51
|
VanderWeide J, Tombesi S, Castellarin SD, Sabbatini P. Canopy architecture and fruit microclimate, not ripening-related phytohormones, control phenylpropanoid accumulation in response to early leaf removal in 'Merlot' (Vitis vinifera L.) grapevines. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:291-302. [PMID: 33157421 DOI: 10.1016/j.plaphy.2020.10.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Early leaf removal (ELR) applied in the grapevine cluster zone at bloom or pre-bloom (PB) is a vineyard practice commonly utilized to reduce fruit disease and yield. In addition, the literature reports that ELR enhances fruit quality, however, little research has deciphered the potential factors regulating this response. In this work, the objective was to understand whether the increase in fruit quality in response to manual or mechanical leaf removal is due to changes in fruit-zone microclimate, vine physiology, or ripening/stress related hormone biosynthesis. In 'Merlot' (Vitis vinifera L.) vines, 60% of leaf area was removed from shoots in three ways: 1) manual removal of 5 leaves (PB-MA), 2) mechanical removal (PB-ME), and 3) simulated mechanical removal (PB-SIM), which was implemented by removing the distal portion of leaves on the first eight nodes to understand whether PB-ME improves fruit quality via enhanced microclimate conditions or plant stress. Yield was reduced in PB-ME and PB-SIM, while total soluble solids was not different at harvest; meaning that ELR decreased the partitioning of carbohydrates to fruit. Anthocyanins and flavonols were enhanced by PB-ME, however neither ABA nor ethylene were similarly altered. Instead, the leaf area at nodes above the fruit-zone was lower in PB-ME compared to non-defoliated ones, which increased post-veraison fruit temperature (+2.8 °C). These parameters correlated with anthocyanins at harvest. In conclusion, skin phenylpropanoid concentrations were influenced by canopy density above the fruit-zone. Additionally, ripening-related phytohormones were not involved in the response of phenylpropanoid biosynthesis in vine subjected to ELR.
Collapse
Affiliation(s)
- Joshua VanderWeide
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Sergio Tombesi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 20122, Piacenza, Italy
| | - Simone D Castellarin
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Paolo Sabbatini
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
52
|
Tao R, Yu W, Gao Y, Ni J, Yin L, Zhang X, Li H, Wang D, Bai S, Teng Y. Light-Induced Basic/Helix-Loop-Helix64 Enhances Anthocyanin Biosynthesis and Undergoes CONSTITUTIVELY PHOTOMORPHOGENIC1-Mediated Degradation in Pear. PLANT PHYSIOLOGY 2020; 184:1684-1701. [PMID: 33093233 PMCID: PMC7723087 DOI: 10.1104/pp.20.01188] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/14/2020] [Indexed: 05/12/2023]
Abstract
Light is indispensable for the anthocyanin accumulation of red pear (Pyrus pyrifolia). Anthocyanin biosynthesis is catalyzed by a series of enzymes encoded by structural genes, which are regulated by a MYB-basic/helix-loop-helix-WD repeat (MYB-bHLH-WDR [MBW]) complex. The bHLH proteins of subgroup (SG) IIIf are believed to be involved in the regulation of anthocyanin accumulation. In this study, we revealed that pear PpbHLH64, which belongs to SGIIIb, positively regulates anthocyanin biosynthesis and is regulated by light at the transcriptional and posttranslational levels. Specifically, an exposure to light induced PpbHLH64 expression and anthocyanin accumulation in pear fruit and calli. Under light conditions, pear calli overexpressing PpbHLH64 exhibited enhanced red coloration, whereas the anthocyanin accumulation decreased in the PpbHLH64-RNA interference calli. Additionally, the transient overexpression of PpbHLH64 in pear fruit peel increased anthocyanin accumulation, whereas the virus-induced gene silencing of PpbHLH64 had the opposite effect. Further analyses indicated that PpbHLH64 is a transcriptional activator that directly binds to the promoter of UDP-GLUCOSE:FLAVONOID 3-O-GLYCOSYLTRANFERASE to upregulate expression. Moreover, PpbHLH64 interacted with PpMYB10, but not with PpMYB114, to form an MBW complex that significantly induces the accumulation of anthocyanins. Furthermore, PpbHLH64 was targeted by CONSTITUTIVE PHOTOMORPHOGENIC1 in darkness for subsequent degradation by the 26S proteasome. A genetic analysis indicated that PpbHLH64 functions downstream of B-BOX18, a component of the light signal transduction pathway. However, we were unable to detect the direct interaction between PpbHLH64 and PpBBX18. The characterization of PpbHLH64 in this study highlights the importance of SGIIIb bHLH proteins for light-induced anthocyanin accumulation.
Collapse
Affiliation(s)
- Ruiyan Tao
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, Zhejiang 310058, People's Republic of China
- Key Laboratory of Horticultural Plant Growth, Development, and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Wenjie Yu
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, Zhejiang 310058, People's Republic of China
- Key Laboratory of Horticultural Plant Growth, Development, and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yuhao Gao
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, Zhejiang 310058, People's Republic of China
- Key Laboratory of Horticultural Plant Growth, Development, and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Junbei Ni
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, Zhejiang 310058, People's Republic of China
- Key Laboratory of Horticultural Plant Growth, Development, and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Lei Yin
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, Zhejiang 310058, People's Republic of China
- Key Laboratory of Horticultural Plant Growth, Development, and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Xiao Zhang
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, Zhejiang 310058, People's Republic of China
- Key Laboratory of Horticultural Plant Growth, Development, and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Hongxu Li
- Institute of Fruit and Floriculture Research, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, People's Republic of China
| | - Dongsheng Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, People's Republic of China
| | - Songling Bai
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, Zhejiang 310058, People's Republic of China
- Key Laboratory of Horticultural Plant Growth, Development, and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yuanwen Teng
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, Zhejiang 310058, People's Republic of China
- Key Laboratory of Horticultural Plant Growth, Development, and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
53
|
Zhu T, Wang X, Xu Z, Xu J, Li R, Liu N, Ding G, Sui S. Screening of key genes responsible for Pennisetum setaceum 'Rubrum' leaf color using transcriptome sequencing. PLoS One 2020; 15:e0242618. [PMID: 33227025 PMCID: PMC7682885 DOI: 10.1371/journal.pone.0242618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/05/2020] [Indexed: 11/19/2022] Open
Abstract
Pennisetum setaceum 'Rubrum' is an ornamental grass plant that produces purple leaves in high-light environments and light purple or green leaves in low-light environments, the latter of which greatly reduces its aesthetic appeal. Therefore, we aimed to identify the key genes associated with leaf coloration and elucidate the molecular mechanisms involved in the color changes in P. setaceum 'Rubrum' leaves. We performed transcriptome sequencing of P. setaceum 'Rubrum' leaves before and after shading. A total of 19,043 differentially expressed genes were identified, and the numbers of upregulated and downregulated genes at T1 stage, when compared with their expression at the T0 stage, were 10,761 and 8,642, respectively. The possible pathways that determine P. setaceum 'Rubrum' leaf color included flavonoid biosynthesis, flavone and flavonol biosynthesis, and carotenoid biosynthesis. There were 31 differentially expressed genes related to chlorophyll metabolism, of which 21 were related to chlorophyll biosynthesis and 10 to chlorophyll degradation, as well as three transcription factors that may be involved in the regulation of chlorophyll degradation. There were 31 key enzyme genes involved in anthocyanin synthesis and accumulation in P. setaceum 'Rubrum' leaves, with four transcription factors that may be involved in the regulation of anthocyanin metabolism. The transcriptome data were verified and confirmed reliable by real-time fluorescence quantitative PCR analysis. These findings provide a genetic basis for improving leaf color in P. setaceum 'Rubrum.'
Collapse
Affiliation(s)
- Ting Zhu
- College of Arts College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Xia Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Zhimin Xu
- College of Arts College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Xu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Rui Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Ning Liu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Guochang Ding
- College of Arts College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail: (GD); (SS)
| | - Shunzhao Sui
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- * E-mail: (GD); (SS)
| |
Collapse
|
54
|
Jiang X, Shi Y, Fu Z, Li WW, Lai S, Wu Y, Wang Y, Liu Y, Gao L, Xia T. Functional characterization of three flavonol synthase genes from Camellia sinensis: Roles in flavonol accumulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110632. [PMID: 33180711 DOI: 10.1016/j.plantsci.2020.110632] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 05/27/2023]
Abstract
Flavonol derivatives are a group of flavonoids benefiting human health. Their abundant presence in tea is associated with astringent taste. To date, mechanism pertaining to the biosynthesis of flavonols in tea plants remains unknown. In this study, we used bioinformatic analysis mining the tea genome and obtained three cDNAs that were annotated to encode flavonol synthases (FLS). Three cDNAs, namely CsFLSa, b, and c, were heterogenously expressed in E. coli to induce recombinant proteins, which were further used to incubate with three substrates, dihydrokampferol (DHK), dihydroquercetin (DHQ), and dihydromyricetin (DHM). The resulting data showed that three rCsFLSs preferred to catalyze (DHK). Overexpression of each cDNA in tobacco led to the increase of kampferol and the reduction of anthocyanins in flowers. Further metabolic profiling of flavan-3-ols in young tea shoots characterized that kaempferol derivatives were the most abundant, followed by quercetin and then myricetin derivatives. Taken together, these data characterized the key step committed to the biosynthesis of flavonols in tea leaves. Moreover, these data enhance understanding the metabolic accumulation relevance between flavonols and other main flavonoids such as flavan-3-ols in tea leaves.
Collapse
Affiliation(s)
- Xiaolan Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui, China
| | - Yufeng Shi
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui, China
| | - Zhouping Fu
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui, China
| | - Wei-Wei Li
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui, China
| | - Sanyan Lai
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui, China
| | - Yahui Wu
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui, China
| | - Yunsheng Wang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Yajun Liu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, China.
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui, China.
| |
Collapse
|
55
|
Cheng X, Ma T, Wang P, Liang Y, Zhang J, Zhang A, Chen Q, Li W, Ge Q, Sun X, Fang Y. Foliar nitrogen application from veraison to preharvest improved flavonoids, fatty acids and aliphatic volatiles composition in grapes and wines. Food Res Int 2020; 137:109566. [DOI: 10.1016/j.foodres.2020.109566] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 11/28/2022]
|
56
|
Effects of shading on lignin biosynthesis in the leaf of tea plant (Camellia sinensis (L.) O. Kuntze). Mol Genet Genomics 2020; 296:165-177. [PMID: 33112986 DOI: 10.1007/s00438-020-01737-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
Shading can effectively reduce photoinhibition and improve the quality of tea. Lignin is one of the most important secondary metabolites that play vital functions in plant growth and development. However, little is known about the relationship between shading and xylogenesis in tea plant. To investigate the effects of shading on lignin accumulation in tea plants, 'Longjing 43' was treated with no shading (S0), 40% (S1) and 80% (S2) shading treatments, respectively. The leaf area and lignin content of tea plant leaves decreased under shading treatments (especially S2). The anatomical characteristics showed that lignin is mainly distributed in the xylem of tea leaves. Promoter analysis indicated that the genes involved in lignin pathway contain several light recognition elements. The transcript abundances of 12 lignin-associated genes were altered under shading treatments. Correlation analysis indicated that most genes showed strong positive correlation with lignin content, and CsPAL, Cs4CL, CsF5H, and CsLAC exhibited significant positively correlation under 40% and 80% shading treatments. The results showed that shading may have an important effect on lignin accumulation in tea leaves. This work will potentially helpful to understand the regulation mechanism of lignin pathway under shading treatment, and provide reference for reducing lignin content and improving tea quality through shading treatment in field operation.
Collapse
|
57
|
Moriyama A, Nojiri M, Watanabe G, Enoki S, Suzuki S. Exogenous allantoin improves anthocyanin accumulation in grape berry skin at early stage of ripening. JOURNAL OF PLANT PHYSIOLOGY 2020; 253:153253. [PMID: 32828011 DOI: 10.1016/j.jplph.2020.153253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Anthocyanin accumulation in grape berry skin is a crucial determinant of red/black grape berry quality. Recently, viticulture has been hampered by the issue of global warming, which has led to loss of anthocyanin accumulation in berry skin. The objectives of this study were to investigate the effect of allantoin on anthocyanin accumulation in berry skins of field-grown grapevines and to elucidate the molecular mechanism of the allantoin-induced anthocyanin accumulation in the berry skins. Allantoin enhanced anthocyanin accumulation in grape cultured cells and berry skins from field-grown grapevines at the early stage of ripening. MybA1 and UFGT, which encode the key transcription factor and enzyme in anthocyanin biosynthesis, were upregulated in allantoin-treated berry skins. Allantoin seems to increase the contents of delphinidin-based anthocyanin 3-glucosides in berry skins through the upregulation of F3'5'H gene that drives the synthesis of delphinidin-based anthocyanin 3-glucosides, compared with control berry skins. Allantoin increased soluble sugar contents in berries 10 days after treatment and upregulated abscisic acid (ABA)-responsible HT6 gene that encodes a key hexose transporter in sugar accumulation during ripening, in berry skins. These results suggested that physiological changes in allantoin-treated grape berries occurred in an ABA-dependent manner. Allantoin produced bioactive ABA through the β-glucosidase-catalyzed hydrolysis of glucose-conjugated ABA but not through the ABA biosynthesis by NCED, a key enzyme in ABA biosynthesis, in berry skins. Allantoin application in viticulture under global warming conditions is expected to contribute to mitigating loss of red/black berry skin color.
Collapse
Affiliation(s)
- Ayane Moriyama
- The Institute of Enology and Viticulture, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Masutoshi Nojiri
- New Business Development Department, Corporate Research & Business Division, Kaneka Corporation, Japan
| | - Go Watanabe
- New Business Development Department, Corporate Research & Business Division, Kaneka Corporation, Japan
| | - Shinichi Enoki
- The Institute of Enology and Viticulture, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Shunji Suzuki
- The Institute of Enology and Viticulture, University of Yamanashi, Kofu, Yamanashi, Japan.
| |
Collapse
|
58
|
The Effect of Light Intensity on the Expression of Leucoanthocyanidin Reductase in Grapevine Calluses and Analysis of Its Promoter Activity. Genes (Basel) 2020; 11:genes11101156. [PMID: 33007888 PMCID: PMC7600843 DOI: 10.3390/genes11101156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 11/17/2022] Open
Abstract
To investigate the effect of light intensity on flavonoid biosynthesis, grapevine calluses were subjected to high light (HL, 250 μmol m−2 s−1) and dark (0 μmol m−2 s−1) in comparison to 125 μmol m−2 s−1 under controlled conditions (NL). The alteration of flavonoid profiles was determined and was integrated with RNA sequencing (RNA-seq)-based transcriptional changes of the flavonoid pathway genes. Results revealed that dark conditions inhibited flavonoid biosynthesis. Increasing light intensity affected flavonoids differently—the concentrations of flavonols and anthocyanins as well as the expressions of corresponding genes were less affected, whereas flavan-3-ol concentrations were predominantly increased, which caused enhanced trans-flavan-3-ol concentrations. Moreover, genes encoding leucoanthocyanidin reductase (LAR) exhibited different response patterns to light intensity changes—VviLAR1 expression increased with an increased light intensity, whereas VviLAR2 expression was insensitive. We further confirmed that the known transcription factors (TFs) involved in regulating flavan-3-ol biosynthesis utilized VviLAR1 as a target gene in grapevine calluses. In addition, VviLAR1 promoter activity was more sensitive to light intensity changes than that of VviLAR2 as determined using a transgenic Arabidopsis leaf system. These results suggested that light intensity had the most prominent effect on trans-flavan-3-ols in grapevine calluses and demonstrated that the two LAR genes had different response patterns to light intensity changes.
Collapse
|
59
|
Cheng E, Martiniuk JT, Hamilton J, McCarthy G, Castellarin SD, Measday V. Characterization of Sub-Regional Variation in Saccharomyces Populations and Grape Phenolic Composition in Pinot Noir Vineyards of a Canadian Wine Region. Front Genet 2020; 11:908. [PMID: 33110416 PMCID: PMC7489054 DOI: 10.3389/fgene.2020.00908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/22/2020] [Indexed: 01/02/2023] Open
Abstract
Wine is a product of grape juice fermentation by yeast. Terroir is a term that encompasses all environmental factors and interactions at a specific geographical site, resulting in the development of regional-specific microbial strains and grape metabolites. In this study we determine the distribution of vineyard-associated wine yeast strains and characterize the flavonoid profile of Pinot Noir grapes among 3 sub-regions in the Okanagan Valley (OV), a major wine region in British Columbia, Canada. Pinot Noir grape samples were collected from 13 vineyards among 3 sub-regions of the OV, namely Kelowna (KE), Naramata-Penticton (NP) and Oliver-Osoyoos (OO), within a week prior to the winery harvesting date in 2016 and 2017. A total of 156 spontaneous Pinot Noir fermentations were conducted and vineyard-associated Saccharomyces strains were isolated from fermentations that reached two-thirds sugar depletion. Using microsatellite genotyping, we identified 103 Saccharomyces cerevisiae strains and 9 Saccharomyces uvarum strains. We also identified Saccharomyces paradoxus in one vineyard using ITS sequencing. We developed a microsatellite database of 160 commercial S. cerevisiae strains to determine the identity of the isolated strains and we include the database herein. Commercial strains were widely distributed across the three sub-regions. Forty-two of our 103 S. cerevisiae strains were equivalent or highly similar to commercial strains whereas the remaining 61 were considered as ‘unknown’ strains. Two S. uvarum strains were previously isolated in other OV studies and none matched the S. uvarum commercial strain BMV58. S. cerevisiae population structure was driven by sub-region, although S. cerevisiae populations did not differ significantly across vintages. S. uvarum and S. paradoxus were only identified in the 2017 vintage, demonstrating dynamic wine yeast populations between vintages. We found that the flavonoid profile of Pinot Noir grapes from the same 13 vineyards was also affected by sub-regional terroir. The anthocyanin content was lower and the proportion of methoxylated anthocyanins and flavonols was higher in Pinot Noir grapes from OO, the warmer sub-region as compared to KE, the cooler sub-region. Our study demonstrates that both yeast populations and metabolites associated with the Pinot Noir variety have sub-regional variation within a viticultural area.
Collapse
Affiliation(s)
- Elaine Cheng
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Jonathan T Martiniuk
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Jonah Hamilton
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Garrett McCarthy
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada.,Department of Biology, The University of British Columbia, Kelowna, BC, Canada
| | - Simone Diego Castellarin
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Vivien Measday
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
60
|
Di Stefano V, Scandurra S, Pagliaro A, Di Martino V, Melilli MG. Effect of Sunlight Exposure on Anthocyanin and Non-Anthocyanin Phenolic Levels in Pomegranate Juices by High Resolution Mass Spectrometry Approach. Foods 2020; 9:E1161. [PMID: 32842539 PMCID: PMC7555681 DOI: 10.3390/foods9091161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 02/05/2023] Open
Abstract
Quali-quantitative analyses of anthocyanins and non-anthocyanin phenolic compounds performed with the use of liquid chromatography coupled with high resolution mass spectrometry, were evaluated in juice of pomegranate fruits ('Dente di Cavallo'), in relation to different light exposures (North, South, West and East). A total of 16 compounds were identified, including phenolic acids, flavonoids, hydrolysable tannins, and anthocyanins, known for their health-promoting effects. Striking differences were observed about the total phenolic content, which was high in juices from fruits with east- and north-facing position, while it was lower in juices facing south. The greatest contents of total flavonoids and anthocyanins were recorded in fruit juices with southern exposure; however, there are no great differences in the content in phenolic acids. Tannins were mainly synthesized in fruit juices with West exposure. The results showed that the position within the tree had no significant effects on color juice, however, it significantly (p < 0.05) affected data on fruit weight, soluble sugars and juice yield. Remarkable synergies existed among polyphenols and phytochemicals in pomegranate juice, but collecting fruits with different solar exposure could enhance different health benefits, i.e., the juices with higher polyphenols content could have more anticancer effect or those with higher tannins content could have more antimicrobial effect.
Collapse
Affiliation(s)
- Vita Di Stefano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Salvatore Scandurra
- Institute for Agricultural and Forest Systems in the Mediterranean, National Council of Research, Via Empedocle, 58, 95128 Catania, Italy; (S.S.); (V.D.M.)
| | - Antonella Pagliaro
- CREA Research Centre for Cereal and Industrial Crops, 95024 Acireale (Catania), Italy;
| | - Vincenzo Di Martino
- Institute for Agricultural and Forest Systems in the Mediterranean, National Council of Research, Via Empedocle, 58, 95128 Catania, Italy; (S.S.); (V.D.M.)
| | - Maria Grazia Melilli
- Institute for Agricultural and Forest Systems in the Mediterranean, National Council of Research, Via Empedocle, 58, 95128 Catania, Italy; (S.S.); (V.D.M.)
| |
Collapse
|
61
|
Zombardo A, Crosatti C, Bagnaresi P, Bassolino L, Reshef N, Puccioni S, Faccioli P, Tafuri A, Delledonne M, Fait A, Storchi P, Cattivelli L, Mica E. Transcriptomic and biochemical investigations support the role of rootstock-scion interaction in grapevine berry quality. BMC Genomics 2020; 21:468. [PMID: 32641089 PMCID: PMC7341580 DOI: 10.1186/s12864-020-06795-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Background In viticulture, rootstock genotype plays a critical role to improve scion physiology, berry quality and to adapt grapevine (Vitis vinifera L.) to different environmental conditions. This study aimed at investigating the effect of two different rootstocks (1103 Paulsen - P - and Mgt 101–14 - M) in comparison with not grafted plants - NGC - on transcriptome (RNA-seq and small RNA-seq) and chemical composition of berry skin in Pinot noir, and exploring the influence of rootstock-scion interaction on grape quality. Berry samples, collected at veraison and maturity, were investigated at transcriptional and biochemical levels to depict the impact of rootstock on berry maturation. Results RNA- and miRNA-seq analyses highlighted that, at veraison, the transcriptomes of the berry skin are extremely similar, while variations associated with the different rootstocks become evident at maturity, suggesting a greater diversification at transcriptional level towards the end of the ripening process. In the experimental design, resembling standard agronomic growth conditions, the vines grafted on the two different rootstocks do not show a high degree of diversity. In general, the few genes differentially expressed at veraison were linked to photosynthesis, putatively because of a ripening delay in not grafted vines, while at maturity the differentially expressed genes were mainly involved in the synthesis and transport of phenylpropanoids (e.g. flavonoids), cell wall loosening, and stress response. These results were supported by some differences in berry phenolic composition detected between grafted and not grafted plants, in particular in resveratrol derivatives accumulation. Conclusions Transcriptomic and biochemical data demonstrate a stronger impact of 1103 Paulsen rootstock than Mgt 101–14 or not grafted plants on ripening processes related to the secondary metabolite accumulations in berry skin tissue. Interestingly, the MYB14 gene, involved in the feedback regulation of resveratrol biosynthesis was up-regulated in 1103 Paulsen thus supporting a putative greater accumulation of stilbenes in mature berries.
Collapse
Affiliation(s)
- A Zombardo
- CREA Research Centre for Viticulture and Enology, viale Santa Margherita 80, 52100, Arezzo, Italy.,Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, 50144, Florence, Italy
| | - C Crosatti
- CREA Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - P Bagnaresi
- CREA Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - L Bassolino
- CREA Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy.,CREA Research Centre for Cereal and Industrial Crops, via di Corticella 133, 40128, Bologna, Italy
| | - N Reshef
- French Associates institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel.,Present address: Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - S Puccioni
- CREA Research Centre for Viticulture and Enology, viale Santa Margherita 80, 52100, Arezzo, Italy
| | - P Faccioli
- CREA Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - A Tafuri
- CREA Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - M Delledonne
- Department of Biotechnologies, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - A Fait
- French Associates institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - P Storchi
- CREA Research Centre for Viticulture and Enology, viale Santa Margherita 80, 52100, Arezzo, Italy
| | - L Cattivelli
- CREA Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - E Mica
- CREA Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy.
| |
Collapse
|
62
|
Tyagi K, Maoz I, Lewinsohn E, Lerno L, Ebeler SE, Lichter A. Girdling of table grapes at fruit set can divert the phenylpropanoid pathway towards accumulation of proanthocyanidins and change the volatile composition. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110495. [PMID: 32540014 DOI: 10.1016/j.plantsci.2020.110495] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Girdling is an important horticultural practice that allows increased yields or modulated ripening but not much is known how it affects metabolic processes. Trunk girdling was performed at fruit set using a single-blade knife on two table grape cultivar SUPERIOR SEEDLESS® and SABLE SEEDLESS®. Sampling of berries was carried out 1 or 9 weeks after girdling in 2017 from both cultivars and 7 and 9 weeks after girdling of 'Sable' in 2018. As expected, girdling resulted in consistent increase in berry size but total soluble content of mature 'Superior' berries was not affected and in 'Sable' it was slightly reduced in one of the two seasons examined. One week after girdling, abscisic acid and gibberellin content was higher in fruitlets from girdled vines and genes of the phenylpropanoid pathway were induced in both cultivars. Berry color development of 'Sable' measured both by auto-fluorescence and concentration of anthocyanins was reduced upon girdling. In contrast, flavan-3-ol and flavonol content, and total proanthcyanidins (PA) content increased 1.8-fold while the mean degree polymerization of the PA decreased from 26 to 21 upon girdling. Girdling reduced the levels of fatty acid derived volatiles in berries of 'Superior' and 'Sable'. In 'Sable', the total terpene level and the level of volatiles released after acid hydrolysis, decreased upon girdling. Overall, our study indicates that girdling can divert metabolic pathways in a manner that may have significant effect on the taste and flavor of grapes.
Collapse
Affiliation(s)
- Kamal Tyagi
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel; Department of Viticulture and Enology, University of California, Davis, Davis, CA, 95616, USA
| | - Itay Maoz
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Efraim Lewinsohn
- Department of Vegetable Crops, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Larry Lerno
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, 95616, USA; Food Safety and Measurement Facility, University of California, Davis, Davis, CA, 95616, USA
| | - Susan E Ebeler
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, 95616, USA
| | - Amnon Lichter
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel.
| |
Collapse
|
63
|
Torres N, Martínez-Lüscher J, Porte E, Kurtural SK. Optimal Ranges and Thresholds of Grape Berry Solar Radiation for Flavonoid Biosynthesis in Warm Climates. FRONTIERS IN PLANT SCIENCE 2020; 11:931. [PMID: 32714350 PMCID: PMC7344324 DOI: 10.3389/fpls.2020.00931] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/08/2020] [Indexed: 05/29/2023]
Abstract
In commercial wine grape production, canopy management practices are applied to control the source-sink balance and improve the cluster microclimate to enhance berry composition. The aim of this study was to identify the optimal ranges of berry solar radiation exposure (exposure) for upregulation of flavonoid biosynthesis and thresholds for their degradation, to evaluate how canopy management practices such as leaf removal, shoot thinning, and a combination of both affect the grapevine (Vitis vinifera L. cv. Cabernet Sauvignon) yield components, berry composition, and flavonoid profile. Three experiments were conducted in Oakville, CA, USA. First experiment assessed changes in the grape flavonoid content driven by four degrees of exposure. In the second experiment, individual grape berries subjected to different exposures were collected from two cultivars (Cabernet Sauvignon and Petit Verdot). The third experiment consisted of an experiment with three canopy management treatments (i) LR (removal of 5 to 6 basal leaves), (ii) ST (thinned to 24 shoots per vine), and (iii) LRST (a combination of LR and ST) and an untreated control (UNT). Berry composition, flavonoid content and profiles, and 3-isobutyl 2-methoxypyrazine were monitored during berry ripening. Although increasing canopy porosity through canopy management practices can be helpful for other purposes, this may not be the case of flavonoid compounds when a certain proportion of kaempferol was achieved. Our results revealed different sensitivities to degradation within the flavonoid groups, flavonols being the only monitored group that was upregulated by solar radiation. Within different canopy management practices, the main effects were due to the ST. Under environmental conditions given in this trial, ST and LRST hastened fruit maturity; however, a clear improvement of the flavonoid compounds (i.e., greater anthocyanin) was not observed at harvest. Methoxypyrazine berry content decreased with canopy management practices studied. Although some berry traits were improved (i.e. 2.5° Brix increase in berry total soluble solids) due to canopy management practices (ST), this resulted in a four-fold increase in labor operations cost, two-fold decrease in yield with a 10-fold increase in anthocyanin production cost per hectare that should be assessed together.
Collapse
|
64
|
ZHOU SH, GUO RR, WEI RF, LIU JB, YU H, SHI XF, ZHANG Y, XIE TL, CHENG G. Effects of bagging or the combination of umbrella and bag treatments on anthocyanin accumulation in the berry skin of ‘Kyoho’ (Vitis labruscana) Grape. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.41218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Rong-Fu WEI
- Guangxi Academy of Agricultural Sciences, China
| | | | - Huan YU
- Guangxi Academy of Agricultural Sciences, China
| | | | - Ying ZHANG
- Guangxi Academy of Agricultural Sciences, China
| | - Tai-Li XIE
- Guangxi Academy of Agricultural Sciences, China
| | - Guo CHENG
- Guangxi Academy of Agricultural Sciences, China
| |
Collapse
|
65
|
He L, Xu XQ, Wang Y, Chen WK, Sun RZ, Cheng G, Liu B, Chen W, Duan CQ, Wang J, Pan QH. Modulation of volatile compound metabolome and transcriptome in grape berries exposed to sunlight under dry-hot climate. BMC PLANT BIOLOGY 2020; 20:59. [PMID: 32019505 PMCID: PMC7001266 DOI: 10.1186/s12870-020-2268-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Basal leaf removal is widely practiced to increase grape cluster sunlight exposure that controls berry rot and improves quality. Studies on its influence on volatile compounds in grape berries have been performed mostly in Mediterranean or marine climate regions. It is uncertain whether similar efficiency can be achieved when grape berries are grown under continental climate. This study aimed to dissect the variation in volatile compound production and transcriptome in sunlight-exposed grape berries in a dry-hot climate region and to propose the key genes related to the variation. RESULTS Four cluster sunlight exposure strategies, including basal leaf removal at pepper-corn size stage, leaf removal at véraison (LR-V), leaf moving at véraison (LM-V), and half-leaf removal at véraison, were implemented at the north foot of the Mt. Tianshan region of northwestern China. Various cluster exposure treatments resulted in a decline in the concentrations of norisoprenoids and monoterpenes in ripening grape berries. Both β-carotene and lutein, the substrates of norisoprenoid biosynthesis, were reduced by cluster sunlight exposure. K-means cluster analysis showed that some genes involved in biosynthesis such as VviTPS55, VviTPS60, VviTPS66, VviCCD4a and VviCCD4b exhibited lower expression levels in exposed berries at least at one of the tested stages. Two C6-derived esters with fruity attributes, ethyl hexanoate and hexyl acetate, were reduced markedly. In contrast, main C6 alcohol compound levels were elevated in the LR-V- and LM-V-treated grape berries, which corresponded to the up-regulated expression of VviLOXA, VviLOXO and VviADH1 in the oxylipin pathway. Most of the differentially expressed genes in the exposed and control berries were enriched to the "stress response" processes, and this transcriptome difference was accumulated as the berries matured. Besides, LR-V treatment stimulated a significant up-regulation in photosynthesis-related genes in the grape berries, which did not happen with LM-V treatment. CONCLUSIONS Cluster sunlight exposure in dry-hot climate viticulture resulted in different volatile-targeted transcriptomic and metabolic responses from those obtained in the temperate Mediterranean or marine climate region. Therefore, a modified canopy management should be adopted to improve the aroma of grape berries.
Collapse
Affiliation(s)
- Lei He
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Xiao-Qing Xu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yu Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Wei-Kai Chen
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Run-Ze Sun
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China
| | - Guo Cheng
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Bin Liu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wu Chen
- CITIC Guoan Wine Co. Ltd., Manas, Xinjiang, 832200, China
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Jun Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Qiu-Hong Pan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China.
| |
Collapse
|
66
|
Cheng J, Yu K, Shi Y, Wang J, Duan C. Transcription Factor VviMYB86 Oppositely Regulates Proanthocyanidin and Anthocyanin Biosynthesis in Grape Berries. FRONTIERS IN PLANT SCIENCE 2020; 11:613677. [PMID: 33519871 PMCID: PMC7838568 DOI: 10.3389/fpls.2020.613677] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/22/2020] [Indexed: 05/07/2023]
Abstract
Proanthocyanidins (PAs) and anthocyanins are two vital groups of flavonoid compounds for grape berries and red wines. Several transcription factors (TFs) have been identified to be involved in regulating PA and anthocyanin biosynthesis in grape berries. However, research on TFs with different regulatory mechanisms for these two biosynthesis branches in grapes remains limited. In this study, we identified an R2R3-MYB TF, VviMYB86, whose spatiotemporal gene expression pattern in grape berries coincided well with PA accumulation but contrasted with anthocyanin synthesis. Both in vivo and in vitro experiments verified that VviMYB86 positively regulated PA biosynthesis, primarily by upregulating the expression of the two leucoanthocyanidin reductase (LAR) genes in the Arabidopsis protoplast system, as well as in VviMYB86-overexpressing grape callus cultured under 24 h of darkness. Moreover, VviMYB86 was observed to repress the anthocyanin biosynthesis branch in grapes by downregulating the transcript levels of VviANS and VviUFGT. Overall, VviMYB86 is indicated to have a broad effect on flavonoid synthesis in grape berries. The results of this study will help elucidate the regulatory mechanism governing the expression of the two LAR genes in grape berries and provide new insights into the regulation of PA and anthocyanin biosynthesis in grape berries.
Collapse
Affiliation(s)
- Jing Cheng
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Keji Yu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Ying Shi
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jun Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
- *Correspondence: Changqing Duan,
| |
Collapse
|
67
|
Yan Y, Song C, Falginella L, Castellarin SD. Day Temperature Has a Stronger Effect Than Night Temperature on Anthocyanin and Flavonol Accumulation in 'Merlot' ( Vitis vinifera L.) Grapes During Ripening. FRONTIERS IN PLANT SCIENCE 2020; 11:1095. [PMID: 32849680 PMCID: PMC7396706 DOI: 10.3389/fpls.2020.01095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/03/2020] [Indexed: 05/11/2023]
Abstract
Flavonoids impart color and mouthfeel to grapes and wine and are very sensitive to environmental conditions. Growth chamber experiments were performed to investigate the effect of temperature regimes and the differences between day/night temperatures on anthocyanins and flavonols in Merlot grapes. Among the regimes tested, the ones with diurnal 20°C determined the highest levels of anthocyanins and flavonols. Higher diurnal temperatures decreased those levels but increased the proportion of methoxylated and acylated species. When regimes with the same day temperature but different night temperatures were compared, differences between day/night temperatures did not affect anthocyanins, unless a difference of 25°C between day and night temperatures was imposed. When regimes with the same night temperature but different day temperatures were compared, the regime with higher day temperature had a lower anthocyanin level. No relationships were observed between the effects of temperature regimes on anthocyanin level and the expression of key anthocyanin genes. However, the effects on anthocyanin acylation level were consistent with the effects on the acyltransferase expression, and the effects on flavonol level were consistent with the effects on the expression of key flavonol genes. This study indicates that, in Merlot grapes, anthocyanins and flavonols are mostly sensitive to day temperatures.
Collapse
Affiliation(s)
- Yifan Yan
- Wine Research Centre, The University of British Columbia, Vancouver, BC, Canada
| | - Changzheng Song
- Wine Research Centre, The University of British Columbia, Vancouver, BC, Canada
| | | | - Simone D. Castellarin
- Wine Research Centre, The University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Simone D. Castellarin,
| |
Collapse
|
68
|
Sun RZ, Cheng G, Li Q, Zhu YR, Zhang X, Wang Y, He YN, Li SY, He L, Chen W, Pan QH, Duan CQ, Wang J. Comparative physiological, metabolomic, and transcriptomic analyses reveal developmental stage-dependent effects of cluster bagging on phenolic metabolism in Cabernet Sauvignon grape berries. BMC PLANT BIOLOGY 2019; 19:583. [PMID: 31878879 PMCID: PMC6933938 DOI: 10.1186/s12870-019-2186-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/05/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Light conditions significantly influence grape berry ripening and the accumulation of phenolic compounds, but the underlying molecular basis remains partially understood. Here, we applied integrated transcriptomics and pathway-level metabolomics analyses to investigate the effect of cluster bagging during various developmental stages on phenolic metabolism in Cabernet Sauvignon grapes. RESULTS Bagging treatments had limited effects on berry quality attributes at harvest and did not consistently affect phenolic acid biosynthesis between seasons. Significantly elevated flavan-3-ol and flavonol contents were detected in re-exposed berries after bagging during early-developmental stages, while bagging after véraison markedly inhibited skin anthocyanin accumulation. Several anthocyanin derivatives and flavonol glycosides were identified as marker phenolic metabolites for distinguishing bagged and non-bagged grapes. Coordinated transcriptional changes in the light signaling components CRY2 and HY5/HYHs, transcription regulator MYBA1, and enzymes LAR, ANR, UFGT and FLS4, coincided well with light-responsive biosynthesis of the corresponding flavonoids. The activation of multiple hormone signaling pathways after both light exclusion and re-exposure treatments was inconsistent with the changes in phenolic accumulation, indicating a limited role of plant hormones in mediating light/darkness-regulated phenolic biosynthesis processes. Furthermore, gene-gene and gene-metabolite network analyses discovered that the light-responsive expression of genes encoding bHLH, MYB, WRKY, NAC, and MADS-box transcription factors, and proteins involved in genetic information processing and epigenetic regulation such as nucleosome assembly and histone acetylation, showed a high positive correlation with grape berry phenolic accumulation in response to different light regimes. CONCLUSIONS Altogether, our findings provide novel insights into the understanding of berry phenolic biosynthesis under light/darkness and practical guidance for improving grape features.
Collapse
Affiliation(s)
- Run-Ze Sun
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China
| | - Guo Cheng
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Qiang Li
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yan-Rong Zhu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Nongfu Spring Co. Ltd., Hangzhou, 310000, China
| | - Xue Zhang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Ruifeng Oseis (Yantai) Wine Manor Co. Ltd., Yantai, 264010, China
| | - Yu Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Yan-Nan He
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- College of Bioscience & Bioengineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Si-Yu Li
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Lei He
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Wu Chen
- CITIC Guoan Wine Co. Ltd., Xinjiang, 832200, Manasi, China
| | - Qiu-Hong Pan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Jun Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China.
| |
Collapse
|
69
|
Ferreira V, Matus JT, Pinto-Carnide O, Carrasco D, Arroyo-García R, Castro I. Genetic analysis of a white-to-red berry skin color reversion and its transcriptomic and metabolic consequences in grapevine (Vitis vinifera cv. 'Moscatel Galego'). BMC Genomics 2019; 20:952. [PMID: 31815637 PMCID: PMC6902604 DOI: 10.1186/s12864-019-6237-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/29/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Somatic mutations occurring within meristems of vegetative propagation material have had a major role in increasing the genetic diversity of the domesticated grapevine (Vitis vinifera subsp. vinifera). The most well studied somatic variation in this species is the one affecting fruit pigmentation, leading to a plethora of different berry skin colors. Color depletion and reversion are often observed in the field. In this study we analyzed the origin of a novel white-to-red skin color reversion and studied its possible metabolic and transcriptomic consequences on cv. 'Muscat à Petits Grains Blancs' (synonym cv. 'Moscatel Galego Branco'), a member of the large family of Muscats. RESULTS The mild red-skinned variant (cv. 'Muscat à Petits Grains Rouge', synonym cv. 'Moscatel Galego Roxo'), characterized by a preferential accumulation of di-hydroxylated anthocyanins, showed in heterozygosis a partially-excised Gret1 retrotransposon in the promoter region of the MYBA1 anthocyanin regulator, while MYBA2 was still in homozygosis for its non-functional allele. Through metabolic (anthocyanin, resveratrol and piceid quantifications) and transcriptomic (RNA-Seq) analyses, we show that within a near-isogenic background, the transcriptomic consequences of color reversion are largely associated to diminished light/UV-B responses probably as a consequence of the augment of metabolic sunscreens (i.e. anthocyanins). CONCLUSIONS We propose that the reduced activity of the flavonoid tri-hydroxylated sub-branch and decreased anthocyanin synthesis and modification (e.g. methylation and acylation) are the potential causes for the mild red-skinned coloration in the pigmented revertant. The observed positive relation between anthocyanins and stilbenes could be attributable to an increased influx of phenylpropanoid intermediaries due to the replenished activity of MYBA1, an effect yet to be demonstrated in other somatic variants.
Collapse
Affiliation(s)
- Vanessa Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801, Vila Real, Portugal.,Centre for Plant Biotechnology and Genomics (UPM-INIA, CBGP), Campus de Montegancedo. Autovía M40 km38, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - José Tomás Matus
- Institute for Integrative Systems Biology, I2SysBio (Universitat de Valencia - CSIC), 46908, Paterna, Valencia, Spain
| | - Olinda Pinto-Carnide
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801, Vila Real, Portugal
| | - David Carrasco
- Centre for Plant Biotechnology and Genomics (UPM-INIA, CBGP), Campus de Montegancedo. Autovía M40 km38, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Rosa Arroyo-García
- Centre for Plant Biotechnology and Genomics (UPM-INIA, CBGP), Campus de Montegancedo. Autovía M40 km38, 28223 Pozuelo de Alarcón, Madrid, Spain.
| | - Isaura Castro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801, Vila Real, Portugal.
| |
Collapse
|
70
|
Reshef N, Fait A, Agam N. Grape berry position affects the diurnal dynamics of its metabolic profile. PLANT, CELL & ENVIRONMENT 2019; 42:1897-1912. [PMID: 30673142 DOI: 10.1111/pce.13522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/16/2019] [Accepted: 01/20/2019] [Indexed: 05/27/2023]
Abstract
Solar irradiance and air temperature are characterized by dramatic circadian fluctuations and are known to significantly modulate fruit composition. To date, it remains unclear whether the abrupt, yet predictive, diurnal changes in radiation and temperature prompt direct metabolic turn-over in the fruit. We assessed the role of fruit insolation, air temperature, and source-tissue CO2 assimilation in the diurnal compositional changes in ripening grape berries. This was performed by comparing the diurnal changes in metabolite profiles of berries positioned such that they experienced (a) contrasting diurnal solar irradiance patterns, and (b) similar irradiance but contrasting diurnal CO2 assimilation patterns of adjacent leaves. Grape carbon levels increased during the morning and decreased thereafter. Sucrose levels decreased throughout the day and were correlated with air temperature, but not with the diurnal pattern of leaf CO2 assimilation. Tight correlation between sucrose and glucose-6-phosphate indicated the involvement of photorespiration/glycolysis in sucrose depletion. Amino acids, polyamines, and phenylpropanoids fluctuated diurnally, and were highly responsive to the diurnal insolation pattern of the fruit. Our results fill the knowledge gap regarding the circadian pattern of source-sink assimilate-translocation in grapevine. In addition, they suggest that short-term direct solar exposure of the fruit impacts both its diurnal and nocturnal metabolism.
Collapse
Affiliation(s)
- Noam Reshef
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev - Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Aaron Fait
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev - Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Nurit Agam
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev - Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| |
Collapse
|
71
|
Champ CE, Kundu-Champ A. Maximizing Polyphenol Content to Uncork the Relationship Between Wine and Cancer. Front Nutr 2019; 6:44. [PMID: 31114789 PMCID: PMC6502998 DOI: 10.3389/fnut.2019.00044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
Studies have revealed conflicting results regarding the risk of cancer from alcohol consumption. Furthermore, some studies have suggested that wine may have benefits that separate it from other alcoholic beverages. As wine contains a significant amount of chemicals, specifically polyphenols like anthocyanins and proanthocyanidins (PA), that can affect cellular function and promote health, this hypothesis is reasonably supported by recent research. Polyphenols promote several anticancer cellular pathways, including xenobiotic metabolism, support of innate antioxidant production, and stimulation of phase I and II detoxification of carcinogens. However, the multitude of growing and production conditions of grapes, including temperature, water availability, soil type, maceration, and aging can result in a remarkably varying final product based on the available literature. Thus, we hypothesize that wines produced from grapes cultivated between steady daily temperatures at 15–25°C with moderate sun exposure from flowering to harvest, lower vine-water status, resulting either from lower precipitation, and irrigation practices or more permeable soil types, limitation of fertilizers, extended maceration, and aging in oak will impact the concentration of anthocyanins and PA in the finished wine and may have a differential impact on cancer. This higher concentration of polyphenols would, in theory, create a healthier wine, thus explaining the conflicting reports on the benefits or harms of wine.
Collapse
Affiliation(s)
- Colin E. Champ
- Cancer Prevention Project, Pittsburgh, PA, United States
- Department of Radiation Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- *Correspondence: Colin E. Champ
| | | |
Collapse
|
72
|
Fernandes de Oliveira A, Mercenaro L, Azzena M, Nieddu G. Effects of pre and post-veraison water deficit on Vermentino cluster microclimate and berry composition. BIO WEB OF CONFERENCES 2019. [DOI: 10.1051/bioconf/20191304015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The influence of light and thermal microclimate on berry quality of a Vermentino vineyard, managed with deficit irrigation strategies in north-western Sardinia, was analyzed. Two water deficit, pre- (ED) and post-veraison (LD), an irrigation (IC) and a non-irrigation (NC) control treatments were compared during berry development. Grapevine performances were evaluated by analyzing leaf gas exchange, source-sink balance, light and thermal microclimate effects on berry composition. Early and/or late deficit irrigation following a mild to moderate water stress threshold enabled high leaf physiological performances. Though with high stomatal conductance sensitivity to water deficit and anisohydric behavior, this variety exhibited high assimilation rate and quick recovery capacity after enduring moderate and severe water stress. All treatments achieved satisfactory sugar and acidic levels. Berry phenols were higher in LD due to lower canopy coverage and better light conditions compared to IC. Up to mid-ripening, cluster exposure to elevated temperatures negatively influenced phenolic accumulation, mostly in NC and to a lower extent in ED. In the last ripening weeks, total phenols was majorly influenced by light interception.
Collapse
|
73
|
The Role of UV-B light on Small RNA Activity During Grapevine Berry Development. G3-GENES GENOMES GENETICS 2019; 9:769-787. [PMID: 30647106 PMCID: PMC6404619 DOI: 10.1534/g3.118.200805] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
We explored the effects of ultraviolet B radiation (UV-B) on the developmental dynamics of microRNAs and phased small-interfering-RNA (phasi-RNAs)-producing loci by sequencing small RNAs in vegetative and reproductive organs of grapevine (Vitis vinifera L.). In particular, we tested different UV-B conditions in in vitro-grown plantlets (high-fluence exposition) and in berries from field-grown (radiation filtering) and greenhouse-grown (low- and high-fluence expositions) adult plants throughout fruit development and ripening. The functional significance of the observed UV-coordinated miRNA responses was supported by degradome evidences of ARGONAUTE (AGO)-programmed slicing of mRNAs. Co-expression patterns of the up-regulated miRNAs miR156, miR482, miR530, and miR828 with cognate target gene expressions in response to high-fluence UV-B was tested by q-RT-PCR. The observed UV-response relationships were also interrogated against two published UV-stress and developmental transcriptome datasets. Together, the dynamics observed between miRNAs and targets suggest that changes in target abundance are mediated transcriptionally and, in some cases, modulated post-transcriptionally by miRNAs. Despite the major changes in target abundance are being controlled primarily by those developmental effects that are similar between treatments, we show evidence for novel miRNA-regulatory networks in grape. A model is proposed where high-fluence UV-B increases miR168 and miR530 that target ARGONAUTE 1 (AGO1) and a Plus-3 domain mRNA, respectively, while decreasing miR403 that targets AGO2, thereby coordinating post-transcriptional gene silencing activities by different AGOs. Up-regulation of miR3627/4376 could facilitate anthocyanin accumulation by antagonizing a calcium effector, whereas miR395 and miR399, induced by micronutrient deficiencies known to trigger anthocyanin accumulation, respond positively to UV-B radiation. Finally, increases in the abundance of an anthocyanin-regulatory MYB-bHLH-WD40 complex elucidated in Arabidopsis, mediated by UV-B-induced changes in miR156/miR535, could contribute to the observed up-regulation of miR828. In turn, miR828 would regulate the AtMYB113-ortologues MYBA5, A6 and A7 (and thereby anthocyanins) via a widely conserved and previously validated auto-regulatory loop involving miR828 and phasi TAS4abc RNAs.
Collapse
|
74
|
Rousserie P, Rabot A, Geny-Denis L. From Flavanols Biosynthesis to Wine Tannins: What Place for Grape Seeds? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1325-1343. [PMID: 30632368 DOI: 10.1021/acs.jafc.8b05768] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phenolic compounds are among the most important quality factors of wines. They contribute to the organoleptic characteristics of wine such as color, astringency, and bitterness. Although tannins found in wine can come from microbial and oak sources, the main sources of polyphenols are grape skins and seeds. Since the 1960s, this subject has been widely studied by a large number of researchers covering different types of wine, climate conditions, growing practices, and grape varieties. As these works have been conducted under different conditions, the data collected can be conflicting. Moreover, even though the biosynthesis of the major proanthocyanidins units (+)-catechin and (-)-epicatechin is well-known, the mechanism of their polymerization remains unexplained. This is why the question remains: what factors influence the biosynthesis, the quantity, and the distribution of tannins in grape seeds and how can winemaking processes impact the extractability of seed tannins in wine?
Collapse
Affiliation(s)
- Pauline Rousserie
- Université de Bordeaux, Unité de Recherche Œnologie, EA 4577, USC 1366 INRA , ISVV , 33882 Villenave d'Ornon Cedex, France
| | - Amélie Rabot
- Université de Bordeaux, Unité de Recherche Œnologie, EA 4577, USC 1366 INRA , ISVV , 33882 Villenave d'Ornon Cedex, France
| | - Laurence Geny-Denis
- Université de Bordeaux, Unité de Recherche Œnologie, EA 4577, USC 1366 INRA , ISVV , 33882 Villenave d'Ornon Cedex, France
| |
Collapse
|
75
|
Martínez-Lüscher J, Brillante L, Kurtural SK. Flavonol Profile Is a Reliable Indicator to Assess Canopy Architecture and the Exposure of Red Wine Grapes to Solar Radiation. FRONTIERS IN PLANT SCIENCE 2019; 10:10. [PMID: 30766542 PMCID: PMC6365461 DOI: 10.3389/fpls.2019.00010] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/07/2019] [Indexed: 05/25/2023]
Abstract
Exposure to solar radiation is a determining factor of grape composition. Flavonol synthesis is upregulated by solar radiation leaving a fingerprint on flavonol profile. This study aimed to test the factors affecting flavonol accumulation and profile and their potential as an indicator to assess the overall exposure of red wine grape berry to solar radiation. We performed three experiments to study the response of flavonol accumulation and profile to (1) three different solar radiation exclusion treatments during berry development; (2) canopy porosity and leaf area index (LAI); and (3) spatial variability of water status, vigor and ripening and cultural practices in commercial vineyards. Results showed a strong relationship between global radiation, inverse dormant pruning weights or canopy porosity (inversely proportional to LAI) and % kaempferol or % quercetin. Furthermore, the increase in concentration of the above two flavonols was associated with a reduction of % myricetin. Total flavonol content, % kaempferol, % quercetin, and % myricetin had significant correlations with inverse dormant pruning weights, but these were less sensitive to over-ripening or water deficits. Flavonol profile was associated to site hydrology (wetness index) through changes in vigor, and to LAI; and responded to shoot thinning or fruit-zone leaf removal. These results support the reliability of the flavonol profile as an assessment parameter for studies aiming to discuss canopy architecture or the effect of solar radiation on grapevine berries.
Collapse
Affiliation(s)
- Johann Martínez-Lüscher
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | - Luca Brillante
- Department of Viticulture and Enology, California State University, Fresno, Fresno, CA, United States
| | - Sahap Kaan Kurtural
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
76
|
Tuan PA, Kim YS, Kim Y, Thwe AA, Li X, Park CH, Lee SY, Park SU. Molecular characterization of flavonoid biosynthetic genes and accumulation of baicalin, baicalein, and wogonin in plant and hairy root of Scutellaria lateriflora. Saudi J Biol Sci 2018; 25:1639-1647. [PMID: 30591781 PMCID: PMC6303135 DOI: 10.1016/j.sjbs.2016.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 12/30/2022] Open
Abstract
Scutellaria lateriflora is well known for its medical applications because of the presence of flavanoids and alkaloids. The present study aimed to explore the molecular aspects and regulations of flavanoids. Five partial cDNAs encoding genes that are involved in the flavonoid biosynthetic pathway: phenylalanine ammonia lyase (SlPAL), cinnamate 4-hydroxylase (SlC4H), 4-coumaroyl CoA ligase (Sl4CL), chalcone synthase (SlCHS), and chalcone isomerase (SlCHI) were isolated from S. lateriflora. Organ expression analysis showed that these genes were expressed in all organs analyzed with the highest levels correlating with the richest accumulation of wogonin in the roots. Baicalin and baicalein differentially accumulated in S. lateriflora plants, with the highest concentration of baicalin and baicalein detected in the leaves and stems, respectively. Exogenous methyl jasmonate (MeJA) significantly enhanced the expression of SlCHS and SlCHI, and accumulation of baicalin (22.54 mg/g), baicalein (1.24 mg/g), and wogonin (5.39 mg/g) in S. lateriflora hairy roots. In addition, maximum production of baicalin, baicalein, and wogonin in hairy roots treated with MeJA was approximately 7.44-, 2.38-, and 2.12-fold, respectively. Light condition increased the expression level of SlCHS, the first committed step in flavonoid biosynthesis in hairy roots of S. lateriflora after 3 and 4 weeks of development compared to the dark condition. Dark-grown hairy roots contained a higher content of baicalin and baicalein than light-grown hairy roots, while light-grown hairy roots accumulated more wogonin than dark-grown hairy roots. These results may helpful for the metabolic engineering of flavonoids biosynthesis in S. lateriflora.
Collapse
Affiliation(s)
- Pham Anh Tuan
- Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon 305-764, South Korea
| | - Young Seon Kim
- Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon 305-764, South Korea
| | - Yeji Kim
- Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon 305-764, South Korea
| | - Aye Aye Thwe
- Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon 305-764, South Korea
| | - Xiaohua Li
- Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon 305-764, South Korea
| | - Chang Ha Park
- Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon 305-764, South Korea
| | - Sook Young Lee
- Regional Innovation Center for Dental Science & Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 501-759, South Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon 305-764, South Korea
| |
Collapse
|
77
|
Liu L, Gregan SM, Winefield C, Jordan B. Comparisons of controlled environment and vineyard experiments in Sauvignon blanc grapes reveal similar UV-B signal transduction pathways for flavonol biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:44-53. [PMID: 30348327 DOI: 10.1016/j.plantsci.2018.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
UV-B radiation is an environmental challenge affecting a number of metabolic functions in plants. Plants protect themselves from this potentially damaging radiation through synthesising UV-absorbing compounds such as flavonoids. This study aims to investigate the effect of UV-B on flavonoid biosynthesis in Sauvignon blanc grapes. In particular, a comparison has been made between controlled environment (CE) and vineyard trials to better understand molecular mechanisms of low/high fluence UV-B responses and how the results relate to each other in the context of flavonoid biosynthesis. Following exposure to supplemental UV-B in the CE, both flavonols and gene expression exhibited UV-B induced response. Flavonols, particularly quercetin/kaempferol 3-O-glycosides were increased at distinct stages of berry development. All genes measured showed a significant developmental regulation. VvFLS4, VvCHS1, VvMYB12, VvHY5 and PR (VvTL1 and VvChi4A/4B) increased due to UV-B in the CE experiments. However, PR were not responsive to the natural UV-B fluence in vineyard but were significantly induced at later stages of development. Overall, despite very different conditions in the CE and vineyard the majority of UV-B induced responses are similar. Only PR activities in the CE cabinets reflect a higher fluence stress response that is not reflected in the natural lower UV-B fluence environment.
Collapse
Affiliation(s)
- Linlin Liu
- Centre for Viticulture and Oenology, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch 7647, New Zealand.
| | - Scott M Gregan
- Centre for Viticulture and Oenology, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch 7647, New Zealand.
| | - Christopher Winefield
- Centre for Viticulture and Oenology, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch 7647, New Zealand.
| | - Brian Jordan
- Centre for Viticulture and Oenology, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch 7647, New Zealand.
| |
Collapse
|
78
|
VanderWeide J, Medina-Meza IG, Frioni T, Sivilotti P, Falchi R, Sabbatini P. Enhancement of Fruit Technological Maturity and Alteration of the Flavonoid Metabolomic Profile in Merlot ( Vitis vinifera L.) by Early Mechanical Leaf Removal. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9839-9849. [PMID: 30130400 DOI: 10.1021/acs.jafc.8b02709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Removal of basal leaves near blooms inevitably affects grapevine balance and cluster microclimate conditions, improving fruit quality. Mechanization of this practice allows growers to save time and resources, but to our knowledge, it has not yet been compared with the manual application of this practice in a cool-climate region where seasonal temperatures frequently limit fruit technological maturity and phenolic ripening in red Vitis vinifera cultivars. In our research, berry sugar concentration was highest with prebloom mechanical treatment (PB-ME). Furthermore, metabolomics analysis revealed that PB-ME favored the accumulation of significantly more disubstituted anthocyanins and flavonols and OH-substituted anthocyanins compared with manual application. Given that vine balance was similar between treatments, increased ripening with PB-ME is likely due to enhanced microclimate conditions and higher carbon partitioning through a younger canopy containing basal leaf fragments proximal to fruit. This information provides an important strategy for consistently ripening red Vitis vinifera cultivars in cool climates.
Collapse
Affiliation(s)
- Joshua VanderWeide
- Department of Horticulture , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Ilce G Medina-Meza
- Department of Biosystems and Agricultural Engineering , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Tommaso Frioni
- Department of Horticulture , Michigan State University , East Lansing , Michigan 48824 , United States
- Dipartimento di Scienze delle Produzioni Vegetali Sostenibili , Università Cattolica del Sacro Cuore , Piacenza 29122 , Italy
| | - Paolo Sivilotti
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali , Università di Udine , via delle Scienze 206 , Udine 33100 , Italy
| | - Rachele Falchi
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali , Università di Udine , via delle Scienze 206 , Udine 33100 , Italy
- Bordeaux Science Agro , Institut des Sciences de la Vigne et du Vin, Ecophysiologie et Génomique Fonctionnelle de la Vigne, UMR 1287 , Villenave d'Ornon F-33140 , France
| | - Paolo Sabbatini
- Department of Horticulture , Michigan State University , East Lansing , Michigan 48824 , United States
| |
Collapse
|
79
|
Zhang K, Liu Z, Guan L, Zheng T, Jiu S, Zhu X, Jia H, Fang J. Changes of Anthocyanin Component Biosynthesis in 'Summer Black' Grape Berries after the Red Flesh Mutation Occurred. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9209-9218. [PMID: 30092133 DOI: 10.1021/acs.jafc.8b02150] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The coloring process of grape flesh is valuable for research and promotion of the high nutritional quality of anthocyanins. 'Summer Black' and it is new red flesh mutant were used to analyze the changes of anthocyanin biosynthesis during grape berry development. Eighteen kinds of anthocyanins were detected in mature berries of the two cultivars, but the content of most 3'- and 3',5'-substituted anthocyanins was higher in the skin of the mutant. Anthocyanin accumulation occurred simultaneously in the skin and flesh of the mutant, and their types and content were more abundant in the former. For the mutant, there were only CHS, OMT, MYBA3, and MYBPA1 at lower transcriptional level in the flesh during veraison when compared with these in the skin, which might be an important factor to limit the anthocyanin accumulation in the flesh. The occurrence of red flesh might be related the enhancement of anthocyanin biosynthesis in the whole berry.
Collapse
Affiliation(s)
- Kekun Zhang
- College of Horticulture , Nanjing Agricultural University , Nanjing City , 210095 Jiangsu Province People's Republic of China
| | - Zhongjie Liu
- College of Horticulture , Nanjing Agricultural University , Nanjing City , 210095 Jiangsu Province People's Republic of China
| | - Le Guan
- College of Horticulture , Nanjing Agricultural University , Nanjing City , 210095 Jiangsu Province People's Republic of China
| | - Ting Zheng
- College of Horticulture , Nanjing Agricultural University , Nanjing City , 210095 Jiangsu Province People's Republic of China
| | - Songtao Jiu
- College of Horticulture , Nanjing Agricultural University , Nanjing City , 210095 Jiangsu Province People's Republic of China
| | - Xudong Zhu
- College of Horticulture , Nanjing Agricultural University , Nanjing City , 210095 Jiangsu Province People's Republic of China
| | - Haifeng Jia
- College of Horticulture , Nanjing Agricultural University , Nanjing City , 210095 Jiangsu Province People's Republic of China
| | - Jinggui Fang
- College of Horticulture , Nanjing Agricultural University , Nanjing City , 210095 Jiangsu Province People's Republic of China
| |
Collapse
|
80
|
Otoguro M, Suzuki S. Status and future of disease protection and grape berry quality alteration by micro-organisms in viticulture. Lett Appl Microbiol 2018; 67:106-112. [PMID: 29908033 DOI: 10.1111/lam.13033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 01/27/2023]
Abstract
Grapevine is one of the most widely grown fruit crops in the world. At present, however, there is much concern regarding chemical pollution in viticulture due to the application of chemical fungicides and fertilizers. One viticultural practice to resolve this issue is the application of micro-organisms to grapevine as a substitute for chemicals. Some micro-organisms act as an enhancer of grape berry quality as well as a suppresser of disease in grapevine through their antagonistic ability and/or systemic resistance inducing ability. Herein, we review current and prospective applications of micro-organisms in viticulture. SIGNIFICANCE AND IMPACT OF THE STUDY In this review, we evaluate the applicability of micro-organisms in viticulture. Micro-organisms can improve grape berry quality through grapevine disease protection and grape berry quality alteration. Because the use of micro-organisms to protect grapevine from plant diseases is safer than the use of chemical fungicides, the use of biofungicides in viticulture is expected to be enhanced by the increasing consumer concern towards chemical fungicides. Micro-organisms also modify plant secondary metabolites for use as flavours, pharmaceuticals and food additives. Studies of micro-organisms that promote polyphenol, anthocyanin and aroma compound biosynthesis are in progress with an eye to improving grape berry quality.
Collapse
Affiliation(s)
- M Otoguro
- The Institute of Enology and Viticulture, University of Yamanashi, Kofu, Yamanashi, Japan
| | - S Suzuki
- The Institute of Enology and Viticulture, University of Yamanashi, Kofu, Yamanashi, Japan
| |
Collapse
|
81
|
Reshef N, Agam N, Fait A. Grape Berry Acclimation to Excessive Solar Irradiance Leads to Repartitioning between Major Flavonoid Groups. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3624-3636. [PMID: 29314841 DOI: 10.1021/acs.jafc.7b04881] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Warm viticulture regions are associated with inferior wines, resulting from the interaction between microclimate and fruit biochemistry. Solar irradiance triggers biosynthetic processes in the fruit and dominates its thermal balance. Therefore, deciphering its impact on fruit metabolism is pivotal to develop strategies for fruit protection and ameliorate its quality traits. Here, we modified light quality and intensity in the fruit-zone and integrated micrometeorology with grape and wine metabolomics, allowing a complete assessment, from field to bottle. We analyzed the dynamics of fruit's adaptation to altered conditions during ripening and constructed temporal-based metabolic networks. Micrometeorological modifications shifted the balance between the major flavonoids, associating increased solar exposure with lower levels of anthocyanins and flavan-3-ols, and higher flavonols. Differences were fixed from 2 weeks postveraison until harvest, suggesting a controlled acclimation response rather than external modulation. Differences in grape composition manifested in the wine and resulted in higher color intensity and improved wine hue under partial shading.
Collapse
Affiliation(s)
- N Reshef
- French Associates institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Sede Boqer campus , Beersheba , Israel
| | - N Agam
- French Associates institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Sede Boqer campus , Beersheba , Israel
| | - A Fait
- French Associates institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Sede Boqer campus , Beersheba , Israel
| |
Collapse
|
82
|
Vergara AE, Díaz K, Carvajal R, Espinoza L, Alcalde JA, Pérez-Donoso AG. Exogenous Applications of Brassinosteroids Improve Color of Red Table Grape ( Vitis vinifera L. Cv. "Redglobe") Berries. FRONTIERS IN PLANT SCIENCE 2018; 9:363. [PMID: 29681907 PMCID: PMC5897653 DOI: 10.3389/fpls.2018.00363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/05/2018] [Indexed: 05/29/2023]
Abstract
Color and other quality parameters of "Redglobe" grape (Vitis vinifera L.) berries were evaluated after treatment with brassinosteroid (BR) analogs. Three BRs analogs (24-epibrassinolide, Triol, or Lactone) were applied at three concentrations (0.0, 0.4, or 0.8 mg⋅L-1), at the onset of veraison. A commercial formulation (B-2000®) was also applied, at a recommended rate of 0.06 mg⋅L-1. The tested BR analogs were effective improving berry color (evaluated as color index for red grapes, CIRG), increasing the levels of soluble solids and anthocyanins, and changing the types of anthocyanins present without altering other quality and yield parameters. The effects of BR analogs on color enhancement could be explained by an increase in soluble solids content and/or anthocyanin content. Treatment with 24-epibrassinolide (at 0.4 mg⋅L-1) or the commercial formulation tended to favor the production of dihydroxylated anthocyanins, which are responsible for the red and pink colors of grape berries. Results indicate that the use of BRs constitutes a potential tool in the production of table grapes. This is the first report of this enhancement effect in a productive context.
Collapse
Affiliation(s)
- Alexis E. Vergara
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katy Díaz
- Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Rodrigo Carvajal
- Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Luis Espinoza
- Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - José A. Alcalde
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alonso G. Pérez-Donoso
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
83
|
Henry-Kirk RA, Plunkett B, Hall M, McGhie T, Allan AC, Wargent JJ, Espley RV. Solar UV light regulates flavonoid metabolism in apple (Malus x domestica). PLANT, CELL & ENVIRONMENT 2018; 41:675-688. [PMID: 29315644 DOI: 10.1111/pce.13125] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 05/21/2023]
Abstract
Ultraviolet-B light (UV-B) is one environmental signal perceived by plants that affects the flavonoid pathway and influences the levels of anthocyanins, flavonols, and proanthocyanidins. To understand the mechanisms underlying UV exposure, apple trees were grown under spectral filters that altered transmission of solar UV light. Fruit analysis showed that UV induced changes in physiology, metabolism, and gene expression levels during development over a season. These changes were sustained after storage. Under low UV, ripening was delayed, fruit size decreased, and anthocyanin and flavonols were reduced. Expression analysis showed changes in response to UV light levels for genes in the regulation and biosynthesis of anthocyanin and flavonols. Transcription of flavonol synthase (FLS), ELONGATED HYPOCOTYL 5 (HY5), MYB10, and MYB22 were down-regulated throughout fruit development under reduced UV. Functional testing showed that the FLS promoter was activated by HY5, and this response was enhanced by the presence of MYB22. The MYB22 promoter can also be activated by the anthocyanin regulator, MYB10. As ambient levels of UV light vary around the globe, this study has implications for future crop production, the quality of which can be determined by the response to UV.
Collapse
Affiliation(s)
- Rebecca A Henry-Kirk
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag, 92169, Auckland, New Zealand
| | - Blue Plunkett
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag, 92169, Auckland, New Zealand
| | - Miriam Hall
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag, 92169, Auckland, New Zealand
| | - Tony McGhie
- Plant and Food Research, Palmerston North Research Centre, Palmerston North, 4442, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag, 92169, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag, 92019, Auckland, New Zealand
| | - Jason J Wargent
- Institute of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag, 92169, Auckland, New Zealand
| |
Collapse
|
84
|
Outchkourov NS, Karlova R, Hölscher M, Schrama X, Blilou I, Jongedijk E, Simon CD, van Dijk ADJ, Bosch D, Hall RD, Beekwilder J. Transcription Factor-Mediated Control of Anthocyanin Biosynthesis in Vegetative Tissues. PLANT PHYSIOLOGY 2018; 176:1862-1878. [PMID: 29192027 PMCID: PMC5813534 DOI: 10.1104/pp.17.01662] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 11/26/2017] [Indexed: 05/21/2023]
Abstract
Plants accumulate secondary metabolites to adapt to environmental conditions. These compounds, here exemplified by the purple-colored anthocyanins, are accumulated upon high temperatures, UV-light, drought, and nutrient deficiencies, and may contribute to tolerance to these stresses. Producing compounds is often part of a more broad response of the plant to changes in the environment. Here we investigate how a transcription-factor-mediated program for controlling anthocyanin biosynthesis also has effects on formation of specialized cell structures and changes in the plant root architecture. A systems biology approach was developed in tomato (Solanum lycopersicum) for coordinated induction of biosynthesis of anthocyanins, in a tissue- and development-independent manner. A transcription factor couple from Antirrhinum that is known to control anthocyanin biosynthesis was introduced in tomato under control of a dexamethasone-inducible promoter. By application of dexamethasone, anthocyanin formation was induced within 24 h in vegetative tissues and in undifferentiated cells. Profiles of metabolites and gene expression were analyzed in several tomato tissues. Changes in concentration of anthocyanins and other phenolic compounds were observed in all tested tissues, accompanied by induction of the biosynthetic pathways leading from Glc to anthocyanins. A number of pathways that are not known to be involved in anthocyanin biosynthesis were observed to be regulated. Anthocyanin-producing plants displayed profound physiological and architectural changes, depending on the tissue, including root branching, root epithelial cell morphology, seed germination, and leaf conductance. The inducible anthocyanin-production system reveals a range of phenomena that accompanies anthocyanin biosynthesis in tomato, including adaptions of the plants architecture and physiology.
Collapse
Affiliation(s)
| | - Rumyana Karlova
- Laboratory of Plant Physiology, Wageningen University, 6708 PB, The Netherlands
| | - Matthijs Hölscher
- Wageningen Plant Research, Bioscience, 6700 AA, Wageningen, The Netherlands
| | - Xandra Schrama
- Wageningen Plant Research, Bioscience, 6700 AA, Wageningen, The Netherlands
| | - Ikram Blilou
- Plant Developmental Biology, Wageningen University, 6708 PB, The Netherlands
| | - Esmer Jongedijk
- Laboratory of Plant Physiology, Wageningen University, 6708 PB, The Netherlands
| | - Carmen Diez Simon
- Laboratory of Plant Physiology, Wageningen University, 6708 PB, The Netherlands
| | - Aalt D J van Dijk
- Wageningen Plant Research, Bioscience, 6700 AA, Wageningen, The Netherlands
- Biometris, Wageningen University, 6708 PB, Wageningen, The Netherlands
- Laboratory of Bioinformatics, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | | | - Robert D Hall
- Wageningen Plant Research, Bioscience, 6700 AA, Wageningen, The Netherlands
- Laboratory of Plant Physiology, Wageningen University, 6708 PB, The Netherlands
| | - Jules Beekwilder
- Wageningen Plant Research, Bioscience, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
85
|
Scafidi P, Barbagallo MG, Pisciotta A, Mazza M, Downey MO. Defoliation of two-wire vertical trellis: effect on grape quality. NEW ZEALAND JOURNAL OF CROP AND HORTICULTURAL SCIENCE 2018; 46:18-38. [DOI: 10.1080/01140671.2017.1337642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Affiliation(s)
- P. Scafidi
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | - M. G. Barbagallo
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | - A. Pisciotta
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | - M. Mazza
- Department of Primary Industries Victoria, Mildura, Victoria, Australia
| | - M. O. Downey
- Department of Primary Industries Victoria, Mildura, Victoria, Australia
| |
Collapse
|
86
|
Martínez-Lüscher J, Chen CCL, Brillante L, Kurtural SK. Partial Solar Radiation Exclusion with Color Shade Nets Reduces the Degradation of Organic Acids and Flavonoids of Grape Berry (Vitis vinifera L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10693-10702. [PMID: 29141407 DOI: 10.1021/acs.jafc.7b04163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The incidence of solar radiation on red-skinned grapes can promote the synthesis of flavonoids desirable for wine production, but elevated temperature may impair their accumulation. We performed a shade cloth trial covering the fruit zone (from pepper-corn size to maturity) with four polyethylene 1 m curtains with different optical properties (20% shading factor Pearl colored and 40% shading factor Aluminet, Blue, and Black colored) and a Control with no cover. Cluster temperature was 3.7 °C lower on the Southwest side in Black-40% clusters during the warmest part of the day compared to Control. Results indicated a lower berry weight under the Aluminet-40%. Berries under the nets often had significantly lower pH and higher TA than Control, but only the Black-40% were significant at harvest. Black-40% had higher values of anthocyanins than Control toward the last weeks of development. Berry skin flavonol and anthocyanin composition and concentration were measured by C18 reversed-phased HPLC; and proanthocyanidin isolates were characterized by acid catalysis in the presence of excess phloroglucinol followed by reversed-phase HPLC. Proanthocyanidins and flavonol contents were lower in Black-40% before veraison and the first part of ripening, respectively. However, their contents in Control decreased toward the end of ripening to a point where any net was different from Control. Anthocyanin and flavonol profiles were richer in 3', 4', 5' hydroxylated forms. Proanthocyanidin chain length was not affected while small changes were observed in the proportion of terminal catechin/epicatechin and in seed galloylation in response to treatments. Results show that shade cloths may efficiently palliate temperature spikes, especially the last weeks before harvest, while transmitting enough radiation into the fruit zone to achieve a better grape composition compared to uncovered grapes.
Collapse
Affiliation(s)
- Johann Martínez-Lüscher
- Department of Viticulture and Enology, University of California Davis , 1 Shields Avenue, Davis, California 95616, United States
| | - Christopher Cody Lee Chen
- Department of Viticulture and Enology, University of California Davis , 1 Shields Avenue, Davis, California 95616, United States
| | - Luca Brillante
- Department of Viticulture and Enology, University of California Davis , 1 Shields Avenue, Davis, California 95616, United States
| | - Sahap Kaan Kurtural
- Department of Viticulture and Enology, University of California Davis , 1 Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
87
|
Sankari M, Hridya H, Sneha P, George Priya Doss C, Ramamoorthy S. Effect of UV radiation and its implications on carotenoid pathway in Bixa orellana L. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 176:136-144. [DOI: 10.1016/j.jphotobiol.2017.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/20/2017] [Accepted: 10/01/2017] [Indexed: 12/24/2022]
|
88
|
Drappier J, Thibon C, Rabot A, Geny-Denis L. Relationship between wine composition and temperature: Impact on Bordeaux wine typicity in the context of global warming-Review. Crit Rev Food Sci Nutr 2017; 59:14-30. [PMID: 29064726 DOI: 10.1080/10408398.2017.1355776] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Weather conditions throughout the year have a greater influence than other factors (such as soil and cultivars) on grapevine development and berry composition. Temperature affects gene expression and enzymatic activity of primary and secondary metabolism which determine grape ripening and wine characteristics. In the context of the climate change, temperatures will probably rise between 0.3°C and 1.7°C over the next 20 years. They are already rising and the physiology of grapevines is already changing. These modifications exert a profound shift in primary (sugar and organic acid balance) and secondary (phenolic and aromatic compounds) berry metabolisms and the resulting composition of wine. For example, some Bordeaux wines have a tendency toward reduced freshness and a modification of their ruby color. In this context it is necessary to understand the impact of higher temperatures on grape development, harvest procedures, and wine composition in order to preserve the typicity of the wines and to adapt winemaking processes.
Collapse
Affiliation(s)
- Julie Drappier
- a Unité de Recherche Oenologie , Université de Bordeaux , Villenave d'Ornon , France
| | - Cécile Thibon
- a Unité de Recherche Oenologie , Université de Bordeaux , Villenave d'Ornon , France.,b INRA, ISVV, OEnologie , Villenave d'Ornon , France
| | - Amélie Rabot
- a Unité de Recherche Oenologie , Université de Bordeaux , Villenave d'Ornon , France
| | - Laurence Geny-Denis
- a Unité de Recherche Oenologie , Université de Bordeaux , Villenave d'Ornon , France
| |
Collapse
|
89
|
Rogiers SY, Coetzee ZA, Walker RR, Deloire A, Tyerman SD. Potassium in the Grape ( Vitis vinifera L.) Berry: Transport and Function. FRONTIERS IN PLANT SCIENCE 2017; 8:1629. [PMID: 29021796 PMCID: PMC5623721 DOI: 10.3389/fpls.2017.01629] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/05/2017] [Indexed: 05/20/2023]
Abstract
K+ is the most abundant cation in the grape berry. Here we focus on the most recent information in the long distance transport and partitioning of K+ within the grapevine and postulate on the potential role of K+ in berry sugar accumulation, berry water relations, cellular growth, disease resistance, abiotic stress tolerance and mitigating senescence. By integrating information from several different plant systems we have been able to generate new hypotheses on the integral functions of this predominant cation and to improve our understanding of how these functions contribute to grape berry growth and ripening. Valuable contributions to the study of K+ in membrane stabilization, turgor maintenance and phloem transport have allowed us to propose a mechanistic model for the role of this cation in grape berry development.
Collapse
Affiliation(s)
- Suzy Y. Rogiers
- New South Wales Department of Primary Industries, Wagga Wagga, NSW, Australia
- National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW, Australia
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, SA, Australia
| | - Zelmari A. Coetzee
- National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW, Australia
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, SA, Australia
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Rob R. Walker
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, SA, Australia
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
- Agriculture and Food (CSIRO), Glen Osmond, SA, Australia
- School of Agriculture, Food, and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Alain Deloire
- National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW, Australia
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, SA, Australia
- Department of Biology-Ecology, SupAgro, Montpellier, France
| | - Stephen D. Tyerman
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, SA, Australia
- School of Agriculture, Food, and Wine, University of Adelaide, Urrbrae, SA, Australia
| |
Collapse
|
90
|
Pan J, Chen H, Guo B, Liu C. Understanding the molecular mechanisms underlying the effects of light intensity on flavonoid production by RNA-seq analysis in Epimedium pseudowushanense B.L.Guo. PLoS One 2017; 12:e0182348. [PMID: 28786984 PMCID: PMC5546586 DOI: 10.1371/journal.pone.0182348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 07/17/2017] [Indexed: 02/02/2023] Open
Abstract
Epimedium pseudowushanense B.L.Guo, a light-demanding shade herb, is used in traditional medicine to increase libido and strengthen muscles and bones. The recognition of the health benefits of Epimedium has increased its market demand. However, its resource recycling rate is low and environmentally dependent. Furthermore, its natural sources are endangered, further increasing prices. Commercial culture can address resource constraints of it.Understanding the effects of environmental factors on the production of its active components would improve the technology for cultivation and germplasm conservation. Here, we studied the effects of light intensities on the flavonoid production and revealed the molecular mechanism using RNA-seq analysis. Plants were exposed to five levels of light intensity through the periods of germination to flowering, the flavonoid contents were measured using HPLC. Quantification of epimedin A, epimedin B, epimedin C, and icariin showed that the flavonoid contents varied with different light intensity levels. And the largest amount of epimedin C was produced at light intensity level 4 (I4). Next, the leaves under the treatment of three light intensity levels ("L", "M" and "H") with the largest differences in the flavonoid content, were subjected to RNA-seq analysis. Transcriptome reconstruction identified 43,657 unigenes. All unigene sequences were annotated by searching against the Nr, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. In total, 4008, 5260, and 3591 significant differentially expressed genes (DEGs) were identified between the groups L vs. M, M vs. H and L vs. H. Particularly, twenty-one full-length genes involved in flavonoid biosynthesis were identified. The expression levels of the flavonol synthase, chalcone synthase genes were strongly associated with light-induced flavonoid abundance with the highest expression levels found in the H group. Furthermore, 65 transcription factors, including 31 FAR1, 17 MYB-related, 12 bHLH, and 5 WRKY, were differentially expressed after light induction. Finally, a model was proposed to explain the light-induced flavonoid production. This study provided valuable information to improve cultivation practices and produced the first comprehensive resource for E. pseudowushanense transcriptomes.
Collapse
Affiliation(s)
- Junqian Pan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing, P.R. China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P.R. China
| | - Haimei Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P.R. China
| | - Baolin Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing, P.R. China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P.R. China
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P.R. China
| |
Collapse
|
91
|
Cáceres-Mella A, Talaverano MI, Villalobos-González L, Ribalta-Pizarro C, Pastenes C. Controlled water deficit during ripening affects proanthocyanidin synthesis, concentration and composition in Cabernet Sauvignon grape skins. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 117:34-41. [PMID: 28587991 DOI: 10.1016/j.plaphy.2017.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/17/2017] [Accepted: 05/25/2017] [Indexed: 05/26/2023]
Abstract
The influence of controlled water deficit on the phenolic composition and gene expression of VvLAR2, VvMYBPA1, VvMYBPA2 and VvMYB4a in Cabernet Sauvignon grape skins throughout ripening was investigated. The assay was carried out on own-rooted Vitis vinifera plants cv. Cabernet Sauvignon in a commercial vineyard from veraison until commercial harvest. Three irrigation regimes were used from veraison until harvest with the following treatments: T1: 3.6 mm day-1; T2: 1.8 mm day-1 and T3: 0.3 mm day-1. The content of total phenols and total anthocyanins in grape skins increased during ripening, but water deficit did not produce differences among treatments in the total anthocyanin concentration. Proanthocyanidins (PAs) decreased throughout ripening, although approximately 25 days after veraison (DAV), their content slightly increased. This effect was more pronounced in the most restrictive treatment (T3). A similar pattern was observed in the transcript abundance of VvLAR2, VvMYBPA1 and VvMYB4a. PAs separation revealed differences in concentration but not in the proportion among fractions among the irrigation treatments. Additionally, controlled water deficit increased the mean degree of polymerization and the flavan-3-ol polymeric concentration in grape skins throughout ripening but with no effects on the extent of PAs galloylation. Our results suggest that the water status of Cabernet Sauvignon grapevines affects the gene expression for proteins involved in the synthesis of PAs, increasing their concentration and also their composition, with further evidence for the efficacy of a convenient, controlled water deficit strategy for grapevine cultivation.
Collapse
Affiliation(s)
- Alejandro Cáceres-Mella
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, San Francisco s/n, La Palma, Casilla 4-D, Quillota, Chile.
| | - M Inmaculada Talaverano
- CICYTEX-Technological Institute of Food and Agriculture-INTAEX (Government of Extremadura), Adolfo Suarez, s/n 06071, Badajoz, Spain
| | - Luis Villalobos-González
- Universidad de Chile, Facultad de Ciencias Agronómicas, Santa Rosa 11315, La Pintana, Casilla 1004, Santiago, Chile
| | - Camila Ribalta-Pizarro
- Centro Regional de Innovación Hortofrutícola de Valparaíso (Ceres), Pontificia Universidad Católica de Valparaíso, Av. San Francisco s/n, La Palma, Quillota, Chile
| | - Claudio Pastenes
- Universidad de Chile, Facultad de Ciencias Agronómicas, Santa Rosa 11315, La Pintana, Casilla 1004, Santiago, Chile
| |
Collapse
|
92
|
The growing season impacts the accumulation and composition of flavonoids in grape skins in two-crop-a-year viticulture. Journal of Food Science and Technology 2017; 54:2861-2870. [PMID: 28928526 DOI: 10.1007/s13197-017-2724-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/21/2017] [Accepted: 05/26/2017] [Indexed: 10/19/2022]
Abstract
The influence of growing season (winter vs. summer) on the flavonoid accumulation and composition was studied in the skins of three grape cultivars for two consecutive years under a two-crop-a-year viticulture practice in Southwest China. The total anthocyanin, flavonol and flavan-3-ol contents in winter berry skins were significantly higher than those in summer berry skins for 'Kyoho' and 'Muscat Hamburg'. Reversely, the content of anthocyanin in 'NW196' winter berry was lower than summer berry. However, the percentage of diglycosylated, trihydroxylated, methylated, and acylated anthocyanins, trihydroxylated and methylated flavonols, and flavan-3-ol polymers were higher in the summer berry skins than the winter berry skins among all the three grape cultivars. Winter climatic conditions were favorable to flavonoid accumulation for the non native grapes 'Kyoho' and 'Muscat Hamburg', while the summer climatic conditions were beneficial to anthocyanin accumulation for 'NW196' that has 50% genetic background from a local wild grape species Vitis quinquangularis. These seasonal variations of flavonoid accumulations and compositions in the grape skins were primarily contributed by different climatic factors, such as temperature, solar radiation, and rainfall.
Collapse
|
93
|
Zhu H, Li X, Zhai W, Liu Y, Gao Q, Liu J, Ren L, Chen H, Zhu Y. Effects of low light on photosynthetic properties, antioxidant enzyme activity, and anthocyanin accumulation in purple pak-choi (Brassica campestris ssp. Chinensis Makino). PLoS One 2017; 12:e0179305. [PMID: 28609452 PMCID: PMC5469474 DOI: 10.1371/journal.pone.0179305] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 05/26/2017] [Indexed: 01/05/2023] Open
Abstract
Anthocyanins are secondary metabolites that contribute to red, blue, and purple colors in plants and are affected by light, but the effects of low light on the physiological responses of purple pak-choi plant leaves are still unclear. In this study, purple pak-choi seedlings were exposed to low light by shading with white gauze and black shading in a phytotron. The responses in terms of photosynthetic properties, carbohydrate metabolism, antioxidant enzyme activity, anthocyanin biosynthetic enzyme activity, and the relative chlorophyll and anthocyanin content of leaves were measured. The results showed that chlorophyll b, intracellular CO2 content, stomatal conductance and antioxidant activities of guaiacol peroxidase, catalase and superoxide dismutase transiently increased in the shade treatments at 5 d. The malondialdehyde content also increased under low light stress, which damages plant cells. With the extension of shading time (at 15 d), the relative chlorophyll a, anthocyanin and soluble protein contents, net photosynthetic rate, transpiration rate, stomata conductance, antioxidant enzyme activities, and activities of four anthocyanin biosynthetic enzymes decreased significantly. Thus, at the early stage of low light treatment, the chlorophyll b content increased to improve photosynthesis. When the low light treatment was extended, antioxidant enzyme activity and the activity of anthocyanin biosynthesis enzymes were inhibited, causing the purple pak-choi seedlings to fade from purple to green. This study provides valuable information for further deciphering genetic mechanisms and improving agronomic traits in purple pak-choi under optimal light requirements.
Collapse
Affiliation(s)
- Hongfang Zhu
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiaofeng Li
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wen Zhai
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yang Liu
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China
| | - Qianqian Gao
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jinping Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Li Ren
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China
| | - Huoying Chen
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China
| | - Yuying Zhu
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
94
|
Gogoi G, Borua PK, Al-Khayri JM. Improved micropropagation and in vitro fruiting of Morus indica L. (K-2 cultivar). J Genet Eng Biotechnol 2017; 15:249-256. [PMID: 30647661 PMCID: PMC6296645 DOI: 10.1016/j.jgeb.2017.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/31/2017] [Accepted: 02/19/2017] [Indexed: 11/26/2022]
Abstract
A rapid economically viable micropropagation protocol has been developed in the present work for Morus indica L. (K-2 cultivar) utilizing the readily available nodal explants. Explants were established on different plant growth regulators (PGRs) either individually or in combinations. MS medium containing 1 mg L-1 Kinetin (Kin) showed the best shoot multiplication with 4.8 ± 0.23 cm average shoot length and 6.5 ± 0.03 number of internodes. Regenerated shoots were elongated in MS medium supplemented with 1.5 mg L-1 gibberellic acid (GA3). Elongated shoots cultured in full-strength MS medium supplemented with 1 mg L-1 2,4-dichlorophenoxyacetic acid (2,4-D) for one week and then cultured in half-strength MS proved to be more effective in rooting compared to other PGRs in significantly shorter duration. Micropropagated plants transferred to soil fortified with the quarter-strength of MS salts along with humidity regulation process showed 89% survival frequency. In vitro flowering in the regenerated shoots was also observed in the MS medium supplemented with (1.5 mg L-1) Kin and carbon source replaced by commercial sugar cubes. This method can be effectively used for in vitro culture of M. indica in commercial scale owing to its enhanced quality and reduced time frame.
Collapse
Affiliation(s)
- Gaurab Gogoi
- Department of Life Sciences, School of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Prodeep K. Borua
- Department of Life Sciences, School of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Jameel M. Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Hassa 31982, Saudi Arabia
| |
Collapse
|
95
|
Reshef N, Walbaum N, Agam N, Fait A. Sunlight Modulates Fruit Metabolic Profile and Shapes the Spatial Pattern of Compound Accumulation within the Grape Cluster. FRONTIERS IN PLANT SCIENCE 2017; 8:70. [PMID: 28203242 PMCID: PMC5285383 DOI: 10.3389/fpls.2017.00070] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/12/2017] [Indexed: 05/26/2023]
Abstract
Vineyards are characterized by their large spatial variability of solar irradiance (SI) and temperature, known to effectively modulate grape metabolism. To explore the role of sunlight in shaping fruit composition and cluster uniformity, we studied the spatial pattern of incoming irradiance, fruit temperature and metabolic profile within individual grape clusters under three levels of sunlight exposure. The experiment was conducted in a vineyard of Cabernet Sauvignon cv. located in the Negev Highlands, Israel, where excess SI and midday temperatures are known to degrade grape quality. Filtering SI lowered the surface temperature of exposed fruits and increased the uniformity of irradiance and temperature in the cluster zone. SI affected the overall levels and patterns of accumulation of sugars, organic acids, amino acids and phenylpropanoids, across the grape cluster. Increased exposure to sunlight was associated with lower accumulation levels of malate, aspartate, and maleate but with higher levels of valine, leucine, and serine, in addition to the stress-related proline and GABA. Flavan-3-ols metabolites showed a negative response to SI, whereas flavonols were highly induced. The overall levels of anthocyanins decreased with increased sunlight exposure; however, a hierarchical cluster analysis revealed that the members of this family were grouped into three distinct accumulation patterns, with malvidin anthocyanins and cyanidin-glucoside showing contrasting trends. The flavonol-glucosides, quercetin and kaempferol, exhibited a logarithmic response to SI, leading to improved cluster uniformity under high-light conditions. Comparing the within-cluster variability of metabolite accumulation highlighted the stability of sugars, flavan-3-ols, and cinnamic acid metabolites to SI, in contrast to the plasticity of flavonols. A correlation-based network analysis revealed that extended exposure to SI modified metabolic coordination, increasing the number of negative correlations between metabolites in both pulp and skin. This integrated study of micrometeorology and metabolomics provided insights into the grape-cluster pattern of accumulation of 70 primary and secondary metabolites as a function of spatial variations in SI. Studying compound-specific responses against an extended gradient of quantified conditions improved our knowledge regarding the modulation of berry metabolism by SI, with the aim of using sunlight regulation to accurately modulate fruit composition in warm and arid/semi-arid regions.
Collapse
|
96
|
Lu Y, Bu Y, Hao S, Wang Y, Zhang J, Tian J, Yao Y. MYBs affect the variation in the ratio of anthocyanin and flavanol in fruit peel and flesh in response to shade. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 168:40-49. [PMID: 28167273 DOI: 10.1016/j.jphotobiol.2017.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 01/14/2017] [Accepted: 01/19/2017] [Indexed: 12/20/2022]
Abstract
Fruit pigment accumulation, which represents an important indicator of nutrient quality and appearance value, is often affected by low light under rain, cloud, fog and haze conditions during the veraison period. It is not known whether continuous low light interferes with the production and accumulation of secondary metabolites in veraison fruit. In this paper, we measured pigments and the transcriptional level of genes related to secondary metabolites, i.e., flavonoid biosynthesis in the peel and flesh of Malus crabapple 'Radiant' fruit in response to normal light and shade from 10th July to 30th August. The results showed crosstalk between the flavonoid biosynthetic genes and the involvement of key transcription factors such as McMYB4, McMYB7, McMYB10, and McMYB16 in the regulation of the ratio of anthocyanins and flavanols, which accounted for the different colouration of the fruit peel and flesh under shade conditions. A model is proposed for the regulation of the flavonoid pathway in the peel and flesh of 'Radiant' fruit based on our study results. Moreover, the molecular mechanism for 'Radiant' fruit colouration provides reference information for understanding the light regulatory mechanism involved in the biosynthesis of flavonoids and for designing the next generation of apple breeding.
Collapse
Affiliation(s)
- Yanfen Lu
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing 102206, China
| | - Yufen Bu
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing 102206, China
| | - Suxiao Hao
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing 102206, China
| | - Yaru Wang
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193,China
| | - Jie Zhang
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing 102206, China
| | - Ji Tian
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing 102206, China
| | - Yuncong Yao
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
97
|
Singh B, Kumar A, Malik AK. Flavonoids biosynthesis in plants and its further analysis by capillary electrophoresis. Electrophoresis 2017; 38:820-832. [DOI: 10.1002/elps.201600334] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 01/16/2023]
Affiliation(s)
- Baljinder Singh
- Department of Biotechnology; Panjab University; Chandigarh India
| | - Ashwini Kumar
- Department of Chemistry; Government Post-Graduate College Una; Himachal Pradesh India
| | | |
Collapse
|
98
|
Czemmel S, Höll J, Loyola R, Arce-Johnson P, Alcalde JA, Matus JT, Bogs J. Transcriptome-Wide Identification of Novel UV-B- and Light Modulated Flavonol Pathway Genes Controlled by VviMYBF1. FRONTIERS IN PLANT SCIENCE 2017; 8:1084. [PMID: 28690624 PMCID: PMC5479930 DOI: 10.3389/fpls.2017.01084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/06/2017] [Indexed: 05/21/2023]
Abstract
Flavonols constitute a group of flavonoids with important photoprotective roles in plants. In addition, flavonol content and composition greatly influences fruit quality. We previously demonstrated that the grapevine R2R3-MYB transcription factor (TF) VviMYBF1 promotes flavonol accumulation by inducing the expression of flavonol synthase (VviFLS1/VviFLS4), a key step of the initial flavonol pathway. Despite this, gene networks underlying flavonol modification in grapevine including both structural and regulatory genes remain poorly understood. In order to identify flavonol modifying genes and TFs acting downstream of VviMYBF1 a microarray-based transcriptome analysis was performed on grapevine hairy roots ectopically expressing VviMYBF1 or a Green Fluorescent Protein as control. VviFLS1 was induced in VviMYBF1 transgenic roots and glycosylated flavonols accumulated significantly compared with control lines. Among the differentially expressed genes, potential flavonol-modifying enzymes with predicted rhamnosyltransferase (e.g., RhaT1) or glycosyltransferase (e.g., GT3) activities were identified. In addition, important TFs of the MYB and bZIP families such as the proanthocyanidin regulator VviMYBPA1 and the UV-B light responsive HY5 homolog VviHYH were significantly altered in their expression pattern by overexpression of VviMYBF1. Co-temporal expression analysis demonstrated positive correlation of VviMYBF1 with VviFLS1, VviGT3, and VviRhaT1 during berry development and in fruits ripened with different light and UV-B radiation conditions at field. These results show that VviMYBF1 overexpression led to the identification of novel genes of the flavonol pathway and that the flavonol modifying machinery can be influenced by agricultural practices to optimize flavonol composition in grapes.
Collapse
Affiliation(s)
- Stefan Czemmel
- Quantitative Biology Center, University of TübingenTübingen, Germany
- Centre for Organismal Studies HeidelbergHeidelberg, Germany
| | - Janine Höll
- Centre for Organismal Studies HeidelbergHeidelberg, Germany
| | - Rodrigo Loyola
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
- Departamento de Fruticultura y Enología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Patricio Arce-Johnson
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - José Antonio Alcalde
- Departamento de Fruticultura y Enología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - José Tomás Matus
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UBBarcelona, Spain
| | - Jochen Bogs
- Centre for Organismal Studies HeidelbergHeidelberg, Germany
- Dienstleistungszentrum Ländlicher Raum Rheinpfalz, Viticulture and Enology GroupNeustadt/W, Germany
- Fachhochschule BingenBingen am Rhein, Germany
- *Correspondence: Jochen Bogs,
| |
Collapse
|
99
|
Zenoni S, Dal Santo S, Tornielli GB, D’Incà E, Filippetti I, Pastore C, Allegro G, Silvestroni O, Lanari V, Pisciotta A, Di Lorenzo R, Palliotti A, Tombesi S, Gatti M, Poni S. Transcriptional Responses to Pre-flowering Leaf Defoliation in Grapevine Berry from Different Growing Sites, Years, and Genotypes. FRONTIERS IN PLANT SCIENCE 2017; 8:630. [PMID: 28512461 PMCID: PMC5411443 DOI: 10.3389/fpls.2017.00630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/07/2017] [Indexed: 05/21/2023]
Abstract
Leaf removal is a grapevine canopy management technique widely used to modify the source-sink balance and/or microclimate around berry clusters to optimize fruit composition. In general, the removal of basal leaves before flowering reduces fruit set, hence achieving looser clusters, and improves grape composition since yield is generally curtailed more than proportionally to leaf area itself. Albeit responses to this practice seem quite consistent, overall vine performance is affected by genotype, environmental conditions, and severity of treatment. The physiological responses of grape varieties to defoliation practices have been widely investigated, and just recently a whole genome transcriptomic approach was exploited showing an extensive transcriptome rearrangement in berries defoliated before flowering. Nevertheless, the extent to which these transcriptomic reactions could be manifested by different genotypes and growing environments is entirely unexplored. To highlight general responses to defoliation vs. different locations, we analyzed the transcriptome of cv. Sangiovese berries sampled at four development stages from pre-flowering defoliated vines in two different geographical areas of Italy. We obtained and validated five markers of the early defoliation treatment in Sangiovese, an ATP-binding cassette transporter, an auxin response factor, a cinnamyl alcohol dehydrogenase, a flavonoid 3-O-glucosyltransferase and an indole-3-acetate beta-glucosyltransferase. Candidate molecular markers were also obtained in another three grapevine genotypes (Nero d'Avola, Ortrugo, and Ciliegiolo), subjected to the same level of selective pre-flowering defoliation (PFD) over two consecutive years in their different areas of cultivation. The flavonol synthase was identified as a marker in the pre-veraison phase, the jasmonate methyltransferase during the transition phase and the abscisic acid receptor PYL4 in the ripening phase. The characterization of transcriptome changes in Sangiovese berry after PFD highlights, on one hand, the stronger effect of environment than treatment on the whole berry transcriptome rearrangement during development and, on the other, expands existing knowledge of the main molecular and biochemical modifications occurring in defoliated vines. Moreover, the identification of candidate genes associated with PFD in different genotypes and environments provides new insights into the applicability and repeatability of this crop practice, as well as its possible agricultural and qualitative outcomes across genetic and environmental variability.
Collapse
Affiliation(s)
- Sara Zenoni
- Department of Biotechnology, University of VeronaVerona, Italy
- *Correspondence: Sara Zenoni,
| | | | | | - Erica D’Incà
- Department of Biotechnology, University of VeronaVerona, Italy
| | - Ilaria Filippetti
- Department of Agricultural Science, University of BolognaBologna, Italy
| | - Chiara Pastore
- Department of Agricultural Science, University of BolognaBologna, Italy
| | - Gianluca Allegro
- Department of Agricultural Science, University of BolognaBologna, Italy
| | - Oriana Silvestroni
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle MarcheAncona, Italy
| | - Vania Lanari
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle MarcheAncona, Italy
| | - Antonino Pisciotta
- Department of Agricultural and Forest sciences, University of PalermoPalermo, Italy
| | - Rosario Di Lorenzo
- Department of Agricultural and Forest sciences, University of PalermoPalermo, Italy
| | - Alberto Palliotti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università di PerugiaPerugia, Italy
| | - Sergio Tombesi
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università di PerugiaPerugia, Italy
- Dipartimento di Scienze delle Produzioni Vegetali Sostenibili, Università Cattolica del Sacro CuorePiacenza, Italy
| | - Matteo Gatti
- Dipartimento di Scienze delle Produzioni Vegetali Sostenibili, Università Cattolica del Sacro CuorePiacenza, Italy
| | - Stefano Poni
- Dipartimento di Scienze delle Produzioni Vegetali Sostenibili, Università Cattolica del Sacro CuorePiacenza, Italy
| |
Collapse
|
100
|
du Plessis K, Young PR, Eyéghé-Bickong HA, Vivier MA. The Transcriptional Responses and Metabolic Consequences of Acclimation to Elevated Light Exposure in Grapevine Berries. FRONTIERS IN PLANT SCIENCE 2017; 8:1261. [PMID: 28775728 PMCID: PMC5518647 DOI: 10.3389/fpls.2017.01261] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/04/2017] [Indexed: 05/19/2023]
Abstract
An increasing number of field studies that focus on grapevine berry development and ripening implement systems biology approaches; the results are highlighting not only the intricacies of the developmental programming/reprogramming that occurs, but also the complexity of how profoundly the microclimate influences the metabolism of the berry throughout the different stages of development. In a previous study we confirmed that a leaf removal treatment to Sauvignon Blanc grapes, grown in a highly characterized vineyard, primarily affected the level of light exposure to the berries throughout their development. A full transcriptomic analysis of berries from this model vineyard details the underlying molecular responses of the berries in reaction to the exposure and show how the berries acclimated to the imposing light stress. Gene expression involved in the protection of the photosynthetic machinery through rapid protein-turnover and the expression of photoprotective flavonoid compounds were most significantly affected in green berries. Overall, the transcriptome analysis showed that the berries implemented multiple stress-mitigation strategies in parallel and metabolite analysis was used to support the main findings. Combining the transcriptome data and amino acid profiling provided evidence that amino acid catabolism probably contributed to the mitigation of a likely energetic deficit created by the upregulation of (energetically) costly stress defense mechanisms. Furthermore, the rapid turnover of essential proteins involved in the maintenance of primary metabolism and growth in the photosynthetically active grapes appeared to provide precursors for the production of protective secondary metabolites such as apocarotenoids and flavonols in the ripening stages of the berries. Taken together, these results confirmed that the green grape berries responded to light stress much like other vegetative organs and were able to acclimate to the increased exposure, managing their metabolism and energy requirements to sustain the developmental cycle toward ripening. The typical metabolic consequences of leaf removal on grape berries can therefore now be linked to increased light exposure through mechanisms of photoprotection in green berries that leads toward acclimation responses that remain intact until ripening.
Collapse
Affiliation(s)
- Kari du Plessis
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch UniversityStellenbosch, South Africa
| | - Philip R. Young
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch UniversityStellenbosch, South Africa
| | - Hans A. Eyéghé-Bickong
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch UniversityStellenbosch, South Africa
- Institute for Grape and Wine Sciences, Department of Viticulture and Oenology, Stellenbosch UniversityStellenbosch, South Africa
| | - Melané A. Vivier
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch UniversityStellenbosch, South Africa
- *Correspondence: Melané A. Vivier
| |
Collapse
|