51
|
Bilal H, Hou B, Shafiq M, Chen X, Shahid MA, Zeng Y. Antifungal susceptibility pattern of Candida isolated from cutaneous candidiasis patients in eastern Guangdong region: A retrospective study of the past 10 years. Front Microbiol 2022; 13:981181. [PMID: 35992679 PMCID: PMC9389287 DOI: 10.3389/fmicb.2022.981181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Cutaneous candidiasis is one of the most prevalent mycotic infections caused by Candida species. The severity of infection mounts faster when the species shows antifungal resistance. In the current retrospective study, we aimed to analyze the occurrence, causes of cutaneous candidiasis, and antifungal susceptibility pattern of Candida isolates from Skin and Venereal Diseases Prevention and Control Hospital of Shantou, located in eastern Guangdong, China. The laboratory data of all patients (n = 3,113) suffering from various skin and venereal infections during January 2012 to December 2021 was analyzed through Excel and GraphPad prism. Our analysis indicate that cutaneous candidiasis was 22.29% (n = 694), of which 78.53% (n = 554) of patients were males and 21.47% (n = 149) of patients were females. The median age of patients with cutaneous candidiasis was 38-year [interquartile range (30-48)]. Most cases occurred in the adult age group (19-50 years). Regarding the species type, the Candida albicans were prominently detected (n = 664, 95.68%), while non-C. albicans were found only in 30 (4.32%) patients, which were C. glabrata (n = 18), C. krusei (n = 8), C. tropicalis (n = 3), and C. parapsilosis (n = 1). The C. albicans susceptibility rate for terbinafine, miconazole, voriconazole, itraconazole, fluconazole, ketoconazole, nystatin, 5-flucytosine and amphotericin B were 10.83, 29.32, 59.39, 78.53, 85.28, 87.75, 99.59, 99.41, and 100%, respectively. Finally, all C. glabrata isolates were found susceptible to all tested azole drugs with exception to miconazole against which 8.33% of isolates showed resistance. The findings of this study will help healthcare officials to establish better antifungal stewardship in the region.
Collapse
Affiliation(s)
- Hazrat Bilal
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Bing Hou
- Skin and Venereal Diseases Prevention and Control Hospital of Shantou City, Shantou, Guangdong, China
| | - Muhammad Shafiq
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Xinyu Chen
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Muhammad Akbar Shahid
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Yuebin Zeng
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- *Correspondence: Yuebin Zeng,
| |
Collapse
|
52
|
Mudgil P, AlMazroui M, Redha AA, Kilari BP, Srikumar S, Maqsood S. Cow and camel milk-derived whey and casein protein hydrolysates demonstrated effective antifungal properties against selected Candida species. J Dairy Sci 2021; 105:1878-1888. [PMID: 34955259 DOI: 10.3168/jds.2021-20944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/26/2021] [Indexed: 01/15/2023]
Abstract
Bioactive peptides derived from milk proteins are widely known to possess antibacterial activities. Even though the antibacterial effects of milk-derived peptides are widely characterized, not much focus is given to their antifungal characterization. Therefore, in this study, we investigated the antifungal properties of camel and cow whey and casein hydrolysates against various species of pathogenic Candida. The hydrolysates were produced using 2 enzymes (alcalase and protease) at differing hydrolysis durations (2, 4, and 6 h) and tested for their antifungal properties. The results showed that intact cow whey and casein proteins did not display any anti-Candida albicans properties, whereas the alcalase-derived 2 h camel casein hydrolysate (CA-C-A2) displayed a higher percentage of inhibition against Candida albicans (93.69 ± 0.26%) followed by the cow casein hydrolysate generated by protease-6 h (Co-C-P6; 81.66 ± 0.99%), which were significantly higher than that of fluconazole, a conventional antifungal agent (76.92 ± 4.72%). Interestingly, when tested again Candida krusei, camel casein alcalase 2 and 4 h (CA-C-A2 and CA-C-A4), and cow whey alcalase-6 h (CO-W-A6) hydrolysates showed higher antifungal potency than fluconazole. However, for Candida parapsilosis only camel casein alcalase-4 h (Ca-C-A4) and cow casein protease-6 h (Co-C-P6) hydrolysates were able to inhibit the growth of C. parapsilosis by 19.31 ± 0.84% and 23.82 ± 4.14%, respectively, which was lower than that shown by fluconazole (29.86 ± 1.11%). Overall, hydrolysis of milk proteins from both cow and camel enhanced their antifungal properties. Camel milk protein hydrolysates were more potent in inhibiting pathogenic Candida species as compared with cow milk protein hydrolysates. This is the first study that highlights the antifungal properties of camel milk protein hydrolysates.
Collapse
Affiliation(s)
- Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - May AlMazroui
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Ali Ali Redha
- Chemistry Department, School of Science, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Bhanu Priya Kilari
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Shabarinath Srikumar
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates; Zayed Centre of Health Sciences, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| |
Collapse
|
53
|
Prevalence of Antifungal Resistance, Genetic Basis of Acquired Azole and Echinocandin Resistance, and Genotyping of Candida krusei recovered from an International Collection. Antimicrob Agents Chemother 2021; 66:e0185621. [PMID: 34871096 DOI: 10.1128/aac.01856-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study was designed to evaluate the prevalence of antifungal resistance, genetic mechanisms associated with in vitro induction of azole and echinocandin resistance and genotyping of Candida krusei, which is intrinsically resistant to fluconazole and is recovered from clinical and non-clinical sources from different countries. Our results indicated that all the isolates were susceptible or had the wild phenotype (WT) to azoles, amphotericin B, and only 1.27% showed non-WT for flucytosine. Although 70.88% of the isolates were resistant to caspofungin, none of them were categorized as echinocandin-resistant as all were susceptible to micafungin and no FKS1 hotspot 1 (HS1) or HS2 mutations were detected. In vitro induction of azole and echinocandin resistance confirmed the rapid development of resistance at low concentrations of fluconazole (4 μg/ml), voriconazole (0.06 μg/ml) and micafungin (0.03 μg/ml), with no difference between clinical and non-clinical isolates in the resistance development. Overexpression of ABC1 gene and FKS1 HS1 mutations were the major mechanisms responsible for azole and echinocandin resistance, respectively. Genotyping of our 79 isolates coupled with 217 other isolates from different sources and geography confirmed that the isolates belong to two main subpopulations, with isolates from human clinical material and Asia being more predominant in cluster 1, and environmental and animals isolates and those from Europe in cluster 2. Our results are of critical concern, since realizing that the C. krusei resistance mechanisms and their genotyping are crucial for guiding specific therapy and for exploring the potential infection source.
Collapse
|
54
|
New Applications of Photodynamic Therapy in the Management of Candidiasis. J Fungi (Basel) 2021; 7:jof7121025. [PMID: 34947007 PMCID: PMC8705304 DOI: 10.3390/jof7121025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 12/12/2022] Open
Abstract
The most important aetiological agent of opportunistic mycoses worldwide is Candida spp. These yeasts can cause severe infections in the host, which may be fatal. Isolates of Candida albicans occur with greater frequency and variable resistance patterns. Photodynamic therapy (PDT) has been recognised as an alternative treatment to kill pathogenic microorganisms. PDT utilises a photosensitizer, which is activated at a specific wavelength and oxygen concentration. Their reaction yields reactive oxygen species that kill the infectious microorganism. A systematic review of new applications of PDT in the management of candidiasis was performed. Of the 222 studies selected for in-depth screening, 84 were included in this study. All the studies reported the antifungal effectiveness, toxicity and dosimetry of treatment with antimicrobial PDT (aPDT) with different photosensitizers against Candida spp. The manuscripts that are discussed reveal the breadth of the new applications of aPDT against Candida spp., which are resistant to common antifungals. aPDT has superior performance compared to conventional antifungal therapies. With further studies, aPDT should prove valuable in daily clinical practice.
Collapse
|
55
|
Development of a multiplex PCR short tandem repeat typing scheme for Candida krusei. J Clin Microbiol 2021; 60:e0203221. [PMID: 34788111 DOI: 10.1128/jcm.02032-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Candida krusei is a human pathogenic yeast that can cause candidemia with the lowest 90-day survival rate in comparison to other Candida species. Infections occur frequently in immunocompromised patients and several C. krusei outbreaks in health care facilities have been described. Here, we developed a short tandem repeat (STR) typing scheme for C. krusei to allow for fast and cost-effective genotyping of an outbreak and compared identified relatedness of ten isolates to SNP calling from whole-genome sequencing (WGS). From a selection of 14 novel STR markers, six were used to develop two multiplex PCRs. Additionally, three previously reported markers were selected for a third multiplex PCR. In total, 119 C. krusei isolates were typed using these nine markers and 79 different genotypes were found. STR typing correlated well with WGS SNP typing, as isolates with the same STR genotype varied by 8 and 19 SNPs, while isolates that differed in all STR markers varied at least tens of thousands of SNPs. The STR typing assay was found to be specific for C. krusei, stable in 100 subcloned generations, and comparable to SNP calling by WGS. In summary, this newly developed C. krusei STR typing scheme is a fast, reliable, easy-to-interpret and cost-effective method compared to other typing methods. Moreover, the two newly developed multiplexes showed the same discriminatory power as all nine markers combined, indicating that multiplexes M3-1 and M9 are sufficient to type C. krusei.
Collapse
|
56
|
Gnat S, Łagowski D, Nowakiewicz A, Dyląg M. A global view on fungal infections in humans and animals: opportunistic infections and microsporidioses. J Appl Microbiol 2021; 131:2095-2113. [PMID: 33556223 DOI: 10.1111/jam.15032] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
After cardiovascular diseases, infectious diseases are the second most common cause of death worldwide. Although these infections are caused mainly by viruses or bacteria, a systematically growing prevalence of human and animal opportunistic fungal infections is noticeable worldwide. More attention is being paid to this problem, especially due to the growing frequency of recalcitrant and recurrent mycoses. The latter are classically divided into superficial, which are the most common type, subcutaneous, and systemic. This work discusses opportunistic fungal pathogens without proven horizontal transmission between different animal species including humans and microsporidia as spore-forming unicellular parasites related to fungi; however, with a yet undetermined taxonomic position. The review also mentions aetiological agents, risk factors, epidemiology, geographical distribution, and finally symptoms characteristic for individual disease entities. This paper provides insight into fungal infections from a global perspective and simultaneously draws attention to emerging pathogens, whose prevalence is continuously increasing. Finally, this work also takes into consideration the correct nomenclature of fungal disease entities and the importance of secondary metabolites in the pathogenesis of fungal infections.
Collapse
Affiliation(s)
- S Gnat
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Lublin, Poland
| | - D Łagowski
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Lublin, Poland
| | - A Nowakiewicz
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Lublin, Poland
| | - M Dyląg
- Department of Mycology and Genetics, Faculty of Biological Sciences, Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
57
|
Morais LVFD, Luz JRDD, Nascimento TESD, Azevedo MADS, Rocha WPDS, Araujo-Silva G, Ururahy MAG, Chaves GM, Brandão-Neto J, López JA, Santos ECG, Almeida MDG. Phenolic Composition, Toxicity Potential, and Antimicrobial Activity of Licania rigida Benth (Chrysobalanaceae) Leaf Extracts. J Med Food 2021; 25:97-109. [PMID: 34714151 DOI: 10.1089/jmf.2021.0059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This study was conducted to evaluate the phenolic composition, toxicity, and antimicrobial activity of Licania rigida Benth, an underexploited wild Licania species. L. rigida leaf fractions (ethyl alcohol and ethyl acetate) were analyzed for their phenolic compound and flavonoid total, and high-performance liquid chromatography/ultraviolet spectra chromatographic profiles. Regarding the extract biological effects, toxicity was measured by acute oral toxicity in Wistar rats, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] method, and apoptosis indicators with DAPI in VERO cells, whereas well-agar diffusion and broth microdilution assays were applied to evaluate the antimicrobial ability. The phytochemical analysis resulted in significant amounts of phenolic compounds and total flavonoids in the extract and fraction, with flavonol-3-O-glycosylates as the main constituent. Regarding the extract and fraction antimicrobial activity, the results showed a significant effect against gram-positive bacteria and fungi, among which Staphylococcus epidermidis and Candida krusei displayed more susceptibility. No toxicity effects were observed in animals. Concerning the cytotoxicity assay, only the highest dose tested exhibited a minimal toxic effect on the analyzed cell lines. These results are relevant considering the increase of multiresistant microorganisms to conventional treatments applied. Therefore, investigating the pharmacological properties of the genus Licania is promising in the search for new sources of antimicrobial compounds.
Collapse
Affiliation(s)
| | - Jefferson Romáryo Duarte da Luz
- Post-Graduation Program in Health Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil.,Multidisciplinary Research Laboratory, DACT, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | | | - Gabriel Araujo-Silva
- Organic Chemistry and Biochemistry Laboratory, Amapá State University (UEAP), Macapá, Brazil
| | - Marcela Abbott Galvão Ururahy
- Post-graduation Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Guilherme Maranhão Chaves
- Post-graduation Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil.,Post-Graduation Program in Health Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - José Brandão-Neto
- Department of Clinical Medicine, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jorge A López
- Industrial Biotechnology Graduation Program, Tiradentes University, Aracaju, Brazil.,Molecular Biology Laboratory, Research and Technology Institute, Aracaju, Brazil
| | - Elizabeth Cristina Gomes Santos
- Multidisciplinary Research Laboratory, DACT, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Maria das Graças Almeida
- Post-graduation Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil.,Post-Graduation Program in Health Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil.,Multidisciplinary Research Laboratory, DACT, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
58
|
Jamiu AT, Albertyn J, Sebolai O, Gcilitshana O, Pohl CH. Inhibitory effect of polyunsaturated fatty acids alone or in combination with fluconazole on Candida krusei biofilms in vitro and in Caenorhabditis elegans. Med Mycol 2021; 59:1225-1237. [PMID: 34558629 DOI: 10.1093/mmy/myab055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/30/2021] [Accepted: 09/22/2021] [Indexed: 01/02/2023] Open
Abstract
The incidence of infections by non-albicans Candida species, including Candida krusei, is increasing. Candida krusei exhibits intrinsic resistance to fluconazole and rapidly develops acquired resistance to other antifungals. Moreover, this yeast can form biofilm with increased resistance. Hence, there is a need to develop novel therapeutic strategies to combat infections caused by this pathogen. One such approach is through combination therapy with natural compounds, such as polyunsaturated fatty acids (PUFAs). This study aims to investigate the effect of PUFAs on fluconazole susceptibility of C. krusei biofilms, as well as the conserved nature of these effects in the Caenorhabditis elegans infection model. C. krusei biofilms were exposed to various fatty acids as well as combinations of fluconazole and linoleic acid (LA) or gamma-linolenic acid (GLA). The effect of these treatments on biofilm formation, cell ultrastructure, membrane integrity, oxidative stress and efflux pump activity was evaluated. In addition, the ability of the PUFAs to prolong survival and reduce the fungal burden of infected C. elegans, in the absence and presence of fluconazole, was assessed. Two P|UFAs, LA and GLA had he displayed significant inhibition of C. krusei biofilms and both of them increased the susceptibility of C. krusei biofilm to fluconazole in vitro via induction of oxidative stress, cell membrane damage, and disruption of efflux pump activity. These PUFAs also extended the lifespan of infected nematodes and displayed a potentiating effect with fluconazole in this model. This may pave the way for future studies into novel antifungal drug targets and treatment options. LAY ABSTRACT The pathogenic yeast, Candida krusei, is naturally resistant to the antifungal drug, fluconazole. This study finds that polyunsaturated fatty acids, linoleic and gamma-linolenic acid, can inhibit C. krusei and overcome this resistance of in vitro biofilms, as well as in a nematode infection model.
Collapse
Affiliation(s)
- Abdullahi Temitope Jamiu
- Pathogenic Yeast Research Group, Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Jacobus Albertyn
- Pathogenic Yeast Research Group, Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Olihile Sebolai
- Pathogenic Yeast Research Group, Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Onele Gcilitshana
- Pathogenic Yeast Research Group, Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Carolina H Pohl
- Pathogenic Yeast Research Group, Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
59
|
Du J, Ma W, Fan J, Liu X, Wang Y, Zhou X. The A756T Mutation of the ERG11 Gene Associated With Resistance to Itraconazole in Candida Krusei Isolated From Mycotic Mastitis of Cows. Front Vet Sci 2021; 8:634286. [PMID: 34458346 PMCID: PMC8385537 DOI: 10.3389/fvets.2021.634286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/14/2021] [Indexed: 01/11/2023] Open
Abstract
Candida krusei (C. krusei) has been recently recognized as an important pathogen involved in mycotic mastitis of cows. The phenotypic and molecular characteristics of 15 C. krusei clinical isolates collected from cows with clinical mastitis in three herds of Yinchuan, Ningxia, were identified by matrix-assisted laser desorption ionization–time of flight mass spectrometry. In addition to sequencing analysis, the ERG11 gene that encodes 14α-demethylases, the expression of the ERG11 gene, and efflux transporters ABC1 and ABC2 in itraconazole-susceptible (S), itraconazole-susceptible dose dependent (SDD), and itraconazole-resistant (R) C. krusei isolates was also quantified by a quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) assay. Sequencing analysis revealed three synonymous codon substitutions of the ERG11 gene including T939C, A756T, and T642C in these C. krusei clinical isolates. Among them, T642C and T939C mutations were detected in itraconazole-resistant and -susceptible C. krusei isolates, but the A756T substitution was found only in itraconazole-resistant isolates. Importantly, the expression of the ERG11 gene in itraconazole-resistant isolates was significantly higher compared with itraconazole-SDD and itraconazole-susceptible isolates (p = 0.052 and p = 0.012, respectively), as determined by the qRT-PCR assay. Interestingly, the expression of the ABC2 gene was also significantly higher in itraconazole-resistant isolates relative to the itraconazole-SDD and itraconazole-susceptible strains. Notably, the expression of ERG11 was positively associated with resistance to itraconazole (p = 0.4177 in SDD compared with S, p = 0.0107 in SDD with R, and p = 0.0035 in S with R, respectively). These data demonstrated that mutations of the ERG11 gene were involved in drug resistance in C. krusei. The A756T synonymous codon substitution of the ERG11 gene was correlated with an increased expression of drug-resistant genes including ERG11 and ABC2 in itraconazole-resistant C. krusei isolates examined in this study.
Collapse
Affiliation(s)
- Jun Du
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, China
| | - Wenshuang Ma
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, China
| | - Jiaqi Fan
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, China
| | - Xiaoming Liu
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, China
| | - Yujiong Wang
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, China
| | - Xuezhang Zhou
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, China
| |
Collapse
|
60
|
In Vitro Effect of Photodynamic Therapy with Different Lights and Combined or Uncombined with Chlorhexidine on Candida spp. Pharmaceutics 2021; 13:pharmaceutics13081176. [PMID: 34452140 PMCID: PMC8398142 DOI: 10.3390/pharmaceutics13081176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022] Open
Abstract
Candidiasis is very common and complicated to treat in some cases due to increased resistance to antifungals. Antimicrobial photodynamic therapy (aPDT) is a promising alternative treatment. It is based on the principle that light of a specific wavelength activates a photosensitizer molecule resulting in the generation of reactive oxygen species that are able to kill pathogens. The aim here is the in vitro photoinactivation of three strains of Candida spp., Candida albicans ATCC 10231, Candida parapsilosis ATCC 22019 and Candida krusei ATCC 6258, using aPDT with different sources of irradiation and the photosensitizer methylene blue (MB), alone or in combination with chlorhexidine (CHX). Irradiation was carried out at a fluence of 18 J/cm2 with a light-emitting diode (LED) lamp emitting in red (625 nm) or a white metal halide lamp (WMH) that emits at broad-spectrum white light (420–700 nm). After the photodynamic treatment, the antimicrobial effect is evaluated by counting colony forming units (CFU). MB-aPDT produces a 6 log10 reduction in the number of CFU/100 μL of Candida spp., and the combination with CHX enhances the effect of photoinactivation (effect achieved with lower concentration of MB). Both lamps have similar efficiencies, but the WMH lamp is slightly more efficient. This work opens the doors to a possible clinical application of the combination for resistant or persistent forms of Candida infections.
Collapse
|
61
|
Azole Susceptibility Profiles of More than 9,000 Clinical Yeast Isolates Belonging to 40 Common and Rare Species. Antimicrob Agents Chemother 2021; 65:AAC.02615-20. [PMID: 33820766 DOI: 10.1128/aac.02615-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/29/2021] [Indexed: 01/08/2023] Open
Abstract
Invasive yeast infections represent a major global public health issue, and only few antifungal agents are available. Azoles are one of the classes of antifungals used for treatment of invasive candidiasis. The determination of antifungal susceptibility profiles using standardized methods is important to identify resistant isolates and to uncover the potential emergence of intrinsically resistant species. Here, we report data on 9,319 clinical isolates belonging to 40 pathogenic yeast species recovered in France over 17 years. The antifungal susceptibility profiles were all determined at the National Reference Center for Invasive Mycoses and Antifungals based on the EUCAST broth microdilution method. The centralized collection and analysis allowed us to describe the trends of azole susceptibility of isolates belonging to common species, confirming the high susceptibility for Candida albicans (n = 3,295), Candida tropicalis (n = 641), and Candida parapsilosis (n = 820) and decreased susceptibility for Candida glabrata (n = 1,274) and Pichia kudriavzevii (n = 343). These profiles also provide interesting data concerning azole susceptibility of Cryptococcus neoformans species complex, showing comparable MIC distributions for the three species but lower MIC50s and MIC90s for serotype D (n = 208) compared to serotype A (n = 949) and AD hybrids (n = 177). Finally, these data provide useful information for rare and/or emerging species, such as Clavispora lusitaniae (n = 221), Saprochaete clavata (n = 184), Meyerozyma guilliermondii complex (n = 150), Candida haemulonii complex (n = 87), Rhodotorula mucilaginosa (n = 55), and Wickerhamomyces anomalus (n = 36).
Collapse
|
62
|
Alves MDS, Fugisaki LRDO, Dos Santos JD, Scorzoni L, Medina RP, Silva DHS, Junqueira JC. Antifungal effects of Streptococcus mutans extract on Candida strains susceptible and resistant to fluconazole: An in vivo study. Med Mycol 2021; 59:744-747. [PMID: 33594432 DOI: 10.1093/mmy/myab008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/11/2021] [Accepted: 01/26/2021] [Indexed: 11/12/2022] Open
Abstract
Previous studies showed that the crude extract obtained from Streptococcus mutans inhibited the growth of Candida albicans reference strains. In this study, we evaluated whether the antifungal effects of S. mutans extract can be extended to clinical Candida isolates, including C. albicans and non-abicans strains with different susceptibilities to fluconazole. We verified that S. mutans extract increased the survival of Galleria mellonella larvae infected with C. albicans and C. glabrata and inhibited the fungal cells in hemolymph. These antifungal effects occurred for both fluconazole-susceptible and fluconazole-resistant strains. However, larvae infected by C. krusei were not affected by S. mutans extract. LAY SUMMARY Streptococcus mutans crude extract shows antifungal effects on clinical Candida strains susceptible and resistant to fluconazole in Galleria mellonella model.
Collapse
Affiliation(s)
- Mariana de Sá Alves
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, 12245-000, SP, Brazil
| | - Luciana Ruano de Oliveira Fugisaki
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, 12245-000, SP, Brazil
| | - Jéssica Diane Dos Santos
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, 12245-000, SP, Brazil
| | - Liliana Scorzoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, 12245-000, SP, Brazil
| | - Rebeca Previate Medina
- Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, 14800-900, SP, Brazil
| | - Dulce Helena Siqueira Silva
- Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, 14800-900, SP, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, 12245-000, SP, Brazil
| |
Collapse
|
63
|
Mechanism of Antifungal Activity by 5-Aminoimidazole-4-Carbohydrazonamide Derivatives against Candida albicans and Candida krusei. Antibiotics (Basel) 2021; 10:antibiotics10020183. [PMID: 33673152 PMCID: PMC7917925 DOI: 10.3390/antibiotics10020183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/30/2022] Open
Abstract
Systemic mycoses are one major cause of morbidity/mortality among immunocompromised/debilitated individuals. Studying the mechanism of action is a strategy to develop safer/potent antifungals, warning resistance emergence. The major goal of this study was to elucidate the mechanism of action of three (Z)-5-amino-N’-aryl-1-methyl-1H-imidazole-4-carbohydrazonamides (2h, 2k, 2l) that had previously demonstrated strong antifungal activity against Candida krusei and C. albicans ATCC strains. Activity was confirmed against clinical isolates, susceptible or resistant to fluconazole by broth microdilution assay. Ergosterol content (HPLC-DAD), mitochondrial dehydrogenase activity (MTT), reactive oxygen species (ROS) generation (flow cytometry), germ tube inhibition and drug interaction were evaluated. None of the compounds inhibited ergosterol synthesis. Ascorbic acid reduced the antifungal effect of compounds and significantly decreased ROS production. The metabolic viability of C. krusei was significantly reduced for values of 2MIC. Compounds 2h and 2k caused a significant increase in ROS production for MIC values while for 2l a significant increase was only observed for concentrations above MIC. ROS production seems to be involved in antifungal activity and the higher activity against C. krusei versus C. albicans may be related to their unequal sensitivity to different ROS. No synergism with fluconazole or amphotericin was observed, but the association of 2h with fluconazole might be valuable due to the significant inhibition of the dimorphic transition, a C. albicans virulence mechanism.
Collapse
|
64
|
Dinh TTH, Tummamunkong P, Padungros P, Ponpakdee P, Boonprakong L, Saisorn W, Leelahavanichkul A, Kueanjinda P, Ritprajak P. Interaction Between Dendritic Cells and Candida krusei β-Glucan Partially Depends on Dectin-1 and It Promotes High IL-10 Production by T Cells. Front Cell Infect Microbiol 2021; 10:566661. [PMID: 33552998 PMCID: PMC7862133 DOI: 10.3389/fcimb.2020.566661] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Host-Candida interaction has been broadly studied during Candida albicans infection, with a progressive shift in focus toward non-albicans Candida species. C. krusei is an emerging multidrug resistant pathogen causing rising morbidity and mortality worldwide. Therefore, understanding the interplay between the host immune system and C. krusei is critically important. Candia cell wall β-glucans play significant roles in the induction of host protective immune responses. However, it remains unclear how C. krusei β-glucan impacts dendritic cell (DC) responses. In this study, we investigated DC maturation and function in response to β-glucans isolated from the cell walls of C. albicans, C. tropicalis, and C. krusei. These three distinct Candida β-glucans had differential effects on expression of the DC marker, CD11c, and on DC maturation. Furthermore, bone-marrow derived DCs (BMDCs) showed enhanced cytokine responses characterized by substantial interleukin (IL)-10 production following C. krusei β-glucan stimulation. BMDCs stimulated with C. krusei β-glucan augmented IL-10 production by T cells in tandem with increased IL-10 production by BMDCs. Inhibition of dectin-1 ligation demonstrated that the interactions between dectin-1 on DCs and cell wall β-glucans varied depending on the Candida species. The effects of C. krusei β-glucan were partially dependent on dectin-1, and this dependence, in part, led to distinct DC responses. Our study provides new insights into immune regulation by C. krusei cell wall components. These data may be of use in the development of new clinical approaches for treatment of patients with C. krusei infection.
Collapse
Affiliation(s)
- Truc Thi Huong Dinh
- Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Phawida Tummamunkong
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Panuwat Padungros
- Green Chemistry for Fine Chemical Productions STAR, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Pranpariya Ponpakdee
- Green Chemistry for Fine Chemical Productions STAR, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Lawan Boonprakong
- Oral Biology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Wilasinee Saisorn
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Patipark Kueanjinda
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Patcharee Ritprajak
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
65
|
|
66
|
Arastehfar A, Lass-Flörl C, Garcia-Rubio R, Daneshnia F, Ilkit M, Boekhout T, Gabaldon T, Perlin DS. The Quiet and Underappreciated Rise of Drug-Resistant Invasive Fungal Pathogens. J Fungi (Basel) 2020; 6:E138. [PMID: 32824785 PMCID: PMC7557958 DOI: 10.3390/jof6030138] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/22/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Human fungal pathogens are attributable to a significant economic burden and mortality worldwide. Antifungal treatments, although limited in number, play a pivotal role in decreasing mortality and morbidities posed by invasive fungal infections (IFIs). However, the recent emergence of multidrug-resistant Candida auris and Candida glabrata and acquiring invasive infections due to azole-resistant C. parapsilosis, C. tropicalis, and Aspergillus spp. in azole-naïve patients pose a serious health threat considering the limited number of systemic antifungals available to treat IFIs. Although advancing for major fungal pathogens, the understanding of fungal attributes contributing to antifungal resistance is just emerging for several clinically important MDR fungal pathogens. Further complicating the matter are the distinct differences in antifungal resistance mechanisms among various fungal species in which one or more mechanisms may contribute to the resistance phenotype. In this review, we attempt to summarize the burden of antifungal resistance for selected non-albicansCandida and clinically important Aspergillus species together with their phylogenetic placement on the tree of life. Moreover, we highlight the different molecular mechanisms between antifungal tolerance and resistance, and comprehensively discuss the molecular mechanisms of antifungal resistance in a species level.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Rocio Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| | - Farnaz Daneshnia
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands; (F.D.); (T.B.)
| | - Macit Ilkit
- Division of Mycology, University of Çukurova, 01330 Adana, Turkey;
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands; (F.D.); (T.B.)
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1012 WX Amsterdam, The Netherlands
| | - Toni Gabaldon
- Life Sciences Programme, Barcelona, Supercomputing Center (BSC-CNS), Jordi Girona, 08034 Barcelona, Spain;
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), 08024 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| |
Collapse
|
67
|
Antifungal In Vitro Activity of Pilosulin- and Ponericin-Like Peptides from the Giant Ant Dinoponera quadriceps and Synergistic Effects with Antimycotic Drugs. Antibiotics (Basel) 2020; 9:antibiotics9060354. [PMID: 32585881 PMCID: PMC7344683 DOI: 10.3390/antibiotics9060354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023] Open
Abstract
Venoms from ants comprise a rich source of bioactive peptides, including antimicrobial peptides. From the proteome and peptidome of the giant ant Dinoponera quadriceps venom, members of five known classes of antimicrobial peptides were disclosed (e.g., dermaseptin-, defensin-, ICK-, pilosulin- and ponericin-like types). Based on comparative analysis, these family members have structural determinants that indicate they could display antimicrobial activities. In previous works, pilosulin- and ponericin-like peptides were demonstrated to be active against bacteria, fungi, and parasites. Herein, the antifungal activity of ponericin- and pilosulin-like peptides were assessed, aiming at the expansion of the knowledge about AMPs in predatory ants and the development of new microbicide strategies to deal with difficult-to-treat fungal infections. Synthetic pilosulin- (Dq-2562, Dq-1503, and Dq-1319) and ponericin-like (Dq-3162) peptides were evaluated for their fungicide and fungistatic activities against different species of Candida, including a drug-resistant clinical strain. The MICs and MLCs were determined for all peptides individually and in combination with general antifungal drugs by the microdilution method. The time-kill kinetic curves were set up by means of a luminescent reagent, of which the light signal is proportional to the number of viable cells. The candicidal synergism observed by the combination of subinhibitory concentrations of peptides and general antimycotic drugs were quantified by the checkerboard test and fluorescent dye permeation assay. The influence of ergosterol on the antifungal activity was verified by supplementation of culture medium. The pilosulin- (Dq-2562 and Dq-1503) and ponericin-like (Dq-3162) were the most active peptides, displaying a broad spectrum of antifungal activity in vitro, with MICs in the range of 0.625 to 10 µM. The combination of peptides and conventional antimycotic drugs displayed a synergistic reduction in the MIC values of individual peptides and drugs, while soluble ergosterol in the culture medium increased the MICs. The fungicide and fungistatic activity of the individual peptides and peptides in combination with antimycotics were time-dependent with a rapid onset of action and long-lasting effect, which involved membrane disruption as an underlying mechanism of their action. Altogether, pilosulin- and ponericin-like peptides from the giant ant D. quadriceps venom display a broad-spectrum of candicidal activity, what allows their inclusion in the row of the antifungal peptides and gives support for further studies on the development of strategies to fight candidiasis.
Collapse
|