51
|
Duffner C, Holzapfel S, Wunderlich A, Einsiedl F, Schloter M, Schulz S. Dechloromonas and close relatives prevail during hydrogenotrophic denitrification in stimulated microcosms with oxic aquifer material. FEMS Microbiol Ecol 2021; 97:6081091. [PMID: 33428716 DOI: 10.1093/femsec/fiab004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 01/08/2021] [Indexed: 11/12/2022] Open
Abstract
Globally occurring nitrate pollution in groundwater is harming the environment and human health. In situ hydrogen addition to stimulate denitrification has been proposed as a remediation strategy. However, observed nitrite accumulation and incomplete denitrification are severe drawbacks that possibly stem from the specific microbial community composition. We set up a microcosm experiment comprising sediment and groundwater from a nitrate polluted oxic oligotrophic aquifer. After the microcosms were sparged with hydrogen gas, samples were taken regularly within 122 h for nitrate and nitrite measurements, community composition analysis via 16S rRNA gene amplicon sequencing and gene and transcript quantification via qPCR of reductase genes essential for complete denitrification. The highest nitrate reduction rates and greatest increase in bacterial abundance coincided with a 15.3-fold increase in relative abundance of Rhodocyclaceae, specifically six ASVs that are closely related to the genus Dechloromonas. The denitrification reductase genes napA, nirS and clade I nosZ also increased significantly over the observation period. We conclude that taxa of the genus Dechloromonas are the prevailing hydrogenotrophic denitrifiers in this nitrate polluted aquifer and the ability of hydrogenotrophic denitrification under the given conditions is species-specific.
Collapse
Affiliation(s)
- Clara Duffner
- Chair of Soil Science, TUM School of Life Sciences Weihenstephan, Technical University Munich, Emil-Ramann-Straße 2, 85354 Freising, Germany.,Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Sebastian Holzapfel
- Chair of Hydrogeology, Technical University Munich, Arcisstraße 21, 80333 Munich, Germany
| | - Anja Wunderlich
- Chair of Hydrogeology, Technical University Munich, Arcisstraße 21, 80333 Munich, Germany
| | - Florian Einsiedl
- Chair of Hydrogeology, Technical University Munich, Arcisstraße 21, 80333 Munich, Germany
| | - Michael Schloter
- Chair of Soil Science, TUM School of Life Sciences Weihenstephan, Technical University Munich, Emil-Ramann-Straße 2, 85354 Freising, Germany.,Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Stefanie Schulz
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
52
|
Wang L, Shao Z. Aerobic Denitrification and Heterotrophic Sulfur Oxidation in the Genus Halomonas Revealed by Six Novel Species Characterizations and Genome-Based Analysis. Front Microbiol 2021; 12:652766. [PMID: 33815342 PMCID: PMC8014003 DOI: 10.3389/fmicb.2021.652766] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
Bacteria of Halomonas are widely distributed in various environments and play a substantial role in the nutrient cycle. In this report, 14 strains capable of aerobic denitrification and heterotrophic sulfur oxidation were isolated from different habitats. Based on the phenotypic, genotypic, and chemotaxonomic analyses, these strains were considered to represent six novel species of the genus Halomonas, for which the names Halomonas zhangzhouensis sp. nov. type strain CXT3-11T ( = MCCC 1A11036T = KCTC 72087T), Halomonas aerodenitrificans sp. nov. CYD-9T ( = MCCC 1A11058T = KCTC 72088T), Halomonas sulfidoxydans sp. nov. CYN-1-2T ( = MCCC 1A11059T = KCTC 72089T), Halomonas ethanolica sp. nov. CYT3-1-1T ( = MCCC 1A11081T = KCTC 72090T), Halomonas sulfidivorans sp. nov. NLG_F1ET ( = MCCC 1A13718T = KCTC 72091T), and Halomonas tianxiuensis sp. nov. BC-M4-5T ( = MCCC 1A14433T = KCTC 72092T) are proposed. Intriguingly, they formed a unique group with 11 other species designated as the "H. desiderata group." To better understand their featured metabolisms, genes involved in denitrification and sulfur oxidation were analyzed, along with 193 other available genomes of the whole genus. Consistently, complete denitrification pathways were confirmed in the "H. desiderata group," in which napA, narG, nirS, norB, and nosZ genes coexist. Their nitrite reductase NirS formed a unique evolutionary lineage, distinguished from other denitrifiers in Halomonas. In addition, diverse occurrence patterns of denitrification genes were also observed in different phylogenetic clades of Halomonas. With respect to sulfur oxidation, fccAB genes involved in sulfide oxidation commonly exist in the "H. desiderata group," while sqr genes are diverse and can be found in more species; sqr genes co-occurred with fccAB in eight strains of this study, contributing to more active sulfide oxidation. Besides, the tsdA gene, which encodes an enzyme that oxidizes thiosulfate to tetrathionate, is ubiquitous in the genus Halomonas. The widespread presence of sqr/fccAB, pdo, and tsdA in Halomonas suggests that many Halomonas spp. can act as heterotrophic sulfur oxidizers. These results provide comprehensive insights into the potential of denitrification and sulfur oxidation in the whole genus of Halomonas. With regard to the global distribution of Halomonas, this report implies their unneglectable role in the biogeochemical cycle.
Collapse
Affiliation(s)
- Liping Wang
- School of Environment, Harbin Institute of Technology, Harbin, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Zongze Shao
- School of Environment, Harbin Institute of Technology, Harbin, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
53
|
Community Composition and Spatial Distribution of N-Removing Microorganisms Optimized by Fe-Modified Biochar in a Constructed Wetland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18062938. [PMID: 33805608 PMCID: PMC8000742 DOI: 10.3390/ijerph18062938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 11/17/2022]
Abstract
Microbial nitrogen (N) removal capability can be significantly enhanced in a horizontal subsurface flow constructed wetland (HSCW) amended by Fe-modified biochar (FeB). To further explore the microbiological mechanism of FeB enhancing N removal, nirS- and nirK-denitrifier community diversities, as well as spatial distributions of denitrifiers and anaerobic ammonium oxidation (anammox) bacteria, were investigated in HSCWs (C-HSCW: without biochar and FeB; B-HSCW: amended by biochar; FeB-HSCW: amended by FeB) treating tailwater from a wastewater treatment plant, with C-HSCW without biochar and FeB and B-HSCW amended by biochar as control. The community structures of nirS- and nirK-denitrifiers in FeB-HSCW were significantly optimized for improved N removal compared with the two other HSCWs, although no significant differences in their richness and diversity were detected among the HSCWs. The spatial distributions of the relative abundance of genes involved in denitrification and anammox were more heterogeneous and complex in FeB-HSCW than those in other HSCWs. More and larger high-value patches were observed in FeB-HSCW. These revealed that FeB provides more appropriate habitats for N-removing microorganisms, which can prompt the bacteria to use the habitats more differentially, without competitive exclusion. Overall, the Fe-modified biochar enhancement of the microbial N-removal capability of HSCWs was a result of optimized microbial community structures, higher functional gene abundance, and improved spatial distribution of N-removing microorganisms.
Collapse
|
54
|
Duffner C, Wunderlich A, Schloter M, Schulz S, Einsiedl F. Strategies to Overcome Intermediate Accumulation During in situ Nitrate Remediation in Groundwater by Hydrogenotrophic Denitrification. Front Microbiol 2021; 12:610437. [PMID: 33763037 PMCID: PMC7982820 DOI: 10.3389/fmicb.2021.610437] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
Bioremediation of polluted groundwater is one of the most difficult actions in environmental science. Nonetheless, the clean-up of nitrate polluted groundwater may become increasingly important as nitrate concentrations frequently exceed the EU drinking water limit of 50 mg L-1, largely due to intensification of agriculture and food production. Denitrifiers are natural catalysts that can reduce increasing nitrogen loading of aquatic ecosystems. Porous aquifers with high nitrate loading are largely electron donor limited and additionally, high dissolved oxygen concentrations are known to reduce the efficiency of denitrification. Therefore, denitrification lag times (time prior to commencement of microbial nitrate reduction) up to decades were determined for such groundwater systems. The stimulation of autotrophic denitrifiers by the injection of hydrogen into nitrate polluted regional groundwater systems may represent a promising remediation strategy for such environments. However, besides high costs other drawbacks, such as the transient or lasting accumulation of the cytotoxic intermediate nitrite or the formation of the potent greenhouse gas nitrous oxide, have been described. In this article, we detect causes of incomplete denitrification, which include environmental factors and physiological characteristics of the underlying bacteria and provide possible mitigation approaches.
Collapse
Affiliation(s)
- Clara Duffner
- Chair of Soil Science, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Research Unit Comparative Microbiome Analysis, Helmholtz Center Munich, Neuherberg, Germany
| | - Anja Wunderlich
- Chair of Hydrogeology, TUM Department of Civil, Geo and Environmental Engineering, Technical University of Munich, Munich, Germany
| | - Michael Schloter
- Chair of Soil Science, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Research Unit Comparative Microbiome Analysis, Helmholtz Center Munich, Neuherberg, Germany
| | - Stefanie Schulz
- Research Unit Comparative Microbiome Analysis, Helmholtz Center Munich, Neuherberg, Germany
| | - Florian Einsiedl
- Chair of Hydrogeology, TUM Department of Civil, Geo and Environmental Engineering, Technical University of Munich, Munich, Germany
| |
Collapse
|
55
|
Hou L, Zhang L, Chen X, Li X, Lin YB. The benefits of biochar: Enhanced cadmium remediation, inhibited precursor production of nitrous oxide and a short-term disturbance on rhizosphere microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116040. [PMID: 33280913 DOI: 10.1016/j.envpol.2020.116040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/16/2020] [Accepted: 10/14/2020] [Indexed: 06/12/2023]
Abstract
Biochar has the potential to remediate heavy metals in agricultural soil and mitigate nitrous oxide (N2O) emissions; however, the effects of biochar on heavy metal remediation, the soil microbial community and N2O emissions are not completely understood. In this study, we conducted a pot experiment in which Glycine max L. (soybean) was cultivated in two cadmium (Cd)-contaminated soils (low, 3.14 mg kg-1; high, 10.80 mg kg-1) to investigate the effects of biochar on the bioremediation of Cd, N2O emissions and the rhizosphere microbial community structure. The bioaccumulation of Cd in the plant shoots and roots increased with all biochar addition rates (0%, 1%, 5% and 10%); unexpectedly, the translocation capacity of Cd to the edible parts of the plant significantly decreased to 0.58 mg kg-1, which was close to the edible threshold (0.4 mg kg-1). The abundance and activities of functional marker genes of microbial nitrification (amoA) and denitrification (nirK, nirS and nosZ) were quantified with quantitative PCR, and we found that biochar addition reduced the precursor production of rhizoshpere N2O by inhibiting the transcription of the nirK gene. In addition, the nitrogenase activity during anthesis (S) was significantly (P < 0.05) increased with 1% (v/v) biochar addition. Noticeably, biochar addition only changed the microbial community structure in the very first stage before eventually stabilize. This study highlighted that biochar has the potential ability to maintain the quality of agricultural crops, remediate Cd-contaminated soils and may help reduce N2O emissions without disturbing the microbial community.
Collapse
Affiliation(s)
- Lijun Hou
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Liping Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Xiaotian Chen
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Xuewen Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yan Bing Lin
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
56
|
Hetz SA, Horn MA. Burkholderiaceae Are Key Acetate Assimilators During Complete Denitrification in Acidic Cryoturbated Peat Circles of the Arctic Tundra. Front Microbiol 2021; 12:628269. [PMID: 33613495 PMCID: PMC7892595 DOI: 10.3389/fmicb.2021.628269] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/18/2021] [Indexed: 01/23/2023] Open
Abstract
Cryoturbated peat circles (pH 4) in the Eastern European Tundra harbor up to 2 mM pore water nitrate and emit the greenhouse gas N2O like heavily fertilized agricultural soils in temperate regions. The main process yielding N2O under oxygen limited conditions is denitrification, which is the sequential reduction of nitrate/nitrite to N2O and/or N2. N2O reduction to N2 is impaired by pH < 6 in classical model denitrifiers and many environments. Key microbes of peat circles are important but largely unknown catalysts for C- and N-cycling associated N2O fluxes. Thus, we hypothesized that the peat circle community includes hitherto unknown taxa and is essentially unable to efficiently perform complete denitrification, i.e., reduce N2O, due to a low in situ pH. 16S rRNA analysis indicated a diverse active community primarily composed of the bacterial class-level taxa Alphaproteobacteria, Acidimicrobiia, Acidobacteria, Verrucomicrobiae, and Bacteroidia, as well as archaeal Nitrososphaeria. Euryarchaeota were not detected. 13C2- and 12C2-acetate supplemented anoxic microcosms with endogenous nitrate and acetylene at an in situ near pH of 4 were used to assess acetate dependent carbon flow, denitrification and N2O production. Initial nitrate and acetate were consumed within 6 and 11 days, respectively, and primarily converted to CO2 and N2, suggesting complete acetate fueled denitrification at acidic pH. Stable isotope probing coupled to 16S rRNA analysis via Illumina MiSeq amplicon sequencing identified acetate consuming key players of the family Burkholderiaceae during complete denitrification correlating with Rhodanobacter spp. The archaeal community consisted primarily of ammonia-oxidizing Archaea of Nitrososphaeraceae, and was stable during the incubation. The collective data indicate that peat circles (i) host acid-tolerant denitrifiers capable of complete denitrification at pH 4-5.5, (ii) other parameters like carbon availability rather than pH are possible reasons for high N2O emissions in situ, and (iii) Burkholderiaceae are responsive key acetate assimilators co-occurring with Rhodanobacter sp. during denitrification, suggesting both organisms being associated with acid-tolerant denitrification in peat circles.
Collapse
Affiliation(s)
- Stefanie A Hetz
- Institute of Microbiology, Leibniz University Hannover, Hannover, Germany
| | - Marcus A Horn
- Institute of Microbiology, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
57
|
Corrochano-Monsalve M, González-Murua C, Bozal-Leorri A, Lezama L, Artetxe B. Mechanism of action of nitrification inhibitors based on dimethylpyrazole: A matter of chelation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141885. [PMID: 32890835 DOI: 10.1016/j.scitotenv.2020.141885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 05/25/2023]
Abstract
In agriculture, the applied nitrogen (N) can be lost in the environment in different forms because of microbial transformations. It is of special concern the nitrate (NO3-) leaching and the nitrous oxide (N2O) emissions, due to their negative environmental impacts. Nitrification inhibitors (NIs) based on dimethylpyrazole (DMP) are applied worldwide in order to reduce N losses. These compounds delay ammonium (NH4+) oxidation by inhibiting ammonia-oxidizing bacteria (AOB) growth. However, their mechanism of action has not been demonstrated, which represent an important lack of knowledge to use them correctly. In this work, through chemical and biological analysis, we unveil the mechanism of action of the commonly applied 3,4-dimethyl-1H-pyrazole dihydrogen phosphate (DMPP) and the new DMP-based NI, 2-(3,4-dimethyl-1H-pyrazol-1-yl)-succinic acid (DMPSA). Our results show that DMP and DMPSA form complexes with copper (Cu2+) cations, an indispensable cofactor in the nitrification pathway. Three coordination compounds namely [Cu(DMP)4Cl2] (CuDMP1), [Cu(DMP)4SO4]n (CuDMP2) and [Cu(DMPSA)2]·H2O (CuDMPSA) have been synthesized and chemical and structurally characterized. The CuDMPSA complex is more stable than those containing DMP ligands; however, both NIs show the same nitrification inhibition efficiency in soils with different Cu contents, suggesting that the active specie in both cases is DMP. Our soil experiment reveals that the usual application dose is enough to inhibit nitrification within the range of Cu and Zn contents present in agricultural soils, although their effects vary depending on the content of these elements. As a result of AOB inhibition by these NIs, N2O-reducing bacteria seem to be beneficed in Cu-limited soils due to a reduction in the competence. This opens up the possibility to induce N2O reduction to N2 through Cu fertilization. On the other hand, when fertilizing with micronutrients such as Cu and Zn, the use of NIs could be beneficial to counteract the increase of nitrification derived from their application.
Collapse
Affiliation(s)
- Mario Corrochano-Monsalve
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Carmen González-Murua
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Adrián Bozal-Leorri
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Luis Lezama
- Department of Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Beñat Artetxe
- Department of Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
58
|
Chi Y, Ren T, Shi X, Jin X, Jin P. Mechanism of nutrient removal enhancement in low carbon/nitrogen wastewater by a novel high-frequency micro-aeration/anoxic (HMOA) mode. CHEMOSPHERE 2021; 263:128003. [PMID: 33297037 DOI: 10.1016/j.chemosphere.2020.128003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 05/26/2023]
Abstract
In this study, a novel high-frequency micro-aeration/anoxic (HMOA) mode with a high aeration frequency (15 times/h) and short aeration duration (Taer = 1 h/cycle) was proposed. Compared with continuous aeration modes, the highest nitrogen and phosphorus removal efficiencies were achieved in the sequencing batch reactor (SBR) under HMOA mode when treating wastewater with carbon/nitrogen (C/N) ratios of 4.5 (85% and 97%, respectively) and 3 (77% and 75%, respectively). Metagenomic analysis was utilized to analyse the microbial metabolic mechanism under the HMOA mode. The results showed that under the HMOA mode, the enhanced transduction and metabolism pathways of nitrate, nitrite, oxygen, phosphorus and acetate provided favourable nutritional conditions for the proliferation of denitrifiers and phosphorus accumulating organisms (PAOs), and simultaneously strengthened the survival capacity of nitrifiers under low dissolved oxygen (DO) conditions. In addition, genes involved in carbon metabolism were upregulated by the HMOA mode, which further increased the utility of carbon sources for denitrifier and PAO metabolism. Consequently, the limited carbon source could be fully utilized in nitrogen and phosphorus removal, which improved the efficiency of treating low C/N wastewater. This study proposed a potential aeration mode for microbial metabolism regulation to enhance nutrient removal in biological wastewater treatment processes.
Collapse
Affiliation(s)
- Yulei Chi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and, Technology, Xi'an, Shaanxi Province, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture, and Technology, Xi'an, Shaanxi Province, 710055, China
| | - Tong Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and, Technology, Xi'an, Shaanxi Province, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture, and Technology, Xi'an, Shaanxi Province, 710055, China
| | - Xuan Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and, Technology, Xi'an, Shaanxi Province, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture, and Technology, Xi'an, Shaanxi Province, 710055, China
| | - Xin Jin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and, Technology, Xi'an, Shaanxi Province, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture, and Technology, Xi'an, Shaanxi Province, 710055, China
| | - Pengkang Jin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and, Technology, Xi'an, Shaanxi Province, 710055, China; Northwest China Key Laboratory of Water Resources and Environment Ecology, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province, 710055, China.
| |
Collapse
|
59
|
Parsons C, Stüeken EE, Rosen CJ, Mateos K, Anderson RE. Radiation of nitrogen-metabolizing enzymes across the tree of life tracks environmental transitions in Earth history. GEOBIOLOGY 2021; 19:18-34. [PMID: 33108025 PMCID: PMC7894544 DOI: 10.1111/gbi.12419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 05/03/2023]
Abstract
Nitrogen is an essential element to life and exerts a strong control on global biological productivity. The rise and spread of nitrogen-utilizing microbial metabolisms profoundly shaped the biosphere on the early Earth. Here, we reconciled gene and species trees to identify birth and horizontal gene transfer events for key nitrogen-cycling genes, dated with a time-calibrated tree of life, in order to examine the timing of the proliferation of these metabolisms across the tree of life. Our results provide new insights into the evolution of the early nitrogen cycle that expand on geochemical reconstructions. We observed widespread horizontal gene transfer of molybdenum-based nitrogenase back to the Archean, minor horizontal transfer of genes for nitrate reduction in the Archean, and an increase in the proliferation of genes metabolizing nitrite around the time of the Mesoproterozoic (~1.5 Ga). The latter coincides with recent geochemical evidence for a mid-Proterozoic rise in oxygen levels. Geochemical evidence of biological nitrate utilization in the Archean and early Proterozoic may reflect at least some contribution of dissimilatory nitrate reduction to ammonium (DNRA) rather than pure denitrification to N2 . Our results thus help unravel the relative dominance of two metabolic pathways that are not distinguishable with current geochemical tools. Overall, our findings thus provide novel constraints for understanding the evolution of the nitrogen cycle over time and provide insights into the bioavailability of various nitrogen sources in the early Earth with possible implications for the emergence of eukaryotic life.
Collapse
Affiliation(s)
- Chris Parsons
- Carleton CollegeNorthfieldMNUSA
- Massachusetts Institute of TechnologyCambridgeMAUSA
| | | | | | | | - Rika E. Anderson
- Carleton CollegeNorthfieldMNUSA
- NASA NExSS Virtual Planetary LaboratoryUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
60
|
Truu M, Nõlvak H, Ostonen I, Oopkaup K, Maddison M, Ligi T, Espenberg M, Uri V, Mander Ü, Truu J. Soil Bacterial and Archaeal Communities and Their Potential to Perform N-Cycling Processes in Soils of Boreal Forests Growing on Well-Drained Peat. Front Microbiol 2020; 11:591358. [PMID: 33343531 PMCID: PMC7744593 DOI: 10.3389/fmicb.2020.591358] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022] Open
Abstract
Peatlands are unique wetland ecosystems that cover approximately 3% of the world’s land area and are mostly located in boreal and temperate regions. Around 15 Mha of these peatlands have been drained for forestry during the last century. This study investigated soil archaeal and bacterial community structure and abundance, as well as the abundance of marker genes of nitrogen transformation processes (nitrogen fixation, nitrification, denitrification, and dissimilatory nitrate reduction to ammonia) across distance gradients from drainage ditches in nine full-drained, middle-aged peatland forests dominated by Scots pine, Norway spruce, or Downy birch. The dominating tree species had a strong effect on the chemical properties (pH, N and C/N status) of initially similar Histosols and affected the bacterial and archaeal community structure and abundance of microbial groups involved in the soil nitrogen cycle. The pine forests were distinguished by having the lowest fine root biomass of trees, pH, and N content and the highest potential for N fixation. The distance from drainage ditches affected the spatial distribution of bacterial and archaeal communities (especially N-fixers, nitrifiers, and denitrifiers possessing nosZ clade II), but this effect was often dependent on the conditions created by the dominance of certain tree species. The composition of the nitrifying microbial community was dependent on the soil pH, and comammox bacteria contributed significantly to nitrate formation in the birch and spruce soils where the pH was higher than 4.6. The highest N2O emission was recorded from soils with higher bacterial and archaeal phylogenetic diversity such as birch forest soils. This study demonstrates that the long-term growth of forests dominated by birch, pine, and spruce on initially similar organic soil has resulted in tree-species-specific changes in the soil properties and the development of forest-type-specific soil prokaryotic communities with characteristic functional properties and relationships within microbial communities.
Collapse
Affiliation(s)
- Marika Truu
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Hiie Nõlvak
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Ivika Ostonen
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Kristjan Oopkaup
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Martin Maddison
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Teele Ligi
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Mikk Espenberg
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Veiko Uri
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Ülo Mander
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Jaak Truu
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
61
|
Tang H, Li C, Cheng K, Shi L, Wen L, Xiao X, Xu Y, Li W, Wang K. Effects of Short-Term Soil Tillage Management on Activity and Community Structure of Denitrifiers under Double- Cropping Rice Field. J Microbiol Biotechnol 2020; 30:1688-1696. [PMID: 32958734 PMCID: PMC9728280 DOI: 10.4014/jmb.2007.07012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022]
Abstract
Soil physical and chemical characteristics, soil potential denitrification rates (PDR), community composition and nirK-, nirS- and nosZ-encoding denitrifiers were studied by using MiSeq sequencing, quantitative polymerase chain reaction (qPCR), and terminal restriction fragment polymorphism (T-RFLP) technologies base on short-term (5-year) tillage field experiment. The experiment included four tillage treatments: conventional tillage with crop residue incorporation (CT), rotary tillage with crop residue incorporation (RT), no-tillage with crop residue retention (NT), and rotary tillage with crop residue removed as control (RTO). The results indicated that soil organic carbon, total nitrogen and NH4+-N contents were increased with CT, RT and NT treatments. Compared with RTO treatment, the copies number of nirK, nirS and nosZ in paddy soil with CT, RT and NT treatments were significantly increased. The principal coordinate analysis indicated that tillage management and crop residue returning management were the most and the second important factors for the change of denitrifying bacteria community, respectively. Meanwhile, this study indicated that activity and community composition of denitrifiers with CT, RT and NT treatments were increased, compared with RTO treatment. This result showed that nirK, nirS and nosZ-type denitrifiers communities in crop residue applied soil had higher species diversity compared with crop residue removed soil, and denitrifying bacteria community composition were dominated by Gammaproteobacteria, Deltaproteobacteria, and Betaproteobacteria. Therefore, it is a beneficial practice to increase soil PDR level, abundance and community composition of nitrogen-functional soil microorganism by combined application of tillage with crop residue management.
Collapse
Affiliation(s)
- Haiming Tang
- Hunan Soil and Fertilizer Institute, Changsha 4025, P.R. China,Corresponding author Phone: +86-731-84696102 Fax: +86-731-84691581 E-mail :
| | - Chao Li
- Hunan Soil and Fertilizer Institute, Changsha 4025, P.R. China
| | - Kaikai Cheng
- Hunan Soil and Fertilizer Institute, Changsha 4025, P.R. China
| | - Lihong Shi
- Hunan Soil and Fertilizer Institute, Changsha 4025, P.R. China
| | - Li Wen
- Hunan Soil and Fertilizer Institute, Changsha 4025, P.R. China
| | - Xiaoping Xiao
- Hunan Soil and Fertilizer Institute, Changsha 4025, P.R. China
| | - Yilan Xu
- Hunan Biological and Electromechanical Polytechnic, Changsha 41017, P.R. China
| | - Weiyan Li
- Hunan Soil and Fertilizer Institute, Changsha 4025, P.R. China
| | - Ke Wang
- Hunan Soil and Fertilizer Institute, Changsha 4025, P.R. China
| |
Collapse
|
62
|
Goberna M, Donat S, Pérez-Valera E, Hallin S, Verdú M. nir gene-based co-occurrence patterns reveal assembly mechanisms of soil denitrifiers in response to fire. Environ Microbiol 2020; 23:239-251. [PMID: 33118311 DOI: 10.1111/1462-2920.15298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 01/25/2023]
Abstract
Denitrification causes nitrogen losses from terrestrial ecosystems. The magnitude of nitrogen loss depends on the prevalence of denitrifiers, which show ecological differences if they harbour nirS or nirK genes encoding nitrite reductases with the same biological function. Thus, it is relevant to understand the mechanisms of co-existence of denitrifiers, including their response to environmental filters and competition due to niche similarities. We propose a framework to analyse the co-existence of denitrifiers across multiple assemblages by using nir gene-based co-occurrence networks. We applied it in Mediterranean soils before and during 1 year after an experimental fire. Burning did not modify nir community structure, but significantly impacted co-occurrence patterns. Bacteria with the same nir co-occurred in space, and those with different nir excluded each other, reflecting niche requirements: nirS abundance responded to nitrate and salinity, whereas nirK to iron content. Prior to fire, mutual exclusion between bacteria with the same nir suggested competition due to niche similarities. Burning provoked an immediate rise in mineral nitrogen and erased the signals of competition, which emerged again within days as nir abundances peaked. nir co-occurrence patterns can help infer the assembly mechanisms of denitrifying communities, which control nitrogen losses in the face of ecological disturbance.
Collapse
Affiliation(s)
- Marta Goberna
- Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Santiago Donat
- Department of Ecology, Centro de Investigaciones sobre Desertificación (CIDE - CSIC), Valencia, Spain
| | - Eduardo Pérez-Valera
- Department of Ecology, Centro de Investigaciones sobre Desertificación (CIDE - CSIC), Valencia, Spain.,Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology, České Budějovice, Czech Republic
| | - Sara Hallin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Miguel Verdú
- Department of Ecology, Centro de Investigaciones sobre Desertificación (CIDE - CSIC), Valencia, Spain
| |
Collapse
|
63
|
Chen Q, Fan J, Ming H, Su J, Wang Y, Wang B. Effects of environmental factors on denitrifying bacteria and functional genes in sediments of Bohai Sea, China. MARINE POLLUTION BULLETIN 2020; 160:111621. [PMID: 32919123 DOI: 10.1016/j.marpolbul.2020.111621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
The ability of denitrifying microorganisms to respond to different ecological pressures remains unknown, especially in marine sediments rich in various heavy metals. Here, gene abundance and transcriptional abundance of five functional denitrification genes (narG, nirK, nirS, norB, and nosZ) in Bohai Sea sediments were examined, and high-throughput Illumina sequencing was used to analyze the community structure of nirK and nirS denitrifying bacteria. The nirS- and nirK-type denitrifying bacteria were classified into different genera. The heavy metal content in sediments was negatively correlated with transcriptional abundance of denitrifying genes, and RNA: DNA ratio for each gene was highest in central Bohai Sea. These results indicated the distribution of nitrite reductase denitrifying bacterial communities was affected by depth, total nitrogen, total phosphorus and sediment grain size. Heavy metal contamination in sediment environment may negatively regulate the transcriptional abundance of denitrifying genes and cause geographical differences in the denitrifying bacterial community structure.
Collapse
Affiliation(s)
- Quanrui Chen
- National Marine Environmental Monitoring Center, Dalian 116023, China; Xiamen University, Xiamen 361000, China
| | - Jingfeng Fan
- National Marine Environmental Monitoring Center, Dalian 116023, China.
| | - Hongxia Ming
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Jie Su
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Yantao Wang
- National Marine Environmental Monitoring Center, Dalian 116023, China; Dalian Ocean University, Dalian 116000, China
| | - Bin Wang
- Dalian Ocean University, Dalian 116000, China
| |
Collapse
|
64
|
Effect of Aeration Mode on Microbial Structure and Efficiency of Treatment of TSS-Rich Wastewater from Meat Processing. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present study investigated the effect of aeration mode on microbial structure and efficiency of treatment of wastewater with a high concentration of suspended solids (TSS) from meat processing in sequencing batch reactors (R). R1 was constantly aerated, while in R2 intermittent aeration was applied. DNA was isolated from biomass and analyzed using next-generation sequencing (NGS) and real-time PCR. As a result, in R1 aerobic granular sludge was cultivated (SVI30 = 44 mL g−1 MLSS), while in R2 a very well-settling mixture of aerobic granules and activated sludge was obtained (SVI30 = 65 mL g−1 MLSS). Intermittent aeration significantly increased denitrification and phosphorus removal efficiencies (68% vs. 43%, 73% vs. 65%, respectively) but resulted in decomposition of extracellular polymeric substances and worse-settling properties of biomass. In both reactors, microbial structure significantly changed in time; an increase in relative abundances of Arenimonas sp., Rhodobacterace, Thauera sp., and Dokdonella sp. characterized the biomass of stable treatment of meat-processing wastewater. Constant aeration in R1 cycle favored growth of glycogen-accumulating Amaricoccus tamworthensis (10.9%) and resulted in 2.4 times and 1.4 times greater number of ammonia-oxidizing bacteria and full-denitrifiers genes in biomass, respectively, compared to the R2.
Collapse
|
65
|
Pandey CB, Kumar U, Kaviraj M, Minick KJ, Mishra AK, Singh JS. DNRA: A short-circuit in biological N-cycling to conserve nitrogen in terrestrial ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139710. [PMID: 32544704 DOI: 10.1016/j.scitotenv.2020.139710] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
This paper reviews dissimilatory nitrate reduction to ammonium (DNRA) in soils - a newly appreciated pathway of nitrogen (N) cycling in the terrestrial ecosystems. The reduction of NO3- occurs in two steps; in the first step, NO3- is reduced to NO2-; and in the second, unlike denitrification, NO2- is reduced to NH4+ without intermediates. There are two sets of NO3-/NO2- reductase enzymes, i.e., Nap/Nrf and Nar/Nir; the former occurs on the periplasmic-membrane and energy conservation is respiratory via electron-transport-chain, whereas the latter is cytoplasmic and energy conservation is both respiratory and fermentative (Nir, substrate-phosphorylation). Since, Nir catalyzes both assimilatory- and dissimilatory-nitrate reduction, the nrfA gene, which transcribes the NrfA protein, is treated as a molecular-marker of DNRA; and a high nrfA/nosZ (N2O-reductase) ratio favours DNRA. Recently, several crystal structures of NrfA have been presumed to producee N2O as a byproduct of DNRA via the NO (nitric-oxide) pathway. Meta-analyses of about 200 publications have revealed that DNRA is regulated by oxidation state of soils and sediments, carbon (C)/N and NO2-/NO3- ratio, and concentrations of ferrous iron (Fe2+) and sulfide (S2-). Under low-redox conditions, a high C/NO3- ratio selects for DNRA while a low ratio selects for denitrification. When the proportion of both C and NO3- are equal, the NO2-/NO3- ratio modulates partitioning of NO3-, and a high NO2-/NO3- ratio favours DNRA. A high S2-/NO3- ratio also promotes DNRA in coastal-ecosystems and saline sediments. Soil pH, temperature, and fine soil particles are other factors known to influence DNRA. Since, DNRA reduces NO3- to NH4+, it is essential for protecting NO3- from leaching and gaseous (N2O) losses and enriches soils with readily available NH4+-N to primary producers and heterotrophic microorganisms. Therefore, DNRA may be treated as a tool to reduce ground-water NO3- pollution, enhance soil health and improve environmental quality.
Collapse
Affiliation(s)
- C B Pandey
- ICAR-Central Arid Zone Research Institute, Jodhpur 342003, Rajasthan, India.
| | - Upendra Kumar
- ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India.
| | - Megha Kaviraj
- ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India
| | - K J Minick
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - A K Mishra
- International Rice Research Institute, New Delhi 110012, India
| | - J S Singh
- Ecosystem Analysis Lab, Centre of Advanced Study in Botany, Banaras Hindu University (BHU), Varanasi 221005, India
| |
Collapse
|
66
|
Zhang C, Cao K, Li Y, Zhao J, Peng W, Cao H, Xiao X. Long-term nitrogen fertilization shaped the nifH, nirK, and nosZ gene community patterns in red paddy soil in south China. Can J Microbiol 2020; 67:310-322. [PMID: 33022188 DOI: 10.1139/cjm-2020-0300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To understand the diversities of diazotrophs and denitrifiers in red paddy soil under long-term fertilization conditions, nifH, nirK, and nosZ libraries were constructed by PCR-RFLP. nirK gene diversity proved to be lower than that of nosZ and nifH, and nirK and nosZ genes were more sensitive to different fertilization treatments than the nifH gene was. The 3 libraries were dominated by diverse microbes, including the Alpha, Beta, Gamma, and Delta subclasses of the Proteobacteria. Long-term addition of urea with straw mulch and azophoska increased the abundance of nonsymbiotic diazotrophs, which indicated that nonsymbiotic diazotrophs were responsible for the majority of the nitrogen-fixing ability in paddy soil. In addition, a potential link between nifH and nosZ was found due to the existence of nitrogen fixers, such as Bradyrhizobium and Ralstonia, in the nosZ library. The main chemical factors affecting the 3 genes were identified: pH was the most important factor of the nifH community; the nirK gene was more affected by pH and organic matter; available potassium and the carbon-to-nitrogen ratio significantly influenced the community structure of the nosZ gene.
Collapse
Affiliation(s)
- Cunzhi Zhang
- College of Life Sciences/Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kaixun Cao
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou, Anhui 233100, China
| | - Yue Li
- College of Life Sciences/Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Juan Zhao
- College of Life Sciences/Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wentao Peng
- College of Life Sciences/Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hui Cao
- College of Life Sciences/Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xin Xiao
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou, Anhui 233100, China
| |
Collapse
|
67
|
Zhang X, Yang Q, Zhang Q, Jiang X, Wang X, Li Y, Zhao J, Qu K. Rapid detection of cytochrome cd1-containing nitrite reductase encoding gene nirS of denitrifying bacteria with loop-mediated isothermal amplification assay. Sci Rep 2020; 10:16484. [PMID: 33020497 PMCID: PMC7536394 DOI: 10.1038/s41598-020-73304-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/15/2020] [Indexed: 12/26/2022] Open
Abstract
The cytochrome cd1-containing nitrite reductase, nirS, plays an important role in biological denitrification. Consequently, investigating the presence and abundance of nirS is a commonly used approach to understand the distribution and potential activity of denitrifying bacteria, in addition to denitrifier communities. Herein, a rapid method for detecting nirS gene with loop-mediated isothermal amplification (LAMP) was developed, using Pseudomonas aeruginosa PAO1 (P. aeruginosa PAO1) as model microorganism to optimize the assay. The LAMP assay relied on a set of four primers that were designed to recognize six target sequence sites, resulting in high target specificity. The limit of detection for the LAMP assay under optimized conditions was 1.87 pg/reaction of genomic DNA, which was an order of magnitude lower than that required by conventional PCR assays. Moreover, it was validated that P. aeruginosa PAO1 cells as well as genomic DNA could be directly used as template. Only 1 h was needed from the addition of bacterial cells to the reaction to the verification of amplification success. The nirS gene of P. aeruginosa PAO1 in spiked seawater samples could be detected with both DNA-template based LAMP assay and cell-template based LAMP assay, demonstrating the practicality of in-field use.
Collapse
Affiliation(s)
- Xuzhi Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
| | - Qianqian Yang
- College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Qingli Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Xiaoyu Jiang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.,College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaochun Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Yang Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Jun Zhao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Keming Qu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China. .,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China.
| |
Collapse
|
68
|
Nitrous Oxide from Beef Cattle Manure: Effects of Temperature, Water Addition and Manure Properties on Denitrification and Nitrification. ATMOSPHERE 2020. [DOI: 10.3390/atmos11101056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Beef feedyards produce nitrous oxide (N2O), a potent greenhouse gas. Limited research has evaluated the processes that produce feedyard N2O, and how rainfall and temperature impact N2O losses. Manure in feedyard pens develops into a complex ecosystem of microbes, extracellular enzymes, feces, and urine, with varying H2O content. This study aimed to improve understanding of feedyard N cycling under differing environmental conditions by incubation of manure in simulated feedyard pens using large chambers under laboratory conditions. We hypothesized that nitrification was the primary source of feedyard N2O, with interactions among temperature, H2O content, and manure properties. Emissions of N2O were monitored with a real–time N2O analyzer. Manure samples were taken at intervals for analyses of physicochemical properties, denitrification enzyme activity (DEA), and nitrification activity (NA). Due to equipment limitations, there was only one chamber per temperature tested. Correlation was poor among N2O emissions and rates of DEA and NA. However, significant relationships were found among key manure characteristics, such as ammonia/ammonium and nitrate/nitrite concentrations, manure dry matter, redox status, and temperature. These data suggest that most N2O was derived from denitrification in the top 5 cm of the manure pack. Further study is warranted to identify the processes involved in flushes of N2O emitted immediately after rainfall, possibly due to abiotic chemical reactions that release N2O sequestered in manure pores.
Collapse
|
69
|
Liu RR, Tian Y, Zhou EM, Xiong MJ, Xiao M, Li WJ. Distinct Expression of the Two NO-Forming Nitrite Reductases in Thermus antranikianii DSM 12462 T Improved Environmental Adaptability. MICROBIAL ECOLOGY 2020; 80:614-626. [PMID: 32474659 DOI: 10.1007/s00248-020-01528-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/14/2020] [Indexed: 05/21/2023]
Abstract
Hot spring ecosystems are analogous to some thermal environments on the early Earth and represent ideal models to understand life forms and element cycling on the early Earth. Denitrification, an important component of biogeochemical nitrogen cycle, is highly active in hot springs. Nitrite (NO2-) reduction to nitric oxide (NO) is the significant and rate-limiting pathway in denitrification and is catalyzed by two types of nitrite reductases, encoded by nirS and nirK genes. NirS and NirK were originally considered incompatible in most denitrifying organisms, although a few strains have been reported to possess both genes. Herein, we report the functional division of nirS and nirK in Thermus, a thermophilic genus widespread in thermal ecosystems. Transcriptional levels of nirS and nirK coexisting in Thermus antranikianii DSM 12462T were measured to assess the effects of nitrite, oxygen, and stimulation time. Thirty-nine Thermus strains were used to analyze the phylogeny and distribution of nirS and nirK; six representative strains were used to assess the denitrification phenotype. The results showed that both genes were actively transcribed and expressed independently in T. antranikianii DSM 12462T. Strains with both nirS and nirK had a wider range of nitrite adaptation and revealed nir-related physiological adaptations in Thermus: nirK facilitated adaptation to rapid changes and extended the adaptation range of nitrite under oxygen-limited conditions, while nirS expression was higher under oxic and relatively stable conditions.
Collapse
Affiliation(s)
- Rui-Rui Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ye Tian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - En-Min Zhou
- School of Resource Environment and Earth Science, Yunnan Institute of Geography, Yunnan University, Kunming, 650091, People's Republic of China
| | - Meng-Jie Xiong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Min Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| |
Collapse
|
70
|
Aguilar-Rangel EJ, Prado BL, Vásquez-Murrieta MS, Los Santos PED, Siebe C, Falcón LI, Santillán J, Alcántara-Hernández RJ. Temporal analysis of the microbial communities in a nitrate-contaminated aquifer and the co-occurrence of anammox, n-damo and nitrous-oxide reducing bacteria. JOURNAL OF CONTAMINANT HYDROLOGY 2020; 234:103657. [PMID: 32777591 DOI: 10.1016/j.jconhyd.2020.103657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/13/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
Groundwater-N pollution derives from agricultural and urban activities, and compromises water quality in shallow aquifers, putting human and environmental health at risk. Nonetheless, subsurface microbiota can transform dissolved inorganic nitrogen into N2. In this study, we surveyed the microbial community of a shallow aquifer by sampling one well, one piezometer and a spring within an agricultural area that receives N-inputs of more than 700 kg/ha per year through irrigation with wastewater. The survey was conducted during a year with a 16S rRNA next-gen approach. In parallel, we quantified the number of gene copies and transcripts related to anaerobic ammonium oxidation (anammox, hzo), nitrite-dependent anaerobic methane oxidation (n-damo, nod and pmoA) and nitrous oxide reduction (last step of denitrification, nosZ), during the dry and rainy seasons. Our results showed that the groundwater samples had 17.7 to 22.5 mg/L of NO3--N. The bacterial and archaeal community structure was distinctive at each site, and it remained relatively stable over time. We verified the co-occurrence of N-transforming bacteria, which was correlated with the concentration of NO2-/NO3- and ORP/DO values (DO: ~3.0 mg/L). Our analyses suggest that these conditions may allow the presence of nitrifying microorganisms which can couple with anammox, n-damo and denitrifying bacteria in interrelated biogeochemical pathways. Gene density (as the number of gene copies per litre) was lower in the rainy season than in the dry season, possibly due to dilution by rainwater infiltration. Yet, the numbers of hzo gene copies here found were similar to those reported in oceanic oxygen minimum zones and in a carbonate-rock aquifer. The transcript sequences showed that Candidatus Brocadia spp. (anammox), Candidatus Methylomirabilis spp. (n-damo) and autotrophic denitrifying Betaproteobacteria coexist in the groundwater environment, with the potential to attenuate the concentration of dissolved inorganic nitrogen by reducing it to N2 rather than N2O; delivering thus, an important ecosystem service to remove contaminants.
Collapse
Affiliation(s)
- Eduardo J Aguilar-Rangel
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Del. Coyoacán, 04510 Ciudad de México, Mexico
| | - Blanca L Prado
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Del. Coyoacán, 04510 Ciudad de México, Mexico
| | - María Soledad Vásquez-Murrieta
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Del. Miguel Hidalgo, 11340 Ciudad de México, Mexico
| | - Paulina Estrada-de Los Santos
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Del. Miguel Hidalgo, 11340 Ciudad de México, Mexico
| | - Christina Siebe
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Del. Coyoacán, 04510 Ciudad de México, Mexico
| | - Luisa I Falcón
- Instituto de Ecología, Universidad Nacional Autónoma de México, Parque Científico y Tecnológico de Yucatán, 97302, Yucatán, Mexico
| | - Jazmín Santillán
- Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Del. Coyoacán, 04510 Ciudad de México, Mexico
| | - Rocío J Alcántara-Hernández
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Del. Coyoacán, 04510 Ciudad de México, Mexico.
| |
Collapse
|
71
|
Fukushi M, Mino S, Tanaka H, Nakagawa S, Takai K, Sawabe T. Biogeochemical Implications of N 2O-Reducing Thermophilic Campylobacteria in Deep-Sea Vent Fields, and the Description of Nitratiruptor labii sp. nov. iScience 2020; 23:101462. [PMID: 32866828 PMCID: PMC7476070 DOI: 10.1016/j.isci.2020.101462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/21/2020] [Accepted: 08/12/2020] [Indexed: 01/02/2023] Open
Abstract
Nitrous oxide (N2O) is a potent greenhouse gas and has significantly increased in the atmosphere. Deep-sea hydrothermal fields are representative environments dominated by mesophilic to thermophilic members of the class Campylobacteria that possess clade II nosZ encoding nitrous oxide reductase. Here, we report a strain HRV44T representing the first thermophilic campylobacterium capable of growth by H2 oxidation coupled to N2O reduction. On the basis of physiological and genomic properties, it is proposed that strain HRV44T (=JCM 34002 = DSM 111345) represents a novel species of the genus Nitratiruptor, Nitratiruptor labii sp. nov. The comparison of the N2O consumption ability of strain HRV44T with those of additional Nitratiruptor and other campylobacterial strains revealed the highest level in strain HRV44T and suggests the N2O-respiring metabolism might be the common physiological trait for the genus Nitratiruptor. Our findings provide insights into contributions of thermophilic Campylobacteria to the N2O sink in deep-sea hydrothermal environments.
Collapse
Affiliation(s)
- Muneyuki Fukushi
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1, Minato-cho, Hakodate 041-8611, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1, Minato-cho, Hakodate 041-8611, Japan
| | - Hirohisa Tanaka
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1, Minato-cho, Hakodate 041-8611, Japan
| | - Satoshi Nakagawa
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Ken Takai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1, Minato-cho, Hakodate 041-8611, Japan
| |
Collapse
|
72
|
Du L, Zhao Y, Wang C, Wu Z, Zhou Q. Effects of plant on denitrification pathways in integrated vertical-flow constructed wetland treating swine wastewater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110752. [PMID: 32474208 DOI: 10.1016/j.ecoenv.2020.110752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/25/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Plant is an important part of constructed wetland (CW), while, its potential effect on nitrogen cycling is complicated. Herein, integrated vertical-flow constructed wetland (IVCW) in pilot-scale planted with Arundo donax (Planted System, PS) was constructed to treat swine wastewater. The removal performance of nitrogen in PS, effects of plant on the microbial community structure and nitrogen related function genes were revealed. Results showed that, Arundo donax planting enhanced the removal rate of TN, compared to unplanted IVCWs, the absolute abundance of Pseudomonas, Acinetobacter and Bacillus in PS was significantly increased, as well as the absolute abundance of functional gene (amoA, nxrA, nirK, nirS and nosZ). The denitrification process was mainly occurred in down-flow cell of PS with significantly higher abundant of nirK and nosZ (P < 0.05). These findings suggested that Arundo donax planting in IVCWs with zeolite as substrate promoted the growth of denitrifying microorganisms under higher pollutant load. In addition, the increased abundant of nosZ and the ratio of nosZ/∑nir indicating a lower genetic potential for N2O release. Our research provides new insight into the potential application of plant on the purification of swine wastewater.
Collapse
Affiliation(s)
- Lu Du
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; College of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Yuqing Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; College of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Chuan Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| |
Collapse
|
73
|
Genome characteristics of Kordia antarctica IMCC3317 T and comparative genome analysis of the genus Kordia. Sci Rep 2020; 10:14715. [PMID: 32895436 PMCID: PMC7477175 DOI: 10.1038/s41598-020-71328-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/10/2020] [Indexed: 11/25/2022] Open
Abstract
The genus Kordia is one of many genera affiliated with the family Flavobacteriaceae of the phylum Bacteroidetes, well known for its degradation of high molecular weight organic matters. The genus Kordia currently comprises eight species, type strains of which have been isolated from a diverse range of marine environments. As of this report, four genome sequences have been submitted for cultured strains of Kordia, but none are complete nor have they been analyzed comprehensively. In this study, we report the complete genome of Kordia antarctica IMCC3317T, isolated from coastal seawater off the Antarctic Peninsula. The complete genome of IMCC3317T consists of a single circular chromosome with 5.5 Mbp and a 33.2 mol% of G+C DNA content. The IMCC3317T genome showed features typical of chemoheterotrophic marine bacteria and similar to other Kordia genomes, such as complete gene sets for the Embden–Meyerhof–Parnas glycolysis pathway, tricarboxylic acid cycle and oxidative phosphorylation. The genome also encoded many carbohydrate-active enzymes, some of which were clustered into approximately seven polysaccharide utilization loci, thereby demonstrating the potential for polysaccharide utilization. Finally, a nosZ gene encoding nitrous oxide reductase, an enzyme that catalyzes the reduction of N2O to N2 gas, was also unique to the IMCC3317T genome.
Collapse
|
74
|
Suter EA, Pachiadaki MG, Montes E, Edgcomb VP, Scranton MI, Taylor CD, Taylor GT. Diverse nitrogen cycling pathways across a marine oxygen gradient indicate nitrogen loss coupled to chemoautotrophic activity. Environ Microbiol 2020; 23:2747-2764. [PMID: 32761757 DOI: 10.1111/1462-2920.15187] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 08/01/2020] [Accepted: 08/02/2020] [Indexed: 11/28/2022]
Abstract
Genetic markers and geochemical assays of microbial nitrogen cycling processes, including autotrophic and heterotrophic denitrification, anammox, ammonia oxidation, and nitrite oxidation, were examined across the oxycline, suboxic, and anoxic zones of the Cariaco Basin, Venezuela. Ammonia and nitrite oxidation genes were expressed through the entire gradient. Transcripts associated with autotrophic and heterotrophic denitrifiers were mostly confined to the suboxic zone and below but were also present in particles in the oxycline. Anammox genes and transcripts were detected over a narrow depth range near the bottom of the suboxic zone and coincided with secondary NO2 - maxima and available NH4 + . Dissolved inorganic nitrogen (DIN) amendment incubations and comparisons between our sampling campaigns suggested that denitrifier activity may be closely coupled with NO3 - availability. Expression of denitrification genes at depths of high rates of chemoautotrophic carbon fixation and phylogenetic analyses of nitrogen cycling genes and transcripts indicated a diverse array of denitrifiers, including chemoautotrophs capable of using NO3 - to oxidize reduced sulfur species. Thus, results suggest that the Cariaco Basin nitrogen cycle is influenced by autotrophic carbon cycling in addition to organic matter oxidation and anammox.
Collapse
Affiliation(s)
- Elizabeth A Suter
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA.,Biology, Chemistry, and Environmental Studies Department, Center for Environmental Research and Coastal Oceans Monitoring, Molloy College, Rockville Centre, NY, USA.,Department of Biological Sciences, Wagner College, Staten Island, NY, USA
| | - Maria G Pachiadaki
- Woods Hole Oceanographic Institution, Woods Hole, MA, USA.,Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | - Enrique Montes
- College of Marine Science, University of South Florida, St. Petersburg, FL, USA
| | | | - Mary I Scranton
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Craig D Taylor
- Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Gordon T Taylor
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
75
|
Hira D, Matsumura M, Kitamura R, Furukawa K, Fujii T. Unique hexameric structure of copper-containing nitrite reductase of an anammox bacterium KSU-1. Biochem Biophys Res Commun 2020; 526:654-660. [DOI: 10.1016/j.bbrc.2020.03.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 10/24/2022]
|
76
|
Xu L, Zhang B, Peng X, Zhang X, Sun B, Sun H, Jiang C, Zhou S, Zeng X, Bai Z, Xu S, Zhuang X. Dynamic variations of microbial community structure in Myriophyllum aquaticum constructed wetlands in response to different NH4+-N concentrations. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
77
|
Brin LD, Goyer C, Zebarth BJ, Burton DL, Chantigny MH. Linking changes in snow cover with microbial nitrogen cycling functional gene abundance and expression in agricultural soil. FEMS Microbiol Ecol 2020; 95:5511778. [PMID: 31167230 DOI: 10.1093/femsec/fiz073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/04/2019] [Indexed: 11/12/2022] Open
Abstract
In eastern Canada, climate change-related warming and increased precipitation may alter winter snow cover, with potential consequences for soil conditions, nitrogen (N) cycling, and microbes. We conducted a 2-year field study aimed at determining the influence of snow removal, snow accumulation, and ambient snow in a potato-barley crop system on the abundance and expression of denitrifier (nirS, nirK, nosZ) and nitrifier (ammonium oxidizing archaeal (AOA) and bacterial (AOB) amoA) genes. Denitrifier and nitrifier abundance and expression results were compared to N2O production, soil atmosphere accumulation, and surface fluxes. In the first winter, nirK abundance was lowest while AOB abundance was greatest in snow accumulation treatments. In the second winter, greatest abundances were observed in the ambient snow treatment, which had greatest N2O accumulation and spring thaw fluxes, suggesting a link between microbial populations and biogeochemical functioning. Treatment effects on gene expression were limited, but greatest AOA, AOB, and nosZ expression was measured near 0°C and above 15°C, indicating that activity was promoted by freeze-thaw conditions and at summer temperatures. Overall, effects of changing snow depth on denitrifier and nitrifier abundance were not solely due to change in soil temperature, but also to soil moisture and/or interactions between these parameters.
Collapse
Affiliation(s)
- Lindsay D Brin
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, Fredericton, New Brunswick, E3B 4Z7, Canada
| | - Claudia Goyer
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, Fredericton, New Brunswick, E3B 4Z7, Canada
| | - Bernie J Zebarth
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, Fredericton, New Brunswick, E3B 4Z7, Canada
| | - David L Burton
- Department of Environmental Sciences, Dalhousie University, Agricultural Campus, PO Box 550, Truro, Nova Scotia, B2N 5E3, Canada
| | - Martin H Chantigny
- Québec Research and Development Centre, Agriculture and Agri-Food Canada, 2560 Hochelaga Boulevard, Québec, Québec, G1V 2J3, Canada
| |
Collapse
|
78
|
Liu T, He X, Jia G, Xu J, Quan X, You S. Simultaneous nitrification and denitrification process using novel surface-modified suspended carriers for the treatment of real domestic wastewater. CHEMOSPHERE 2020; 247:125831. [PMID: 31935576 DOI: 10.1016/j.chemosphere.2020.125831] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 05/27/2023]
Abstract
Moving-bed biofilm reactor (MBBR) is a well-established technology for simultaneous nitrification and denitrification (SND). In MBBR, biofilm development and pollutant removal performance are strictly governed by the physico-chemical properties of the carriers. In this study, novel surface-modified carriers with enhanced hydrophilicity (surface contact angle of 60.2 ± 2.3°) and positively-charged surfaces (+11.7 ± 1.1 mV, pH 7.0) had been prepared successfully via polymer blending, and they had also been implemented in SND system for the treatment of real domestic wastewater. Results showed that accelerated startup of SND with more biomass on the carriers was observed in MBBR system filled with surface-modified carriers. At low DO level (0.6-0.8 mg L-1) and low C/N ratio (≤5), highly efficient organics removal and SND performance could be achieved with COD removal, TN removal and SND efficiencies of 79.3-85.7%, 62.0-75.9% and 58.5-71.8%, respectively. The efficient performance of SND in MBBR system filled with surface-modified carriers was mainly attributed to the coexistence of enriched mixtrophic nitrifiers and denitrifiers like autotrophic nitrifers (Nitrosomonas, Nitrospira, Nitrobacter), heterotrophic nitrifers (Rudaea), aerobicdenitrifiers (Dokdonella, Terrimonas), anoxic denitrifiers (Gemmobacter, Ottowia, Methyloversatilis, Thermomonas) and N2O producer (Mesorhizobium).
Collapse
Affiliation(s)
- Tao Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Xiaolu He
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Guangyue Jia
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jiawei Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
79
|
Unda-Calvo J, Ruiz-Romera E, Martínez-Santos M, Vidal M, Antigüedad I. Multivariate statistical analyses for water and sediment quality index development: A study of susceptibility in an urban river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:135026. [PMID: 32000333 DOI: 10.1016/j.scitotenv.2019.135026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
In this study, multivariate statistical analyses were performed to develop water and sediment quality indexes, allowing us (i) to select with reliability the most appropriate chemical variables for the evaluation of river quality susceptibility; (ii) to weight the influence of each variable based on monitored data; (iii) to consider possible synergism or antagonism derived from the combined effect of several pollutants; and (iv) to express the quality as a deviation from selected site-specific reference conditions. For the establishment of these threshold/maximum values, combining two biological indicators related to denitrifying bacteria in sediments turned out to be applicable to ensure compliance with the European water quality standard. The joint implementation of water and sediment quality indexes assisted us in the rapid detection of the deleterious effect of different anthropogenic contamination sources, as well as the influence of hydrological regime seasonality on river quality. In addition, metal-dependent water quality appeared to be coupled to sediment dynamics, since they were preferentially adsorbed onto sediments during low flow seasons, whereas there was potential for metal mobilization to water during sediment resuspension in high flow seasons. Therefore, an annual determination of sediment quality index was also recommended as suitable tool for prospective monitoring water quality, identifying those sites which could deserve special attention during certain periods, and planning future strategies for river quality improvement. However, two limitations were found: (1) sediment was not appropriate for water physicochemical quality early monitoring due to organic matter and nutrient continuous transformation; and (2) a multimetric index did not provide a concise and definitive quality information, thus a new tool for combining with quality index was proposed for specifically evaluate the water and sediment quality by identifying pollutant/s of concern at each location.
Collapse
Affiliation(s)
- Jessica Unda-Calvo
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, Bilbao 48013, Basque Country, Spain.
| | - Estilita Ruiz-Romera
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, Bilbao 48013, Basque Country, Spain
| | - Miren Martínez-Santos
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, Bilbao 48013, Basque Country, Spain
| | - Maider Vidal
- Department of Applied Chemistry, University of the Basque Country (UPV/EHU), Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Basque Country, Spain
| | - Iñaki Antigüedad
- Department of Geodynamic, University of the Basque Country (UPV/EHU), Leioa 48940, Basque Country, Spain
| |
Collapse
|
80
|
Phylogenomics of Rhodocyclales and its distribution in wastewater treatment systems. Sci Rep 2020; 10:3883. [PMID: 32127605 PMCID: PMC7054561 DOI: 10.1038/s41598-020-60723-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/11/2020] [Indexed: 11/09/2022] Open
Abstract
Rhodocyclales is an abundant bacterial order in wastewater treatment systems and putatively plays key roles in multiple functions. Its phylogenomics, prevalence of denitrifying genes in sub-lineages and distribution in wastewater treatment plants (WWTPs) worldwide have not been well characterized. In the present study, we collected 78 Rhodocyclales genomes, including 17 from type strains, non-type strains and genome bins contributed by this study. Phylogenomics indicated that the order could be divided into five family-level lineages. With only a few exceptions (mostly in Rhodocyclaceae), nirS-containing genomes in this order usually contained the downstream genes of norB and nosZ. Multicopy of denitrifying genes occurred frequently and events of within-order horizontal transfer of denitrifying genes were phylogenetically deduced. The distribution of Rhodocyclaceae, Zoogloeaceae and Azonexaceae in global WWTPs were significantly governed by temperature, mixed liquor suspended solids, etc. Metagenomic survey showed that the order generally ranked at the top or second for different denitrifying genes in wastewater treatment systems. Our results provided comprehensive genomic insights into the phylogeny and features of denitrifying genes of Rhodocyclales. Its contribution to the denitrifying gene pool in WWTPs was proved.
Collapse
|
81
|
Hydrilla verticillata-Sulfur-Based Heterotrophic and Autotrophic Denitrification Process for Nitrate-Rich Agricultural Runoff Treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17051574. [PMID: 32121360 PMCID: PMC7084213 DOI: 10.3390/ijerph17051574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/11/2020] [Accepted: 02/25/2020] [Indexed: 11/17/2022]
Abstract
Hydrilla verticillata-sulfur-based heterotrophic and autotrophic denitrification (HSHAD) process was developed in free water surface constructed wetland mesocosms for the treatment of nitrate-rich agricultural runoff with low chemical oxygen demand/total nitrogen (C/N) ratio, whose feasibility and mechanism were extensively studied and compared with those of H. verticillata heterotrophic denitrification (HHD) mesocosms through a 273-day operation. The results showed that the heterotrophic and autotrophic denitrification can be combined successfully in HSHAD mesocosms, and achieve satisfactory nitrate removal performance. The average NO3--N removal efficiency and denitrification rate of HSHAD were 94.4% and 1.3 g NO3--N m-3·d-1 in steady phase II (7-118 d). Most nitrate was reduced by heterotrophic denitrification with sufficient organic carbon in phase I (0-6 d) and II, i.e., the C/N ratio exceeded 4.0, and no significant difference of nitrate removal capacity was observed between HSHAD and HHD mesocosms. During phase III (119-273 d), sulfur autotrophic denitrification gradually dominated the HSHAD process with the C/N ratio less than 4.0, and HSHAD mesocosms obtained higher NO3--N removal efficiency and denitrification rate (79.1% and 1.1 g NO3--N m-3·d-1) than HHD mesocosms (65.3% and 1.0 g NO3--N m-3·d-1). As a whole, HSHAD mesocosms removed 58.8 mg NO3--N more than HHD mesocosms. pH fluctuated between 6.9-9.0 without any pH buffer. In general, HSHAD mesocosms were more stable and efficient than HHD mesocosms for NO3--N removal from agricultural runoff during long-term operation. The denitrificans containing narG (1.67 × 108 ± 1.28 × 107 copies g-1 mixture-soil-1), nirS (8.25 × 107 ± 8.95 × 106 copies g-1 mixture-soil-1), and nosZ (1.56 × 106 ± 1.60 × 105 copies g-1 mixture-soil-1) of litter bags and bottoms in HSHAD were higher than those in HHD, which indicated that the combined heterotrophic and autotrophic denitrification can increase the abundance of denitrificans containing narG, nirS, and nosZ, thus leading to better denitrification performance.
Collapse
|
82
|
Avşar C, Aras ES. Quantification of denitrifier genes population size and its relationship with environmental factors. Arch Microbiol 2020; 202:1181-1192. [PMID: 32076734 DOI: 10.1007/s00203-020-01826-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 10/25/2022]
Abstract
The objectives of this study were to use real-time PCR for culture-independent quantification of the copy numbers of 16S rRNA and denitrification functional genes, and also the relationships between gene copy numbers and soil physicochemical properties. In this study, qPCR analysis of the soil samples showed 16S rRNA, nirS, nirK, nosZI and nosZII average densities of 3.0 × 108, 2.25 × 107, 2.9 × 105, 4.0 × 106 and 1.75 × 107 copies per gram of dry soil, respectively. In addition, the abundances of (nirS + nirK), nosZI and nosZII relative to 16S rRNA genes were 1.4-34.1%, 0.06-3.95% and 1.3-39%, respectively, confirming the low proportion of denitrifiers to total bacteria in soil. This showed that the non-denitrifying nosZII-type bacteria may contribute significantly to N2O consumption in the soil. Furthermore, the shifts in abundance and diversity of the total bacteria and denitrification functional gene copy numbers correlated significantly with the various soil factors. It is the first study in Turkey about the population size of denitrification functional genes in different soil samples. It also aims to draw attention to nitrous oxide-associated global warming.
Collapse
Affiliation(s)
- Cumhur Avşar
- Department of Biology, Faculty of Arts and Sciences, Sinop University, Sinop, Turkey.
| | - E Sümer Aras
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| |
Collapse
|
83
|
Fujimura R, Azegami Y, Wei W, Kakuta H, Shiratori Y, Ohte N, Senoo K, Otsuka S, Isobe K. Distinct Community Composition of Previously Uncharacterized Denitrifying Bacteria and Fungi across Different Land-Use Types. Microbes Environ 2020; 35:ME19064. [PMID: 31996500 PMCID: PMC7104279 DOI: 10.1264/jsme2.me19064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/04/2019] [Indexed: 11/30/2022] Open
Abstract
Recent studies demonstrated that phylogenetically more diverse and abundant bacteria and fungi than previously considered are responsible for denitrification in terrestrial environments. We herein examined the effects of land-use types on the community composition of those denitrifying microbes based on their nitrite reductase gene (nirK and nirS) sequences. These genes can be phylogenetically grouped into several clusters. We used cluster-specific PCR primers to amplify nirK and nirS belonging to each cluster because the most widely used primers only amplify genes belonging to a single cluster. We found that the dominant taxa as well as overall community composition of denitrifying bacteria and fungi, regardless of the cluster they belonged to, differed according to the land-use type. We also identified distinguishing taxa based on individual land-use types, the distribution of which has not previously been characterized, such as denitrifying bacteria or fungi dominant in forest soils, Rhodanobacter having nirK, Penicillium having nirK, and Bradyrhizobium having nirS. These results suggest that land-use management affects the ecological constraints and consequences of denitrification in terrestrial environments through the assembly of distinct communities of denitrifiers.
Collapse
Affiliation(s)
- Reiko Fujimura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113–8657, Japan
| | - Yoichi Azegami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113–8657, Japan
| | - Wei Wei
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113–8657, Japan
- Jiangsu University, Jiangsu 212013, China
| | - Hiroko Kakuta
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113–8657, Japan
| | - Yutaka Shiratori
- Niigata Agricultural Research Institute, Niigata 940–0826, Japan
| | - Nobuhito Ohte
- Graduate School of Informatics, Kyoto University, Kyoto 606–8501, Japan
| | - Keishi Senoo
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113–8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113–8657, Japan
| | - Shigeto Otsuka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113–8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113–8657, Japan
| | - Kazuo Isobe
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113–8657, Japan
| |
Collapse
|
84
|
Shah P, Wang ZW. Using digital polymerase chain reaction to characterize microbial communities in wetland mesocosm soils under different vegetation and seasonal nutrient loadings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:269-277. [PMID: 31276994 DOI: 10.1016/j.scitotenv.2019.06.305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
Constructed wetlands are multi-functional systems that can effectively store and transform pollutants primarily through natural processes. However, the removal of nitrogen pollutant by wetlands is highly variable, likely due to a combination of factors such as plant species-specific assimilation behavior, the effects of soil microbial diversity, and variable nitrogen inputs. In this study, the effects of plant species richness (i.e., number of plant species in a system) and seasonal nutrient loading (i.e., nitrogen fertilization) on the microbial community responsible for regulating nitrogen turnover in wetland mesocosm soils was investigated. Digital polymerase chain reaction was used to quantify bacterial abundance. Principal component analysis was employed to identify dominant patterns within the data, and resampling-based analysis of variance was used to assess statistical significance of any observed differences caused by fertilization, season, and/or plant species richness. Results indicated that fertilization or season, which was convolved with fertilization, was the dominant factor influencing the microbial community in the study environment. The effects of plant species richness were more nuanced. Its greater richness significantly impacted the abundance of only a subset of bacterial groups (i.e., the ammonia oxidizing bacteria, Nitrospira spp. of nitrite-oxidizing bacteria, and comammox, but not the denitrifying bacteria).
Collapse
Affiliation(s)
- Parita Shah
- Occoquan Laboratory, Department of Civil and Environmental Engineering, Virginia Tech, Manassas, VA, USA
| | - Zhi-Wu Wang
- Occoquan Laboratory, Department of Civil and Environmental Engineering, Virginia Tech, Manassas, VA, USA.
| |
Collapse
|
85
|
Fu G, Zhao L, Huangshen L, Wu J. Isolation and identification of a salt-tolerant aerobic denitrifying bacterial strain and its application to saline wastewater treatment in constructed wetlands. BIORESOURCE TECHNOLOGY 2019; 290:121725. [PMID: 31301568 DOI: 10.1016/j.biortech.2019.121725] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
A salt-tolerant aerobic denitrifying bacterium, Zobellella denitrificans strain A63, was isolated, and its effects on the efficiency of denitrification of saline wastewater and the denitrifying microbial community structure in the matrix were studied in vertical-flow constructed wetlands (VFCWs). In a VFCW system with strain A63, the removal efficiencies of NH4+-N, NO3--N, and total nitrogen reached 79.2%, 95.7%, and 89.9%, respectively. Quantitative PCR analysis indicated that the amoA gene from ammonia-oxidizing archaea (AOA) was highly abundant, whereas amoA from ammonia-oxidizing bacteria and nxrA from nitrite-oxidizing bacteria were lowly abundant because of the influent salinity, irrespective of whether strain A63 was added. However, the addition of strain A63 significantly increased the abundance of nirK in the top layer of the VFCW. Therefore, AOA-driven partial nitrification and aerobic denitrification by strain A63 occurred in VFCWs. Our findings suggest that adding salt-tolerant denitrifying strains to constructed wetlands can enhance denitrification for saline wastewater treatment.
Collapse
Affiliation(s)
- Guiping Fu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Lin Zhao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Linkun Huangshen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jinfa Wu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
86
|
Yarwood SA. The role of wetland microorganisms in plant-litter decomposition and soil organic matter formation: a critical review. FEMS Microbiol Ecol 2019; 94:5087730. [PMID: 30169564 DOI: 10.1093/femsec/fiy175] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 08/29/2018] [Indexed: 02/06/2023] Open
Abstract
New soil organic matter (SOM) models highlight the role of microorganisms in plant litter decomposition and storage of microbial-derived carbon (C) molecules. Wetlands store more C per unit area than any other ecosystem, but SOM storage mechanisms such as aggregation and metal complexes are mostly untested in wetlands. This review discusses what is currently known about the role of microorganisms in SOM formation and C sequestrations, as well as, measures of microbial communities as they relate to wetland C cycling. Studies within the last decade have yielded new insights about microbial communities. For example, microbial communities appear to be adapted to short-term fluctuations in saturation and redox and researchers have observed synergistic pairings that in some cases run counter to thermodynamic theory. Significant knowledge gaps yet to be filled include: (i) What controls microbial access to and decomposition of plant litter and SOM? (ii) How does microbial community structure shape C fate, across different wetland types? (iii) What types of plant and microbial molecules contribute to SOM accumulation? Studies examining the active microbial community directly or that utilize multi-pronged approaches are shedding new light on microbial functional potential, however, and promise to improve wetland C models in the near future.
Collapse
Affiliation(s)
- Stephanie A Yarwood
- Environmental Science and Technology Department, University of Maryland, 1204 HJ Patterson Hall, College Park, MD 20742, USA
| |
Collapse
|
87
|
Zhu B, Wang J, Bradford LM, Ettwig K, Hu B, Lueders T. Nitric Oxide Dismutase ( nod) Genes as a Functional Marker for the Diversity and Phylogeny of Methane-Driven Oxygenic Denitrifiers. Front Microbiol 2019; 10:1577. [PMID: 31354671 PMCID: PMC6636425 DOI: 10.3389/fmicb.2019.01577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/25/2019] [Indexed: 11/13/2022] Open
Abstract
Oxygenic denitrification represents a new route in reductive nitrogen turnover which differs from canonical denitrification in how nitric oxide (NO) is transformed into dinitrogen gas. Instead of NO reduction via N2O to N2, NO is proposed to be directly disproportionated into N2 and O2 in oxygenic denitrification, catalyzed by the putative NO dismutase (Nod). Although a high diversity of nod genes has been recovered from various environments, still little is known about the niche partitioning and ecophysiology of oxygenic denitrifiers. One constraint is that nod as a functional marker for oxygenic denitrifiers is not well established. To address this issue, we compared the diversity and phylogeny of nod, 16S rRNA and pmoA gene sequences of four NC10 enrichments that are capable of methane-driven oxygenic denitrification and one environmental sample. The phylogenies of nod, 16S rRNA and pmoA genes of these cultures were generally congruent. The diversity of NC10 bacteria inferred from different genes was also similar in each sample. A new set of NC10-specific nod primers was developed and used in qPCR. The abundance of NC10 bacteria inferred from nod genes was constantly lower than via 16S rRNA genes, but the difference was within one order of magnitude. These results suggest that nod is a suitable molecular marker for studying the diversity and phylogeny of methane-driven oxygenic denitrifiers, the further investigation of which may be of value to develop enhanced strategies for sustainable nitrogen or methane removal.
Collapse
Affiliation(s)
- Baoli Zhu
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Munich, Germany.,Department of Microbiology, Radboud University Nijmegen, Nijmegen, Netherlands.,Chair of Ecological Microbiology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Jiaqi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Lauren M Bradford
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Munich, Germany
| | - Katharina Ettwig
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Tillmann Lueders
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Munich, Germany.,Chair of Ecological Microbiology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
88
|
Han H, Song B, Song MJ, Yoon S. Enhanced Nitrous Oxide Production in Denitrifying Dechloromonas aromatica Strain RCB Under Salt or Alkaline Stress Conditions. Front Microbiol 2019; 10:1203. [PMID: 31275250 PMCID: PMC6593283 DOI: 10.3389/fmicb.2019.01203] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/13/2019] [Indexed: 11/25/2022] Open
Abstract
Salinity and pH have direct and indirect impacts on the growth and metabolic activities of microorganisms. In this study, the effects of salt and alkaline stresses on the kinetic balance between nitrous oxide (N2O) production and consumption in the denitrification pathway of Dechloromonas aromatica strain RCB were examined. N2O accumulated transiently only in insignificant amounts at low salinity (≤0.5% NaCl) and circumneutral pH (7.0 and 7.5). As compared to these control conditions, incubation at 0.7% salinity resulted in substantially longer lag phase and slower growth rate, along with the increase in the amounts of transiently accumulated N2O (15.8 ± 2.8 μmoles N2O-N/vessel). Incubation at pH 8.0 severely inhibited growth and resulted in permanent accumulation of 29.9 ± 1.3 μmoles N2O-N/vessel from reduction of 151 ± 20 μmoles NO3−/vessel. Monitoring of temporal changes in nirS1, nirS2, and nosZ transcription suggested that the nosZ/(nirS1+nirS2) ratios were indicative of whether N2O was produced or consumed at the time points where measurements were taken. The salt and alkaline stresses altered the N2O consumption kinetics of the resting D. aromatica cells with expressed nitrous oxide reductases. The N2O consumption rates of the cells subjected to the salt and alkaline stress conditions were significantly reduced from 0.84 ± 0.007 μmoles min−1 mg protein−1 of the control to 0.27 ± 0.02 μmoles min−1 mg protein−1 and 0.31 ± 0.03 μmoles min−1 mg protein−1, respectively, when the initial dissolved N2O concentration was 0.1 mM. As the rates of N2O production from NO2− reduction was not significantly affected by the stresses (0.45–0.55 μmoles min−1 mg protein−1), the N2O consumption rate was lower than the N2O production rate at the stress conditions, but not at the control condition. These results clearly indicate that the altered kinetics of expressed nitrous oxide reductase and the resultant disruption of kinetic balance between N2O production and consumption was another cause of enhanced N2O emission observed under the salt and alkaline stress conditions. These findings suggest that canonical denitrifiers may become a significant N2O source when faced with abrupt environmental changes.
Collapse
Affiliation(s)
- Heejoo Han
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Bongkeun Song
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Department of Biological Sciences, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA, United States
| | - Min Joon Song
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sukhwan Yoon
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
89
|
Huang J, Cao C, Liu J, Yan C, Xiao J. The response of nitrogen removal and related bacteria within constructed wetlands after long-term treating wastewater containing environmental concentrations of silver nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:522-531. [PMID: 30833250 DOI: 10.1016/j.scitotenv.2019.02.396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
The wide application of consumer products containing silver nanoparticles (AgNPs) inevitably results in their release into sewer systems and wastewater treatment plants, where they would encounter (and cause potential negative impacts) constructed wetlands (CWs), a complex biological system containing plants, substrate and microorganisms. Herein, the long-term effects of environmental AgNPs concentrations on nitrogen removal, key enzymatic activities and nitrogen-related microbes in constructed wetlands (CWs) were investigated. The short-term exposure (40 d) to AgNPs significantly inhibited TN and NH4+-N removal, and the inhibition degree had a positive relationship with AgNPs levels. After about 450 d exposure, 200 μg/L AgNPs could slightly increase average TN removal efficiency, while presence of 50 μg/L AgNPs showed no difference, compared to control. The NH4+-N removal in all CWs had no difference. The present study indicated that short-term AgNPs loading evidently reduced nitrogen removal, whereas long-term exposure to AgNPs showed no adverse impacts on NH4+-N removal and slightly stimulated TN removal, which was related to the increase of corresponding enzymatic activities. After exposing AgNPs for 450 d, the abundance of relative functional genes and the composition of key community structure were determined by qPCR and high-throughput sequencing, respectively. The results showed that the abundance of amoA and nxrA dramatically higher than control, whereas the abundance of nirK, nirS, nosZ and anammox 16S rRNA was slightly higher than control, but had no statistical difference, which accorded with the TN removal performance. The microbial community analysis showed that different AgNPs concentrations could affect the microbial diversity and structure. The changes of the relative abundance of nitrogen-related genera were associated with the impacts of AgNPs on the nitrogen removal performance. Overall, the AgNPs loading had impacts on the key enzymatic activities, the abundance of nitrogen-related genes and microbial community, thus finally affected the treatment performance of CWs.
Collapse
Affiliation(s)
- Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China.
| | - Chong Cao
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Jialiang Liu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Chunni Yan
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Jun Xiao
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
90
|
Altering N 2O emissions by manipulating wheat root bacterial community. Sci Rep 2019; 9:7613. [PMID: 31110207 PMCID: PMC6527579 DOI: 10.1038/s41598-019-44124-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/09/2019] [Indexed: 11/29/2022] Open
Abstract
Nitrous oxide (N2O) is a greenhouse gas and a potent ozone-depleting substance in the stratosphere. Agricultural soils are one of the main global sources of N2O emissions, particularly from cereal fields due to their high areal coverage. The aim of this study was to isolate N2O-reducing bacteria able to mitigate N2O emissions from the soil after inoculation. We isolated several bacteria from wheat roots that were capable of N2O reduction in vitro and studied their genetic potential and activity under different environmental conditions. Three of these isolates- all carrying the nitrous oxide reductase-encoding clade I nosZ, able to reduce N2O in vitro, and efficient colonizers of wheat roots- presented different N2O-reduction strategies when growing in the root zone, possibly due to the different conditions in situ and their metabolic preferences. Each isolate seemed to prefer to operate at different altered oxygen levels. Isolate AU243 (related to Agrobacterium/Rhizobium) could reduce both nitrate and N2O and operated better at lower oxygen levels. Isolate AU14 (related to Alcaligenes faecalis), lacking nitrate reductases, operated better under less anoxic conditions. Isolate NT128 (related to Pseudomonas stutzeri) caused slightly increased N2O emissions under both anoxic and ambient conditions. These results therefore emphasize the importance of a deep understanding of soil–plant–microbe interactions when environmental application is being considered.
Collapse
|
91
|
Yoon S, Song B, Phillips RL, Chang J, Song MJ. Ecological and physiological implications of nitrogen oxide reduction pathways on greenhouse gas emissions in agroecosystems. FEMS Microbiol Ecol 2019; 95:5488431. [DOI: 10.1093/femsec/fiz066] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 05/10/2019] [Indexed: 11/12/2022] Open
Abstract
ABSTRACT
Microbial reductive pathways of nitrogen (N) oxides are highly relevant to net emissions of greenhouse gases (GHG) from agroecosystems. Several biotic and abiotic N-oxide reductive pathways influence the N budget and net GHG production in soil. This review summarizes the recent findings of N-oxide reduction pathways and their implications to GHG emissions in agroecosystems and proposes several mitigation strategies. Denitrification is the primary N-oxide reductive pathway that results in direct N2O emissions and fixed N losses, which add to the net carbon footprint. We highlight how dissimilatory nitrate reduction to ammonium (DNRA), an alternative N-oxide reduction pathway, may be used to reduce N2O production and N losses via denitrification. Implications of nosZ abundance and diversity and expressed N2O reductase activity to soil N2O emissions are reviewed with focus on the role of the N2O-reducers as an important N2O sink. Non-prokaryotic N2O sources, e.g. fungal denitrification, codenitrification and chemodenitrification, are also summarized to emphasize their potential significance as modulators of soil N2O emissions. Through the extensive review of these recent scientific advancements, this study posits opportunities for GHG mitigation through manipulation of microbial N-oxide reductive pathways in soil.
Collapse
Affiliation(s)
- Sukhwan Yoon
- Department of Civil and Environmental Engineering, KAIST, 291 Daehakro, Yuseonggu, Daejeon 34141, South Korea
| | - Bongkeun Song
- Department of Biological Sciences, Virginia Institute of Marine Sciences, College of William and Mary, 1375 Greate Rd, Gloucester Point, VA 23062, USA
| | - Rebecca L Phillips
- Ecological Insights Corporation, 130 69th Street SE, Hazelton, ND 58544, USA
| | - Jin Chang
- Department of Civil and Environmental Engineering, KAIST, 291 Daehakro, Yuseonggu, Daejeon 34141, South Korea
| | - Min Joon Song
- Department of Civil and Environmental Engineering, KAIST, 291 Daehakro, Yuseonggu, Daejeon 34141, South Korea
| |
Collapse
|
92
|
Wang H, Sun Y, Wu G, Guan Y. Effect of anoxic to aerobic duration ratios on nitrogen removal and nitrous oxide emission in the multiple anoxic/aerobic process. ENVIRONMENTAL TECHNOLOGY 2019; 40:1676-1685. [PMID: 29333979 DOI: 10.1080/09593330.2018.1427801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/09/2018] [Indexed: 06/07/2023]
Abstract
Characteristics of nitrogen removal and nitrous oxide (N2O) emission in the multiple anoxic/aerobic (AO) process were examined in three sequencing batch reactors (SBRs) with different anoxic durations (50 min, SBRH; 40 min, SBRM; 30 min, SBRL) and a fixed aerobic duration of 30 min. The highest total inorganic nitrogen removal percentage of 85.8% was obtained in SBRH, while a minimum N2O emission factor of 1.9% was obtained in SBRL. During nitrification batch experiments, the N2O emission factor and emission rate were both lower in SBRH than SBRL. More N2O production was obtained during denitrification in SBRH when denitrifiers utilized intracellular organic carbon. Nitrite reduction by heterotrophs was the main N2O production pathway during simultaneous nitrification and denitrification in SBRH and SBRL, with the N2O emission factor of 31.3% and 36.3%, respectively. Adequate anoxic duration and lowering aerobic nitrite concentrations could be adopted to mitigate N2O emission in the multiple AO process. The dominant microorganisms at the phylum level in all reactors were Proteobacteria and Bacteroidetes, while the abundance of Nitrospira was the highest in SBRH with relatively lowest dissolved oxygen concentrations.
Collapse
Affiliation(s)
- Huoqing Wang
- a Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen , Tsinghua University , Shenzhen , People's Republic of China
| | - Yuepeng Sun
- a Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen , Tsinghua University , Shenzhen , People's Republic of China
| | - Guangxue Wu
- a Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen , Tsinghua University , Shenzhen , People's Republic of China
| | - Yuntao Guan
- a Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen , Tsinghua University , Shenzhen , People's Republic of China
| |
Collapse
|
93
|
Chen KH, Liao HL, Bellenger JP, Lutzoni F. Differential gene expression associated with fungal trophic shifts along the senescence gradient of the moss Dicranum scoparium. Environ Microbiol 2019; 21:2273-2289. [PMID: 30900793 DOI: 10.1111/1462-2920.14605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 02/05/2023]
Abstract
Bryophytes harbour microbiomes, including diverse communities of fungi. The molecular mechanisms by which perennial mosses interact with these fungal partners along their senescence gradients are unknown, yet this is an ideal system to study variation in gene expression associated with trophic state transitions. We investigated differentially expressed genes of fungal communities and their host Dicranum scoparium across its naturally occurring senescence gradient using a metatranscriptomic approach. Higher activity of fungal nutrient-related (carbon, nitrogen, phosphorus and sulfur) transporters and Carbohydrate-Active enZyme (CAZy) genes was detected toward the bottom, partially decomposed, layer of the moss. The most prominent variation in the expression levels of fungal nutrient transporters was from inorganic nitrogen-related transporters, whereas the breakdown of organonitrogens was detected as the most enriched gene ontology term for the host D. scoparium, for those transcripts having higher expression in the partially decomposed layer. The abundance of bacterial rRNA transcripts suggested that more living members of Cyanobacteria are associated with the photosynthetic layer of D. scoparium, while members of Rhizobiales are detected throughout the gametophytes. Plant genes for specific fungal-plant communication, including defense responses, were differentially expressed, suggesting that different genetic pathways are involved in plant-microbe crosstalk in photosynthetic tissues compared to partially decomposed tissues.
Collapse
Affiliation(s)
- Ko-Hsuan Chen
- Department of Biology, Duke University, Durham, NC, USA
| | - Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, Quincy, FL, USA
| | | | | |
Collapse
|
94
|
Jang J, Anderson EL, Venterea RT, Sadowsky MJ, Rosen CJ, Feyereisen GW, Ishii S. Denitrifying Bacteria Active in Woodchip Bioreactors at Low-Temperature Conditions. Front Microbiol 2019; 10:635. [PMID: 31001220 PMCID: PMC6454037 DOI: 10.3389/fmicb.2019.00635] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/13/2019] [Indexed: 11/13/2022] Open
Abstract
Woodchip bioreactor technology removes nitrate from agricultural subsurface drainage by using denitrifying microorganisms. Although woodchip bioreactors have demonstrated success in many field locations, low water temperature can significantly limit bioreactor efficiency and performance. To improve bioreactor performance, it is important to identify the microbes responsible for nitrate removal at low temperature conditions. Therefore, in this study, we identified and characterized denitrifiers active at low-temperature conditions by using culture-independent and -dependent approaches. By comparative 16S rRNA (gene) analysis and culture isolation technique, Pseudomonas spp., Polaromonas spp., and Cellulomonas spp. were identified as being important bacteria responsible for denitrification in woodchip bioreactor microcosms at relatively low temperature conditions (15°C). Genome analysis of Cellulomonas sp. strain WB94 confirmed the presence of nitrite reductase gene nirK. Transcription levels of this nirK were significantly higher in the denitrifying microcosms than in the non-denitrifying microcosms. Strain WB94 was also capable of degrading cellulose and other complex polysaccharides. Taken together, our results suggest that Cellulomonas sp. denitrifiers could degrade woodchips to provide carbon source and electron donors to themselves and other denitrifiers in woodchip bioreactors at low-temperature conditions. By inoculating these denitrifiers (i.e., bioaugmentation), it might be possible to increase the nitrate removal rate of woodchip bioreactors at low-temperature conditions.
Collapse
Affiliation(s)
- Jeonghwan Jang
- The BioTechnology Institute, University of Minnesota, Saint Paul, MN, United States
| | - Emily L. Anderson
- Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN, United States
| | - Rodney T. Venterea
- Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN, United States
- Soil and Water Management Research Unit, Agricultural Research Service, United States Department of Agriculture, Saint Paul, MN, United States
| | - Michael J. Sadowsky
- The BioTechnology Institute, University of Minnesota, Saint Paul, MN, United States
- Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN, United States
| | - Carl J. Rosen
- Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN, United States
| | - Gary W. Feyereisen
- Soil and Water Management Research Unit, Agricultural Research Service, United States Department of Agriculture, Saint Paul, MN, United States
| | - Satoshi Ishii
- The BioTechnology Institute, University of Minnesota, Saint Paul, MN, United States
- Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
95
|
Show PL, Pal P, Leong HY, Juan JC, Ling TC. A review on the advanced leachate treatment technologies and their performance comparison: an opportunity to keep the environment safe. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:227. [PMID: 30887225 DOI: 10.1007/s10661-019-7380-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Landfill application is the most common approach for biowaste treatment via leachate treatment system. When municipal solid waste deposited in the landfills, microbial decomposition breaks down the wastes generating the end products, such as carbon dioxide, methane, volatile organic compounds, and liquid leachate. However, due to the landfill age, the fluctuation in the characteristics of landfill leachate is foreseen in the leachate treatment plant. The focuses of the researchers are keeping leachate from contaminating groundwater besides keeping potent methane emissions from reaching the atmosphere. To address the above issues, scientists are required to adopt green biological methods to keep the environment safe. This review focuses on the assorting of research papers on organic content and nitrogen removal from the leachate via recent effective biological technologies instead of conventional nitrification and denitrification process. The published researches on the characteristics of various Malaysian landfill sites were also discussed. The understanding of the mechanism behind the nitrification and denitrification process will help to select an optimized and effective biological treatment option in treating the leachate waste. Recently, widely studied technologies for the biological treatment process are aerobic methane oxidation coupled to denitrification (AME-D) and partial nitritation-anammox (PN/A) process, and both were discussed in this review article. This paper gives the idea of the modification of the conventional treatment technologies, such as combining the present processes to make the treatment process more effective. With the integration of biological process in the leachate treatment, the effluent discharge could be treated in shortcut and novel pathways, and it can lead to achieving "3Rs" of reduce, reuse, and recycle approach.
Collapse
Affiliation(s)
- Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
- Bioseparation Research Group, Faculty of Science and Engineering, Centre for Food and Bioproduct Processing, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Preeti Pal
- School of Environmental Science and Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Hui Yi Leong
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Joon Ching Juan
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
96
|
Castellano‐Hinojosa A, Loick N, Dixon E, Matthews GP, Lewicka‐Szczebak D, Well R, Bol R, Charteris A, Cardenas L. Improved isotopic model based on 15 N tracing and Rayleigh-type isotope fractionation for simulating differential sources of N 2 O emissions in a clay grassland soil. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:449-460. [PMID: 30561863 PMCID: PMC6492082 DOI: 10.1002/rcm.8374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
RATIONALE Isotopic signatures of N2 O can help distinguish between two sources (fertiliser N or endogenous soil N) of N2 O emissions. The contribution of each source to N2 O emissions after N-application is difficult to determine. Here, isotopologue signatures of emitted N2 O are used in an improved isotopic model based on Rayleigh-type equations. METHODS The effects of a partial (33% of surface area, treatment 1c) or total (100% of surface area, treatment 3c) dispersal of N and C on gaseous emissions from denitrification were measured in a laboratory incubation system (DENIS) allowing simultaneous measurements of NO, N2 O, N2 and CO2 over a 12-day incubation period. To determine the source of N2 O emissions those results were combined with both the isotope ratio mass spectrometry analysis of the isotopocules of emitted N2 O and those from the 15 N-tracing technique. RESULTS The spatial dispersal of N and C significantly affected the quantity, but not the timing, of gas fluxes. Cumulative emissions are larger for treatment 3c than treatment 1c. The 15 N-enrichment analysis shows that initially ~70% of the emitted N2 O derived from the applied amendment followed by a constant decrease. The decrease in contribution of the fertiliser N-pool after an initial increase is sooner and larger for treatment 1c. The Rayleigh-type model applied to N2 O isotopocules data (δ15 Nbulk -N2 O values) shows poor agreement with the measurements for the original one-pool model for treatment 1c; the two-pool models gives better results when using a third-order polynomial equation. In contrast, in treatment 3c little difference is observed between the two modelling approaches. CONCLUSIONS The importance of N2 O emissions from different N-pools in soil for the interpretation of N2 O isotopocules data was demonstrated using a Rayleigh-type model. Earlier statements concerning exponential increase in native soil nitrate pool activity highlighted in previous studies should be replaced with a polynomial increase with dependency on both N-pool sizes.
Collapse
Affiliation(s)
- Antonio Castellano‐Hinojosa
- Department of Microbiology, Faculty of PharmacyUniversity of Granada. Campus Cartuja18071GranadaSpain
- Department of Soil Microbiology and Symbiotic SystemsEstación Experimental del Zaidín18080GranadaSpain
| | - Nadine Loick
- Rothamsted Research, North WykeOkehamptonEX20 2SBUK
| | | | - G. Peter Matthews
- School of Geography, Earth and Environmental SciencesUniversity of PlymouthDavy Building, Drake CircusPlymouthPL4 8AAUK
| | | | - Reinhard Well
- Thünen Institute of Climate‐Smart AgricultureBundesallee 6538116BraunschweigGermany
| | - Roland Bol
- Agrosphere (IBG‐3)Institute of Bio‐ and GeosciencesForschungszentrum Jülich52428JülichGermany
| | | | | |
Collapse
|
97
|
Ma Y, Zilles JL, Kent AD. An evaluation of primers for detecting denitrifiers via their functional genes. Environ Microbiol 2019; 21:1196-1210. [PMID: 30724437 DOI: 10.1111/1462-2920.14555] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 12/11/2022]
Abstract
Microbial populations provide nitrogen cycling ecosystem services at the nexus of agriculture, environmental quality and climate change. Denitrification, in particular, impacts socio-environmental systems in both positive and negative ways, through reduction of aquatic and atmospheric nitrogen pollution, but also reduction of soil fertility and production of greenhouse gases. However, denitrification rates are quite variable in time and space, and therefore difficult to model. Microbial ecology is working to improve the predictive ecology of denitrifiers by quantifying and describing the diversity of microbial functional groups. However, metagenomic sequencing has revealed previously undescribed diversity within these functional groups, and highlighted a need to reevaluate coverage of existing DNA primers for denitrification functional genes. We provide here a comprehensive in silico evaluation of primer sets that target diagnostic genes in the denitrification pathway. This analysis makes use of current DNA sequence data available for each functional gene. It contributes a comparative analysis of the strengths and limitations of each primer set for describing denitrifier functional groups. This analysis identifies genes for which development of new tools is needed, and aids in interpretation of existing datasets, both of which will facilitate application of molecular methods to further develop the predictive ecology of denitrifiers.
Collapse
Affiliation(s)
- Yanjun Ma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Julie L Zilles
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Angela D Kent
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
98
|
Bellini MI, Kumaresan D, Tarlera S, Murrell JC, Fernández-Scavino A. Identification of active denitrifiers by DNA-stable isotope probing and amplicon sequencing reveals Betaproteobacteria as responsible for attenuation of nitrate contamination in a low impacted aquifer. FEMS Microbiol Ecol 2019; 94:4757058. [PMID: 29267902 DOI: 10.1093/femsec/fix181] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/15/2017] [Indexed: 11/13/2022] Open
Abstract
Groundwater reservoirs constitute important freshwater resources. However, these ecosystems are highly vulnerable to contamination and have to rely on the resident microbiota to attenuate the impact of this contamination. Nitrate is one of the main contaminants found in groundwater, and denitrification is the main process that removes the compound. In this study, the response to nutrient load on indigenous microbial communities in groundwater from a low impacted aquifer in Uruguay was evaluated. Denitrification rates were measured in groundwater samples from three different sites with nitrate, acetate and pyrite amendments. Results showed that denitrification is feasible under in situ nitrate and electron donor concentrations, although the lack of readily available organic energy source would limit the attenuation of higher nitrate concentrations. DNA-stable isotope probing, combined with amplicon sequencing of 16S rRNA, nirS and nirK genes, was used to identify the active denitrifiers. Members of the phylum Betaproteobacteria were the dominant denitrifiers in two of three sites, with different families being observed; members of the genus Vogesella (Neisseriaceae) were key denitrifiers at one site, while the genera Dechloromonas (Rhodocyclaceae) and Comamonas (Comamonadaceae) were the main denitrifiers detected at the other sites.
Collapse
Affiliation(s)
- M Inés Bellini
- Departamento de Biociencias, Facultad de Química, Universidad de la República, General Flores 2124, CP 11800, Montevideo, Uruguay
| | - Deepak Kumaresan
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR47TJ, UK.,School of Biological Sciences and Institute for Global Food Security, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Silvana Tarlera
- Departamento de Biociencias, Facultad de Química, Universidad de la República, General Flores 2124, CP 11800, Montevideo, Uruguay
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR47TJ, UK
| | - Ana Fernández-Scavino
- Departamento de Biociencias, Facultad de Química, Universidad de la República, General Flores 2124, CP 11800, Montevideo, Uruguay
| |
Collapse
|
99
|
Vieira A, Galinha CF, Oehmen A, Carvalho G. The link between nitrous oxide emissions, microbial community profile and function from three full-scale WWTPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2460-2472. [PMID: 30336436 DOI: 10.1016/j.scitotenv.2018.10.132] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/28/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
Few attempts have been made in previous studies to link the microbial community structure and function with nitrous oxide (N2O) emissions at full-scale wastewater treatment plants (WWTPs). In this work, high-throughput sequencing and reverse transcriptase-qPCR (RT-qPCR) was applied to activated sludge samples from three WWTPs for two seasonal periods (winter and summer) and linked with the N2O emissions and wastewater characteristics. The total N2O emissions ranged from 7.2 to 937.0 g N-N2O/day, which corresponds to an emission factor of 0.001 to 0.280% of the influent NH4-N being emitted as N2O. Those emissions were related to the abundance of Nitrotoga, Candidatus Microthrix and Rhodobacter genera, which were favored by higher dissolved oxygen (DO) and nitrate (NO3-) concentrations in the activated sludge tanks. Furthermore, a relationship between the nirK gene expression and N2O emissions was verified. Detected N2O emission peaks were associated with different process events, related to aeration transition periods, that occurred during the regular operation of the plants, which could be potentially associated to increased emissions of the WWTP. The design of mitigation strategies, such as optimizing the aeration regime, is therefore important to avoid process events that lead to those N2O emissions peaks. Furthermore, this study also demonstrates the importance of assessing the gene expression of nosZ clade II, since its high abundance in WWTPs could be an important key to reduce the N2O emissions.
Collapse
Affiliation(s)
- A Vieira
- iBET - Instituto de Biologia Experimental e Tecnológica, Av. República, Qta. do Marquês, 2780-157 Oeiras, Portugal; ITQB - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - C F Galinha
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Portugal
| | - A Oehmen
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Portugal; School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
| | - G Carvalho
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Portugal; Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
100
|
Yasong C, Junling L, Zheng Z, Huiping C, Yuke P, Lin X. Nitrogen removal and responses of bacterial communities in activated sludge under different operational manipulations. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:607-618. [PMID: 30975927 DOI: 10.2166/wst.2019.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Operational conditions are often manipulated to improve the nitrogen removal performance of wastewater treatment, yet the impacts of operational conditions on microbial communities were still not well understood. There is a pressing need to understand the microbial mechanisms that link operation manipulation and nitrogen removal performance. In this study, high-throughput analysis of 16S rDNA and quantitative polymerase chain reaction of functional genes were used to identify the microbial response to operational manipulations. The results showed that alteration of operational parameters could change the bacterial communities at the genera level and denitrification guild gradually dominated in the activated sludge bacterial communities. Heterotrophic Hyphomicrobium and Chromatiaceae drove the kinetic of dominant genera and denitrification guild. Carbon source supplement was the most efficient strategy for improving nitrogen removal, and greatly increased the abundance of denitrifiers and denitrification genes. However, carbon source supplement inhibited expression activities of denitrification genes, as well as the proliferation of autotrophic denitrifiers, and it was supposed to be unfavorable in terms of cost over the long term. The result should bring new inspiration for improving the effect of WWTP performance through the manipulation of operational parameters.
Collapse
Affiliation(s)
- Chen Yasong
- School of Environment, Nanjing University, State Key Laboratory for Pollution Control and Resource Reuse (SKL-PCRR), Nanjing University Xianlin Campus, Xianlin Avenue 163, Nanjing 210023, China E-mail: ; BCEG Environment Development Co., Ltd, 2nd Floor, Building 4 Yiyuan, Anhui Beili, Chaoyang District, Beijing 100101, China
| | - Lu Junling
- School of Environment, Nanjing University, State Key Laboratory for Pollution Control and Resource Reuse (SKL-PCRR), Nanjing University Xianlin Campus, Xianlin Avenue 163, Nanjing 210023, China E-mail:
| | - Zhao Zheng
- BCEG Environment Development Co., Ltd, 2nd Floor, Building 4 Yiyuan, Anhui Beili, Chaoyang District, Beijing 100101, China
| | - Chen Huiping
- School of Environment, Nanjing University, State Key Laboratory for Pollution Control and Resource Reuse (SKL-PCRR), Nanjing University Xianlin Campus, Xianlin Avenue 163, Nanjing 210023, China E-mail:
| | - Peng Yuke
- School of Environment, Nanjing University, State Key Laboratory for Pollution Control and Resource Reuse (SKL-PCRR), Nanjing University Xianlin Campus, Xianlin Avenue 163, Nanjing 210023, China E-mail:
| | - Xiao Lin
- School of Environment, Nanjing University, State Key Laboratory for Pollution Control and Resource Reuse (SKL-PCRR), Nanjing University Xianlin Campus, Xianlin Avenue 163, Nanjing 210023, China E-mail:
| |
Collapse
|