51
|
Wang C, Xing H, Jiang X, Zeng J, Liu Z, Chen J, Wu Y. Cerebral Phaeohyphomycosis Caused by Exophiala dermatitidis in a Chinese CARD9-Deficient Patient: A Case Report and Literature Review. Front Neurol 2019; 10:938. [PMID: 31551907 PMCID: PMC6734004 DOI: 10.3389/fneur.2019.00938] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/13/2019] [Indexed: 12/19/2022] Open
Abstract
Exophiala dermatitidis, a dematiaceous fungus typically found in decaying organic matter worldwide, is a rare cause of fungal infections. Cerebral phaeohyphomycosis is a sporadic but often fatal infection of the brain caused by E. dermatitidis. However, due to limited reports, little is known about its specific predisposing factors, clinical manifestation, and optimal treatment modality. Here, we report a clinical presentation and management of cerebral phaeohyphomycosis in a Chinese patient. An otherwise healthy, young male who was diagnosed with neck fungal lymphadenitis caused by E. dermatitidis 7 months prior and was treated with itraconazole, presented later with progressive intracranial hypertension and persistent coma. Culture of the neck lymphoid tissue produced growth of a black yeast-like fungus, which was identified as E. dermatitidis by sequencing of the ribosomal DNA internal transcribed spacer (ITS) domains. Accordingly, a cerebral biopsy was performed, and the pathological report showed mycelia and fungal granulomas. We also sequenced CARD9 in the patient and found him to be homozygous for loss-of-function mutation; his parents were heterozygous for the same mutation. This is a first case report of cerebral phaeohyphomycosis caused by E. dermatitidis in a CARD9-deficient Chinese patient. He eventually succumbed to brain herniation and severe lung infection with a poor response to therapy. Thus, previously healthy patients with unexplained invasive E. dermatitidis infection, at any age, should be tested for inherited CARD9 deficiency.
Collapse
Affiliation(s)
- Chen Wang
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyi Xing
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jingsi Zeng
- Department of Dermatology and Venereology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijun Liu
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jixiang Chen
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wu
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
52
|
Huang C, Zhang Y, Song Y, Wan Z, Wang X, Li R. Phaeohyphomycosis caused by
Phialophora americana
with
CARD9
mutation and 20‐year literature review in China. Mycoses 2019; 62:908-919. [PMID: 31271673 DOI: 10.1111/myc.12962] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/28/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Chen Huang
- Department of Dermatology, Peking University First Hospital, Research Center for Medical Mycology, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses Peking University Beijing China
| | - Yi Zhang
- Department of Dermatology, Peking University First Hospital, Research Center for Medical Mycology, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses Peking University Beijing China
| | - Yinggai Song
- Department of Dermatology, Peking University First Hospital, Research Center for Medical Mycology, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses Peking University Beijing China
| | - Zhe Wan
- Department of Dermatology, Peking University First Hospital, Research Center for Medical Mycology, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses Peking University Beijing China
| | - Xiaowen Wang
- Department of Dermatology, Peking University First Hospital, Research Center for Medical Mycology, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses Peking University Beijing China
| | - Ruoyu Li
- Department of Dermatology, Peking University First Hospital, Research Center for Medical Mycology, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses Peking University Beijing China
| |
Collapse
|
53
|
Velasco J, Revankar S. CNS Infections Caused by Brown-Black Fungi. J Fungi (Basel) 2019; 5:jof5030060. [PMID: 31295828 PMCID: PMC6787688 DOI: 10.3390/jof5030060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 12/20/2022] Open
Abstract
Central nervous system (CNS) infections caused by brown-black or dematiaceous fungi are distinctly rare and represent a small proportion of infections termed phaeohyphomycoses. However, these are becoming more commonly reported. Though many fungi have been implicated in disease, most cases are caused by only a few species, Cladophialophora bantiana being the most common. Most of the fungi described are molds, and often cause infection in immunocompetent individuals, in contrast to infection with other more common molds such as Aspergillus, which is usually seen in highly immunocompromised patients. Diagnosis is challenging, as there are no specific tests for this group of fungi. In addition, these infections are often refractory to standard drug therapies, requiring an aggressive combined surgical and medical approach to improve outcomes, yet mortality remains high. There are no standardized treatments due to a lack of randomized clinical trials, though guidelines have been published based on available data and expert opinion.
Collapse
Affiliation(s)
- Jon Velasco
- Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Sanjay Revankar
- Division of Infectious Diseases, Department of Medicine, Wayne State University, 3990 John R. Street, 5 Hudson, Detroit, MI 48201, USA.
| |
Collapse
|
54
|
Qiu Y, Zhang J, Tang Y, Zhong X, Deng J. Case report: Fever- pneumonia- lymphadenectasis- osteolytic- subcutaneous nodule: Disseminated chromoblastomycosis caused by phialophora. J Infect Chemother 2019; 25:1031-1036. [PMID: 31229375 DOI: 10.1016/j.jiac.2019.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/05/2019] [Accepted: 05/07/2019] [Indexed: 11/26/2022]
Abstract
Chromoblastomycosis (CBM) is a chronic cutaneous and subcutaneous fungal infection caused by certain dematiaceous fungi (usually Fonsecaea, Phialophora, or Cladophialophora). Histologically, CBM is characterized by the presence of medlar bodies. However, the diagnosis is difficult because of the rarity of these pathognomonic presentations and the wide variety of presentations. Treatment of these infections is challenging as it lacks standardization. Herein, we report a case of chromoblastomycosis caused by Phialophora, in a 42-year-old immunocompetent male agriculturist from the humid and subtropical region of southern China. He had a 3-month history of pneumonia with intermittent fever, coughing, and expectoration. The infection subsequently spread to the bone and lymph nodes forming deep lesions and eventually resulting in osteolysis and lymphadenectasis. These subcutaneous nodules were observed after 9 months. Antifungal treatment was administered for 20 months leading to clinical improvement before the patient was lost to follow-up. This case is unique because such deep lesions are rare in immunocompetent individuals and because the initial onset was associated with pneumonia.
Collapse
Affiliation(s)
- Ye Qiu
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jianquan Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| | - Yanping Tang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoning Zhong
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jingmin Deng
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
55
|
Chang CC, Levitz SM. Fungal immunology in clinical practice: Magical realism or practical reality? Med Mycol 2019; 57:S294-S306. [PMID: 31292656 PMCID: PMC7137463 DOI: 10.1093/mmy/myy165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 12/15/2022] Open
Abstract
Invasive fungal infections (IFIs) occur predominantly in immunocompromised individuals but can also be seen in previously well persons. The human innate immune system recognizes key components of the fungal cell wall as foreign resulting in a myriad of signaling cascades. This triggers release of antifungal molecules as well as adaptive immune responses, which kill or at least contain the invading fungi. However, these defences may fail in hosts with primary or secondary immunodeficiencies resulting in IFIs. Knowledge of a patient's immune status enables the clinician to predict the fungal infections most likely to occur. Moreover, the occurrence of an opportunistic mycosis in a patient without known immunocompromise usually should prompt a search for an occult immune defect. A rapidly expanding number of primary and secondary immunodeficiencies associated with mycoses has been identified. An investigative approach to determining the nature of these immunodeficiencies is suggested to help guide clinicians encountering patients with IFI. Finally, promising adjunctive immunotherapy measures are currently being investigated in IFI.
Collapse
Affiliation(s)
- Christina C Chang
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Stuart M Levitz
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States
| |
Collapse
|
56
|
Kirchhoff L, Olsowski M, Rath PM, Steinmann J. Exophiala dermatitidis: Key issues of an opportunistic fungal pathogen. Virulence 2019; 10:984-998. [PMID: 30887863 PMCID: PMC8647849 DOI: 10.1080/21505594.2019.1596504] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The black yeast Exophiala dermatitidis is an opportunistic pathogen, causing phaeohyphomycosis in immunosuppressed patients, chromoblastomycosis and fatal infections of the central nervous system in otherwise healthy Asian patients. In addition, it is also regularly isolated from respiratory samples from cystic fibrosis patients, with rates varying between 1% and 19%.Melanin, as part of the cell wall of black yeasts, is one major factor known contributing to the pathogenicity of E. dermatitidis and increased resistance against host defense and anti-infective therapeutics. Further virulence factors, e.g. the capability to adhere to surfaces and to form biofilm were reported. A better understanding of the pathogenicity of E. dermatitidis is essential for the development of novel preventive and therapeutic strategies. In this review, the current knowledge of E. dermatitidis prevalence, clinical importance, diagnosis, microbiological characteristics, virulence attributes, susceptibility, and resistances as well as therapeutically strategies are discussed.
Collapse
Affiliation(s)
- Lisa Kirchhoff
- Institute of Medical Microbiology, Center of Excellence in Clinical and Laboratory Mycology and Clinical Studies, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Maike Olsowski
- Institute of Medical Microbiology, Center of Excellence in Clinical and Laboratory Mycology and Clinical Studies, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Peter-Michael Rath
- Institute of Medical Microbiology, Center of Excellence in Clinical and Laboratory Mycology and Clinical Studies, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Joerg Steinmann
- Institute of Medical Microbiology, Center of Excellence in Clinical and Laboratory Mycology and Clinical Studies, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Klinikum Nürnberg, Paracelsus Medical University, Nuremberg, Germany
| |
Collapse
|
57
|
Vinh DC. The molecular immunology of human susceptibility to fungal diseases: lessons from single gene defects of immunity. Expert Rev Clin Immunol 2019; 15:461-486. [PMID: 30773066 DOI: 10.1080/1744666x.2019.1584038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Fungal diseases are a threat to human health. Therapies targeting the fungus continue to lead to disappointing results. Strategies targeting the host response represent unexplored opportunities for innovative treatments. To do so rationally requires the identification and neat delineation of critical mechanistic pathways that underpin human antifungal immunity. The study of humans with single-gene defects of the immune system, i.e. inborn errors of immunity (IEIs), provides a foundation for these paradigms. Areas covered: A systematic literature search in PubMed, Scopus, and abstracts of international congresses was performed to review the history of genetic resistance/susceptibility to fungi and identify IEIs associated with fungal diseases. Immunologic mechanisms from relevant IEIs were integrated with current definitions and understandings of mycoses to establish a framework to map out critical immunobiological pathways of human antifungal immunity. Expert opinion: Specific immune responses non-redundantly govern susceptibility to their corresponding mycoses. Defining these molecular pathways will guide the development of host-directed immunotherapies that precisely target distinct fungal diseases. These findings will pave the way for novel strategies in the treatment of these devastating infections.
Collapse
Affiliation(s)
- Donald C Vinh
- a Department of Medicine (Division of Infectious Diseases; Division of Allergy & Clinical Immunology), Department of Medical Microbiology, Department of Human Genetics , McGill University Health Centre - Research Institute , Montreal , QC , Canada
| |
Collapse
|
58
|
Yang SJ, Ng CY, Wu TS, Huang PY, Wu YM, Sun PL. Deep Cutaneous Neoscytalidium dimidiatum Infection: Successful Outcome with Amphotericin B Therapy. Mycopathologia 2018; 184:169-176. [PMID: 30515655 DOI: 10.1007/s11046-018-0308-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/24/2018] [Indexed: 11/29/2022]
Abstract
Phaeohyphomycosis is a term used to describe a heterogenous group of cutaneous and systemic mycotic infections caused by melanized fungi. Many fungi have been reported as pathogens of this disease. The disease spectrum ranges from superficial cutaneous infections, deep cutaneous infections, to systemic infections with internal organ involvement. We report two cases of deep cutaneous phaeohyphomycosis on the foot clinically presenting as cellulitis with abscess formation. The pathogens were isolated from the lesion and both were identified as Neoscytalidium dimidiatum by their colony morphology, microscopic features, and sequences of internal transcribed spacers of ribosomal DNA. Both patients did not respond to the therapy with voriconazole and itraconazole, but improved after intravenous amphotericin B.
Collapse
Affiliation(s)
- Shih-Jyun Yang
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou Branch, No. 5, Fushin Street, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chau-Yee Ng
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou Branch, No. 5, Fushin Street, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Shu Wu
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Yen Huang
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yen-Mu Wu
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Lun Sun
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou Branch, No. 5, Fushin Street, Taoyuan, Taiwan. .,College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Research Laboratory of Medical Mycology, Department of Dermatology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan.
| |
Collapse
|
59
|
Soler-Palacín P, Garcia-Prat M, Martín-Nalda A, Franco-Jarava C, Rivière JG, Plaja A, Bezdan D, Bosio M, Martínez-Gallo M, Ossowski S, Colobran R. LRBA Deficiency in a Patient With a Novel Homozygous Mutation Due to Chromosome 4 Segmental Uniparental Isodisomy. Front Immunol 2018; 9:2397. [PMID: 30386343 PMCID: PMC6198091 DOI: 10.3389/fimmu.2018.02397] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/27/2018] [Indexed: 12/20/2022] Open
Abstract
LRBA deficiency was first described in 2012 as an autosomal recessive disorder caused by biallelic mutations in the LRBA gene (OMIM #614700). It was initially characterized as producing early-onset hypogammaglobulinemia, autoimmune manifestations, susceptibility to inflammatory bowel disease, and recurrent infection. However, further reports expanded this phenotype (including patients without hypogammaglobulinemia) and described LRBA deficiency as a clinically variable syndrome with a wide spectrum of clinical manifestations. We present the case of a female patient who presented with type 1 diabetes, psoriasis, oral thrush, and enlarged liver and spleen at the age of 8 months. She later experienced recurrent bacterial and viral infections, including pneumococcal meningitis and Epstein Barr viremia. She underwent two consecutive stem cell transplants at the age of 8 and 9 years, and ultimately died. Samples from the patient and her parents were subjected to whole exome sequencing, which revealed a homozygous 1-bp insertion in exon 23 of the patient's LRBA gene, resulting in frameshift and premature stop codon. The patient's healthy mother was heterozygous for the mutation and her father tested wild-type. This finding suggested that either one copy of the paternal chromosome 4 bore a deletion including the LRBA locus, or the patient inherited two copies of the mutant maternal LRBA allele. The patient's sequencing data showed a 1-Mb loss of heterozygosity region in chromosome 4, including the LRBA gene. Comparative genomic hybridization array of the patient's and father's genomic DNA yielded normal findings, ruling out genomic copy number abnormalities. Here, we present the first case of LRBA deficiency due to a uniparental disomy (UPD). In contrast to classical Mendelian inheritance, UPD involves inheritance of 2 copies of a chromosomal region from only 1 parent. Specifically, our patient carried a small segmental isodisomy of maternal origin affecting 1 Mb of chromosome 4.
Collapse
Affiliation(s)
- Pere Soler-Palacín
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Jeffrey Modell Foundation Excellence Center, Barcelona, Spain
| | - Marina Garcia-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Jeffrey Modell Foundation Excellence Center, Barcelona, Spain
| | - Andrea Martín-Nalda
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Jeffrey Modell Foundation Excellence Center, Barcelona, Spain
| | - Clara Franco-Jarava
- Jeffrey Modell Foundation Excellence Center, Barcelona, Spain.,Immunology Division, Department of Cell Biology, Physiology and Immunology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain
| | - Jacques G Rivière
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Jeffrey Modell Foundation Excellence Center, Barcelona, Spain
| | - Alberto Plaja
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Daniela Bezdan
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Mattia Bosio
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Mónica Martínez-Gallo
- Jeffrey Modell Foundation Excellence Center, Barcelona, Spain.,Immunology Division, Department of Cell Biology, Physiology and Immunology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain
| | - Stephan Ossowski
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Roger Colobran
- Jeffrey Modell Foundation Excellence Center, Barcelona, Spain.,Immunology Division, Department of Cell Biology, Physiology and Immunology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain.,Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
60
|
Quan C, Li X, Shi RF, Zhao XQ, Xu H, Wang B, Wang XP, Hu WG, Cao H, Zheng J. Recurrent fungal infections in a Chinese patient with CARD9 deficiency and a review of 48 cases. Br J Dermatol 2018; 180:1221-1225. [PMID: 30117151 DOI: 10.1111/bjd.17092] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2018] [Indexed: 11/28/2022]
Abstract
Deficiency of CARD9 (caspase recruitment domain-containing protein 9) has been reported in individuals with recurrent and invasive fungal infections. We report on a patient who first had Trichosporon asahii affecting the skin then Candida albicans infections involving the digestive tract and knee joint, along with elevated serum IgE. After stimulation with C. albicans, peripheral blood mononuclear cells of this patient produced less tumour necrosis factor-α, interferon-γ and interleukin-17 than those of healthy controls. Furthermore, the serum IgE levels of this patient were positively correlated with the severity of fungal infection during the course of treatment. Sanger sequencing identified one homozygous frameshift mutation (p.D274fsX60) in CARD9. We further performed a review including 48 cases with CARD9 deficiency. According to the data published previously, CARD9-deficient patients demonstrated obviously elevated IgE in serum (median 1300 IU mL-1 ), which could distinguish them from otherwise healthy people with fungal infections (area under the curve 0·94, P < 0·001). Patients carrying the mutations Q289X and Q295X had a higher mortality rate (24% vs. 0%, P < 0·05). Patients with the mutations R18W, R35Q, R70W, G72S or Y91H in the CARD domain, and the nonsense mutation Q295X in the coiled-coil domain, seemed to be more prone to Candida infections (90% vs. 20%, P < 0·005) and central nervous system infections (60% vs. 12%, P < 0·005).
Collapse
Affiliation(s)
- C Quan
- Laboratory of Dermatoimmunology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Dermatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - X Li
- Department of Dermatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - R-F Shi
- Department of Dermatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - X-Q Zhao
- Department of Dermatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - H Xu
- Department of Dermatology, Chang Zheng Hospital, Second Military Medical University, Shanghai, China
| | - B Wang
- Laboratory of Dermatoimmunology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - X-P Wang
- Laboratory of Dermatoimmunology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - W-G Hu
- Laboratory of Dermatoimmunology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - H Cao
- Department of Dermatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - J Zheng
- Laboratory of Dermatoimmunology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Dermatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
61
|
Vaezi A, Fakhim H, Abtahian Z, Khodavaisy S, Geramishoar M, Alizadeh A, Meis JF, Badali H. Frequency and Geographic Distribution of CARD9 Mutations in Patients With Severe Fungal Infections. Front Microbiol 2018; 9:2434. [PMID: 30369919 PMCID: PMC6195074 DOI: 10.3389/fmicb.2018.02434] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
Autosomal recessive deficiency in the caspase recruitment domain containing protein 9 (CARD9) results in susceptibility to fungal infections. In the last decade, infections associated with CARD9 deficiency are more reported due to the advent of genome sequencing. The aim of this study was to evaluate the frequency, geographic distribution and nature of mutations in patients with CARD9 deficiency. We identified 60 patients with 24 mutations and different fungal infections. The presence of the homozygous (HMZ) p.Q295X (c.883C > T) and HMZ p.Q289X (c.865C > T) mutations were associated with an elevated risk of candidiasis (OR: 1.6; 95% CI: 1.18–2.15; p = 0.004) and dermatophytosis (OR: 1.85; 95% CI: 1.47–2.37; p < 0.001), respectively. The geographical distribution differed, showing that the main mutations in African patients were different Asian patients; HMZ p.Q289X (c.865C > T) and HMZ p.Q295X (c.865C > T) accounted for 75% and 37.9% of the African and Asian cases, respectively. The spectrum of CARD9 mutations in Asian patients was higher than in African. Asia is the most populous continent in the world and may have a greater genetic burden resulting in more patients with severe fungal infections. The presence of a high diversity of mutations revealing 24 distinct variations among 60 patients emphasize that the unique genetic alteration in CARD9 gene may be associated with certain geographical areas.
Collapse
Affiliation(s)
- Afsane Vaezi
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamed Fakhim
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Abtahian
- Infectious Disease and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadegh Khodavaisy
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Geramishoar
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahad Alizadeh
- Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, ECMM Excellence Center for Medical Mycology, Canisius-Wilhelmina Hospital, Nijmegen, Netherlands.,Centre of Expertise in Mycology Radboudumc/CWZ, Nijmegen, Netherlands
| | - Hamid Badali
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Invasive Fungi Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
62
|
Abolhassani H, Kiaee F, Tavakol M, Chavoshzadeh Z, Mahdaviani SA, Momen T, Yazdani R, Azizi G, Habibi S, Gharagozlou M, Movahedi M, Hamidieh AA, Behniafard N, Nabavi M, Bemanian MH, Arshi S, Molatefi R, Sherkat R, Shirkani A, Amin R, Aleyasin S, Faridhosseini R, Jabbari-Azad F, Mohammadzadeh I, Ghaffari J, Shafiei A, Kalantari A, Mansouri M, Mesdaghi M, Babaie D, Ahanchian H, Khoshkhui M, Soheili H, Eslamian MH, Cheraghi T, Dabbaghzadeh A, Tavassoli M, Kalmarzi RN, Mortazavi SH, Kashef S, Esmaeilzadeh H, Tafaroji J, Khalili A, Zandieh F, Sadeghi-Shabestari M, Darougar S, Behmanesh F, Akbari H, Zandkarimi M, Abolnezhadian F, Fayezi A, Moghtaderi M, Ahmadiafshar A, Shakerian B, Sajedi V, Taghvaei B, Safari M, Heidarzadeh M, Ghalebaghi B, Fathi SM, Darabi B, Bazregari S, Bazargan N, Fallahpour M, Khayatzadeh A, Javahertrash N, Bashardoust B, Zamani M, Mohsenzadeh A, Ebrahimi S, Sharafian S, Vosughimotlagh A, Tafakoridelbari M, Rahimi M, Ashournia P, Razaghian A, Rezaei A, Mamishi S, Parvaneh N, Rezaei N, Hammarström L, Aghamohammadi A. Fourth Update on the Iranian National Registry of Primary Immunodeficiencies: Integration of Molecular Diagnosis. J Clin Immunol 2018; 38:816-832. [PMID: 30302726 DOI: 10.1007/s10875-018-0556-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/26/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND The number of inherited diseases and the spectrum of clinical manifestations of primary immunodeficiency disorders (PIDs) are ever-expanding. Molecular diagnosis using genomic approaches should be performed for all PID patients since it provides a resource to improve the management and to estimate the prognosis of patients with these rare immune disorders. METHOD The current update of Iranian PID registry (IPIDR) contains the clinical phenotype of newly registered patients during last 5 years (2013-2018) and the result of molecular diagnosis in patients enrolled for targeted and next-generation sequencing. RESULTS Considering the newly diagnosed patients (n = 1395), the total number of registered PID patients reached 3056 (1852 male and 1204 female) from 31 medical centers. The predominantly antibody deficiency was the most common subcategory of PID (29.5%). The putative causative genetic defect was identified in 1014 patients (33.1%) and an autosomal recessive pattern was found in 79.3% of these patients. Among the genetically different categories of PID patients, the diagnostic rate was highest in defects in immune dysregulation and lowest in predominantly antibody deficiencies and mutations in the MEFV gene were the most frequent genetic disorder in our cohort. CONCLUSIONS During a 20-year registration of Iranian PID patients, significant changes have been observed by increasing the awareness of the medical community, national PID network establishment, improving therapeutic facilities, and recently by inclusion of the molecular diagnosis. The current collective study of PID phenotypes and genotypes provides a major source for ethnic surveillance, newborn screening, and genetic consultation for prenatal and preimplantation genetic diagnosis.
Collapse
Affiliation(s)
- Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Iranian Primary Immunodeficiencies Network (IPIN), Tehran University of Medical Science, Tehran, Iran
| | - Fatemeh Kiaee
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Iranian Primary Immunodeficiencies Network (IPIN), Tehran University of Medical Science, Tehran, Iran
| | - Marzieh Tavakol
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Zahra Chavoshzadeh
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tooba Momen
- Department of Allergy and Clinical Immunology, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Iranian Primary Immunodeficiencies Network (IPIN), Tehran University of Medical Science, Tehran, Iran
| | - Gholamreza Azizi
- Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Sima Habibi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Iranian Primary Immunodeficiencies Network (IPIN), Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Gharagozlou
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellence, Children's Medical Center, Tehran, University of Medical Sciences, Tehran, Iran
| | - Masoud Movahedi
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellence, Children's Medical Center, Tehran, University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Hematology, Oncology and Stem Cell Transplantation Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Behniafard
- Department of Allergy and Clinical Immunology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammamd Nabavi
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Bemanian
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Arshi
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Rasol Molatefi
- Department of Pediatrics, Bo-Ali children's Hospital of Ardabil University of Medical Sciences, Ardabil, Iran
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, lsfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Shirkani
- Allergy and Clinical Immunology Department, Bushehr University of Medical Science, School of Medicine, Bushehr, Iran
| | - Reza Amin
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheila Aleyasin
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Faridhosseini
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Iraj Mohammadzadeh
- Noncommunicable Pediatric Diseases Research Center, Amirkola Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Javad Ghaffari
- Department of Pediatrics, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Shafiei
- Department of Immunology, Bahrami Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Kalantari
- Department of Immunology and Allergy, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Mansouri
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mehrnaz Mesdaghi
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Delara Babaie
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Ahanchian
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Khoshkhui
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Habib Soheili
- Department of Pediatrics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | | | - Taher Cheraghi
- Department of Pediatrics, 17th Shahrivar Children's Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Abbas Dabbaghzadeh
- Noncommunicable Pediatric Diseases Research Center, Amirkola Hospital, Babol University of Medical Sciences, Babol, Iran.,Department of Allergy and Clinical Immunology, Pediatric Infectious Diseases Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahmoud Tavassoli
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Nasiri Kalmarzi
- Cellular & Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - Sara Kashef
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Javad Tafaroji
- Department of Pediatrics, Qom University of Medical Sciences, Qom, Iran
| | - Abbas Khalili
- Department of Pediatrics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fariborz Zandieh
- Department of Immunology, Bahrami Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sepideh Darougar
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Behmanesh
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hedayat Akbari
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Farhad Abolnezhadian
- Department of Immunology and Allergy, Ahvaz University of Medical Sciences, Ahvaz, Iran
| | - Abbas Fayezi
- Department of Immunology and Allergy, Ahvaz University of Medical Sciences, Ahvaz, Iran
| | - Mojgan Moghtaderi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Behzad Shakerian
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vahid Sajedi
- Department of Immunology and Allergy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Behrang Taghvaei
- Department of Immunology and Allergy, Semnan University of Medical Sciences, Semnan, Iran
| | - Mojgan Safari
- Department of Pediatrics, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marzieh Heidarzadeh
- Department of Immunology and Allergy, Kashan University of Medical Sciences, Kashan, Iran
| | - Babak Ghalebaghi
- Department of Pediatrics, 17th Shahrivar Children's Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyed Mohammad Fathi
- Department of Immunology and Allergy, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Behzad Darabi
- Department of Immunology and Allergy, Ilam University of Medical Sciences, Ilam, Iran
| | - Saeed Bazregari
- Allergy and Clinical Immunology Department, Bushehr University of Medical Science, School of Medicine, Bushehr, Iran
| | - Nasrin Bazargan
- Department of Immunology and Allergy, Kerman University of Medical Sciences, Kerman, Iran
| | - Morteza Fallahpour
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Khayatzadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Javahertrash
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Bahram Bashardoust
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadali Zamani
- Department of Immunology and Allergy, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Azam Mohsenzadeh
- Department of Pediatrics, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sarehsadat Ebrahimi
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellence, Children's Medical Center, Tehran, University of Medical Sciences, Tehran, Iran
| | - Samin Sharafian
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellence, Children's Medical Center, Tehran, University of Medical Sciences, Tehran, Iran
| | - Ahmad Vosughimotlagh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellence, Children's Medical Center, Tehran, University of Medical Sciences, Tehran, Iran
| | - Mitra Tafakoridelbari
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellence, Children's Medical Center, Tehran, University of Medical Sciences, Tehran, Iran
| | - Maziar Rahimi
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellence, Children's Medical Center, Tehran, University of Medical Sciences, Tehran, Iran
| | - Parisa Ashournia
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellence, Children's Medical Center, Tehran, University of Medical Sciences, Tehran, Iran
| | - Anahita Razaghian
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellence, Children's Medical Center, Tehran, University of Medical Sciences, Tehran, Iran
| | - Arezou Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Iranian Primary Immunodeficiencies Network (IPIN), Tehran University of Medical Science, Tehran, Iran
| | - Setareh Mamishi
- Pediatric Infectious Diseases Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Nima Parvaneh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Iranian Primary Immunodeficiencies Network (IPIN), Tehran University of Medical Science, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Iranian Primary Immunodeficiencies Network (IPIN), Tehran University of Medical Science, Tehran, Iran
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran. .,Iranian Primary Immunodeficiencies Network (IPIN), Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
63
|
Severe Disseminated Phaeohyphomycosis in a Patient with Inherited CARD9 Deficiency. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2018. [DOI: 10.5812/archcid.84006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
64
|
Arango-Franco CA, Moncada-Vélez M, Beltrán CP, Berrío I, Mogollón C, Restrepo A, Trujillo M, Osorio SD, Castro L, Gómez LV, Muñoz AM, Molina V, Del Río Cobaleda DY, Ruiz AC, Garcés C, Alzate JF, Cabarcas F, Orrego JC, Casanova JL, Bustamante J, Puel A, Arias AA, Franco JL. Early-Onset Invasive Infection Due to Corynespora cassiicola Associated with Compound Heterozygous CARD9 Mutations in a Colombian Patient. J Clin Immunol 2018; 38:794-803. [PMID: 30264381 DOI: 10.1007/s10875-018-0549-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/11/2018] [Indexed: 12/28/2022]
Abstract
PURPOSE CARD9 deficiency is an inborn error of immunity that predisposes otherwise healthy humans to mucocutaneous and invasive fungal infections, mostly caused by Candida, but also by dermatophytes, Aspergillus, and other fungi. Phaeohyphomycosis are an emerging group of fungal infections caused by dematiaceous fungi (phaeohyphomycetes) and are being increasingly identified in patients with CARD9 deficiency. The Corynespora genus belongs to phaeohyphomycetes and only one adult patient with CARD9 deficiency has been reported to suffer from invasive disease caused by C. cassiicola. We identified a Colombian child with an early-onset, deep, and destructive mucocutaneous infection due to C. cassiicola and we searched for mutations in CARD9. METHODS We reviewed the medical records and immunological findings in the patient. Microbiologic tests and biopsies were performed. Whole-exome sequencing (WES) was made and Sanger sequencing was used to confirm the CARD9 mutations in the patient and her family. Finally, CARD9 protein expression was evaluated in peripheral blood mononuclear cells (PBMC) by western blotting. RESULTS The patient was affected by a large, indurated, foul-smelling, and verrucous ulcerated lesion on the left side of the face with extensive necrosis and crusting, due to a C. cassiicola infectious disease. WES led to the identification of compound heterozygous mutations in the patient consisting of the previously reported p.Q289* nonsense (c.865C > T, exon 6) mutation, and a novel deletion (c.23_29del; p.Asp8Alafs10*) leading to a frameshift and a premature stop codon in exon 2. CARD9 protein expression was absent in peripheral blood mononuclear cells from the patient. CONCLUSION We describe here compound heterozygous loss-of-expression mutations in CARD9 leading to severe deep and destructive mucocutaneous phaeohyphomycosis due to C. cassiicola in a Colombian child.
Collapse
Affiliation(s)
- Carlos A Arango-Franco
- Grupo de Inmunodeficiencias Primarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.,Escuela de Microbiología, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Marcela Moncada-Vélez
- Grupo de Inmunodeficiencias Primarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Claudia Patricia Beltrán
- Departamento de Pediatría, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Indira Berrío
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia.,Hospital General de Medellín "Luz Castro de Gutiérrez" ESE, Medellín, Colombia
| | - Cristian Mogollón
- Infectología, Hospital Universitario Fernando Troconnis, Santa Marta, Colombia
| | | | | | - Sara Daniela Osorio
- Grupo de Inmunodeficiencias Primarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.,Escuela de Microbiología, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Lorena Castro
- Grupo de Inmunodeficiencias Primarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.,Escuela de Microbiología, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Lina Vanessa Gómez
- Hospital Pablo Tobón Uribe, Medellín, Colombia.,Servicio de Dermatología, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Ana María Muñoz
- Servicio de Dermatología, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Verónica Molina
- Hospital Pablo Tobón Uribe, Medellín, Colombia.,Servicio de Dermatología, Universidad Pontificia Bolivariana, Medellín, Colombia
| | | | | | - Carlos Garcés
- Departamento de Pediatría, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.,Hospital Pablo Tobón Uribe, Medellín, Colombia
| | - Juan Fernando Alzate
- Centro Nacional de Secuenciación Genómica CNSG, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Felipe Cabarcas
- Centro Nacional de Secuenciación Genómica CNSG, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia.,Grupo SISTEMIC, Facultad de Ingeniería, Universidad de Antioquia UdeA , Calle 70 No 52-21, Medellín, Colombia
| | - Julio Cesar Orrego
- Grupo de Inmunodeficiencias Primarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM-U1163, Paris, EU, France.,Imagine Institute, Paris Descartes University, Paris, EU, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France.,Howard Hughes Medical Institute, New York, NY, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM-U1163, Paris, EU, France.,Imagine Institute, Paris Descartes University, Paris, EU, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Paris, EU, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM-U1163, Paris, EU, France.,Imagine Institute, Paris Descartes University, Paris, EU, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Andrés Augusto Arias
- Grupo de Inmunodeficiencias Primarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia. .,Escuela de Microbiología, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - José Luis Franco
- Grupo de Inmunodeficiencias Primarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| |
Collapse
|
65
|
Bucciol G, Moens L, Meyts I. Patients with Primary Immunodeficiencies: How Are They at Risk for Fungal Disease? CURRENT FUNGAL INFECTION REPORTS 2018. [DOI: 10.1007/s12281-018-0323-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
66
|
Corvilain E, Casanova JL, Puel A. Inherited CARD9 Deficiency: Invasive Disease Caused by Ascomycete Fungi in Previously Healthy Children and Adults. J Clin Immunol 2018; 38:656-693. [PMID: 30136218 PMCID: PMC6157734 DOI: 10.1007/s10875-018-0539-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/30/2018] [Indexed: 12/19/2022]
Abstract
Autosomal recessive CARD9 deficiency underlies life-threatening, invasive fungal infections in otherwise healthy individuals normally resistant to other infectious agents. In less than 10 years, 58 patients from 39 kindreds have been reported in 14 countries from four continents. The patients are homozygous (n = 49; 31 kindreds) or compound heterozygous (n = 9; 8 kindreds) for 22 different CARD9 mutations. Six mutations are recurrent, probably due to founder effects. Paradoxically, none of the mutant alleles has been experimentally demonstrated to be loss-of-function. CARD9 is expressed principally in myeloid cells, downstream from C-type lectin receptors that can recognize fungal components. Patients with CARD9 deficiency present impaired cytokine and chemokine production by macrophages, dendritic cells, and peripheral blood mononuclear cells and defective killing of some fungi by neutrophils in vitro. Neutrophil recruitment to sites of infection is impaired in vivo. The proportion of Th17 cells is low in most, but not all, patients tested. Up to 52 patients suffering from invasive fungal diseases (IFD) have been reported, with ages at onset of 3.5 to 52 years. Twenty of these patients also displayed superficial fungal infections. Six patients had only mucocutaneous candidiasis or superficial dermatophytosis at their last follow-up visit, at the age of 19 to 50 years. Remarkably, for 50 of the 52 patients with IFD, a single fungus was involved; only two patients had IFDs due to two different fungi. IFD recurred in 44 of 45 patients who responded to treatment, and a different fungal infection occurred in the remaining patient. Ten patients died from IFD, between the ages of 12 and 39 years, whereas another patient died at the age of 91 years, from an unrelated cause. At the most recent scheduled follow-up visit, 81% of the patients were still alive and aged from 6.5 to 75 years. Strikingly, all the causal fungi belonged to the phylum Ascomycota: commensal Candida and saprophytic Trychophyton, Aspergillus, Phialophora, Exophiala, Corynesprora, Aureobasidium, and Ochroconis. Human CARD9 is essential for protective systemic immunity to a subset of fungi from this phylum but seems to be otherwise redundant. Previously healthy patients with unexplained invasive fungal infection, at any age, should be tested for inherited CARD9 deficiency. KEY POINTS • Inherited CARD9 deficiency (OMIM #212050) is an AR PID due to mutations that may be present in a homozygous or compound heterozygous state. • CARD9 is expressed principally in myeloid cells and transduces signals downstream from CLR activation by fungal ligands. • Endogenous mutant CARD9 levels differ between alleles (from full-length normal protein to an absence of normal protein). • The functional impacts of CARD9 mutations involve impaired cytokine production in response to fungal ligands, impaired neutrophil killing and/or recruitment to infection sites, and defects of Th17 immunity. • The key clinical manifestations in patients are fungal infections, including CMC, invasive (in the CNS in particular) Candida infections, extensive/deep dermatophytosis, subcutaneous and invasive phaeohyphomycosis, and extrapulmonary aspergillosis. • The clinical penetrance of CARD9 deficiency is complete, but penetrance is incomplete for each of the fungi concerned. • Age at onset is highly heterogeneous, ranging from childhood to adulthood for the same fungal disease. • All patients with unexplained IFD should be tested for CARD9 mutations. Familial screening and genetic counseling should be proposed. • The treatment of patients with CARD9 mutations is empirical and based on antifungal therapies and the surgical removal of fungal masses. Patients with persistent/relapsing Candida infections of the CNS could be considered for adjuvant GM-CSF/G-CSF therapy. The potential value of HSCT for CARD9-deficient patients remains unclear.
Collapse
Affiliation(s)
- Emilie Corvilain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015, Paris, France
- Imagine Institute, Paris Descartes University, 75015, Paris, France
- Free University of Brussels, Brussels, Belgium
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015, Paris, France
- Imagine Institute, Paris Descartes University, 75015, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, 75015, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015, Paris, France.
- Imagine Institute, Paris Descartes University, 75015, Paris, France.
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
67
|
Bucciol G, Moens L, Bosch B, Bossuyt X, Casanova JL, Puel A, Meyts I. Lessons learned from the study of human inborn errors of innate immunity. J Allergy Clin Immunol 2018; 143:507-527. [PMID: 30075154 DOI: 10.1016/j.jaci.2018.07.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 07/13/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023]
Abstract
Innate immunity contributes to host defense through all cell types and relies on their shared germline genetic background, whereas adaptive immunity operates through only 3 main cell types, αβ T cells, γδ T cells, and B cells, and relies on their somatic genetic diversification of antigen-specific responses. Human inborn errors of innate immunity often underlie infectious diseases. The range and nature of infections depend on the mutated gene, the deleteriousness of the mutation, and other ill-defined factors. Most known inborn errors of innate immunity to infection disrupt the development or function of leukocytes other than T and B cells, but a growing number of inborn errors affect cells other than circulating and tissue leukocytes. Here we review inborn errors of innate immunity that have been recently discovered or clarified. We highlight the immunologic implications of these errors.
Collapse
Affiliation(s)
- Giorgia Bucciol
- Laboratory of Childhood Immunology, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium; Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Leen Moens
- Laboratory of Childhood Immunology, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium
| | - Barbara Bosch
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Xavier Bossuyt
- Experimental Laboratory Immunology, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium; Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Howard Hughes Medical Institute, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France; Paris Descartes University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, INSERM U1163, Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France; Paris Descartes University, Imagine Institute, Paris, France
| | - Isabelle Meyts
- Laboratory of Childhood Immunology, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium; Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
68
|
Drummond RA, Lionakis MS. Candidiasis of the Central Nervous System in Neonates and Children with Primary Immunodeficiencies. CURRENT FUNGAL INFECTION REPORTS 2018; 12:92-97. [PMID: 30393511 PMCID: PMC6208439 DOI: 10.1007/s12281-018-0316-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Candida infections of the central nervous system (CNS) are a life-threatening complication of invasive infections that most often affect vulnerable groups of patients, including neonates and children with primary immunodeficiency disorders (PID). Here, we review the currently known risk factors for CNS candidiasis, focusing predominantly on the PID caused by biallelic mutations in CARD9. RECENT FINDINGS How the CNS is protected itself against fungal invasion is poorly understood. CARD9 promotes neutrophil recruitment and function, and is the only molecule shown to be critical for protection against CNS candidiasis in humans thus far. SUMMARY Fundamental insights into the pathogenesis of CNS candidiasis gained from studying rare CARD9-deficient patients has significant implications for other patients at risk for this disease, such as CARD9-sufficient neonates. These findings will be important for the development of adjunctive immune-based therapies, which are urgently needed to tackle the global burden of invasive fungal diseases.
Collapse
Affiliation(s)
- Rebecca A. Drummond
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda MD, USA
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda MD, USA
| |
Collapse
|
69
|
Thomas E, Bertolotti A, Barreau A, Klisnick J, Tournebize P, Borgherini G, Zemali N, Jaubert J, Jouvion G, Bretagne S, Picot S. From phaeohyphomycosis to disseminated chromoblastomycosis: A retrospective study of infections caused by dematiaceous fungi. Med Mal Infect 2018; 48:278-285. [PMID: 29656841 DOI: 10.1016/j.medmal.2017.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/30/2016] [Accepted: 09/12/2017] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Infections caused by dematiaceous fungi are more common in tropical and subtropical areas. We aimed to describe the clinical, microbiological and therapeutic aspects of case patients diagnosed at a University Hospital located on an Indian Ocean island. PATIENTS AND METHODS We performed an observational retrospective study of infections caused by dematiaceous fungi diagnosed at the University Hospital of Saint-Pierre, Reunion, from 2000 to 2015. Mycological identifications were performed at the National Reference Center for Invasive Mycosis and Antifungal Agents (Paris). RESULTS The review of clinical and microbiological data of 11 patients identified revealed that five were infected by dematiaceous fungi. Two had cutaneous phaeohyphomycosis, two had cerebral phaeohyphomycosis and one had cutaneous chromoblastomycosis with brain and potentially medullary dissemination. Skin lesions and cerebral abscesses were quite varied. CONCLUSION Infections caused by dematiaceous fungi are rare. Medullary and brain localizations are extremely rare, especially for chromoblastomycosis. Cutaneous manifestations of phaeohyphomycosis are varied; diagnosis is thus more difficult. It is therefore important, when confronted with a chronic tumor-like lesion in endemic areas, to perform a biopsy for pathology and fungal culture. While surgical excision is not always sufficient, medical treatment of these infections is not standardized, but relies on an azole, which can be associated with another antifungal agent.
Collapse
Affiliation(s)
- E Thomas
- Service de bactériologie, virologie, parasitologie, centre hospitalier universitaire de La Réunion, site Sud, BP 350, 97448 Saint-Pierre cedex, Reunion
| | - A Bertolotti
- Service de maladies infectieuses, centre hospitalier universitaire de La Réunion, site Sud, BP 350, 97448 Saint-Pierre cedex, Reunion
| | - A Barreau
- Service de bactériologie, virologie, parasitologie, centre hospitalier universitaire de La Réunion, site Sud, BP 350, 97448 Saint-Pierre cedex, Reunion
| | - J Klisnick
- Service de maladies infectieuses, centre hospitalier universitaire de La Réunion, site Sud, BP 350, 97448 Saint-Pierre cedex, Reunion
| | - P Tournebize
- Service de neurologie, centre hospitalier universitaire de La Réunion, site Sud, BP 350, 97448 Saint-Pierre cedex, Reunion
| | - G Borgherini
- Service de maladies infectieuses, centre hospitalier universitaire de La Réunion, site Sud, BP 350, 97448 Saint-Pierre cedex, Reunion
| | - N Zemali
- Service de bactériologie, virologie, parasitologie, centre hospitalier universitaire de La Réunion, site Sud, BP 350, 97448 Saint-Pierre cedex, Reunion
| | - J Jaubert
- Service de bactériologie, virologie, parasitologie, centre hospitalier universitaire de La Réunion, site Sud, BP 350, 97448 Saint-Pierre cedex, Reunion
| | - G Jouvion
- Institut Pasteur, histopathologie humaine et modèles animaux, 28, rue du Docteur-Roux, 75015 Paris, France
| | - S Bretagne
- Institut Pasteur, centre national de référence des mycoses invasives et des antifongiques, 28, rue du Docteur-Roux, 75015 Paris, France
| | - S Picot
- Service de bactériologie, virologie, parasitologie, centre hospitalier universitaire de La Réunion, site Sud, BP 350, 97448 Saint-Pierre cedex, Reunion.
| |
Collapse
|
70
|
Zhong X, Chen B, Yang L, Yang Z. Molecular and physiological roles of the adaptor protein CARD9 in immunity. Cell Death Dis 2018; 9:52. [PMID: 29352133 PMCID: PMC5833731 DOI: 10.1038/s41419-017-0084-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/11/2017] [Accepted: 10/16/2017] [Indexed: 12/11/2022]
Abstract
CARD9 is a caspase recruitment domain-containing signaling protein that plays a critical role in innate and adaptive immunity. It has been widely demonstrated that CARD9 adaptor allows pattern recognition receptors to induce NF-κB and MAPK activation, which initiates a “downstream” inflammation cytokine cascade and provides effective protection against microbial invasion, especially fungal infection. Here our aim is to update existing paradigms and summarize the most recent findings on the CARD9 signaling pathway, revealing significant mechanistic insights into the pathogenesis of CARD9 deficiency. We also discuss the effect of CARD9 genetic mutations on the in vivo immune response, and highlight clinical advances in non-infection inflammation.
Collapse
Affiliation(s)
| | - Bin Chen
- Surgery Department, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Liang Yang
- Fuzhou Medical College of Nanchang University, Jiangxi, China
| | - Zhiwen Yang
- Department of Pharmacy, Songjiang Hospital Affiliated Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
71
|
A young girl with severe cerebral fungal infection due to card 9 deficiency. Clin Immunol 2018; 191:21-26. [PMID: 29307770 DOI: 10.1016/j.clim.2018.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/02/2017] [Accepted: 01/02/2018] [Indexed: 12/23/2022]
Abstract
Pattern recognition receptors (PRRs), receptors of the innate immune system, are important in interaction with pathogens. Caspase Recruitment Domain-containing protein 9 (CARD9), a member of PRRs, is an intracellular adaptor protein important in fungal defense. CARD9 deficiency causes a rare primary immunodeficiency (PID) characterized by superficial and deep fungal infections. We report a 17year-old female with a homozygous nonsense mutation in CARD9, who presented with severe cerebral fungal infection of the central nervous system. She was also found to have an heterozygous NLRP12 mutation, which may have had add-on effect on the severity of the infection.
Collapse
|
72
|
Song Y, Laureijssen-van de Sande WWJ, Moreno LF, Gerrits van den Ende B, Li R, de Hoog S. Comparative Ecology of Capsular Exophiala Species Causing Disseminated Infection in Humans. Front Microbiol 2017; 8:2514. [PMID: 29312215 PMCID: PMC5742258 DOI: 10.3389/fmicb.2017.02514] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
Exophiala spinifera and Exophiala dermatitidis (Fungi: Chaetothyriales) are black yeast agents potentially causing disseminated infection in apparently healthy humans. They are the only Exophiala species producing extracellular polysaccharides around yeast cells. In order to gain understanding of eventual differences in intrinsic virulence of the species, their clinical profiles were compared and found to be different, suggesting pathogenic strategies rather than coincidental opportunism. Ecologically relevant factors were compared in a model set of strains of both species, and significant differences were found in clinical and environmental preferences, but virulence, tested in Galleria mellonella larvae, yielded nearly identical results. Virulence factors, i.e., melanin, capsule and muriform cells responded in opposite direction under hydrogen peroxide and temperature stress and thus were inconsistent with their hypothesized role in survival of phagocytosis. On the basis of physiological profiles, possible natural habitats of both species were extrapolated, which proved to be environmental rather than animal-associated. Using comparative genomic analyses we found differences in gene content related to lipid metabolism, cell wall modification and polysaccharide capsule production. Despite the fact that both species cause disseminated infections in apparently healthy humans, it is concluded that they are opportunists rather than pathogens.
Collapse
Affiliation(s)
- Yinggai Song
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Peking University First Hospital, Beijing, China.,Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | | | | | | | - Ruoyu Li
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Peking University First Hospital, Beijing, China
| | - Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands.,Center of Expertise in Mycology Radboudumc/CWZ, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| |
Collapse
|
73
|
Lionakis MS, Levitz SM. Host Control of Fungal Infections: Lessons from Basic Studies and Human Cohorts. Annu Rev Immunol 2017; 36:157-191. [PMID: 29237128 DOI: 10.1146/annurev-immunol-042617-053318] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the last few decades, the AIDS pandemic and the significant advances in the medical management of individuals with neoplastic and inflammatory conditions have resulted in a dramatic increase in the population of immunosuppressed patients with opportunistic, life-threatening fungal infections. The parallel development of clinically relevant mouse models of fungal disease and the discovery and characterization of several inborn errors of immune-related genes that underlie inherited human susceptibility to opportunistic mycoses have significantly expanded our understanding of the innate and adaptive immune mechanisms that protect against ubiquitous fungal exposures. This review synthesizes immunological knowledge derived from basic mouse studies and from human cohorts and provides an overview of mammalian antifungal host defenses that show promise for informing therapeutic and vaccination strategies for vulnerable patients.
Collapse
Affiliation(s)
- Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892;
| | - Stuart M Levitz
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655;
| |
Collapse
|
74
|
Wang X, Zhang R, Wu W, Song Y, Wan Z, Han W, Li R. Impaired Specific Antifungal Immunity in CARD9-Deficient Patients with Phaeohyphomycosis. J Invest Dermatol 2017; 138:607-617. [PMID: 29080677 DOI: 10.1016/j.jid.2017.10.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/17/2017] [Accepted: 10/08/2017] [Indexed: 12/29/2022]
Abstract
Phaeohyphomycosis is a group of severe infections caused by dematiaceous fungi. We previously identified CARD9 deficiencies in four Chinese patients with phaeohyphomycosis caused by Phialophora verrucosa. In this study, we sought to identify the genetic and immunological mechanisms underlying rare dematiaceous fungal infections in three otherwise healthy patients with phaeohyphomycosis caused by Exophiala spinifera, Ochroconis musae, and Corynespora cassiicola. CARD9 sequencing in these patients showed one mutation (p.S23X) that, to our knowledge, has not been characterized and two previously characterized mutations (p.D274fsX60 and p.L64fsX59) that led to lack of CARD9 protein expression. Patient-derived CARD9-deficient cells showed a selective impairment of proinflammatory cytokine and chemokine production, NF-κB activation, and T helper type 22- and T helper type 17-associated responses upon fungus-specific stimulation, whereas phagocytosis and reactive oxygen species production were intact. Consistently, Card9-knockout mice were highly susceptible to phaeohyphomycosis and exhibited immune deficiencies similar to those of patients, including diminished NF-κB and p38 MAPK activation in local and in vitro functional studies. This work clarifies the association between inherited CARD9 deficiencies and phaeohyphomycosis, and furthers current knowledge on the spectrum and pathophysiology of diseases resulting from CARD9 deficiencies.
Collapse
Affiliation(s)
- Xiaowen Wang
- Department of Dermatology, Peking University First Hospital, Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Ruijun Zhang
- Department of Dermatology, Peking University First Hospital, Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Weiwei Wu
- Department of Dermatology, Peking University First Hospital, Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Yinggai Song
- Department of Dermatology, Peking University First Hospital, Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Zhe Wan
- Department of Dermatology, Peking University First Hospital, Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Wenling Han
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University Center for Human Disease Genomics, Key Laboratory of Medical Immunology, Ministry of Health, Beijing, China
| | - Ruoyu Li
- Department of Dermatology, Peking University First Hospital, Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.
| |
Collapse
|
75
|
Inborn errors of immunity underlying fungal diseases in otherwise healthy individuals. Curr Opin Microbiol 2017; 40:46-57. [PMID: 29128761 DOI: 10.1016/j.mib.2017.10.016] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 10/20/2017] [Indexed: 01/02/2023]
Abstract
It has been estimated that there are at least 1.5 million fungal species, mostly present in the environment, but only a few of these fungi cause human disease. Most fungal diseases are self-healing and benign, but some are chronic or life-threatening. Acquired and inherited defects of immunity, including breaches of mucocutaneous barriers and circulating leukocyte deficiencies, account for most severe modern-day mycoses. Other types of infection typically accompany these fungal infections. More rarely, severe fungal diseases can strike otherwise healthy individuals. Historical reports of fungi causing chronic peripheral infections (e.g. affecting the nails, skin, hair), and invasive diseases (e.g. brain, lungs, liver), in otherwise healthy patients, can be traced back to the mid-20th century. These fungi typically cause endemic, but not epidemic diseases, are more likely to underlie sporadic than familial cases, and only threaten a small proportion of infected individuals. The basis of this 'idiosyncratic' susceptibility has long remained unexplained, but it has recently become apparent that 'idiopathic' fungal diseases, in children, teenagers, and even adults, may be caused by single-gene inborn errors of immunity. The study of these unusual primary immunodeficiencies (PIDs) has led to the identification of molecules and cells playing a crucial role in human host defenses against certain fungi at particular anatomic sites. A picture is emerging of inborn errors of IL-17 immunity selectively underlying chronic mucocutaneous candidiasis, with little inter-individual variability, and of inborn errors of CARD9 immunity underlying various life-threatening invasive fungal diseases, differing between patients.
Collapse
|
76
|
Gavino C, Mellinghoff S, Cornely OA, Landekic M, Le C, Langelier M, Golizeh M, Proske S, Vinh DC. Novel bi-allelic splice mutations in CARD9 causing adult-onset Candida endophthalmitis. Mycoses 2017; 61:61-65. [PMID: 28984994 DOI: 10.1111/myc.12701] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 08/29/2017] [Indexed: 12/13/2022]
Abstract
CARD9 deficiency (CANDF2; OMIM# 212050) is an autosomal-recessive monogenic inborn error of immunity conferring susceptibility to invasive fungal diseases, including the very distinct syndrome of spontaneous central nervous system candidiasis, in which opportunistic yeast of the genus Candida infect the central nervous system (either brain parenchyma and/or meninges) in the absence of trauma, chemotherapy or underlying systemic disease. We present a patient with spontaneous endophthalmitis of the right eye due to Candida albicans; further investigations revealed concomitant cerebral abscess. She had a history of left endophthalmitis due to the dematiaceous mould, Aureobasidium pullulans, 15 years earlier. Targeted sequencing of the CARD9 gene revealed 2 novel variants (c.184G>A and c.288C>T). Analysis in silico predicted each variant altered splicing, which was confirmed by sequencing of cDNA from proband and carrier offsprings: c.184G>A results in a 4-base pair frameshift deletion with loss of allelic expression; c.288C>T results in an in-frame 36-bp pair deletion with detectable protein. CARD9 deficiency can present with a phenotype of spontaneous candidal endophthalmitis. We report 2 novel mutations in CARD9, both affecting splicing, expanding the range of morbid variants causing CARD9 deficiency, emphasising the importance of both genomic and cDNA sequencing for this condition.
Collapse
Affiliation(s)
- Christina Gavino
- Infectious Disease Susceptibility Program, McGill University Health Centre (MUHC) and Research Institute-MUHC (RI-MUHC), Montréal, QC, Canada
| | - Sibylle Mellinghoff
- CECAD Cluster of Excellence, Department I for Internal Medicine University Hospital, University of Cologne, Cologne, Germany
| | - Oliver A Cornely
- CECAD Cluster of Excellence, Department I for Internal Medicine University Hospital, University of Cologne, Cologne, Germany
| | - Marija Landekic
- Infectious Disease Susceptibility Program, McGill University Health Centre (MUHC) and Research Institute-MUHC (RI-MUHC), Montréal, QC, Canada
| | - Catherine Le
- Infectious Disease Susceptibility Program, McGill University Health Centre (MUHC) and Research Institute-MUHC (RI-MUHC), Montréal, QC, Canada
| | - Melanie Langelier
- Infectious Disease Susceptibility Program, McGill University Health Centre (MUHC) and Research Institute-MUHC (RI-MUHC), Montréal, QC, Canada
| | - Makan Golizeh
- Infectious Disease Susceptibility Program, McGill University Health Centre (MUHC) and Research Institute-MUHC (RI-MUHC), Montréal, QC, Canada
| | - Susanna Proske
- CECAD Cluster of Excellence, Department I for Internal Medicine University Hospital, University of Cologne, Cologne, Germany
| | - Donald C Vinh
- Infectious Disease Susceptibility Program, McGill University Health Centre (MUHC) and Research Institute-MUHC (RI-MUHC), Montréal, QC, Canada
| |
Collapse
|
77
|
Revankar SG, Baddley JW, Chen SCA, Kauffman CA, Slavin M, Vazquez JA, Seas C, Morris MI, Nguyen MH, Shoham S, Thompson GR, Alexander BD, Simkins J, Ostrosky-Zeichner L, Mullane K, Alangaden G, Andes DR, Cornely OA, Wahlers K, Lockhart SR, Pappas PG. A Mycoses Study Group International Prospective Study of Phaeohyphomycosis: An Analysis of 99 Proven/Probable Cases. Open Forum Infect Dis 2017; 4:ofx200. [PMID: 29766015 PMCID: PMC5946886 DOI: 10.1093/ofid/ofx200] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 09/14/2017] [Indexed: 12/28/2022] Open
Abstract
Background Phaeohyphomycosis is infection caused by dematiaceous, or darkly pigmented, fungi. The spectrum of disease is broad, and optimal therapy remains poorly defined. The Mycoses Study Group established an international case registry of patients with proven/probable phaeohyphomycosis with the goal of improving the recognition and management of these infections. Methods Patients from 18 sites in 3 countries were enrolled from 2009-2015. Cases were categorized as local superficial, local deep (pulmonary, sinus, osteoarticular infections), and disseminated infections. End points were clinical response (partial and complete) and all-cause mortality at 30 days and end of follow-up. Results Of 99 patients, 32 had local superficial infection, 41 had local deep infection, and 26 had disseminated infection. The most common risk factors were corticosteroids, solid organ transplantation, malignancy, and diabetes. Cultures were positive in 98% of cases. All-cause mortality was 16% at 30 days and 33% at end of follow-up, and 18 of 26 (69%) with dissemination died. Itraconazole was most commonly used for local infections, and voriconazole was used for more severe infections, often in combination with terbinafine or amphotericin B. Conclusions Phaeohyphomycosis is an increasingly recognized infection. Culture remains the most frequently used diagnostic method. Triazoles are currently the drugs of choice, often combined with other agents. Further studies are needed to develop optimal therapies for disseminated infections.
Collapse
Affiliation(s)
- Sanjay G Revankar
- Division of Infectious Diseases, Wayne State University, Detroit, Michigan
| | - John W Baddley
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama.,Birmingham VA Medical Center, Birmingham, Alabama
| | - Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, and the University of Sydney, Westmead, Australia
| | - Carol A Kauffman
- Division of Infectious Diseases, University of Michigan Medical School and VA Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Monica Slavin
- Victorian Infectious Diseases Service, Melbourne Health, Parkville, Australia
| | - Jose A Vazquez
- Division of Infectious Diseases, Georgia Regents University, Augusta, Georgia
| | - Carlos Seas
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Michele I Morris
- Division of Infectious Diseases, University of Miami, Miami, Florida
| | - M Hong Nguyen
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shmuel Shoham
- Division of Infectious Diseases, Johns Hopkins University, Baltimore, Maryland
| | - George R Thompson
- Division of Infectious Diseases, University of California at Davis, Davis, California
| | - Barbara D Alexander
- Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina
| | - Jacques Simkins
- Division of Infectious Diseases, University of Miami, Miami, Florida
| | - Luis Ostrosky-Zeichner
- Division of Infectious Diseases, University of Texas Health Science Center, Houston, Texas
| | - Kathleen Mullane
- Division of Infectious Diseases, University of Chicago, Chicago, Illinois
| | - George Alangaden
- Division of Infectious Diseases, Henry Ford Health System, Detroit, Michigan
| | - David R Andes
- Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin
| | - Oliver A Cornely
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and Department I of Internal Medicine, University of Cologne, Cologne, Germany
| | - Kerstin Wahlers
- Division of Infectious Diseases, Klinikum Oldenburg, Oldenburg, Germany
| | - Shawn R Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Peter G Pappas
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
78
|
Gazendam RP, van de Geer A, Roos D, van den Berg TK, Kuijpers TW. How neutrophils kill fungi. Immunol Rev 2017; 273:299-311. [PMID: 27558342 DOI: 10.1111/imr.12454] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neutrophils play a critical role in the prevention of invasive fungal infections. Whereas mouse studies have demonstrated the role of various neutrophil pathogen recognition receptors (PRRs), signal transduction pathways, and cytotoxicity in the murine antifungal immune response, much less is known about the killing of fungi by human neutrophils. Recently, novel primary immunodeficiencies have been identified in patients with a susceptibility to fungal infections. These human 'knock-out' neutrophils expand our knowledge to understand the role of PRRs and signaling in human fungal killing. From the studies with these patients it is becoming clear that neutrophils employ fundamentally distinct mechanisms to kill Candida albicans or Aspergillus fumigatus.
Collapse
Affiliation(s)
- Roel P Gazendam
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Annemarie van de Geer
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dirk Roos
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Timo K van den Berg
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
79
|
Dambuza IM, Levitz SM, Netea MG, Brown GD. Fungal Recognition and Host Defense Mechanisms. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0050-2016. [PMID: 28752813 PMCID: PMC11687525 DOI: 10.1128/microbiolspec.funk-0050-2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Indexed: 02/06/2023] Open
Abstract
Fungi have emerged as premier opportunistic microbes of the 21st century, having a considerable impact on human morbidity and mortality. The huge increase in incidence of these diseases is largely due to the HIV pandemic and use of immunosuppressive therapies, underscoring the importance of the immune system in defense against fungi. This article will address how the mammalian immune system recognizes and mounts a defense against medically relevant fungal species.
Collapse
Affiliation(s)
- I M Dambuza
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, United Kingdom
| | - S M Levitz
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - M G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - G D Brown
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, United Kingdom
| |
Collapse
|
80
|
|
81
|
Ecology of the Human Opportunistic Black Yeast Exophiala dermatitidis Indicates Preference for Human-Made Habitats. Mycopathologia 2017; 183:201-212. [PMID: 28447292 DOI: 10.1007/s11046-017-0134-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/13/2017] [Indexed: 01/01/2023]
Abstract
Exophiala dermatitidis is an ascomycetous black yeast from the order Chaetothyriales. Its growth characteristics include the polymorphic life cycle, ability to grow at high and low temperatures, at a wide pH range, survival at high concentrations of NaCl, and survival at high UV and radioactive radiation. Exophiala dermatitidis causes deep or localized phaeohyphomycosis in immuno-compromised people worldwide and is regularly encountered in the lungs of cystic fibrosis patients. Regardless of numerous ecological studies worldwide, little is known about its natural habitat or the possible infection routes. The present review summarizes the published data on its frequency of occurrence in nature and in man-made habitats. We additionally confirmed its presence with culture-depending methods from a variety of habitats, such as glacial meltwater, mineral water, mineral-rich salt-pan mud, dishwashers, kitchens and different environments polluted with aromatic hydrocarbons. In conclusion, the frequency of its recovery was the highest in man-made indoor habitats, connected to water sources, and exposed to occasional high temperatures and oxidative stress.
Collapse
|
82
|
Invasive Fungal Infection in Primary Immunodeficiencies Other Than Chronic Granulomatous Disease. CURRENT FUNGAL INFECTION REPORTS 2017. [DOI: 10.1007/s12281-017-0273-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
83
|
Okada S, Puel A, Casanova JL, Kobayashi M. Chronic mucocutaneous candidiasis disease associated with inborn errors of IL-17 immunity. Clin Transl Immunology 2016; 5:e114. [PMID: 28090315 PMCID: PMC5192062 DOI: 10.1038/cti.2016.71] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 12/13/2022] Open
Abstract
Chronic mucocutaneous candidiasis (CMC) is characterized by recurrent or persistent infections affecting the nails, skin and oral and genital mucosae caused by Candida spp., mainly Candida albicans. CMC is an infectious phenotype in patients with inherited or acquired T-cell deficiency. Patients with autosomal-dominant (AD) hyper IgE syndrome (HIES), AD signal transducer and activator of transcription 1 (STAT1) gain-of-function, autosomal-recessive (AR) deficiencies in interleukin (IL)-12 receptor β1 (IL-12Rβ1), IL-12p40, caspase recruitment domain-containing protein 9 (CARD9) or retinoic acid-related orphan receptor γT (RORγT) or AR autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) develop CMC as a major infectious phenotype that is categorized as Syndromic CMC. In contrast, CMC disease (CMCD) is typically defined as CMC in patients in the absence of any other prominent clinical signs. This definition is not strict; thus, CMCD is currently used to refer to patients presenting with CMC as the main clinical phenotype. The etiology of CMCD is not related to genes that cause severe combined immunodeficiency or combined immunodeficiency, nor to genes responsible for Syndromic CMC. Four genetic etiologies, AR IL-17 receptor A, IL-17 receptor C and ACT1 deficiencies, and AD IL-17F deficiency, are reported to underlie CMCD. Each of these gene defects directly has an impact on IL-17 signaling, suggesting their nonredundant role in host mucosal immunity to Candida. Here, we review current knowledge focusing on IL-17 signaling and the genetic etiologies responsible for, and associated with, CMC.
Collapse
Affiliation(s)
- Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences , Hiroshima, Japan
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Medical School, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Institut Imagine, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Medical School, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Institut Imagine, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France; Howard Hughes Medical Institute, New York, NY, USA
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences , Hiroshima, Japan
| |
Collapse
|
84
|
Heinen MP, Cambier L, Fievez L, Mignon B. Are Th17 Cells Playing a Role in Immunity to Dermatophytosis? Mycopathologia 2016; 182:251-261. [PMID: 27878642 DOI: 10.1007/s11046-016-0093-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/13/2016] [Indexed: 12/24/2022]
Abstract
Despite their superficial localization in the skin, pathogenic dermatophytes can induce a complex but still misunderstood immune response in their hosts. The cell-mediated immunity (CMI) is correlated with both clinical recovery and protection against reinfection, and CD4+ T lymphocytes have been recognized as a crucial component of the immune defense against dermatophytes. Before the discovery of the Th17 pathway, CMI was considered to be only dependent of Th1 cells, and thus most studies on the immunology of dermatophytosis have focused on the Th1 pathway. Nevertheless, the fine comparative analysis of available scientific data on immunology of dermatophytosis in one hand and on the Th17 pathway mechanisms involved in opportunistic mucosal fungal infections in the other hand reveals that some key elements of the Th17 pathway can be activated by dermatophytes. Stimulation of the Th17 pathway could occur through the activation of some C-type lectin-like receptors and inflammasome in antigen-presenting cells. The Th17 cells could go back to the affected skin and by the production of signature cytokines could induce the effector mechanisms like the recruitment of polymorphonuclear neutrophils and the synthesis of antimicrobial peptides. In conclusion, besides the Th1 pathway, which is important to the immune response against dermatophytes, there are also growing evidences for the involvement of the Th17 pathway.
Collapse
Affiliation(s)
- Marie-Pierre Heinen
- Veterinary Mycology, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 6, B-43a, 4000, Liège, Belgium
| | - Ludivine Cambier
- Veterinary Mycology, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 6, B-43a, 4000, Liège, Belgium
| | - Laurence Fievez
- Laboratory of Cellular and Molecular Immunology, GIGA Research, Quartier Hôpital, University of Liège, Avenue de l'Hôpital 11, B-34, 4000, Liège, Belgium
| | - Bernard Mignon
- Veterinary Mycology, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 6, B-43a, 4000, Liège, Belgium.
| |
Collapse
|
85
|
Abstract
PURPOSE OF REVIEW Cutaneous and subcutaneous mycoses are a source of significant morbidity both in immunocompetent and immunocompromised patients. We here review the latest findings in terms of genetic predisposition, epidemiology, clinical manifestations, and therapeutic strategies in these diseases. RECENT FINDINGS A growing number of fungal skin and soft tissue infections are reported worldwide. In immunocompromised patients, these infections are often associated with disseminated disease. Skin and soft tissue biopsies usually allow mycological identification. Although tissue culture remains the gold standard, molecular biology is increasingly used and sometimes mandatory for accurate diagnosis. Advances in therapeutics have improved outcome and lowered dissemination risk in patients. SUMMARY Cutaneous and subcutaneous mycoses are an evolving field. Clinicians all over the world should be aware of the common manifestations of these diseases - infectious diseases - as they are increasingly reported and may lead to or be associated with dissemination.
Collapse
|
86
|
Abstract
Dematiaceous fungi are the cause of phaeohyphomycosis, a term that encompasses many clinical syndromes, from local infections due to trauma to widely disseminated infection in immunocompromised patients. These fungi are unique owing to the presence of melanin in their cell walls, which imparts the characteristic dark color to their spores and hyphae. Melanin may also be a virulence factor. Local infection may be cured with excision alone, whereas systemic disease is often refractory to therapy. Azoles have the most consistent in vitro activity. Further studies are needed to better understand the pathogenesis and treatment of these uncommon infections.
Collapse
Affiliation(s)
- Eunice H Wong
- Division of Infectious Diseases, Harper University Hospital, Wayne State University, 3990 John R., 5 Hudson, Detroit, MI 48201, USA
| | - Sanjay G Revankar
- Division of Infectious Diseases, Harper University Hospital, Wayne State University, 3990 John R., 5 Hudson, Detroit, MI 48201, USA.
| |
Collapse
|
87
|
Wang X, van de Veerdonk FL, Netea MG. Basic Genetics and Immunology of Candida Infections. Infect Dis Clin North Am 2016; 30:85-102. [PMID: 26897063 DOI: 10.1016/j.idc.2015.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Candida infections can cause superficial and invasive disease. Several essential mechanisms underlying the pathogenesis of these infections were known for some time, such as neutropenia predisposing to invasive disease, and CD4 lymphopenia causing increased susceptibility to mucosal candidiasis. However, the development of novel genetic screening techniques has led to several new insights in the genetics and immunology of candida infections. This article highlights novel insights in the pathogenesis of mucocutaneous and invasive candidiasis that have been identified in recent years.
Collapse
Affiliation(s)
- Xiaowen Wang
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen, 6525 GA, The Netherlands; Department of Dermatology, Peking University First Hospital, Xishiku Street 8, Xicheng District, Beijing 10034, China
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen, 6525 GA, The Netherlands; Radboud Center for Infectious Diseases (RCI), Geert Grooteplein Zuid 8, Nijmegen, 6525 GA, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen, 6525 GA, The Netherlands; Radboud Center for Infectious Diseases (RCI), Geert Grooteplein Zuid 8, Nijmegen, 6525 GA, The Netherlands.
| |
Collapse
|
88
|
Rieber N, Gazendam RP, Freeman AF, Hsu AP, Collar AL, Sugui JA, Drummond RA, Rongkavilit C, Hoffman K, Henderson C, Clark L, Mezger M, Swamydas M, Engeholm M, Schüle R, Neumayer B, Ebel F, Mikelis CM, Pittaluga S, Prasad VK, Singh A, Milner JD, Williams KW, Lim JK, Kwon-Chung KJ, Holland SM, Hartl D, Kuijpers TW, Lionakis MS. Extrapulmonary Aspergillus infection in patients with CARD9 deficiency. JCI Insight 2016; 1:e89890. [PMID: 27777981 DOI: 10.1172/jci.insight.89890] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Invasive pulmonary aspergillosis is a life-threatening mycosis that only affects patients with immunosuppression, chemotherapy-induced neutropenia, transplantation, or congenital immunodeficiency. We studied the clinical, genetic, histological, and immunological features of 2 unrelated patients without known immunodeficiency who developed extrapulmonary invasive aspergillosis at the ages of 8 and 18. One patient died at age 12 with progressive intra-abdominal aspergillosis. The other patient had presented with intra-abdominal candidiasis at age 9, and developed central nervous system aspergillosis at age 18 and intra-abdominal aspergillosis at age 25. Neither patient developed Aspergillus infection of the lungs. One patient had homozygous M1I CARD9 (caspase recruitment domain family member 9) mutation, while the other had homozygous Q295X CARD9 mutation; both patients lacked CARD9 protein expression. The patients had normal monocyte and Th17 cell numbers in peripheral blood, but their mononuclear cells exhibited impaired production of proinflammatory cytokines upon fungus-specific stimulation. Neutrophil phagocytosis, killing, and oxidative burst against Aspergillus fumigatus were intact, but neither patient accumulated neutrophils in infected tissue despite normal neutrophil numbers in peripheral blood. The neutrophil tissue accumulation defect was not caused by defective neutrophil-intrinsic chemotaxis, indicating that production of neutrophil chemoattractants in extrapulmonary tissue is impaired in CARD9 deficiency. Taken together, our results show that CARD9 deficiency is the first known inherited or acquired condition that predisposes to extrapulmonary Aspergillus infection with sparing of the lungs, associated with impaired neutrophil recruitment to the site of infection.
Collapse
Affiliation(s)
- Nikolaus Rieber
- Infectious Diseases and Immunology, Department of Pediatrics I, University of Tübingen, Germany.,Department of Pediatrics, Munich Schwabing Hospital, Munich Technical University, Munich, Germany
| | - Roel P Gazendam
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexandra F Freeman
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Amy P Hsu
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Amanda L Collar
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Janyce A Sugui
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Rebecca A Drummond
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | | | - Kevin Hoffman
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carolyn Henderson
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Lily Clark
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Markus Mezger
- Infectious Diseases and Immunology, Department of Pediatrics I, University of Tübingen, Germany
| | - Muthulekha Swamydas
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Maik Engeholm
- Department of Neurodegenerative Disease, Hertie-Institute for Clinical Brain Research and Center for Neurology, Tübingen, Germany
| | - Rebecca Schüle
- Department of Neurodegenerative Disease, Hertie-Institute for Clinical Brain Research and Center for Neurology, Tübingen, Germany
| | - Bettina Neumayer
- Institute of Pathology, University of Tübingen, Tübingen, Germany
| | - Frank Ebel
- Max-von-Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Constantinos M Mikelis
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| | - Stefania Pittaluga
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Vinod K Prasad
- Pediatric Blood and Marrow Transplantation, Duke University Medical Center, Durham, North Carolina, USA
| | - Anurag Singh
- Infectious Diseases and Immunology, Department of Pediatrics I, University of Tübingen, Germany
| | - Joshua D Milner
- Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Kelli W Williams
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jean K Lim
- Wayne State University and Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Kyung J Kwon-Chung
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Steven M Holland
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Dominik Hartl
- Infectious Diseases and Immunology, Department of Pediatrics I, University of Tübingen, Germany
| | - Taco W Kuijpers
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Michail S Lionakis
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
89
|
Bohelay G, Robert S, Bouges-Michel C, Gerin M, Levy A, Fain O, Caux F. Subcutaneous phaeohyphomycosis caused byExophiala spiniferain a European patient with lymphoma: a rare occurrence case report and literature review. Mycoses 2016; 59:691-696. [DOI: 10.1111/myc.12515] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 03/27/2016] [Accepted: 04/19/2016] [Indexed: 11/28/2022]
Affiliation(s)
- G. Bohelay
- Department of Dermatology; Avicenne Hospital; Assistance Publique des Hôpitaux de Paris (AP-HP); Bobigny France
| | - S. Robert
- Department of General Practice; University Paris Diderot; Sorbonne Paris Cité; Paris France
| | - C. Bouges-Michel
- Laboratory of Mycology; Avicenne Hospital; Assistance Publique des Hôpitaux de Paris (AP-HP); Bobigny France
| | - M. Gerin
- Department of Internal Medicine; Jean Verdier Hospital; Assistance Publique des Hôpitaux de Paris (AP-HP); Bondy France
| | - A. Levy
- Department of Pathology; Avicenne Hospital; Assistance Publique des Hôpitaux de Paris (AP-HP); Bobigny France
| | - O. Fain
- Department of Internal Medicine; Saint-Antoine Hospital; AP-HP; DHU i2B; University Paris 6; Paris France
| | - F. Caux
- Department of Dermatology; Avicenne Hospital; Assistance Publique des Hôpitaux de Paris (AP-HP); Bobigny France
| |
Collapse
|
90
|
Streata I, Weiner J, Iannaconne M, McEwen G, Ciontea MS, Olaru M, Capparelli R, Ioana M, Kaufmann SHE, Dorhoi A. The CARD9 Polymorphisms rs4077515, rs10870077 and rs10781499 Are Uncoupled from Susceptibility to and Severity of Pulmonary Tuberculosis. PLoS One 2016; 11:e0163662. [PMID: 27684065 PMCID: PMC5042433 DOI: 10.1371/journal.pone.0163662] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/12/2016] [Indexed: 01/09/2023] Open
Abstract
Genetic variants in the CARD9 gene predispose to inflammatory disorders and chronic infectious diseases. Tuberculosis (TB), a chronic infectious disease affecting the lung, is lethal in Card9-deficient mice. We hypothesized that polymorphisms in the CARD9 gene influence TB progression and disease-associated lung damage in humans. We tested genotype distributions of the CARD9 polymorphisms rs4077515, rs10781499 and rs10870077 in TB patients and healthy subjects in a Caucasian cohort. SNPs were in linkage disequilibrium and none of the haplotypes was significantly enriched in the TB group. We determined total and differential leukocyte count, erythrocyte sedimentation rate and plasma abundance of cytokines and chemokines as markers for systemic inflammation and scored chest X-rays to assess lung involvement in TB subjects. Most disease parameters segregated independently of the CARD9 haplotypes. In contrast to multifactorial chronic inflammation, selected genetic variants in the CARD9 gene leave host responses apparently unaffected in TB, at least in the population analyzed here.
Collapse
Affiliation(s)
- Ioana Streata
- University of Medicine and Pharmacy of Craiova, Human Genomics Laboratory, 200638 Craiova, Romania
| | - January Weiner
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Marco Iannaconne
- University of Naples Federico II, Department of Agriculture, 80055 Naples, Italy
| | - Gayle McEwen
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | | | - Marian Olaru
- “Tudor Vladimirescu” Pneumophtisiology Hospital Runcu, 217390 Gorj, Romania
| | - Rosanna Capparelli
- University of Naples Federico II, Department of Agriculture, 80055 Naples, Italy
| | - Mihai Ioana
- University of Medicine and Pharmacy of Craiova, Human Genomics Laboratory, 200638 Craiova, Romania
| | - Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany
- * E-mail: (AD); (SHEK)
| | - Anca Dorhoi
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany
- * E-mail: (AD); (SHEK)
| |
Collapse
|
91
|
Impairment of Immune Response against Dematiaceous Fungi in Card9 Knockout Mice. Mycopathologia 2016; 181:631-42. [PMID: 27421992 DOI: 10.1007/s11046-016-0029-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/12/2016] [Indexed: 10/21/2022]
Abstract
Dematiaceous fungi are a large group of pathogens that can cause a wide range of diseases in both immunocompetent and immunocompromised hosts. Based on our previous finding of caspase recruitment domain-containing protein 9 (CARD9) mutations in patients with subcutaneous phaeohyphomycosis caused by Phialophora verrucosa (P. verrucosa), we further investigated the exact role of CARD9 in the pathogenesis of phaeohyphomycosis using Card9 knockout (Card9 KO) mice. We showed that Card9 KO mice are profoundly susceptible to P. verrucosa infection compared with wild-type mice, reflected by significantly more severe footpad swelling, higher fungal burden, lower survival, and systemic dissemination. The inability of Card9 KO mice to control P. verrucosa infection was associated with lack of Th17 differentiation and reduction of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-17A levels in footpad homogenates. In vitro experiments showed a defect of fungal conidia killing and pro-inflammatory cytokine production in Card9 KO bone marrow-derived macrophages and dendritic cells. Furthermore, ex vivo coculture and in vitro T cell differentiation assay demonstrated that Card9 signaling pathway acts indispensably on differentiation of Th17 cells. In conclusion, our findings suggest that CARD9 mediate the innate immune and Th17-mediated adaptive immune responses against dematiaceous fungal infections at the early stage of infection.
Collapse
|
92
|
Soltész B, Tóth B, Sarkadi AK, Erdős M, Maródi L. The Evolving View of IL-17-Mediated Immunity in Defense Against Mucocutaneous Candidiasis in Humans. Int Rev Immunol 2016; 34:348-63. [PMID: 26154078 DOI: 10.3109/08830185.2015.1049345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The discovery of interleukin (IL)-17-mediated immunity has provided a robust framework upon which our current understanding of the mechanism involved in host defense against mucocutaneous candidiasis (CMC) has been built. Studies have shed light on how pattern recognition receptors expressed by innate immune cells recognize various components of Candida cell wall. Inborn errors of immunity affecting IL-17+ T cell differentiation have recently been defined, such as deficiencies of signal transducer and activator of transcription (STAT)3, STAT1, IL-12Rβ1 and IL-12p40, and caspase recruitment domain 9. Impaired receptor-ligand coupling was identified in patients with IL-17F and IL-17 receptor A (IL17RA) deficiency and autoimmune polyendocrine syndrome (APS) type 1. Mutation in the nuclear factor kappa B activator (ACT) 1 was described as a cause of impaired IL-17R-mediated signaling. CMC may be part of a complex clinical phenotype like in patients with deficiencies of STAT3, IL-12Rβ1/IL-12p40 and APS-1 or may be the only or dominant phenotypic manifestation of disease which is referred to as CMC disease. CMCD may result from deficiencies of STAT1, IL-17F, IL-17RA and ACT1. In this review we discuss how recent research on IL-17-mediated immunity shed light on host defense against mucocutaneous infection by Candida and how the discovery of various germ-line mutations and the characterization of associated clinical phenotypes have provided insights into the role of CD4+IL-17+ lymphocytes in the regulation of anticandidal defense of body surfaces.
Collapse
Affiliation(s)
- Beáta Soltész
- Department of Infectious Diseases and Pediatric Immunology, Faculty of Medicine, University of Debrecen , Debrecen , Hungary
| | | | | | | | | |
Collapse
|
93
|
Pilmis B, Puel A, Lortholary O, Lanternier F. New clinical phenotypes of fungal infections in special hosts. Clin Microbiol Infect 2016; 22:681-7. [PMID: 27237547 DOI: 10.1016/j.cmi.2016.05.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 05/11/2016] [Accepted: 05/14/2016] [Indexed: 02/06/2023]
Abstract
Incidence of invasive fungal infections increases over time with the rise in at-risk populations; in particular, patients with acquired immunodeficiencies due to immunosuppressive therapies such as anti-tumour necrosis factor-α (TNF-α) treatment, cirrhosis or burns. Some primary immunodeficiencies (PID) can also predispose selectively to invasive fungal diseases. Conversely, some atypical fungal diseases can reveal new PID. Deep dermatophytosis, Candida central nervous system infections or gastrointestinal disease, or disseminated phaeohyphomycosis-revealed CARD9 deficiency. Most patients with inherited chronic mucocutaneous candidiasis were found to carry STAT1 gain-of-function mutations. The spectrum of fungal susceptibility and clinical presentation varies according to the PID. Among acquired immunodeficiencies, immunosuppressive treatments such as TNF-α blocker therapy, which has revolutionized autoimmune disorder treatment, may be complicated by endemic mycosis, aspergillosis, pneumocystosis or cryptococcosis. Burn patients with damaged skin barrier protection are susceptible to severe Candida infections and filamentous fungal infections (such as Aspergillus spp., Mucorales). Moreover, patients with cirrhosis are at increased risk of fungal infections. Therefore, physicians should think of any potential underlying acquired or inherited immunodeficiency in a patient developing an atypical fungal infection, or of a potential fungal disease in the context of an atypical presentation in specific hosts.
Collapse
Affiliation(s)
- B Pilmis
- Paris Descartes University, Sorbonne Paris Cité, Infectious Diseases Unit, Necker-Enfants Malades University Hospital, AP-HP, Imagine Institute, Paris, France; Antimicrobial Stewardship Team, Microbiology Unit, Groupe Hospitalier Paris Saint Joseph, Paris, France
| | - A Puel
- Paris Descartes University, Sorbonne Paris Cité, Infectious Diseases Unit, Necker-Enfants Malades University Hospital, AP-HP, Imagine Institute, Paris, France; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France; Imagine Institute, Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - O Lortholary
- Paris Descartes University, Sorbonne Paris Cité, Infectious Diseases Unit, Necker-Enfants Malades University Hospital, AP-HP, Imagine Institute, Paris, France; Institut Pasteur, Unite de Mycologie Moleculaire, CNRS URA3012, Paris, France; Institut Pasteur, Centre National de Référence Mycoses invasives et Antifongiques, Paris, France
| | - F Lanternier
- Paris Descartes University, Sorbonne Paris Cité, Infectious Diseases Unit, Necker-Enfants Malades University Hospital, AP-HP, Imagine Institute, Paris, France; Institut Pasteur, Unite de Mycologie Moleculaire, CNRS URA3012, Paris, France; Institut Pasteur, Centre National de Référence Mycoses invasives et Antifongiques, Paris, France
| |
Collapse
|
94
|
Drummond RA, Lionakis MS. Mechanistic Insights into the Role of C-Type Lectin Receptor/CARD9 Signaling in Human Antifungal Immunity. Front Cell Infect Microbiol 2016; 6:39. [PMID: 27092298 PMCID: PMC4820464 DOI: 10.3389/fcimb.2016.00039] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/21/2016] [Indexed: 12/12/2022] Open
Abstract
Human CARD9 deficiency is an autosomal recessive primary immunodeficiency disorder caused by biallelic mutations in the gene CARD9, which encodes a signaling protein that is found downstream of many C-type lectin receptors (CLRs). CLRs encompass a large family of innate recognition receptors, expressed predominantly by myeloid and epithelial cells, which bind fungal carbohydrates and initiate antifungal immune responses. Accordingly, human CARD9 deficiency is associated with the spontaneous development of persistent and severe fungal infections that primarily localize to the skin and subcutaneous tissue, mucosal surfaces and/or central nervous system (CNS). In the last 3 years, more than 15 missense and nonsense CARD9 mutations have been reported which associate with the development of a wide spectrum of fungal infections caused by a variety of fungal organisms. The mechanisms by which CARD9 provides organ-specific protection against these fungal infections are now emerging. In this review, we summarize recent immunological and clinical advances that have provided significant mechanistic insights into the pathogenesis of human CARD9 deficiency. We also discuss how genetic mutations in CARD9-coupled receptors (Dectin-1, Dectin-2) and CARD9-binding partners (MALT1, BCL10) affect human antifungal immunity relative to CARD9 deficiency, and we highlight major understudied research questions which merit future investigation.
Collapse
Affiliation(s)
- Rebecca A Drummond
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health Bethesda, MD, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
95
|
Alves de Medeiros AK, Lodewick E, Bogaert DJA, Haerynck F, Van Daele S, Lambrecht B, Bosma S, Vanderdonckt L, Lortholary O, Migaud M, Casanova JL, Puel A, Lanternier F, Lambert J, Brochez L, Dullaers M. Chronic and Invasive Fungal Infections in a Family with CARD9 Deficiency. J Clin Immunol 2016; 36:204-9. [PMID: 26961233 DOI: 10.1007/s10875-016-0255-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/25/2016] [Indexed: 01/26/2023]
Abstract
Chronic mucocutaneous or invasive fungal infections are generally the result of primary or secondary immune dysfunction. Patients with autosomal recessive CARD9 mutations are also predisposed to recurrent mucocutaneous and invasive fungal infections with Candida spp., dermatophytes (e.g., Trichophyton spp.) and phaeohyphomycetes (Exophiala spp., Phialophora verrucosa). We study a consanguineous family of Turkish origin in which three members present with distinct clinical phenotypes of chronic mucocutaneous and invasive fungal infections, ranging from chronic mucocutaneous candidiasis (CMC) in one patient, treatment-resistant cutaneous dermatophytosis and deep dermatophytosis in a second patient, to CMC with Candida encephalitis and endocrinopathy in a third patient. Two patients consented to genetic testing and were found to have a previously reported homozygous R70W CARD9 mutation. Circulating IL-17 and IL-22 producing T cells were decreased as was IL-6 and granulocyte/macrophage colony-stimulating factor (GM-CSF) secretion upon stimulation with Candida albicans. Patients with recurrent fungal infections in the absence of known immunodeficiencies should be analyzed for CARD9 gene mutations as the cause of fungal infection predisposition.
Collapse
Affiliation(s)
- Ana Karina Alves de Medeiros
- Department of Dermatology, Ghent University Hospital, Medical Research Building ground floor, De Pintelaan 185, 9000, Ghent, Belgium.
| | - Evelyn Lodewick
- Department of Dermatology, Ghent University Hospital, Medical Research Building ground floor, De Pintelaan 185, 9000, Ghent, Belgium
| | - Delfien J A Bogaert
- Department of Pediatric Pulmonology and Immunology, Centre for Primary Immune deficiencies, Ghent University Hospital, Ghent, Belgium
- Clinical Immunology Research Laboratory, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Filomeen Haerynck
- Department of Pediatric Pulmonology and Immunology, Centre for Primary Immune deficiencies, Ghent University Hospital, Ghent, Belgium
- Clinical Immunology Research Laboratory, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Sabine Van Daele
- Department of Pediatric Pulmonology and Immunology, Centre for Primary Immune deficiencies, Ghent University Hospital, Ghent, Belgium
| | - Bart Lambrecht
- Clinical Immunology Research Laboratory, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Laboratory for Mucosal Immunology, VIB Inflammation Research Center, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Sara Bosma
- Department of Dermatology, Ghent University Hospital, Medical Research Building ground floor, De Pintelaan 185, 9000, Ghent, Belgium
| | - Laure Vanderdonckt
- Department of Dermatology, Ghent University Hospital, Medical Research Building ground floor, De Pintelaan 185, 9000, Ghent, Belgium
| | - Olivier Lortholary
- Paris Descartes University, Imagine Institute, Paris, France
- Infectious Diseases Unit, Necker-Enfants Malades Hospital, AP-HP Paris, Paris, France
| | - Mélanie Migaud
- Paris Descartes University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch; INSERM UMR1163, Necker Medical School, Paris, France
| | - Jean-Laurent Casanova
- Paris Descartes University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch; INSERM UMR1163, Necker Medical School, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology-Rheumatology Unit, AP-HP, Necker Enfants-Malades Hospital, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Anne Puel
- Paris Descartes University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch; INSERM UMR1163, Necker Medical School, Paris, France
| | - Fanny Lanternier
- Paris Descartes University, Imagine Institute, Paris, France
- Infectious Diseases Unit, Necker-Enfants Malades Hospital, AP-HP Paris, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch; INSERM UMR1163, Necker Medical School, Paris, France
| | - Jo Lambert
- Department of Dermatology, Ghent University Hospital, Medical Research Building ground floor, De Pintelaan 185, 9000, Ghent, Belgium
| | - Lieve Brochez
- Department of Dermatology, Ghent University Hospital, Medical Research Building ground floor, De Pintelaan 185, 9000, Ghent, Belgium
| | - Melissa Dullaers
- Clinical Immunology Research Laboratory, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Laboratory for Mucosal Immunology, VIB Inflammation Research Center, Ghent, Belgium
| |
Collapse
|
96
|
Successful Granulocyte Colony-stimulating Factor Treatment of Relapsing Candida albicans Meningoencephalitis Caused by CARD9 Deficiency. Pediatr Infect Dis J 2016; 35:428-31. [PMID: 26658378 DOI: 10.1097/inf.0000000000001028] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Caspase-associated recruitment domain-9 (CARD9) deficiency is an autosomal-recessive primary immunodeficiency with genetic defects in Th17 immunity marked by susceptibility to recurrent and invasive Candida infections. We present a case of relapsing Candida albicans meningoencephalitis over 1-year period despite appropriate antifungal therapy. We detected a homozygous p.Q295X mutation in CARD9 as well as a defective interleukin-17 and interferon gamma synthesis in Enzyme-Linked ImmunoSpot tests. We achieved complete clinical remission, and improvement of interleukin-17 secretion with subcutaneous granulocyte colony-stimulating factor) treatment.
Collapse
|
97
|
|
98
|
Cao Z, Conway KL, Heath RJ, Rush JS, Leshchiner ES, Ramirez-Ortiz ZG, Nedelsky NB, Huang H, Ng A, Gardet A, Cheng SC, Shamji AF, Rioux JD, Wijmenga C, Netea MG, Means TK, Daly MJ, Xavier RJ. Ubiquitin Ligase TRIM62 Regulates CARD9-Mediated Anti-fungal Immunity and Intestinal Inflammation. Immunity 2016; 43:715-26. [PMID: 26488816 DOI: 10.1016/j.immuni.2015.10.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 04/08/2015] [Accepted: 07/24/2015] [Indexed: 12/16/2022]
Abstract
CARD9 is a central component of anti-fungal innate immune signaling via C-type lectin receptors, and several immune-related disorders are associated with CARD9 alterations. Here, we used a rare CARD9 variant that confers protection against inflammatory bowel disease as an entry point to investigating CARD9 regulation. We showed that the protective variant of CARD9, which is C-terminally truncated, acted in a dominant-negative manner for CARD9-mediated cytokine production, indicating an important role for the C terminus in CARD9 signaling. We identified TRIM62 as a CARD9 binding partner and showed that TRIM62 facilitated K27-linked poly-ubiquitination of CARD9. We identified K125 as the ubiquitinated residue on CARD9 and demonstrated that this ubiquitination was essential for CARD9 activity. Furthermore, we showed that similar to Card9-deficient mice, Trim62-deficient mice had increased susceptibility to fungal infection. In this study, we utilized a rare protective allele to uncover a TRIM62-mediated mechanism for regulation of CARD9 activation.
Collapse
Affiliation(s)
- Zhifang Cao
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kara L Conway
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Robert J Heath
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jason S Rush
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Zaida G Ramirez-Ortiz
- Center for Immunology and Inflammatory Diseases and Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Natalia B Nedelsky
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hailiang Huang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Aylwin Ng
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Agnès Gardet
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shih-Chin Cheng
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Center, Nijmegen 6525 GA, the Netherlands
| | | | - John D Rioux
- Research Center, Montreal Heart Institute and Université de Montréal, QC H1T 1C8, Canada
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen T9700 RB, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Terry K Means
- Center for Immunology and Inflammatory Diseases and Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Mark J Daly
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ramnik J Xavier
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
99
|
Phaeohyphomycosis in Transplant Patients. J Fungi (Basel) 2015; 2:jof2010002. [PMID: 29376919 PMCID: PMC5753083 DOI: 10.3390/jof2010002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 11/17/2022] Open
Abstract
Phaeohyphomycosis is caused by a large, heterogenous group of darkly pigmented fungi. The presence of melanin in their cell walls is characteristic, and is likely an important virulence factor. These infections are being increasingly seen in a variety of clinical syndromes in both immunocompromised and normal individuals. Transplant patients are especially at risk due their prolonged immunosuppression. There are no specific diagnostic tests for these fungi, though the Fontana-Masson stain is relatively specific in tissue. They are generally seen in a worldwide distribution, though a few species are only found in specific geographic regions. Management of these infections is not standardized due to lack of clinical trials, though recommendations are available based on clinical experience from case reports and series and animal models. Superficial infections may be treated without systemic therapy. Central nervous system infections are unique in that they often affect otherwise normal individuals, and are difficult to treat. Disseminated infections carry a high mortality despite aggressive therapy, usually with multiple antifungal drugs. Considerable work is needed to determine optimal diagnostic and treatment strategies for these infections.
Collapse
|
100
|
Casanova JL. Severe infectious diseases of childhood as monogenic inborn errors of immunity. Proc Natl Acad Sci U S A 2015; 112:E7128-37. [PMID: 26621750 PMCID: PMC4697435 DOI: 10.1073/pnas.1521651112] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This paper reviews the developments that have occurred in the field of human genetics of infectious diseases from the second half of the 20th century onward. In particular, it stresses and explains the importance of the recently described monogenic inborn errors of immunity underlying resistance or susceptibility to specific infections. The monogenic component of the genetic theory provides a plausible explanation for the occurrence of severe infectious diseases during primary infection. Over the last 20 y, increasing numbers of life-threatening infectious diseases striking otherwise healthy children, adolescents, and even young adults have been attributed to single-gene inborn errors of immunity. These studies were inspired by seminal but neglected findings in plant and animal infections. Infectious diseases typically manifest as sporadic traits because human genotypes often display incomplete penetrance (most genetically predisposed individuals remain healthy) and variable expressivity (different infections can be allelic at the same locus). Infectious diseases of childhood, once thought to be archetypal environmental diseases, actually may be among the most genetically determined conditions of mankind. This nascent and testable notion has interesting medical and biological implications.
Collapse
MESH Headings
- Adolescent
- Candidiasis, Chronic Mucocutaneous/genetics
- Candidiasis, Chronic Mucocutaneous/immunology
- Child
- Complement System Proteins/genetics
- Encephalitis, Herpes Simplex/genetics
- Encephalitis, Herpes Simplex/immunology
- Epidermodysplasia Verruciformis/genetics
- Epidermodysplasia Verruciformis/immunology
- Genetic Diseases, Inborn/genetics
- Genetic Diseases, Inborn/immunology
- Genetic Predisposition to Disease
- Humans
- Immunologic Deficiency Syndromes/genetics
- Immunologic Deficiency Syndromes/immunology
- Infections/genetics
- Infections/immunology
- Influenza, Human/genetics
- Influenza, Human/immunology
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Lymphoproliferative Disorders/genetics
- Lymphoproliferative Disorders/immunology
- Malaria/genetics
- Malaria/immunology
- Models, Genetic
- Models, Immunological
- Mycobacterium Infections/genetics
- Mycobacterium Infections/immunology
- Neisseria/immunology
- Neisseria/pathogenicity
- Pneumococcal Infections/genetics
- Pneumococcal Infections/immunology
- Tinea/genetics
- Tinea/immunology
- Young Adult
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065; Howard Hughes Medical Institute, New York, NY 10065; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, 75015 Paris, France; Imagine Institute, Paris Descartes University, 75015 Paris, France; Pediatric Hematology and Immunology Unit, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, 75015 Paris, France
| |
Collapse
|