51
|
Kocabaş P, Çalık P, Çalık G, Özdamar TH. Microarray Studies inBacillus subtilis. Biotechnol J 2009; 4:1012-27. [DOI: 10.1002/biot.200800330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
52
|
Regulation of the Bacillus subtilis divergent yetL and yetM genes by a transcriptional repressor, YetL, in response to flavonoids. J Bacteriol 2009; 191:3685-97. [PMID: 19329649 DOI: 10.1128/jb.00202-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA microarray analysis revealed that transcription of the Bacillus subtilis yetM gene encoding a putative flavin adenine dinucleotide-dependent monooxygenase was triggered by certain flavonoids during culture and was derepressed by disruption of the yetL gene in the opposite orientation situated immediately upstream of yetM, which encodes a putative MarR family transcriptional regulator. In vitro analyses, including DNase I footprinting and gel retardation analysis, indicated that YetL binds specifically to corresponding single sites in the divergent yetL and yetM promoter regions, with higher affinity to the yetM region; the former region overlaps the Shine-Dalgarno sequence of yetL, and the latter region contains a perfect 18-bp palindromic sequence (TAGTTAGGCGCCTAACTA). In vitro gel retardation and in vivo lacZ fusion analyses indicated that some flavonoids (kaempferol, apigenin, and luteolin) effectively inhibit YetL binding to the yetM cis sequence, but quercetin, galangin, and chrysin do not inhibit this binding, implying that the 4-hydroxyl group on the B-ring of the flavone structure is indispensable for this inhibition and that the coexistence of the 3-hydroxyl groups on the B- and C-rings does not allow antagonism of YetL.
Collapse
|
53
|
Identification and characterization of a novel multidrug resistance operon, mdtRP (yusOP), of Bacillus subtilis. J Bacteriol 2009; 191:3273-81. [PMID: 19286808 DOI: 10.1128/jb.00151-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using comparative genome sequencing analysis, we identified a novel mutation in Bacillus subtilis that confers a low level of resistance to fusidic acid. This mutation was located in the mdtR (formerly yusO) gene, which encodes a MarR-type transcriptional regulator, and conferred a low level of resistance to several antibiotics, including novobiocin, streptomycin, and actinomycin D. Transformation experiments showed that this mdtR mutation was responsible for multidrug resistance. Northern blot analysis revealed that the downstream gene mdtP (formerly yusP), which encodes a multidrug efflux transporter, is cotranscribed with mdtR as an operon. Disruption of the mdtP gene completely abolished the multidrug resistance phenotype observed in the mdtR mutant. DNase I footprinting and primer extension analyses demonstrated that the MdtR protein binds directly to the mdtRP promoter, thus leading to repression of its transcription. Moreover, gel mobility shift analysis indicated that an Arg83 --> Lys or Ala67 --> Thr substitution in MdtR significantly reduces binding affinity to DNA, resulting in derepression of mdtRP transcription. Low concentrations of fusidic acid induced the expression of mdtP, although the level of mdtP expression was much lower than that in the mdtR disruptant. These findings indicate that the MdtR protein is a repressor of the mdtRP operon and that the MdtP protein functions as a multidrug efflux transporter in B. subtilis.
Collapse
|
54
|
Palmieri G, Catara G, Saviano M, Langella E, Gogliettino M, Rossi M. First Archaeal PEPB-Serine Protease Inhibitor from Sulfolobus solfataricus with Noncanonical Amino Acid Sequence in the Reactive-Site Loop. J Proteome Res 2009; 8:327-34. [PMID: 19118453 DOI: 10.1021/pr800587t] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The specific inhibition of serine proteinases, which are crucial switches in many important physiological processes, is of great value both for basic research and for therapeutic applications. In this study, we report the molecular cloning of the sso0767 gene from Sulfolobus solfataricus, and the functional characterization of its product, SsCEI, which represents the first archaeal phosphatidylethanolamine-binding protein (PEBP)-serine proteinase inhibitor, reported to date. SsCEI is a monomer protein with a molecular mass of 19.0 kDa and a pI of 6.7, which is able to inhibit the serine proteases alpha-chymotrypsin and elastase with K(i) values of 0.08 and 0.1 microM, respectively. Moreover SsCEI is extremely resistant to both thermal inactivation and proteolytic attack suggesting compact folding of the protein. Within the I51 family, the archaeal inhibitor shows strong similarity to the human and murine members. The three-dimensional model of SsCEI revealed a general beta-fold and the presence of an anion-binding pocket, the hallmark of the PEBP family. Moreover SsCEI binds the cognate proteases according to a common, substrate-like standard mechanism. Point mutation experiments supported the prediction of the protease-binding site located on the surface at the C- terminal region of the protein. Interestingly, searches based on preidentified structural reactive loop motifs revealed the occurrence of a sequence (T123-N130) that is not represented in all serine-protease inhibitor families. This unique motif may provide new insights into both the inhibitor/protease binding mode and the specific biological functions of SsCEI within the PEBP family.
Collapse
Affiliation(s)
- Gianna Palmieri
- Istituto di Biochimica delle Proteine, Via P. Castellino 111, 80131 Napoli, Italy
| | | | | | | | | | | |
Collapse
|
55
|
Regulation of Bacillus subtilis aprE expression by glnA through inhibition of scoC and sigma(D)-dependent degR expression. J Bacteriol 2009; 191:3050-8. [PMID: 19251843 DOI: 10.1128/jb.00049-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the gene for the extracellular alkaline protease (aprE) of Bacillus subtilis is subject to regulation by many positive and negative regulators. We have found that aprE expression was increased by disruption of the glutamine synthetase gene glnA. The increase in aprE expression was attributed to a decreased in expression of scoC, which encodes a negative regulator of aprE expression. The glnA effect on scoC expression was abolished by further disruption of tnrA, indicating that aprE expression is under global regulation through TnrA. In the scoC background, however, aprE expression was decreased by glnA deletion, and it was shown that the decrease was due to a defect in positive regulation by DegU. Among the genes that affect aprE expression through DegU, the expression of degR, encoding a protein that stabilizes phosphorylated DegU, was inhibited by glnA deletion. It was further shown that the decrease in degR expression by glnA deletion was caused by inhibition of the expression of sigD, encoding the sigma(D) factor, which is required for degR expression. In accordance with these findings, the expression levels of aprE-lacZ in glnA scoC degR and scoC degR strains were identical. These results led us to conclude that glnA deletion brings about two effects on aprE expression, i.e., a positive effect through inhibition of scoC expression and a negative effect through inhibition of degR expression, with the former predominating over the latter.
Collapse
|
56
|
Bioinformatics strategies for the analysis of lipids. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2009; 580:339-68. [PMID: 19784609 DOI: 10.1007/978-1-60761-325-1_19] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Owing to their importance in cellular physiology and pathology as well as to recent technological advances, the study of lipids has reemerged as a major research target. However, the structural diversity of lipids presents a number of analytical and informatics challenges. The field of lipidomics is a new postgenome discipline that aims to develop comprehensive methods for lipid analysis, necessitating concomitant developments in bioinformatics. The evolving research paradigm requires that new bioinformatics approaches accommodate genomic as well as high-level perspectives, integrating genome, protein, chemical and network information. The incorporation of lipidomics information into these data structures will provide mechanistic understanding of lipid functions and interactions in the context of cellular and organismal physiology. Accordingly, it is vital that specific bioinformatics methods be developed to analyze the wealth of lipid data being acquired. Herein, we present an overview of the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and application of its tools to the analysis of lipid data. We also describe a series of software tools and databases (KGML-ED, VANTED, MZmine, and LipidDB) that can be used for the processing of lipidomics data and biochemical pathway reconstruction, an important next step in the development of the lipidomics field.
Collapse
|
57
|
Carbon catabolite repression in Bacillus subtilis: quantitative analysis of repression exerted by different carbon sources. J Bacteriol 2008; 190:7275-84. [PMID: 18757537 DOI: 10.1128/jb.00848-08] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In many bacteria glucose is the preferred carbon source and represses the utilization of secondary substrates. In Bacillus subtilis, this carbon catabolite repression (CCR) is achieved by the global transcription regulator CcpA, whose activity is triggered by the availability of its phosphorylated cofactors, HPr(Ser46-P) and Crh(Ser46-P). Phosphorylation of these proteins is catalyzed by the metabolite-controlled kinase HPrK/P. Recent studies have focused on glucose as a repressing substrate. Here, we show that many carbohydrates cause CCR. The substrates form a hierarchy in their ability to exert repression via the CcpA-mediated CCR pathway. Of the two cofactors, HPr is sufficient for complete CCR. In contrast, Crh cannot substitute for HPr on substrates that cause a strong repression. Determination of the phosphorylation state of HPr in vivo revealed a correlation between the strength of repression and the degree of phosphorylation of HPr at Ser46. Sugars transported by the phosphotransferase system (PTS) cause the strongest repression. However, the phosphorylation state of HPr at its His15 residue and PTS transport activity have no impact on the global CCR mechanism, which is a major difference compared to the mechanism operative in Escherichia coli. Our data suggest that the hierarchy in CCR exerted by the different substrates is exclusively determined by the activity of HPrK/P.
Collapse
|
58
|
Molecular mechanisms underlying the positive stringent response of the Bacillus subtilis ilv-leu operon, involved in the biosynthesis of branched-chain amino acids. J Bacteriol 2008; 190:6134-47. [PMID: 18641142 DOI: 10.1128/jb.00606-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Branched-chain amino acids are the most abundant amino acids in proteins. The Bacillus subtilis ilv-leu operon is involved in the biosynthesis of branched-chain amino acids. This operon exhibits a RelA-dependent positive stringent response to amino acid starvation. We investigated this positive stringent response upon lysine starvation as well as decoyinine treatment. Deletion analysis involving various lacZ fusions revealed two molecular mechanisms underlying the positive stringent response of ilv-leu, i.e., CodY-dependent and -independent mechanisms. The former is most likely triggered by the decrease in the in vivo concentration of GTP upon lysine starvation, GTP being a corepressor of the CodY protein. So, the GTP decrease derepressed ilv-leu expression through detachment of the CodY protein from its cis elements upstream of the ilv-leu promoter. By means of base substitution and in vitro transcription analyses, the latter (CodY-independent) mechanism was found to comprise the modulation of the transcription initiation frequency, which likely depends on fluctuation of the in vivo RNA polymerase substrate concentrations after stringent treatment, and to involve at least the base species of adenine at the 5' end of the ilv-leu transcript. As discussed, this mechanism is presumably distinct from that for B. subtilis rrn operons, which involves changes in the in vivo concentration of the initiating GTP.
Collapse
|
59
|
Abstract
The transcriptional regulator CcpN of Bacillus subtilis has been recently characterized as a repressor of two gluconeogenic genes, gapB and pckA, and of a small noncoding regulatory RNA, sr1, involved in arginine catabolism. Deletion of ccpN impairs growth on glucose and strongly alters the distribution of intracellular fluxes, rerouting the main glucose catabolism from glycolysis to the pentose phosphate (PP) pathway. Using transcriptome analysis, we show that during growth on glucose, gapB and pckA are the only protein-coding genes directly repressed by CcpN. By quantifying intracellular fluxes in deletion mutants, we demonstrate that derepression of pckA under glycolytic condition causes the growth defect observed in the ccpN mutant due to extensive futile cycling through the pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and pyruvate kinase. Beyond ATP dissipation via this cycle, PckA activity causes a drain on tricarboxylic acid cycle intermediates, which we show to be the main reason for the reduced growth of a ccpN mutant. The high flux through the PP pathway in the ccpN mutant is modulated by the flux through the alternative glyceraldehyde-3-phosphate dehydrogenases, GapA and GapB. Strongly increased concentrations of intermediates in upper glycolysis indicate that GapB overexpression causes a metabolic jamming of this pathway and, consequently, increases the relative flux through the PP pathway. In contrast, derepression of sr1, the third known target of CcpN, plays only a marginal role in ccpN mutant phenotypes.
Collapse
|
60
|
Abstract
Bacillus subtilis DegS-DegU belongs to a bacterial two-component system that controls many processes, including the production of exocellular proteases and competence development. It was found that when the glutamine synthetase gene glnA, which is involved in nitrogen regulation, was disrupted, the expression of the response regulator degU gene was increased. Deletion analysis and 5'-end mapping of the degU transcripts showed that the increase was caused by induction of a promoter (P2) located before the degU gene. Disruption of tnrA, a global regulator of nitrogen regulation, eliminated the P2 promoter induction by the glnA mutation. The fact that the P2 promoter is under nitrogen regulation was demonstrated by an increase in P2 expression with nitrogen-limited growth. It was also found by primer extension analysis that degU was transcribed by another promoter, P3, that is located downstream of P2. Efficient expression of P3 was dependent on phosphorylated DegU, as inactivation of the sensor kinase gene, degS, resulted in the loss of degU expression, although less efficient stimulation of degU expression was also observed with an enhanced level of DegU in a degS-deficient mutant. The promoter located upstream of the degSU operon, designated the P1 promoter here, was insensitive to glnA and degU mutations. These results suggest that degU expression is controlled by the three promoters under different growth conditions.
Collapse
|
61
|
Dreisbach A, Otto A, Becher D, Hammer E, Teumer A, Gouw JW, Hecker M, Völker U. Monitoring of changes in the membrane proteome during stationary phase adaptation of
Bacillus subtilis
using
in vivo
labeling techniques. Proteomics 2008; 8:2062-76. [DOI: 10.1002/pmic.200701081] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
62
|
Licht A, Golbik R, Brantl S. Identification of ligands affecting the activity of the transcriptional repressor CcpN from Bacillus subtilis. J Mol Biol 2008; 380:17-30. [PMID: 18511073 DOI: 10.1016/j.jmb.2008.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 04/29/2008] [Accepted: 05/02/2008] [Indexed: 11/18/2022]
Abstract
Carbon catabolite repression in Bacillus subtilis is mediated primarily by the major regulator CcpA. However, sugar-dependent repression of three genes, sr1 encoding a small nontranslated RNA and two genes coding for gluconeogenic enzymes, gapB and pckA, is carried out by the transcriptional repressor CcpN (control catabolite protein of gluconeogenic genes). It has previously been shown that ccpN is constitutively expressed, which leads to a constant occupation of all operators with CcpN. Since this would not allow for specific regulation, a ligand that modulates CcpN activity is required. In vitro transcription assays demonstrated that CcpN is able to specifically repress transcription to a small extent at the three mentioned promoters in the absence of an activating ligand. Upon testing of several ligands, including nucleotides and glycolysis intermediates, it could be shown that ATP is able to specifically enhance the repressing activity of CcpN, and this effect was more pronounced at a slightly acidic pH. Furthermore, ADP was found to specifically counteract the repressive effect of ATP. Circular dichroism measurements demonstrated a significant alteration of CcpN structure in the presence of ATP at acidic pH and in the presence of ADP. Electrophoretic mobility shift assays revealed that neither ATP nor ADP altered the affinity of CcpN for its operators. Therefore, we hypothesise that the effect of ligand-bound CcpN on the RNA polymerase might be due to a conformational switch that alters the interaction between the two proteins. Based on these results, a working model for CcpN action is discussed.
Collapse
Affiliation(s)
- Andreas Licht
- AG Bakteriengenetik, Friedrich-Schiller-Universität Jena, Philosophenweg 12, D-07743 Jena, Germany.
| | | | | |
Collapse
|
63
|
van der Voort M, Kuipers OP, Buist G, de Vos WM, Abee T. Assessment of CcpA-mediated catabolite control of gene expression in Bacillus cereus ATCC 14579. BMC Microbiol 2008; 8:62. [PMID: 18416820 PMCID: PMC2358912 DOI: 10.1186/1471-2180-8-62] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 04/16/2008] [Indexed: 01/01/2023] Open
Abstract
Background The catabolite control protein CcpA is a transcriptional regulator conserved in many Gram-positives, controlling the efficiency of glucose metabolism. Here we studied the role of Bacillus cereus ATCC 14579 CcpA in regulation of metabolic pathways and expression of enterotoxin genes by comparative transcriptome analysis of the wild-type and a ccpA-deletion strain. Results Comparative analysis revealed the growth performance and glucose consumption rates to be lower in the B. cereus ATCC 14579 ccpA deletion strain than in the wild-type. In exponentially grown cells, the expression of glycolytic genes, including a non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase that mediates conversion of D-glyceraldehyde 3-phosphate to 3-phospho-D-glycerate in one single step, was down-regulated and expression of gluconeogenic genes and genes encoding the citric acid cycle was up-regulated in the B. cereus ccpA deletion strain. Furthermore, putative CRE-sites, that act as binding sites for CcpA, were identified to be present for these genes. These results indicate CcpA to be involved in the regulation of glucose metabolism, thereby optimizing the efficiency of glucose catabolism. Other genes of which the expression was affected by ccpA deletion and for which putative CRE-sites could be identified, included genes with an annotated function in the catabolism of ribose, histidine and possibly fucose/arabinose and aspartate. Notably, expression of the operons encoding non-hemolytic enterotoxin (Nhe) and hemolytic enterotoxin (Hbl) was affected by ccpA deletion, and putative CRE-sites were identified, which suggests catabolite repression of the enterotoxin operons to be CcpA-dependent. Conclusion The catabolite control protein CcpA in B. cereus ATCC 14579 is involved in optimizing the catabolism of glucose with concomitant repression of gluconeogenesis and alternative metabolic pathways. Furthermore, the results point to metabolic control of enterotoxin gene expression and suggest that CcpA-mediated glucose sensing provides an additional mode of control in moderating the expression of the nhe and hbl operons in B. cereus ATCC 14579.
Collapse
|
64
|
Lee K, Lee HG, Pi K, Choi YJ. The effect of low pH on protein expression by the probiotic bacteriumLactobacillus reuteri. Proteomics 2008; 8:1624-30. [DOI: 10.1002/pmic.200700663] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
65
|
Francke C, Kerkhoven R, Wels M, Siezen RJ. A generic approach to identify Transcription Factor-specific operator motifs; Inferences for LacI-family mediated regulation in Lactobacillus plantarum WCFS1. BMC Genomics 2008; 9:145. [PMID: 18371204 PMCID: PMC2329647 DOI: 10.1186/1471-2164-9-145] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 03/27/2008] [Indexed: 12/18/2022] Open
Abstract
Background A key problem in the sequence-based reconstruction of regulatory networks in bacteria is the lack of specificity in operator predictions. The problem is especially prominent in the identification of transcription factor (TF) specific binding sites. More in particular, homologous TFs are abundant and, as they are structurally very similar, it proves difficult to distinguish the related operators by automated means. This also holds for the LacI-family, a family of TFs that is well-studied and has many members that fulfill crucial roles in the control of carbohydrate catabolism in bacteria including catabolite repression. To overcome the specificity problem, a comprehensive footprinting approach was formulated to identify TF-specific operator motifs and was applied to the LacI-family of TFs in the model gram positive organism, Lactobacillus plantarum WCFS1. The main premise behind the approach is that only orthologous sequences that share orthologous genomic context will share equivalent regulatory sites. Results When the approach was applied to the 12 LacI-family TFs of the model species, a specific operator motif was identified for each of them. With the TF-specific operator motifs, potential binding sites were found on the genome and putative minimal regulons could be defined. Moreover, specific inducers could in most cases be linked to the TFs through phylogeny, thereby unveiling the biological role of these regulons. The operator predictions indicated that the LacI-family TFs can be separated into two subfamilies with clearly distinct operator motifs. They also established that the operator related to the 'global' regulator CcpA is not inherently distinct from that of other LacI-family members, only more degenerate. Analysis of the chromosomal position of the identified putative binding sites confirmed that the LacI-family TFs are mostly auto-regulatory and relate mainly to carbohydrate uptake and catabolism. Conclusion Our approach to identify specific operator motifs for different TF-family members is specific and in essence generic. The data infer that, although the specific operator motifs can be used to identify minimal regulons, experimental knowledge on TF activity especially is essential to determine complete regulons as well as to estimate the overlap between TF affinities.
Collapse
Affiliation(s)
- Christof Francke
- TI Food and Nutrition, P,O, Box 557, 6700AN Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
66
|
Complete genome sequence of the mosquitocidal bacterium Bacillus sphaericus C3-41 and comparison with those of closely related Bacillus species. J Bacteriol 2008; 190:2892-902. [PMID: 18296527 DOI: 10.1128/jb.01652-07] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bacillus sphaericus strain C3-41 is an aerobic, mesophilic, spore-forming bacterium that has been used with great success in mosquito control programs worldwide. Genome sequencing revealed that the complete genome of this entomopathogenic bacterium is composed of a chromosomal replicon of 4,639,821 bp and a plasmid replicon of 177,642 bp, containing 4,786 and 186 potential protein-coding sequences, respectively. Comparison of the genome with other published sequences indicated that the B. sphaericus C3-41 chromosome is most similar to that of Bacillus sp. strain NRRL B-14905, a marine species that, like B. sphaericus, is unable to metabolize polysaccharides. The lack of key enzymes and sugar transport systems in the two bacteria appears to be the main reason for this inability, and the abundance of proteolytic enzymes and transport systems may endow these bacteria with exclusive metabolic pathways for a wide variety of organic compounds and amino acids. The genes shared between B. sphaericus C3-41 and Bacillus sp. strain NRRL B-14905, including mobile genetic elements, membrane-associated proteins, and transport systems, demonstrated that these two species are a biologically and phylogenetically divergent group. Knowledge of the genome sequence of B. sphaericus C3-41 thus increases our understanding of the bacilli and may also offer prospects for future genetic improvement of this important biological control agent.
Collapse
|
67
|
Han SO, Inui M, Yukawa H. Expression of Corynebacterium glutamicum glycolytic genes varies with carbon source and growth phase. MICROBIOLOGY-SGM 2007; 153:2190-2202. [PMID: 17600063 DOI: 10.1099/mic.0.2006/004366-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A basic pattern of gene expression and of relative expression levels during different growth phases was obtained for Corynebacterium glutamicum R grown on different carbon sources. The gapA-pgk-tpi-ppc gene cluster was transcribed as a mono- or polycistronic mRNA, depending on the growth phase. The 1.4 kb (gapA) and 2.3 kb (pgk-tip) mRNAs were expressed in the early through late exponential phases, whereas the 3.7 kb (gapA-pgk-tpi) and 5.4 kb (pgk-tpi-ppc) mRNAs were only detected in the mid-exponential phase. All other glycolytic genes except pps, glk and pgi were transcribed as monocistronic mRNAs under all tested conditions. Identification and alignment of the promoter regions of the transcriptional start sites of glycolytic genes revealed strong similarities to the sigma(A) consensus promoter sequences of Gram-positive bacteria. All genes involved in glycolysis were coordinately expressed in medium containing glucose. Growth in the presence of glucose gave rise to abundant expression of most glycolytic genes, with the level of gapA transcript being the highest. Glucose depletion led to a rapid repression of most glycolytic genes and a corresponding two- to fivefold increased expression of the gluconeogenic genes pps, pck and malE, which are induced by pyruvate, lactate, acetate and/or other organic acids.
Collapse
Affiliation(s)
- Sung Ok Han
- School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-gu, Seoul, Republic of Korea
- Research Institute of Innovative Technology for the Earth, Kyoto 619-0292, Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth, Kyoto 619-0292, Japan
| | - Hideaki Yukawa
- Research Institute of Innovative Technology for the Earth, Kyoto 619-0292, Japan
| |
Collapse
|
68
|
Hirooka K, Kunikane S, Matsuoka H, Yoshida KI, Kumamoto K, Tojo S, Fujita Y. Dual regulation of the Bacillus subtilis regulon comprising the lmrAB and yxaGH operons and yxaF gene by two transcriptional repressors, LmrA and YxaF, in response to flavonoids. J Bacteriol 2007; 189:5170-82. [PMID: 17483215 PMCID: PMC1951842 DOI: 10.1128/jb.00079-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis LmrA is known to be a repressor that regulates the lmrAB and yxaGH operons; lmrB and yxaG encode a multidrug resistance pump and quercetin 2,3-dioxygenase, respectively. DNase I footprinting analysis revealed that LmrA and YxaF, which are paralogous to each other, bind specifically to almost the same cis sequences, LmrA/YxaF boxes, located in the promoter regions of the lmrAB operon, the yxaF gene, and the yxaGH operon for their repression and containing a consensus sequence of AWTATAtagaNYGgTCTA, where W, Y, and N stand for A or T, C or T, and any base, respectively (three-out-of-four match [in lowercase type]). Gel retardation analysis indicated that out of the eight flavonoids tested, quercetin, fisetin, and catechin are most inhibitory for LmrA to DNA binding, whereas quercetin, fisetin, tamarixetin, and galangin are most inhibitory for YxaF. Also, YxaF bound most tightly to the tandem LmrA/YxaF boxes in the yxaGH promoter region. The lacZ fusion experiments essentially supported the above-mentioned in vitro results, except that galangin did not activate the lmrAB and yxaGH promoters, probably due to its poor incorporation into cells. Thus, the LmrA/YxaF regulon presumably comprising the lmrAB operon, the yxaF gene, and the yxaGH operon is induced in response to certain flavonoids. The in vivo experiments to examine the regulation of the synthesis of the reporter beta-galactosidase and quercetin 2,3-dioxgenase as well as that of multidrug resistance suggested that LmrA represses the lmrAB and yxaGH operons but that YxaF represses yxaGH more preferentially.
Collapse
Affiliation(s)
- Kazutake Hirooka
- Department of Biotechnology, Faculty of Life Science and Biotechnology, Fukuyama University, 985 Sanzo, Higashimura, Fukuyama 729-0292, Japan
| | | | | | | | | | | | | |
Collapse
|
69
|
Lulko AT, Buist G, Kok J, Kuipers OP. Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes. J Mol Microbiol Biotechnol 2007; 12:82-95. [PMID: 17183215 DOI: 10.1159/000096463] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The pleiotropic regulator of carbon metabolism in Gram-positive bacteria, CcpA, regulates gene expression by binding to so-called cre elements, which are located either upstream or in promoter regions, or in open-reading frames. In this study we compared the transcriptomes of Bacillus subtilis 168 and its ccpA deletion mutant during growth in glucose-containing rich medium. Although growth was similar, glucose was completely consumed by the wild-type strain in the stationary phase, while it was still present in the culture of the mutant. At that stage, direct and indirect effects on gene expression were observed. During exponential growth, CcpA mainly influences the carbohydrate and energy metabolism, whereas from transition phase onwards its function expands on a broader range of physiological processes including nucleotide metabolism, cell motility and protein synthesis. A genome wide search revealednew putative cre sites, which could function in vivo according to our transcriptome data. Comparison of our data with published transcriptome data of ccpA mutant analysis in the exponential growth phase confirmed earlier identified CcpA regulon members. It also allowed identification of potential new CcpA-repressed genes, amongst others ycgN and the ydh operon. Novel activated members include opuE andthe opuAABC, yhb and man operons, which all have a putative cre site that appears to be dependent on helical topology. A comparative analysis of these genes with the known activated genes i.e.ackA and pta revealed the presence of a possible upstream activating region (UAR) as has been shown to be functional for the activation of ackA. The data suggest that at later growth phases CcpA may regulate gene expression by itself or complexed with other, yet unknown cofactors.
Collapse
Affiliation(s)
- Andrzej T Lulko
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | | | | | |
Collapse
|
70
|
Yebra MJ, Zúñiga M, Beaufils S, Pérez-Martínez G, Deutscher J, Monedero V. Identification of a gene cluster enabling Lactobacillus casei BL23 to utilize myo-inositol. Appl Environ Microbiol 2007; 73:3850-8. [PMID: 17449687 PMCID: PMC1932728 DOI: 10.1128/aem.00243-07] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome analysis of Lactobacillus casei BL23 revealed that, compared to L. casei ATCC 334, it carries a 12.8-kb DNA insertion containing genes involved in the catabolism of the cyclic polyol myo-inositol (MI). Indeed, L. casei ATCC 334 does not ferment MI, whereas strain BL23 is able to utilize this carbon source. The inserted DNA consists of an iolR gene encoding a DeoR family transcriptional repressor and a divergently transcribed iolTABCDG1G2EJK operon, encoding a complete MI catabolic pathway, in which the iolK gene probably codes for a malonate semialdehyde decarboxylase. The presence of iolK suggests that L. casei has two alternative pathways for the metabolism of malonic semialdehyde: (i) the classical MI catabolic pathway in which IolA (malonate semialdehyde dehydrogenase) catalyzes the formation of acetyl-coenzyme A from malonic semialdehyde and (ii) the conversion of malonic semialdehyde to acetaldehyde catalyzed by the product of iolK. The function of the iol genes was verified by the disruption of iolA, iolT, and iolD, which provided MI-negative strains. By contrast, the disruption of iolK resulted in a strain with no obvious defect in MI utilization. Transcriptional analyses conducted with different mutant strains showed that the iolTABCDG1G2EJK cluster is regulated by substrate-specific induction mediated by the inactivation of the transcriptional repressor IolR and by carbon catabolite repression mediated by the catabolite control protein A (CcpA). This is the first example of an operon for MI utilization in lactic acid bacteria and illustrates the versatility of carbohydrate utilization in L. casei BL23.
Collapse
Affiliation(s)
- María Jesús Yebra
- Laboratorio de Bacterias Lácticas y Probióticos, IATA-CSIC, P.O. Box 73, 46100 Burjassot, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
71
|
Wolff S, Antelmann H, Albrecht D, Becher D, Bernhardt J, Bron S, Büttner K, van Dijl JM, Eymann C, Otto A, Tam LT, Hecker M. Towards the entire proteome of the model bacterium Bacillus subtilis by gel-based and gel-free approaches. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 849:129-40. [PMID: 17055787 DOI: 10.1016/j.jchromb.2006.09.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 08/25/2006] [Accepted: 09/08/2006] [Indexed: 11/29/2022]
Abstract
With the emergence of mass spectrometry in protein science and the availability of complete genome sequences, proteomics has gone through a rapid development. The soil bacterium Bacillus subtilis, as one of the first DNA sequenced species, represents a model for Gram-positive bacteria and its proteome was extensively studied throughout the years. Having the final goal to elucidate how life really functions, one basic requirement is to know the entirety of cellular proteins. This review presents how far we have got in unraveling the proteome of B. subtilis. The application of gel-based and gel-free technologies, the analyses of different subcellular proteome fractions, and the pursuance of various physiological strategies resulted in a coverage of more than one-third of B. subtilis theoretical proteome.
Collapse
Affiliation(s)
- Susanne Wolff
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17487 Greifswald, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Ogura M, Tsukahara K, Hayashi K, Tanaka T. The Bacillus subtilis NatK–NatR two-component system regulates expression of the natAB operon encoding an ABC transporter for sodium ion extrusion. Microbiology (Reading) 2007; 153:667-675. [PMID: 17322186 DOI: 10.1099/mic.0.2006/003673-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A previous microarray analysis suggested that multicopy yccH, encoding a function-unknown response regulator, enhances expression of natAB, which encodes a two-gene ATP-binding cassette transporter involved in the extrusion of sodium ions. The two-component regulatory system YccG-YccH was therefore renamed NatK-NatR. Here, this observation was confirmed by a lacZ fusion analysis using a strain carrying natA-lacZ. Further, in both natK and natR mutants, natA-lacZ expression was completely abolished, indicating that the NatK-NatR system positively regulates the expression of natAB. In a gel retardation analysis, NatR bound to the natA promoter region. Using purified His-tagged NatR, DNase I footprinting analysis of the natA promoter region suggested that a direct repeat of [TTCA(G)CGACA], separated by a 12 bp space, would be recognized by NatR. Deleted and mutagenized promoter regions of natA were analysed using a lacZ fusion, and it was confirmed that the direct repeat is critical for natA activation by NatR.
Collapse
Affiliation(s)
- Mitsuo Ogura
- Institute of Oceanic Research and Development, Tokai University, 3-20-1 Orido-Shimizu, Shizuoka 424-8610, Japan
| | - Kensuke Tsukahara
- Institute of Oceanic Research and Development, Tokai University, 3-20-1 Orido-Shimizu, Shizuoka 424-8610, Japan
| | - Kentaro Hayashi
- Institute of Oceanic Research and Development, Tokai University, 3-20-1 Orido-Shimizu, Shizuoka 424-8610, Japan
| | - Teruo Tanaka
- Institute of Oceanic Research and Development, Tokai University, 3-20-1 Orido-Shimizu, Shizuoka 424-8610, Japan
| |
Collapse
|
73
|
Tabei Y, Okada K, Tsuzuki M. Sll1330 controls the expression of glycolytic genes in Synechocystis sp. PCC 6803. Biochem Biophys Res Commun 2007; 355:1045-50. [PMID: 17331473 DOI: 10.1016/j.bbrc.2007.02.065] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 02/14/2007] [Indexed: 10/23/2022]
Abstract
In the complete annotated genome sequences of cyanobacterium Synechocystis sp. PCC 6803, one can find many putative genes for two-component response regulators that include a helix-turn-helix DNA-binding domain. The mRNA level of one of the putative genes, sll1330, was increased by glucose, especially in the presence of light. We successfully disrupted the sll1330 gene by targeted mutagenesis with a spectinomycin resistance cassette. Deltasll1330 could not grow well under light-activated heterotrophic growth conditions. Analyses of the expression of glycolytic genes revealed that the mRNA levels of five glycolytic genes, that is, glk (sll0593), pfkA (sll1196), fbaA (sll0018), gpmB (slr1124), and pk (sll0587), were decreased, and were regulated by Sll1330 under light and glucose-supplemented conditions. The Synechocystis sp. PCC 6803 genome each encodes two isozymes for these five glycolytic genes, suggesting that each of the two isozymes is regulated by Sll1330 at the mRNA level.
Collapse
Affiliation(s)
- Yosuke Tabei
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | |
Collapse
|
74
|
Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 2007; 70:939-1031. [PMID: 17158705 PMCID: PMC1698508 DOI: 10.1128/mmbr.00024-06] [Citation(s) in RCA: 998] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens.
Collapse
Affiliation(s)
- Josef Deutscher
- Microbiologie et Génétique Moléculaire, INRA-CNRS-INA PG UMR 2585, Thiverval-Grignon, France.
| | | | | |
Collapse
|
75
|
Characterization of relationships between transcriptional units and operon structures in Bacillus subtilis and Escherichia coli. BMC Genomics 2007; 8:48. [PMID: 17298663 PMCID: PMC1808063 DOI: 10.1186/1471-2164-8-48] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 02/13/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Operon structures play an important role in transcriptional regulation in prokaryotes. However, there have been fewer studies on complicated operon structures in which the transcriptional units vary with changing environmental conditions. Information about such complicated operons is helpful for predicting and analyzing operon structures, as well as understanding gene functions and transcriptional regulation. RESULTS We systematically analyzed the experimentally verified transcriptional units (TUs) in Bacillus subtilis and Escherichia coli obtained from ODB and RegulonDB. To understand the relationships between TUs and operons, we defined a new classification system for adjacent gene pairs, divided into three groups according to the level of gene co-regulation: operon pairs (OP) belong to the same TU, sub-operon pairs (SOP) that are at the transcriptional boundaries within an operon, and non-operon pairs (NOP) belonging to different operons. Consequently, we found that the levels of gene co-regulation was correlated to intergenic distances and gene expression levels. Additional analysis revealed that they were also correlated to the levels of conservation across about 200 prokaryotic genomes. Most interestingly, we found that functional associations in SOPs were more observed in the environmental and genetic information processes. CONCLUSION Complicated operon structures were correlated with genome organization and gene expression profiles. Such intricately regulated operons allow functional differences depending on environmental conditions. These regulatory mechanisms are helpful in accommodating the variety of changes that happen around the cell. In addition, such differences may play an important role in the evolution of gene order across genomes.
Collapse
|
76
|
Voigt B, Hoi LT, Jürgen B, Albrecht D, Ehrenreich A, Veith B, Evers S, Maurer KH, Hecker M, Schweder T. The glucose and nitrogen starvation response ofBacillus licheniformis. Proteomics 2007; 7:413-23. [PMID: 17274076 DOI: 10.1002/pmic.200600556] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The glucose and nitrogen starvation stimulons of Bacillus licheniformis were determined by transcriptome and proteome analyses. Under both starvation conditions, the main response of B. licheniformis was a switch to the usage of alternative nutrient sources. This was indicated by an induction of genes involved in the metabolism of C-2 substrates during glucose limitation. In addition, B. licheniformis seems to be using other organic substances like amino acids and lipids as carbon sources when subjected to glucose starvation. This observation is supported by the induction of a high number of genes coding for proteins involved in amino acid and lipid degradation. During nitrogen starvation, genes for several proteases and peptidases involved in nitrate and nitrite assimilation were induced, which enables this bacterium to recruit nitrogen from alternative sources. Both starvation conditions led to a down-regulation of transcription of most vegetative genes, which was subsequently reflected by a reduced synthesis of the corresponding proteins. A selected set of genes was induced by both starvation conditions. Among them were yvyD, citA and the putative methylcitrate shunt genes mmgD, mmgE and yqiQ. However, both starvation conditions did not induce a general SigmaB-dependent stress response.
Collapse
Affiliation(s)
- Birgit Voigt
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Ogura M, Fujita Y. Bacillus subtilis rapD, a direct target of transcription repression by RghR, negatively regulates srfA expression. FEMS Microbiol Lett 2007; 268:73-80. [PMID: 17227471 DOI: 10.1111/j.1574-6968.2006.00559.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The Bacillus subtilis genome encodes eleven Rap proteins, which are conserved tetratricopeptide-containing regulatory proteins. Of those characterized to date, all except RapI negatively regulate response regulators, including Spo0F, ComA and DegU, via protein-protein interactions. RapD has not yet been fully characterized. It was examined whether RapD inhibits the expression of spoIIE, srfA and aprE, which are Spo0F-, ComA- and DegU-regulated genes, respectively. It was observed that multicopy rapD inhibited srfA expression, which suggests that RapD inhibits ComA. This was reinforced by the fact that multicopy rapD also blocked the expression of rapC and rapF, which belong to the ComA regulon. The expression of rapD was reported to depend on the extracytoplasmic function sigma factor SigX. DNA microarray analysis and gel retardation assays revealed that rapD expression is directly repressed by RghR. Thus, the ComA regulon is regulated by rapD in a SigX- and RghR-dependent manner.
Collapse
Affiliation(s)
- Mitsuo Ogura
- Institute of Oceanic Research and Development, Tokai University, Shizuoka, Japan.
| | | |
Collapse
|
78
|
Ohsawa T, Tsukahara K, Sato T, Ogura M. Superoxide stress decreases expression of srfA through inhibition of transcription of the comQXP quorum-sensing locus in Bacillus subtilis. J Biochem 2007; 139:203-11. [PMID: 16452308 DOI: 10.1093/jb/mvj023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During the course of screening for competence-deficient mutants in the mutant collection constructed by the Japan Consortium of Bacillus Functional Genomics, a disruption mutant of sodA encoding superoxide dismutase was identified as a mutant with decreased transformation efficiency. In fact, in the sodA mutant we observed a severe decrease in the expression of srfA required for the development of genetic competence. Northern and primer extension analyses revealed inhibition of the transcription of the comQXP quorum-sensing locus in the sodA mutant, thereby preventing srfA expression. Furthermore, an excess amount of superoxide anion induced by the addition of paraquat also resulted in a decrease in comQXP transcription. Thus, it was concluded that high levels of superoxide are able to inhibit specifically the transcription of the comQXP operon. In support of this conclusion, the effect of added paraquat was significantly alleviated in a comX-independent srfA expression system.
Collapse
Affiliation(s)
- Taku Ohsawa
- Department of Marine Science, School of Marine Science and Technology, Tokai University, 3-20-1 Orido, Shimizu, Shizuoka 424-8610, Japan
| | | | | | | |
Collapse
|
79
|
Fischer HP, Freiberg C. Applications of transcriptional profiling in antibiotics discovery and development. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2007; 64:21, 23-47. [PMID: 17195470 DOI: 10.1007/978-3-7643-7567-6_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
This chapter will review specific applications of microarray technology and related data analysis strategies in antibacterial research and development. We present examples of microarray applications spanning the entire antibiotics research and development pipeline, from target discovery, assay development, pharmacological evaluation, to compound safety studies. This review emphasizes the utility of microarrays for a systematic evaluation of novel chemistry as antibiotic agents. Transcriptional profiling has revolutionized the process of target elucidation and has the potential to offer substantial guidance in the identification of new targets. Microarrays will continue to be a workhorse of anti-infectives discovery programs ranging from efficacy assessments of antibiotics ('forward pharmacology') to drug safety evaluations ('toxicogenomics').
Collapse
|
80
|
Sidders B, Withers M, Kendall SL, Bacon J, Waddell SJ, Hinds J, Golby P, Movahedzadeh F, Cox RA, Frita R, ten Bokum AMC, Wernisch L, Stoker NG. Quantification of global transcription patterns in prokaryotes using spotted microarrays. Genome Biol 2007; 8:R265. [PMID: 18078514 PMCID: PMC2246267 DOI: 10.1186/gb-2007-8-12-r265] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 11/01/2007] [Accepted: 12/13/2007] [Indexed: 11/18/2022] Open
Abstract
We describe an analysis, applicable to any spotted microarray dataset produced using genomic DNA as a reference, that quantifies prokaryotic levels of mRNA on a genome-wide scale. Applying this to Mycobacterium tuberculosis, we validate the technique, show a correlation between level of expression and biological importance, define the complement of invariant genes and analyze absolute levels of expression by functional class to develop ways of understanding an organism's biology without comparison to another growth condition.
Collapse
Affiliation(s)
- Ben Sidders
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Mike Withers
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Sharon L Kendall
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Joanna Bacon
- TB Research, CEPR, Health Protection Agency, Porton Down, Salisbury, SP4 0JG, UK
| | - Simon J Waddell
- Medical Microbiology, Division of Cellular and Molecular Medicine, St George's University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK
| | - Jason Hinds
- Medical Microbiology, Division of Cellular and Molecular Medicine, St George's University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK
| | - Paul Golby
- Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Farahnaz Movahedzadeh
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
- Institute for Tuberculosis Research College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, 60612-7231, USA
| | - Robert A Cox
- Division of Mycobacterial Research, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Rosangela Frita
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Annemieke MC ten Bokum
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Lorenz Wernisch
- School of Crystallography, Birkbeck College, London, WC1E 7HX, UK
| | - Neil G Stoker
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| |
Collapse
|
81
|
Matsuoka H, Hirooka K, Fujita Y. Organization and function of the YsiA regulon of Bacillus subtilis involved in fatty acid degradation. J Biol Chem 2006; 282:5180-94. [PMID: 17189250 DOI: 10.1074/jbc.m606831200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The organization and function of the Bacillus subtilis YsiA regulon involved in fatty acid degradation were investigated. Northern and primer extension analyses indicated that this regulon comprises five operons, i.e. lcfA-ysiA-B-etfB-A, ykuF-G, yhfL, yusM-L-K-J, and ywjF-acdA-rpoE. YusJ and AcdA, YsiB and YusL, and YusK presumably encode acyl-CoA dehydrogenases, 3-hydroxyl-CoA dehydrogenase/enoyl-CoA hydratase complexes, and acetyl-CoA C-acyltransferase, respectively, which are directly involved in the fatty acid beta-oxidation cycle. In addition, LcfA and YhfL are likely to encode long chain acyl-CoA ligases. On gel retardation and footprinting analyses involving the purified YsiA protein, we identified cis-sequences for YsiA binding (YsiA boxes) in the promoter regions upstream of ysiA, ykuF, yusL, yhfL, and ywjF, the equilibrium dissociation constants (K(d)) for YsiA binding being 20, 21, 37, 43, and 65 nm, respectively. YsiA binding was specifically inhibited by long chain acyl-CoAs with 14-20 carbon atoms, acyl-CoAs with 18 carbon atoms being more effective; out of long chain acyl-CoAs tested, monounsaturated oleoyl-CoA, and branched chain 12-metyltetradecanoyl-CoA were most effective. These in vitro findings were supported by the in vivo observation that the knock-out of acyl-CoA dehydrogenation through yusJ, etfA, or etfB disruption resulted in YsiA inactivation, probably because of the accumulation of long chain acyl-CoAs in the cells. Furthermore, the disruption of yusL, yusK, yusJ, etfA, etfB, or ykuG affected the utilization of palmitic acid, a representative long chain fatty acid. Based on this work, ysiA, ysiB, ykuF, ykuG, yhfL, yusM, yusL, yusK, yusJ, and ywjF can be renamed fadR, fadB, fadH, fadG, lcfB, fadM, fadN, fadA, fadE, and fadF.
Collapse
Affiliation(s)
- Hiroshi Matsuoka
- Department of Biotechnology, Faculty of Life Science and Biotechnology, Fukuyama University, Hiroshima 729-0292, Japan
| | | | | |
Collapse
|
82
|
Tam LT, Eymann C, Antelmann H, Albrecht D, Hecker M. Global Gene Expression Profiling of Bacillus subtilis in Response to Ammonium and Tryptophan Starvation as Revealed by Transcriptome and Proteome Analysis. J Mol Microbiol Biotechnol 2006; 12:121-30. [PMID: 17183219 DOI: 10.1159/000096467] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The global gene expression profile of Bacillus subtilis in response to ammonium and tryptophan starvation was analyzed using transcriptomics and proteomics which gained novel insights into these starvation responses. The results demonstrate that both starvation conditions induce specific, overlapping and general starvation responses. The TnrA regulon, the glutamine synthetase (glnA) as well as the sigma(L)-dependent bkd and roc operons were most strongly and specifically induced after ammonium starvation. These are involved in the uptake and utilization of ammonium and alternative nitrogen sources such as amino acids, gamma-aminobutyrate, nitrate/nitrite, uric acid/urea and oligopeptides. In addition, several carbon catabolite-controlled genes (e.g. acsA, citB), the alpha-acetolactate synthase/-decarboxylase alsSD operon and several aminotransferase genes were specifically induced after ammonium starvation. The induction of sigma(F)- and sigma(E)-dependent sporulation proteins at later time points in ammonium-starved cells was accompanied by an increased sporulation frequency. The specific response to tryptophan starvation includes the TRAP-regulated tryptophan biosynthesis genes, some RelA-dependent genes (e.g. adeC, ald) as well as spo0E. Furthermore, we recognized overlapping responses between ammonium and tryptophan starvation (e.g. dat, maeN) as well as the common induction of the CodY and sigma(H) general starvation regulons and the RelA-dependent stringent response. Many genes encoding proteins of so far unknown functions could be assigned to specifically or commonly induced genes.
Collapse
Affiliation(s)
- Le Thi Tam
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald, Greifswald, Germany
| | | | | | | | | |
Collapse
|
83
|
Choi SK, Saier MH. Mechanism of CcpA-mediated glucose repression of the resABCDE operon of Bacillus subtilis. J Mol Microbiol Biotechnol 2006; 11:104-10. [PMID: 16825793 DOI: 10.1159/000092822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The resABCDE operon of Bacillus subtilis encodes a three-protein complex involved in cytochrome c biogenesis as well as the ResE sensor kinase and the ResD response regulator that control electron transfer and other functions in response to oxygen availability. We have investigated the mechanism of CcpA-mediated control of res operon expression which occurs maximally in the stationary phase of growth. Two CcpA-binding (CRE) sites were found in the res operon, one (CRE1) in the control region in front of the resA promoter, the other (CRE2) in the resB structural gene. Both CRE sites proved to be essential for full CcpA-mediated glucose repression of res operon expression. We propose that both looping and road block mechanisms are involved in res operon control by CcpA.
Collapse
Affiliation(s)
- Soo-Keun Choi
- Division of Biological Sciences, University of California at San Diego, La Jolla, Calif., USA
| | | |
Collapse
|
84
|
Zomer AL, Buist G, Larsen R, Kok J, Kuipers OP. Time-resolved determination of the CcpA regulon of Lactococcus lactis subsp. cremoris MG1363. J Bacteriol 2006; 189:1366-81. [PMID: 17028270 PMCID: PMC1797362 DOI: 10.1128/jb.01013-06] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carbon catabolite control protein A (CcpA) is the main regulator involved in carbon catabolite repression in gram-positive bacteria. Time series gene expression analyses of Lactococcus lactis MG1363 and L. lactis MG1363DeltaccpA using DNA microarrays were used to define the CcpA regulon of L. lactis. Based on a comparison of the transcriptome data with putative CcpA binding motifs (cre sites) in promoter sequences in the genome of L. lactis, 82 direct targets of CcpA were predicted. The main differences in time-dependent expression of CcpA-regulated genes were differences between the exponential and transition growth phases. Large effects were observed for carbon and nitrogen metabolic genes in the exponential growth phase. Effects on nucleotide metabolism genes were observed primarily in the transition phase. Analysis of the positions of putative cre sites revealed that there is a link between either repression or activation and the location of the cre site within the promoter region. Activation was observed when putative cre sites were located upstream of the hexameric -35 sequence at an average position of -56.5 or further upstream with decrements of 10.5 bp. Repression was observed when the cre site was located in or downstream of putative -35 and -10 sequences. The highest level of repression was observed when the cre site was present at a defined side of the DNA helix relative to the canonical -10 sequence. Gel retardation experiments, Northern blotting, and enzyme assays showed that CcpA represses its own expression and activates the expression of the divergently oriented prolidase-encoding pepQ gene, which constitutes a link between regulation of carbon metabolism and regulation of nitrogen metabolism.
Collapse
Affiliation(s)
- Aldert L Zomer
- Department of Molecular Genetics, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, 9750 AA Haren, The Netherlands
| | | | | | | | | |
Collapse
|
85
|
Krings E, Krumbach K, Bathe B, Kelle R, Wendisch VF, Sahm H, Eggeling L. Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation. J Bacteriol 2006; 188:8054-61. [PMID: 16997948 PMCID: PMC1698185 DOI: 10.1128/jb.00935-06] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although numerous bacteria possess genes annotated iol in their genomes, there have been very few studies on the possibly associated myo-inositol metabolism and its significance for the cell. We found that Corynebacterium glutamicum utilizes myo-inositol as a carbon and energy source, enabling proliferation with a high maximum rate of 0.35 h-1. Whole-genome DNA microarray analysis revealed that 31 genes respond to myo-inositol utilization, with 21 of them being localized in two clusters of >14 kb. A set of genomic mutations and functional studies yielded the result that some genes in the two clusters are redundant, and only cluster I is necessary for catabolizing the polyol. There are three genes which encode carriers belonging to the major facilitator superfamily and which exhibit a >12-fold increased mRNA level on myo-inositol. As revealed by mutant characterizations, one carrier is not involved in myo-inositol uptake whereas the other two are active and can completely replace each other with apparent Kms for myo-inositol as a substrate of 0.20 mM and 0.45 mM, respectively. Interestingly, upon utilization of myo-inositol, the L-lysine yield is 0.10 mol/mol, as opposed to 0.30 mol/mol, with glucose as the substrate. This is probably not only due to myo-inositol metabolism alone since a mixture of 187 mM glucose and 17 mM myo-inositol, where the polyol only contributes 8% of the total carbon, reduced the L-lysine yield by 29%. Moreover, genome comparisons with other bacteria highlight the core genes required for growth on myo-inositol, whose metabolism is still weakly defined.
Collapse
Affiliation(s)
- Eva Krings
- Institute of Biotechnology, Research Centre Juelich, D-52425 Juelich, Germany
| | | | | | | | | | | | | |
Collapse
|
86
|
Shivers RP, Dineen SS, Sonenshein AL. Positive regulation of Bacillus subtilis ackA by CodY and CcpA: establishing a potential hierarchy in carbon flow. Mol Microbiol 2006; 62:811-22. [PMID: 16995897 DOI: 10.1111/j.1365-2958.2006.05410.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Conversion of pyruvate to acetate via the phosphotransacetylase-acetate kinase pathway generates ATP and is a major overflow pathway under conditions of carbon and nitrogen excess. In Bacillus subtilis, this pathway is positively regulated by CcpA, a global regulator of carbon metabolism genes. Transcription of the acetate kinase gene (ackA) proved to be activated as well by a second global regulatory protein, CodY. Expression of an ackA-lacZ fusion was reduced in a codY mutant strain. CodY was found to bind in vitro to two sites in the ackA promoter region and to stimulate ackA transcription in a run-off transcription assay. This is the first known case of direct positive regulation by CodY. CodY and CcpA were found to bind to neighbouring sites and their effects were additive both in vivo and in vitro. Surprisingly, positive regulation by CodY, unlike repression, responded primarily to only one type of effector molecule. That is, branched-chain amino acids (BCAAs) served as more potent co-activators of CodY-dependent ackA transcription than did GTP. Given the roles of CcpA and CodY in regulating genes whose products determine the metabolic fate of pyruvate, these two proteins may act together to mediate a hierarchical conversion of pyruvate to its many potential products.
Collapse
Affiliation(s)
- Robert P Shivers
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, MA, USA
| | | | | |
Collapse
|
87
|
Licht A, Brantl S. Transcriptional repressor CcpN from Bacillus subtilis compensates asymmetric contact distribution by cooperative binding. J Mol Biol 2006; 364:434-48. [PMID: 17011578 DOI: 10.1016/j.jmb.2006.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 09/04/2006] [Accepted: 09/06/2006] [Indexed: 11/16/2022]
Abstract
Carbon catabolite repression in Bacillus subtilis is carried out mainly by the major regulator CcpA. In contrast, sugar-dependent repression of three genes, sr1 encoding a small untranslated RNA, and two genes, gapB and pckA, coding for gluconeogenic enzymes is mediated by the recently identified transcriptional repressor CcpN. Since previous DNase I footprinting yielded only basic information on the operator sequences of CcpN, chemical interference footprinting studies were performed for a precise contact mapping. Methylation interference, potassium permanganate and hydroxylamine footprinting were used to identify all contacted residues in both strands in the three operator sequences. Furthermore, ethylation interference experiments were performed to identify phosphate residues essential for CcpN binding. Here, we show that each operator has two binding sites for CcpN, one of which was always contacted more strongly than the other. The three sites that exhibited close contacts were very similar in sequence, with only a few slight variations, whereas the other three corresponding sites showed several deviations. Gel retardation assays with purified CcpN demonstrated that the differences in contact number and strength correlated well with significantly different K(D) values for the corresponding single binding sites. However, quantitative DNase I footprinting of whole operator sequences revealed cooperative binding of CcpN that, apparently, compensated the asymmetric contact distribution. Based on these data, possible consequences for the repression mechanism of CcpN are discussed.
Collapse
Affiliation(s)
- Andreas Licht
- AG Bakteriengenetik, Friedrich-Schiller-Universität Jena, Philosophenweg 12, D-07743 Jena, Germany.
| | | |
Collapse
|
88
|
Wren JD, Conway T. Meta-analysis of published transcriptional and translational fold changes reveals a preference for low-fold inductions. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2006; 10:15-27. [PMID: 16584315 DOI: 10.1089/omi.2006.10.15] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The goals of this study were to gain a better quantitative understanding of the dynamic range of transcriptional and translational response observed in biological systems and to examine the reporting of regulatory events for trends and biases. A straightforward pattern-matching routine extracted 3,408 independent observations regarding transcriptional fold-changes and 1,125 regarding translational fold-changes from over 15 million MEDLINE abstracts. Approximately 95% of reported changes were > or =2-fold. Further, the historical trend of reporting individual fold-changes is declining in favor of high-throughput methods for transcription but not translation. Where it was possible to compare the average fold-changes in transcription and translation for the same gene/product (203 examples), approximately 53% were a < or =2-fold difference, suggesting a loose tendency for the two to be coupled in magnitude. We found also that approximately three-fourths of reported regulatory events have been at the transcriptional level. The frequency distribution appears to be normally distributed and peaks near 2-fold, suggesting that nature selects for a low-energy solution to regulatory responses. Because high-throughput technologies ordinarily sacrifice measurement quality for quantity, this also suggests that many regulatory events may not be reliably detectable by such technologies. Text mining of regulatory events and responses provides additional information incorporable into microarray analysis, such as prior fold-change observations and flagging genes that are regulated post-transcription. All extracted regulation and response patterns can be downloaded at the following website: www.ou.edu/microarray/ oumcf/Meta_analysis.xls.
Collapse
Affiliation(s)
- Jonathan D Wren
- Advanced Center for Genome Technology, Department of Botany and Microbiology, The University of Oklahoma, Norman, 73019, USA.
| | | |
Collapse
|
89
|
Tam LT, Eymann C, Albrecht D, Sietmann R, Schauer F, Hecker M, Antelmann H. Differential gene expression in response to phenol and catechol reveals different metabolic activities for the degradation of aromatic compounds in Bacillus subtilis. Environ Microbiol 2006; 8:1408-27. [PMID: 16872404 DOI: 10.1111/j.1462-2920.2006.01034.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aromatic organic compounds that are present in the environment can have toxic effects or provide carbon sources for bacteria. We report here the global response of Bacillus subtilis 168 to phenol and catechol using proteome and transcriptome analyses. Phenol induced the HrcA, sigmaB and CtsR heat-shock regulons as well as the Spx disulfide stress regulon. Catechol caused the activation of the HrcA and CtsR heat-shock regulons and a thiol-specific oxidative stress response involving the Spx, PerR and FurR regulons but no induction of the sigmaB regulon. The most surprising result was that several catabolite-controlled genes are derepressed by catechol, even if glucose is taken up under these conditions. This derepression of the carbon catabolite control was dependent on the glucose concentration in the medium, as glucose excess increased the derepression of the CcpA-dependent lichenin utilization licBCAH operon and the ribose metabolism rbsRKDACB operon by catechol. Growth and viability experiments with catechol as sole carbon source suggested that B. subtilis is not able to utilize catechol as a carbon-energy source. In addition, the microarray results revealed the very strong induction of the yfiDE operon by catechol of which the yfiE gene shares similarities to glyoxalases/bleomycin resistance proteins/extradiol dioxygenases. Using recombinant His6-YfiE(Bs) we demonstrate that YfiE shows catechol-2,3-dioxygenase activity in the presence of catechol as the metabolite 2-hydroxymuconic semialdehyde was measured. Furthermore, both genes of the yfiDE operon are essential for the growth and viability of B. subtilis in the presence of catechol. Thus, our studies revealed that the catechol-2,3-dioxygenase YfiE is the key enzyme of a meta cleavage pathway in B. subtilis involved in the catabolism of catechol.
Collapse
Affiliation(s)
- Le Thi Tam
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald, F.-L.-Jahn-Strasse 15, D-17487 Greifswald, Germany
| | | | | | | | | | | | | |
Collapse
|
90
|
Tam LT, Antelmann H, Eymann C, Albrecht D, Bernhardt J, Hecker M. Proteome signatures for stress and starvation inBacillus subtilis as revealed by a 2-D gel image color coding approach. Proteomics 2006; 6:4565-85. [PMID: 16847875 DOI: 10.1002/pmic.200600100] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this paper we have defined proteome signatures of Bacillus subtilis in response to heat, salt, peroxide, and superoxide stress as well as after starvation for ammonium, tryptophan, glucose, and phosphate using the 2-D gel-based approach. In total, 79 stress-induced and 155 starvation-induced marker proteins were identified including 50% that are not expressed in the vegetative proteome. Fused proteome maps and a color coding approach have been used to define stress-specific regulons that are involved in specific adaptative functions (HrcA for heat, PerR and Fur for oxidative stress, RecA for peroxide, CymR and S-box for superoxide stress). In addition, starvation-specific regulons are defined that are involved in the uptake or utilization of alternative nutrient sources (TnrA, sigmaL/BkdR for ammonium; tryptophan-activated RNA-binding attenuation protein for tryptophan; CcpA, CcpN, sigmaL/AcoR for glucose; PhoPR for phosphate starvation). The general stress or starvation proteome signatures include the CtsR, Spx, sigmaL/RocR, sigmaB, sigmaH, CodY, sigmaF, and sigmaE regulons. Among these, the Spx-dependent oxidase NfrA was induced by all stress conditions indicating stress-induced protein damages. Finally, a subset of sigmaH-dependent proteins (sporulation response regulator, YvyD, YtxH, YisK, YuxI, YpiB) and the CodY-dependent aspartyl phosphatase RapA were defined as general starvation proteins that indicate the transition to stationary phase caused by starvation.
Collapse
Affiliation(s)
- Le Thi Tam
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald, Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
91
|
Hayashi K, Kensuke T, Kobayashi K, Ogasawara N, Ogura M. Bacillus subtilis RghR (YvaN) represses rapG and rapH, which encode inhibitors of expression of the srfA operon. Mol Microbiol 2006; 59:1714-29. [PMID: 16553878 DOI: 10.1111/j.1365-2958.2006.05059.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rap proteins regulate the activity of response regulators including Spo0F, DegU and ComA. We found that overexpression of either RapG or RapH severely downregulated the expression of srfA, which belongs to the ComA regulon. Disruption of those genes, however, showed small effects on srfA expression. These observations suggested that Bacillus subtilis cells possess a repressor for rapG and rapH. To identify candidate repressors we developed a novel transcription factor array (TF array) assay, in which disruptions of 287 genes encoding regulatory proteins were independently transformed into a strain carrying rapH-lacZ and the resultant transformants were grown on agar plates containing Xgal to detect beta-galactosidase activity. We identified a yvaN disruptant which showed a rapH-overproducing phenotype. DNA microarray analysis of the yvaN mutant suggested that both rapG and rapH were overproduced, leading to inhibition of srfA expression. In a gel retardation assay, purified His-tagged YvaN specifically bound to promoter sequences of rapG and rapH. Further footprint and gel retardation analyses using various deleted probes uncovered critical sequences for YvaN binding. In addition, a lacZ fusion analysis confirmed the significance of YvaN binding for transcription regulation of rapG and rapH. Thus, YvaN was renamed RghR (rapG and rapH repressor). As the rapH gene is activated by ComK and RapH inhibits comK indirectly, this constitutes an autoregulatory loop modulated by RghR.
Collapse
Affiliation(s)
- Kentaro Hayashi
- Department of Marine Science and Technology, Tokai University, Shizuoka, Japan
| | | | | | | | | |
Collapse
|
92
|
Yoshida KI, Yamaguchi M, Morinaga T, Ikeuchi M, Kinehara M, Ashida H. Genetic modification of Bacillus subtilis for production of D-chiro-inositol, an investigational drug candidate for treatment of type 2 diabetes and polycystic ovary syndrome. Appl Environ Microbiol 2006; 72:1310-5. [PMID: 16461681 PMCID: PMC1392952 DOI: 10.1128/aem.72.2.1310-1315.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
D-chiro-inositol (DCI) is a drug candidate for the treatment of type 2 diabetes and polycystic ovary syndrome, since it improves the efficiency with which the body uses insulin and also promotes ovulation. Here, we report genetic modification of Bacillus subtilis for production of DCI from myo-inositol (MI). The B. subtilis iolABCDEFGHIJ operon encodes enzymes for the multiple steps of the MI catabolic pathway. In the first and second steps, MI is converted to 2-keto-MI (2KMI) by IolG and then to 3D-(3,5/4)-trihydroxycyclohexane-1,2-dione by IolE. In this study, we identified iolI encoding inosose isomerase, which converts 2KMI to 1-keto-D-chiro-inositol (1KDCI), and found that IolG reduces 1KDCI to DCI. Inactivation of iolE in a mutant constitutively expressing the iol operon blocked the MI catabolic pathway to accumulate 2KMI, which was converted to DCI via the activity of IolI and IolG. The mutant was able to convert at least 6% of input MI in the culture medium to DCI.
Collapse
Affiliation(s)
- Ken-ichi Yoshida
- Department of Biofunctional Chemistry, Faculty of Agriculture, Kobe University, 1-1 Rokkodai, Kobe, Hyogo 657-8501, Japan.
| | | | | | | | | | | |
Collapse
|
93
|
Guédon E, Sperandio B, Pons N, Ehrlich SD, Renault P. Overall control of nitrogen metabolism in Lactococcus lactis by CodY, and possible models for CodY regulation in Firmicutes. MICROBIOLOGY-SGM 2006; 151:3895-3909. [PMID: 16339935 DOI: 10.1099/mic.0.28186-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
CodY, a pleiotropic transcriptional regulator conserved in low G+C species of Gram-positive bacteria, was previously described to be the central regulator of proteolysis in Lactococcus lactis. In this study, over 100 potential CodY targets were identified by DNA-microarray analysis. Complementary transcriptional analysis experiments were carried out to validate the newly defined CodY regulon. Moreover, the direct role of CodY in the regulation of several target genes was demonstrated by gel retardation experiments. Interestingly, 45 % of CodY-dependent genes encode enzymes involved in amino acid biosynthesis pathways, while most of the other genes are involved in functions related to nitrogen supply. CodY of L. lactis represents the first example of a regulator in Gram-positive bacteria that globally controls amino acid biosynthesis. This global control leads to growth inhibition in several amino-acid-limited media containing an excess of isoleucine. A conserved 15 nt palindromic sequence (AATTTTCNGAAAATT), the so-called CodY-box, located in the vicinity of the -35 box of target promoter regions was identified. Relevance of the CodY-box as an operator for CodY was demonstrated by base substitutions in gel retardation experiments. This motif is also frequently found in the promoter region of genes potentially regulated by CodY in other Gram-positive bacteria.
Collapse
Affiliation(s)
- Eric Guédon
- Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas cedex, France
| | - Brice Sperandio
- Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas cedex, France
| | - Nicolas Pons
- Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas cedex, France
| | - Stanislav Dusko Ehrlich
- Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas cedex, France
| | - Pierre Renault
- Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas cedex, France
| |
Collapse
|
94
|
D'Errico G, Di Salle A, La Cara F, Rossi M, Cannio R. Identification and characterization of a novel bacterial sulfite oxidase with no heme binding domain from Deinococcus radiodurans. J Bacteriol 2006; 188:694-701. [PMID: 16385059 PMCID: PMC1347283 DOI: 10.1128/jb.188.2.694-701.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An open reading frame (draSO) encoding a putative sulfite oxidase (SO) was identified in the sequence of chromosome II of Deinococcus radiodurans; the predicted gene product showed significant amino acid sequence homology to several bacterial and eukaryotic SOs, such as the biochemically and structurally characterized enzyme from Arabidopsis thaliana. Cloning of the Deinococcus SO gene was performed by PCR amplification from the bacterial genomic DNA, and heterologous gene expression of a histidine-tagged polypeptide was obtained in a molybdopterin-overproducing strain of Escherichia coli. The recombinant protein was purified to homogeneity by nickel chelating affinity chromatography, and its main kinetic and chemical physical parameters were determined. Northern blot and enzyme activity analyses indicated that draSO gene expression is constitutive in D. radiodurans and that there is no increase upon exposure to thiosulfate and/or molybdenum(II).
Collapse
Affiliation(s)
- Giovanni D'Errico
- Istituto di Biochimica delle Proteine, CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | | | | | | | | |
Collapse
|
95
|
Puri-Taneja A, Paul S, Chen Y, Hulett FM. CcpA causes repression of the phoPR promoter through a novel transcription start site, P(A6). J Bacteriol 2006; 188:1266-78. [PMID: 16452408 PMCID: PMC1367233 DOI: 10.1128/jb.188.4.1266-1278.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 11/23/2005] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis PhoPR two-component system is directly responsible for activation or repression of Pho regulon genes in response to phosphate deprivation. The response regulator, PhoP, and the histidine kinase, PhoR, are encoded in a single operon with a complex promoter region that contains five known transcription start sites, which respond to at least two regulatory proteins. We report here the identification of another direct regulator of phoPR transcription, carbon catabolite protein A, CcpA. This regulator functions in the presence of glucose or other readily metabolized carbon sources. The maximum derepression of phoPR expression in a ccpA mutant compared to a wild-type stain was observed under excess phosphate conditions with glucose either throughout growth in a high-phosphate defined medium or in a low-phosphate defined medium during exponential growth, a growth condition when phoPR transcription is low in a wild-type strain due to the absence of autoinduction. Either HPr or Crh were sufficient to cause CcpA dependent repression of the phoPR promoter in vivo. A ptsH1 (Hpr) crh double mutant completely relieves phoPR repression during phosphate starvation but not during phosphate replete growth. In vivo and in vitro studies showed that CcpA repressed phoPR transcription by binding directly to the cre consensus sequence present in the promoter. Primer extension and in vitro transcription studies revealed that the CcpA regulation of phoPR transcription was due to repression of P(A6), a previously unidentified promoter positioned immediately upstream of the cre box. Esigma(A) was sufficient for transcription of P(A6), which was repressed by CcpA in vitro. These studies showed direct repression by CcpA of a newly discovered Esigma(A)-responsive phoPR promoter that required either Hpr or Crh in vivo for direct binding to the putative consensus cre sequence located between P(A6) and the five downstream promoters characterized previously.
Collapse
Affiliation(s)
- Ankita Puri-Taneja
- Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Ave. (M/C 567), Chicago, Illinois 60607, USA
| | | | | | | |
Collapse
|
96
|
Abstract
The Bacillus subtilis aprE gene, which encodes the extracellular alkaline protease, is regulated by many positive and negative transcriptional regulators. SenS is one such positive regulator consisting of 65 amino acids. We found that the senS gene on a multicopy plasmid, pSEN24, caused an increase in aprE expression in strains carrying the upstream region of aprE up to -340 with respect to the transcription initiation site but not in a strain carrying the region up to -299, which is within the binding site of the negative regulator ScoC (Hpr). Epistatic analysis showed that the pSEN24 effect was lost in a scoC-deleted mutant. In accordance with these results, the scoC transcription level as assayed by a scoC-lacZ fusion and Northern analysis was greatly reduced in the cells carrying pSEN24. From these results we conclude that multicopy senS enhances aprE expression by suppressing the transcription of scoC.
Collapse
Affiliation(s)
- Eiji Kawachi
- Department of Marine Science, School of Marine Science and Technology, Tokai University, 3-20-1 Shimizuorido, Shizuoka 424-8610, Japan
| | | | | |
Collapse
|
97
|
Baik JY, Lee MS, An SR, Yoon SK, Joo EJ, Kim YH, Park HW, Lee GM. Initial transcriptome and proteome analyses of low culture temperature-induced expression in CHO cells producing erythropoietin. Biotechnol Bioeng 2006; 93:361-71. [PMID: 16187333 DOI: 10.1002/bit.20717] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Low culture temperature is known to enhance the specific productivity of Chinese hamster ovary (CHO) cells expressing erythropoietin (EPO) (LGE10-9-27). Genomic and proteomic approaches were taken to better understand the intracellular responses of these CHO cells resulting from use of low culture temperature (33 degrees C). For transcriptome analysis, commercially available rat and mouse cDNA microarrays were used. The data obtained from the rat and mouse cDNA chips were only somewhat informative in understanding the gene expression profile of CHO cells because of their different sequence homologies with CHO transcriptomes. Overall, transcriptome analysis revealed that low culture temperature could lead to changes in gene expression in various cellular processes such as metabolism, transport, and signaling pathways. Proteome analysis was carried out using 2-D PAGE. Based on spot intensity, 60 high intensity protein spots, from a total of more than 800, were chosen for MS analysis. Forty of the 60 protein spots, which represent 26 different kinds of proteins, were identified by MALDI-TOF-MS and validated by MS/MS. Compared to the reference temperature (37 degrees C), the expression levels of seven proteins (PDI, vimentin, NDK B, ERp57, RIKEN cDNA, phosphoglycerate kinase, and heat shock cognate 71 kDa protein) were increased over twofold at 33 degrees C and those of two proteins (HSP90-beta and EF2) were decreased over twofold at 33 degrees C. Taken together, the results demonstrate the potential of combined analysis of transcriptome and proteome analyses as a tool for the systematic comprehension of cellular mechanisms in CHO cells.
Collapse
Affiliation(s)
- Jong Youn Baik
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Kusong-Dong, Yusong-Gu, Daejon 305-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Voigt B, Schweder T, Sibbald MJJB, Albrecht D, Ehrenreich A, Bernhardt J, Feesche J, Maurer KH, Gottschalk G, van Dijl JM, Hecker M. The extracellular proteome ofBacillus licheniformis grown in different media and under different nutrient starvation conditions. Proteomics 2006; 6:268-81. [PMID: 16317772 DOI: 10.1002/pmic.200500091] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The now finished genome sequence of Bacillus licheniformis DSM 13 allows the prediction of the genes involved in protein secretion into the extracellular environment as well as the prediction of the proteins which are translocated. From the sequence 296 proteins were predicted to contain an N-terminal signal peptide directing most of them to the Sec system, the main transport system in Gram-positive bacteria. Using 2-DE the extracellular proteome of B. licheniformis grown in different media was studied. From the approximately 200 spots visible on the gels, 89 were identified that either contain an N-terminal signal sequence or are known to be secreted by other mechanisms than the Sec pathway. The extracellular proteome of B. licheniformis includes proteins from different functional classes, like enzymes for the degradation of various macromolecules, proteins involved in cell wall turnover, flagellum- and phage-related proteins and some proteins of yet unknown function. Protein secretion is highest during stationary growth phase. Furthermore, cells grown in complex medium secrete considerably higher protein amounts than cells grown in minimal medium. Limitation of phosphate, carbon and nitrogen sources results in the secretion of specific proteins that may be involved in counteracting the starvation.
Collapse
Affiliation(s)
- Birgit Voigt
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität, Friedrich Ludwig Jahn Strasse 15, 17487 Greifswald, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Deutscher J, Herro R, Bourand A, Mijakovic I, Poncet S. P-Ser-HPr—a link between carbon metabolism and the virulence of some pathogenic bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1754:118-25. [PMID: 16182622 DOI: 10.1016/j.bbapap.2005.07.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2005] [Revised: 07/15/2005] [Accepted: 07/15/2005] [Indexed: 11/16/2022]
Abstract
HPr kinase/phosphorylase phosphorylates HPr, a phosphocarrier protein of the phosphoenolpyruvate:carbohydrate phosphotransferase system, at serine-46. P-Ser-HPr is the central regulator of carbon metabolism in Gram-positive bacteria, but also plays a role in virulence development of certain pathogens. In Listeria monocytogenes, several virulence genes, which depend on the transcription activator PrfA, are repressed by glucose, fructose, etc., in a catabolite repressor (CcpA)-independent mechanism. However, the catabolite co-repressor P-Ser-HPr was found to inhibit the activity of PrfA. In an hprKV267F mutant, in which most of the HPr is transformed into P-Ser-HPr, PrfA was barely active. The ptsH1 mutation (Ser-46 of HPr replaced with an alanine) prevented the inhibitory effect of the hprKV267F mutation. Interestingly, disruption of ccpA also inhibited PrfA activity. This effect is probably also mediated via P-Ser-HPr, since ccpA disruption leads to elevated amounts of P-Ser-HPr. Indeed, a ccpA ptsH1 double mutant exhibited normal PrfA activity. In S. pyogenes, the expression of several virulence genes depends on the transcription activator Mga. Interestingly, the mga promoter is preceded by an operator site, which serves as target for the CcpA/P-Ser-HPr complex. Numerous Gram-negative pathogens also contain hprK, which is often organised in an operon with transcription regulators necessary for the development of virulence, indicating that in these organisms P-Ser-HPr also plays a role in pathogenesis. Indeed, inactivation of Neisseria meningitidis hprK strongly diminished cell adhesion of this pathogen.
Collapse
Affiliation(s)
- Josef Deutscher
- Microbiologie et Génétique Moléculaire, CNRS/INRA/INA-PG UMR2585, F-78850 Thiverval-Grignon, France.
| | | | | | | | | |
Collapse
|
100
|
Larsson JT, Rogstam A, von Wachenfeldt C. Coordinated patterns of cytochrome bd and lactate dehydrogenase expression in Bacillus subtilis. MICROBIOLOGY-SGM 2005; 151:3323-3335. [PMID: 16207915 DOI: 10.1099/mic.0.28124-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A variety of pathways for electron and carbon flow in the soil bacterium Bacillus subtilis are differentially expressed depending on whether oxygen is present in the cell environment. This study characterizes the regulation of the respiratory oxidase cytochrome bd and the NADH-linked fermentative lactate dehydrogenase (LDH). Transcription of the cydABCD operon, encoding cytochrome bd, is highly regulated and only becomes activated at low oxygen availability. This induction is not dependent on the gene encoding the redox regulator Fnr or the genes encoding the ResDE two-component regulatory system. The DNA-binding protein YdiH was found to be a principal regulator that controls cydABCD expression. Transcription from the cyd promoter is stimulated 15-fold by a region located upstream of the core promoter. The upstream region may constitute a binding site for an unidentified transcription activator that is likely to influence the level of transcription but not its timing, which is negatively controlled by YdiH. This report provides evidence that YdiH also functions as a repressor of the ldh gene encoding LDH and of a gene, ywcJ, which encodes a putative formate-nitrite transporter. Based on the similarity between YdiH and the Rex protein of Streptomyces coelicolor, it is proposed that YdiH serves as a redox sensor, the activity of which is regulated by cellular differences in the free levels of NAD+ and NADH. It is suggested that ydiH be renamed as rex.
Collapse
Affiliation(s)
- Jonas T Larsson
- Department of Cell and Organism Biology, Lund University, Sölvegatan 35, SE-223 62 Lund, Sweden
| | - Annika Rogstam
- Department of Cell and Organism Biology, Lund University, Sölvegatan 35, SE-223 62 Lund, Sweden
| | - Claes von Wachenfeldt
- Department of Cell and Organism Biology, Lund University, Sölvegatan 35, SE-223 62 Lund, Sweden
| |
Collapse
|