51
|
Komba S, Kotake-Nara E, Tsuzuki W. Degradation of Fucoxanthin to Elucidate the Relationship between the Fucoxanthin Molecular Structure and Its Antiproliferative Effect on Caco-2 Cells. Mar Drugs 2018; 16:E275. [PMID: 30082622 PMCID: PMC6117710 DOI: 10.3390/md16080275] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 01/29/2023] Open
Abstract
Fucoxanthin has an antiproliferative effect on cancer cells, but its detailed structure⁻activity correlation has not yet been elucidated. To elucidate this correlation, fucoxanthin was degraded by ozonolysis. The degraded compounds of fucoxanthin obtained by ozonolysis were purified by HPLC and analyzed by NMR. The polyene chain of fucoxanthin was cleaved by ozonolysis, and the fucoxanthin was divided into two types of cyclohexyl derivatives, one with a β,γ-epoxy ketone group and the other with an allenic bond. In order to elucidate the structure⁻activity correlation, Caco-2 cells (human colorectal carcinoma) were treated with fucoxanthin degradation compounds. It was found that the entire structure of fucoxanthin is not essential for its antiproliferative effect and that even a partial structure exerts this effect.
Collapse
Affiliation(s)
- Shiro Komba
- Food Component Analysis Unit, Food Research Institute, National Agriculture and Food Research Organization, 2-1-12, Kannondai, Tsukuba, Ibaraki 305-8642, Japan.
| | - Eiichi Kotake-Nara
- Food Component Analysis Unit, Food Research Institute, National Agriculture and Food Research Organization, 2-1-12, Kannondai, Tsukuba, Ibaraki 305-8642, Japan.
| | - Wakako Tsuzuki
- Food Component Analysis Unit, Food Research Institute, National Agriculture and Food Research Organization, 2-1-12, Kannondai, Tsukuba, Ibaraki 305-8642, Japan.
| |
Collapse
|
52
|
Manabe Y, Komatsu T, Seki S, Sugawara T. Dietary astaxanthin can accumulate in the brain of rats. Biosci Biotechnol Biochem 2018; 82:1433-1436. [DOI: 10.1080/09168451.2018.1459467] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
ABSTRACT
We evaluated the distribution of astaxanthin in rat brains after a single dose administration and after feeding 0.1% astaxanthin diet for 5 days. Astaxanthin was detected in the hippocampus and cerebral cortex 4 and 8 h after a single dose. Astaxanthin concentration in rat brains was higher after consumption of astaxanthin diet for 5 days than after a single dose.
Collapse
Affiliation(s)
- Yuki Manabe
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Shinobu Seki
- Pharmaceutical and Healthcare Research Laboratories, Research and Development Management Headquarters, FUJIFILM Corporation, Kanagawa, Japan
| | | |
Collapse
|
53
|
Riethorst D, Mitra A, Kesisoglou F, Xu W, Tack J, Brouwers J, Augustijns P. Human intestinal fluid layer separation: The effect on colloidal structures & solubility of lipophilic compounds. Eur J Pharm Biopharm 2018; 129:104-110. [DOI: 10.1016/j.ejpb.2018.05.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/10/2018] [Accepted: 05/21/2018] [Indexed: 01/22/2023]
|
54
|
Kumagai K, Nebashi N, Muromachi A, Nakano Y, Ito Y, Nagasawa T. Emulsified Fucoxanthin Increases Stability and Absorption in Rats. J JPN SOC FOOD SCI 2018. [DOI: 10.3136/nskkk.65.349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Kota Kumagai
- Healthcare Products Development Center, KYOWA HAKKO BIO CO., LTD
- Department of Bioresources Science, The United Graduate School of Agricultural Sciences, Iwate University
| | - Naohiro Nebashi
- Healthcare Products Development Center, KYOWA HAKKO BIO CO., LTD
| | - Ayako Muromachi
- Healthcare Products Development Center, KYOWA HAKKO BIO CO., LTD
| | - Yuichiro Nakano
- Healthcare Products Development Center, KYOWA HAKKO BIO CO., LTD
| | - Yoshiaki Ito
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University
| | - Takashi Nagasawa
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University
| |
Collapse
|
55
|
Aizawa H, Ichikawa S, Kotake-Nara E, Nagao A. Effects of a lysophosphatidylcholine and a phosphatidylcholine on the morphology of taurocholic acid-based mixed micelles as determined by small-angle X-ray scattering. J DISPER SCI TECHNOL 2018. [DOI: 10.1080/01932691.2017.1380529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Hideki Aizawa
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Sosaku Ichikawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Eiichi Kotake-Nara
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Akihiko Nagao
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- Department of Health and Nutrition, Jumonji University, Niiza, Saitama, Japan
| |
Collapse
|
56
|
Tso P, Vurma M, Ko CW, Lee D, DeMichele S. Effect of mono- and diglycerides on the digestion and absorption of lutein in lymph fistula rats. Am J Physiol Gastrointest Liver Physiol 2018; 315:G95-G103. [PMID: 29470144 PMCID: PMC6109709 DOI: 10.1152/ajpgi.00236.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 01/31/2023]
Abstract
Breast milk lutein is better absorbed by infants than lutein delivered in infant formula. Therefore, we wanted to better understand the possible absorption differences of lutein in breast milk vs. that in infant formula by determining its bioavailability after gastric administration and whether the intestinal absorption of lutein can be improved by using new delivery vehicles. Study 1 compared the intestinal uptake,and the lymphatic and portal transport of lutein in conscious lymph fistula rats. Four groups of lymph- and portal vein-cannulated rats ( n = 8-10/group) were randomized to receive via gastric tube increasing doses (10, 20, 40, or 80 mg/kg) of 20% lutein in safflower oil (SO) suspension to assess whether there was a saturable level of lutein that could be absorbed and transported in lymph. Aliquots of hourly portal blood and lymph were taken for lutein and zeaxanthin analyses. The dose-response study showed that 20 mg/kg lutein was the saturable level of lymphatic lutein absorption with no lutein detected in portal circulation at any dosage level tested. Study 2 randomized five groups of lymph fistula rats ( n = 4-9/group) to receive 20 mg/kg lutein from either lutein in SO or lutein in four different mono- and diglyceride oils (MDGs). Gastric infusion of lutein suspended in MDG (20 mg/kg) significantly improved (71-211%, P < 0.05) lymphatic lutein output 2-6 h after lipid feeding vs. lutein in SO. Lymphatic zeaxanthin (10% of the lutein fed mixture) transport in both Study 1 and Study 2 followed that of lutein. We conclude that a mixture of MDGs helps solubilize lutein and facilitate gastrointestinal micelle formation, thus improving lymphatic lutein absorption compared with triglyceride oils. NEW & NOTEWORTHY This paper describes how lutein is digested and absorbed by the gastrointestinal tract by using the conscious lymph fistula rat model. Our dose-response study showed that absorption and lymphatic transport of lutein is a saturable process with no lutein detected in portal circulation at any dosage level tested. Our paper also provides insight into how this process can be improved by modifying the typical lipid mixtures carrying the lutein.
Collapse
Affiliation(s)
- Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Disease Institute, University of Cincinnati , Cincinnati, Ohio
| | - Mustafa Vurma
- Discovery and Product Research and Development, Abbott Nutrition, Abbott Laboratories , Columbus, Ohio
| | - Chih-Wei Ko
- Department of Pathology and Laboratory Medicine, Metabolic Disease Institute, University of Cincinnati , Cincinnati, Ohio
| | - Dana Lee
- Department of Pathology and Laboratory Medicine, Metabolic Disease Institute, University of Cincinnati , Cincinnati, Ohio
| | - Stephen DeMichele
- Discovery and Product Research and Development, Abbott Nutrition, Abbott Laboratories , Columbus, Ohio
| |
Collapse
|
57
|
Zhao Q, Miriyala N, Su Y, Chen W, Gao X, Shao L, Yan R, Li H, Yao X, Cao D, Wang Y, Ouyang D. Computer-Aided Formulation Design for a Highly Soluble Lutein-Cyclodextrin Multiple-Component Delivery System. Mol Pharm 2018; 15:1664-1673. [PMID: 29505718 DOI: 10.1021/acs.molpharmaceut.8b00056] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclodextrin (CD) complexation is widely used for the solubilization of poorly soluble drugs in the pharmaceutical industry. Current research was to develop a highly soluble lutein-cyclodextrin multiple-component delivery system (lutein-CD-MCDS) by combined modeling and experimental approaches. Both phase solubility diagram and molecular dynamics (MD) simulation results revealed that the interactions between lutein and CDs were very weak, which confirmed the insignificant solubility improvement of lutein-CD binary system. On the basis of theoretical calculation and preliminary CD studies, lutein-CD-MCDS was developed with over 400-fold solubility improvement after formulation screening. MD simulation indicated that the auxiliary polymers of TWEEN 80 and poloxamer 188 in the lutein-CD-MCDS introduced bridged interaction between lutein and γ-CD to increase the solubility, dissolution rate, and stability of the complex. The lutein-CD-MCDS was characterized by in vitro dissolution test, differential scanning colorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and powder X-ray diffraction (PXRD). Moreover, lutein-CD-MCDS had significantly higher uptake in Caco-2 cells than free lutein. The relative bioavailability of the lutein-CD-MCDS increased to 6.6-fold compared to pure lutein, and to 1.2-fold compared with commercial lutein soft capsules. In conclusion, the highly soluble lutein-CD-MCDS with significant improvement in both the solubility and bioavailability was developed and characterized by combined modeling and experimental approaches. Our research indicates that computer-aided formulation design is a promising approach for future formulation development.
Collapse
Affiliation(s)
- Qianqian Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS) , University of Macau , Macau , China
| | - Nikhila Miriyala
- Aston Pharmacy School, School of Life and Health Sciences , Aston University , Birmingham B4 7ET , United Kingdom
| | - Yan Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS) , University of Macau , Macau , China
| | - Weijie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS) , University of Macau , Macau , China
| | - Xuejiao Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS) , University of Macau , Macau , China
| | - Ling Shao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS) , University of Macau , Macau , China
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS) , University of Macau , Macau , China
| | - Haifeng Li
- Institute of Applied Physics and Materials Engineering , University of Macau , Macau , China
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health , Macau University of Science and Technology , Macau , China
| | - Dongsheng Cao
- School of Pharmaceutical Science , Central South University , Changsha 410013 , P. R. China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS) , University of Macau , Macau , China
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS) , University of Macau , Macau , China
| |
Collapse
|
58
|
Chuyen HV, Eun JB. Marine carotenoids: Bioactivities and potential benefits to human health. Crit Rev Food Sci Nutr 2018; 57:2600-2610. [PMID: 26565683 DOI: 10.1080/10408398.2015.1063477] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Among natural pigments, carotenoids play important roles in physiological functions. The characteristics of carotenoids and their effects on human health have been reported for a long time, but most studies have focused on carotenoids from vegetables, fruits, and other parts of higher plants. Few reports are available on carotenoids from marine sources, such as seaweeds, microalgae, and marine animals, which have attracted attention in recent decades. Hundreds of carotenoids have been identified and isolated from marine organisms and their beneficial physiological functions, such as anticancer, antiobesity, antidiabetic, anti-inflammatory, and cardioprotective activities have been reported. The purpose of this review is to discuss the literature on the beneficial bioactivities of some of the most abundant marine carotenoids, including fucoxanthin, astaxanthin, cantaxanthin, peridinin, fucoxanthinol, and halocynthiaxanthin.
Collapse
Affiliation(s)
- Hoang Van Chuyen
- a Department of Food Science and Technology and Functional Food Research Center , Chonnam National University , Buk-gu, Gwangju , Korea.,b Department of Food and Agricultural Products Processing and Preservation , Faculty of Agriculture and Forestry, Tay Nguyen University , Daklak Province , Vietnam
| | - Jong-Bang Eun
- a Department of Food Science and Technology and Functional Food Research Center , Chonnam National University , Buk-gu, Gwangju , Korea
| |
Collapse
|
59
|
Gille A, Hollenbach R, Trautmann A, Posten C, Briviba K. Effect of sonication on bioaccessibility and cellular uptake of carotenoids from preparations of photoautotrophic Phaeodactylum tricornutum. Food Res Int 2017; 118:40-48. [PMID: 30898351 DOI: 10.1016/j.foodres.2017.12.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/24/2017] [Accepted: 12/14/2017] [Indexed: 01/30/2023]
Abstract
With regard to its cost-effective cultivation and the composition of high-value nutrients, the diatom Phaeodactylum tricornutum (P. tricornutum) attracts interest for the use in human nutrition. Besides a number of important nutrients, it is rich in carotenoids. Therefore, this study aimed to investigate the potential of P. tricornutum as a carotenoid source for human nutrition. In photoautotrophically produced P. tricornutum biomass the carotenoid constitution, bioaccessibility (in vitro digestion model) and cellular uptake in differentiated Caco-2 cells (Transwell model system) was determined. Furthermore, the influence of sonication on these parameters was investigated. The results indicate that β-carotene, zeaxanthin and fucoxanthin were the main carotenoids found in P. tricornutum. Moreover, these carotenoids showed a good bioaccessibility (β-carotene: 25%, zeaxanthin: 27%, fucoxanthin: 57%), which is further improved by sonication for β-carotene and fucoxanthin. In line with the good bioaccessibility, fucoxanthin was the most abundant carotenoid in Caco-2 cells followed by zeaxanthin. In contrast, β-carotene could not be detected in the cells. The present study demonstrated that P. tricornutum represents a good source of carotenoids, particularly fucoxanthin. Thus, this diatom can contribute to the intake of bioaccessible carotenoids, even without processing. In addition, sonication might be a useful tool to improve the carotenoid bioaccessibility.
Collapse
Affiliation(s)
- Andrea Gille
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Physiology and Biochemistry of Nutrition, Karlsruhe.
| | - Rebecca Hollenbach
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Physiology and Biochemistry of Nutrition, Karlsruhe
| | - Andreas Trautmann
- Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in Life Sciences III Bioprocess Engineering, Karlsruhe
| | - Clemens Posten
- Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in Life Sciences III Bioprocess Engineering, Karlsruhe
| | - Karlis Briviba
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Physiology and Biochemistry of Nutrition, Karlsruhe
| |
Collapse
|
60
|
Yang C, Fischer M, Kirby C, Liu R, Zhu H, Zhang H, Chen Y, Sun Y, Zhang L, Tsao R. Bioaccessibility, cellular uptake and transport of luteins and assessment of their antioxidant activities. Food Chem 2017; 249:66-76. [PMID: 29407933 DOI: 10.1016/j.foodchem.2017.12.055] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 01/21/2023]
Abstract
A rapid method for producing 9Z- and 13'Z-isomers from all-E-lutein was developed using I-TiO2 as catalyst. In a simulated in vitro gastrointestinal digestion model, both trans-cis isomerization of all-E-lutein and cis-trans isomerization of Z-luteins occurred during the intestinal phase. The bioaccessibility of all isomers was between 14 and 23%, and it was higher for Z-luteins. In a Caco-2 cell monolayer model, all isomers were relatively stable during cellular uptake and transport across the membrane as no significant isomerization and degradation was detected, but all-E-lutein exhibited significantly higher cellular uptake and transport efficiencies. These results suggest that Z-luteins found in human plasma may likely be formed before intestinal absorption. 13'Z-Lutein also exhibited highest antioxidant activity in FRAP, DPPH and ORAC-L assays, but no significant difference in cell-based antioxidant assay compared with other isomers. Future studies on the different antioxidant activities of cis isomers of lutein in vivo will provide further explanation.
Collapse
Affiliation(s)
- Cheng Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Maike Fischer
- Charlottetown Research & Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, Prince Edward Island C1A 4N6, Canada
| | - Chris Kirby
- Charlottetown Research & Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, Prince Edward Island C1A 4N6, Canada
| | - Ronghua Liu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Honghui Zhu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Hua Zhang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Yuhuan Chen
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada; State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Yong Sun
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada; State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| | - Rong Tsao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada.
| |
Collapse
|
61
|
Gong X, Draper CS, Allison GS, Marisiddaiah R, Rubin LP. Effects of the Macular Carotenoid Lutein in Human Retinal Pigment Epithelial Cells. Antioxidants (Basel) 2017; 6:antiox6040100. [PMID: 29207534 PMCID: PMC5745510 DOI: 10.3390/antiox6040100] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 12/16/2022] Open
Abstract
Retinal pigment epithelial (RPE) cells are central to retinal health and homoeostasis. Oxidative stress-induced damage to the RPE occurs as part of the pathogenesis of age-related macular degeneration and neovascular retinopathies (e.g., retinopathy of prematurity, diabetic retinopathy). The xanthophyll carotenoids, lutein and zeaxanthin, are selectively taken up by the RPE, preferentially accumulated in the human macula, and transferred to photoreceptors. These macular xanthophylls protect the macula (and the broader retina) via their antioxidant and photo-protective activities. This study was designed to investigate effects of various carotenoids (β-carotene, lycopene, and lutein) on RPE cells subjected to either hypoxia or oxidative stress, in order to determine if there is effect specificity for macular pigment carotenoids. Using human RPE-derived ARPE-19 cells as an in vitro model, we exposed RPE cells to various concentrations of the specific carotenoids, followed by either graded hypoxia or oxidative stress using tert-butyl hydroperoxide (tBHP). The results indicate that lutein and lycopene, but not β-carotene, inhibit cell growth in undifferentiated ARPE-19 cells. Moreover, cell viability was decreased under hypoxic conditions. Pre-incubation of ARPE-19 cells with lutein or lycopene protected against tBHP-induced cell loss and cell co-exposure of lutein or lycopene with tBHP essentially neutralized tBHP-dependent cell death at tBHP concentrations up to 500 μM. Our findings indicate that lutein and lycopene inhibit the growth of human RPE cells and protect the RPE against oxidative stress-induced cell loss. These findings contribute to the understanding of the protective mechanisms attributable to retinal xanthophylls in eye health and retinopathies.
Collapse
Affiliation(s)
- Xiaoming Gong
- Department of Pediatrics, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA.
| | - Christian S Draper
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA.
| | - Geoffrey S Allison
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA.
| | | | - Lewis P Rubin
- Department of Pediatrics, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA.
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA.
| |
Collapse
|
62
|
Mono- and diglycerides improve lutein absorption in healthy adults: a randomised, double-blind, cross-over, single-dose study. Br J Nutr 2017; 118:813-821. [DOI: 10.1017/s0007114517002963] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractWith the association between increased carotenoid intake and lower risk of chronic diseases, the absorption of lutein from the diet becomes an important factor in its delivery and physiological action. The primary objective of this study was to gain an understanding of how a new formulation technology (mixture of mono- and diglycerides (MDG)), affected lutein absorption. Subjects (n24) were randomised in a cross-over, double-blind study to receive a single dose of 6 mg lutein (FloraGLO 20 %) provided as capsules containing either high-oleic safflower (SAF) oil or a MDG oil. Subjects receiving a single dose of lutein in MDG showed a significantly greater change from baseline (0 h) to 4, 6, 8, 12, 24, 48 and 336 h (P<0·05) and baseline adjusted AUC for plasma lutein at 48 and 336 h (P<0·001) as compared with subjects given lutein in SAF. Analysis of the 48 h absorption kinetics of lutein showed that the time to peak level of lutein (12 h) was the same for SAF and MDG groups, but the change in plasma lutein at 12 and 48 h were 129 and 320 % higher, respectively, for MDG compared with SAF. This difference continued as the adjusted AUC 0–48 and 0–336 h for the MDG group was 232 and 900 % higher, respectively, v. SAF. The study data show that by changing the lipid that is combined with a lutein supplement results in significant increases in lutein absorption in healthy adults.
Collapse
|
63
|
Desmarchelier C, Borel P. Overview of carotenoid bioavailability determinants: From dietary factors to host genetic variations. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.03.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
64
|
Atarashi M, Manabe Y, Kishimoto H, Sugawara T, Osakabe M. Antioxidant Protection by Astaxanthin in the Citrus Red Mite (Acari: Tetranychidae). ENVIRONMENTAL ENTOMOLOGY 2017; 46:1143-1150. [PMID: 28981670 DOI: 10.1093/ee/nvx121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Indexed: 06/07/2023]
Abstract
Solar ultraviolet-B (UVB) radiation and radiant heat have lethal effects on plant-dwelling mites, including spider mites, and their natural enemies, such as phytoseiid mites, leading them to reside on lower leaf surfaces. Panonychus spider mites are outcompeted by Tetranychus spider mites and thus exploit upper leaf surfaces, where they are exposed to both UVB radiation and radiant heat. Panonychus spider mites are thought to produce astaxanthin constitutionally. In this study, we compared carotenoid components, antioxidant capacity, lipid peroxidation, survival, and egg production in wild-type (WTS) and albino-type strains (ATS) of Panonychus citri (McGregor). Four carotenoids (neoxanthin, violaxanthin, lutein, and carotene) and their isomers and esters were identified in both strains, but astaxanthin and its esters were present only in WTS. The singlet oxygen scavenging capacity of lipid-soluble ingredients was greater in WTS than in ATS, whereas the oxygen radical absorbance capacities of hydrophilic ingredients were equivalent between them. Lipid peroxide accumulation was clearly higher in ATS than in WTS under both UVB irradiation (25 °C) and high temperature (35 °C) conditions. The findings are consistent with an antioxidant protective function of astaxanthin in this mite. Survival periods at 38 °C were longer in WTS than in ATS, although no difference was shown at 35 °C or under UVB irradiation. Therefore, astaxanthin accumulation was shown to be a major mechanism for survival under radiant heat, although other mechanisms, such as photoreactivation, might play a major role in survival under UVB radiation.
Collapse
Affiliation(s)
- Makoto Atarashi
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yuki Manabe
- Laboratory of Technology of Marine Bioproducts, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Hidenari Kishimoto
- Apple Research Division, Institute of Fruit Tree and Tea Science NARO, Morioka 020-0123, Japan
| | - Tatsuya Sugawara
- Laboratory of Technology of Marine Bioproducts, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masahiro Osakabe
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
65
|
Fan Y, Gao L, Yi J, Zhang Y, Yokoyama W. Development of β-Carotene-Loaded Organogel-Based Nanoemulsion with Improved In Vitro and In Vivo Bioaccessibility. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6188-6194. [PMID: 28696684 DOI: 10.1021/acs.jafc.7b02125] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
β-Carotene (BC), a naturally occurring lipophilic carotenoid, is beneficial for human health. However, its water solubility and bioavailability are low. In this study, organogel-based nanoemulsion was successfully prepared to improve the loading amount, solubility, and bioavailability of BC. Corn oil was selected as the oil phase for the organogel as a result of the greatest release amount of BC. Tween 20 was optimized as the emulsifier based on the highest extent of lipolysis and BC bioaccessibility. The nanoemulsion was a better alternative than the organogel according to both the extent of lipolysis and BC bioaccessibility. Cellular uptake of BC was significantly improved through organogel-based nanoemulsion compared to BC suspension. Caveolae-/lipid-raft-mediated route was the main endocytosis pathway. Pharmacokinetic results confirmed that the in vivo bioavailability of BC in nanoemulsion was 11.5-fold higher than that of BC oil. The information obtained suggested that organogel-based nanoemulsion may be an effective encapsulation system for delivery of insoluble and indigestible bioactive compounds.
Collapse
Affiliation(s)
- Yuting Fan
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University , Shenzhen, Guangdong 518060, People's Republic of China
| | - Luyu Gao
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University , Shenzhen, Guangdong 518060, People's Republic of China
| | - Jiang Yi
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University , Shenzhen, Guangdong 518060, People's Republic of China
| | - Yuzhu Zhang
- Western Regional Research Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA) , Albany, California 94710, United States
| | - Wallace Yokoyama
- Western Regional Research Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA) , Albany, California 94710, United States
| |
Collapse
|
66
|
Gong X, Marisiddaiah R, Rubin LP. Inhibition of pulmonary β-carotene 15, 15'-oxygenase expression by glucocorticoid involves PPARα. PLoS One 2017; 12:e0181466. [PMID: 28732066 PMCID: PMC5521778 DOI: 10.1371/journal.pone.0181466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/30/2017] [Indexed: 01/19/2023] Open
Abstract
β-carotene 15,15'-oxygenase (BCO1) catalyzes the first step in the conversion of dietary provitamin A carotenoids to vitamin A. This enzyme is expressed in a variety of developing and adult tissues, suggesting that its activity may regulate local retinoid synthesis. Vitamin A and related compounds (retinoids) are critical regulators of lung epithelial development, integrity, and injury repair. A balance between the actions of retinoids and glucocorticoids (GCs) promotes normal lung development and, in particular, alveolarization. Alterations in this balance, including vitamin A deficiency and GC excess, contribute to the development of chronic lung disorders. Consequently, we investigated if GCs counteract retinoid effects in alveolar epithelial cells by mechanisms involving BCO1-dependent local vitamin A metabolism. We demonstrate that BCO1 is expressed in human fetal lung tissue and human alveolar epithelial-like A549 cells. Our results indicate A549 cells metabolize β-carotene to retinal and retinoic acid (RA). GCs exposure using dexamethasone (DEX) decreases BCO1 mRNA and protein levels in A549 cells and reduces BCO1 promoter activity via inhibiting peroxisome proliferator-activated receptor γ (PPARγ) DNA binding. DEX also induces expression of PPARα, which in turn most likely causes a decrease in PPARγ/RXRα heterodimer binding to the bco1 gene promoter and consequent inhibition of bco1 gene expression. PPARα knockdown with siRNA abolishes DEX-induced suppression of BCO1 expression, confirming the requirement for PPARα in this DEX-mediated BCO1 mechanism. Taken together, these findings provide the first evidence that GCs regulate vitamin A (retinoid) signaling via inhibition of bco1 gene expression in a PPARα-dependent manner. These results explicate novel aspects of local GC:retinoid interactions that may contribute to alveolar tissue remodeling in chronic lung diseases that affect children and, possibly, adults.
Collapse
Affiliation(s)
- Xiaoming Gong
- Department of Pediatrics, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, United States of America
- * E-mail: (XG); (LPR)
| | - Raju Marisiddaiah
- All Children’s Research Institute, St. Petersburg, Florida, United States of America
| | - Lewis P. Rubin
- Department of Pediatrics, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, United States of America
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, United States of America
- * E-mail: (XG); (LPR)
| |
Collapse
|
67
|
Bohn T, Desmarchelier C, Dragsted LO, Nielsen CS, Stahl W, Rühl R, Keijer J, Borel P. Host-related factors explaining interindividual variability of carotenoid bioavailability and tissue concentrations in humans. Mol Nutr Food Res 2017; 61:1600685. [PMID: 28101967 PMCID: PMC5516247 DOI: 10.1002/mnfr.201600685] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/19/2016] [Accepted: 01/04/2017] [Indexed: 12/14/2022]
Abstract
Carotenoid dietary intake and their endogenous levels have been associated with a decreased risk of several chronic diseases. There are indications that carotenoid bioavailability depends, in addition to the food matrix, on host factors. These include diseases (e.g. colitis), life-style habits (e.g. smoking), gender and age, as well as genetic variations including single nucleotide polymorphisms that govern carotenoid metabolism. These are expected to explain interindividual differences that contribute to carotenoid uptake, distribution, metabolism and excretion, and therefore possibly also their association with disease risk. For instance, digestion enzymes fostering micellization (PNLIP, CES), expression of uptake/efflux transporters (SR-BI, CD36, NPC1L1), cleavage enzymes (BCO1/2), intracellular transporters (FABP2), secretion into chylomicrons (APOB, MTTP), carotenoid metabolism in the blood and liver (LPL, APO C/E, LDLR), and distribution to target tissues such as adipose tissue or macula (GSTP1, StARD3) depend on the activity of these proteins. In addition, human microbiota, e.g. via altering bile-acid concentrations, may play a role in carotenoid bioavailability. In order to comprehend individual, variable responses to these compounds, an improved knowledge on intra-/interindividual factors determining carotenoid bioavailability, including tissue distribution, is required. Here, we highlight the current knowledge on factors that may explain such intra-/interindividual differences.
Collapse
Affiliation(s)
- Torsten Bohn
- Luxembourg Institute of HealthStrassenLuxembourg
| | | | - Lars O. Dragsted
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenFrederiksberg CDenmark
| | - Charlotte S. Nielsen
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenFrederiksberg CDenmark
| | - Wilhelm Stahl
- Institute of Biochemistry and Molecular Biology IHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Ralph Rühl
- Paprika Bioanalytics BTDebrecenHungary
- MTA‐DE Public Health Research Group of the Hungarian Academy of SciencesFaculty of Public HealthUniversity of DebrecenDebrecenHungary
| | - Jaap Keijer
- Human and Animal PhysiologyWageningen UniversityWageningenThe Netherlands
| | - Patrick Borel
- NORT, Aix‐Marseille Université, INRAINSERMMarseilleFrance
| |
Collapse
|
68
|
Granado-Lorencio F, Blanco-Navarro I, Pérez-Sacristán B, Hernández-Álvarez E. Biomarkers of carotenoid bioavailability. Food Res Int 2017; 99:902-916. [PMID: 28847427 DOI: 10.1016/j.foodres.2017.03.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 03/15/2017] [Accepted: 03/19/2017] [Indexed: 12/31/2022]
Abstract
The use of biomarkers constitutes an essential tool to assess the bioavailability of carotenoids in humans. The present article aims to review several methodological, host-related and modulating factors relevant on assessing and interpreting carotenoid bioavailability. Markers for carotenoid bioavailability can be broadly divided into direct, biochemical or "analytical" markers and indirect, physiological or "functional" indicators. Analytical markers usually refer to biochemical indicators of intake and/or status (short and long term exposure) while functional measures may be interpreted in terms of cumulative exposure, biological effect (bioactivity) or modification of risk factors. Both types of markers display advantages and limitations but, in general, a relationship exists among the type of marker, the biological specimen needed and the time required for a change. Humans may absorb a wide range of carotenes and xanthophylls and many of them may be found in serum and tissues. However, under physiological conditions, the several classes of dietary carotenoids may behave unequally leading to a different systemic profile and, moreover, they can be selectively accumulated at target tissues. In addition, some carotenoids may be chemically and enzymatically modified generating different oxidative metabolites and apocarotenoids. Quantitatively, the biological response upon carotenoid intervention (assessed by analytical and functional markers) is highly variable but the use of large doses and long-term protocols may lead to saturation effects and the loss of linearity in the response. Also, despite carotenoid exposition is considered to be safe, markers of overexposure include clinical signs (i.e. carotenodermia, corneal rings and retinopathy) and biochemical indicators (hypercarotenemia, xanthophyll esters). Overall, both host-related and methodological factors may influence analytical and functional markers to assess carotenoid bioavailability although the different subclasses of carotenoids may not be equally affected.
Collapse
Affiliation(s)
- F Granado-Lorencio
- Grupo Metabolismo y Nutrición, IDIPHIM, Spain; Unidad de Vitaminas, Spain; Servicio de Bioquímica Clínica, Hospital Universitario Puerta de Hierro-Majadahonda, 28222 Madrid, Spain.
| | - I Blanco-Navarro
- Grupo Metabolismo y Nutrición, IDIPHIM, Spain; Unidad de Vitaminas, Spain; Servicio de Bioquímica Clínica, Hospital Universitario Puerta de Hierro-Majadahonda, 28222 Madrid, Spain
| | - B Pérez-Sacristán
- Grupo Metabolismo y Nutrición, IDIPHIM, Spain; Unidad de Vitaminas, Spain
| | - E Hernández-Álvarez
- Grupo Metabolismo y Nutrición, IDIPHIM, Spain; Unidad de Vitaminas, Spain; Servicio de Bioquímica Clínica, Hospital Universitario Puerta de Hierro-Majadahonda, 28222 Madrid, Spain
| |
Collapse
|
69
|
Komatsu T, Sasaki S, Manabe Y, Hirata T, Sugawara T. Preventive effect of dietary astaxanthin on UVA-induced skin photoaging in hairless mice. PLoS One 2017; 12:e0171178. [PMID: 28170435 PMCID: PMC5295690 DOI: 10.1371/journal.pone.0171178] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/17/2017] [Indexed: 11/19/2022] Open
Abstract
Astaxanthin, a carotenoid found mainly in seafood, has potential clinical applications due to its antioxidant activity. In this study, we evaluated the effect of dietary astaxanthin derived from Haematococcus pluvialis on skin photoaging in UVA-irradiated hairless mice by assessing various parameters of photoaging. After chronic ultraviolet A (UVA) exposure, a significant increase in transepidermal water loss (TEWL) and wrinkle formation in the dorsal skin caused by UVA was observed, and dietary astaxanthin significantly suppressed these photoaging features. We found that the mRNA expression of lympho-epithelial Kazal-type-related inhibitor, steroid sulfatase, and aquaporin 3 in the epidermis was significantly increased by UVA irradiation for 70 days, and dietary astaxanthin significantly suppressed these increases in mRNA expression to be comparable to control levels. In the dermis, the mRNA expression of matrix metalloprotease 13 was increased by UVA irradiation and significantly suppressed by dietary astaxanthin. In addition, HPLC-PDA analysis confirmed that dietary astaxanthin reached not only the dermis but also the epidermis. Our results indicate that dietary astaxanthin accumulates in the skin and appears to prevent the effects of UVA irradiation on filaggrin metabolism and desquamation in the epidermis and the extracellular matrix in the dermis.
Collapse
Affiliation(s)
| | - Suguru Sasaki
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yuki Manabe
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Hirata
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
70
|
Ravi H, Baskaran V. Chitosan-glycolipid nanocarriers improve the bioavailability of fucoxanthin via up-regulation of PPARγ and SRB1 and antioxidant activity in rat model. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.10.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
71
|
Kawaguchi S, Manabe Y, Sugawara T, Osakabe M. Imaginal Feeding for Progression of Diapause Phenotype in the Two-Spotted Spider Mite (Acari: Tetranychidae). ENVIRONMENTAL ENTOMOLOGY 2016; 45:1568-1573. [PMID: 28028106 DOI: 10.1093/ee/nvw127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/28/2016] [Indexed: 06/06/2023]
Abstract
Adult females of the two-spotted spider mite (Tetranychus urticae Koch) enter diapause under conditions of short-day length and low temperature. A conspicuous body color change, from greenish yellow to bright orange, accompanies diapause induction. This pigmentation is attributed to accumulation of keto-carotenoids produced internally from β-carotene, which is a precursor of vitamin A essential for inducing diapause. The quantity of β-carotene transferred from females to eggs has been considered sufficient to induce diapause. Moreover, carotenoid biosynthesis genes were recently found in this mite. Therefore, imaginal feeding is not likely to be necessary to progress to diapause. In contrast, diapause-induced adult females have been known to feed between the last molt and the time of body color changes. Consequently, the function of imaginal feeding in diapause-induced females was largely unknown. We aimed to clarify whether imaginal feeding was essential to enter diapause. First, we verified that body color change occurred in connection with the feeding behavior, and also verified the change in the composition of carotenoids in diapausing females. Subsequently, we tested the effects of restraints on feeding after molting on carotenoid composition and diapausing rates. Body color change required imaginal feeding. Fed, but not unfed, females accumulated astaxanthin. Moreover, starvation reduced diapausing rates. We concluded that imaginal feeding between the last molt and the time of body color change was necessary to progress to the diapausing phenotype and that starvation at the adult stage reduced the percentage of adults entering reproductive diapause.
Collapse
Affiliation(s)
- Shoko Kawaguchi
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan (; )
| | - Yuki Manabe
- Laboratory of Marine Bioproducts Technology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan (; )
| | - Tatsuya Sugawara
- Laboratory of Marine Bioproducts Technology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan (; )
| | - Masahiro Osakabe
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan (; )
| |
Collapse
|
72
|
Sakamoto H, Suzuki S, Nagamune K, Kita K, Matsuzaki M. Investigation into the Physiological Significance of the Phytohormone Abscisic Acid in Perkinsus marinus, an Oyster Parasite Harboring a Nonphotosynthetic Plastid. J Eukaryot Microbiol 2016; 64:440-446. [PMID: 27813319 PMCID: PMC5573998 DOI: 10.1111/jeu.12379] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 09/30/2016] [Accepted: 10/17/2016] [Indexed: 12/03/2022]
Abstract
Some organisms have retained plastids even after they have lost the ability to photosynthesize. Several studies of nonphotosynthetic plastids in apicomplexan parasites have shown that the isopentenyl pyrophosphate biosynthesis pathway in the organelle is essential for their survival. A phytohormone, abscisic acid, one of several compounds biosynthesized from isopentenyl pyrophosphate, regulates the parasite cell cycle. Thus, it is possible that the phytohormone is universally crucial, even in nonphotosynthetic plastids. Here, we examined this possibility using the oyster parasite Perkinsus marinus, which is a plastid‐harboring cousin of apicomplexan parasites and has independently lost photosynthetic ability. Fluridone, an inhibitor of abscisic acid biosynthesis, blocked parasite growth and induced cell clustering. Nevertheless, abscisic acid and its intermediate carotenoids did not affect parasite growth or rescue the parasite from inhibition. Moreover, abscisic acid was not detected from the parasite using liquid chromatography mass spectrometry. Our findings show that abscisic acid does not play any significant roles in P. marinus.
Collapse
Affiliation(s)
- Hirokazu Sakamoto
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Shigeo Suzuki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kisaburo Nagamune
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.,Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Motomichi Matsuzaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| |
Collapse
|
73
|
Moreno JA, Díaz-Gómez J, Nogareda C, Angulo E, Sandmann G, Portero-Otin M, Serrano JCE, Twyman RM, Capell T, Zhu C, Christou P. The distribution of carotenoids in hens fed on biofortified maize is influenced by feed composition, absorption, resource allocation and storage. Sci Rep 2016; 6:35346. [PMID: 27739479 PMCID: PMC5064355 DOI: 10.1038/srep35346] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/28/2016] [Indexed: 11/08/2022] Open
Abstract
Carotenoids are important dietary nutrients with health-promoting effects. The biofortification of staple foods with carotenoids provides an efficient delivery strategy but little is known about the fate and distribution of carotenoids supplied in this manner. The chicken provides a good model of human carotenoid metabolism so we supplemented the diets of laying hens using two biofortified maize varieties with distinct carotenoid profiles and compared the fate of the different carotenoids in terms of distribution in the feed, the hen's livers and the eggs. We found that after a period of depletion, pro-vitamin A (PVA) carotenoids were preferentially diverted to the liver and relatively depleted in the eggs, whereas other carotenoids were transported to the eggs even when the liver remained depleted. When retinol was included in the diet, it accumulated more in the eggs than the livers, whereas PVA carotenoids showed the opposite profile. Our data suggest that a transport nexus from the intestinal lumen to the eggs introduces bottlenecks that cause chemically-distinct classes of carotenoids to be partitioned in different ways. This nexus model will allow us to optimize animal feed and human diets to ensure that the health benefits of carotenoids are delivered in the most effective manner.
Collapse
Affiliation(s)
- Jose Antonio Moreno
- Department of Animal Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Joana Díaz-Gómez
- Department of Animal Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
- Department of Food Technology, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Carmina Nogareda
- Department of Animal Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Eduardo Angulo
- Department of Animal Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Gerhard Sandmann
- Biosynthesis Group, Department of Molecular Biosciences, J. W. Goethe University, Max-v-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Manuel Portero-Otin
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida–Institut de Recerca Biomèdica de Lleida (IRBLleida), Av. Rovira Roure 80, 25198 Lleida, Spain
| | - José C. E. Serrano
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida–Institut de Recerca Biomèdica de Lleida (IRBLleida), Av. Rovira Roure 80, 25198 Lleida, Spain
| | | | - Teresa Capell
- Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Paul Christou
- Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
- ICREA, Catalan Institute for Research and Advanced Studies, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
74
|
Chitchumroonchokchai C, Failla ML. Bioaccessibility and intestinal cell uptake of astaxanthin from salmon and commercial supplements. Food Res Int 2016; 99:936-943. [PMID: 28847430 DOI: 10.1016/j.foodres.2016.10.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 12/25/2022]
Abstract
Although the keto-carotenoid astaxanthin (Ast) is not typically present in human plasma due to its relative scarcity in the typical diet, global consumption of salmon, the primary source of Ast in food, and Ast supplements continues to increase. The first objective of the present study was to investigate the bioaccessibility of Ast from uncooked and cooked fillets of wild and aquacultured salmon, Ast-supplements and krill oil, during simulated gastric and small intestinal digestion. Uptake of E-Ast from micelles generated during digestion of wild salmon by monolayers of Caco-2 was also monitored. Both wild and aquacultured salmon flesh contained E-Ast and Z-isomers of unesterified Ast, whereas Ast esters were the predominant form of the carotenoid in commercial supplements and krill oil. Flesh from wild salmon contained approximately 10 times more Ast than aquacultured salmon. Common styles of cooking flesh from wild and aquacultured salmon decreased Ast content by 48-57% and 35-47%, respectively. Ast in salmon flesh, supplements and krill oil was relatively stable (>80% recovery) during in vitro digestion. The efficiency of transfer of Ast into mixed micelles during digestion of uncooked wild salmon was 43%, but only 12% for uncooked acquacultured salmon. Cooking wild salmon significantly decreased Ast bioaccessibility. The relative bioaccessibility of Ast (41-67%) after digestion of oil vehicle in commercial supplements was inversely proportional to carotenoid content (3-10mg/capsule), whereas bioaccessibility of endogenous Ast in phospholipid-rich krill oil supplement was 68%. >95% of Ast in mixed micelles generated during digestion of supplements and krill oil was unesterified. Caco-2 intestinal cells accumulated 11-14% of E-Ast delivered in mixed micelles generated from digested wild salmon. Apical uptake and basolateral secretion of E-Ast by Caco-2 cells grown on inserts were greater after digestion of Ast-enriched krill oil compared to uncooked wild salmon. These data suggest that the bioacessibility of Ast in wild salmon and soft-gel capsules is greater than that in aquacultured salmon, and that uptake and basolateral secretion of the carotenoid by enterocyte-like cells is enhanced by the digestion products of phospholipid-rich krill oil.
Collapse
Affiliation(s)
- Chureeporn Chitchumroonchokchai
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, 325 Campbell Hall, 1787 Neil Avenue, Columbus, OH 43210, USA
| | - Mark L Failla
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, 325 Campbell Hall, 1787 Neil Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
75
|
Gong X, Marisiddaiah R, Zaripheh S, Wiener D, Rubin LP. Mitochondrial β-Carotene 9',10' Oxygenase Modulates Prostate Cancer Growth via NF-κB Inhibition: A Lycopene-Independent Function. Mol Cancer Res 2016; 14:966-975. [PMID: 27406826 DOI: 10.1158/1541-7786.mcr-16-0075] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/27/2016] [Indexed: 11/16/2022]
Abstract
Despite numerous inquiries into protective roles of lycopene in prostate cancer prevention or therapy, little is known about mechanisms by which lycopene or its metabolites inhibit prostate cancer. The enzyme β-carotene 9',10'-oxygenase (BCO2), which catalyzes asymmetric cleavage of several carotenoids, is the principal regulator of lycopene metabolism, but the range of BCO2 biological functions is incompletely understood. This study investigated expression and functional roles of BCO2 in human prostate cancer. Expression of the bco2 gene is dramatically decreased in prostate cancer tissue and in a range of prostate cancer cell lines as compared with nonneoplastic prostate tissue and normal prostatic epithelial cells, respectively. Inhibition of DNA methyltransferase activity restored bco2 expression in prostate cancer cell lines tested. Treatment with lycopene or its metabolite, apo-10-lycopenal, also increased bco2 expression and reduced cell proliferation in androgen-sensitive cell lines, but lycopene neither altered bco2 expression nor cell growth in androgen-resistant cells. Notably, restoring bco2 expression in prostate cancer cells inhibited cell proliferation and colony formation, irrespective of lycopene exposure. Exogenous expression of either wild-type BCO2 or a mutant (enzymatically inactive) BCO2 in prostate cancer cells reduced NF-κB activity and decreased NF-κB nuclear translocation and DNA binding. Together, these results indicate epigenetic loss of BCO2 expression is associated with prostate cancer progression. Moreover, these findings describe previously unanticipated functions of BCO2 that are independent of its enzymatic role in lycopene metabolism. IMPLICATIONS This study identifies BCO2 as a tumor suppressor in prostate cancer. BCO2-mediated inhibition of NF-κB signaling implies BCO2 status is important in prostate cancer progression. Mol Cancer Res; 14(10); 966-75. ©2016 AACR.
Collapse
Affiliation(s)
- Xiaoming Gong
- Department of Pediatrics, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas
| | | | - Susan Zaripheh
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | | | - Lewis P Rubin
- Department of Pediatrics, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas. Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas.
| |
Collapse
|
76
|
Zampiga M, Meluzzi A, Sirri F. Effect of dietary supplementation of lysophospholipids on productive performance, nutrient digestibility and carcass quality traits of broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.1080/1828051x.2016.1192965] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Marco Zampiga
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Bologna, Italy
| | - Adele Meluzzi
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Bologna, Italy
| | - Federico Sirri
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Bologna, Italy
| |
Collapse
|
77
|
Harigae T, Nakagawa K, Miyazawa T, Inoue N, Kimura F, Ikeda I, Miyazawa T. Metabolic fate of poly-(lactic-co-glycolic acid)-based curcumin nanoparticles following oral administration. Int J Nanomedicine 2016; 11:3009-22. [PMID: 27418823 PMCID: PMC4935090 DOI: 10.2147/ijn.s107442] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Curcumin (CUR), the main polyphenol in turmeric, is poorly absorbed and rapidly metabolized following oral administration, which severely curtails its bioavailability. Poly-(lactic-co-glycolic acid)-based CUR nanoparticles (CUR-NP) have recently been suggested to improve CUR bioavailability, but this has not been fully verified. Specifically, no data are available about curcumin glucuronide (CURG), the major metabolite of CUR found in the plasma following oral administration of CUR-NP. Herein, we investigated the absorption and metabolism of CUR-NP and evaluated whether CUR-NP improves CUR bioavailability. Methods Following oral administration of CUR-NP in rats, we analyzed the plasma and organ distribution of CUR and its metabolites using high-performance liquid chromatography-tandem mass spectrometry. To elucidate the mechanism of increased intestinal absorption of CUR-NP, we prepared mixed micelles comprised of phosphatidylcholine and bile salts and examined the micellar solubility of CUR-NP. Additionally, we investigated the cellular incorporation of the resultant micelles into differentiated Caco-2 human intestinal cells. Results Following in vivo administration of CUR-NP, CUR was effectively absorbed and present mainly as CURG in the plasma which contained significant amounts of the metabolite compared with other organs. Thus, CUR-NP increased intestinal absorption of CUR rather than decreasing metabolic degradation and conversion to other metabolites. In vitro, CUR encapsulated in CUR-NP was solubilized in mixed micelles; however, whether the micelles contained CUR or CUR-NP had little influence on cellular uptake efficiency. Therefore, we suggest that the high solubilization capacity of CUR-NP in mixed micelles, rather than cellular uptake efficiency, explains the high intestinal absorption of CUR-NP in vivo. Conclusion These findings provide a better understanding of the bioavailability of CUR and CUR-NP following oral administration. To improve the bioavailability of CUR, future studies should focus on enhancing the resistance to metabolic degradation and conversion of CUR to other metabolites, which may lead to novel discoveries regarding food function and disease prevention.
Collapse
Affiliation(s)
- Takahiro Harigae
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Taiki Miyazawa
- Vascular Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Nao Inoue
- Laboratory of Food and Biomolecular Science, Graduate School of Agricultural Science
| | - Fumiko Kimura
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ikuo Ikeda
- Laboratory of Food and Biomolecular Science, Graduate School of Agricultural Science
| | - Teruo Miyazawa
- Food and Biotechnology Innovation Project, New Industry Creation Hatchery Center; Food and Health Science Research Unit, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
78
|
Kotake-Nara E, Hase M, Kobayashi M, Nagao A. 3′-Hydroxy-ε,ε-caroten-3-one inhibits the differentiation of 3T3-L1 cells to adipocytes. Biosci Biotechnol Biochem 2016; 80:518-23. [DOI: 10.1080/09168451.2015.1095066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
An oxidative metabolite of lutein, 3′-hydroxy-ε,ε-caroten-3-one, inhibited the differentiation of 3T3-L1 cells to adipocytes and the subsequent triacylglycerol production, but lutein did not. The α,β-unsaturated carbonyl structure of 3′-hydroxy-ε,ε-caroten-3-one was considered to participate in the inhibitory effect, suggesting that this lutein metabolite has the potential to prevent metabolic syndrome.
Collapse
Affiliation(s)
- Eiichi Kotake-Nara
- Food Resource Division, National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Megumi Hase
- Food Resource Division, National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Miyuki Kobayashi
- Food Resource Division, National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Akihiko Nagao
- Food Resource Division, National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
79
|
Nwachukwu ID, Udenigwe CC, Aluko RE. Lutein and zeaxanthin: Production technology, bioavailability, mechanisms of action, visual function, and health claim status. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2015.12.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
80
|
Kotake-Nara E, Yonekura L, Nagao A. Lysoglyceroglycolipids Improve the Intestinal Absorption of Micellar Fucoxanthin by Caco-2 Cells. J Oleo Sci 2015; 64:1207-11. [PMID: 26468234 DOI: 10.5650/jos.ess15180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To improve the intestinal absorption of fucoxanthin, we evaluated the effects of dietary glyceroglycolipids on the uptake and secretion of fucoxanthin solubilized in mixed micelles by human intestinal Caco-2 cells. Although digalactosyldiacylglycerol and sulfoquinovosyldiacylglycerol suppressed fucoxanthin uptake and secretion, their lyso-types, digalactosylmonoacylglycerol and sulfoquinovosylmonoa cylglycerol, remarkably enhanced them. Thus, some dietary glyceroglycolipids may be potential enhancers of fucoxanthin bioavailability in humans.
Collapse
Affiliation(s)
- Eiichi Kotake-Nara
- National Food Research Institute, National Agriculture and Food Research Organization
| | | | | |
Collapse
|
81
|
Jansen M, Nuyens F, Buyse J, Leleu S, Van Campenhout L. Interaction between fat type and lysolecithin supplementation in broiler feeds. Poult Sci 2015; 94:2506-15. [DOI: 10.3382/ps/pev181] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 05/25/2015] [Indexed: 01/15/2023] Open
|
82
|
Sheshappa MB, Ranganathan A, Bhatiwada N, Talahalli RR, Vallikannan B. Dietary Components Affect the Plasma and Tissue Levels of Lutein in Aged Rats with Lutein Deficiency--A Repeated Gavage and Dietary Study. J Food Sci 2015; 80:H2322-30. [PMID: 26404863 DOI: 10.1111/1750-3841.13007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/23/2015] [Indexed: 12/18/2022]
Abstract
UNLABELLED The aim of this study was to find out the influence of selected dietary components on plasma and tissue response of repeated micellar and dietary lutein in aged rats with lutein deficiency. In repeated (16 d) gavage study, micellar lutein was co-ingested with either phosphatidylcholine (PC), lyso-phosphatidylcholine (lysoPC), β-carotene, dietary fiber or vegetable fat (3% soybean oil). In dietary study, rats were fed (4 wk) semi-synthetic diet either with lutein + PC, lutein + dietary fiber or B. alba (lutein source) + PC. The post-prandial plasma and tissue response of lutein was measured by HPLC. Results showed that micellar fat, PC and lysoPC significantly (P ≤ 0.05) increased the lutein levels in plasma (31.1%, 26.8%, and 34.9%), liver (27.4%, 29.5%, and 8.6%), and eyes (63.5%, 90.2%, and 86%) compared to the control group (group gavaged micelles with no dietary components studied). Similarly, dietary study showed an enhanced plasma, liver, and eye lutein levels by 44.8%, 24.1%, and 42.0% (lutein + PC group) and 51.7%, 39.8%, and 31.7% (B.alba + PC group), respectively compared to control. The activity of antioxidant enzymes in plasma and liver of both the studies were also affected compared to control. Result reveals, that PC enhance the intestinal absorption of both micellar and dietary lutein which is either in free or bound form with food matrices in aged rats with lutein deficiency. Hence, PC at a concentration used in this study can be considered to improve the lutein bioavailability in lutein deficiency. PRACTICAL APPLICATION Lutein and zeaxanthin are macular pigments acquired mostly from greens, that play an significant role in protecting vision from Age related macular degeneration (AMD). However, their biological availability is poor and affected by dietary components. This study demonstrates the positive influence of dietary PC and lyso PC in improving intestinal uptake of lutein. Our previous and present finding shows there is a possibility of developing functional/supplemental foods with PC and lyso PC targeted to elderly populace thus minimizing or delaying the vision complication associated like AMD.
Collapse
Affiliation(s)
- Mamatha Bangera Sheshappa
- Dept. of Biochemistry and Nutrition, CSIR- Central Food Technological Research Inst, Mysore 570 020, Karnataka, India
| | - Arunkumar Ranganathan
- Dept. of Biochemistry and Nutrition, CSIR- Central Food Technological Research Inst, Mysore 570 020, Karnataka, India
| | - Nidhi Bhatiwada
- Dept. of Biochemistry and Nutrition, CSIR- Central Food Technological Research Inst, Mysore 570 020, Karnataka, India
| | | | - Baskaran Vallikannan
- Dept. of Biochemistry and Nutrition, CSIR- Central Food Technological Research Inst, Mysore 570 020, Karnataka, India
| |
Collapse
|
83
|
Basalious EB, Shamma RN. Novel self-assembled nano-tubular mixed micelles of Pluronics P123, Pluronic F127 and phosphatidylcholine for oral delivery of nimodipine: In vitro characterization, ex vivo transport and in vivo pharmacokinetic studies. Int J Pharm 2015; 493:347-56. [DOI: 10.1016/j.ijpharm.2015.07.075] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/25/2015] [Accepted: 07/28/2015] [Indexed: 01/08/2023]
|
84
|
Carotenoids from Marine Microalgae: A Valuable Natural Source for the Prevention of Chronic Diseases. Mar Drugs 2015; 13:5128-55. [PMID: 26287216 PMCID: PMC4557017 DOI: 10.3390/md13085128] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 08/03/2015] [Indexed: 12/12/2022] Open
Abstract
Epidemiological studies have shown a relation between antioxidants and the prevention of several chronic diseases. Microalgae are a potential novel source of bioactive molecules, including a wide range of different carotenoids that can be used as nutraceuticals, food supplements and novel food products. The objective of this review is (i) to update the research that has been carried out on the most known carotenoids produced by marine microalgae, including reporting on their high potentialities to produce other less known important compounds; (ii) to compile the work that has been done in order to establish some relationship between carotenoids and oxidative protection and treatment; (iii) to summarize the association of oxidative stress and the various reactive species including free radicals with several human diseases; and (iv) to provide evidence of the potential of carotenoids from marine microalgae to be used as therapeutics to treat or prevent these oxidative stress-related diseases.
Collapse
|
85
|
Komba S, Kotake-Nara E, Machida S. Fucoxanthin Derivatives: Synthesis and their Chemical Properties. J Oleo Sci 2015; 64:1009-18. [PMID: 26250423 DOI: 10.5650/jos.ess15039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Novel fucoxanthin derivatives that could change the size of mixed micelles were synthesized. The mixed micelles under consideration consist of a bile acid and some additives. To change the affinity against a bile acid, we designed the synthesis of a fucoxanthin-lithocholic acid complex. Lithocholic acid is one of the bile acids. The 3-OH on lithocholic acid was protected by a levulinyl group, and the protected lithocholic acid was selectively coupled via an ester linkage to the 3-OH on fucoxanthin to obtain levulinyl-protected lithocholyl fucoxanthin (LevLF). The levulinyl group was then selectively deprotected using hydrazine to obtain a lithocholyl fucoxanthin (LF). The average sizes of the micelles that contained these compounds (fucoxanthin, LevLF, and LF) with a bile acid (sodium taurocholate) were measured. The LevLF induced larger micelles than fucoxanthin or LF. Interestingly, the addition of 1-oleoyl-rac-glycerol induced a more efficient change in the micelle size. The large micelles grew larger, and the small micelles became smaller. Triple-mixed micelles with LevLF, sodium taurocholate, and 1-oleoyl-rac-glycerol formed the largest micelle with a diameter of 68 nm. On the other hand, triple-mixed micelles using LF, sodium taurocholate, and 1-oleoyl-rac-glycerol made the smallest micelles with diameters as low as 12 nm. We also investigated the hydrolysis of these compounds with enzymes (esterase from porcine liver, lipase from porcine pancreas, and cholesterol esterase from Pseudomonas sp.). The ester linkage between the lithocholic acid and fucoxanthin of LevLF was hydrolyzed with cholesterol esterase. In addition, the intestinal absorption was examined with Caco-2 cells, and no advantageous change in absorption efficiency was observed by chemically modifying the fucoxanthin unless different micelles sizes and increasing hydrophobicity are induced.
Collapse
Affiliation(s)
- Shiro Komba
- Biomolecular Engineering Laboratory, National Food Research Institute, NARO
| | | | | |
Collapse
|
86
|
Lin WC, Shih PH, Wang W, Wu CH, Hsia SM, Wang HJ, Hwang PA, Wang CY, Chen SH, Kuo YT. Inhibitory effects of high stability fucoxanthin on palmitic acid-induced lipid accumulation in human adipose-derived stem cells through modulation of long non-coding RNA. Food Funct 2015; 6:2215-23. [PMID: 26057608 DOI: 10.1039/c5fo00301f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Obesity is a serious worldwide disease, which is growing in epidemic proportions. Adipose-derived stem cells (ADSCs) are characterized as a source of mesenchymal stem cells that have acted as a potential application for regeneration. Recently, seaweeds rich in flavonoids and polysaccharides have been supposed to show the ability to modulate risk factors for obesity and related diseases. In the present study, we investigated the anti-obesity properties of high stability fucoxanthin (HS-Fx) derived from brown seaweeds on the adipogenesis of ADSCs upon treatment with palmitic acid (PA). First, we showed the differentiation capability of ADSCs from morbid obesity patients to transform into different cell types. Second, we found that the co-treatment of ADSCs with HS-Fx and PA showed no significant cytotoxicity against ADSCs, but PA induced the elevation of reactive oxygen species (ROS) and lipid droplet accumulation was abolished. Thirdly, the PA-mediated down-regulation of lipid metabolism genes was reversed by the treatment of HS-Fx. By long non-coding RNAs (lncRNAs) screening, we found that PA-induced increases in the targeted lncRNAs were also decreased upon treatment with HS-Fx. On Silencing, these lncRNAs corresponded to the decrease in the lipid droplet accumulation of ADSCs induced by PA. ADSCs from obese patients would be direct and meaningful model cells to investigate the development of obesity-related diseases and their treatments, rather than cell lines from other species. HS-Fx showed anti-obesity capability through modulating the elevation of ROS, down-regulation of lipid metabolism genes induced by PA, and upstream signaling, which might be critically resulted from the expression of lncRNAs.
Collapse
Affiliation(s)
- Wen-Chuan Lin
- Department of Pediatrics Shuang Ho Hospital, Taipei Medical University, 291, Jhongjheng Rd., Jhonghe Dist., New Taipei City 23561, Taiwan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Kim JE, Gordon SL, Ferruzzi MG, Campbell WW. Effects of egg consumption on carotenoid absorption from co-consumed, raw vegetables. Am J Clin Nutr 2015; 102:75-83. [PMID: 26016861 PMCID: PMC4480671 DOI: 10.3945/ajcn.115.111062] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/30/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Dietary lipids are one of the most effective stimulators of carotenoid absorption, but very limited data exist on the impact of endogenous food sources of lipids to enhance carotenoid absorption. The co-consumption of whole egg with carotenoid-rich foods may increase overall carotenoid absorption via lipid-rich egg yolk. OBJECTIVE We designed this study to assess the effects of egg consumption on carotenoid absorption from a carotenoid-rich, raw mixed-vegetable salad. DESIGN Healthy young men (n = 16) consumed the same salad (all served with 3 g canola oil) with no egg (control), 75 g scrambled whole eggs (1.5 eggs) [low egg (LE)], and 150 g scrambled whole eggs (3 eggs) [high egg (HE)] (a randomized crossover design). Control, LE, and HE meals contained 23 mg, 23.4 mg (0.4 mg from eggs), and 23.8 mg (0.8 mg from eggs) total carotenoids and 3 g, 10.5 g (7.5 g from eggs), and 18 g (15 g from eggs) total lipids, respectively. Blood was collected hourly for 10 h, and the triacylglycerol-rich lipoprotein (TRL) fraction was isolated. Total and individual carotenoid contents, including lutein, zeaxanthin , α-carotene, β-carotene, and lycopene in TRL were analyzed, and composite areas under the curve (AUCs) were calculated. RESULTS The total mean (±SE) carotenoid AUC0-10h in TRL was higher for the HE meal than for LE and control meals [125.7 ± 19.4(a) compared with 44.8 ± 9.2(b) compared with 14.9 ± 5.2(b) nmol/L · 10 h, respectively (values without a common superscript letter differ); P < 0.0001]. The TRL AUC(0-10h) of lutein and zeaxanthin increased 4-5-fold (P < 0.001), and the TRL AUC(0-10h) of carotenoid not present in eggs, including α-carotene, β-carotene, and lycopene, increased 3-8-fold (P < 0.01) for the HE meal compared with the control meal. CONCLUSION These findings support the claim that co-consuming cooked whole eggs is an effective way to enhance carotenoid absorption from other carotenoid-rich foods such as a raw mixed-vegetable salad. This trial was registered at clinicaltrials.gov as NCT01951313.
Collapse
Affiliation(s)
| | | | - Mario G Ferruzzi
- Departments of Nutrition Science and Food Science, Purdue University, West Lafayette, IN
| | | |
Collapse
|
88
|
Manayi A, Abdollahi M, Raman T, Nabavi SF, Habtemariam S, Daglia M, Nabavi SM. Lutein and cataract: from bench to bedside. Crit Rev Biotechnol 2015; 36:829-39. [DOI: 10.3109/07388551.2015.1049510] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran,
| | - Thiagarajan Raman
- Department of Bioengineering, School of Chemical & Biotechnology, SASTRA University, Thanjavur, India,
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran,
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories, Medway School of Science, University of Greenwich, Chatham-Maritime, Kent, UK, and
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran,
| |
Collapse
|
89
|
Kotake-Nara E, Yonekura L, Nagao A. Glyceroglycolipids Affect Uptake of Carotenoids Solubilized in Mixed Micelles by Human Intestinal Caco-2 Cells. Lipids 2015; 50:847-60. [PMID: 26012480 DOI: 10.1007/s11745-015-4033-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 05/01/2015] [Indexed: 10/23/2022]
Abstract
We previously reported that phospholipids markedly affected the uptake of carotenoids solubilized in mixed micelles by human intestinal Caco-2 cells. In the present study, we found that two classes of dietary glyceroglycolipids and the corresponding lysoglyceroglycolipids affected uptake of β-carotene and lutein by differentiated Caco-2 cells. The levels of carotenoid uptake from micelles containing digalactosyldiacylglycerol or sulfoquinovosyldiacylglycerol were significantly lower than that from control micelles. On the other hand, the uptakes from micelles containing digalactosylmonoacylglycerol or sulfoquinovosylmonoacylglycerol were significantly higher than that from control micelles. In dispersed cells and Caco-2 cells with poor cell-to-cell adhesion, however, the levels of uptake from micelles containing these lyso-lipids were much lower than that from control micelles. The uptake levels from control micelles were markedly decreased depending on the development of cell-to-cell/cell-matrix adhesion in Caco-2 cells, but the uptake levels from the micelles containing these lyso-lipids were not substantially changed, suggesting that the intercellular barrier formed by cell-to-cell/cell-matrix adhesion inhibited the uptake from control micelles, but not from the lyso-lipid-containing micelles. The lyso-lipids appeared to enhance carotenoid uptake by decreasing the intercellular barrier integrity. The results showed that some types of glyceroglycolipids have the potential to modify the intestinal uptake of carotenoids.
Collapse
Affiliation(s)
- Eiichi Kotake-Nara
- National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan,
| | | | | |
Collapse
|
90
|
Fucoxanthin: A Promising Medicinal and Nutritional Ingredient. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:723515. [PMID: 26106437 PMCID: PMC4461761 DOI: 10.1155/2015/723515] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 05/04/2015] [Indexed: 12/30/2022]
Abstract
Fucoxanthin, an allenic carotenoid, can be isolated from edible brown seaweeds. Recent studies have reported that fucoxanthin has many physiological functions and biological properties, such as antiobesity, antitumor, antidiabetes, antioxidant, anti-inflammatory, and hepatoprotective activities, as well as cardiovascular and cerebrovascular protective effects. Therefore, fucoxanthin can be used as both medicinal and nutritional ingredient to prevent and treat chronic diseases. Although fucoxanthin possesses many medicinal ingredient and nutritional qualities, studies indicated that its structure was unstable. In this paper, we consulted the current documents and reviewed structural properties and factors affecting the stability of fucoxanthin. We also reported the metabolism, safety, pharmacological activities, and the methods of improving the bioavailability of fucoxanthin. Based on these studies providing essential background knowledge, fucoxanthin can be developed into marine drugs and nutritional products.
Collapse
|
91
|
|
92
|
Cardona JA, Mertens-Talcott SU, Talcott ST. Phospholipids and terpenes modulate Caco-2 transport of açaí anthocyanins. Food Chem 2014; 175:267-72. [PMID: 25577079 DOI: 10.1016/j.foodchem.2014.11.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/28/2014] [Accepted: 11/20/2014] [Indexed: 11/18/2022]
Abstract
Anthocyanins (ANC) are common polyphenolics in plants, but are poorly absorbed into the bloodstream upon consumption. Phospholipids (PL) and terpenes (TP) may serve as enhancing agents in absorption. This study evaluated their role in transepithelial transport within a Caco-2 cell monolayer-model system and impact on ANC stability. Açaí fruit ANC were isolated and found to transport, at a low rate (1.22%), in the absence of soy lecithin phospholipids and Valencia orange terpenes, yet their addition significantly increased the transport of both cyanidin-3-glucoside and cyanidin-3-rutinoside. The best transport results (5.21%) were observed when combinations of PL (5000 mg/l) and TP (50mg/l) were used. The presence of PL and TP had no influence on ANC degradation over a 40 day storage period. Results demonstrated the potential of PL and TP to increase intestinal transport of ANC, and present advancement towards the formulation of functional foods that support improved ANC absorption.
Collapse
Affiliation(s)
- Jorge A Cardona
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843-2254, United States; Department of Food Science and Technology, Pan-American School of Agriculture, Zamorano University, PO Box 93, Tegucigalpa, Honduras
| | - Susanne U Mertens-Talcott
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843-2254, United States; Department of Vet. Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - Stephen T Talcott
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843-2254, United States.
| |
Collapse
|
93
|
Levy E. Insights from human congenital disorders of intestinal lipid metabolism. J Lipid Res 2014; 56:945-62. [PMID: 25387865 DOI: 10.1194/jlr.r052415] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Indexed: 12/24/2022] Open
Abstract
The intestine must challenge the profuse daily flux of dietary fat that serves as a vital source of energy and as an essential component of cell membranes. The fat absorption process takes place in a series of orderly and interrelated steps, including the uptake and translocation of lipolytic products from the brush border membrane to the endoplasmic reticulum, lipid esterification, Apo synthesis, and ultimately the packaging of lipid and Apo components into chylomicrons (CMs). Deciphering inherited disorders of intracellular CM elaboration afforded new insight into the key functions of crucial intracellular proteins, such as Apo B, microsomal TG transfer protein, and Sar1b GTPase, the defects of which lead to hypobetalipoproteinemia, abetalipoproteinemia, and CM retention disease, respectively. These "experiments of nature" are characterized by fat malabsorption, steatorrhea, failure to thrive, low plasma levels of TGs and cholesterol, and deficiency of liposoluble vitamins and essential FAs. After summarizing and discussing the functions and regulation of these proteins for reader's comprehension, the current review focuses on their specific roles in malabsorptions and dyslipidemia-related intestinal fat hyperabsorption while dissecting the spectrum of clinical manifestations and managements. The influence of newly discovered proteins (proprotein convertase subtilisin/kexin type 9 and angiopoietin-like 3 protein) on fat absorption has also been provided. Finally, it is stressed how the overexpression or polymorphism status of the critical intracellular proteins promotes dyslipidemia and cardiometabolic disorders.
Collapse
Affiliation(s)
- Emile Levy
- Research Centre, CHU Sainte-Justine and Department of Nutrition, Université de Montréal, Montreal, Quebec H3T 1C5, Canada
| |
Collapse
|
94
|
Wang L, Zeng Y, Liu Y, Hu X, Li S, Wang Y, Li L, Lei Z, Zhang Z. Fucoxanthin induces growth arrest and apoptosis in human bladder cancer T24 cells by up-regulation of p21 and down-regulation of mortalin. Acta Biochim Biophys Sin (Shanghai) 2014; 46:877-84. [PMID: 25187415 DOI: 10.1093/abbs/gmu080] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fucoxanthin, a natural carotenoid, has been reported to have anti-cancer activity in human colon cancer cells, human prostate cancer cells, human leukemia cells, and human epithelial cervical cancer cells. This study was undertaken to evaluate the molecular mechanisms of fucoxanthin against human bladder cancer T24 cell line. MTT analysis results showed that 5 and 10 μM fucoxanthin inhibited the proliferation of T24 cells in a dose- and time-dependent manner accompanied by the growth arrest at G0/G1 phase of cell cycle, which is mediated by the up-regulation of p21, a cyclin-dependent kinase (CDK)-inhibitory protein and the down-regulation of CDK-2, CDK-4, cyclin D1, and cyclin E. In addition, 20 and 40 μM fucoxanthin induced apoptosis of T24 cells by the abrogation of mortalin-p53 complex and the reactivation of nuclear mutant-type p53, which also had tumor suppressor function as wild-type p53. All these results demonstrated that the anti-cancer activity of fucoxanthin on T24 cells was associated with cell cycle arrest at G0/G1 phase by up-regulation of p21 at low doses and apoptosis via decrease in the expression level of mortalin, which is a stress regulator and a member of heat shock protein 70, followed by up-regulation of cleaved caspase-3 at high doses.
Collapse
Affiliation(s)
- Linbo Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yang Zeng
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Ye Liu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Xuansheng Hu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Shuhong Li
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yuepeng Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan Natural Product Industry of Tsukuba Co., Ltd, E-26, 1187-80 (Kenkyugakuen C43-3) East Hiratuka, Tsukuba, Ibaraki 305-0812, Japan
| | - Ling Li
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
95
|
Lysophosphatidylserine form DHA maybe the most effective as substrate for brain DHA accretion. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2013.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
96
|
Lipkie TE, Banavara D, Shah B, Morrow AL, McMahon RJ, Jouni ZE, Ferruzzi MG. Caco-2 accumulation of lutein is greater from human milk than from infant formula despite similar bioaccessibility. Mol Nutr Food Res 2014; 58:2014-22. [PMID: 24975441 DOI: 10.1002/mnfr.201400126] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/16/2014] [Accepted: 05/21/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Tristan E. Lipkie
- Department of Food Science; Purdue University; West Lafayette IN USA
| | | | - Bhavini Shah
- Mead Johnson Pediatric Institute; Evansville IN USA
| | | | | | | | - Mario G. Ferruzzi
- Department of Food Science; Purdue University; West Lafayette IN USA
- Department of Nutrition Science; Purdue University; West Lafayette IN USA
| |
Collapse
|
97
|
In Vivoandin VitroStudies on the Absorption Characteristics of β-Cryptoxanthin in the Intestine. Biosci Biotechnol Biochem 2014; 76:2124-8. [DOI: 10.1271/bbb.120511] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
98
|
Protective Effect of Fucoxanthin against UVB-Induced Skin Photoaging in Hairless Mice. Biosci Biotechnol Biochem 2014; 75:757-60. [DOI: 10.1271/bbb.110040] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
99
|
Inhibitory Effect of Dietary Carotenoids on Dinitrofluorobenzene-Induced Contact Hypersensitivity in Mice. Biosci Biotechnol Biochem 2014; 75:1013-5. [DOI: 10.1271/bbb.110104] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
100
|
Effects of Mixed Micellar Lipids on Carotenoid Uptake by Human Intestinal Caco-2 Cells. Biosci Biotechnol Biochem 2014; 76:875-82. [DOI: 10.1271/bbb.110777] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|