliva samples (positive amplification is detected with concentration ≥10 copies per μL) within 30 min. We demonstrate that our platform can discriminate the B.1.1.7 variant (USA/CA_CDC_5574/2020 isolate) from SARS-CoV-2 negative samples, but also from the SARS-CoV-2 USA-WA1/2020 isolate. The reliability of the developed point-of-care device was confirmed by testing 38 clinical saliva samples, including 20 samples positive for Alpha variant (sensitivity > 90%, specificity = 100%). This study highlights the current relevance of binary-based testing, as the new Omicron variant also exhibits S-gene target failure and could be tested by adapting the approach presented here.
Collapse
Affiliation(s)
- Jongwon Lim
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Robert Stavins
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Victoria Kindratenko
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Janice Baek
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Leyi Wang
- Veterinary Diagnostic Laboratory and Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Karen White
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, IL 61801, USA
- Carle Foundation Hospital, Urbana, Illinois 61801, USA
| | - James Kumar
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, IL 61801, USA
- Carle Foundation Hospital, Urbana, Illinois 61801, USA
| | - Enrique Valera
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - William Paul King
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
75
|
Herbert C, Kheterpal V, Suvarna T, Broach J, Marquez JL, Gerber B, Schrader S, Nowak C, Harman E, Heetderks W, Fahey N, Orvek E, Lazar P, Ferranto J, Noorishirazi K, Valpady S, Shi Q, Lin H, Marvel K, Gibson L, Barton B, Lemon S, Hafer N, McManus D, Soni A. Design and Preliminary Findings from Self-Testing for Our Protection from COVID-19 (STOP COVID-19): a prospective digital study of adherence to a risk-based testing protocol (Preprint). JMIR Form Res 2022; 6:e38113. [PMID: 35649180 PMCID: PMC9205422 DOI: 10.2196/38113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/11/2022] [Accepted: 05/29/2022] [Indexed: 01/15/2023] Open
Affiliation(s)
- Carly Herbert
- Program in Digital Medicine, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | | | | | - John Broach
- Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | | | - Ben Gerber
- Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | | | | | - Emma Harman
- CareEvolution, Inc, Ann Arbor, MI, United States
| | - William Heetderks
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Kelly Services, Bethesda, MD, United States
| | - Nisha Fahey
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Elizabeth Orvek
- Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Peter Lazar
- Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Julia Ferranto
- Program in Digital Medicine, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Kamran Noorishirazi
- Program in Digital Medicine, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Shivakumar Valpady
- Program in Digital Medicine, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Qiming Shi
- Program in Digital Medicine, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA, United States
- University of Massachusetts Center for Clinical and Translational Science, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Honghuang Lin
- Program in Digital Medicine, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Division of Clinical Informatics, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Kathryn Marvel
- Program in Digital Medicine, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Laura Gibson
- Division of Infectious Disease, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Bruce Barton
- Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Stephenie Lemon
- Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Nathaniel Hafer
- University of Massachusetts Center for Clinical and Translational Science, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - David McManus
- Program in Digital Medicine, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Division of Cardiology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Apurv Soni
- Program in Digital Medicine, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Division of Clinical Informatics, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
76
|
Soni A, Herbert C, Filippaios A, Broach J, Colubri A, Fahey N, Woods K, Nanavati J, Wright C, Orwig T, Gilliam K, Kheterpal V, Suvarna T, Nowak C, Schrader S, Lin H, O'Connor L, Pretz C, Ayturk D, Orvek E, Flahive J, Lazar P, Shi Q, Achenbach C, Murphy R, Robinson M, Gibson L, Stamegna P, Hafer N, Luzuriaga K, Barton B, Heetderks W, Manabe YC, McManus D. Comparison of Rapid Antigen Tests' Performance between Delta (B.1.61.7; AY.X) and Omicron (B.1.1.529; BA1) Variants of SARS-CoV-2: Secondary Analysis from a Serial Home Self-Testing Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022. [PMID: 35262091 DOI: 10.1101/2022.02.27.22271090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background There is a need to understand the performance of rapid antigen tests (Ag-RDT) for detection of the Delta (B.1.61.7; AY.X) and Omicron (B.1.1.529; BA1) SARS-CoV-2 variants. Methods Participants without any symptoms were enrolled from October 18, 2021 to January 24, 2022 and performed Ag-RDT and RT-PCR tests every 48 hours for 15 days. This study represents a non-pre-specified analysis in which we sought to determine if sensitivity of Ag-RDT differed in participants with Delta compared to Omicron variant. Participants who were positive on RT-PCR on the first day of the testing period were excluded. Delta and Omicron variants were defined based on sequencing and date of first RT-PCR positive result (RT-PCR+). Comparison of Ag-RDT performance between the variants was based on sensitivity, defined as proportion of participants with Ag-RDT+ results in relation to their first RT-PCR+ result, for different duration of testing with rapid Ag-RDT. Subsample analysis was performed based on the result of participants' second RT-PCR test within 48 hours of the first RT-PCR+ test. Results From the 7,349 participants enrolled in the parent study, 5,506 met the eligibility criteria for this analysis. A total of 153 participants were RT-PCR+ (61 Delta, 92 Omicron); among this group, 36 (23.5%) tested Ag-RDT+ on the same day, and 84 (54.9%) tested Ag-RDT+ within 48 hours as first RT-PCR+. The differences in sensitivity between variants were not statistically significant (same-day: Delta 16.4% [95% CI: 8.2-28.1] vs Omicron 28.2% [95% CI: 19.4-38.6]; and 48-hours: Delta 45.9% [33.1-59.2] vs. Omicron 60.9% [50.1-70.9]). This trend continued among the 86 participants who had consecutive RT-PCR+ result (48-hour sensitivity: Delta 79.3% [60.3-92.1] vs. Omicron: 89.5% [78.5-96.0]). Conversely, the 38 participants who had an isolated RT-PCR+ remained consistently negative on Ag-RDT, regardless of the variant. Conclusions The performance of Ag-RDT is not inferior among individuals infected with the SARS-CoV-2 Omicron variant as compared to the Delta variant. The improvement in sensitivity of Ag-RDT noted with serial testing is consistent between Delta and Omicron variant. Performance of Ag-RDT varies based on duration of RT-PCR+ results and more studies are needed to understand the clinical and public health significance of individuals who are RT-PCR+ for less than 48 hours.
Collapse
|
77
|
Steyn N, Lustig A, Hendy SC, Binny RN, Plank MJ. Effect of vaccination, border testing, and quarantine requirements on the risk of COVID-19 in New Zealand: A modelling study. Infect Dis Model 2022; 7:184-198. [PMID: 34977439 PMCID: PMC8712670 DOI: 10.1016/j.idm.2021.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022] Open
Abstract
We couple a simple model of quarantine and testing strategies for international travellers with a model for transmission of SARS-CoV-2 in a partly vaccinated population. We use this model to estimate the risk of an infectious traveller causing a community outbreak under various border control strategies and different levels of vaccine coverage in the population. Results are calculated from N = 100,000 independent realisations of the stochastic model. We find that strategies that rely on home isolation are significantly higher risk than the current mandatory 14-day stay in government-managed isolation. Nevertheless, combinations of testing and home isolation can still reduce the risk of a community outbreak to around one outbreak per 100 infected travellers. We also find that, under some circumstances, using daily lateral flow tests or a combination of lateral flow tests and polymerase chain reaction (PCR) tests can reduce risk to a comparable or lower level than using PCR tests alone. Combined with controls on the number of travellers from countries with high prevalence of COVID-19, our results allow different options for managing the risk of COVID-19 at the border to be compared. This can be used to inform strategies for relaxing border controls in a phased way, while limiting the risk of community outbreaks as vaccine coverage increases.
Collapse
Affiliation(s)
- Nicholas Steyn
- Department of Physics, University of Auckland, New Zealand
- Te Pūnaha Matatini, Centre of Research Excellence in Complex Systems, New Zealand
| | - Audrey Lustig
- Te Pūnaha Matatini, Centre of Research Excellence in Complex Systems, New Zealand
- Manaaki Whenua, Lincoln, New Zealand
| | - Shaun C. Hendy
- Department of Physics, University of Auckland, New Zealand
- Te Pūnaha Matatini, Centre of Research Excellence in Complex Systems, New Zealand
| | - Rachelle N. Binny
- Te Pūnaha Matatini, Centre of Research Excellence in Complex Systems, New Zealand
- Manaaki Whenua, Lincoln, New Zealand
| | - Michael J. Plank
- School of Mathematics and Statistics, University of Canterbury, New Zealand
- Te Pūnaha Matatini, Centre of Research Excellence in Complex Systems, New Zealand
| |
Collapse
|
78
|
Deeks JJ, Singanayagam A, Houston H, Sitch AJ, Hakki S, Dunning J, Lalvani A. SARS-CoV-2 antigen lateral flow tests for detecting infectious people: linked data analysis. BMJ 2022; 376:e066871. [PMID: 35197270 PMCID: PMC8864475 DOI: 10.1136/bmj-2021-066871] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To investigate the proportion of lateral flow tests (LFTs) that produce negative results in those with a high risk of infectiousness from SARS-CoV-2, to investigate the impact of the stage and severity of disease, and to compare predictions made by influential mathematical models with findings of empirical studies. DESIGN Linked data analysis combining empirical evidence of the accuracy of the Innova LFT, the probability of positive viral culture or transmission to secondary cases, and the distribution of viral loads of SARS-CoV-2 in individuals in different settings. SETTING Testing of individuals with symptoms attending NHS Test-and-Trace centres across the UK, residents without symptoms attending municipal mass testing centres in Liverpool, and students without symptoms screened at the University of Birmingham. PARTICIPANTS Evidence for the sensitivity of the Innova LFT, based on 70 individuals with SARS-CoV-2 and LFT results. Infectiousness was based on viral culture rates on 246 samples (176 people with SARS-CoV-2) and secondary cases among 2 474 066 contacts; distributions of cycle threshold (Ct) values from 231 497 index individuals attending NHS Test-and-Trace centres; 70 people with SARS-CoV-2 detected in Liverpool and 62 people with SARS-CoV-2 in Birmingham (54 imputed). MAIN OUTCOME MEASURES The predicted proportions who were missed by LFT and viral culture positive and missed by LFT and sources of secondary cases, in each of the three settings. Predictions were compared with those made by mathematical models. RESULTS The analysis predicted that of those with a viral culture positive result, Innova would miss 20% attending an NHS Test-and-Trace centre, 29% without symptoms attending municipal mass testing, and 81% attending university screen testing without symptoms, along with 38%, 47%, and 90% of sources of secondary cases. In comparison, two mathematical models underestimated the numbers of missed infectious individuals (8%, 10%, and 32% in the three settings for one model, whereas the assumptions from the second model made it impossible to miss an infectious individual). Owing to the paucity of usable data, the inputs to the analyses are from limited sources. CONCLUSIONS The proportion of infectious people with SARS-CoV-2 missed by LFTs is substantial enough to be of clinical importance. The proportion missed varied between settings because of different viral load distributions and is likely to be highest in those without symptoms. Key models have substantially overestimated the sensitivity of LFTs compared with empirical data. An urgent need exists for additional robust well designed and reported empirical studies from intended use settings to inform evidence based policy.
Collapse
Affiliation(s)
- Jonathan J Deeks
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham B15 2TT, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, UK and University of Birmingham, UK
| | - Anika Singanayagam
- NIHR Health Protection Research Unit in Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, UK
- Department of Infectious Diseases, Imperial College London, London, UK
| | - Hamish Houston
- NIHR Health Protection Research Unit in Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, UK
| | - Alice J Sitch
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham B15 2TT, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, UK and University of Birmingham, UK
| | - Seran Hakki
- NIHR Health Protection Research Unit in Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, UK
| | - Jake Dunning
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Centre for Tropical Medicine, University of Oxford, Oxford, UK
| | - Ajit Lalvani
- NIHR Health Protection Research Unit in Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
79
|
Perkins TA, Stephens M, Alvarez Barrios W, Cavany S, Rulli L, Pfrender ME. Performance of Three Tests for SARS-CoV-2 on a University Campus Estimated Jointly with Bayesian Latent Class Modeling. Microbiol Spectr 2022; 10:e0122021. [PMID: 35044220 PMCID: PMC8768831 DOI: 10.1128/spectrum.01220-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/12/2021] [Indexed: 12/19/2022] Open
Abstract
Accurate tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been critical in efforts to control its spread. The accuracy of tests for SARS-CoV-2 has been assessed numerous times, usually in reference to a gold standard diagnosis. One major disadvantage of that approach is the possibility of error due to inaccuracy of the gold standard, which is especially problematic for evaluating testing in a real-world surveillance context. We used an alternative approach known as Bayesian latent class modeling (BLCM), which circumvents the need to designate a gold standard by simultaneously estimating the accuracy of multiple tests. We applied this technique to a collection of 1,716 tests of three types applied to 853 individuals on a university campus during a 1-week period in October 2020. We found that reverse transcriptase PCR (RT-PCR) testing of saliva samples performed at a campus facility had higher sensitivity (median, 92.3%; 95% credible interval [CrI], 73.2 to 99.6%) than RT-PCR testing of nasal samples performed at a commercial facility (median, 85.9%; 95% CrI, 54.7 to 99.4%). The reverse was true for specificity, although the specificity of saliva testing was still very high (median, 99.3%; 95% CrI, 98.3 to 99.9%). An antigen test was less sensitive and specific than both of the RT-PCR tests, although the sample sizes with this test were small and the statistical uncertainty was high. These results suggest that RT-PCR testing of saliva samples at a campus facility can be an effective basis for surveillance screening to prevent SARS-CoV-2 transmission in a university setting. IMPORTANCE Testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been vitally important during the COVID-19 pandemic. There are a variety of methods for testing for this virus, and it is important to understand their accuracy in choosing which one might be best suited for a given application. To estimate the accuracy of three different testing methods, we used a data set collected at a university that involved testing the same samples with multiple tests. Unlike most other estimates of test accuracy, we did not assume that one test was perfect but instead allowed for some degree of inaccuracy in all testing methods. We found that molecular tests performed on saliva samples at a university facility were similarly accurate as molecular tests performed on nasal samples at a commercial facility. An antigen test appeared somewhat less accurate than the molecular tests, but there was high uncertainty about that.
Collapse
Affiliation(s)
- T. Alex Perkins
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Melissa Stephens
- Genomics and Bioinformatics Core Facility, University of Notre Dame, Notre Dame, Indiana, USA
| | | | - Sean Cavany
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Liz Rulli
- Notre Dame Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Michael E. Pfrender
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
80
|
Robinson ML, Mirza A, Gallagher N, Boudreau A, Garcia L, Yu T, Norton J, Luo CH, Conte A, Zhou R, Kafka K, Hardick J, McManus DD, Gibson LL, Pekosz A, Mostafa H, Manabe YC. Limitations of molecular and antigen test performance for SARS-CoV-2 in symptomatic and asymptomatic COVID-19 contacts. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022. [PMID: 35169814 DOI: 10.1101/2022.02.05.22270481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVES COVID-19 has brought unprecedented attention to the crucial role of diagnostics in pandemic control. We compared SARS-CoV-2 test performance by sample type and modality in close contacts of SARS-CoV-2 cases. METHODS Close contacts of SARS-CoV-2 positive individuals were enrolled after informed consent. Clinician-collected nasopharyngeal (NP) swabs in viral transport media (VTM) were tested with a nucleic acid test (NAT). NP VTM and self-collected passive drool were tested using the PerkinElmer real-time reverse transcription PCR (RT-PCR) assay. For the first 4 months of study, mid-turbinate swabs were tested using the BD Veritor rapid antigen test. NAT positive NP samples were tested for infectivity using a VeroE6TMPRSS2 cell culture model. RESULTS Between November 17, 2020, and October 1, 2021, 235 close contacts of SARS-CoV-2 cases were recruited, including 95 with symptoms (82% symptomatic for < 5 days) and 140 asymptomatic individuals. NP swab reference tests were positive for 53 (22.6%) participants; 24/50 (48%) were culture positive. PerkinElmer testing of NP and saliva samples identified an additional 28 (11.9%) SARS-CoV-2 cases who tested negative by clinical NAT. Antigen tests performed for 99 close contacts showed 83% positive percent agreement (PPA) with reference NAT among early symptomatic persons, but 18% PPA in others; antigen tests in 8 of 11 (72.7%) culture-positive participants were positive. CONCLUSIONS Contacts of SARS-CoV-2 cases may be falsely negative early after contact, which more sensitive platforms may identify. Repeat or serial SARS-CoV-2 testing with both antigen and molecular assays may be warranted for individuals with high pretest probability for infection.
Collapse
|
81
|
Achenbach CJ, Caputo M, Hawkins C, Balmert LC, Qi C, Odorisio J, Dembele E, Jackson A, Abbas H, Frediani JK, Levy JM, Rebolledo PA, Kempker RR, Esper AM, Lam WA, Martin GS, Murphy RL. Clinical evaluation of the Diagnostic Analyzer for Selective Hybridization (DASH): a point-of-care PCR test for rapid detection of SARS-CoV-2 infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.01.24.22269785. [PMID: 35118476 PMCID: PMC8811909 DOI: 10.1101/2022.01.24.22269785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND Rapid and accurate testing for SARS-CoV-2 is an essential tool in the medical and public health response to the COVID-19 pandemic. An ideal test for COVID-19 would combine the sensitivity of laboratory-based PCR combined with the speed and ease of use of point-of-care (POC) or home-based rapid antigen testing. METHODS To evaluate the performance of the Diagnostic Analyzer for Selective Hybridization (DASH) SARS-CoV-2 POC PCR (sample insertion to result time of 16 minutes), we conducted a cross-sectional study of adults with and without symptoms of COVID-19 at four clinical sites. We collected two bilateral anterior nasal swabs from each participant and information on COVID-19 symptoms, vaccination, and exposure. One swab was tested with the DASH SARS-CoV-2 POC PCR and the second in a central laboratory using Cepheid Xpert Xpress SARS-CoV-2 PCR. We assessed test concordance and calculated sensitivity, specificity, negative and positive predictive values using Xpert as the "gold standard." RESULTS We enrolled 315 and analyzed 313 participants with median age 42 years; 65% were female, 62% symptomatic, 75% had received ≥2 doses of mRNA COVID-19 vaccine, and 16% currently COVID-19 positive. There were concordant results for 307 tests indicating an overall agreement for DASH of 0.98 [95% CI 0.96, 0.99] compared to Xpert. DASH performed at 0.96 [95% CI 0.86, 1.00] sensitivity and 0.98 [95% CI 0.96, 1.00] specificity, with a positive predictive value of 0.85 [95% CI 0.73, 0.96] and negative predictive value of 0.996 [95% CI 0.99, 1.00]. The six discordant tests between DASH and Xpert all had high Ct values (>30) on the respective positive assay. DASH and Xpert Ct values were highly correlated (R=0.89 [95% CI 0.81, 0.94]). CONCLUSIONS DASH POC SARS-CoV-2 PCR was accurate, easy to use, and provided fast results in real-life clinical settings with an overall performance similar to an EUA-approved laboratory-based PCR. Its compact design and ease of use are optimal for a variety of healthcare, and potentially community settings, including areas with lack of access to central laboratory-based PCR testing. SUMMARY DASH is an accurate, easy to use, and fast point-of-care test with applications for diagnosis and screening of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Chad J Achenbach
- Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University
| | - Matthew Caputo
- Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University
| | - Claudia Hawkins
- Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University
| | - Lauren C Balmert
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University
| | - Chao Qi
- Department of Pathology, Northwestern University
| | - Joseph Odorisio
- Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University
| | - Etienne Dembele
- Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University
| | | | | | - Jennifer K Frediani
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies
- Emory University Nell Hodgson Woodruff School of Nursing
| | - Joshua M Levy
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies
- Emory University Department of Otolaryngology
| | - Paulina A Rebolledo
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies
- Emory University Division of Infectious Diseases
| | - Russell R Kempker
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies
- Emory University Division of Infectious Diseases
| | - Annette M Esper
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies
- Emory University Division of Pulmonary, Allergy, Critical Care and Sleep Medicine
| | - Wilbur A Lam
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies
- Emory University Department of Pediatrics
| | - Greg S Martin
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies
- Emory University Division of Pulmonary, Allergy, Critical Care and Sleep Medicine
| | - Robert L Murphy
- Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University
| |
Collapse
|
82
|
Rapid Antigen Test Combine with Nucleic Acid Detection: A Better Strategy for COVID-19 Screening at Points of Entry. J Epidemiol Glob Health 2022; 12:13-15. [PMID: 34978707 PMCID: PMC8721636 DOI: 10.1007/s44197-021-00030-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has imposed an enormous disease burden worldwide, and the Delta variant now has become dominant in 53 countries. Recently published studies have shown that during periods of high viral load, rapid antigen tests (RAT) yield similar results to reverse transcriptase-polymerase chain reaction (RT-PCR) tests, and when used in serial screening (e.g., every three days), it has a high sensitivity. In this perspective, we recommend RT-PCR combined with RAT at points of entry: (i) RAT can be added to the detection phase at ports of entry to detect asymptomatic infections as early as possible; (ii) RAT can be added to post-entry quarantine every three days or less to reduce the rate of missed detection in later quarantine; (iii) Adding regular RAT to regular PCR testing for key airport personnel to prevent cross-infection and conduct closed-off management. In the face of sporadic Delta variant outbreaks, the combination of the two could help rapid triage and management of suspected populations at an early stage and thus contain the outbreak more quickly and effectively. We also discuss the issue whether the current antigen detection reagents can cope with various SARS-CoV-2 variants.
Collapse
|
83
|
Wu S, Archuleta S, Lim SM, Somani J, Quek SC, Fisher D. Serial antigen rapid testing in staff of a large acute hospital. THE LANCET. INFECTIOUS DISEASES 2022; 22:14-15. [PMID: 34883064 PMCID: PMC8648331 DOI: 10.1016/s1473-3099(21)00723-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Sean Wu
- Division of Infectious Diseases, Department of Medicine, National University Hospital, National University Health System, Singapore 119228.
| | - Sophia Archuleta
- Division of Infectious Diseases, Department of Medicine, National University Hospital, National University Health System, Singapore 119228; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - See Ming Lim
- Occupational Health Clinic, National University Hospital, National University Health System, Singapore
| | - Jyoti Somani
- Division of Infectious Diseases, Department of Medicine, National University Hospital, National University Health System, Singapore 119228
| | - Swee Chye Quek
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Pediatrics, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore
| | - Dale Fisher
- Division of Infectious Diseases, Department of Medicine, National University Hospital, National University Health System, Singapore 119228; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
84
|
Kriegel M, Hartmann A, Buchholz U, Seifried J, Baumgarte S, Gastmeier P. SARS-CoV-2 Aerosol Transmission Indoors: A Closer Look at Viral Load, Infectivity, the Effectiveness of Preventive Measures and a Simple Approach for Practical Recommendations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:220. [PMID: 35010484 PMCID: PMC8750733 DOI: 10.3390/ijerph19010220] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
There is uncertainty about the viral loads of infectious individuals required to transmit COVID-19 via aerosol. In addition, there is a lack of both quantification of the influencing parameters on airborne transmission and simple-to-use models for assessing the risk of infection in practice, which furthermore quantify the influence of non-medical preventive measures. In this study, a dose-response model was adopted to analyze 25 documented outbreaks at infection rates of 4-100%. We show that infection was only possible if the viral load was higher than 108 viral copies/mL. Based on mathematical simplifications of our approach to predict the probable situational attack rate (PARs) of a group of persons in a room, and valid assumptions, we provide simplified equations to calculate, among others, the maximum possible number of persons and the person-related virus-free air supply flow necessary to keep the number of newly infected persons to less than one. A comparison of different preventive measures revealed that testing contributes the most to the joint protective effect, besides wearing masks and increasing ventilation. In addition, we conclude that absolute volume flow rate or person-related volume flow rate are more intuitive parameters for evaluating ventilation for infection prevention than air exchange rate.
Collapse
Affiliation(s)
- Martin Kriegel
- Hermann-Rietschel-Institut, Technical University of Berlin, 10623 Berlin, Germany;
| | - Anne Hartmann
- Hermann-Rietschel-Institut, Technical University of Berlin, 10623 Berlin, Germany;
| | - Udo Buchholz
- Department for Infectious Disease Epidemiology, Robert Koch Institute, 13353 Berlin, Germany; (U.B.); (J.S.)
| | - Janna Seifried
- Department for Infectious Disease Epidemiology, Robert Koch Institute, 13353 Berlin, Germany; (U.B.); (J.S.)
| | | | - Petra Gastmeier
- Institute for Hygiene and Environmental Medicine, Charité-University Medicine Berlin, 12203 Berlin, Germany;
| |
Collapse
|
85
|
Implementation and Accuracy of BinaxNOW Rapid Antigen COVID-19 Test in Asymptomatic and Symptomatic Populations in a High-Volume Self-Referred Testing Site. Microbiol Spectr 2021; 9:e0100821. [PMID: 34851137 PMCID: PMC8668078 DOI: 10.1128/spectrum.01008-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapid antigen tests are simple to perform and provide results within 15 min. We describe our implementation and assess performance of the BinaxNOW COVID-19 Antigen Test (Abbott Laboratories) in 6,099 adults at a self-referred walk-up testing site. Participants were grouped by self-reported COVID-19 exposure and symptom status. Most (89%) were asymptomatic, of whom 17% reported potential exposure. Overall test sensitivity compared with reference laboratory reverse-transcription [RT] PCR testing was 81% (95% confidence interval [CI] 75%, 86%). It was higher in symptomatic (87%; 95% CI 80%, 91%) than asymptomatic (71%; 95% CI 61%, 80%) individuals. Sensitivity was 82% (95% CI 66%, 91%) for asymptomatic individuals with potential exposure and 64% (95% CI 51%, 76%) for those with no exposure. Specificity was greater than 99% for all groups. BinaxNOW has high accuracy among symptomatic individuals and is below the FDA threshold for emergency use authorization in asymptomatic individuals. Nonetheless, rapid antigen testing quickly identifies positive among those with symptoms and/or close contact exposure and could expedite isolation and treatment. IMPORTANCE The BinaxNOW rapid antigen COVID-19 test had a sensitivity of 87% in symptomatic and 71% asymptomatic individuals when performed by health care workers in a high-throughput setting. The performance may expedite isolation decisions or referrals for time-sensitive monoclonal antibody treatment in communities where timely COVID PCR tests are unavailable.
Collapse
|
86
|
Lau CS, Aw TC. Disease Prevalence Matters: Challenge for SARS-CoV-2 Testing. Antibodies (Basel) 2021; 10:antib10040050. [PMID: 34940002 PMCID: PMC8698426 DOI: 10.3390/antib10040050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 12/13/2021] [Indexed: 01/03/2023] Open
Abstract
While sensitivity and specificity are important characteristics for any diagnostic test, the influence of prevalence is equally, if not more, important when such tests are used in community screening. We review the concepts of positive/negative predictive values (PPV/NPV) and how disease prevalence affects false positive/negative rates. In low-prevalence situations, the PPV decreases drastically. We demonstrate how using two tests in an orthogonal fashion can be especially beneficial in low-prevalence settings and greatly improve the PPV of the diagnostic test results.
Collapse
Affiliation(s)
- Chin-Shern Lau
- Department of Laboratory Medicine, Changi General Hospital, Singapore 529889, Singapore;
| | - Tar-Choon Aw
- Department of Laboratory Medicine, Changi General Hospital, Singapore 529889, Singapore;
- Department of Medicine, National University of Singapore, Singapore 119077, Singapore
- Academic Pathology Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Correspondence: ; Tel.: +65-68504927; Fax: +65-64269507
| |
Collapse
|
87
|
Smith RL, Brooke CB. Response to Bender et al. J Infect Dis 2021; 224:1989. [PMID: 34648633 DOI: 10.1093/infdis/jiab530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rebecca L Smith
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Christopher B Brooke
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
88
|
Bui LM, Thi Thu Phung H, Ho Thi TT, Singh V, Maurya R, Khambhati K, Wu CC, Uddin MJ, Trung DM, Chu DT. Recent findings and applications of biomedical engineering for COVID-19 diagnosis: a critical review. Bioengineered 2021; 12:8594-8613. [PMID: 34607509 PMCID: PMC8806999 DOI: 10.1080/21655979.2021.1987821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/28/2021] [Indexed: 12/23/2022] Open
Abstract
COVID-19 is one of the most severe global health crises that humanity has ever faced. Researchers have restlessly focused on developing solutions for monitoring and tracing the viral culprit, SARS-CoV-2, as vital steps to break the chain of infection. Even though biomedical engineering (BME) is considered a rising field of medical sciences, it has demonstrated its pivotal role in nurturing the maturation of COVID-19 diagnostic technologies. Within a very short period of time, BME research applied to COVID-19 diagnosis has advanced with ever-increasing knowledge and inventions, especially in adapting available virus detection technologies into clinical practice and exploiting the power of interdisciplinary research to design novel diagnostic tools or improve the detection efficiency. To assist the development of BME in COVID-19 diagnosis, this review highlights the most recent diagnostic approaches and evaluates the potential of each research direction in the context of the pandemic.
Collapse
Affiliation(s)
- Le Minh Bui
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | - Huong Thi Thu Phung
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Thuy-Tien Ho Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Mehsana, Gujarat, India
| | - Rupesh Maurya
- Department of Biosciences, School of Science, Indrashil University, Mehsana, Gujarat, India
| | - Khushal Khambhati
- Department of Biosciences, School of Science, Indrashil University, Mehsana, Gujarat, India
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka, Bangladesh
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Do Minh Trung
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Dinh Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
89
|
Harpaldas H, Arumugam S, Campillo Rodriguez C, Kumar BA, Shi V, Sia SK. Point-of-care diagnostics: recent developments in a pandemic age. LAB ON A CHIP 2021; 21:4517-4548. [PMID: 34778896 PMCID: PMC8860149 DOI: 10.1039/d1lc00627d] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In this review, we provide an overview of developments in point-of-care (POC) diagnostics during the COVID-19 pandemic. We review these advances within the framework of a holistic POC ecosystem, focusing on points of interest - both technological and non-technological - to POC researchers and test developers. Technologically, we review design choices in assay chemistry, microfluidics, and instrumentation towards nucleic acid and protein detection for severe acute respiratory coronavirus 2 (SARS-CoV-2), and away from the lab bench, developments that supported the unprecedented rapid development, scale up, and deployment of POC devices. We describe common features in the POC technologies that obtained Emergency Use Authorization (EUA) for nucleic acid, antigen, and antibody tests, and how these tests fit into four distinct POC use cases. We conclude with implications for future pandemics, infectious disease monitoring, and digital health.
Collapse
Affiliation(s)
- Harshit Harpaldas
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Siddarth Arumugam
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | | | - Bhoomika Ajay Kumar
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Vivian Shi
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Samuel K Sia
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
90
|
Diel R, Hittel N, Nienhaus A. Point-of-Care COVID-19 Antigen Testing in Exposed German Healthcare Workers-A Cost Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010767. [PMID: 34682514 PMCID: PMC8536062 DOI: 10.3390/ijerph182010767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022]
Abstract
Background: Hospital staffing shortages are again (mid-year 2021) becoming a significant problem as the number of positive COVID-19 cases continues to increase worldwide. Objective: To assess the costs of sending HCW into quarantine (Scenario 1) from the hospital’s and the taxpayer’s perspective versus the costs arising from implementing point-of-care COVID-19 antigen testing (POCT) for those staff members who, despite learning that they have been exposed to hospital patients later found to be infected with COVID-19, continue to report to work (Scenario 2). Methods: A mathematical model was built to calculate the costs of a sample-and-stay strategy for exposed healthcare workers (HCW) in Germany by utilizing a high-quality antigen fluorescent immunoassay (FIA), compared to the costs of quarantine. Direct costs and wage costs were evaluated from the hospital as well as from the taxpayer perspective assuming a SARS-CoV-2 infection prevalence of 10%. Results: Serial POCT testing of exposed HCW in Germany (Scenario 2) who do not go into quarantine but continue to work during a post-exposure period of 14 days at their working place raises costs of EUR 289 (±20%: EUR 231 to EUR 346, rounded) per HCW at the expense of the employing hospital while the extra-costs to the taxpayer per exposed HCW are limited to EUR 16 (±20%: EUR 13 to EUR 19). In contrast, sending HCW into quarantine (Scenario 1) would result in costs of EUR 111 (±20%: EUR 89 to EUR 133) per exposed HCW for the hospital but EUR 2235 (±20%: EUR 1744 to EUR 2727) per HCW at the expense of the taxpayer. Conclusions: Monitoring exposed HCW who continued working by sequential POCT may considerably reduce costs from the perspective of the taxpayer and help mitigate personnel shortages in hospitals during pandemic COVID-19 waves.
Collapse
Affiliation(s)
- Roland Diel
- Institute for Epidemiology, University Medical Hospital Schleswig-Holstein, 24015 Kiel, Germany
- Lung Clinic Grosshansdorf, Airway Disease Center North (ARCN), German Center for Lung Research (DZL), 22927 Großhansdorf, Germany
- Institution for Statutory Accident Insurance and Prevention in the Health and Welfare Services (BGW), 22089 Hamburg, Germany;
- Correspondence: ; Tel.: +49-(0)-1724578525
| | | | - Albert Nienhaus
- Institution for Statutory Accident Insurance and Prevention in the Health and Welfare Services (BGW), 22089 Hamburg, Germany;
- Institute for Health Service Research in Dermatology and Nursing, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
91
|
Bender JK, Meyer ED, Sandfort M, Matysiak-Klose D, Bojara G, Hellenbrand W. Low sensitivity of rapid antigen tests to detect SARS-CoV-2 infections prior to and on the day of symptom onset in staff and residents of a nursing home, Germany, January-March 2021. J Infect Dis 2021; 224:1987-1989. [PMID: 34648637 PMCID: PMC8524645 DOI: 10.1093/infdis/jiab528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jennifer K Bender
- Department of Infectious Diseases, Nosocomial Pathogens and Antibiotic Resistances Unit, Robert Koch Institute, Wernigerode, Germany.,European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Emily D Meyer
- Department of Infectious Disease Epidemiology, Postgraduate Training for Applied Epidemiology (PAE), Robert Koch Institute, Berlin, Germany.,European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Mirco Sandfort
- Department of Infectious Disease Epidemiology, Postgraduate Training for Applied Epidemiology (PAE), Robert Koch Institute, Berlin, Germany.,European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Dorothea Matysiak-Klose
- Department of Infectious Disease Epidemiology, Immunization Unit, Robert Koch Institute, Berlin, Germany
| | | | - Wiebke Hellenbrand
- Department of Infectious Disease Epidemiology, Immunization Unit, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
92
|
Lau CS, Aw TC. Frequent Sars-Cov-2 Antigen Testing In A Disease-Free Population. J Infect Dis 2021; 224:1986-1987. [PMID: 34644383 DOI: 10.1093/infdis/jiab529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- C S Lau
- Department of Laboratory Medicine, Changi General Hospital, Singapore
| | - T C Aw
- Department of Laboratory Medicine, Changi General Hospital, Singapore.,Department of Medicine, National University of Singapore, Singapore.,Academic Pathology Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
93
|
Parvu V, Gary DS, Mann J, Lin YC, Mills D, Cooper L, Andrews JC, Manabe YC, Pekosz A, Cooper CK. Factors that Influence the Reported Sensitivity of Rapid Antigen Testing for SARS-CoV-2. Front Microbiol 2021; 12:714242. [PMID: 34675892 PMCID: PMC8524138 DOI: 10.3389/fmicb.2021.714242] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022] Open
Abstract
Tests that detect the presence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) antigen in clinical specimens from the upper respiratory tract can provide a rapid means of coronavirus disease 2019 (COVID-19) diagnosis and help identify individuals who may be infectious and should isolate to prevent SARS-CoV-2 transmission. This systematic review assesses the diagnostic accuracy of SARS-CoV-2 antigen detection in COVID-19 symptomatic and asymptomatic individuals compared to quantitative reverse transcription polymerase chain reaction (RT-qPCR) and summarizes antigen test sensitivity using meta-regression. In total, 83 studies were included that compared SARS-CoV-2 rapid antigen-based lateral flow testing (RALFT) to RT-qPCR for SARS-CoV-2. Generally, the quality of the evaluated studies was inconsistent; nevertheless, the overall sensitivity for RALFT was determined to be 75.0% (95% confidence interval: 71.0-78.0). Additionally, RALFT sensitivity was found to be higher for symptomatic vs. asymptomatic individuals and was higher for a symptomatic population within 7 days from symptom onset compared to a population with extended days of symptoms. Viral load was found to be the most important factor for determining SARS-CoV-2 antigen test sensitivity. Other design factors, such as specimen storage and anatomical collection type, also affect the performance of RALFT. RALFT and RT-qPCR testing both achieve high sensitivity when compared to SARS-CoV-2 viral culture.
Collapse
Affiliation(s)
- Valentin Parvu
- Becton, Dickinson and Company, BD Life Sciences–Integrated Diagnostic Solutions, Sparks, MD, United States
| | - Devin S. Gary
- Becton, Dickinson and Company, BD Life Sciences–Integrated Diagnostic Solutions, Sparks, MD, United States
| | - Joseph Mann
- Becton, Dickinson and Company, BD Life Sciences–Integrated Diagnostic Solutions, Sparks, MD, United States
| | - Yu-Chih Lin
- Becton, Dickinson and Company, BD Life Sciences–Integrated Diagnostic Solutions, Sparks, MD, United States
| | - Dorsey Mills
- Becton, Dickinson and Company, BD Life Sciences–Integrated Diagnostic Solutions, Sparks, MD, United States
| | - Lauren Cooper
- Becton, Dickinson and Company, BD Life Sciences–Integrated Diagnostic Solutions, Sparks, MD, United States
| | - Jeffrey C. Andrews
- Becton, Dickinson and Company, BD Life Sciences–Integrated Diagnostic Solutions, Sparks, MD, United States
| | - Yukari C. Manabe
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Charles K. Cooper
- Becton, Dickinson and Company, BD Life Sciences–Integrated Diagnostic Solutions, Sparks, MD, United States
| |
Collapse
|
94
|
Love J, Wimmer MT, Toth DJA, Chandran A, Makhija D, Cooper CK, Samore MH, Keegan LT. Comparison of antigen- and RT-PCR-based testing strategies for detection of SARS-CoV-2 in two high-exposure settings. PLoS One 2021; 16:e0253407. [PMID: 34492025 PMCID: PMC8423454 DOI: 10.1371/journal.pone.0253407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Surveillance testing for infectious disease is an important tool to combat disease transmission at the population level. During the SARS-CoV-2 pandemic, RT-PCR tests have been considered the gold standard due to their high sensitivity and specificity. However, RT-PCR tests for SARS-CoV-2 have been shown to return positive results when performed to individuals who are past the infectious stage of the disease. Meanwhile, antigen-based tests are often treated as a less accurate substitute for RT-PCR, however, new evidence suggests they may better reflect infectiousness. Consequently, the two test types may each be most optimally deployed in different settings. Here, we present an epidemiological model with surveillance testing and coordinated isolation in two congregate living settings (a nursing home and a university dormitory system) that considers test metrics with respect to viral culture, a proxy for infectiousness. Simulations show that antigen-based surveillance testing coupled with isolation greatly reduces disease burden and carries a lower economic cost than RT-PCR-based strategies. Antigen and RT-PCR tests perform different functions toward the goal of reducing infectious disease burden and should be used accordingly.
Collapse
Affiliation(s)
- Jay Love
- Division of Epidemiology, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Megan T. Wimmer
- Becton, Dickinson, and Company, Franklin Lakes, New Jersey, United States of America
| | - Damon J. A. Toth
- Division of Epidemiology, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
- Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah, United States of America
- Department of Mathematics, University of Utah, Salt Lake City, Utah, United States of America
| | - Arthi Chandran
- Becton, Dickinson, and Company, Franklin Lakes, New Jersey, United States of America
| | - Dilip Makhija
- Becton, Dickinson, and Company, Franklin Lakes, New Jersey, United States of America
| | - Charles K. Cooper
- Becton, Dickinson, and Company, Franklin Lakes, New Jersey, United States of America
| | - Matthew H. Samore
- Division of Epidemiology, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
- Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah, United States of America
| | - Lindsay T. Keegan
- Division of Epidemiology, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
- Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah, United States of America
| |
Collapse
|
95
|
Ke R, Martinez PP, Smith RL, Gibson LL, Achenbach CJ, McFall S, Qi C, Jacob J, Dembele E, Bundy C, Simons LM, Ozer EA, Hultquist JF, Lorenzo-Redondo R, Opdycke AK, Hawkins C, Murphy RL, Mirza A, Conte M, Gallagher N, Luo CH, Jarrett J, Conte A, Zhou R, Farjo M, Rendon G, Fields CJ, Wang L, Fredrickson R, Baughman ME, Chiu KK, Choi H, Scardina KR, Owens AN, Broach J, Barton B, Lazar P, Robinson ML, Mostafa HH, Manabe YC, Pekosz A, McManus DD, Brooke CB. Longitudinal analysis of SARS-CoV-2 vaccine breakthrough infections reveal limited infectious virus shedding and restricted tissue distribution. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.08.30.21262701. [PMID: 34494028 PMCID: PMC8423226 DOI: 10.1101/2021.08.30.21262701] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The global effort to vaccinate people against SARS-CoV-2 in the midst of an ongoing pandemic has raised questions about the nature of vaccine breakthrough infections and the potential for vaccinated individuals to transmit the virus. These questions have become even more urgent as new variants of concern with enhanced transmissibility, such as Delta, continue to emerge. To shed light on how vaccine breakthrough infections compare with infections in immunologically naive individuals, we examined viral dynamics and infectious virus shedding through daily longitudinal sampling in a small cohort of adults infected with SARS-CoV-2 at varying stages of vaccination. The durations of both infectious virus shedding and symptoms were significantly reduced in vaccinated individuals compared with unvaccinated individuals. We also observed that breakthrough infections are associated with strong tissue compartmentalization and are only detectable in saliva in some cases. These data indicate that vaccination shortens the duration of time of high transmission potential, minimizes symptom duration, and may restrict tissue dissemination.
Collapse
|
96
|
Savela ES, Winnett A, Romano AE, Porter MK, Shelby N, Akana R, Ji J, Cooper MM, Schlenker NW, Reyes JA, Carter AM, Barlow JT, Tognazzini C, Feaster M, Goh YY, Ismagilov RF. Quantitative SARS-CoV-2 viral-load curves in paired saliva and nasal swabs inform appropriate respiratory sampling site and analytical test sensitivity required for earliest viral detection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.04.02.21254771. [PMID: 33851180 PMCID: PMC8043477 DOI: 10.1101/2021.04.02.21254771] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Early detection of SARS-CoV-2 infection is critical to reduce asymptomatic and pre-symptomatic transmission, curb the spread of variants by travelers, and maximize treatment efficacy. Low-sensitivity nasal-swab testing (antigen and some nucleic-acid-amplification tests) is commonly used for surveillance and symptomatic testing, but the ability of low-sensitivity nasal-swab tests to detect the earliest stages of infection has not been established. In this case-ascertained study, initially-SARS-CoV-2-negative household contacts of individuals diagnosed with COVID-19 prospectively self-collected paired anterior-nares nasal-swab and saliva samples twice daily for viral-load quantification by high-sensitivity RT-qPCR and digital-RT-PCR assays. We captured viral-load profiles from the incidence of infection for seven individuals and compared diagnostic sensitivities between respiratory sites. Among unvaccinated persons, high-sensitivity saliva testing detected infection up to 4.5 days before viral loads in nasal swabs reached the limit of detection of low-sensitivity nasal-swab tests. For most participants, nasal swabs reached higher peak viral loads than saliva, but were undetectable or at lower loads during the first few days of infection. High-sensitivity saliva testing was most reliable for earliest detection. Our study illustrates the value of acquiring early (within hours after a negative high-sensitivity test) viral-load profiles to guide the appropriate analytical sensitivity and respiratory site for detecting earliest infections. Such data are challenging to acquire but critical to design optimal testing strategies in the current pandemic and will be required for responding to future viral pandemics. As new variants and viruses emerge, up-to-date data on viral kinetics are necessary to adjust testing strategies for reliable early detection of infections.
Collapse
Affiliation(s)
- Emily S. Savela
- California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, USA 91125
| | - Alexander Winnett
- California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, USA 91125
| | - Anna E. Romano
- California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, USA 91125
| | - Michael K. Porter
- California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, USA 91125
| | - Natasha Shelby
- California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, USA 91125
| | - Reid Akana
- California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, USA 91125
| | - Jenny Ji
- California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, USA 91125
| | - Matthew M. Cooper
- California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, USA 91125
| | - Noah W. Schlenker
- California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, USA 91125
| | - Jessica A. Reyes
- California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, USA 91125
| | - Alyssa M. Carter
- California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, USA 91125
| | - Jacob T. Barlow
- California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, USA 91125
| | - Colten Tognazzini
- City of Pasadena Public Health Department, 1845 N. Fair Oaks Ave., Pasadena, CA, USA 91103
| | - Matthew Feaster
- City of Pasadena Public Health Department, 1845 N. Fair Oaks Ave., Pasadena, CA, USA 91103
| | - Ying-Ying Goh
- City of Pasadena Public Health Department, 1845 N. Fair Oaks Ave., Pasadena, CA, USA 91103
| | - Rustem F. Ismagilov
- California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, USA 91125
| |
Collapse
|
97
|
Hsiao WWW, Le TN, Pham DM, Ko HH, Chang HC, Lee CC, Sharma N, Lee CK, Chiang WH. Recent Advances in Novel Lateral Flow Technologies for Detection of COVID-19. BIOSENSORS 2021; 11:295. [PMID: 34562885 PMCID: PMC8466143 DOI: 10.3390/bios11090295] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023]
Abstract
The development of reliable and robust diagnostic tests is one of the most efficient methods to limit the spread of coronavirus disease 2019 (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). However, most laboratory diagnostics for COVID-19, such as enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase-polymerase chain reaction (RT-PCR), are expensive, time-consuming, and require highly trained professional operators. On the other hand, the lateral flow immunoassay (LFIA) is a simpler, cheaper device that can be operated by unskilled personnel easily. Unfortunately, the current technique has some limitations, mainly inaccuracy in detection. This review article aims to highlight recent advances in novel lateral flow technologies for detecting SARS-CoV-2 as well as innovative approaches to achieve highly sensitive and specific point-of-care testing. Lastly, we discuss future perspectives on how smartphones and Artificial Intelligence (AI) can be integrated to revolutionize disease detection as well as disease control and surveillance.
Collapse
Affiliation(s)
- Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.-N.L.); (H.-C.C.); (N.S.); (C.-K.L.)
| | - Trong-Nghia Le
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.-N.L.); (H.-C.C.); (N.S.); (C.-K.L.)
| | - Dinh Minh Pham
- GENTIS JSC, 249A, Thuy Khue, Tay Ho, Hanoi 100000, Vietnam;
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Hui-Hsin Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; (H.-H.K.); (C.-C.L.)
| | - Huan-Cheng Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.-N.L.); (H.-C.C.); (N.S.); (C.-K.L.)
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Cheng-Chung Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; (H.-H.K.); (C.-C.L.)
| | - Neha Sharma
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.-N.L.); (H.-C.C.); (N.S.); (C.-K.L.)
| | - Cheng-Kang Lee
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.-N.L.); (H.-C.C.); (N.S.); (C.-K.L.)
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.-N.L.); (H.-C.C.); (N.S.); (C.-K.L.)
| |
Collapse
|
98
|
Brümmer LE, Katzenschlager S, Gaeddert M, Erdmann C, Schmitz S, Bota M, Grilli M, Larmann J, Weigand MA, Pollock NR, Macé A, Carmona S, Ongarello S, Sacks JA, Denkinger CM. Accuracy of novel antigen rapid diagnostics for SARS-CoV-2: A living systematic review and meta-analysis. PLoS Med 2021; 18:e1003735. [PMID: 34383750 PMCID: PMC8389849 DOI: 10.1371/journal.pmed.1003735] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/26/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND SARS-CoV-2 antigen rapid diagnostic tests (Ag-RDTs) are increasingly being integrated in testing strategies around the world. Studies of the Ag-RDTs have shown variable performance. In this systematic review and meta-analysis, we assessed the clinical accuracy (sensitivity and specificity) of commercially available Ag-RDTs. METHODS AND FINDINGS We registered the review on PROSPERO (registration number: CRD42020225140). We systematically searched multiple databases (PubMed, Web of Science Core Collection, medRvix, bioRvix, and FIND) for publications evaluating the accuracy of Ag-RDTs for SARS-CoV-2 up until 30 April 2021. Descriptive analyses of all studies were performed, and when more than 4 studies were available, a random-effects meta-analysis was used to estimate pooled sensitivity and specificity in comparison to reverse transcription polymerase chain reaction (RT-PCR) testing. We assessed heterogeneity by subgroup analyses, and rated study quality and risk of bias using the QUADAS-2 assessment tool. From a total of 14,254 articles, we included 133 analytical and clinical studies resulting in 214 clinical accuracy datasets with 112,323 samples. Across all meta-analyzed samples, the pooled Ag-RDT sensitivity and specificity were 71.2% (95% CI 68.2% to 74.0%) and 98.9% (95% CI 98.6% to 99.1%), respectively. Sensitivity increased to 76.3% (95% CI 73.1% to 79.2%) if analysis was restricted to studies that followed the Ag-RDT manufacturers' instructions. LumiraDx showed the highest sensitivity, with 88.2% (95% CI 59.0% to 97.5%). Of instrument-free Ag-RDTs, Standard Q nasal performed best, with 80.2% sensitivity (95% CI 70.3% to 87.4%). Across all Ag-RDTs, sensitivity was markedly better on samples with lower RT-PCR cycle threshold (Ct) values, i.e., <20 (96.5%, 95% CI 92.6% to 98.4%) and <25 (95.8%, 95% CI 92.3% to 97.8%), in comparison to those with Ct ≥ 25 (50.7%, 95% CI 35.6% to 65.8%) and ≥30 (20.9%, 95% CI 12.5% to 32.8%). Testing in the first week from symptom onset resulted in substantially higher sensitivity (83.8%, 95% CI 76.3% to 89.2%) compared to testing after 1 week (61.5%, 95% CI 52.2% to 70.0%). The best Ag-RDT sensitivity was found with anterior nasal sampling (75.5%, 95% CI 70.4% to 79.9%), in comparison to other sample types (e.g., nasopharyngeal, 71.6%, 95% CI 68.1% to 74.9%), although CIs were overlapping. Concerns of bias were raised across all datasets, and financial support from the manufacturer was reported in 24.1% of datasets. Our analysis was limited by the included studies' heterogeneity in design and reporting. CONCLUSIONS In this study we found that Ag-RDTs detect the vast majority of SARS-CoV-2-infected persons within the first week of symptom onset and those with high viral load. Thus, they can have high utility for diagnostic purposes in the early phase of disease, making them a valuable tool to fight the spread of SARS-CoV-2. Standardization in conduct and reporting of clinical accuracy studies would improve comparability and use of data.
Collapse
Affiliation(s)
- Lukas E. Brümmer
- Division of Tropical Medicine, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Mary Gaeddert
- Division of Tropical Medicine, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Stephani Schmitz
- Division of Tropical Medicine, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Marc Bota
- Agaplesion Bethesda Hospital, Hamburg, Germany
| | - Maurizio Grilli
- Library, University Medical Center Mannheim, Mannheim, Germany
| | - Jan Larmann
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus A. Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Nira R. Pollock
- Department of Laboratory Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | | | | | | | | | - Claudia M. Denkinger
- Division of Tropical Medicine, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
- Partner Site Heidelberg University Hospital, German Center for Infection Research (DZIF), Heidelberg, Germany
| |
Collapse
|
99
|
De Santi C, Jacob B, Kroich P, Doyle S, Ward R, Li B, Donnelly O, Dykes A, Neelakant T, Neary D, McGuinness R, Cafferkey J, Ryan K, Quadu V, McGrogan K, Garcia Leon A, Mallon P, Fitzpatrick F, Humphreys H, De Barra E, Kerrigan SW, Cavalleri GL. Concordance between PCR-based extraction-free saliva and nasopharyngeal swabs for SARS-CoV-2 testing. HRB Open Res 2021; 4:85. [PMID: 34522839 PMCID: PMC8408542 DOI: 10.12688/hrbopenres.13353.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2021] [Indexed: 11/04/2023] Open
Abstract
Introduction: Saliva represents a less invasive alternative to nasopharyngeal swab (NPS) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection. SalivaDirect is a nucleic acid extraction-free method for detecting SARS-CoV2 in saliva specimens. Studies evaluating the concordance of gold standard NPS and newly developed SalivaDirect protocols are limited. The aim of our study was to to assess SalivaDirect as an alternative method for COVID-19 testing. Methods: Matching NPS and saliva samples were analysed from a cohort of symptomatic (n=127) and asymptomatic (n=181) participants recruited from hospital and university settings, respectively. RNA was extracted from NPS while saliva samples were subjected to the SalivaDirect protocol before RT-qPCR analysis. The presence of SARS-Cov-2 was assessed using RdRP and N1 gene targets in NPS and saliva, respectively. Results: Overall we observed 94.3% sensitivity (95% CI 87.2-97.5%), and 95.9% specificity (95% CI 92.4-97.8%) in saliva when compared to matching NPS samples. Analysis of concordance demonstrated 95.5% accuracy overall for the saliva test relative to NPS, and a very high level of agreement (κ coefficient = 0.889, 95% CI 0.833-0.946) between the two sets of specimens. Fourteen of 308 samples were discordant, all from symptomatic patients. Ct values were >30 in 13/14 and >35 in 6/14 samples. No significant difference was found in the Ct values of matching NPS and saliva sample ( p=0.860). A highly significant correlation (r = 0.475, p<0.0001) was also found between the Ct values of the concordant positive saliva and NPS specimens. Conclusions: Use of saliva processed according to the SalivaDirect protocol represents a valid method to detect SARS-CoV-2. Accurate and less invasive saliva screening is an attractive alternative to current testing methods based on NPS and would afford greater capacity to test asymptomatic populations especially in the context of frequent testing.
Collapse
Affiliation(s)
- Chiara De Santi
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Benson Jacob
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Patricia Kroich
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sean Doyle
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Rebecca Ward
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Brian Li
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Owain Donnelly
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Amy Dykes
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Trisha Neelakant
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David Neary
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ross McGuinness
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Kieran Ryan
- Department of Surgical Affairs, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Veronica Quadu
- Mercer's Medical Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Killian McGrogan
- Mercer's Medical Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alejandro Garcia Leon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
| | - Patrick Mallon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
| | - Fidelma Fitzpatrick
- Department of Microbiology, Beaumont Hospital, Dublin, Ireland
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hilary Humphreys
- Department of Microbiology, Beaumont Hospital, Dublin, Ireland
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Eoghan De Barra
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Infectious Diseases, Beaumont Hospital, Dublin, Ireland
| | - Steve W. Kerrigan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gianpiero L. Cavalleri
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
100
|
Ke R, Martinez PP, Smith RL, Gibson LL, Mirza A, Conte M, Gallagher N, Luo CH, Jarrett J, Conte A, Liu T, Farjo M, Walden KKO, Rendon G, Fields CJ, Wang L, Fredrickson R, Edmonson DC, Baughman ME, Chiu KK, Choi H, Scardina KR, Bradley S, Gloss SL, Reinhart C, Yedetore J, Quicksall J, Owens AN, Broach J, Barton B, Lazar P, Heetderks WJ, Robinson ML, Mostafa HH, Manabe YC, Pekosz A, McManus DD, Brooke CB. Daily sampling of early SARS-CoV-2 infection reveals substantial heterogeneity in infectiousness. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 34282424 DOI: 10.1101/2021.07.12.21260208] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The dynamics of SARS-CoV-2 replication and shedding in humans remain poorly understood. We captured the dynamics of infectious virus and viral RNA shedding during acute infection through daily longitudinal sampling of 60 individuals for up to 14 days. By fitting mechanistic models, we directly estimate viral reproduction and clearance rates, and overall infectiousness for each individual. Significant person-to-person variation in infectious virus shedding suggests that individual-level heterogeneity in viral dynamics contributes to superspreading. Viral genome load often peaked days earlier in saliva than in nasal swabs, indicating strong compartmentalization and suggesting that saliva may serve as a superior sampling site for early detection of infection. Viral loads and clearance kinetics of B.1.1.7 and non-B.1.1.7 viruses in nasal swabs were indistinguishable, however B.1.1.7 exhibited a significantly slower pre-peak growth rate in saliva. These results provide a high-resolution portrait of SARS-CoV-2 infection dynamics and implicate individual-level heterogeneity in infectiousness in superspreading.
Collapse
|