51
|
Henn A, Sadot E. The unique enzymatic and mechanistic properties of plant myosins. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:65-70. [PMID: 25435181 DOI: 10.1016/j.pbi.2014.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/04/2014] [Accepted: 09/15/2014] [Indexed: 06/04/2023]
Abstract
Myosins are molecular motors that move along actin-filament tracks. Plants express two main classes of myosins, myosin VIII and myosin XI. Along with their relatively conserved sequence and functions, plant myosins have acquired some unique features. Myosin VIII has the enzymatic characteristics of a tension sensor and/or a tension generator, similar to functions found in other eukaryotes. Interestingly, class XI plant myosins have gained a novel function that consists of propelling the exceptionally rapid cytoplasmic streaming. This specific class includes the fastest known translocating molecular motors, which can reach an extremely high velocity of about 60μms(-1). However, the enzymatic properties and mechanistic basis for these remarkable manifestations are not yet fully understood. Here we review recent progress in understanding the uniqueness of plant myosins, while emphasizing the unanswered questions.
Collapse
Affiliation(s)
- Arnon Henn
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Einat Sadot
- The Institute of Plant Sciences, Volcani Center, PO Box 6, Bet-Dagan 5025000, Israel.
| |
Collapse
|
52
|
Cai C, Henty-Ridilla JL, Szymanski DB, Staiger CJ. Arabidopsis myosin XI: a motor rules the tracks. PLANT PHYSIOLOGY 2014; 166:1359-70. [PMID: 25237128 PMCID: PMC4226357 DOI: 10.1104/pp.114.244335] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/17/2014] [Indexed: 05/18/2023]
Abstract
Plant cell expansion relies on intracellular trafficking of vesicles and macromolecules, which requires myosin motors and a dynamic actin network. Arabidopsis (Arabidopsis thaliana) myosin XI powers the motility of diverse cellular organelles, including endoplasmic reticulum, Golgi, endomembrane vesicles, peroxisomes, and mitochondria. Several recent studies show that there are changes in actin organization and dynamics in myosin xi mutants, indicating that motors influence the molecular tracks they use for transport. However, the mechanism by which actin organization and dynamics are regulated by myosin XI awaits further detailed investigation. Here, using high spatiotemporal imaging of living cells, we quantitatively assessed the architecture and dynamic behavior of cortical actin arrays in a mutant with three Myosin XI (XI-1, XI-2, and XI-K) genes knocked out (xi3KO). In addition to apparent reduction of organ and cell size, the mutant showed less dense and more bundled actin filament arrays in epidermal cells. Furthermore, the overall actin dynamicity was significantly inhibited in the xi3KO mutant. Because cytoskeletal remodeling is contributed mainly by filament assembly/disassembly and translocation/buckling, we also examined the dynamic behavior of individual actin filaments. We found that the xi3KO mutant had significantly decreased actin turnover, with a 2-fold reduction in filament severing frequency. Moreover, quantitative analysis of filament shape change over time revealed that myosin XI generates the force for buckling and straightening of both single actin filaments and actin bundles. Thus, our data provide genetic evidence that three Arabidopsis class XI myosins contribute to actin remodeling by stimulating turnover and generating the force for filament shape change.
Collapse
Affiliation(s)
- Chao Cai
- Department of Biological Sciences (C.C., J.L.H.-R., C.J.S.), Center for the Direct Catalytic Conversion of Biomass to Biofuels (C.C., J.L.H.-R., D.B.S., C.J.S.), and Department of Agronomy (D.B.S.), Purdue University, West Lafayette, Indiana 47907
| | - Jessica L Henty-Ridilla
- Department of Biological Sciences (C.C., J.L.H.-R., C.J.S.), Center for the Direct Catalytic Conversion of Biomass to Biofuels (C.C., J.L.H.-R., D.B.S., C.J.S.), and Department of Agronomy (D.B.S.), Purdue University, West Lafayette, Indiana 47907
| | - Daniel B Szymanski
- Department of Biological Sciences (C.C., J.L.H.-R., C.J.S.), Center for the Direct Catalytic Conversion of Biomass to Biofuels (C.C., J.L.H.-R., D.B.S., C.J.S.), and Department of Agronomy (D.B.S.), Purdue University, West Lafayette, Indiana 47907
| | - Christopher J Staiger
- Department of Biological Sciences (C.C., J.L.H.-R., C.J.S.), Center for the Direct Catalytic Conversion of Biomass to Biofuels (C.C., J.L.H.-R., D.B.S., C.J.S.), and Department of Agronomy (D.B.S.), Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
53
|
Bashline L, Li S, Gu Y. The trafficking of the cellulose synthase complex in higher plants. ANNALS OF BOTANY 2014; 114:1059-67. [PMID: 24651373 PMCID: PMC4195546 DOI: 10.1093/aob/mcu040] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/14/2014] [Indexed: 05/17/2023]
Abstract
BACKGROUND Cellulose is an important constituent of plant cell walls in a biological context, and is also a material commonly utilized by mankind in the pulp and paper, timber, textile and biofuel industries. The biosynthesis of cellulose in higher plants is a function of the cellulose synthase complex (CSC). The CSC, a large transmembrane complex containing multiple cellulose synthase proteins, is believed to be assembled in the Golgi apparatus, but is thought only to synthesize cellulose when it is localized at the plasma membrane, where CSCs synthesize and extrude cellulose directly into the plant cell wall. Therefore, the delivery and endocytosis of CSCs to and from the plasma membrane are important aspects for the regulation of cellulose biosynthesis. SCOPE Recent progress in the visualization of CSC dynamics in living plant cells has begun to reveal some of the routes and factors involved in CSC trafficking. This review highlights the most recent major findings related to CSC trafficking, provides novel perspectives on how CSC trafficking can influence the cell wall, and proposes potential avenues for future exploration.
Collapse
Affiliation(s)
- Logan Bashline
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Shundai Li
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
54
|
El Zawily AM, Schwarzländer M, Finkemeier I, Johnston IG, Benamar A, Cao Y, Gissot C, Meyer AJ, Wilson K, Datla R, Macherel D, Jones NS, Logan DC. FRIENDLY regulates mitochondrial distribution, fusion, and quality control in Arabidopsis. PLANT PHYSIOLOGY 2014; 166:808-28. [PMID: 25165398 PMCID: PMC4213110 DOI: 10.1104/pp.114.243824] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/27/2014] [Indexed: 05/19/2023]
Abstract
Mitochondria are defining components of most eukaryotes. However, higher plant mitochondria differ biochemically, morphologically, and dynamically from those in other eukaryotes. FRIENDLY, a member of the CLUSTERED MITOCHONDRIA superfamily, is conserved among eukaryotes and is required for correct distribution of mitochondria within the cell. We sought to understand how disruption of FRIENDLY function in Arabidopsis (Arabidopsis thaliana) leads to mitochondrial clustering and the effects of this aberrant chondriome on cell and whole-plant physiology. We present evidence for a role of FRIENDLY in mediating intermitochondrial association, which is a necessary prelude to mitochondrial fusion. We demonstrate that disruption of mitochondrial association, motility, and chondriome structure in friendly affects mitochondrial quality control and leads to mitochondrial stress, cell death, and strong growth phenotypes.
Collapse
Affiliation(s)
- Amr M El Zawily
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2 (A.M.E.Z., K.W., D.C.L.);Faculty of Science, Damanhour University, Damanhour 22516, Egypt (A.M.E.Z.);Institute of Crop Science and Resource Conservation, University of Bonn, D-53113 Bonn, Germany (M.S., A.J.M.);Max-Planck-Institute for Plant Breeding Research, Plant Proteomics Group, 50829 Cologne, Germany (I.F.);Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom (I.G.J., C.G., N.S.J.);Université d'Angers, Institut National de la Recherche Agronomique, and Agrocampus Ouest, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers F-49045, France (A.B., D.M., D.C.L.); andPlant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada (Y.C., R.D.)
| | - Markus Schwarzländer
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2 (A.M.E.Z., K.W., D.C.L.);Faculty of Science, Damanhour University, Damanhour 22516, Egypt (A.M.E.Z.);Institute of Crop Science and Resource Conservation, University of Bonn, D-53113 Bonn, Germany (M.S., A.J.M.);Max-Planck-Institute for Plant Breeding Research, Plant Proteomics Group, 50829 Cologne, Germany (I.F.);Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom (I.G.J., C.G., N.S.J.);Université d'Angers, Institut National de la Recherche Agronomique, and Agrocampus Ouest, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers F-49045, France (A.B., D.M., D.C.L.); andPlant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada (Y.C., R.D.)
| | - Iris Finkemeier
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2 (A.M.E.Z., K.W., D.C.L.);Faculty of Science, Damanhour University, Damanhour 22516, Egypt (A.M.E.Z.);Institute of Crop Science and Resource Conservation, University of Bonn, D-53113 Bonn, Germany (M.S., A.J.M.);Max-Planck-Institute for Plant Breeding Research, Plant Proteomics Group, 50829 Cologne, Germany (I.F.);Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom (I.G.J., C.G., N.S.J.);Université d'Angers, Institut National de la Recherche Agronomique, and Agrocampus Ouest, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers F-49045, France (A.B., D.M., D.C.L.); andPlant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada (Y.C., R.D.)
| | - Iain G Johnston
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2 (A.M.E.Z., K.W., D.C.L.);Faculty of Science, Damanhour University, Damanhour 22516, Egypt (A.M.E.Z.);Institute of Crop Science and Resource Conservation, University of Bonn, D-53113 Bonn, Germany (M.S., A.J.M.);Max-Planck-Institute for Plant Breeding Research, Plant Proteomics Group, 50829 Cologne, Germany (I.F.);Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom (I.G.J., C.G., N.S.J.);Université d'Angers, Institut National de la Recherche Agronomique, and Agrocampus Ouest, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers F-49045, France (A.B., D.M., D.C.L.); andPlant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada (Y.C., R.D.)
| | - Abdelilah Benamar
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2 (A.M.E.Z., K.W., D.C.L.);Faculty of Science, Damanhour University, Damanhour 22516, Egypt (A.M.E.Z.);Institute of Crop Science and Resource Conservation, University of Bonn, D-53113 Bonn, Germany (M.S., A.J.M.);Max-Planck-Institute for Plant Breeding Research, Plant Proteomics Group, 50829 Cologne, Germany (I.F.);Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom (I.G.J., C.G., N.S.J.);Université d'Angers, Institut National de la Recherche Agronomique, and Agrocampus Ouest, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers F-49045, France (A.B., D.M., D.C.L.); andPlant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada (Y.C., R.D.)
| | - Yongguo Cao
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2 (A.M.E.Z., K.W., D.C.L.);Faculty of Science, Damanhour University, Damanhour 22516, Egypt (A.M.E.Z.);Institute of Crop Science and Resource Conservation, University of Bonn, D-53113 Bonn, Germany (M.S., A.J.M.);Max-Planck-Institute for Plant Breeding Research, Plant Proteomics Group, 50829 Cologne, Germany (I.F.);Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom (I.G.J., C.G., N.S.J.);Université d'Angers, Institut National de la Recherche Agronomique, and Agrocampus Ouest, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers F-49045, France (A.B., D.M., D.C.L.); andPlant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada (Y.C., R.D.)
| | - Clémence Gissot
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2 (A.M.E.Z., K.W., D.C.L.);Faculty of Science, Damanhour University, Damanhour 22516, Egypt (A.M.E.Z.);Institute of Crop Science and Resource Conservation, University of Bonn, D-53113 Bonn, Germany (M.S., A.J.M.);Max-Planck-Institute for Plant Breeding Research, Plant Proteomics Group, 50829 Cologne, Germany (I.F.);Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom (I.G.J., C.G., N.S.J.);Université d'Angers, Institut National de la Recherche Agronomique, and Agrocampus Ouest, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers F-49045, France (A.B., D.M., D.C.L.); andPlant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada (Y.C., R.D.)
| | - Andreas J Meyer
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2 (A.M.E.Z., K.W., D.C.L.);Faculty of Science, Damanhour University, Damanhour 22516, Egypt (A.M.E.Z.);Institute of Crop Science and Resource Conservation, University of Bonn, D-53113 Bonn, Germany (M.S., A.J.M.);Max-Planck-Institute for Plant Breeding Research, Plant Proteomics Group, 50829 Cologne, Germany (I.F.);Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom (I.G.J., C.G., N.S.J.);Université d'Angers, Institut National de la Recherche Agronomique, and Agrocampus Ouest, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers F-49045, France (A.B., D.M., D.C.L.); andPlant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada (Y.C., R.D.)
| | - Ken Wilson
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2 (A.M.E.Z., K.W., D.C.L.);Faculty of Science, Damanhour University, Damanhour 22516, Egypt (A.M.E.Z.);Institute of Crop Science and Resource Conservation, University of Bonn, D-53113 Bonn, Germany (M.S., A.J.M.);Max-Planck-Institute for Plant Breeding Research, Plant Proteomics Group, 50829 Cologne, Germany (I.F.);Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom (I.G.J., C.G., N.S.J.);Université d'Angers, Institut National de la Recherche Agronomique, and Agrocampus Ouest, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers F-49045, France (A.B., D.M., D.C.L.); andPlant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada (Y.C., R.D.)
| | - Raju Datla
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2 (A.M.E.Z., K.W., D.C.L.);Faculty of Science, Damanhour University, Damanhour 22516, Egypt (A.M.E.Z.);Institute of Crop Science and Resource Conservation, University of Bonn, D-53113 Bonn, Germany (M.S., A.J.M.);Max-Planck-Institute for Plant Breeding Research, Plant Proteomics Group, 50829 Cologne, Germany (I.F.);Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom (I.G.J., C.G., N.S.J.);Université d'Angers, Institut National de la Recherche Agronomique, and Agrocampus Ouest, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers F-49045, France (A.B., D.M., D.C.L.); andPlant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada (Y.C., R.D.)
| | - David Macherel
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2 (A.M.E.Z., K.W., D.C.L.);Faculty of Science, Damanhour University, Damanhour 22516, Egypt (A.M.E.Z.);Institute of Crop Science and Resource Conservation, University of Bonn, D-53113 Bonn, Germany (M.S., A.J.M.);Max-Planck-Institute for Plant Breeding Research, Plant Proteomics Group, 50829 Cologne, Germany (I.F.);Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom (I.G.J., C.G., N.S.J.);Université d'Angers, Institut National de la Recherche Agronomique, and Agrocampus Ouest, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers F-49045, France (A.B., D.M., D.C.L.); andPlant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada (Y.C., R.D.)
| | - Nick S Jones
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2 (A.M.E.Z., K.W., D.C.L.);Faculty of Science, Damanhour University, Damanhour 22516, Egypt (A.M.E.Z.);Institute of Crop Science and Resource Conservation, University of Bonn, D-53113 Bonn, Germany (M.S., A.J.M.);Max-Planck-Institute for Plant Breeding Research, Plant Proteomics Group, 50829 Cologne, Germany (I.F.);Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom (I.G.J., C.G., N.S.J.);Université d'Angers, Institut National de la Recherche Agronomique, and Agrocampus Ouest, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers F-49045, France (A.B., D.M., D.C.L.); andPlant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada (Y.C., R.D.)
| | - David C Logan
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2 (A.M.E.Z., K.W., D.C.L.);Faculty of Science, Damanhour University, Damanhour 22516, Egypt (A.M.E.Z.);Institute of Crop Science and Resource Conservation, University of Bonn, D-53113 Bonn, Germany (M.S., A.J.M.);Max-Planck-Institute for Plant Breeding Research, Plant Proteomics Group, 50829 Cologne, Germany (I.F.);Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom (I.G.J., C.G., N.S.J.);Université d'Angers, Institut National de la Recherche Agronomique, and Agrocampus Ouest, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers F-49045, France (A.B., D.M., D.C.L.); andPlant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada (Y.C., R.D.)
| |
Collapse
|
55
|
Yamaoka S, Hara-Nishimura I. The mitochondrial Ras-related GTPase Miro: views from inside and outside the metazoan kingdom. FRONTIERS IN PLANT SCIENCE 2014; 5:350. [PMID: 25076955 PMCID: PMC4100572 DOI: 10.3389/fpls.2014.00350] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/30/2014] [Indexed: 05/24/2023]
Abstract
Miro GTPase, a member of the Ras superfamily, consists of two GTPase domains flanking a pair of EF hand motifs and a C-terminal transmembrane domain that anchors the protein to the mitochondrial outer membrane. Since the identification of Miro in humans, a series of studies in metazoans, including mammals and fruit flies, have shown that Miro plays a role in the calcium-dependent regulation of mitochondrial transport along microtubules. However, in non-metazoans, including yeasts, slime molds, and plants, Miro is primarily involved in the maintenance of mitochondrial morphology and homeostasis. Given the high level of conservation of Miro in eukaryotes and the variation in the molecular mechanisms of mitochondrial transport between eukaryotic lineages, Miro may have a common ancestral function in mitochondria, and its roles in the regulation of mitochondrial transport may have been acquired specifically by metazoans after the evolutionary divergence of eukaryotes.
Collapse
Affiliation(s)
- Shohei Yamaoka
- Graduate School of Biostudies, Kyoto UniversityKyoto, Japan
| | | |
Collapse
|
56
|
Li X, Li JH, Wang W, Chen NZ, Ma TS, Xi YN, Zhang XL, Lin HF, Bai Y, Huang SJ, Chen YL. ARP2/3 complex-mediated actin dynamics is required for hydrogen peroxide-induced stomatal closure in Arabidopsis. PLANT, CELL & ENVIRONMENT 2014; 37:1548-60. [PMID: 24372484 DOI: 10.1111/pce.12259] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/21/2013] [Accepted: 12/08/2013] [Indexed: 05/03/2023]
Abstract
Multiple cellular events like dynamic actin reorganization and hydrogen peroxide (H(2)O(2)) production were demonstrated to be involved in abscisic acid (ABA)-induced stomatal closure. However, the relationship between them as well as the underlying mechanisms remains poorly understood. Here, we showed that H(2)O(2) generation is indispensable for ABA induction of actin reorganization in guard cells of Arabidopsis that requires the presence of ARP2/3 complex. H(2)O(2) -induced stomatal closure was delayed in the mutants of arpc4 and arpc5, and the rate of actin reorganization was slowed down in arpc4 and arpc5 in response to H(2)O(2), suggesting that ARP2/3-mediated actin nucleation is required for H(2)O(2) -induced actin cytoskeleton remodelling. Furthermore, the expression of H(2)O(2) biosynthetic related gene AtrbohD and the accumulation of H(2)O(2) was delayed in response to ABA in arpc4 and arpc5, demonstrating that misregulated actin dynamics affects H(2)O(2) production upon ABA treatment. These results support a possible causal relation between the production of H(2)O(2) and actin dynamics in ABA-mediated guard cell signalling: ABA triggers H(2)O(2) generation that causes the reorganization of the actin cytoskeleton partially mediated by ARP2/3 complex, and ARP2/3 complex-mediated actin dynamics may feedback regulate H(2)O(2) production.
Collapse
Affiliation(s)
- Xin Li
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Griffing LR, Gao HT, Sparkes I. ER network dynamics are differentially controlled by myosins XI-K, XI-C, XI-E, XI-I, XI-1, and XI-2. FRONTIERS IN PLANT SCIENCE 2014; 5:218. [PMID: 24904614 PMCID: PMC4033215 DOI: 10.3389/fpls.2014.00218] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 05/01/2014] [Indexed: 05/18/2023]
Abstract
The endoplasmic reticulum (ER) of higher plants is a complex network of tubules and cisternae. Some of the tubules and cisternae are relatively persistent, while others are dynamically moving and remodeling through growth and shrinkage, cycles of tubule elongation and retraction, and cisternal expansion and diminution. Previous work showed that transient expression in tobacco leaves of the motor-less, truncated tail of myosin XI-K increases the relative area of both persistent cisternae and tubules in the ER. Likewise, transient expression of XI-K tail diminishes the movement of organelles such as Golgi and peroxisomes. To examine whether other class XI myosins are involved in the remodeling and movement of the ER, other myosin XIs implicated in organelle movement, XI-1 (MYA1),XI-2 (MYA2), XI-C, XI-E, XI-I, and one not, XI-A, were expressed as motor-less tail constructs and their effect on ER persistent structures determined. Here, we indicate a differential effect on ER dynamics whereby certain class XI myosins may have more influence over controlling cisternalization rather than tubulation.
Collapse
Affiliation(s)
| | - Hongbo T. Gao
- Biosciences, College of Life and Environmental Sciences, Exeter UniversityExeter, UK
| | - Imogen Sparkes
- Biosciences, College of Life and Environmental Sciences, Exeter UniversityExeter, UK
| |
Collapse
|
58
|
Erickson JL, Ziegler J, Guevara D, Abel S, Klösgen RB, Mathur J, Rothstein SJ, Schattat MH. Agrobacterium-derived cytokinin influences plastid morphology and starch accumulation in Nicotiana benthamiana during transient assays. BMC PLANT BIOLOGY 2014; 14:127. [PMID: 24886417 PMCID: PMC4062310 DOI: 10.1186/1471-2229-14-127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/24/2014] [Indexed: 05/06/2023]
Abstract
BACKGROUND Agrobacterium tumefaciens-based transient assays have become a common tool for answering questions related to protein localization and gene expression in a cellular context. The use of these assays assumes that the transiently transformed cells are observed under relatively authentic physiological conditions and maintain 'normal' sub-cellular behaviour. Although this premise is widely accepted, the question of whether cellular organization and organelle morphology is altered in Agrobacterium-infiltrated cells has not been examined in detail. The first indications of an altered sub-cellular environment came from our observation that a common laboratory strain, GV3101(pMP90), caused a drastic increase in stromule frequency. Stromules, or 'stroma-filled-tubules' emanate from the surface of plastids and are sensitive to a variety of biotic and abiotic stresses. Starting from this observation, the goal of our experiments was to further characterize the changes to the cell resulting from short-term bacterial infestation, and to identify the factor responsible for eliciting these changes. RESULTS Using a protocol typical of transient assays we evaluated the impact of GV3101(pMP90) infiltration on chloroplast behaviour and morphology in Nicotiana benthamiana. Our experiments confirmed that GV3101(pMP90) consistently induces stromules and alters plastid position relative to the nucleus. These effects were found to be the result of strain-dependant secretion of cytokinin and its accumulation in the plant tissue. Bacterial production of the hormone was found to be dependant on the presence of a trans-zeatin synthase gene (tzs) located on the Ti plasmid of GV3101(pMP90). Bacteria-derived cytokinins were also correlated with changes to both soluble sugar level and starch accumulation. CONCLUSION Although we have chosen to focus on how transient Agrobacterium infestation alters plastid based parameters, these changes to the morphology and position of a single organelle, combined with the measured increases in sugar and starch content, suggest global changes to cell physiology. This indicates that cells visualized during transient assays may not be as 'normal' as was previously assumed. Our results suggest that the impact of the bacteria can be minimized by choosing Agrobacterium strains devoid of the tzs gene, but that the alterations to sub-cellular organization and cell carbohydrate status cannot be completely avoided using this strategy.
Collapse
Affiliation(s)
- Jessica L Erickson
- Abteilung Pflanzen Physiologie, Institut für Biologie-Pflanzenphysiologie, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, Halle/Saale 06120, Germany
| | - Jörg Ziegler
- Abteilung Molekulare Signalverarbeitung, Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, Halle/Saale 06120, Germany
| | - David Guevara
- Present Address: Pioneer Hi-Bred, 12111 Mississauga Rd, Georgetown, ON L7G 4S7, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2 W1, Canada
| | - Steffen Abel
- Abteilung Molekulare Signalverarbeitung, Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, Halle/Saale 06120, Germany
| | - Ralf B Klösgen
- Abteilung Pflanzen Physiologie, Institut für Biologie-Pflanzenphysiologie, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, Halle/Saale 06120, Germany
| | - Jaideep Mathur
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2 W1, Canada
| | - Steven J Rothstein
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2 W1, Canada
| | - Martin H Schattat
- Abteilung Pflanzen Physiologie, Institut für Biologie-Pflanzenphysiologie, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, Halle/Saale 06120, Germany
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2 W1, Canada
| |
Collapse
|
59
|
Steffens A, Jaegle B, Tresch A, Hülskamp M, Jakoby M. Processing-body movement in Arabidopsis depends on an interaction between myosins and DECAPPING PROTEIN1. PLANT PHYSIOLOGY 2014; 164:1879-92. [PMID: 24525673 PMCID: PMC3982750 DOI: 10.1104/pp.113.233031] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 02/12/2014] [Indexed: 05/18/2023]
Abstract
Processing (P)-bodies are cytoplasmic RNA protein aggregates responsible for the storage, degradation, and quality control of translationally repressed messenger RNAs in eukaryotic cells. In mammals, P-body-related RNA and protein exchanges are actomyosin dependent, whereas P-body movement requires intact microtubules. In contrast, in plants, P-body motility is actin based. In this study, we show the direct interaction of the P-body core component DECAPPING PROTEIN1 (DCP1) with the tails of different unconventional myosins in Arabidopsis (Arabidopsis thaliana). By performing coexpression studies with AtDCP1, dominant-negative myosin fragments, as well as functional full-length myosin XI-K, the association of P-bodies and myosins was analyzed in detail. Finally, the combination of mutant analyses and characterization of P-body movement patterns showed that myosin XI-K is essential for fast and directed P-body transport. Together, our data indicate that P-body movement in plants is governed by myosin XI members through direct binding to AtDCP1 rather than through an adapter protein, as known for membrane-coated organelles. Interspecies and intraspecies interaction approaches with mammalian and yeast protein homologs suggest that this mechanism is evolutionarily conserved among eukaryotes.
Collapse
|
60
|
Wang G, Zhong M, Wang J, Zhang J, Tang Y, Wang G, Song R. Genome-wide identification, splicing, and expression analysis of the myosin gene family in maize (Zea mays). JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:923-38. [PMID: 24363426 PMCID: PMC3935558 DOI: 10.1093/jxb/ert437] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The actin-based myosin system is essential for the organization and dynamics of the endomembrane system and transport network in plant cells. Plants harbour two unique myosin groups, class VIII and class XI, and the latter is structurally and functionally analogous to the animal and fungal class V myosin. Little is known about myosins in grass, even though grass includes several agronomically important cereal crops. Here, we identified 14 myosin genes from the genome of maize (Zea mays). The relatively larger sizes of maize myosin genes are due to their much longer introns, which are abundant in transposable elements. Phylogenetic analysis indicated that maize myosin genes could be classified into class VIII and class XI, with three and 11 members, respectively. Apart from subgroup XI-F, the remaining subgroups were duplicated at least in one analysed lineage, and the duplication events occurred more extensively in Arabidopsis than in maize. Only two pairs of maize myosins were generated from segmental duplication. Expression analysis revealed that most maize myosin genes were expressed universally, whereas a few members (XI-1, -6, and -11) showed an anther-specific pattern, and many underwent extensive alternative splicing. We also found a short transcript at the O1 locus, which conceptually encoded a headless myosin that most likely functions at the transcriptional level rather than via a dominant-negative mechanism at the translational level. Together, these data provide significant insights into the evolutionary and functional characterization of maize myosin genes that could transfer to the identification and application of homologous myosins of other grasses.
Collapse
Affiliation(s)
- Guifeng Wang
- * These authors contributed equally to this work
| | - Mingyu Zhong
- * These authors contributed equally to this work
| | | | | | | | - Gang Wang
- To whom correspondence should be addressed. E-mail: and
| | - Rentao Song
- To whom correspondence should be addressed. E-mail: and
| |
Collapse
|
61
|
Madison SL, Nebenführ A. Understanding myosin functions in plants: are we there yet? CURRENT OPINION IN PLANT BIOLOGY 2013; 16:710-717. [PMID: 24446546 DOI: 10.1016/j.pbi.2013.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Myosins are motor proteins that drive movements along actin filaments and have long been assumed to be responsible for cytoplasmic streaming in plant cells. This conjecture is now firmly established by genetic analysis in the reference species, Arabidopsis thaliana. This work and similar approaches in the moss, Physcomitrella patens, also established that myosin-driven movements are necessary for cell growth and polarity, organelle distribution and shape, and actin organization and dynamics. Identification of a mechanistic link between intracellular movements and cell expansion has proven more challenging, not the least because of the high level of apparent genetic redundancy among myosin family members. Recent progress in the creation of functional complementation constructs and identification of interaction partners promises a way out of this dilemma.
Collapse
|
62
|
Westermann B. Mitochondrial inheritance in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:1039-46. [PMID: 24183694 DOI: 10.1016/j.bbabio.2013.10.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/08/2013] [Accepted: 10/22/2013] [Indexed: 11/25/2022]
Abstract
Mitochondria are the site of oxidative phosphorylation, play a key role in cellular energy metabolism, and are critical for cell survival and proliferation. The propagation of mitochondria during cell division depends on replication and partitioning of mitochondrial DNA, cytoskeleton-dependent mitochondrial transport, intracellular positioning of the organelle, and activities coordinating these processes. Budding yeast Saccharomyces cerevisiae has proven to be a valuable model organism to study the mechanisms that drive segregation of the mitochondrial genome and determine mitochondrial partitioning and behavior in an asymmetrically dividing cell. Here, I review past and recent advances that identified key components and cellular pathways contributing to mitochondrial inheritance in yeast. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Guest Editors: Manuela Pereira and Miguel Teixeira.
Collapse
|
63
|
Park E, Nebenführ A. Myosin XIK of Arabidopsis thaliana accumulates at the root hair tip and is required for fast root hair growth. PLoS One 2013; 8:e76745. [PMID: 24116145 PMCID: PMC3792037 DOI: 10.1371/journal.pone.0076745] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 08/28/2013] [Indexed: 11/19/2022] Open
Abstract
Myosin motor proteins are thought to carry out important functions in the establishment and maintenance of cell polarity by moving cellular components such as organelles, vesicles, or protein complexes along the actin cytoskeleton. In Arabidopsis thaliana, disruption of the myosin XIK gene leads to reduced elongation of the highly polar root hairs, suggesting that the encoded motor protein is involved in this cell growth. Detailed live-cell observations in this study revealed that xik root hairs elongated more slowly and stopped growth sooner than those in wild type. Overall cellular organization including the actin cytoskeleton appeared normal, but actin filament dynamics were reduced in the mutant. Accumulation of RabA4b-containing vesicles, on the other hand, was not significantly different from wild type. A functional YFP-XIK fusion protein that could complement the mutant phenotype accumulated at the tip of growing root hairs in an actin-dependent manner. The distribution of YFP-XIK at the tip, however, did not match that of the ER or several tip-enriched markers including CFP-RabA4b. We conclude that the myosin XIK is required for normal actin dynamics and plays a role in the subapical region of growing root hairs to facilitate optimal growth.
Collapse
Affiliation(s)
- Eunsook Park
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Andreas Nebenführ
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
64
|
Brandizzi F, Barlowe C. Organization of the ER-Golgi interface for membrane traffic control. Nat Rev Mol Cell Biol 2013; 14:382-92. [PMID: 23698585 DOI: 10.1038/nrm3588] [Citation(s) in RCA: 363] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Coat protein complex I (COPI) and COPII are required for bidirectional membrane trafficking between the endoplasmic reticulum (ER) and the Golgi. While these core coat machineries and other transport factors are highly conserved across species, high-resolution imaging studies indicate that the organization of the ER-Golgi interface is varied in eukaryotic cells. Regulation of COPII assembly, in some cases to manage distinct cellular cargo, is emerging as one important component in determining this structure. Comparison of the ER-Golgi interface across different systems, particularly mammalian and plant cells, reveals fundamental elements and distinct organization of this interface. A better understanding of how these interfaces are regulated to meet varying cellular secretory demands should provide key insights into the mechanisms that control efficient trafficking of proteins and lipids through the secretory pathway.
Collapse
Affiliation(s)
- Federica Brandizzi
- DOE Plant Research Laboratory and Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
65
|
Ung N, Brown MQ, Hicks GR, Raikhel NV. An approach to quantify endomembrane dynamics in pollen utilizing bioactive chemicals. MOLECULAR PLANT 2013; 6:1202-13. [PMID: 23118478 PMCID: PMC7105205 DOI: 10.1093/mp/sss092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/05/2012] [Indexed: 05/03/2023]
Abstract
Tip growth of pollen tubes and root hairs occurs via rapid polar growth. These rapidly elongating cells require tip-focused endomembrane trafficking for the deposition and recycling of proteins, membranes, and cell wall materials. Most of the image-based data published to date are subjective and non-quantified. Quantitative and comparative descriptors of these highly dynamic processes have been a major challenge, but are highly desirable for genetic and chemical genomics approaches to dissect this biological network. To address this problem, we screened for small molecules that perturbed the localization of a marker for the Golgi Ras-like monomeric G-protein RAB2:GFP expressed in transgenic tobacco pollen. Semi-automated high-throughput imaging and image analysis resulted in the identification of novel compounds that altered pollen tube development and endomembrane trafficking. Six compounds that caused mislocalization and varying degrees of altered movement of RAB2:GFP-labeled endomembrane bodies were used to generate a training set of image data from which to quantify vesicle dynamics. The area, velocity, straightness, and intensity of each body were quantified using semi-automated image analysis tools revealing quantitative differences in the phenotype caused by each compound. A score was then given to each compound enabling quantitative comparisons between compounds. Our results demonstrate that image analysis can be used to quantitatively evaluate dynamic subcellular endomembrane phenotypes induced by bioactive chemicals, mutations, or other perturbing agents as part of a strategy to quantitatively dissect the endomembrane network.
Collapse
Affiliation(s)
- Nolan Ung
- Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
66
|
Sattarzadeh A, Schmelzer E, Hanson MR. Arabidopsis myosin XI sub-domains homologous to the yeast myo2p organelle inheritance sub-domain target subcellular structures in plant cells. FRONTIERS IN PLANT SCIENCE 2013; 4:407. [PMID: 24187546 PMCID: PMC3807578 DOI: 10.3389/fpls.2013.00407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/26/2013] [Indexed: 05/20/2023]
Abstract
Myosin XI motor proteins transport plant organelles on the actin cytoskeleton. The Arabidopsis gene family that encodes myosin XI has 13 members, 12 of which have sub-domains within the tail region that are homologous to well-characterized cargo-binding domains in the yeast myosin V myo2p. Little is presently known about the cargo-binding domains of plant myosin XIs. Prior experiments in which most or all of the tail regions of myosin XIs have been fused to yellow fluorescent protein (YFP) and transiently expressed have often not resulted in fluorescent labeling of plant organelles. We identified 42 amino-acid regions within 12 Arabidopsis myosin XIs that are homologous to the yeast myo2p tail region known to be essential for vacuole and mitochondrial inheritance. A YFP fusion of the yeast region expressed in plants did not label tonoplasts or mitochondria. We investigated whether the homologous Arabidopsis regions, termed by us the "PAL" sub-domain, could associate with subcellular structures following transient expression of fusions with YFP in Nicotiana benthamiana. Seven YFP::PAL sub-domain fusions decorated Golgi and six were localized to mitochondria. In general, the myosin XI PAL sub-domains labeled organelles whose motility had previously been observed to be affected by mutagenesis or dominant negative assays with the respective myosins. Simultaneous transient expression of the PAL sub-domains of myosin XI-H, XI-I, and XI-K resulted in inhibition of movement of mitochondria and Golgi.
Collapse
Affiliation(s)
- Amirali Sattarzadeh
- Department of Molecular Biology and Genetics, Cornell UniversityIthaca, NY, USA
- Central Microscopy, Max-Planck-Institute for Plant Breeding ResearchCologne, Germany
| | - Elmon Schmelzer
- Central Microscopy, Max-Planck-Institute for Plant Breeding ResearchCologne, Germany
- *Correspondence: Elmon Schmelzer, Central Microscopy Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany e-mail:
| | - Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell UniversityIthaca, NY, USA
| |
Collapse
|
67
|
Lee H, Sparkes I, Gattolin S, Dzimitrowicz N, Roberts LM, Hawes C, Frigerio L. An Arabidopsis reticulon and the atlastin homologue RHD3-like2 act together in shaping the tubular endoplasmic reticulum. THE NEW PHYTOLOGIST 2013; 197:481-489. [PMID: 23163512 DOI: 10.1111/nph.12038] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 10/05/2012] [Indexed: 05/07/2023]
Abstract
The endoplasmic reticulum (ER) is a network of membrane sheets and tubules connected via three-way junctions. A family of proteins, the reticulons, are responsible for shaping the tubular ER. Reticulons interact with other tubule-forming proteins (Dp1 and Yop1p) and the GTPase atlastin. The Arabidopsis homologue of Dp1/Yop1p is HVA22. We show here that a seed-specific isoform of HVA22 labels the ER in tobacco (Nicotiana tabacum) cells but its overexpression does not alter ER morphology. The closest plant homologue of atlastin is RHD3. We show that RHD3-like 2 (RL2), the seed-specific isoform of RHD3, locates to the ER without affecting its shape or Golgi mobility. Expression of RL2-bearing mutations within its GTPase domain induces the formation of large ER strands, suggesting that a functional GTPase domain is important for the formation of three-way junctions. Coexpression of the reticulon RTNLB13 with RL2 resulted in a dramatic alteration of the ER network. This alteration did not depend on an active GTPase domain but required a functional reticulon, as no effect on ER morphology was seen when RL2 was coexpressed with a nonfunctional RTNLB13. RL2 and its GTPase mutants coimmunoprecipitate with RTNLB13. These results indicate that RL2 and RTNLB13 act together in modulating ER morphology.
Collapse
Affiliation(s)
- Hannah Lee
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Imogen Sparkes
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Stefano Gattolin
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Lynne M Roberts
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Chris Hawes
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Lorenzo Frigerio
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
68
|
Peremyslov VV, Klocko AL, Fowler JE, Dolja VV. Arabidopsis Myosin XI-K Localizes to the Motile Endomembrane Vesicles Associated with F-actin. FRONTIERS IN PLANT SCIENCE 2012; 3:184. [PMID: 22969781 PMCID: PMC3432474 DOI: 10.3389/fpls.2012.00184] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 07/28/2012] [Indexed: 05/18/2023]
Abstract
Plant myosins XI were implicated in cell growth, F-actin organization, and organelle transport, with myosin XI-K being a critical contributor to each of these processes. However, subcellular localization of myosins and the identity of their principal cargoes remain poorly understood. Here, we generated a functionally competent, fluorescent protein-tagged, myosin XI-K, and investigated its spatial distribution within Arabidopsis cells. This myosin was found to associate primarily not with larger organelles (e.g., Golgi) as was broadly assumed, but with endomembrane vesicles trafficking along F-actin. Subcellular localization and fractionation experiments indicated that the nature of myosin-associated vesicles is organ- and cell type-specific. In leaves, a large proportion of these vesicles aligned and co-fractionated with a motile endoplasmic reticulum (ER) subdomain. In roots, non-ER vesicles were a dominant myosin cargo. Myosin XI-K showed a striking polar localization at the tips of growing, but not mature, root hairs. These results strongly suggest that a major mechanism whereby myosins contribute to plant cell physiology is vesicle transport, and that this activity can be regulated depending on the growth phase of a cell.
Collapse
Affiliation(s)
- Valera V. Peremyslov
- Department of Botany and Plant Pathology, Center for Genome Research and Biocomputing, Oregon State UniversityCorvallis, OR, USA
| | - Amy L. Klocko
- Department of Botany and Plant Pathology, Center for Genome Research and Biocomputing, Oregon State UniversityCorvallis, OR, USA
| | - John E. Fowler
- Department of Botany and Plant Pathology, Center for Genome Research and Biocomputing, Oregon State UniversityCorvallis, OR, USA
| | - Valerian V. Dolja
- Department of Botany and Plant Pathology, Center for Genome Research and Biocomputing, Oregon State UniversityCorvallis, OR, USA
| |
Collapse
|
69
|
|
70
|
Thomas C. Bundling actin filaments from membranes: some novel players. FRONTIERS IN PLANT SCIENCE 2012; 3:188. [PMID: 22936939 PMCID: PMC3426786 DOI: 10.3389/fpls.2012.00188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/01/2012] [Indexed: 05/04/2023]
Abstract
Progress in live-cell imaging of the cytoskeleton has significantly extended our knowledge about the organization and dynamics of actin filaments near the plasma membrane of plant cells. Noticeably, two populations of filamentous structures can be distinguished. On the one hand, fine actin filaments which exhibit an extremely dynamic behavior basically characterized by fast polymerization and prolific severing events, a process referred to as actin stochastic dynamics. On the other hand, thick actin bundles which are composed of several filaments and which are comparatively more stable although they constantly remodel as well. There is evidence that the actin cytoskeleton plays critical roles in trafficking and signaling at both the cell cortex and organelle periphery but the exact contribution of actin bundles remains unclear. A common view is that actin bundles provide the long-distance tracks used by myosin motors to deliver their cargo to growing regions and accordingly play a particularly important role in cell polarization. However, several studies support that actin bundles are more than simple passive highways and display multiple and dynamic roles in the regulation of many processes, such as cell elongation, polar auxin transport, stomatal and chloroplast movement, and defense against pathogens. The list of identified plant actin-bundling proteins is ever expanding, supporting that plant cells shape structurally and functionally different actin bundles. Here I review the most recently characterized actin-bundling proteins, with a particular focus on those potentially relevant to membrane trafficking and/or signaling.
Collapse
Affiliation(s)
- Clément Thomas
- Laboratory of Molecular and Cellular Oncology, Department of Oncology, Public Research Centre for Health (CRP-Santé)Luxembourg, Luxembourg
| |
Collapse
|
71
|
Wang G, Wang F, Wang G, Wang F, Zhang X, Zhong M, Zhang J, Lin D, Tang Y, Xu Z, Song R. Opaque1 encodes a myosin XI motor protein that is required for endoplasmic reticulum motility and protein body formation in maize endosperm. THE PLANT CELL 2012; 24:3447-62. [PMID: 22892319 PMCID: PMC3462643 DOI: 10.1105/tpc.112.101360] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/06/2012] [Accepted: 07/30/2012] [Indexed: 05/18/2023]
Abstract
Myosins are encoded by multigene families and are involved in many basic biological processes. However, their functions in plants remain poorly understood. Here, we report the functional characterization of maize (Zea mays) opaque1 (o1), which encodes a myosin XI protein. o1 is a classic maize seed mutant with an opaque endosperm phenotype but a normal zein protein content. Compared with the wild type, o1 endosperm cells display dilated endoplasmic reticulum (ER) structures and an increased number of smaller, misshapen protein bodies. The O1 gene was isolated by map-based cloning and was shown to encode a member of the plant myosin XI family (myosin XI-I). In endosperm cells, the O1 protein is associated with rough ER and protein bodies. Overexpression of the O1 tail domain (the C-terminal 644 amino acids) significantly inhibited ER streaming in tobacco (Nicotiana benthamiana) cells. Yeast two-hybrid analysis suggested an association between O1 and the ER through a heat shock protein 70-interacting protein. In summary, this study indicated that O1 influences protein body biogenesis by affecting ER morphology and motility, ultimately affecting endosperm texture.
Collapse
Affiliation(s)
- Guifeng Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, People’s Republic of China
| | - Fang Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, People’s Republic of China
| | - Gang Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, People’s Republic of China
| | - Fei Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, People’s Republic of China
| | - Xiaowei Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, People’s Republic of China
| | - Mingyu Zhong
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, People’s Republic of China
| | - Jin Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, People’s Republic of China
| | - Dianbin Lin
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, People’s Republic of China
| | - Yuanping Tang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, People’s Republic of China
| | - Zhengkai Xu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, People’s Republic of China
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, People’s Republic of China
| |
Collapse
|
72
|
Ojangu EL, Tanner K, Pata P, Järve K, Holweg CL, Truve E, Paves H. Myosins XI-K, XI-1, and XI-2 are required for development of pavement cells, trichomes, and stigmatic papillae in Arabidopsis. BMC PLANT BIOLOGY 2012; 12:81. [PMID: 22672737 PMCID: PMC3424107 DOI: 10.1186/1471-2229-12-81] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 05/28/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND The positioning and dynamics of vesicles and organelles, and thus the growth of plant cells, is mediated by the acto-myosin system. In Arabidopsis there are 13 class XI myosins which mediate vesicle and organelle transport in different cell types. So far the involvement of five class XI myosins in cell expansion during the shoot and root development has been shown, three of which, XI-1, XI-2, and XI-K, are essential for organelle transport. RESULTS Simultaneous depletion of Arabidopsis class XI myosins XI-K, XI-1, and XI-2 in double and triple mutant plants affected the growth of several types of epidermal cells. The size and shape of trichomes, leaf pavement cells and the elongation of the stigmatic papillae of double and triple mutant plants were affected to different extent. Reduced cell size led to significant size reduction of shoot organs in the case of triple mutant, affecting bolt formation, flowering time and fertility. Phenotype analysis revealed that the reduced fertility of triple mutant plants was caused by delayed or insufficient development of pistils. CONCLUSIONS We conclude that the class XI myosins XI-K, XI-1 and XI-2 have partially redundant roles in the growth of shoot epidermis. Myosin XI-K plays more important role whereas myosins XI-1 and XI-2 have minor roles in the determination of size and shape of epidermal cells, because the absence of these two myosins is compensated by XI-K. Co-operation between myosins XI-K and XI-2 appears to play an important role in these processes.
Collapse
Affiliation(s)
- Eve-Ly Ojangu
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Krista Tanner
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Pille Pata
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Kristel Järve
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Carola L Holweg
- Nachhaltigkeits-Projekte, Alte Str. 13, 79249, Merzhausen, Germany
| | - Erkki Truve
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Heiti Paves
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| |
Collapse
|
73
|
Furt F, Lemoi K, Tüzel E, Vidali L. Quantitative analysis of organelle distribution and dynamics in Physcomitrella patens protonemal cells. BMC PLANT BIOLOGY 2012; 12:70. [PMID: 22594499 PMCID: PMC3476433 DOI: 10.1186/1471-2229-12-70] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 05/17/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND In the last decade, the moss Physcomitrella patens has emerged as a powerful plant model system, amenable for genetic manipulations not possible in any other plant. This moss is particularly well suited for plant polarized cell growth studies, as in its protonemal phase, expansion is restricted to the tip of its cells. Based on pollen tube and root hair studies, it is well known that tip growth requires active secretion and high polarization of the cellular components. However, such information is still missing in Physcomitrella patens. To gain insight into the mechanisms underlying the participation of organelle organization in tip growth, it is essential to determine the distribution and the dynamics of the organelles in moss cells. RESULTS We used fluorescent protein fusions to visualize and track Golgi dictyosomes, mitochondria, and peroxisomes in live protonemal cells. We also visualized and tracked chloroplasts based on chlorophyll auto-fluorescence. We showed that in protonemata all four organelles are distributed in a gradient from the tip of the apical cell to the base of the sub-apical cell. For example, the density of Golgi dictyosomes is 4.7 and 3.4 times higher at the tip than at the base in caulonemata and chloronemata respectively. While Golgi stacks are concentrated at the extreme tip of the caulonemata, chloroplasts and peroxisomes are totally excluded. Interestingly, caulonemata, which grow faster than chloronemata, also contain significantly more Golgi dictyosomes and fewer chloroplasts than chloronemata. Moreover, the motility analysis revealed that organelles in protonemata move with low persistency and average instantaneous speeds ranging from 29 to 75 nm/s, which are at least three orders of magnitude slower than those of pollen tube or root hair organelles. CONCLUSIONS To our knowledge, this study reports the first quantitative analysis of organelles in Physcomitrella patens and will make possible comparisons of the distribution and dynamics of organelles from different tip growing plant cells, thus enhancing our understanding of the mechanisms of plant polarized cell growth.
Collapse
Affiliation(s)
- Fabienne Furt
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Kyle Lemoi
- Department of Physics, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Erkan Tüzel
- Department of Physics, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Luis Vidali
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| |
Collapse
|
74
|
Sparkes I, Brandizzi F. Fluorescent protein-based technologies: shedding new light on the plant endomembrane system. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:96-107. [PMID: 22449045 DOI: 10.1111/j.1365-313x.2011.04884.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Without doubt, GFP and spectral derivatives have revolutionized the way biologists approach their journey toward the discovery of how plant cells function. It is fascinating that in its early days GFP was used merely for localization studies, but as time progressed researchers successfully explored new avenues to push the power of GFP technology to reach new and exciting research frontiers. This has had a profound impact on the way we can now study complex and dynamic systems such as plant endomembranes. Here we briefly describe some of the approaches where GFP has revolutionized in vivo studies of protein distribution and dynamics and focus on two emerging approaches for the application of GFP technology in plant endomembranes, namely optical tweezers and forward genetics approaches, which are based either on the light or on genetic manipulation of secretory organelles to gain insights on the factors that control their activities and integrity.
Collapse
Affiliation(s)
- Imogen Sparkes
- Biosciences,College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter, UK
| | | |
Collapse
|
75
|
Avisar D, Abu-Abied M, Belausov E, Sadot E. Myosin XIK is a major player in cytoplasm dynamics and is regulated by two amino acids in its tail. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:241-9. [PMID: 21914656 PMCID: PMC3245463 DOI: 10.1093/jxb/err265] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/22/2011] [Accepted: 08/02/2011] [Indexed: 05/18/2023]
Abstract
It has recently been found that among the 17 Arabidopsis myosins, six (XIC, XIE, XIK, XI-I, MYA1, and MYA2) have a major role in the motility of Golgi bodies and mitochondria in Nicotiana benthamiana and Nicotiana tabacum. Here, the same dominant negative tail fragments were also found to arrest the movement of Gogi bodies when transiently expressed in Arabidopsis plants. However, when a Golgi marker was transiently expressed in plants knocked out in these myosins, its movement was dramatically inhibited only in the xik mutant. In addition, a tail fragment of myosin XIK could inhibit the movement of several post-Golgi organelles, such as the trans-Golgi network, pre-vacuolar compartment, and endosomes, as well as total cytoplasmic streaming, suggesting that myosin XIK is a major player in cytoplasm kinetics. However, no co-localization of myosin tails with the arrested organelles was observed. Several deletion truncations of the myosin XIK tail were generated to corroborate function with localization. All deletion mutants possessing an inhibitory effect on organelle movement exhibited a diffuse cytoplasmic distribution. Point mutations in the tail of myosin XIK revealed that Arg1368 and Arg1443 are essential for its activity. These residues correspond to Lys1706 and Lys1779 from mouse myosin Va, which mediate the inhibitory head-tail interaction in this myosin. Therefore, such an interaction might underlie the dominant negative effect of truncated plant myosin tails and explain the mislocalization with target organelles.
Collapse
Affiliation(s)
| | | | | | - Einat Sadot
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
76
|
Tominaga M, Nakano A. Plant-Specific Myosin XI, a Molecular Perspective. FRONTIERS IN PLANT SCIENCE 2012; 3:211. [PMID: 22973289 PMCID: PMC3437519 DOI: 10.3389/fpls.2012.00211] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 08/21/2012] [Indexed: 05/04/2023]
Abstract
In eukaryotic cells, organelle movement, positioning, and communications are critical for maintaining cellular functions and are highly regulated by intracellular trafficking. Directional movement of motor proteins along the cytoskeleton is one of the key regulators of such trafficking. Most plants have developed a unique actin-myosin system for intracellular trafficking. Although the composition of myosin motors in angiosperms is limited to plant-specific myosin classes VIII and XI, there are large families of myosins, especially in class XI, suggesting functional diversification among class XI members. However, the molecular properties and regulation of each myosin XI member remains unclear. To achieve a better understanding of the plant-specific actin-myosin system, the characterization of myosin XI members at the molecular level is essential. In the first half of this review, we summarize the molecular properties of tobacco 175-kDa myosin XI, and in the later half, we focus on myosin XI members in Arabidopsis thaliana. Through detailed comparison of the functional domains of these myosins with the functional domain of myosin V, we look for possible diversification in enzymatic and mechanical properties among myosin XI members concomitant with their regulation.
Collapse
Affiliation(s)
- Motoki Tominaga
- Molecular Membrane Biology Laboratory, RIKEN Advanced Science InstituteWako, Saitama, Japan
- Japan Science and Technology Agency, PRESTOKawaguchi, Saitama, Japan
- *Correspondence: Motoki Tominaga, Molecular Membrane Biology Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. e-mail:
| | - Akihiko Nakano
- Molecular Membrane Biology Laboratory, RIKEN Advanced Science InstituteWako, Saitama, Japan
- Department of Biological Sciences, Graduate School of Science, University of TokyoBunkyo-ku, Tokyo, Japan
| |
Collapse
|
77
|
Sparkes I, Hawes C, Frigerio L. FrontiERs: movers and shapers of the higher plant cortical endoplasmic reticulum. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:658-65. [PMID: 21831697 DOI: 10.1016/j.pbi.2011.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/01/2011] [Accepted: 07/13/2011] [Indexed: 05/21/2023]
Abstract
The endoplasmic reticulum (ER) in higher plants performs many important functions, yet our understanding of how its intricate network shape and dynamics relate to function is very limited. Recent work has begun to unpick key molecular players in the generation of the pleomorphic, highly dynamic ER network structure that pervades the entire cytoplasm. ER movement is acto-myosin dependent. ER shape is dependent on RHD3 (Root Hair Defective 3) and a family of proteins called reticulons. The major challenge that lies ahead is understanding how factors that control ER shape and movement are regulated and how this relates to the numerous functions of the ER.
Collapse
Affiliation(s)
- Imogen Sparkes
- School of Life Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | | | | |
Collapse
|
78
|
Akkerman M, Overdijk EJR, Schel JHN, Emons AMC, Ketelaar T. Golgi body motility in the plant cell cortex correlates with actin cytoskeleton organization. PLANT & CELL PHYSIOLOGY 2011; 52:1844-55. [PMID: 21893513 DOI: 10.1093/pcp/pcr122] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The actin cytoskeleton is involved in the transport and positioning of Golgi bodies, but the actin-based processes that determine the positioning and motility behavior of Golgi bodies are not well understood. In this work, we have studied the relationship between Golgi body motility behavior and actin organization in intercalary growing root epidermal cells during different developmental stages. We show that in these cells two distinct actin configurations are present, depending on the developmental stage. In small cells of the early root elongation zone, fine filamentous actin (F-actin) occupies the whole cell, including the cortex. In larger cells in the late elongation zone that have almost completed cell elongation, actin filament bundles are interspersed with areas containing this fine F-actin and areas without F-actin. Golgi bodies in areas with the fine F-actin exhibit a non-directional, wiggling type of motility. Golgi bodies in areas containing actin filament bundles move up to 7 μm s⁻¹. Since the motility of Golgi bodies changes when they enter an area with a different actin configuration, we conclude that the type of movement depends on the actin organization and not on the individual organelle. Our results show that the positioning of Golgi bodies depends on the local actin organization.
Collapse
Affiliation(s)
- Miriam Akkerman
- Laboratory of Plant Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
79
|
Sparkes I. Recent advances in understanding plant myosin function: life in the fast lane. MOLECULAR PLANT 2011; 4:805-812. [PMID: 21772028 DOI: 10.1093/mp/ssr063] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Plant myosins are required for organelle movement, and a role in actin organization has recently come to light. Myosin mutants display several gross morphological phenotypes, the most severe being dwarfism and reduced fecundity, and there is a correlation between reduced organelle movement and morphological defects. This review aims to discuss recent findings in plants relating to the role of myosins in actin dynamics, development, and organelle movement, more specifically the endoplasmic reticulum (ER). One overarching theme is that there still appear to be more questions than answers relating to plant myosin function and regulation.
Collapse
Affiliation(s)
- Imogen Sparkes
- School of Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|
80
|
Madison SL, Nebenführ A. Live-cell imaging of dual-labeled Golgi stacks in tobacco BY-2 cells reveals similar behaviors for different cisternae during movement and brefeldin A treatment. MOLECULAR PLANT 2011; 4:896-908. [PMID: 21873295 DOI: 10.1093/mp/ssr067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In plant cells, the Golgi apparatus consists of numerous stacks that, in turn, are composed of several flattened cisternae with a clear cis-to-trans polarity. During normal functioning within living cells, this unusual organelle displays a wide range of dynamic behaviors such as whole stack motility, constant membrane flux through the cisternae, and Golgi enzyme recycling through the ER. In order to further investigate various aspects of Golgi stack dynamics and integrity, we co-expressed pairs of established Golgi markers in tobacco BY-2 cells to distinguish sub-compartments of the Golgi during monensin treatments, movement, and brefeldin A (BFA)-induced disassembly. A combination of cis and trans markers revealed that Golgi stacks remain intact as they move through the cytoplasm. The Golgi stack orientation during these movements showed a slight preference for the cis side moving ahead, but trans cisternae were also found at the leading edge. During BFA treatments, the different sub-compartments of about half of the observed stacks fused with the ER sequentially; however, no consistent order could be detected. In contrast, the ionophore monensin resulted in swelling of trans cisternae while medial and particularly cis cisternae were mostly unaffected. Our results thus demonstrate a remarkable equivalence of the different cisternae with respect to movement and BFA-induced fusion with the ER. In addition, we propose that a combination of dual-label fluorescence microscopy and drug treatments can provide a simple alternative approach to the determination of protein localization to specific Golgi sub-compartments.
Collapse
Affiliation(s)
- Stephanie L Madison
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840, USA
| | | |
Collapse
|
81
|
Wu SZ, Ritchie JA, Pan AH, Quatrano RS, Bezanilla M. Myosin VIII regulates protonemal patterning and developmental timing in the moss Physcomitrella patens. MOLECULAR PLANT 2011; 4:909-21. [PMID: 21873296 DOI: 10.1093/mp/ssr068] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plants have two classes of myosins. While recent work has focused on class XI myosins showing that myosin XI is responsible for organelle motility and cytoplasmic streaming, much less is known about the role of myosin VIII in plant growth and development. We have used a combination of RNAi and insertional knockouts to probe myosin VIII function in the moss Physcomitrella patens. We isolated Δmyo8ABCDE plants demonstrating that myosin VIII is not required for plant viability. However, myosin VIII mutants are smaller than wild-type plants in part due to a defect in cell size. Additionally, Δmyo8ABCDE plants produce more side branches and form gametophores much earlier than wild-type plants. In the absence of nutrient media, Δmyo8ABCDE plants exhibit significant protonemal patterning defects, including highly curved protonemal filaments, morphologically defective side branches, as well as an increase in the number of branches. Exogenous auxin partially rescues protonemal defects in Δmyo8ABCDE plants grown in the absence of nutrients. This result, together with defects in protonemal branching, smaller caulonemal cells, and accelerated development in the Δmyo8ABCDE plants, suggests that myosin VIII is involved in hormone homeostasis in P. patens.
Collapse
Affiliation(s)
- Shu-Zon Wu
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | |
Collapse
|
82
|
Förtsch J, Hummel E, Krist M, Westermann B. The myosin-related motor protein Myo2 is an essential mediator of bud-directed mitochondrial movement in yeast. ACTA ACUST UNITED AC 2011; 194:473-88. [PMID: 21807878 PMCID: PMC3153652 DOI: 10.1083/jcb.201012088] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The myosin-related motor protein Myo2 collaborates with the rab-GTPase Ypt11 to traffic mitochondria to the yeast bud during cell division. The inheritance of mitochondria in yeast depends on bud-directed transport along actin filaments. It is a matter of debate whether anterograde mitochondrial movement is mediated by the myosin-related motor protein Myo2 or by motor-independent mechanisms. We show that mutations in the Myo2 cargo binding domain impair entry of mitochondria into the bud and are synthetically lethal with deletion of the YPT11 gene encoding a rab-type guanosine triphosphatase. Mitochondrial distribution defects and synthetic lethality were rescued by a mitochondria-specific Myo2 variant that carries a mitochondrial outer membrane anchor. Furthermore, immunoelectron microscopy revealed Myo2 on isolated mitochondria. Thus, Myo2 is an essential and direct mediator of bud-directed mitochondrial movement in yeast. Accumulating genetic evidence suggests that maintenance of mitochondrial morphology, Ypt11, and retention of mitochondria in the bud contribute to Myo2-dependent inheritance of mitochondria.
Collapse
|
83
|
Zhang Z, Friedman H, Meir S, Belausov E, Philosoph-Hadas S. Actomyosin mediates gravisensing and early transduction events in reoriented cut snapdragon spikes. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1176-83. [PMID: 21388706 DOI: 10.1016/j.jplph.2011.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/11/2011] [Accepted: 01/11/2011] [Indexed: 05/08/2023]
Abstract
We investigated the involvement of the actomyosin network in the early events of the gravitropic response of cut snapdragon (Antirrhinum majus L.) spikes. The effects of the actin-modulating drug, cytochalasin D (CD) and/or the myosin inhibitor, 2,3-butanedione-2-monoxime (BDM) on amyloplast displacement, lateral auxin transport and consequently on stem bending were examined. The inhibitory effect on cytoskeleton integrity was studied by using indirect immunofluorescence double-labeling of actin and myosin. Our results demonstrate that no organizational changes in actin filaments occurred in cortical and endodermal cells of the stem bending zone during reorientation. These results suggest that actin depolymerization is not required for amyloplast sedimentation. Unlike the chloroplasts in the cortex, the amyloplasts in the endodermis were surrounded by actin and myosin, indicating that amyloplasts may be attached to the actin filaments via the motor protein, myosin. This suggests the involvement of myosin as part of the actomyosin complex in amyloplast movement in vertical as well as in reoriented stems. This suggestion was supported by the findings showing that: (a) BDM or CD disrupted the normal organization of actin either by altering characteristic distribution patterns of myosin-like protein in the cortex (BDM), or by causing actin fragmentation (CD); (b) both compounds inhibited the gravity-induced amyloplast displacement in the endodermis. Additionally, these compounds also inhibited lateral auxin transport across the stem and stem gravitropic bending. Our study suggests that during stem reorientation amyloplasts possibly remain attached to the actin filaments, using myosin as a motor protein. Thus, gravisensing and early transduction events in the gravitropic response of snapdragon spikes, manifested by amyloplast displacement and lateral auxin transport, are mediated by the actomyosin complex.
Collapse
Affiliation(s)
- Zhaoqi Zhang
- Department of Postharvest Science of Fresh Produce, ARO, The Volcani Center, P.O. Box 6, Bet-Dagan 50250, Israel
| | | | | | | | | |
Collapse
|
84
|
Zhao Y, Zhao S, Mao T, Qu X, Cao W, Zhang L, Zhang W, He L, Li S, Ren S, Zhao J, Zhu G, Huang S, Ye K, Yuan M, Guo Y. The plant-specific actin binding protein SCAB1 stabilizes actin filaments and regulates stomatal movement in Arabidopsis. THE PLANT CELL 2011; 23:2314-30. [PMID: 21719691 PMCID: PMC3160031 DOI: 10.1105/tpc.111.086546] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 05/28/2011] [Accepted: 06/10/2011] [Indexed: 05/18/2023]
Abstract
Microfilament dynamics play a critical role in regulating stomatal movement; however, the molecular mechanism underlying this process is not well understood. We report here the identification and characterization of STOMATAL CLOSURE-RELATED ACTIN BINDING PROTEIN1 (SCAB1), an Arabidopsis thaliana actin binding protein. Plants lacking SCAB1 were hypersensitive to drought stress and exhibited reduced abscisic acid-, H(2)O(2)-, and CaCl(2)-regulated stomatal movement. In vitro and in vivo analyses revealed that SCAB1 binds, stabilizes, and bundles actin filaments. SCAB1 shares sequence similarity only with plant proteins and contains a previously undiscovered actin binding domain. During stomatal closure, actin filaments switched from a radial orientation in open stomata to a longitudinal orientation in closed stomata. This switch took longer in scab1 plants than in wild-type plants and was correlated with the delay in stomatal closure seen in scab1 mutants in response to drought stress. Our results suggest that SCAB1 is required for the precise regulation of actin filament reorganization during stomatal closure.
Collapse
Affiliation(s)
- Yang Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Shuangshuang Zhao
- Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan 250014, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaolu Qu
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wanhong Cao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Li Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Wei Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Liu He
- National Institute of Biological Sciences, Beijing 102206, China
| | - Sidi Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Sulin Ren
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jinfeng Zhao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Guoli Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shanjin Huang
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Keqiong Ye
- National Institute of Biological Sciences, Beijing 102206, China
| | - Ming Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Address correspondence to
| |
Collapse
|
85
|
Wang P, Hummel E, Osterrieder A, Meyer AJ, Frigerio L, Sparkes I, Hawes C. KMS1 and KMS2, two plant endoplasmic reticulum proteins involved in the early secretory pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:613-28. [PMID: 21294794 DOI: 10.1111/j.1365-313x.2011.04522.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We have identified two endoplasmic reticulum (ER)-associated Arabidopsis proteins, KMS1 and KMS2, which are conserved among most species. Fluorescent protein fusions of KMS1 localised to the ER in plant cells, and over-expression induced the formation of a membrane structure, identified as ER whorls by electron microscopy. Hydrophobicity analysis suggested that KMS1 and KMS2 are integral membrane proteins bearing six transmembrane domains. Membrane protein topology was assessed by a redox-based topology assay (ReTA) with redox-sensitive GFP and confirmed by a protease protection assay. A major loop domain between transmembrane domains 2 and 3, plus the N- and C-termini were found on the cytosolic side of the ER. A C-terminal di(tri)-lysine motif is involved in retrieval of KMS1 and deletion led to a reduction of the GFP-KMS1 signal in the ER. Over-expression of KMS1/KMS2 truncations perturbed ER and Golgi morphology and similar effects were also seen when KMS1/KMS2 were knocked-down by RNA interference. Microscopy and biochemical experiments suggested that expression of KMS1/KMS2 truncations inhibited ER to Golgi protein transport.
Collapse
Affiliation(s)
- Pengwei Wang
- School of Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK
| | | | | | | | | | | | | |
Collapse
|
86
|
Martinière A, Gayral P, Hawes C, Runions J. Building bridges: formin1 of Arabidopsis forms a connection between the cell wall and the actin cytoskeleton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:354-65. [PMID: 21241388 DOI: 10.1111/j.1365-313x.2011.04497.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Actin microfilament (MF) organization and remodelling is critical to cell function. The formin family of actin binding proteins are involved in nucleating MFs in Arabidopsis thaliana. They all contain formin homology domains in the intracellular, C-terminal half of the protein that interacts with MFs. Formins in class I are usually targeted to the plasma membrane and this is true of Formin1 (AtFH1) of A. thaliana. In this study, we have investigated the extracellular domain of AtFH1 and we demonstrate that AtFH1 forms a bridge from the actin cytoskeleton, across the plasma membrane and is anchored within the cell wall. AtFH1 has a large, extracellular domain that is maintained by purifying selection and that contains four conserved regions, one of which is responsible for immobilising the protein. Protein anchoring within the cell wall is reduced in constructs that express truncations of the extracellular domain and in experiments in protoplasts without primary cell walls. The 18 amino acid proline-rich extracellular domain that is responsible for AtFH1 anchoring has homology with cell-wall extensins. We also have shown that anchoring of AtFH1 in the cell wall promotes actin bundling within the cell and that overexpression of AtFH1 has an inhibitory effect on organelle actin-dependant dynamics. Thus, the AtFH1 bridge provides stable anchor points for the actin cytoskeleton and is probably a crucial component of the signalling response and actin-remodelling mechanisms.
Collapse
Affiliation(s)
- Alexandre Martinière
- Department of Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX30BP, UK
| | | | | | | |
Collapse
|
87
|
Peremyslov VV, Mockler TC, Filichkin SA, Fox SE, Jaiswal P, Makarova KS, Koonin EV, Dolja VV. Expression, splicing, and evolution of the myosin gene family in plants. PLANT PHYSIOLOGY 2011; 155:1191-204. [PMID: 21233331 PMCID: PMC3046578 DOI: 10.1104/pp.110.170720] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plants possess two myosin classes, VIII and XI. The myosins XI are implicated in organelle transport, filamentous actin organization, and cell and plant growth. Due to the large size of myosin gene families, knowledge of these molecular motors remains patchy. Using deep transcriptome sequencing and bioinformatics, we systematically investigated myosin genes in two model plants, Arabidopsis (Arabidopsis thaliana) and Brachypodium (Brachypodium distachyon). We improved myosin gene models and found that myosin genes undergo alternative splicing. We experimentally validated the gene models for Arabidopsis myosin XI-K, which plays the principal role in cell interior dynamics, as well as for its Brachypodium ortholog. We showed that the Arabidopsis gene dubbed HDK (for headless derivative of myosin XI-K), which emerged through a partial duplication of the XI-K gene, is developmentally regulated. A gene with similar architecture was also found in Brachypodium. Our analyses revealed two predominant patterns of myosin gene expression, namely pollen/stamen-specific and ubiquitous expression throughout the plant. We also found that several myosins XI can be rhythmically expressed. Phylogenetic reconstructions indicate that the last common ancestor of the angiosperms possessed two myosins VIII and five myosins XI, many of which underwent additional lineage-specific duplications.
Collapse
|
88
|
Sattarzadeh A, Schmelzer E, Hanson MR. Analysis of Organelle Targeting by DIL Domains of the Arabidopsis Myosin XI Family. FRONTIERS IN PLANT SCIENCE 2011; 2:72. [PMID: 22645548 PMCID: PMC3355782 DOI: 10.3389/fpls.2011.00072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/16/2011] [Indexed: 05/07/2023]
Abstract
The Arabidopsis thaliana genome encodes 13 myosin XI motor proteins. Previous insertional mutant analysis has implicated substantial redundancy of function of plant myosin XIs in transport of intracellular organelles. Considerable information is available about the interaction of cargo with the myosin XI-homologous yeast myosin V protein myo2p. We identified a region in each of 12 myosin XI sequences that correspond to the yeast myo2p secretory-vesicle binding domain (the "DIL" domain). Structural modeling of the myosin DIL domain region of plant myosin XIs revealed significant similarity to the yeast myo2p and myo4p DIL domains. Transient expression of YFP fusions with the Arabidopsis myosin XI DIL domain resulted in fluorescent labeling of a variety of organelles, including the endoplasmic reticulum, peroxisomes, Golgi, and nuclear envelope. With the exception of the YFP::MYA1 DIL fusion, expression of the DIL-YFP fusions resulted in loss of motility of labeled organelles, consistent with a dominant-negative effect. Certain fusions resulted in localization to the cytoplasm, plasma membrane, or to unidentified vesicles. The same YFP-domain fusion sometimes labeled more than one organelle. Expression of a YFP fusion to a yeast myo2p DIL domain resulted in labeling of plant peroxisomes. Fusions with some of the myosin XI domains resulted in labeling of known cargoes of the particular myosin XI; however, certain myosin XI YFP fusions labeled organelles that had not previously been found to be detectably affected by mutations nor by expression of dominant-negative constructs.
Collapse
Affiliation(s)
- Amirali Sattarzadeh
- Central Microscopy, Max-Planck-Institute for Plant Breeding ResearchCologne, Germany
- Department of Molecular Biology and Genetics, Cornell UniversityIthaca, NY, USA
| | - Elmon Schmelzer
- Central Microscopy, Max-Planck-Institute for Plant Breeding ResearchCologne, Germany
| | - Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell UniversityIthaca, NY, USA
- *Correspondence: Maureen R. Hanson, Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building, Ithaca, NY 14853, USA. e-mail:
| |
Collapse
|
89
|
Hawes C, Osterrieder A, Sparkes IA, Ketelaar T. Optical tweezers for the micromanipulation of plant cytoplasm and organelles. CURRENT OPINION IN PLANT BIOLOGY 2010; 13:731-735. [PMID: 21093352 DOI: 10.1016/j.pbi.2010.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 09/23/2010] [Accepted: 10/22/2010] [Indexed: 05/30/2023]
Abstract
Laser trapping of micron-sized particles can be achieved utilizing the radiation pressure generated by a focused infrared laser beam. Thus, it is theoretically possible to trap and manipulate organelles within the cytoplasm and remodel the architecture of the cytoplasm and membrane systems. Here we describe recent progress, using this under utilized technology, in the manipulation of cytoplasmic strands and organelles in plant cells.
Collapse
Affiliation(s)
- Chris Hawes
- School of Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
| | | | | | | |
Collapse
|
90
|
Suetsugu N, Dolja VV, Wada M. Why have chloroplasts developed a unique motility system? PLANT SIGNALING & BEHAVIOR 2010; 5:1190-6. [PMID: 20855973 PMCID: PMC3115347 DOI: 10.4161/psb.5.10.12802] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 06/22/2010] [Indexed: 05/17/2023]
Abstract
Organelle movement in plants is dependent on actin filaments with most of the organelles being transported along the actin cables by class XI myosins. Although chloroplast movement is also actin filament-dependent, a potential role of myosin motors in this process is poorly understood. Interestingly, chloroplasts can move in any direction, and change the direction within short time periods, suggesting that chloroplasts use the newly formed actin filaments rather than preexisting actin cables. Furthermore, the data on myosin gene knockouts and knockdowns in Arabidopsis and tobacco do not support myosins' XI role in chloroplast movement. Our recent studies revealed that chloroplast movement and positioning are mediated by the short actin filaments localized at chloroplast periphery (cp-actin filaments) rather than cytoplasmic actin cables. The accumulation of cp-actin filaments depends on kinesin-like proteins, KAC1 and KAC2, as well as on a chloroplast outer membrane protein CHUP1. We propose that plants evolved a myosin XI-independent mechanism of the actin-based chloroplast movement that is distinct from the mechanism used by other organelles.
Collapse
Affiliation(s)
- Noriyuki Suetsugu
- Department of Biology; Faculty of Sciences; Kyushu University; Fukuoka, Japan
| | - Valerian V Dolja
- Department of Botany and Plant Pathology; Center for Genome Research and Biocomputing; Oregon State University; Corvallis, OR USA
| | - Masamitsu Wada
- Department of Biology; Faculty of Sciences; Kyushu University; Fukuoka, Japan
| |
Collapse
|
91
|
Abstract
Organelle movement in plants cells is extremely dynamic. Movement is driven by the acto-myosin system. Higher plant myosins fall into two classes: classes XI and VIII. Localization studies have highlighted that myosins are present throughout the cytosol, label motile puncta and decorate the nuclear envelope and plasma membrane. Functional studies through expression of dominant-negative myosin variants, RNAi (RNA interference) and T-DNA insertional analysis have shown that class XI myosins are required for organelle movement. Intriguingly, organelle movement is also linked to Arabidopsis growth and development. The present review tackles current findings relating to plant organelle movement and the role of myosins.
Collapse
|
92
|
Abstract
Mitochondria are involved in many fundamental processes underpinning plant growth, development and death. Owing to their multiple roles, as the sites of the tricarboxylic acid cycle and oxidative phosphorylation, as harbourers of their own genomes and as sensors of cell redox status, amongst others, mitochondria are in a unique position to act as sentinels of cell physiology. The plant chondriome is typically organized as a population of physically discrete organelles, but visualization of mitochondria in living tissues has shown that the mitochondrial population is highly interactive. Mitochondria are highly motile and movement on the cytoskeleton ensures that the physically discrete organelles come into contact with one another, which allows transient fusion, followed by division of the mitochondrial membranes. This article serves to review our current knowledge of mitochondrial fusion and division, and link this to recent discoveries regarding a putative mitochondrial 'health-check' and repair process, whereby non-repairable dysfunctional mitochondria can be removed from the chondriome. It is proposed that the unequal distribution of the multipartite plant mitochondrial genome between discrete organelles provides the driver for transient mitochondrial fusion that, in turn, is dependent on mitochondrial motility, and that both fusion and motility are necessary to maintain a healthy functional chondriome.
Collapse
|
93
|
Vidali L, Burkart GM, Augustine RC, Kerdavid E, Tüzel E, Bezanilla M. Myosin XI is essential for tip growth in Physcomitrella patens. THE PLANT CELL 2010; 22:1868-82. [PMID: 20525854 PMCID: PMC2910981 DOI: 10.1105/tpc.109.073288] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 03/29/2010] [Accepted: 05/14/2010] [Indexed: 05/18/2023]
Abstract
Class XI myosins are plant specific and responsible for cytoplasmic streaming. Because of the large number of myosin XI genes in angiosperms, it has been difficult to determine their precise role, particularly with respect to tip growth. The moss Physcomitrella patens provides an ideal system to study myosin XI function. P. patens has only two myosin XI genes, and these genes encode proteins that are 94% identical to each other. To determine their role in tip growth, we used RNA interference to specifically silence each myosin XI gene using 5' untranslated region sequences. We discovered that the two myosin XI genes are functionally redundant, since silencing of either gene does not affect growth or polarity. However, simultaneous silencing of both myosin XIs results in severely stunted plants composed of small rounded cells. Although similar to the phenotype resulting from silencing of other actin-associated proteins, we show that this phenotype is not due to altered actin dynamics. Consistent with a role in tip growth, we show that a functional, full-length fusion of monomeric enhanced green fluorescent protein (mEGFP) to myosin XI accumulates at a subcortical, apical region of actively growing protonemal cells.
Collapse
Affiliation(s)
- Luis Vidali
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA.
| | | | | | | | | | | |
Collapse
|
94
|
Peremyslov VV, Prokhnevsky AI, Dolja VV. Class XI myosins are required for development, cell expansion, and F-Actin organization in Arabidopsis. THE PLANT CELL 2010; 22:1883-97. [PMID: 20581304 PMCID: PMC2910955 DOI: 10.1105/tpc.110.076315] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 05/26/2010] [Accepted: 06/10/2010] [Indexed: 05/18/2023]
Abstract
The actomyosin system is conserved throughout eukaryotes. Although F-actin is essential for cell growth and plant development, roles of the associated myosins are poorly understood. Using multiple gene knockouts in Arabidopsis thaliana, we investigated functional profiles of five class XI myosins, XI-K, XI-1, XI-2, XI-B, and XI-I. Plants lacking three myosins XI showed stunted growth and delayed flowering, whereas elimination of four myosins further exacerbated these defects. Loss of myosins led to decreased leaf cell expansion, with the most severe defects observed in the larger leaf cells. Root hair length in myosin-deficient plants was reduced approximately 10-fold, with quadruple knockouts showing morphological abnormalities. It was also found that trafficking of Golgi and peroxisomes was entirely myosin dependent. Surprisingly, myosins were required for proper organization of F-actin and the associated endoplasmic reticulum networks, revealing a novel, architectural function of the class XI myosins. These results establish critical roles of myosin-driven transport and F-actin organization during polarized and diffuse cell growth and indicate that myosins are key factors in plant growth and development.
Collapse
|
95
|
Probing cytoplasmic organization and the actin cytoskeleton of plant cells with optical tweezers. Biochem Soc Trans 2010; 38:823-8. [DOI: 10.1042/bst0380823] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In interphase plant cells, the actin cytoskeleton is essential for intracellular transport and organization. To fully understand how the actin cytoskeleton functions as the structural basis for cytoplasmic organization, both molecular and physical aspects of the actin organization have to be considered. In the present review, we discuss literature that gives an insight into how cytoplasmic organization is achieved and in which actin-binding proteins have been identified that play a role in this process. We discuss how physical properties of the actin cytoskeleton in the cytoplasm of live plant cells, such as deformability and elasticity, can be probed by using optical tweezers. This technique allows non-invasive manipulation of cytoplasmic organization. Optical tweezers, integrated in a confocal microscope, can be used to manipulate cytoplasmic organization while studying actin dynamics. By combining this with mutant studies and drug applications, insight can be obtained about how the physical properties of the actin cytoskeleton, and thus the cytoplasmic organization, are influenced by different cellular processes.
Collapse
|
96
|
Verchot-Lubicz J, Goldstein RE. Cytoplasmic streaming enables the distribution of molecules and vesicles in large plant cells. PROTOPLASMA 2010; 240:99-107. [PMID: 19937356 DOI: 10.1007/s00709-009-0088-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 11/02/2009] [Indexed: 05/19/2023]
Abstract
Recent studies of aquatic and land plants show that similar phenomena determine intracellular transport of organelles and vesicles. This suggests that aspects of cell signaling involved in development and response to external stimuli are conserved across species. The movement of molecular motors along cytoskeletal filaments directly or indirectly entrains the fluid cytosol, driving cyclosis (i.e., cytoplasmic streaming) and affecting gradients of molecular species within the cell, with potentially important metabolic implications as a driving force for cell expansion. Research has shown that myosin XI functions in organelle movement driving cytoplasmic streaming in aquatic and land plants. Despite the conserved cytoskeletal machinery propelling organelle movement among aquatic and land plants, the velocities of cyclosis in plant cells varies according to cell types, developmental stage of the cell, and plant species. Here, we synthesize recent insights into cytoplasmic streaming, molecular gradients, cytoskeletal and membrane dynamics, and expand current cellular models to identify important gaps in current research.
Collapse
Affiliation(s)
- Jeanmarie Verchot-Lubicz
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA.
| | | |
Collapse
|
97
|
Staiger CJ, Poulter NS, Henty JL, Franklin-Tong VE, Blanchoin L. Regulation of actin dynamics by actin-binding proteins in pollen. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1969-86. [PMID: 20159884 DOI: 10.1093/jxb/erq012] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A dynamic network of polymers, the actin cytoskeleton, co-ordinates numerous fundamental cellular processes. In pollen tubes, organelle movements and cytoplasmic streaming, organization of the tip zone, vesicle trafficking, and tip growth have all been linked to actin-based function. Further, during the self-incompatibility response of Papaver rhoeas, destruction of the cytoskeleton is a primary target implicated in the rapid cessation of pollen tube growth and alterations in actin dynamics are associated with the initiation of programmed cell death. Surprisingly, these diverse cellular processes are accomplished with only a small amount of filamentous actin and a huge pool of polymerizable monomers. These observations hint at incredibly fast and complex actin dynamics in pollen. To understand the molecular mechanisms regulating actin dynamics in plant cells, the abundant actin monomer-binding proteins, a major filament nucleator, a family of bundling and severing proteins, and a modulator of growth at the barbed-end of actin filaments have been characterized biochemically. The activities of these proteins are generally consistent with textbook models for actin turnover. For example, the three monomer-binding proteins, profilin, ADF, and CAP, are thought to function synergistically to enhance turnover and the exchange of subunits between monomer and polymer pools. How individual actin filaments behave in living cells, however, remains largely unexplored. Actin dynamics were examined using variable angle epifluorescence microscopy (VAEM) in expanding hypocotyl epidermal cells. Our observations of single filament behaviour are not consistent with filament turnover by treadmilling, but rather represent a novel property called stochastic dynamics. A new model for the dynamic control of actin filament turnover in plant cells is presented.
Collapse
Affiliation(s)
- Christopher J Staiger
- Department of Biological Sciences and Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907-2064, USA.
| | | | | | | | | |
Collapse
|
98
|
Myosin-dependent endoplasmic reticulum motility and F-actin organization in plant cells. Proc Natl Acad Sci U S A 2010; 107:6894-9. [PMID: 20351265 DOI: 10.1073/pnas.0911482107] [Citation(s) in RCA: 247] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plants exhibit an ultimate case of the intracellular motility involving rapid organelle trafficking and continuous streaming of the endoplasmic reticulum (ER). Although it was long assumed that the ER dynamics is actomyosin-driven, the responsible myosins were not identified, and the ER streaming was not characterized quantitatively. Here we developed software to generate a detailed velocity-distribution map for the GFP-labeled ER. This map revealed that the ER in the most peripheral plane was relatively static, whereas the ER in the inner plane was rapidly streaming with the velocities of up to approximately 3.5 microm/sec. Similar patterns were observed when the cytosolic GFP was used to evaluate the cytoplasmic streaming. Using gene knockouts, we demonstrate that the ER dynamics is driven primarily by the ER-associated myosin XI-K, a member of a plant-specific myosin class XI. Furthermore, we show that the myosin XI deficiency affects organization of the ER network and orientation of the actin filament bundles. Collectively, our findings suggest a model whereby dynamic three-way interactions between ER, F-actin, and myosins determine the architecture and movement patterns of the ER strands, and cause cytosol hauling traditionally defined as cytoplasmic streaming.
Collapse
|
99
|
Crowell EF, Gonneau M, Vernhettes S, Höfte H. Regulation of anisotropic cell expansion in higher plants. C R Biol 2010; 333:320-4. [PMID: 20371106 DOI: 10.1016/j.crvi.2010.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Plant growth and development depend on anisotropic cell expansion. Cell wall yielding provides the driving force for cell expansion, and is regulated in part by the oriented deposition of cellulose microfibrils around the cell. Our current understanding of anisotropic cell expansion combines hypotheses generated by more than 50 years of research. Here, we discuss the evolving views of researchers in the field of cellulose synthesis, and highlight several unresolved questions. Recent results using live-cell imaging have illustrated novel roles for cortical microtubules in cellulose synthesis, and further research using these approaches promises to reveal exciting links between the cytoskeleton, intracellular trafficking, and anisotropic growth.
Collapse
Affiliation(s)
- Elizabeth Faris Crowell
- Institut Jean-Pierre Bourgin, INRA Centre de Versailles-Grignon, UMR 1318 INRA-AgroParisTech, route de Saint-Cyr (RD10), Versailles cedex, France
| | | | | | | |
Collapse
|
100
|
Zheng M, Wang Q, Teng Y, Wang X, Wang F, Chen T, Samaj J, Lin J, Logan DC. The speed of mitochondrial movement is regulated by the cytoskeleton and myosin in Picea wilsonii pollen tubes. PLANTA 2010; 231:779-91. [PMID: 20033230 DOI: 10.1007/s00425-009-1086-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 12/04/2009] [Indexed: 05/23/2023]
Abstract
Strategic control of mitochondrial movements and cellular distribution is essential for correct cell function and survival. However, despite being a vital process, mitochondrial movement in plant cells is a poorly documented phenomenon. To investigate the roles of actin filaments and microtubules on mitochondrial movements, Picea wilsonii pollen tubes were treated with two microtubule-disrupting drugs, two actin-disrupting drugs and a myosin inhibitor. Following these treatments, mitochondrial movements were characterized by multiangle evanescent wave microscopy and laser-scanning confocal microscopy. The results showed that individual mitochondria underwent three classes of linear movement: high-speed movement (instantaneous velocities >5.0 microm/s), low-speed movement (instantaneous velocities <5.0 microm/s) and variable-speed movement (instantaneous velocities ranging from 0.16 to 10.35 microm/s). 10 nM latrunculin B induced fragmentation of actin filaments and completely inhibited mitochondrial vectorial movement. Jasplakinolide treatment induced a 28% reduction in chondriome motility, and dramatically inhibition of high-speed and variable-speed movements. Treatment with 2,3-butanedione 2-monoxime caused a 61% reduction of chondriome motility, and the complete inhibition of high-speed and low-speed movements. In contrast to actin-disrupting drugs, microtubule-disrupting drugs caused mild effects on mitochondrial movement. Taxol increased the speed of mitochondrial movement in cortical cytoplasm. Oryzalin induced curved mitochondrial trajectories with similar velocities as in the control pollen tubes. These results suggest that mitochondrial movement at low speeds in pollen tubes is driven by myosin, while high-speed and variable-speed movements are powered both by actin filament dynamics and myosin. In addition, microtubule dynamics has profound effects on mitochondrial velocity, trajectory and positioning via its role in directing the arrangement of actin filaments.
Collapse
Affiliation(s)
- Maozhong Zheng
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, 100093, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|