51
|
Reyes-Ábalos AL, Álvarez-Zabaleta M, Olivera-Bravo S, Di Tomaso MV. Acute Genetic Damage Induced by Ethanol and Corticosterone Seems to Modulate Hippocampal Astrocyte Signaling. Int J Cell Biol 2024; 2024:5524487. [PMID: 38439918 PMCID: PMC10911912 DOI: 10.1155/2024/5524487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 03/06/2024] Open
Abstract
Astrocytes maintain CNS homeostasis but also critically contribute to neurological and psychiatric disorders. Such functional diversity implies an extensive signaling repertoire including extracellular vesicles (EVs) and nanotubes (NTs) that could be involved in protection or damage, as widely shown in various experimental paradigms. However, there is no information associating primary damage to the astrocyte genome, the DNA damage response (DDR), and the EV and NT repertoire. Furthermore, similar studies were not performed on hippocampal astrocytes despite their involvement in memory and learning processes, as well as in the development and maintenance of alcohol addiction. By exposing murine hippocampal astrocytes to 400 mM ethanol (EtOH) and/or 1 μM corticosterone (CTS) for 1 h, we tested whether the induced DNA damage and DDR could elicit significant changes in NTs and surface-attached EVs. Genetic damage and initial DDR were assessed by immunolabeling against the phosphorylated histone variant H2AX (γH2AX), DDR-dependent apoptosis by BAX immunoreactivity, and astrocyte activation by the glial acidic fibrillary protein (GFAP) and phalloidin staining. Surface-attached EVs and NTs were examined via scanning electron microscopy, and labeled proteins were analyzed via confocal microscopy. Relative to controls, astrocytes exposed to EtOH, CTS, or EtOH+CTS showed significant increases in nuclear γlH2AX foci, nuclear and cytoplasmic BAX signals, and EV frequency at the expense of the NT amount, mainly upon EtOH, without detectable signs of morphological reactivity. Furthermore, the largest and most complex EVs originated only in DNA-damaged astrocytes. Obtained results revealed that astrocytes exposed to acute EtOH and/or CTS preserved their typical morphology but presented severe DNA damage, triggered canonical DDR pathways, and early changes in the cell signaling mediated by EVs and NTs. Further deepening of this initial morphological and quantitative analysis is necessary to identify the mechanistic links between genetic damage, DDR, cell-cell communication, and their possible impact on hippocampal neural cells.
Collapse
Affiliation(s)
- Ana Laura Reyes-Ábalos
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
- Unidad de Microscopía Electrónica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Magdalena Álvarez-Zabaleta
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Silvia Olivera-Bravo
- Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - María Vittoria Di Tomaso
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
| |
Collapse
|
52
|
Atkinson J, Bezak E, Le H, Kempson I. DNA Double Strand Break and Response Fluorescent Assays: Choices and Interpretation. Int J Mol Sci 2024; 25:2227. [PMID: 38396904 PMCID: PMC10889524 DOI: 10.3390/ijms25042227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Accurately characterizing DNA double-stranded breaks (DSBs) and understanding the DNA damage response (DDR) is crucial for assessing cellular genotoxicity, maintaining genomic integrity, and advancing gene editing technologies. Immunofluorescence-based techniques have proven to be invaluable for quantifying and visualizing DSB repair, providing valuable insights into cellular repair processes. However, the selection of appropriate markers for analysis can be challenging due to the intricate nature of DSB repair mechanisms, often leading to ambiguous interpretations. This comprehensively summarizes the significance of immunofluorescence-based techniques, with their capacity for spatiotemporal visualization, in elucidating complex DDR processes. By evaluating the strengths and limitations of different markers, we identify where they are most relevant chronologically from DSB detection to repair, better contextualizing what each assay represents at a molecular level. This is valuable for identifying biases associated with each assay and facilitates accurate data interpretation. This review aims to improve the precision of DSB quantification, deepen the understanding of DDR processes, assay biases, and pathway choices, and provide practical guidance on marker selection. Each assay offers a unique perspective of the underlying processes, underscoring the need to select markers that are best suited to specific research objectives.
Collapse
Affiliation(s)
- Jake Atkinson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| | - Eva Bezak
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA 5095, Australia; (E.B.)
- Department of Physics, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Hien Le
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA 5095, Australia; (E.B.)
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| |
Collapse
|
53
|
Berfelde J, Hildebrand LS, Kuhlmann L, Fietkau R, Distel LV. FEN1 Inhibition as a Potential Novel Targeted Therapy against Breast Cancer and the Prognostic Relevance of FEN1. Int J Mol Sci 2024; 25:2110. [PMID: 38396787 PMCID: PMC10889347 DOI: 10.3390/ijms25042110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
To improve breast cancer treatment and to enable new strategies for therapeutic resistance, therapeutic targets are constantly being studied. Potential targets are proteins of DNA repair and replication and genomic integrity, such as Flap Endonuclease 1 (FEN1). This study investigated the effects of FEN1 inhibitor FEN1-IN-4 in combination with ionizing radiation on cell death, clonogenic survival, the cell cycle, senescence, doubling time, DNA double-strand breaks and micronuclei in breast cancer cells, breast cells and healthy skin fibroblasts. Furthermore, the variation in the baseline FEN1 level and its influence on treatment prognosis was investigated. The cell lines show specific response patterns in the aspects studied and have heterogeneous baseline FEN1 levels. FEN1-IN-4 has cytotoxic, cytostatic and radiosensitizing effects, expressed through increasing cell death by apoptosis and necrosis, G2M share, senescence, double-strand breaks and a reduced survival fraction. Nevertheless, some cells are less affected by the cytotoxicity and fibroblasts show a rather limited response. In vivo, high FEN1 mRNA expression worsens the prognosis of breast cancer patients. Due to the increased expression in breast cancer tissue, FEN1 could represent a new tumor and prognosis marker and FEN1-IN-4 may serve as a new potent agent in personalized medicine and targeted breast cancer therapy.
Collapse
Affiliation(s)
- Johanna Berfelde
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Laura S. Hildebrand
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Lukas Kuhlmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Luitpold V. Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| |
Collapse
|
54
|
Li F, Wen Z, Wu C, Yang Z, Wang Z, Diao W, Chen D, Xu Z, Lu Y, Liu W. Simultaneous Activation of Immunogenic Cell Death and cGAS-STING Pathway by Liver- and Mitochondria-Targeted Gold(I) Complexes for Chemoimmunotherapy of Hepatocellular Carcinoma. J Med Chem 2024; 67:1982-2003. [PMID: 38261008 DOI: 10.1021/acs.jmedchem.3c01785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Induction of immunogenic cell death (ICD) and activation of the cyclic GMP-AMP synthase stimulator of interferon gene (cGAS-STING) pathway are two potent anticancer immunotherapeutic strategies in hepatocellular carcinoma (HCC). Herein, 12 liver- and mitochondria-targeting gold(I) complexes (9a-9l) were designed and synthesized. The superior complex 9b produced a considerable amount of reactive oxygen species (ROS) and facilitated DNA excretion, the ROS-induced ICD and DNA activated the cGAS-STING pathway, both of which evoked an intense anticancer immune response in vitro and in vivo. Importantly, 9b strongly inhibited tumor growth in a patient-derived xenograft model of HCC. Overall, we present the first case of simultaneous ICD induction and cGAS-STING pathway activation within the same gold-based small molecule, which may provide an innovative strategy for designing chemoimmunotherapies for HCC.
Collapse
Affiliation(s)
- Fuwei Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Zhenfan Wen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Chuanxing Wu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 210011, P. R. China
| | - Zhibin Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali 671000, P. R. China
| | - Zhaoran Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Wenjing Diao
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 210011, P. R. China
| | - Dahong Chen
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 210011, P. R. China
| | - Zhongren Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
55
|
Lin W, Zhao Z, Du W, Ni Z, Pan C, Fang P, Li J, ZhuGe L, Jin S. Interferon-Gamma-Inducible Protein 16 Inhibits Hepatocellular Carcinoma via Interferon Regulatory Factor 3 on Chemosensitivity. Dig Dis Sci 2024; 69:491-501. [PMID: 38170337 DOI: 10.1007/s10620-023-08175-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/29/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND AND AIM Previous reports have suggested IFI16 as a tumor suppressor in hepatocellular carcinoma (HC). Nonetheless, the biological significance of IFI16 and its mechanism concerning resistance to cisplatin (DDP) in HC requires further exploration. METHODS Samples of tumor and corresponding para-carcinoma tissues were acquired from patients with HC. Furthermore, DDP-resistant cell lines of HC, specifically HCC, Huh7 and Hepatoblastoma, HepG3, were generated by gradually increasing the concentration of DDP. Cell apoptosis and DNA damage were evaluated by utilizing flow cytometry assay and TUNEL staining. The interaction between IFI16 and interferon regulatory factor 3 (IRF3) proteins were analyzed using Co-Immunoprecipitation (Co-IP) assay. In vivo assays were conducted by establishing HC subcutaneous xenograft tumor models. RESULTS The study found a reduction in IFI16 expression in both HC tissues and DDP-resistant HC cell lines. The binding of IFI16 to IRF3 regulated DNA damage-associated markers in vitro. Overexpression of IFI16 heightened the susceptibility of DDP-induced apoptosis and DNA damage, which was counteracted by IRF3 knockdown, while strengthened by IRF3 overexpression. Moreover, overexpression of IFI16 diminished in vivo DDP-resistant HC tumorigenicity. CONCLUSION In summary, our findings suggest that IFI16 serves as a tumor suppressor in HC by promoting DNA damage via its interaction with IRF3, thereby reversing DDP resistance.
Collapse
Affiliation(s)
- Wei Lin
- Department of Infectious Diseases, The Second Affiliated Hospital of Wenzhou Medical University, #1111 of Wenzhou Wenzhou Avenue, Longwan District, Wenzhou, Zhejiang, China.
| | - Zhiguang Zhao
- Department of Pathology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenjun Du
- Department of Liver Diseases, Shandong Public Health Clinical Center, Shangdong University, Jinan, Shangdong, China
| | - Zhonglin Ni
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenwei Pan
- Department of Infectious Diseases, The Second Affiliated Hospital of Wenzhou Medical University, #1111 of Wenzhou Wenzhou Avenue, Longwan District, Wenzhou, Zhejiang, China
| | - Peipei Fang
- Department of Infectious Diseases, The Second Affiliated Hospital of Wenzhou Medical University, #1111 of Wenzhou Wenzhou Avenue, Longwan District, Wenzhou, Zhejiang, China
| | - Jie Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Wenzhou Medical University, #1111 of Wenzhou Wenzhou Avenue, Longwan District, Wenzhou, Zhejiang, China
| | - Lu ZhuGe
- Department of Infectious Diseases, The Second Affiliated Hospital of Wenzhou Medical University, #1111 of Wenzhou Wenzhou Avenue, Longwan District, Wenzhou, Zhejiang, China
| | - Shuanghong Jin
- Department of Infectious Diseases, The Second Affiliated Hospital of Wenzhou Medical University, #1111 of Wenzhou Wenzhou Avenue, Longwan District, Wenzhou, Zhejiang, China
| |
Collapse
|
56
|
Shen QQ, Jv XH, Ma XZ, Li C, Liu L, Jia WT, Qu L, Chen LL, Xie JX. Cell senescence induced by toxic interaction between α-synuclein and iron precedes nigral dopaminergic neuron loss in a mouse model of Parkinson's disease. Acta Pharmacol Sin 2024; 45:268-281. [PMID: 37674042 PMCID: PMC10789811 DOI: 10.1038/s41401-023-01153-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/10/2023] [Indexed: 09/08/2023] Open
Abstract
Cell senescence has been implicated in the pathology of Parkinson's disease (PD). Both abnormal α-synuclein aggregation and iron deposition are suggested to be the triggers, facilitators, and aggravators during the development of PD. In this study, we investigated the involvement of α-synuclein and iron in the process of cell senescence in a mouse model of PD. In order to overexpress α-syn-A53T in the substantia nigra pars compacta (SNpc), human α-syn-A53T was microinjected into both sides of the SNpc in mice. We found that overexpression of α-syn-A53T for one week induced significant pro-inflammatory senescence-associated secretory phenotype (SASP), increased cell senescence-related proteins (β-gal, p16, p21, H2A.X and γ-H2A.X), mitochondrial dysfunction accompanied by dysregulation of iron-related proteins (L-ferritin, H-ferritin, DMT1, IRP1 and IRP2) in the SNpc. In contrast, significant loss of nigral dopaminergic neurons and motor dysfunction were only observed after overexpression of α-syn-A53T for 4 weeks. In PC12 cells stably overexpressing α-syn-A53T, iron overload (ferric ammonium citrate, FAC, 100 μM) not only increased the level of reactive oxygen species (ROS), p16 and p21, but also exacerbated the processes of oxidative stress and cell senescence signalling induced by α-syn-A53T overexpression. Interestingly, reducing the iron level with deferoxamine (DFO) or knockdown of transferrin receptor 1 (TfR1) significantly improved both the phenotypes and dysregulated proteins of cell senescence induced by α-syn-A53T overexpression. All these evidence highlights the toxic interaction between iron and α-synuclein inducing cell senescence, which precedes nigral dopaminergic neuronal loss in PD. Further investigation on cell senescence may yield new therapeutic agents for the prevention or treatment of PD.
Collapse
Affiliation(s)
- Qing-Qing Shen
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China
| | - Xian-Hui Jv
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China
| | - Xi-Zhen Ma
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China
| | - Chong Li
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China
| | - Lin Liu
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China
| | - Wen-Ting Jia
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China
| | - Le Qu
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China
| | - Lei-Lei Chen
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China.
| | - Jun-Xia Xie
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
57
|
Lee HJ, Im H, Lee HJ, Kim H, Yi JY. Comparison of cellular responses to ionizing radiation in keratinocytes isolated from healthy donors and type II diabetes patients. Int J Radiat Biol 2024; 100:220-235. [PMID: 37812149 DOI: 10.1080/09553002.2023.2263549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE Due to the expanding repertoire of treatment devices that use radiation, the possibility of exposure to both low-dose and high-dose radiation continues to increase. Skin is the outermost part of the body and thus directly exposed to radiation-induced damage. In particular, the skin of diabetes patients is fragile and easily damaged by external stimuli, such as radiation. However, damage and cellular responses induced by ionizing irradiation in diabetic skin have not been explored in detail. In this study, we investigated the effects of several irradiation dose on normal keratinocytes and those from type II diabetes patients, with particular focus on DNA damage. MATERIALS AND METHODS Cellular responses to low-dose radiation (0.1 Gy) and high-dose radiation (0.5 and 2 Gy) were evaluated. Cell cycle analysis was conducted via flow cytometry and cell viability analyzed using the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. Proteins related to the DNA damage response (DDR) and repair signaling pathways and apoptosis were detected via immunoblot analysis. Apoptosis and cell differentiation were additionally examined in 3D skin organoids using immunohistochemistry. RESULTS Compared to respective control groups, no significant changes were observed in cell cycle, DDR and repair mechanisms, cell survival, and differentiation in response to 0.1 Gy irradiation in both normal and diabetes type II keratinocytes. On the other hand, the cell cycle showed an increase in the G2/M phase in both cell types following exposure to 2 Gy irradiation. At radiation doses 2 Gy, activation of the DDR and repair signaling pathways, apoptosis, and cell differentiation were increased and viability was decreased in both cell types. Notably, these differences were more pronounced in normal than diabetes type II keratinocytes. CONCLUSIONS Normal keratinocytes respond more strongly to radiation-induced damage and recovery than diabetes type II keratinocytes.
Collapse
Affiliation(s)
- Hae Jin Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hyuntaik Im
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| | - Hae-June Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Hyunggee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jae Youn Yi
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| |
Collapse
|
58
|
Sotomayor-Lugo F, Iglesias-Barrameda N, Castillo-Aleman YM, Casado-Hernandez I, Villegas-Valverde CA, Bencomo-Hernandez AA, Ventura-Carmenate Y, Rivero-Jimenez RA. The Dynamics of Histone Modifications during Mammalian Zygotic Genome Activation. Int J Mol Sci 2024; 25:1459. [PMID: 38338738 PMCID: PMC10855761 DOI: 10.3390/ijms25031459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Mammalian fertilization initiates the reprogramming of oocytes and sperm, forming a totipotent zygote. During this intricate process, the zygotic genome undergoes a maternal-to-zygotic transition (MZT) and subsequent zygotic genome activation (ZGA), marking the initiation of transcriptional control and gene expression post-fertilization. Histone modifications are pivotal in shaping cellular identity and gene expression in many mammals. Recent advances in chromatin analysis have enabled detailed explorations of histone modifications during ZGA. This review delves into conserved and unique regulatory strategies, providing essential insights into the dynamic changes in histone modifications and their variants during ZGA in mammals. The objective is to explore recent advancements in leading mechanisms related to histone modifications governing this embryonic development phase in depth. These considerations will be useful for informing future therapeutic approaches that target epigenetic regulation in diverse biological contexts. It will also contribute to the extensive areas of evolutionary and developmental biology and possibly lay the foundation for future research and discussion on this seminal topic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rene Antonio Rivero-Jimenez
- Abu Dhabi Stem Cells Center, Abu Dhabi P.O. Box 4600, United Arab Emirates; (F.S.-L.); (N.I.-B.); (Y.M.C.-A.); (I.C.-H.); (C.A.V.-V.); (A.A.B.-H.); (Y.V.-C.)
| |
Collapse
|
59
|
He S, Wang A, Wang J, Tang Z, Wang X, Wang D, Chen J, Liu C, Zhao M, Chen H, Song L. Human papillomavirus E7 protein induces homologous recombination defects and PARPi sensitivity. J Cancer Res Clin Oncol 2024; 150:27. [PMID: 38263342 PMCID: PMC10805821 DOI: 10.1007/s00432-023-05511-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/08/2023] [Indexed: 01/25/2024]
Abstract
PURPOSE Cervical cancer is a common gynecological malignancy, pathologically associated with persistent infection of high-risk types of human papillomavirus (HPV). Previous studies revealed that HPV-positive cervical cancer displays genomic instability; however, the underlying mechanism is not fully understood. METHODS To investigate if DNA damage responses are aggravated in precancerous lesions of HPV-positive cervical epithelium, cervical tissues were biopsied and cryosectioned, and subjected to immunofluorescent staining. Cloned HA-tagged E6 and E7 genes of HPV16 subtype were transfected into HEK293T or C33A cells, and indirect immunofluorescent staining was applied to reveal the competency of double strand break (DSB) repair. To test the synthetic lethality of E7-indued HRD and PARP inhibitor (PARPi), we expressed E7 in C33A cells in the presence or absence of olaparib, and evaluated cell viability by colony formation. RESULTS In precancerous lesions, endogenous DNA lesions were elevated along with the severity of CIN grade. Expressing high-risk viral factor (E7) in HPV-negative cervical cells did not impair checkpoint activation upon genotoxic insults, but affected the potential of DSB repair, leading to homologous recombination deficiency (HRD). Based on this HPV-induced genomic instability, the viability of E7-expressing cells was reduced upon exposure to PARPi in comparison with control cells. CONCLUSION In aggregate, our findings demonstrate that HPV-E7 is a potential driver for genome instability and provides a new angle to understand its role in cancer development. The viral HRD could be employed to target HPV-positive cervical cancer via synthetic lethality.
Collapse
Affiliation(s)
- Siqi He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Gynecology and Obstetrics, Meishan Women and Children's Hospital, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Ao Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Gynecology and Obstetrics, Meishan Women and Children's Hospital, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jing Wang
- Department of Clinical Laboratory, Suining Central Hospital, Suining, 629000, People's Republic of China
| | - Zizhi Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Gynecology and Obstetrics, Meishan Women and Children's Hospital, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaojun Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Gynecology and Obstetrics, Meishan Women and Children's Hospital, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Danqing Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Gynecology and Obstetrics, Meishan Women and Children's Hospital, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jie Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Gynecology and Obstetrics, Meishan Women and Children's Hospital, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Cong Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Gynecology and Obstetrics, Meishan Women and Children's Hospital, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Mingcai Zhao
- Department of Clinical Laboratory, Suining Central Hospital, Suining, 629000, People's Republic of China.
| | - Hui Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Gynecology and Obstetrics, Meishan Women and Children's Hospital, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Liang Song
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Gynecology and Obstetrics, Meishan Women and Children's Hospital, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
60
|
Mórocz M, Qorri E, Pekker E, Tick G, Haracska L. Exploring RAD18-dependent replication of damaged DNA and discontinuities: A collection of advanced tools. J Biotechnol 2024; 380:1-19. [PMID: 38072328 DOI: 10.1016/j.jbiotec.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/21/2023]
Abstract
DNA damage tolerance (DDT) pathways mitigate the effects of DNA damage during replication by rescuing the replication fork stalled at a DNA lesion or other barriers and also repair discontinuities left in the newly replicated DNA. From yeast to mammalian cells, RAD18-regulated translesion synthesis (TLS) and template switching (TS) represent the dominant pathways of DDT. Monoubiquitylation of the polymerase sliding clamp PCNA by HRAD6A-B/RAD18, an E2/E3 protein pair, enables the recruitment of specialized TLS polymerases that can insert nucleotides opposite damaged template bases. Alternatively, the subsequent polyubiquitylation of monoubiquitin-PCNA by Ubc13-Mms2 (E2) and HLTF or SHPRH (E3) can lead to the switching of the synthesis from the damaged template to the undamaged newly synthesized sister strand to facilitate synthesis past the lesion. When immediate TLS or TS cannot occur, gaps may remain in the newly synthesized strand, partly due to the repriming activity of the PRIMPOL primase, which can be filled during the later phases of the cell cycle. The first part of this review will summarize the current knowledge about RAD18-dependent DDT pathways, while the second part will offer a molecular toolkit for the identification and characterization of the cellular functions of a DDT protein. In particular, we will focus on advanced techniques that can reveal single-stranded and double-stranded DNA gaps and their repair at the single-cell level as well as monitor the progression of single replication forks, such as the specific versions of the DNA fiber and comet assays. This collection of methods may serve as a powerful molecular toolkit to monitor the metabolism of gaps, detect the contribution of relevant pathways and molecular players, as well as characterize the effectiveness of potential inhibitors.
Collapse
Affiliation(s)
- Mónika Mórocz
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary.
| | - Erda Qorri
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary; Faculty of Science and Informatics, Doctoral School of Biology, University of Szeged, Szeged H-6720, Hungary.
| | - Emese Pekker
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary; Doctoral School of Interdisciplinary Medicine, University of Szeged, Korányi fasor 10, 6720 Szeged, Hungary.
| | - Gabriella Tick
- Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary.
| | - Lajos Haracska
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2. H-1117 Budapest, Hungary.
| |
Collapse
|
61
|
Kawaguchi K, Kazama M, Hata T, Matsuo M, Obokata J, Satoh S. Inducible Expression of the Restriction Enzyme Uncovered Genome-Wide Distribution and Dynamic Behavior of Histones H4K16ac and H2A.Z at DNA Double-Strand Breaks in Arabidopsis. PLANT & CELL PHYSIOLOGY 2024; 65:142-155. [PMID: 37930797 DOI: 10.1093/pcp/pcad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
DNA double-strand breaks (DSBs) are among the most serious types of DNA damage, causing mutations and chromosomal rearrangements. In eukaryotes, DSBs are immediately repaired in coordination with chromatin remodeling for the deposition of DSB-related histone modifications and variants. To elucidate the details of DSB-dependent chromatin remodeling throughout the genome, artificial DSBs need to be reproducibly induced at various genomic loci. Recently, a comprehensive method for elucidating chromatin remodeling at multiple DSB loci via chemically induced expression of a restriction enzyme was developed in mammals. However, this DSB induction system is unsuitable for investigating chromatin remodeling during and after DSB repair, and such an approach has not been performed in plants. Here, we established a transgenic Arabidopsis plant harboring a restriction enzyme gene Sbf I driven by a heat-inducible promoter. Using this transgenic line, we performed chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) of histones H4K16ac and H2A.Z and investigated the dynamics of these histone marks around the endogenous 623 Sbf I recognition sites. We also precisely quantified DSB efficiency at all cleavage sites using the DNA resequencing data obtained by the ChIP-seq procedure. From the results, Sbf I-induced DSBs were detected at 360 loci, which induced the transient deposition of H4K16ac and H2A.Z around these regions. Interestingly, we also observed the co-localization of H4K16ac and H2A.Z at some DSB loci. Overall, DSB-dependent chromatin remodeling was found to be highly conserved between plants and animals. These findings provide new insights into chromatin remodeling that occurs in response to DSBs in Arabidopsis.
Collapse
Affiliation(s)
- Kohei Kawaguchi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto, Kyoto 606-8522, Japan
| | - Mei Kazama
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto, Kyoto 606-8522, Japan
| | - Takayuki Hata
- Graduate School of Medicine, Hirosaki University, Hirosaki, Aomori 036-8560, Japan
| | - Mitsuhiro Matsuo
- Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Junichi Obokata
- Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Soichirou Satoh
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto, Kyoto 606-8522, Japan
| |
Collapse
|
62
|
Chaturvedi G, Sarusi-Portuguez A, Loza O, Shimoni-Sebag A, Yoron O, Lawrence YR, Zach L, Hakim O. Dose-Dependent Transcriptional Response to Ionizing Radiation Is Orchestrated with DNA Repair within the Nuclear Space. Int J Mol Sci 2024; 25:970. [PMID: 38256047 PMCID: PMC10815587 DOI: 10.3390/ijms25020970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Radiation therapy is commonly used to treat glioblastoma multiforme (GBM) brain tumors. Ionizing radiation (IR) induces dose-specific variations in transcriptional programs, implicating that they are tightly regulated and critical components in the tumor response and survival. Yet, our understanding of the downstream molecular events triggered by effective vs. non-effective IR doses is limited. Herein, we report that variations in the genetic programs are positively and functionally correlated with the exposure to effective or non-effective IR doses. Genome architecture analysis revealed that gene regulation is spatially and temporally coordinated with DNA repair kinetics. The radiation-activated genes were pre-positioned in active sub-nuclear compartments and were upregulated following the DNA damage response, while the DNA repair activity shifted to the inactive heterochromatic spatial compartments. The IR dose affected the levels of DNA damage repair and transcription modulation, but not the order of the events, which was linked to their spatial nuclear positioning. Thus, the distinct coordinated temporal dynamics of DNA damage repair and transcription reprogramming in the active and inactive sub-nuclear compartments highlight the importance of high-order genome organization in synchronizing the molecular events following IR.
Collapse
Affiliation(s)
- Garima Chaturvedi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat Gan 5290002, Israel; (A.S.-P.)
| | - Avital Sarusi-Portuguez
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat Gan 5290002, Israel; (A.S.-P.)
| | - Olga Loza
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat Gan 5290002, Israel; (A.S.-P.)
| | - Ariel Shimoni-Sebag
- Institute of Oncology, Sheba Medical Center, Ramat Gan 5262000, Israel; (A.S.-S.)
| | - Orly Yoron
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat Gan 5290002, Israel; (A.S.-P.)
| | | | - Leor Zach
- Institute of Oncology, Tel Aviv Soraski Medical Center, Tel Aviv 6423906, Israel
| | - Ofir Hakim
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat Gan 5290002, Israel; (A.S.-P.)
| |
Collapse
|
63
|
Reyes-Ábalos AL, Álvarez-Zabaleta M, Olivera-Bravo S, Di Tomaso MV. Astrocyte DNA damage and response upon acute exposure to ethanol and corticosterone. FRONTIERS IN TOXICOLOGY 2024; 5:1277047. [PMID: 38259729 PMCID: PMC10800529 DOI: 10.3389/ftox.2023.1277047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: Astrocytes are the glial cells responsible for brain homeostasis, but if injured, they could damage neural cells even deadly. Genetic damage, DNA damage response (DDR), and its downstream cascades are dramatic events poorly studied in astrocytes. Hypothesis and methods: We propose that 1 h of 400 mmol/L ethanol and/or 1 μmol/L corticosterone exposure of cultured hippocampal astrocytes damages DNA, activating the DDR and eliciting functional changes. Immunolabeling against γH2AX (chromatin DNA damage sites), cyclin D1 (cell cycle control), nuclear (base excision repair, BER), and cytoplasmic (anti-inflammatory functions) APE1, ribosomal nucleolus proteins together with GFAP and S100β plus scanning electron microscopy studies of the astrocyte surface were carried out. Results: Data obtained indicate significant DNA damage, immediate cell cycle arrest, and BER activation. Changes in the cytoplasmic signals of cyclin D1 and APE1, nucleolus number, and membrane-attached vesicles strongly suggest a reactivity like astrocyte response without significant morphological changes. Discussion: Obtained results uncover astrocyte genome immediate vulnerability and DDR activation, plus a functional response that might in part, be signaled through extracellular vesicles, evidencing the complex influence that astrocytes may have on the CNS even upon short-term aggressions.
Collapse
Affiliation(s)
- Ana Laura Reyes-Ábalos
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Magdalena Álvarez-Zabaleta
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | | | - María Vittoria Di Tomaso
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| |
Collapse
|
64
|
Sera Y, Yamamoto S, Mutou A, Koba S, Kurokawa Y, Imanaka T, Yamaguchi M. SBDS Gene Mutation Increases ROS Production and Causes DNA Damage as Well as Oxidation of Mitochondrial Membranes in the Murine Myeloid Cell Line 32Dcl3. Biol Pharm Bull 2024; 47:1376-1382. [PMID: 39085077 DOI: 10.1248/bpb.b24-00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Shwachman-Diamond syndrome (SDS) is an autosomal recessive disease caused by mutation in the Shwachman-Bodian-Diamond syndrome (SBDS) gene. SDS has a variety of clinical features, including exocrine pancreatic insufficiency and hematological dysfunction. Neutropenia is the most common symptom in patients with SDS. SDS is also associated with an elevated risk of developing myelodysplastic syndromes and acute myeloid leukemia. The SBDS protein is involved in ribosome biogenesis, ribosomal RNA metabolism, stabilization of mitotic spindles and cellular stress responses, yet the function of SBDS in detail is still incompletely understood. Considering the diverse function of SBDS, the effect of SBDS seems to be different in different cells and tissues. In this study, we established myeloid cell line 32Dcl3 with a common pathogenic SBDS variant on both alleles in intron 2, 258 + 2T > C, and examined the cellular damage that resulted. We found that the protein synthesis was markedly decreased in the mutant cells. Furthermore, reactive oxygen species (ROS) production was increased, and oxidation of the mitochondrial membrane lipids and DNA damage were induced. These findings provide new insights into the cellular and molecular pathology caused by SBDS deficiency in myeloid cells.
Collapse
Affiliation(s)
- Yukihiro Sera
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Sakura Yamamoto
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Akane Mutou
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Shuta Koba
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Yuki Kurokawa
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Tsuneo Imanaka
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Masafumi Yamaguchi
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University
| |
Collapse
|
65
|
van Bueren MAE, Janssen A. The impact of chromatin on double-strand break repair: Imaging tools and discoveries. DNA Repair (Amst) 2024; 133:103592. [PMID: 37976899 DOI: 10.1016/j.dnarep.2023.103592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Eukaryotic nuclei are constantly being exposed to factors that break or chemically modify the DNA. Accurate repair of this DNA damage is crucial to prevent DNA mutations and maintain optimal cell function. To overcome the detrimental effects of DNA damage, a multitude of repair pathways has evolved. These pathways need to function properly within the different chromatin domains present in the nucleus. Each of these domains exhibit distinct molecular- and bio-physical characteristics that can influence the response to DNA damage. In particular, chromatin domains highly enriched for repetitive DNA sequences, such as nucleoli, centromeres and pericentromeric heterochromatin require tailored repair mechanisms to safeguard genome stability. Work from the past decades has led to the development of innovative imaging tools as well as inducible DNA damage techniques to gain new insights into the impact of these repetitive chromatin domains on the DNA repair process. Here we summarize these tools with a particular focus on Double-Strand Break (DSB) repair, and discuss the insights gained into our understanding of the influence of chromatin domains on DSB -dynamics and -repair pathway choice.
Collapse
Affiliation(s)
- Marit A E van Bueren
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Aniek Janssen
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
66
|
Ali SR, Nguyen NUN, Menendez-Montes I, Hsu CC, Elhelaly W, Lam NT, Li S, Elnwasany A, Nakada Y, Thet S, Foo RSY, Sadek HA. Hypoxia-induced stabilization of HIF2A promotes cardiomyocyte proliferation by attenuating DNA damage. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:11. [PMID: 38455514 PMCID: PMC10919901 DOI: 10.20517/jca.2023.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Introduction Gradual exposure to a chronic hypoxic environment leads to cardiomyocyte proliferation and improved cardiac function in mouse models through a reduction in oxidative DNA damage. However, the upstream transcriptional events that link chronic hypoxia to DNA damage have remained obscure. Aim We sought to determine whether hypoxia signaling mediated by the hypoxia-inducible factor 1 or 2 (HIF1A or HIF2A) underlies the proliferation phenotype that is induced by chronic hypoxia. Methods and Results We used genetic loss-of-function models using cardiomyocyte-specific HIF1A and HIF2A gene deletions in chronic hypoxia. We additionally characterized a cardiomyocyte-specific HIF2A overexpression mouse model in normoxia during aging and upon injury. We performed transcriptional profiling with RNA-sequencing on cardiac tissue, from which we verified candidates at the protein level. We find that HIF2A - rather than HIF1A - mediates hypoxia-induced cardiomyocyte proliferation. Ectopic, oxygen-insensitive HIF2A expression in cardiomyocytes reveals the cell-autonomous role of HIF2A in cardiomyocyte proliferation. HIF2A overexpression in cardiomyocytes elicits cardiac regeneration and improvement in systolic function after myocardial infarction in adult mice. RNA-sequencing reveals that ectopic HIF2A expression attenuates DNA damage pathways, which was confirmed with immunoblot and immunofluorescence. Conclusion Our study provides mechanistic insights about a new approach to induce cardiomyocyte renewal and mitigate cardiac injury in the adult mammalian heart. In light of evidence that DNA damage accrues in cardiomyocytes with aging, these findings may help to usher in a new therapeutic approach to overcome such age-related changes and achieve regeneration.
Collapse
Affiliation(s)
- Shah R. Ali
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ngoc Uyen Nhi Nguyen
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ivan Menendez-Montes
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ching-Cheng Hsu
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Waleed Elhelaly
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nicholas T. Lam
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shujuan Li
- Department of Pediatric Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Abdallah Elnwasany
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuji Nakada
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Suwannee Thet
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Roger S. Y. Foo
- Cardiovascular Research Institute, National University of Singapore, and Genome Institute of Singapore, Singapore 119228, Singapore
| | - Hesham A. Sadek
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| |
Collapse
|
67
|
Parducci NS, Garnique ADMB, Lima K, Carlos JAEG, Fonseca NP, de Miranda LBL, de Almeida BO, Rego EM, Traina F, Machado-Neto JA. Antineoplastic effects of pharmacological inhibitors of aurora kinases in CSF3R T618I-driven cells. Blood Cells Mol Dis 2024; 104:102799. [PMID: 37839173 DOI: 10.1016/j.bcmd.2023.102799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Myeloproliferative neoplasms (MPN) are consolidated as a relevant group of diseases derived from the malfunction of the hematopoiesis process and have as a particular attribute the increased proliferation of myeloid lineage. Among these, chronic neutrophilic leukemia (CNL) is distinguished, caused by the T618I mutation of the CSF3R gene, a trait that generates ligand-independent receptor activation and downstream JAK2/STAT signaling. Previous studies reported that mutations in BCR::ABL1 and JAK2V617F increased the expression of the aurora kinase A (AURKA) and B (AURKB) in Ba/F3 cells and their pharmacological inhibition displays antineoplastic effects in human BCR::ABL1 and JAK2V617F positive cells. Delimiting the current scenario, aspects related to the AURKA and AURKB as a potential target in CSF3RT618I-driven models is little known. In the present study, the cellular and molecular effects of pharmacological inhibitors of aurora kinases, such as aurora A inhibitor I, AZD1152-HQPA, and reversine, were evaluated in Ba/F3 expressing the CSF3RT618I mutation. AZD1152-HQPA and reversine demonstrated antineoplastic potential, causing a decrease in cell viability, clonogenicity, and proliferative capacity. At molecular levels, all inhibitors reduced histone H3 phosphorylation, aurora A inhibitor I and reversine reduced STAT5 phosphorylation, and AZD1152-HQPA and reversine induced PARP1 cleavage and γH2AX expression. Reversine more efficiently modulated genes associated with cell cycle and apoptosis compared to other drugs. In summary, our findings shed new insights into the use of AURKB inhibitors in the context of CNL.
Collapse
Affiliation(s)
- Natália Sudan Parducci
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Keli Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | | | - Natasha Peixoto Fonseca
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Cell Based Therapy, São Paulo Research Foundation, Ribeirão Preto, SP, Brazil
| | | | - Bruna Oliveira de Almeida
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eduardo Magalhães Rego
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil; Center for Cell Based Therapy, São Paulo Research Foundation, Ribeirão Preto, SP, Brazil
| | - Fabiola Traina
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Cell Based Therapy, São Paulo Research Foundation, Ribeirão Preto, SP, Brazil
| | - João Agostinho Machado-Neto
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
68
|
Zheng R, Gao F, Xiao Y, Liang J, Mao Z, Gan C, Song H, Du M, Wang M, Tian M, Zhang Z. PM 2.5-derived exosomal long noncoding RNA PAET participates in childhood asthma by enhancing DNA damage via m 6A-dependent OXPHOS regulation. ENVIRONMENT INTERNATIONAL 2024; 183:108386. [PMID: 38134679 DOI: 10.1016/j.envint.2023.108386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Fine particulate matter (PM2.5) is known to enhance DNA damage levels and is involved in respiratory diseases. Exosomes can carry noncoding RNAs, especially long noncoding RNAs (lncRNAs), as regulators of DNA damage, which participate in diseases. However, their role in PM2.5-induced childhood asthma remains unclear. We performed RNA-seq to profile aberrantly expressed exosomal lncRNAs derived from PM2.5-treated human bronchial epithelial (HBE) cell models. The role of exosomal lncRNAs in childhood asthma was determined in a case-control study. The intercellular communication mechanisms of exosomal lncRNA on DNA damage were determined in vitro. Exosomes secreted by PM2.5-treated HBE cells (PM2.5-Exos) could increase the DNA damage levels of recipient HBE cells and promote the expression levels of airway remodeling-related markers in sensitive human bronchial smooth muscle cells (HBSMCs). LncRNA PM2.5-associated exosomal transcript (PAET) was highly expressed in PM2.5-Exos and was associated with PM2.5 exposure in childhood asthma. Mechanistically, exosomal lncRNA PAET promoted methyltransferase-like 3 (METTL3) accumulation by increasing its stability, which stimulated N6-methyladenosine (m6A) modification of cytochrome c oxidase subunit 4I1 (COX4I1), and COX4I1 levels were decreased in a mechanism dependent on the m6A "reader" YTH domain family 3 (YTHDF3). COX4I1 deficiency subsequently disrupted oxidative phosphorylation (OXPHOS), resulting in attenuated adenosine triphosphate (ATP) production and accumulation of reactive oxygen species (ROS), which increased DNA damage levels. This comprehensive study extends the understanding of PM2.5-induced childhood asthma via DNA damage and identifies exosomal lncRNA PAET as a potential target for childhood asthma.
Collapse
Affiliation(s)
- Rui Zheng
- Departments of Genetic Toxicology and Environmental Genomics, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China.
| | - Fang Gao
- Departments of Genetic Toxicology and Environmental Genomics, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Yanping Xiao
- Departments of Genetic Toxicology and Environmental Genomics, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiayuan Liang
- Departments of Genetic Toxicology and Environmental Genomics, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhenguang Mao
- Departments of Genetic Toxicology and Environmental Genomics, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Cong Gan
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Song
- Departments of Genetic Toxicology and Environmental Genomics, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Departments of Genetic Toxicology and Environmental Genomics, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Departments of Genetic Toxicology and Environmental Genomics, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Man Tian
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Zhengdong Zhang
- Departments of Genetic Toxicology and Environmental Genomics, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China.
| |
Collapse
|
69
|
Zhu J, Ye L, Sun S, Yuan J, Huang J, Zeng Z. Involvement of RFC3 in tamoxifen resistance in ER-positive breast cancer through the cell cycle. Aging (Albany NY) 2023; 15:13738-13752. [PMID: 38059884 PMCID: PMC10756131 DOI: 10.18632/aging.205260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/17/2023] [Indexed: 12/08/2023]
Abstract
Since the establishment of the molecular subtyping system, ER positive breast cancer was considered to be the most prevalent type of breast cancer, and endocrine therapy was a very important solution. However, numerous studies have shown that the cell cycle plays a key role in the progression and metastasis of breast cancer. The present study showed that RFC3 was involved in the cell cycle through DNA replication. Furthermore, RFC3 expression was significantly higher in breast cancer-resistant cells than in parental cells, which correlated with the cell cycle. We confirmed these results by established drug-resistant cell lines for breast cancer, raw letter analysis and immunohistochemical analysis of primary and recurrent tissues from three ER+ breast cancers. In addition, analysis of the results through an online database revealed that RFC3 expression was significantly associated with poor prognosis in ER+ breast cancer. We also demonstrated that in ER positive breast cancer-resistant cells, knockdown of RFC3 blocked the S-phase of cells and significantly attenuated cell proliferation, migration and invasion. Furthermore, RFC3 overexpression in ER positive breast cancer cells enhanced cell proliferation, migration and invasion. Taking all these findings into account, we could conclude that RFC3 was involved in endocrine resistance in breast cancer through the cell cycle. Thus, RFC3 may be a target to address endocrine therapy resistance in ER positive breast cancer and may be an independent prognostic factor in ER positive breast cancer.
Collapse
Affiliation(s)
- Jintao Zhu
- Department of Breast, Foshan Fosun Chancheng Hospital, Foshan, Guangdong, China
| | - Lei Ye
- Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Shishen Sun
- Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Jie Yuan
- Department of General Surgery, Foshan Fosun Chancheng Hospital, Foshan, Guangdong, China
| | - Jianfeng Huang
- Department of General Surgery, Foshan Fosun Chancheng Hospital, Foshan, Guangdong, China
| | - Zhiqiang Zeng
- Department of Breast, Foshan Fosun Chancheng Hospital, Foshan, Guangdong, China
| |
Collapse
|
70
|
Ye Z, Wang J, Shi W, Zhou Z, Zhang Y, Wang J, Yang H. Reprimo (RPRM) as a Potential Preventive and Therapeutic Target for Radiation-Induced Brain Injury via Multiple Mechanisms. Int J Mol Sci 2023; 24:17055. [PMID: 38069378 PMCID: PMC10707327 DOI: 10.3390/ijms242317055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Patients receiving cranial radiotherapy for primary and metastatic brain tumors may experience radiation-induced brain injury (RIBI). Thus far, there has been a lack of effective preventive and therapeutic strategies for RIBI. Due to its complicated underlying pathogenic mechanisms, it is rather difficult to develop a single approach to target them simultaneously. We have recently reported that Reprimo (RPRM), a tumor suppressor gene, is a critical player in DNA damage repair, and RPRM deletion significantly confers radioresistance to mice. Herein, by using an RPRM knockout (KO) mouse model established in our laboratory, we found that RPRM deletion alleviated RIBI in mice via targeting its multiple underlying mechanisms. Specifically, RPRM knockout significantly reduced hippocampal DNA damage and apoptosis shortly after mice were exposed to whole-brain irradiation (WBI). For the late-delayed effect of WBI, RPRM knockout obviously ameliorated a radiation-induced decline in neurocognitive function and dramatically diminished WBI-induced neurogenesis inhibition. Moreover, RPRM KO mice exhibited a significantly lower level of acute and chronic inflammation response and microglial activation than wild-type (WT) mice post-WBI. Finally, we uncovered that RPRM knockout not only protected microglia against radiation-induced damage, thus preventing microglial activation, but also protected neurons and decreased the induction of CCL2 in neurons after irradiation, in turn attenuating the activation of microglial cells nearby through paracrine CCL2. Taken together, our results indicate that RPRM plays a crucial role in the occurrence of RIBI, suggesting that RPRM may serve as a novel potential target for the prevention and treatment of RIBI.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongying Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College of Soochow University, Suzhou 215123, China; (Z.Y.); (J.W.); (W.S.); (Z.Z.); (Y.Z.); (J.W.)
| |
Collapse
|
71
|
Quan L, Sun X, Xu L, Chen RA, Liu DX. Coronavirus RNA-dependent RNA polymerase interacts with the p50 regulatory subunit of host DNA polymerase delta and plays a synergistic role with RNA helicase in the induction of DNA damage response and cell cycle arrest in the S phase. Emerg Microbes Infect 2023; 12:e2176008. [PMID: 36724449 PMCID: PMC9937006 DOI: 10.1080/22221751.2023.2176008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Disruption of the cell cycle is a common strategy shared by many viruses to create a conducible cellular microenvironment for their efficient replication. We have previously shown that infection of cells with gammacoronavirus infectious bronchitis virus (IBV) activated the theataxia-telangiectasia mutated (ATM) Rad3-related (ATR)/checkpoint kinase 1 (Chk1) pathway and induced cell cycle arrest in S and G2/M phases, partially through the interaction of nonstructural protein 13 (nsp13) with the p125 catalytic subunit of DNA polymerase delta (pol δ). In this study, we show, by GST pulldown, co-immunoprecipitation and immunofluorescent staining, that IBV nsp12 directly interacts with the p50 regulatory subunit of pol δ in vitro and in cells overexpressing the two proteins as well as in cells infected with a recombinant IBV harbouring an HA-tagged nsp12. Furthermore, nsp12 from severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 was also able to interact with p50. These interactions play a synergistic role with nsp13 in the induction of S phase arrest. The fact that subunits of an essential cellular DNA replication machinery physically associate with two core replication enzymes from three different coronaviruses highlights the importance of these associations in coronavirus replication and virus-host interaction, and reveals the potential of targeting these subunits for antiviral intervention.
Collapse
Affiliation(s)
- Li Quan
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xinxin Sun
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Linghui Xu
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Rui Ai Chen
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Ding Xiang Liu
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China, Ding Xiang Liu
| |
Collapse
|
72
|
Zhou J, Nie R, He Z, Cai X, Chen J, Lin W, Yin Y, Xiang Z, Zhu T, Xie J, Zhang Y, Wang X, Lin P, Xie D, D'Andrea AD, Cai M. STAG2 Regulates Homologous Recombination Repair and Sensitivity to ATM Inhibition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302494. [PMID: 37985839 PMCID: PMC10754142 DOI: 10.1002/advs.202302494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/15/2023] [Indexed: 11/22/2023]
Abstract
Stromal antigen 2 (STAG2), a subunit of the cohesin complex, is recurrently mutated in various tumors. However, the role of STAG2 in DNA repair and its therapeutic implications are largely unknown. Here it is reported that knockout of STAG2 results in increased double-stranded breaks (DSBs) and chromosomal aberrations by reducing homologous recombination (HR) repair, and confers hypersensitivity to inhibitors of ataxia telangiectasia mutated (ATMi), Poly ADP Ribose Polymerase (PARPi), or the combination of both. Of note, the impaired HR by STAG2-deficiency is mainly attributed to the restored expression of KMT5A, which in turn methylates H4K20 (H4K20me0) to H4K20me1 and thereby decreases the recruitment of BRCA1-BARD1 to chromatin. Importantly, STAG2 expression correlates with poor prognosis of cancer patients. STAG2 is identified as an important regulator of HR and a potential therapeutic strategy for STAG2-mutant tumors is elucidated.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
- Guangxi International Travel Healthcare Centre (Port Clinic of Nanning Customs District)NanningGuangxi530021China
| | - Run‐Cong Nie
- Department of Gastric SurgeryState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Zhang‐Ping He
- Department of PathologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Xiao‐Xia Cai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jie‐Wei Chen
- Department of PathologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Wen‐ping Lin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Yi‐Xin Yin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Zhi‐Cheng Xiang
- Department of PathologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Tian‐Chen Zhu
- Department of PathologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Juan‐Juan Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - You‐Cheng Zhang
- Department of PathologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Xin Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Peng Lin
- Department of Thoracic SurgeryState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of PathologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Alan D D'Andrea
- Department of Radiation OncologyDana‐Farber Cancer InstituteBostonMA02215USA
- Center for DNA Damage and RepairDana‐Farber Cancer InstituteBostonMA02215USA
| | - Mu‐Yan Cai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of PathologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| |
Collapse
|
73
|
Abstract
PURPOSE The transcription factor NF-E2-related factor 2 (NRF2) is a master regulator widely involved in essential cellular functions such as DNA repair. By clarifying the upstream and downstream links of NRF2 to DNA damage repair, we hope that attention will be drawn to the utilization of NRF2 as a target for cancer therapy. METHODS Query and summarize relevant literature on the role of NRF2 in direct repair, BER, NER, MMR, HR, and NHEJ in pubmed. Make pictures of Roles of NRF2 in DNA Damage Repair and tables of antioxidant response elements (AREs) of DNA repair genes. Analyze the mutation frequency of NFE2L2 in different types of cancer using cBioPortal online tools. By using TCGA, GTEx and GO databases, analyze the correlation between NFE2L2 mutations and DNA repair systems as well as the degree of changes in DNA repair systems as malignant tumors progress. RESULTS NRF2 plays roles in maintaining the integrity of the genome by repairing DNA damage, regulating the cell cycle, and acting as an antioxidant. And, it possibly plays roles in double stranded break (DSB) pathway selection following ionizing radiation (IR) damage. Whether pathways such as RNA modification, ncRNA, and protein post-translational modification affect the regulation of NRF2 on DNA repair is still to be determined. The overall mutation frequency of the NFE2L2 gene in esophageal carcinoma, lung cancer, and penile cancer is the highest. Genes (50 of 58) that are negatively correlated with clinical staging are positively correlated with NFE2L2 mutations or NFE2L2 expression levels. CONCLUSION NRF2 participates in a variety of DNA repair pathways and plays important roles in maintaining genome stability. NRF2 is a potential target for cancer treatment.
Collapse
Affiliation(s)
- Jiale Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Chang Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
74
|
Dong Y, Zheng Y, Zhang J, Lv X, Hong H, Zheng Y, Wang R, Gong J. mPEG-PDLLA polymeric micelles loading a novel pyridazinone derivative IMB5036 for improving anti-tumor activity in hepatocellular carcinoma. J Drug Deliv Sci Technol 2023; 90:105101. [DOI: 10.1016/j.jddst.2023.105101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
|
75
|
Thibaut Y, Gonon G, Martinez JS, Petit M, Babut R, Vaurijoux A, Gruel G, Villagrasa C, Incerti S, Perrot Y. Experimental validation in a neutron exposure frame of the MINAS TIRITH for cell damage simulation. Phys Med Biol 2023; 68:225008. [PMID: 37848039 DOI: 10.1088/1361-6560/ad043d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/17/2023] [Indexed: 10/19/2023]
Abstract
In the domains of medicine and space exploration, refining risk assessment models for protecting healthy tissue from ionizing radiation is crucial. Understanding radiation-induced effects requires biological experimentations at the cellular population level and the cellular scale modeling using Monte Carlo track structure codes. We present MINAS TIRITH, a tool using Geant4-DNA Monte Carlo-generated databases to study DNA damage distribution at the cell population scale. It introduces a DNA damage location module and proposes a method to convert double-strand breaks (DSB) into DNA Damage Response foci. We evaluate damage location precision and DSB-foci conversion parameters. MINAS TIRITH's accuracy is validated againstγ-H2AX foci distribution from cell population exposed to monoenergetic neutron beams (2.5 or 15.1 MeV) under different configurations, yielding mixed radiation fields. Strong agreement between simulation and experimental results was found demonstrating MINAS TIRITH's predictive precision in radiation-induced DNA damage topology. Additionally, modeling intercellular damage variability within a population subjected to a specific macroscopic dose identifies subpopulations, enhancing realistic fate models. This approach advances our understanding of radiation-induced effects on cellular systems for risk assessment improvement.
Collapse
Affiliation(s)
- Y Thibaut
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SDOS/LDRI, PSE-SANTE/SERAMED/LRAcc, PSE-SANTE/SDOS/LMDN, BP 17, F-92262 Fontenay-aux-Roses, France
| | - G Gonon
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SDOS/LDRI, PSE-SANTE/SERAMED/LRAcc, PSE-SANTE/SDOS/LMDN, BP 17, F-92262 Fontenay-aux-Roses, France
| | - J S Martinez
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SDOS/LDRI, PSE-SANTE/SERAMED/LRAcc, PSE-SANTE/SDOS/LMDN, BP 17, F-92262 Fontenay-aux-Roses, France
| | - M Petit
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SDOS/LDRI, PSE-SANTE/SERAMED/LRAcc, PSE-SANTE/SDOS/LMDN, BP 17, F-92262 Fontenay-aux-Roses, France
| | - R Babut
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SDOS/LDRI, PSE-SANTE/SERAMED/LRAcc, PSE-SANTE/SDOS/LMDN, BP 17, F-92262 Fontenay-aux-Roses, France
| | - A Vaurijoux
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SDOS/LDRI, PSE-SANTE/SERAMED/LRAcc, PSE-SANTE/SDOS/LMDN, BP 17, F-92262 Fontenay-aux-Roses, France
| | - G Gruel
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SDOS/LDRI, PSE-SANTE/SERAMED/LRAcc, PSE-SANTE/SDOS/LMDN, BP 17, F-92262 Fontenay-aux-Roses, France
| | - C Villagrasa
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SDOS/LDRI, PSE-SANTE/SERAMED/LRAcc, PSE-SANTE/SDOS/LMDN, BP 17, F-92262 Fontenay-aux-Roses, France
| | - S Incerti
- Université de Bordeaux, CNRS/IN2P3, LP2i, UMR 5797, F-33170 Gradignan, France
| | - Y Perrot
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SDOS/LDRI, PSE-SANTE/SERAMED/LRAcc, PSE-SANTE/SDOS/LMDN, BP 17, F-92262 Fontenay-aux-Roses, France
| |
Collapse
|
76
|
Liu S, Guan L, Peng C, Cheng Y, Cheng H, Wang F, Ma M, Zheng R, Ji Z, Cui P, Ren Y, Li L, Shi C, Wang J, Huang X, Cai X, Qu D, Zhang H, Mao Z, Liu H, Wang P, Sha W, Yang H, Wang L, Ge B. Mycobacterium tuberculosis suppresses host DNA repair to boost its intracellular survival. Cell Host Microbe 2023; 31:1820-1836.e10. [PMID: 37848028 DOI: 10.1016/j.chom.2023.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/19/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Mycobacterium tuberculosis (Mtb) triggers distinct changes in macrophages, resulting in the formation of lipid droplets that serve as a nutrient source. We discover that Mtb promotes lipid droplets by inhibiting DNA repair responses, resulting in the activation of the type-I IFN pathway and scavenger receptor-A1 (SR-A1)-mediated lipid droplet formation. Bacterial urease C (UreC, Rv1850) inhibits host DNA repair by interacting with RuvB-like protein 2 (RUVBL2) and impeding the formation of the RUVBL1-RUVBL2-RAD51 DNA repair complex. The suppression of this repair pathway increases the abundance of micronuclei that trigger the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway and subsequent interferon-β (IFN-β) production. UreC-mediated activation of the IFN-β pathway upregulates the expression of SR-A1 to form lipid droplets that facilitate Mtb replication. UreC inhibition via a urease inhibitor impaired Mtb growth within macrophages and in vivo. Thus, our findings identify mechanisms by which Mtb triggers a cascade of cellular events that establish a nutrient-rich replicative niche.
Collapse
Affiliation(s)
- Shanshan Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Liru Guan
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Cheng Peng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Yuanna Cheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Hongyu Cheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Fei Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Mingtong Ma
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Ruijuan Zheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Zhe Ji
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Pengfei Cui
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Yefei Ren
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Liru Li
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Chenyue Shi
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Jie Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Xiaochen Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Xia Cai
- Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Di Qu
- Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Haiping Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Zhiyong Mao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Haipeng Liu
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Peng Wang
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Wei Sha
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Hua Yang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China.
| | - Lin Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China.
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China; Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China.
| |
Collapse
|
77
|
Dong Y, Wang Y, Yin X, Zhu H, Liu L, Zhang M, Chen J, Wang A, Huang T, Hu J, Liang J, Guo Z, He L. FEN1 inhibitor SC13 promotes CAR-T cells infiltration into solid tumours through cGAS-STING signalling pathway. Immunology 2023; 170:388-400. [PMID: 37501391 DOI: 10.1111/imm.13681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/14/2023] [Indexed: 07/29/2023] Open
Abstract
It is well known that chimeric antigen receptor T-cell immunotherapy (CAR-T-cell immunotherapy) has excellent therapeutic effect in haematological tumours, but it still faces great challenges in solid tumours, including inefficient T-cell tumour infiltration and poor functional persistence. Flap structure-specific endonuclease 1 (FEN1), highly expressed in a variety of cancer cells, plays an important role in both DNA replication and repair. Previous studies have reported that FEN1 inhibition is an effective strategy for cancer treatment. Therefore, we hypothesized whether FEN1 inhibitors combined with CAR-T-cell immunotherapy would have a stronger killing effect on solid tumours. The results showed that low dose of FEN1 inhibitors SC13 could induce an increase of double-stranded broken DNA (dsDNA) in the cytoplasm. Cytosolic dsDNA can activate the cyclic GMP-AMP synthase-stimulator of interferon gene signalling pathway and increase the secretion of chemokines. In vivo, under the action of FEN1 inhibitor SC13, more chemokines were produced at solid tumour sites, which promoted the infiltration of CAR-T cells and improved anti-tumour immunity. These findings suggest that FEN1 inhibitors could enable CAR-T cells to overcome poor T-cell infiltration and improve the treatment of solid tumours.
Collapse
Affiliation(s)
- Yunfei Dong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuanyuan Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xuechen Yin
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Hongqiao Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lingjie Liu
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, USA
| | - Miaomiao Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jiannan Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Aying Wang
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Tinghui Huang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jianhua Hu
- Department of Biotherapy, Jinling Hospital of Nanjing, University School of Medicine, Nanjing, China
| | - Junqing Liang
- Inner Mongolia Autonomous Region Cancer Hospital, Hohhot, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
78
|
Fragkos M, Choleza M, Papadopoulou P. The Role of γH2AX in Replication Stress-induced Carcinogenesis: Possible Links and Recent Developments. CANCER DIAGNOSIS & PROGNOSIS 2023; 3:639-648. [PMID: 37927801 PMCID: PMC10619570 DOI: 10.21873/cdp.10266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/11/2023] [Indexed: 11/07/2023]
Abstract
Cancer is a condition characterized by genomic instability and gross chromosomal aberrations. The inability of the cell to timely and efficiently complete its replication cycle before entering mitosis is one of the most common causes of DNA damage and carcinogenesis. Phosphorylation of histone 2AX (H2AX) on S139 (γH2AX) is an indispensable step in the response to DNA damage, as it is required for the assembly of repair factors at the sites of damage. γH2AX is also a marker of DNA replication stress, mainly due to fork collapse that often follows prolonged replication stalling or repair of arrested forks, which involves the generation of DNA breaks. Although the role of γH2AX in the repair of DNA breaks has been well defined, the function of γH2AX in replicative stress remains unclear. In this review, we present the recent advances in the field of replication stress, and highlight a novel function for γH2AX that is independent of its role in the response to DNA damage. We discuss studies that support a role for γΗ2ΑΧ early in the response to replicative stress, which does not involve the repair of DNA breaks. We also highlight recent data proposing that γH2AX acts as a chromatin remodeling component, implicated in the efficient resolution of stalled replication forks. Understanding the mechanism by which γH2AX enables cellular recovery after replication stress will allow identification of novel cancer biomarkers, as well as new targets for cancer therapies.
Collapse
Affiliation(s)
- Michalis Fragkos
- Department of Science and Mathematics, Deree-The American College of Greece, Athens, Greece
| | - Maria Choleza
- Department of Science and Mathematics, Deree-The American College of Greece, Athens, Greece
| | - Paraskevi Papadopoulou
- Department of Science and Mathematics, Deree-The American College of Greece, Athens, Greece
| |
Collapse
|
79
|
Liu W, Xie X, Yan H, Klinger FG, Dri M, Felici MD, Shen W, Wang B, Cheng S. Ablation of the circadian rhythm protein CACNA2D3 impairs primordial follicle assembly in the mouse ovary. Clin Transl Med 2023; 13:e1467. [PMID: 37929646 PMCID: PMC10626498 DOI: 10.1002/ctm2.1467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/15/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023] Open
Affiliation(s)
- Wen‐Xiang Liu
- College of Life Sciences, Institute of Reproductive SciencesQingdao Agricultural UniversityQingdaoChina
| | - Xin‐Xiang Xie
- College of Life Sciences, Institute of Reproductive SciencesQingdao Agricultural UniversityQingdaoChina
| | - Hong‐Chen Yan
- College of Life Sciences, Institute of Reproductive SciencesQingdao Agricultural UniversityQingdaoChina
| | | | - Maria Dri
- Saint Camillus InternationalUniversity of Health SciencesRomeItaly
| | - Massimo De Felici
- Department of Biomedicine and PreventionUniversity of Rome Tor VergataRomeItaly
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive SciencesQingdao Agricultural UniversityQingdaoChina
| | - Bin‐Bin Wang
- Center for GeneticsNational Research Institute for Family PlanningBeijingChina
| | - Shun‐Feng Cheng
- College of Life Sciences, Institute of Reproductive SciencesQingdao Agricultural UniversityQingdaoChina
| |
Collapse
|
80
|
Zhang Z, Ren P, Cao Y, Wang T, Huang G, Li Y, Zhou S, Yang W, Yang L, Liu G, Xiang Y, Pei Y, Chen Q, Chen J, Lv S. HOXD-AS2-STAT3 feedback loop attenuates sensitivity to temozolomide in glioblastoma. CNS Neurosci Ther 2023; 29:3430-3445. [PMID: 37308741 PMCID: PMC10580348 DOI: 10.1111/cns.14277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/14/2023] Open
Abstract
AIMS Glioblastoma multiforme (GBM) is the deadliest glioma and its resistance to temozolomide (TMZ) remains intractable. Long non-coding RNAs (lncRNAs) play crucial roles in that and this study aimed to investigate underlying mechanism of HOXD-AS2-affected temozolomide sensitivity in glioblastoma. METHODS We analyzed and validated the aberrant HOXD-AS2 expression in glioma specimens. Then we explored the function of HOXD-AS2 in vivo and in vitro and a clinical case was also reviewed to examine our findings. We further performed mechanistic experiments to investigate the mechanism of HOXD-AS2 in regulating TMZ sensitivity. RESULTS Elevated HOXD-AS2 expression promoted progression and negatively correlated with prognosis of glioma; HOXD-AS2 attenuated temozolomide sensitivity in vitro and in vivo; The clinical case also showed that lower HOXD-AS2 sensitized glioblastoma to temozolomide; STAT3-induced HOXD-AS2 could interact with IGF2BP2 protein to form a complex and sequentially upregulate STAT3 signaling, thus forming a positive feedback loop regulating TMZ sensitivity in glioblastoma. CONCLUSION Our study elucidated the crucial role of the HOXD-AS2-STAT3 positive feedback loop in regulating TMZ sensitivity, suggesting that this could be provided as a potential therapeutic candidate of glioblastoma.
Collapse
Affiliation(s)
- Zuo‐Xin Zhang
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Peng Ren
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Yong‐Yong Cao
- School of MedicineChongqing UniversityChongqingChina
| | - Ting‐Ting Wang
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Guo‐Hao Huang
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Yao Li
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Shuo Zhou
- School of MedicineChongqing UniversityChongqingChina
| | - Wei Yang
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Lin Yang
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Guo‐Long Liu
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Yan Xiang
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Yu‐Chun Pei
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Qiu‐Zi Chen
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Ju‐Xiang Chen
- Department of NeurosurgeryChanghai Hospital, Second Military Medical UniversityShanghaiChina
| | - Sheng‐Qing Lv
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| |
Collapse
|
81
|
Dion C, Laberthonnière C, Magdinier F. [Epigenetics, principles and examples of applications]. Rev Med Interne 2023; 44:594-601. [PMID: 37438189 DOI: 10.1016/j.revmed.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/14/2023]
Abstract
Since the discovery of DNA as the support of genetic information, the challenge for generations of life scientists was to understand the mechanisms underlying the process that translate the sequence of a gene to a phenotype. In the 1950s, the concept of epigenetics was defined by the British biologist Conrad H. Waddington as the study of "epigenesis" that governs the biological processes involved in the development of any organism. The term epigenetics, now best defined as "above the DNA sequence" reflects the gene-environment interactions by which genes determine traits. Since, its first description, studies underlying the mechanisms involved in these processes has led to an increasing understanding of the regulation all genome transactions such as transcription, replication, repair and the biological pathways coordinated by these mechanisms. We will discuss here the main principles regulating epigenetic processes, their roles in physiology, their evolution over the life time and their implications in medicine.
Collapse
Affiliation(s)
- C Dion
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, 13000 Marseille, France; MRC London Institute of Medical Sciences (LMS), London, United Kingdom; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| | - C Laberthonnière
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, 13000 Marseille, France; Molecular Developmental Biology, Faculty of Science, Radboud University, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - F Magdinier
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, 13000 Marseille, France.
| |
Collapse
|
82
|
Wang Z, Wang D, Ren X, Liu Z, Liu A, Li X, Guan L, Shen Y, Jin S, Zvyagin AV, Yang B, Wang T, Lin Q. One Stone, Three Birds: Multifunctional Nanodots as "Pilot Light" for Guiding Surgery, Enhanced Radiotherapy, and Brachytherapy of Tumors. ACS CENTRAL SCIENCE 2023; 9:1976-1988. [PMID: 37901175 PMCID: PMC10604975 DOI: 10.1021/acscentsci.3c00994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 10/31/2023]
Abstract
Surgery, radiotherapy (RT), and brachytherapy are crucial treatments for localized deep tumors. However, imprecise tumor location often leads to issues such as positive surgical margins, extended radiotherapy target volumes, and radiation damage to healthy tissues. Reducing side effects in healthy tissue and enhancing RT efficacy are critical challenges. To address these issues, we developed a multifunctional theranostic platform using Au/Ag nanodots (Au/AgNDs) that act as a "pilot light" for real-time guided surgery, high-efficiency RT, and brachytherapy, achieving a strategy of killing three birds with one stone. First, dual-mode imaging of Au/AgNDs enabled precision RT, minimizing damage to adjacent normal tissue during X-ray irradiation. Au/AgNDs enhanced ionizing radiation energy deposition, increased intracellular reactive oxygen species (ROS) generation, regulated the cell cycle, promoted DNA damage formation, and inhibited DNA repair in tumor cells, significantly improving RT efficacy. Second, in brachytherapy, precise guidance provided by dual-mode imaging addressed challenges related to non-visualization of existing interstitial brachytherapy and multiple adjustments of insertion needle positions. Meanwhile, the effect of brachytherapy was improved. Third, the excellent fluorescence imaging of Au/AgNDs accurately distinguished tumors from normal tissue, facilitating their use as a powerful tool for assisting surgeons during tumor resection. Taken together, our multifunctional theranostic platform offers real-time guidance for surgery and high-efficiency RT, and improves brachytherapy precision, providing a novel strategy and vision for the clinical diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Ze Wang
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Dongzhou Wang
- Department
of Radiation Oncology, The Second Affiliated
Hospital of Jilin University, Changchun 130041, P. R. China
- NHC
Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, P. R. China
| | - Xiaojun Ren
- Department
of Radiation Oncology, The Second Affiliated
Hospital of Jilin University, Changchun 130041, P. R. China
- NHC
Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, P. R. China
| | - Zhongshan Liu
- Department
of Radiation Oncology, The Second Affiliated
Hospital of Jilin University, Changchun 130041, P. R. China
- NHC
Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, P. R. China
| | - Annan Liu
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xingchen Li
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Lin Guan
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yannan Shen
- NHC
Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, P. R. China
| | - Shunzi Jin
- NHC
Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, P. R. China
| | - Andrei V. Zvyagin
- Australian
Research Council Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW 2109, Australia
- Institute
of Biology and Biomedicine, Lobachevsky
Nizhny Novgorod State University, 603105 Nizhny Novgorod, Russia
| | - Bai Yang
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Tiejun Wang
- Department
of Radiation Oncology, The Second Affiliated
Hospital of Jilin University, Changchun 130041, P. R. China
- NHC
Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, P. R. China
| | - Quan Lin
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
83
|
Gheyas R, Menko AS. The involvement of caspases in the process of nuclear removal during lens fiber cell differentiation. Cell Death Discov 2023; 9:386. [PMID: 37865680 PMCID: PMC10590423 DOI: 10.1038/s41420-023-01680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
The terminal differentiation of lens fiber cells involves elimination of their organelles, which must occur while still maintaining their functionality throughout a lifetime. Removal of non-nuclear organelles is accomplished through induction of autophagy following the spatiotemporal suppression of the PI3K/Akt signaling axis. However, blocking this pathway is not alone sufficient to induce removal of fiber cell nuclei. While the final steps in fiber cell nuclear elimination are highlighted by the appearance of TUNEL-positive nuclei, which are associated with activation of the lens-specific DNaseIIβ, there are many steps in the process that precede the appearance of double stranded DNA breaks. We showed that this carefully regulated process, including the early changes in nuclear morphology resulting in nuclear condensation, cleavage of lamin B, and labeling by pH2AX, is reminiscent of the apoptotic process associated with caspase activation. Multiple caspases are known to be expressed and activated during lens cell differentiation. In this study, we investigated the link between two caspase downstream targets associated with apoptosis, ICAD, whose cleavage by caspase-3 leads to activation of CAD, a DNase that can create both single- and double-stranded DNA cleavages, and lamin B, a primary component of the nuclear lamina. We discovered that the specific inhibition of caspase-3 activation prevents both lamin B and DNA cleavage. Inhibiting caspase-3 did not prevent nuclear condensation or removal of the nuclear membrane. In contrast, a pan-caspase inhibitor effectively suppressed condensation of fiber cell nuclei during differentiation. These studies provide evidence that caspases play an important role in the process of removing fiber cell nuclei during lens differentiation.
Collapse
Affiliation(s)
- Rifah Gheyas
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, US
| | - A Sue Menko
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, US.
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, US.
| |
Collapse
|
84
|
Macedo-Silva C, Miranda-Gonçalves V, Tavares NT, Barros-Silva D, Lencart J, Lobo J, Oliveira Â, Correia MP, Altucci L, Jerónimo C. Epigenetic regulation of TP53 is involved in prostate cancer radioresistance and DNA damage response signaling. Signal Transduct Target Ther 2023; 8:395. [PMID: 37840069 PMCID: PMC10577134 DOI: 10.1038/s41392-023-01639-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
External beam radiotherapy (RT) is a leading first-line therapy for prostate cancer (PCa), and, in recent years, significant advances have been accomplished. However, RT resistance can arise and result in long-term recurrence or disease progression in the worst-case scenario. Thus, making crucial the discovery of new targets for PCa radiosensitization. Herein, we generated a radioresistant PCa cell line, and found p53 to be highly expressed in radioresistant PCa cells, as well as in PCa patients with recurrent/disease progression submitted to RT. Mechanism dissection revealed that RT could promote p53 expression via epigenetic modulation. Specifically, a decrease of H3K27me3 occupancy at TP53 gene promoter, due to increased KDM6B activity, was observed in radioresistant PCa cells. Furthermore, p53 is essential for efficient DNA damage signaling response and cell recovery upon stress induction by prolonged fractionated irradiation. Remarkably, KDM6B inhibition by GSK-J4 significantly decreased p53 expression, consequently attenuating the radioresistant phenotype of PCa cells and hampering in vivo 3D tumor formation. Overall, this work contributes to improve the understanding of p53 as a mediator of signaling transduction in DNA damage repair, as well as the impact of epigenetic targeting for PCa radiosensitization.
Collapse
Grants
- CJ’s Research is funded by Research Center of Portuguese Institute of Porto (BF.CBEG CI-IPOP-27-2016) and EpiParty PI 159-CI-IPOP-152-2021).
- CM-S holds a fellowship grant from UniCampania, Naples, Italy (2019-UNA2CLE-0170010).
- VM-G was funded by P.CCC: Centro Compreensivo de Cancro do Porto” – NORTE-01-0145-FEDER-072678, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF).
- NTT was funded by P.CCC: Centro Compreensivo de Cancro do Porto” – NORTE-01-0145-FEDER-072678, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF).
- DB-S holds a fellowship grant from FCT—Fundação para a Ciência e Tecnologia (SFRH/BD/136007/2018).
- MPC was funded by FCT—Fundação para a Ciência e Tecnologia (CEECINST/00091/2018).
- LA’s research is funded by Epi-MS under the VALERE 2019 Program; V:ALERE 2020—“CIRCE”; Campania Regional Government Technology Platform 2038 Lotta alle Patologie Oncologiche iCURE-B21C17000030007; Campania Regional Government FASE2: IDEAL; MIUR, Proof of Concept POC01_00043; POR Campania FSE 2014-2020 ASSE III; PON RI 2014/2020 “Dottorati Innovativi con caratterizzazione ndustrial”; Horizon EU: CAN-SERV BBMRI; EPI-MET MISE 2022; Bando giovani ricercatori D.R. n.834 del 30/09/2022 Università Vanvitelli project: Miranda; National Plan for NRRP Complementary Investments – Law Decree May 6, 2021, n. 59, converted and modified as to Law n. 101/2021Research initiatives for technologies and innovative trajectories in the health and care sectors: project ANTHEM (AdvaNced Technologies for Human-centrEd Medicine).
Collapse
Affiliation(s)
- Catarina Macedo-Silva
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/ CI-IPOP@ RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Vera Miranda-Gonçalves
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/ CI-IPOP@ RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine & Biomedical Sciences, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Nuno Tiago Tavares
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/ CI-IPOP@ RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Daniela Barros-Silva
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/ CI-IPOP@ RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Joana Lencart
- Medical Physics, Radiobiology and Radiation Protection Group-Research Center of IPO Porto (CI-IPOP)/CI-IPOP@ RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Department of Medical Physics, Portuguese Oncology Institute of Porto, 4200-072, Porto, Portugal
| | - João Lobo
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/ CI-IPOP@ RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine & Biomedical Sciences, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Ângelo Oliveira
- Department of Radiation Oncology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Margareta P Correia
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/ CI-IPOP@ RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine & Biomedical Sciences, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
- BIOGEM, Molecular Biology and Genetics Research Institute, 83100, Avellino, Italy
- IEOS, Institute of Endocrinology and Oncology, 80100, Naples, Italy
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/ CI-IPOP@ RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine & Biomedical Sciences, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
85
|
Wang X, Jin X, Xie Z, Zhang H, Liu T, Zheng H, Luan X, Sun Y, Fang W, Chang W, Lou H. Benzamidine Conjugation Converts Expelled Potential Active Agents into Antifungals against Drug-Resistant Fungi. J Med Chem 2023; 66:13684-13704. [PMID: 37787457 DOI: 10.1021/acs.jmedchem.3c01068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Fungal infections present a growing global public health concern, necessitating the development of novel antifungal drugs. However, many potential antifungals, particularly the expelled potential active agents (EPAAs), are often underestimated owing to their limitations in cellular entry or expulsion by efflux pumps. Herein, we identified 68 EPAAs out of 2322 candidates with activity against a Candida albicans efflux pump-deficient strain and no inhibitory activity against the wild-type strain. Using a novel conjugation strategy involving benzamidine (BM) as a mitochondrion-targeting warhead, we successfully converted EPAAs into potent antifungals against various urgent-threat azole-resistantCandida strains. Among the obtained EPAA-BM conjugates, IS-2-BM (11) exhibited excellent antifungal activities and induced negligible drug resistance. Furthermore, IS-2-BM prevented biofilm formation, eradicated mature biofilms, and exhibited excellent therapeutic effects in a murine model of systemic candidiasis. These findings provide a promising strategy for increasing the possibilities of discovering more antifungals.
Collapse
Affiliation(s)
- Xue Wang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xueyang Jin
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Zhiyu Xie
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461002, China
| | - Hongyang Zhang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Tiantian Liu
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Hongbo Zheng
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xiaoyi Luan
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Yan Sun
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Wenjie Fang
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Wenqiang Chang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
86
|
Sioen S, Vanhove O, Vanderstraeten B, De Wagter C, Engelbrecht M, Vandevoorde C, De Kock E, Van Goethem MJ, Vral A, Baeyens A. Impact of proton therapy on the DNA damage induction and repair in hematopoietic stem and progenitor cells. Sci Rep 2023; 13:16995. [PMID: 37813904 PMCID: PMC10562436 DOI: 10.1038/s41598-023-42362-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/08/2023] [Indexed: 10/11/2023] Open
Abstract
Proton therapy is of great interest to pediatric cancer patients because of its optimal depth dose distribution. In view of healthy tissue damage and the increased risk of secondary cancers, we investigated DNA damage induction and repair of radiosensitive hematopoietic stem and progenitor cells (HSPCs) exposed to therapeutic proton and photon irradiation due to their role in radiation-induced leukemia. Human CD34+ HSPCs were exposed to 6 MV X-rays, mid- and distal spread-out Bragg peak (SOBP) protons at doses ranging from 0.5 to 2 Gy. Persistent chromosomal damage was assessed with the micronucleus assay, while DNA damage induction and repair were analyzed with the γ-H2AX foci assay. No differences were found in induction and disappearance of γ-H2AX foci between 6 MV X-rays, mid- and distal SOBP protons at 1 Gy. A significantly higher number of micronuclei was found for distal SOBP protons compared to 6 MV X-rays and mid- SOBP protons at 0.5 and 1 Gy, while no significant differences in micronuclei were found at 2 Gy. In HSPCs, mid-SOBP protons are as damaging as conventional X-rays. Distal SOBP protons showed a higher number of micronuclei in HSPCs depending on the radiation dose, indicating possible changes of the in vivo biological response.
Collapse
Affiliation(s)
- Simon Sioen
- Radiobiology, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| | - Oniecha Vanhove
- Radiobiology, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Barbara Vanderstraeten
- Medical Physics, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent, Belgium
- Department of Radiotherapy-Oncology, Ghent University Hospital, Ghent, Belgium
| | - Carlos De Wagter
- Medical Physics, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent, Belgium
- Department of Radiotherapy-Oncology, Ghent University Hospital, Ghent, Belgium
| | - Monique Engelbrecht
- Separated Sector Cyclotron Laboratory, Radiation Biophysics Division, iThemba LABS (NRF), Cape Town, 7131, South Africa
| | - Charlot Vandevoorde
- Separated Sector Cyclotron Laboratory, Radiation Biophysics Division, iThemba LABS (NRF), Cape Town, 7131, South Africa
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Evan De Kock
- Separated Sector Cyclotron Laboratory, Radiation Biophysics Division, iThemba LABS (NRF), Cape Town, 7131, South Africa
| | - Marc-Jan Van Goethem
- Department of Radiation Oncology and Particle Therapy Research Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anne Vral
- Radiobiology, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Ans Baeyens
- Radiobiology, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
87
|
El‐Kamand S, Adams MN, Matthews JM, Du Plessis M, Crossett B, Connolly A, Breen N, Dudley A, Richard DJ, Gamsjaeger R, Cubeddu L. The molecular details of a novel phosphorylation-dependent interaction between MRN and the SOSS complex. Protein Sci 2023; 32:e4782. [PMID: 37705456 PMCID: PMC10521234 DOI: 10.1002/pro.4782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/08/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023]
Abstract
The repair of double-strand DNA breaks (DSBs) by homologous recombination is crucial in the maintenance of genome integrity. While the key role of the Mre11-Rad50-Nbs1 (MRN) complex in repair is well known, hSSB1 (SOSSB and OBFC2B), one of the main components of the sensor of single-stranded DNA (SOSS) protein complex, has also been shown to rapidly localize to DSB breaks and promote repair. We have previously demonstrated that hSSB1 binds directly to Nbs1, a component of the MRN complex, in a DNA damage-independent manner. However, recruitment of the MRN complex has also been demonstrated by an interaction between Integrator Complex Subunit 3 (INTS3; also known as SOSSA), another member of the SOSS complex, and Nbs1. In this study, we utilize a combined approach of in silico, biochemical, and functional experiments to uncover the molecular details of INTS3 binding to Nbs1. We demonstrate that the forkhead-associated domain of Nbs1 interacts with INTS3 via phosphorylation-dependent binding to INTS3 at Threonine 592, with contributions from Serine 590. Based on these data, we propose a model of MRN recruitment to a DSB via INTS3.
Collapse
Affiliation(s)
- Serene El‐Kamand
- School of ScienceWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Mark N. Adams
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of HealthTranslational Research Institute, Queensland University of TechnologyBrisbaneQueenslandAustralia
| | - Jacqueline M. Matthews
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | | | - Ben Crossett
- Sydney Mass SpectrometryUniversity of SydneySydneyNew South WalesAustralia
| | - Angela Connolly
- Sydney Mass SpectrometryUniversity of SydneySydneyNew South WalesAustralia
| | - Natasha Breen
- School of ScienceWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Alexander Dudley
- School of ScienceWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Derek J. Richard
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of HealthTranslational Research Institute, Queensland University of TechnologyBrisbaneQueenslandAustralia
| | - Roland Gamsjaeger
- School of ScienceWestern Sydney UniversityPenrithNew South WalesAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Liza Cubeddu
- School of ScienceWestern Sydney UniversityPenrithNew South WalesAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
88
|
Kinose Y, Xu H, Kim H, Kumar S, Shan X, George E, Wang X, Medvedev S, Ferman B, Gitto SB, Whicker M, D’Andrea K, Wubbenhorst B, Hallberg D, O’Connor M, Schwartz LE, Hwang WT, Nathanson KL, Mills GB, Velculescu VE, Wang TL, Brown EJ, Drapkin R, Simpkins F. Dual blockade of BRD4 and ATR/WEE1 pathways exploits ARID1A loss in clear cell ovarian cancer. RESEARCH SQUARE 2023:rs.3.rs-3314138. [PMID: 37841875 PMCID: PMC10571599 DOI: 10.21203/rs.3.rs-3314138/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
ARID1A, an epigenetic tumor suppressor, is the most common gene mutation in clear-cell ovarian cancers (CCOCs). CCOCs are often resistant to standard chemotherapy and lack effective therapies. We hypothesized that ARID1A loss would increase CCOC cell dependency on chromatin remodeling and DNA repair pathways for survival. We demonstrate that combining BRD4 inhibitor (BRD4i) with DNA damage response inhibitors (ATR or WEE1 inhibitors; e.g. BRD4i-ATRi) was synergistic at low doses leading to decreased survival, and colony formation in CCOC in an ARID1A dependent manner. BRD4i-ATRi caused significant tumor regression and increased overall survival in ARID1AMUT but not ARID1AWT patient-derived xenografts. Combination BRD4i-ATRi significantly increased γH2AX, and decreased RAD51 foci and BRCA1 expression, suggesting decreased ability to repair DNA double-strand-breaks (DSBs) by homologous-recombination in ARID1AMUT cells, and these effects were greater than monotherapies. These studies demonstrate BRD4i-ATRi is an effective treatment strategy that capitalizes on synthetic lethality with ARID1A loss in CCOC.
Collapse
Affiliation(s)
- Yasuto Kinose
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Haineng Xu
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Hyoung Kim
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Sushil Kumar
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Xiaoyin Shan
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Erin George
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Xiaolei Wang
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Sergey Medvedev
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Benjamin Ferman
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Sarah B. Gitto
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Margaret Whicker
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Kurt D’Andrea
- Department of Medicine, Division of Translational Medicine and Human Genetics, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bradley Wubbenhorst
- Department of Medicine, Division of Translational Medicine and Human Genetics, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dorothy Hallberg
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mark O’Connor
- AstraZeneca, R&D Oncology, Cambridge, United Kingdom
| | - Lauren E. Schwartz
- Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Wei-Ting Hwang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine L Nathanson
- Department of Medicine, Division of Translational Medicine and Human Genetics, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gordon B. Mills
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - Victor E. Velculescu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tian-Li Wang
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Eric J. Brown
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Fiona Simpkins
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
89
|
Wang Z, Chen F, Wang Y, Gou S. Blockade of chemo-resistance to 5-FU by a CK2-targeted combination via attenuating AhR-TLS-promoted genomic instability in human colon cancer cells. Toxicol Appl Pharmacol 2023; 475:116647. [PMID: 37543059 DOI: 10.1016/j.taap.2023.116647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
As highly expressed in several human cancers, Casein Kinase 2 (CK2) is involved in chemotherapy-induced resistance. As a new potent CK2 inhibitor, DN701 is used to overcome chemoresistance through its synergistic antitumor effect with 5-fluorouracil (5-FU). Translesion DNA synthesis (TLS) has drawn our attention because it is associated with the development of chemo-resistance and tumor recurrence. The in vitro biological properties of 5-FU-resistant colon cancer cells revealed that DN701 combined with 5-FU could overcome chemo-resistance via blocking CK2-mediated aryl hydrocarbon receptor (AhR) and TLS-induced DNA damage repair (DDR). Moreover, pharmacologic and genetic inhibitions of AhR potently reduced TLS-promoted genomic instability. The mechanistic studies showed that combined DN701 with 5-FU was investigated to inhibit CK2 expression level and AhR-TLS-REV1 pathway. Meanwhile, DN701 combined with 5-FU could reduce CK2-AhR-TLS genomic instability, thus leading to superior in vivo antitumor effect. The insights provide a rationale for combining DN701 with 5-FU as a therapeutic strategy for patients with colon cancer.
Collapse
Affiliation(s)
- Zhiwei Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Feihong Chen
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Yuanjiang Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| |
Collapse
|
90
|
Wu C, Shi W, Zhang S. ZEB1 promotes DNA homologous recombination repair and contributes to the 5-Fluorouracil resistance in colorectal cancer. Am J Cancer Res 2023; 13:4101-4114. [PMID: 37818077 PMCID: PMC10560938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/06/2023] [Indexed: 10/12/2023] Open
Abstract
Chemotherapy resistance represents a significant obstacle in clinical practice of colorectal cancer (CRC). In this study we aim to clarify the underlying mechanism of chemotherapy resistance mediated by ZEB1 in CRC. shRNA-mediated repression of ZEB1 induced DNA damage in SW480 and RKO cells. Ectopic expression of ZEB1 suppressed the DNA damage caused by ZEB1 knocking down in SW480 and RKO cells. In addition, ZEB1 directly targeted several DNA damage response (DDR) factors including NBS1, RNF8 and RNF168, and thereby the homologous recombination (HR) repair is mediated by ZEB1 via NBS1, RNF8 and RNF168 in CRC cells. Furthermore, ZEB1 maintained chromosome stability in CRC cells. By inducing NBS1, RNF8 and RNF168, ZEB1 is capable of promoting the 5-Fluorouracil (5-FU) resistance in CRC cells via enhancing the DDR signaling and DNA repair. The high expression of ZEB1, NBS1, RNF8 and RNF168 is associated with chemotherapy resistance in primary CRC patients. In conclusion, ZEB1 directly induces the expression of NBS1, RNF8 and RNF168, and thereby enhances DNA HR repair in CRC. The ZEB1-mediated DNA repair contributes to the 5-FU resistance in CRC.
Collapse
Affiliation(s)
- Chao Wu
- Klinikum rechts der Isar, Technical University of MunichMunich, Germany
| | - Wenjing Shi
- Department of Clinical Laboratory, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai, China
- Shanghai Municipal Key Clinical SpecialityShanghai, China
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-UniversityMunich, Germany
| | - Sen Zhang
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
91
|
Belov O, Chigasova A, Pustovalova M, Osipov A, Eremin P, Vorobyeva N, Osipov AN. Dose-Dependent Shift in Relative Contribution of Homologous Recombination to DNA Repair after Low-LET Ionizing Radiation Exposure: Empirical Evidence and Numerical Simulation. Curr Issues Mol Biol 2023; 45:7352-7373. [PMID: 37754249 PMCID: PMC10528584 DOI: 10.3390/cimb45090465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Understanding the relative contributions of different repair pathways to radiation-induced DNA damage responses remains a challenging issue in terms of studying the radiation injury endpoints. The comparative manifestation of homologous recombination (HR) after irradiation with different doses greatly determines the overall effectiveness of recovery in a dividing cell after irradiation, since HR is an error-free mechanism intended to perform the repair of DNA double-strand breaks (DSB) during S/G2 phases of the cell cycle. In this article, we present experimentally observed evidence of dose-dependent shifts in the relative contributions of HR in human fibroblasts after X-ray exposure at doses in the range 20-1000 mGy, which is also supported by quantitative modeling of DNA DSB repair. Our findings indicate that the increase in the radiation dose leads to a dose-dependent decrease in the relative contribution of HR in the entire repair process.
Collapse
Affiliation(s)
- Oleg Belov
- Joint Institute for Nuclear Research, 6 Joliot-Curie St., 141980 Dubna, Russia;
- Institute of Biomedical Problems, Russian Academy of Sciences, 76A Khoroshevskoye Shosse, 123007 Moscow, Russia
- Institute of System Analysis and Management, Dubna State University, 19 Universitetskaya St., 141980 Dubna, Russia
| | - Anna Chigasova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.C.); (A.O.); (N.V.)
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Margarita Pustovalova
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC—FMBC), 123098 Moscow, Russia;
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Andrey Osipov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.C.); (A.O.); (N.V.)
| | - Petr Eremin
- FSBI “National Medical Research Center for Rehabilitation and Balneology”, Ministry of Health of Russia, 121099 Moscow, Russia;
| | - Natalia Vorobyeva
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.C.); (A.O.); (N.V.)
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC—FMBC), 123098 Moscow, Russia;
| | - Andreyan N. Osipov
- Joint Institute for Nuclear Research, 6 Joliot-Curie St., 141980 Dubna, Russia;
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.C.); (A.O.); (N.V.)
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC—FMBC), 123098 Moscow, Russia;
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| |
Collapse
|
92
|
Templeton CW, Laimins LA. p53-dependent R-loop formation and HPV pathogenesis. Proc Natl Acad Sci U S A 2023; 120:e2305907120. [PMID: 37611058 PMCID: PMC10467572 DOI: 10.1073/pnas.2305907120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/30/2023] [Indexed: 08/25/2023] Open
Abstract
R-loops are trimeric RNA: DNA hybrids that are important physiological regulators of transcription; however, their aberrant formation or turnover leads to genomic instability and DNA breaks. High-risk human papillomaviruses (HPV) are the causative agents of genital as well as oropharyngeal cancers and exhibit enhanced amounts of DNA breaks. The levels of R-loops were found to be increased up to 50-fold in cells that maintain high-risk HPV genomes and were readily detected in squamous cell cervical carcinomas in vivo but not in normal cells. The high levels of R-loops in HPV-positive cells were present on both viral and cellular sites together with RNase H1, an enzyme that controls their resolution. Depletion of RNase H1 in HPV-positive cells further increased R-loop levels, resulting in impaired viral transcription and replication along with reduced expression of the DNA repair genes such as FANCD2 and ATR, both of which are necessary for viral functions. Overexpression of RNase H1 decreased total R-loop levels, resulting in a reduction of DNA breaks by over 50%. Furthermore, increased RNase H1 expression blocked viral transcription and replication while enhancing the expression of factors in the innate immune regulatory pathway. This suggests that maintaining elevated R-loop levels is important for the HPV life cycle. The E6 viral oncoprotein was found to be responsible for inducing high levels of R-loops by inhibiting p53's transcriptional activity. Our studies indicate that high R-loop levels are critical for HPV pathogenesis and that this depends on suppressing the p53 pathway.
Collapse
Affiliation(s)
- Conor Winslow Templeton
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Laimonis A. Laimins
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| |
Collapse
|
93
|
Cheng M, Cao H, Yao P, Guan J, Wu P, Ji H, Jiang S, Yuan Y, Fu L, Zheng Q, Li Q. PHF23 promotes NSCLC proliferation, metastasis, and chemoresistance via stabilization of ACTN4 and activation of the ERK pathway. Cell Death Dis 2023; 14:558. [PMID: 37626047 PMCID: PMC10457402 DOI: 10.1038/s41419-023-06069-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
At present, non-small cell lung cancer (NSCLC) is still one of the leading causes of cancer-related deaths. Chemotherapy remains the standard treatment for NSCLC. However, the emergence of chemoresistance is one of the major obstacles to lung cancer treatment. Plant homologous structural domain finger protein 23 (PHF23) plays crucial roles in multiple cell fates. However, the clinical significance and biological role of PHF23 in NSCLC remain elusive. The Cancer Genome Atlas data mining, NCBI/GEO data mining, and western blotting analysis were employed to characterize the expression of PHF23 in NSCLC cell lines and tissues. Statistical analysis of immunohistochemistry and the Kaplan-Meier Plotter database were used to investigate the clinical significance of PHF23. A series of in vivo and in vitro assays, including assays for colony formation, cell viability, 5-ethynyl-2'-deoxyuridine (EDU incorporation) and Transwell migration, flow cytometry, RT-PCR, gene set enrichment analysis, co-immunoprecipitation analysis, and a xenograft tumor model, were performed to demonstrate the effects of PHF23 on the chemosensitivity of NSCLC cells and to clarify the underlying molecular mechanisms. PHF23 is overexpressed in NSCLC cell lines and tissues. High PHF23 levels correlate with short survival times and a poor response to chemotherapy in NSCLC patients. PHF23 overexpression facilitates cell proliferation, migration and sensitizes NSCLC cells to Cisplatin and Docetaxel by promoting DNA damage repair. Alpha-actinin-4 (ACTN4), as a downstream regulator, interacts with PHD domain of PHF23. Moreover, PHF23 is involved in ACTN4 stabilization by inhibiting its ubiquitination level. These results show that PHF23 plays an important role in the development and progression of NSCLC and suggest that PHF23 may serve as a therapeutic target in NSCLC patients.
Collapse
Affiliation(s)
- Ming Cheng
- Department of Pathology, College of Basic Medical Sciences, China Medical University, 110000, Shenyang, Liaoning Province, People's Republic of China
| | - Hongyi Cao
- Department of Pathology, College of Basic Medical Sciences, China Medical University, 110000, Shenyang, Liaoning Province, People's Republic of China
- Department of Pathology, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, 110000, Shenyang, Liaoning Province, People's Republic of China
| | - Peifeng Yao
- Department of Hand Surgery, Central Hospital affiliated to Shenyang Medical College, 110000, Shenyang, Liaoning Province, People's Republic of China
| | - Jingqian Guan
- Department of Pathology, College of Basic Medical Sciences, China Medical University, 110000, Shenyang, Liaoning Province, People's Republic of China
| | - Peihong Wu
- Department of Pathology, College of Basic Medical Sciences, China Medical University, 110000, Shenyang, Liaoning Province, People's Republic of China
| | - Hairu Ji
- Department of Pathology, Chengde Medical University, 067000, Chengde, Hebei Province, People's Republic of China
| | - Siyu Jiang
- Department of Pathology, College of Basic Medical Sciences, China Medical University, 110000, Shenyang, Liaoning Province, People's Republic of China
| | - Yinan Yuan
- Department of Pathology, College of Basic Medical Sciences, China Medical University, 110000, Shenyang, Liaoning Province, People's Republic of China
| | - Lin Fu
- Department of Pathology, College of Basic Medical Sciences, China Medical University, 110000, Shenyang, Liaoning Province, People's Republic of China.
- Department of Pathology, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, 110000, Shenyang, Liaoning Province, People's Republic of China.
| | - Qianqian Zheng
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, 110000, Shenyang, Liaoning Province, People's Republic of China.
| | - Qingchang Li
- Department of Pathology, College of Basic Medical Sciences, China Medical University, 110000, Shenyang, Liaoning Province, People's Republic of China.
- Department of Pathology, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, 110000, Shenyang, Liaoning Province, People's Republic of China.
| |
Collapse
|
94
|
Brünnert D, Seupel R, Goyal P, Bach M, Schraud H, Kirner S, Köster E, Feineis D, Bargou RC, Schlosser A, Bringmann G, Chatterjee M. Ancistrocladinium A Induces Apoptosis in Proteasome Inhibitor-Resistant Multiple Myeloma Cells: A Promising Therapeutic Agent Candidate. Pharmaceuticals (Basel) 2023; 16:1181. [PMID: 37631095 PMCID: PMC10459547 DOI: 10.3390/ph16081181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The N,C-coupled naphthylisoquinoline alkaloid ancistrocladinium A belongs to a novel class of natural products with potent antiprotozoal activity. Its effects on tumor cells, however, have not yet been explored. We demonstrate the antitumor activity of ancistrocladinium A in multiple myeloma (MM), a yet incurable blood cancer that represents a model disease for adaptation to proteotoxic stress. Viability assays showed a potent apoptosis-inducing effect of ancistrocladinium A in MM cell lines, including those with proteasome inhibitor (PI) resistance, and in primary MM cells, but not in non-malignant blood cells. Concomitant treatment with the PI carfilzomib or the histone deacetylase inhibitor panobinostat strongly enhanced the ancistrocladinium A-induced apoptosis. Mass spectrometry with biotinylated ancistrocladinium A revealed significant enrichment of RNA-splicing-associated proteins. Affected RNA-splicing-associated pathways included genes involved in proteotoxic stress response, such as PSMB5-associated genes and the heat shock proteins HSP90 and HSP70. Furthermore, we found strong induction of ATF4 and the ATM/H2AX pathway, both of which are critically involved in the integrated cellular response following proteotoxic and oxidative stress. Taken together, our data indicate that ancistrocladinium A targets cellular stress regulation in MM and improves the therapeutic response to PIs or overcomes PI resistance, and thus may represent a promising potential therapeutic agent.
Collapse
Affiliation(s)
- Daniela Brünnert
- University Hospital of Würzburg, Comprehensive Cancer Center Mainfranken, Translational Oncology, 97080 Würzburg, Germany (M.C.)
| | - Raina Seupel
- Institute of Organic Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Pankaj Goyal
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandar Sindri, Kishangarh 305817, India;
| | - Matthias Bach
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Heike Schraud
- University Hospital of Würzburg, Comprehensive Cancer Center Mainfranken, Translational Oncology, 97080 Würzburg, Germany (M.C.)
| | - Stefanie Kirner
- University Hospital of Würzburg, Comprehensive Cancer Center Mainfranken, Translational Oncology, 97080 Würzburg, Germany (M.C.)
| | - Eva Köster
- Institute of Organic Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Doris Feineis
- Institute of Organic Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Ralf C. Bargou
- University Hospital of Würzburg, Comprehensive Cancer Center Mainfranken, Translational Oncology, 97080 Würzburg, Germany (M.C.)
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Manik Chatterjee
- University Hospital of Würzburg, Comprehensive Cancer Center Mainfranken, Translational Oncology, 97080 Würzburg, Germany (M.C.)
| |
Collapse
|
95
|
Nechay M, Wang D, Kleiner RE. Inhibition of nucleolar transcription by oxaliplatin involves ATM/ATR kinase signaling. Cell Chem Biol 2023; 30:906-919.e4. [PMID: 37433295 PMCID: PMC10529435 DOI: 10.1016/j.chembiol.2023.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 03/25/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023]
Abstract
Platinum (Pt) compounds are an important class of anti-cancer therapeutics, but outstanding questions remain regarding their mechanism of action. Here, we demonstrate that oxaliplatin, a Pt drug used to treat colorectal cancer, inhibits rRNA transcription through ATM and ATR signaling, and induces DNA damage and nucleolar disruption. We show that oxaliplatin causes nucleolar accumulation of the nucleolar DNA damage response proteins (n-DDR) NBS1 and TOPBP1; however transcriptional inhibition does not depend upon NBS1 or TOPBP1, nor does oxaliplatin induce substantial amounts of nucleolar DNA damage, distinguishing the nucleolar response from previously characterized n-DDR pathways. Taken together, our work indicates that oxaliplatin induces a distinct ATM and ATR signaling pathway that functions to inhibit Pol I transcription in the absence of direct nucleolar DNA damage, demonstrating how nucleolar stress and transcriptional silencing can be linked to DNA damage signaling and highlighting an important mechanism of Pt drug cytotoxicity.
Collapse
Affiliation(s)
- Misha Nechay
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Danyang Wang
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Ralph E Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
96
|
Audebert M, Assmann AS, Azqueta A, Babica P, Benfenati E, Bortoli S, Bouwman P, Braeuning A, Burgdorf T, Coumoul X, Debizet K, Dusinska M, Ertych N, Fahrer J, Fetz V, Le Hégarat L, López de Cerain A, Heusinkveld HJ, Hogeveen K, Jacobs MN, Luijten M, Raitano G, Recoules C, Rundén-Pran E, Saleh M, Sovadinová I, Stampar M, Thibol L, Tomkiewicz C, Vettorazzi A, Van de Water B, El Yamani N, Zegura B, Oelgeschläger M. New approach methodologies to facilitate and improve the hazard assessment of non-genotoxic carcinogens-a PARC project. FRONTIERS IN TOXICOLOGY 2023; 5:1220998. [PMID: 37492623 PMCID: PMC10364052 DOI: 10.3389/ftox.2023.1220998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023] Open
Abstract
Carcinogenic chemicals, or their metabolites, can be classified as genotoxic or non-genotoxic carcinogens (NGTxCs). Genotoxic compounds induce DNA damage, which can be detected by an established in vitro and in vivo battery of genotoxicity assays. For NGTxCs, DNA is not the primary target, and the possible modes of action (MoA) of NGTxCs are much more diverse than those of genotoxic compounds, and there is no specific in vitro assay for detecting NGTxCs. Therefore, the evaluation of the carcinogenic potential is still dependent on long-term studies in rodents. This 2-year bioassay, mainly applied for testing agrochemicals and pharmaceuticals, is time-consuming, costly and requires very high numbers of animals. More importantly, its relevance for human risk assessment is questionable due to the limited predictivity for human cancer risk, especially with regard to NGTxCs. Thus, there is an urgent need for a transition to new approach methodologies (NAMs), integrating human-relevant in vitro assays and in silico tools that better exploit the current knowledge of the multiple processes involved in carcinogenesis into a modern safety assessment toolbox. Here, we describe an integrative project that aims to use a variety of novel approaches to detect the carcinogenic potential of NGTxCs based on different mechanisms and pathways involved in carcinogenesis. The aim of this project is to contribute suitable assays for the safety assessment toolbox for an efficient and improved, internationally recognized hazard assessment of NGTxCs, and ultimately to contribute to reliable mechanism-based next-generation risk assessment for chemical carcinogens.
Collapse
Affiliation(s)
- Marc Audebert
- INRAE: Toxalim, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Ann-Sophie Assmann
- Department Experimental Toxicology and ZEBET, German Centre for the Protection of Laboratory Animals (Bf3R) and Department Food Safety, BfR: German Federal Institute for Risk Assessment, Berlin, Germany
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, UNAV: University of Navarra, Pamplona, Spain
| | - Pavel Babica
- RECETOX: RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Emilio Benfenati
- IRFMN: Istituto di Ricerche Farmacologiche Mario Negri—IRCCS, Milan, Italy
| | - Sylvie Bortoli
- INSERM: INSERM UMR-S 1124 T3S—Université Paris Cité, Paris, France
| | - Peter Bouwman
- UL-LACDR: Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Albert Braeuning
- Department Experimental Toxicology and ZEBET, German Centre for the Protection of Laboratory Animals (Bf3R) and Department Food Safety, BfR: German Federal Institute for Risk Assessment, Berlin, Germany
| | - Tanja Burgdorf
- Department Experimental Toxicology and ZEBET, German Centre for the Protection of Laboratory Animals (Bf3R) and Department Food Safety, BfR: German Federal Institute for Risk Assessment, Berlin, Germany
| | - Xavier Coumoul
- INSERM: INSERM UMR-S 1124 T3S—Université Paris Cité, Paris, France
| | - Kloé Debizet
- INSERM: INSERM UMR-S 1124 T3S—Université Paris Cité, Paris, France
| | - Maria Dusinska
- Health Effects Laboratory, NILU: The Climate and Environmental Research Institute, Kjeller, Norway
| | - Norman Ertych
- Department Experimental Toxicology and ZEBET, German Centre for the Protection of Laboratory Animals (Bf3R) and Department Food Safety, BfR: German Federal Institute for Risk Assessment, Berlin, Germany
| | - Jörg Fahrer
- Department of Chemistry, RPTU: Division of Food Chemistry and Toxicology, Kaiserslautern, Germany
| | - Verena Fetz
- Department Experimental Toxicology and ZEBET, German Centre for the Protection of Laboratory Animals (Bf3R) and Department Food Safety, BfR: German Federal Institute for Risk Assessment, Berlin, Germany
| | - Ludovic Le Hégarat
- ANSES: French Agency for Food, Environmental and Occupational Health and Safety, Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Adela López de Cerain
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, UNAV: University of Navarra, Pamplona, Spain
| | - Harm J. Heusinkveld
- RIVM: National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Kevin Hogeveen
- ANSES: French Agency for Food, Environmental and Occupational Health and Safety, Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Miriam N. Jacobs
- Radiation, Chemical and Environmental Hazards, UKHSA: UK Health Security Agency, Chilton, Oxfordshire, United Kingdom
| | - Mirjam Luijten
- RIVM: National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Giuseppa Raitano
- IRFMN: Istituto di Ricerche Farmacologiche Mario Negri—IRCCS, Milan, Italy
| | - Cynthia Recoules
- INRAE: Toxalim, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Elise Rundén-Pran
- Health Effects Laboratory, NILU: The Climate and Environmental Research Institute, Kjeller, Norway
| | - Mariam Saleh
- ANSES: French Agency for Food, Environmental and Occupational Health and Safety, Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Iva Sovadinová
- RECETOX: RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Martina Stampar
- Department of Genetic Toxicology and Cancer Biology, NIB: National Institute of Biology, Ljubljana, Slovenia
| | - Lea Thibol
- Department of Chemistry, RPTU: Division of Food Chemistry and Toxicology, Kaiserslautern, Germany
| | | | - Ariane Vettorazzi
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, UNAV: University of Navarra, Pamplona, Spain
| | - Bob Van de Water
- UL-LACDR: Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Naouale El Yamani
- Health Effects Laboratory, NILU: The Climate and Environmental Research Institute, Kjeller, Norway
| | - Bojana Zegura
- Department of Genetic Toxicology and Cancer Biology, NIB: National Institute of Biology, Ljubljana, Slovenia
| | - Michael Oelgeschläger
- Department Experimental Toxicology and ZEBET, German Centre for the Protection of Laboratory Animals (Bf3R) and Department Food Safety, BfR: German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
97
|
Dunjić M, Jonas F, Yaakov G, More R, Mayshar Y, Rais Y, Orenbuch AH, Cheng S, Barkai N, Stelzer Y. Histone exchange sensors reveal variant specific dynamics in mouse embryonic stem cells. Nat Commun 2023; 14:3791. [PMID: 37365167 DOI: 10.1038/s41467-023-39477-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Eviction of histones from nucleosomes and their exchange with newly synthesized or alternative variants is a central epigenetic determinant. Here, we define the genome-wide occupancy and exchange pattern of canonical and non-canonical histone variants in mouse embryonic stem cells by genetically encoded exchange sensors. While exchange of all measured variants scales with transcription, we describe variant-specific associations with transcription elongation and Polycomb binding. We found considerable exchange of H3.1 and H2B variants in heterochromatin and repeat elements, contrasting the occupancy and little exchange of H3.3 in these regions. This unexpected association between H3.3 occupancy and exchange of canonical variants is also evident in active promoters and enhancers, and further validated by reduced H3.1 dynamics following depletion of H3.3-specific chaperone, HIRA. Finally, analyzing transgenic mice harboring H3.1 or H3.3 sensors demonstrates the vast potential of this system for studying histone exchange and its impact on gene expression regulation in vivo.
Collapse
Affiliation(s)
- Marko Dunjić
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Felix Jonas
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Gilad Yaakov
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Roye More
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Yoav Mayshar
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Yoach Rais
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | | | - Saifeng Cheng
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Yonatan Stelzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
98
|
Wang W, Yuan X, Mu J, Zou Y, Xu L, Chen J, Zhu X, Li B, Zeng Z, Wu X, Yin Z, Wang Q. Quercetin induces MGMT + glioblastoma cells apoptosis via dual inhibition of Wnt3a/β-Catenin and Akt/NF-κB signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154933. [PMID: 37451151 DOI: 10.1016/j.phymed.2023.154933] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/24/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Surgical resection combined with radiotherapy and chemotherapy remains a common clinical treatment for glioblastoma multiforme (GBM). However, the therapeutic outcomes have not been satisfying due to drug resistance and other factors. Quercetin, a phytoingredient capable of crossing the blood-brain barrier, has shown effectiveness in the treatment of various solid tumors. Nevertheless, the potential of quercetin in GBM treatment has not been adequately explored. PURPOSE This study aims to investigate the effects and mechanisms of quercetin on MGMT+GBM cells. METHODS The potential targets and mechanisms of quercetin in glioma treatment were predicted based on network pharmacology and molecular docking. The effects of quercetin on cell inhibition rate, cell migration ability, cell cycle arrest, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), Mitochondrial superoxide formation and apoptosis were measured by the CCK8 assay, wound healing assay, PI/RNase staining, JC-1 assay, DCFH-DA assay, MitoSOX staining and Annexin V-FITC/PI double staining, respectively. The methylation status of the MGMT promoter was assessed through methylation-specific polymerase chain reaction (MS-PCR). DNA damage was quantified by alkaline/neutral comet assay and TUNEL assay. The intracellular localization and expression of NF-κB and MGMT were revealed by immunofluorescence. The expression of migration-related proteins, matrix metalloproteinases, apoptosis-related proteins, cyclins, DNA damage/repair enzymes and related pathway proteins was detected by Western blot. RESULTS Network pharmacology identified 96 targets and potential molecular mechanisms of quercetin in glioma treatment. Subsequent experiments confirmed the synergistic effect of quercetin in combination with temozolomide (TMZ) on T98G cells. Quercetin significantly suppressed the growth and migration of human GBM T98G cells, induced apoptosis, and arrested cells in the S-phase cell cycle. The collapse of mitochondrial membrane potential, ROS generation, enhanced Bax/Bcl-2 ratio, and strengthened cleaved-Caspase 9 and cleaved-Caspase 3 suggested the involvement of ROS-mediated mitochondria-dependent apoptosis in the process of quercetin-induced apoptosis. In addition, quercetin-induced apoptosis was accompanied by intense DNA double-strand breaks (DSBs), γH2AX foci formation, methylation of MGMT promoter, increased cleaved-PARP, and reduced MGMT expression. Quercetin may influence the expression of the key DNA repair enzyme, MGMT, by dual suppression of the Wnt3a/β-Catenin and the Akt/NF-κB signaling pathways, thereby promoting apoptosis. Inhibition of Wnt3a and Akt using specific inhibitors hindered MGMT expression. CONCLUSION Our study provides the first evidence that quercetin may induce apoptosis in MGMT+GBM cells via dual inhibition of the Wnt3a/β-Catenin pathway and the Akt/NF-κB signaling pathway. These findings suggest that quercetin could be a novel agent for improving GBM treatment, especially in TMZ-resistant GBM with high MGMT expression.
Collapse
Affiliation(s)
- Wanyu Wang
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China; Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaopeng Yuan
- Department of Clinical Laboratory, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
| | - Jiasheng Mu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yuheng Zou
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lanyang Xu
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiali Chen
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiao Zhu
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Biaoping Li
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhiyun Zeng
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xianghui Wu
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhixin Yin
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qirui Wang
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China; Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
99
|
Zhao M, Zhou G, Wang J, Zhang Y, Xue J, Liu J, Xie J, Ren L, Zhou X. MiR-5622-3p inhibits ZCWPW1 to induce apoptosis in silica-exposed mice and spermatocyte cells. Nanotoxicology 2023:1-13. [PMID: 37315217 DOI: 10.1080/17435390.2023.2223632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/17/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023]
Abstract
Silica nanoparticles (SiNPs) could cause damage to spermatogenesis, and microRNAs were reported to be associated with male reproduction. This research was designed to explore the toxic impacts of SiNPs induced in male reproduction through miR-5622-3p. In vivo, 60 mice were randomized into the control group and SiNPs group, in which they were exposed to SiNPs for 35 days and then recovered for 15 days. In vitro, 4 groups were set: control group, SiNPs group, SiNPs + miR-5622-3p inhibitor group, and SiNPs + miR-5622-3p inhibitor negative control (NC) group. Our research indicated SiNPs caused the apoptosis of spermatogenic cells, increased level of γ-H2AX, raised the expressions of RAD51, DMC1, 53BP1, and LC8 which were DNA damage repair relative factors, and upregulated Cleaved-Caspase-9 and Cleaved-Caspase-3 levels. Furthermore, SiNPs also elevated the expression of miR-5622-3p but downregulated the level of ZCWPW1. However, miR-5622-3p inhibitor reduced the level of miR-5622-3p, increased the level of ZCWPW1, relieved DNA damage, and depressed the activation of apoptosis pathway, thus, alleviating spermatogenic cells apoptosis caused by SiNPs. The above-mentioned results indicated that SiNPs induced DNA damage resulting in activating of DNA damage response. Meanwhile, SiNPs raised the level of miR-5622-3p targeting inhibited expression of ZCWPW1 to suppress the repair process, possibly making DNA damage so severe that leading to the failure of DNA damage repair, finally inducing the apoptosis of spermatogenic cells.
Collapse
Affiliation(s)
- Moxuan Zhao
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Guiqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Jingjing Wang
- Department of Laboratory Animal, Capital Medical University, Beijing, China
| | - Yue Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Jinglong Xue
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Jianhui Liu
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, China
| | - Junhong Xie
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Lihua Ren
- School of Nursing, Peking University, Beijing, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| |
Collapse
|
100
|
Garyn CM, Bover O, Murray JW, Jing M, Salas-Briceno K, Ross SR, Snoeck HW. DNA damage primes hematopoietic stem cells for direct megakaryopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.13.540665. [PMID: 37333356 PMCID: PMC10274687 DOI: 10.1101/2023.05.13.540665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Hematopoietic stem cells (HSCs) reside in the bone marrow (BM), can self-renew, and generate all cells of the hematopoietic system. 1 Most hematopoietic lineages arise through successive, increasingly lineage-committed progenitors. In contrast, megakaryocytes (MKs), hyperploid cells that generate platelets essential to hemostasis, can derive rapidly and directly from HSCs. 2 The underlying mechanism is unknown however. Here we show that DNA damage and subsequent arrest in the G2 phase of the cell cycle rapidly induce MK commitment specifically in HSCs, but not in progenitors, through an initially predominantly post-transcriptional mechanism. Cycling HSCs show extensive replication-induced DNA damage associated with uracil misincorporation in vivo and in vitro . Consistent with this notion, thymidine attenuated DNA damage, rescued HSC maintenance and reduced the generation of CD41 + MK-committed HSCs in vitro . Similarly, overexpression of the dUTP-scavenging enzyme, dUTPase, enhanced in vitro maintenance of HSCs. We conclude that a DNA damage response drives direct megakaryopoiesis and that replication stress-induced direct megakaryopoiesis, at least in part caused by uracil misincorporation, is a barrier to HSC maintenance in vitro . DNA damage-induced direct megakaryopoiesis may allow rapid generation of a lineage essential to immediate organismal survival, while simultaneously removing damaged HSCs and potentially avoiding malignant transformation of self-renewing stem cells.
Collapse
|