51
|
Guegler CK, Laub MT. Shutoff of host transcription triggers a toxin-antitoxin system to cleave phage RNA and abort infection. Mol Cell 2021; 81:2361-2373.e9. [PMID: 33838104 PMCID: PMC8284924 DOI: 10.1016/j.molcel.2021.03.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/16/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
Toxin-antitoxin (TA) systems are widespread in bacteria, but their activation mechanisms and bona fide targets remain largely unknown. Here, we characterize a type III TA system, toxIN, that protects E. coli against multiple bacteriophages, including T4. Using RNA sequencing, we find that the endoribonuclease ToxN is activated following T4 infection and blocks phage development primarily by cleaving viral mRNAs and inhibiting their translation. ToxN activation arises from T4-induced shutoff of host transcription, specifically of toxIN, leading to loss of the intrinsically unstable toxI antitoxin. Transcriptional shutoff is necessary and sufficient for ToxN activation. Notably, toxIN does not strongly protect against another phage, T7, which incompletely blocks host transcription. Thus, our results reveal a critical trade-off in blocking host transcription: it helps phage commandeer host resources but can activate potent defense systems. More generally, our results now reveal the native targets of an RNase toxin and activation mechanism of a phage-defensive TA system.
Collapse
Affiliation(s)
- Chantal K Guegler
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Cambridge, MA 02139, USA.
| |
Collapse
|
52
|
Abstract
Bacterial cells utilize toxin-antitoxin systems to inhibit self-reproduction, while maintaining viability, when faced with environmental challenges. The activation of the toxin is often coupled to the induction of cellular response pathways, such as the stringent response, in response to multiple stress conditions. Under these conditions, the cell enters a quiescent state referred to as dormancy or persistence. How toxin activation triggers persistence and induces a systemic stress response in the alphaproteobacteria remains unclear. Here, we report that in Caulobacter, a hipA2-encoded bacterial toxin contributes to bacterial persistence by manipulating intracellular amino acid balance. HipA2 is a serine/threonine kinase that deactivates tryptophanyl-tRNA synthetase by phosphorylation, leading to stalled protein synthesis and the accumulation of free tryptophan. An increased level of tryptophan allosterically activates the adenylyltransferase activity of GlnE that, in turn, deactivates glutamine synthetase GlnA by adenylylation. The inactivation of GlnA promotes the deprivation of glutamine in the cell, which triggers a stringent response. By screening 69 stress conditions, we find that HipBA2 responds to multiple stress signals through the proteolysis of HipB2 antitoxin by the Lon protease and the release of active HipA2 kinase, revealing a molecular mechanism that allows disparate stress conditions to be sensed and funneled into a single response pathway.IMPORTANCE To overcome various environmental challenges, bacterial cells can enter a physiologically quiescent state, known as dormancy or persistence, which balances growth and viability. In this study, we report a new mechanism by which a toxin-antitoxin system responds to harsh environmental conditions or nutrient deprivation by orchestrating a dormant state while preserving viability. The hipA2-encoded kinase functions as a toxin in Caulobacter, inducing bacterial persistence by disturbing the intracellular tryptophan-glutamine balance. A nitrogen regulatory circuit can be regulated by the intracellular level of tryptophan, which mimics the allosteric role of glutamine in this feedback loop. The HipBA2 module senses different types of stress conditions by increasing the intracellular level of tryptophan, which in turn breaks the tryptophan-glutamine balance and induces glutamine deprivation. Our results reveal a molecular mechanism that allows disparate environmental challenges to converge on a common pathway that results in a dormant state.
Collapse
|
53
|
Klemenčič M, Halužan Vasle A, Dolinar M. The Cysteine Protease MaOC1, a Prokaryotic Caspase Homolog, Cleaves the Antitoxin of a Type II Toxin-Antitoxin System. Front Microbiol 2021; 12:635684. [PMID: 33679669 PMCID: PMC7935541 DOI: 10.3389/fmicb.2021.635684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/01/2021] [Indexed: 01/26/2023] Open
Abstract
The bloom-forming cyanobacterium Microcystis aeruginosa is known for its global distribution and for the production of toxic compounds. In the genome of M. aeruginosa PCC 7806, we discovered that the gene coding for MaOC1, a caspase homolog protease, is followed by a toxin-antitoxin module, flanked on each side by a direct repeat. We therefore investigated their possible interaction at the protein level. Our results suggest that this module belongs to the ParE/ParD-like superfamily of type II toxin-antitoxin systems. In solution, the antitoxin is predominantly alpha-helical and dimeric. When coexpressed with its cognate toxin and isolated from Escherichia coli, it forms a complex, as revealed by light scattering and affinity purification. The active site of the toxin is restricted to the C-terminus of the molecule. Its truncation led to normal cell growth, while the wild-type form prevented bacterial growth in liquid medium. The orthocaspase MaOC1 was able to cleave the antitoxin so that it could no longer block the toxin activity. The most likely target of the protease was the C-terminus of the antitoxin with two sections of basic amino acid residues. E. coli cells in which MaOC1 was expressed simultaneously with the toxin-antitoxin pair were unable to grow. In contrast, no effect on cell growth was found when using a proteolytically inactive MaOC1 mutant. We thus present the first case of a cysteine protease that regulates the activity of a toxin-antitoxin module, since all currently known activating proteases are of the serine type.
Collapse
Affiliation(s)
- Marina Klemenčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Halužan Vasle
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Dolinar
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
54
|
Srivastava A, Pati S, Kaushik H, Singh S, Garg LC. Toxin-antitoxin systems and their medical applications: current status and future perspective. Appl Microbiol Biotechnol 2021; 105:1803-1821. [PMID: 33582835 DOI: 10.1007/s00253-021-11134-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Almost all bacteria synthesize two types of toxins-one for its survival by regulating different cellular processes and another as a strategy to interact with host cells for pathogenesis. Usually, "bacterial toxins" are contemplated as virulence factors that harm the host organism. However, toxins produced by bacteria, as a survival strategy against the host, also hamper its cellular processes. To overcome this, the bacteria have evolved with the production of a molecule, referred to as antitoxin, to negate the deleterious effect of the toxin against itself. The toxin and antitoxins are encoded by a two-component toxin-antitoxin (TA) system. The antitoxin, a protein or RNA, sequesters the toxins of the TA system for neutralization within the bacterial cell. In this review, we have described different TA systems of bacteria and their potential medical and biotechnological applications. It is of interest to note that while bacterial toxin-antitoxin systems have been well studied, the TA system in unicellular eukaryotes, though predicted by the investigators, have never been paid the desired attention. In the present review, we have also touched upon the TA system of eukaryotes identified to date. KEY POINTS: Bacterial toxins harm the host and also affect the bacterial cellular processes. The antitoxin produced by bacteria protect it from the toxin's harmful effects. The toxin-antitoxin systems can be targeted for various medical applications.
Collapse
Affiliation(s)
- Akriti Srivastava
- Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 201314, India
| | - Soumya Pati
- Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 201314, India
| | - Himani Kaushik
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Lalit C Garg
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India.
| |
Collapse
|
55
|
The Disordered C-Terminus of the Chaperone DnaK Increases the Competitive Fitness of Pseudomonas putida and Facilitates the Toxicity of GraT. Microorganisms 2021; 9:microorganisms9020375. [PMID: 33668424 PMCID: PMC7918210 DOI: 10.3390/microorganisms9020375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 11/23/2022] Open
Abstract
Chaperone proteins are crucial for proper protein folding and quality control, especially when cells encounter stress caused by non-optimal temperatures. DnaK is one of such essential chaperones in bacteria. Although DnaK has been well characterized, the function of its intrinsically disordered C-terminus has remained enigmatic as the deletion of this region has been shown to either enhance or reduce its protein folding ability. We have shown previously that DnaK interacts with toxin GraT of the GraTA toxin-antitoxin system in Pseudomonas putida. Interestingly, the C-terminal truncation of DnaK was shown to alleviate GraT-caused growth defects. Here, we aim to clarify the importance of DnaK in GraT activity. We show that DnaK increases GraT toxicity, and particularly important is the negatively charged motif in the DnaK C-terminus. Given that GraT has an intrinsically disordered N-terminus, the assistance of DnaK is probably needed for re-modelling the toxin structure. We also demonstrate that the DnaK C-terminal negatively charged motif contributes to the competitive fitness of P. putida at both high and optimal growth temperatures. Thus, our data suggest that the disordered C-terminal end of DnaK enhances the chaperone functionality.
Collapse
|
56
|
Sanches BCP, Rocha CA, Martin Bedoya JG, da Silva VL, da Silva PB, Fusco-Almeida AM, Chorilli M, Contiero J, Crusca E, Marchetto R. Rhamnolipid-Based Liposomes as Promising Nano-Carriers for Enhancing the Antibacterial Activity of Peptides Derived from Bacterial Toxin-Antitoxin Systems. Int J Nanomedicine 2021; 16:925-939. [PMID: 33603360 PMCID: PMC7882795 DOI: 10.2147/ijn.s283400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/25/2020] [Indexed: 12/19/2022] Open
Abstract
Background Antimicrobial resistance poses substantial risks to human health. Thus, there is an urgent need for novel antimicrobial agents, including alternative compounds, such as peptides derived from bacterial toxin-antitoxin (TA) systems. ParELC3 is a synthetic peptide derived from the ParE toxin reported to be a good inhibitor of bacterial topoisomerases and is therefore a potential antibacterial agent. However, ParELC3 is inactive against bacteria due to its inability to cross the bacterial membranes. To circumvent this limitation we prepared and used rhamnolipid-based liposomes to carry and facilitate the passage of ParELC3 through the bacterial membrane to reach its intracellular target - the topoisomerases. Methods and Results Small unilamellar liposome vesicles were prepared by sonication from three formulations that included 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and cholesterol. ParELC3 was loaded with high efficiency into the liposomes. Characterization by DLS and TEM revealed the appropriate size, zeta potential, polydispersity index, and morphology. In vitro microbiological experiments showed that ParELC3 loaded-liposomes are more efficient (29 to 11 µmol·L−1) compared to the free peptide (>100 µmol·L−1) at inhibiting the growth of standard E. coli and S. aureus strains. RL liposomes showed high hemolytic activity but when prepared with POPC and Chol this activity had a significant reduction. Independently of the formulation, the vesicles had no detectable cytotoxicity to HepG2 cells, even at the highest concentrations tested (1.3 mmol·L−1 and 50 µmol·L−1 for rhamnolipid and ParELC3, respectively). Conclusion The present findings suggest the potential use of rhamnolipid-based liposomes as nanocarrier systems to enhance the bioactivity of peptides.
Collapse
Affiliation(s)
- Beatriz Cristina Pecoraro Sanches
- São Paulo State University (UNESP), Institute of Chemistry, Department of Biochemistry and Organic Chemistry, Araraquara, SP, Brazil
| | - Camila Aguiar Rocha
- São Paulo State University (UNESP), Institute of Chemistry, Department of Biochemistry and Organic Chemistry, Araraquara, SP, Brazil
| | - Jose Gregorio Martin Bedoya
- São Paulo State University (UNESP), Institute of Chemistry, Department of Biochemistry and Organic Chemistry, Araraquara, SP, Brazil
| | - Vinicius Luiz da Silva
- São Paulo State University (UNESP), Institute of Biosciences, Department of General and Applied Biology, Rio Claro, SP, Brazil
| | - Patrícia Bento da Silva
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, SP, Brazil
| | - Ana Marisa Fusco-Almeida
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, SP, Brazil
| | - Jonas Contiero
- São Paulo State University (UNESP), Institute of Biosciences, Department of General and Applied Biology, Rio Claro, SP, Brazil
| | - Edson Crusca
- São Paulo State University (UNESP), Institute of Chemistry, Department of Biochemistry and Organic Chemistry, Araraquara, SP, Brazil
| | - Reinaldo Marchetto
- São Paulo State University (UNESP), Institute of Chemistry, Department of Biochemistry and Organic Chemistry, Araraquara, SP, Brazil
| |
Collapse
|
57
|
Gonçalves OS, Santana MF. The coexistence of monopartite integrative and conjugative elements in the genomes of Acidobacteria. Gene 2021; 777:145476. [PMID: 33549716 DOI: 10.1016/j.gene.2021.145476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/15/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
Soil bacteria can rapidly adapt to environmental perturbations through horizontal gene transfer. Acidobacteria is one of the most persistent dominant phyla in the soil. However, the role of these organisms in terrestrial ecosystems remains elusive. Here we identified and describe the integrative and conjugative elements (ICEs) in the published complete genomes of Acidobacteria. In total, ten novel ICEs were identified, in which nine were found integrated as three separated monopartite ICEs in the single chromosome sequences of three Acidobacteria. These ICEs carry a repertoire of genes with potential environmental roles, including heavy metal resistance, iron uptake, secondary metabolism, and antibiotic resistance. To our knowledge, these are the first evidence of three monopartite ICEs identified in the single chromosome, and this might be due to the absence of recognizable entry exclusion systems. We hypothesis that the coexistence of multiples ICEs in the chromosome of Acidobacteria might reflect a major advantage for the survival, resistance, and persistence of phylum in the environment.
Collapse
Affiliation(s)
- Osiel Silva Gonçalves
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| | - Mateus Ferreira Santana
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil.
| |
Collapse
|
58
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. Persistence of Intracellular Bacterial Pathogens-With a Focus on the Metabolic Perspective. Front Cell Infect Microbiol 2021; 10:615450. [PMID: 33520740 PMCID: PMC7841308 DOI: 10.3389/fcimb.2020.615450] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Persistence has evolved as a potent survival strategy to overcome adverse environmental conditions. This capability is common to almost all bacteria, including all human bacterial pathogens and likely connected to chronic infections caused by some of these pathogens. Although the majority of a bacterial cell population will be killed by the particular stressors, like antibiotics, oxygen and nitrogen radicals, nutrient starvation and others, a varying subpopulation (termed persisters) will withstand the stress situation and will be able to revive once the stress is removed. Several factors and pathways have been identified in the past that apparently favor the formation of persistence, such as various toxin/antitoxin modules or stringent response together with the alarmone (p)ppGpp. However, persistence can occur stochastically in few cells even of stress-free bacterial populations. Growth of these cells could then be induced by the stress conditions. In this review, we focus on the persister formation of human intracellular bacterial pathogens, some of which belong to the most successful persister producers but lack some or even all of the assumed persistence-triggering factors and pathways. We propose a mechanism for the persister formation of these bacterial pathogens which is based on their specific intracellular bipartite metabolism. We postulate that this mode of metabolism ultimately leads, under certain starvation conditions, to the stalling of DNA replication initiation which may be causative for the persister state.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Department of Chemistry, Chair of Biochemistry, Technische Universität München, Garching, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| |
Collapse
|
59
|
Wadie B, Abdel-Fattah MA, Yousef A, Mouftah SF, Elhadidy M, Salem TZ. In Silico Characterization of Toxin-Antitoxin Systems in Campylobacter Isolates Recovered from Food Sources and Sporadic Human Illness. Genes (Basel) 2021; 12:genes12010072. [PMID: 33430508 PMCID: PMC7826846 DOI: 10.3390/genes12010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 11/16/2022] Open
Abstract
Campylobacter spp. represents the most common cause of gastroenteritis worldwide with the potential to cause serious sequelae. The ability of Campylobacter to survive stressful environmental conditions has been directly linked with food-borne illness. Toxin-antitoxin (TA) modules play an important role as defense systems against antimicrobial agents and are considered an invaluable strategy harnessed by bacterial pathogens to survive in stressful environments. Although TA modules have been extensively studied in model organisms such as Escherichia coli K12, the TA landscape in Campylobacter remains largely unexplored. Therefore, in this study, a comprehensive in silico screen of 111 Campylobacter (90 C.
jejuni and 21 C.
coli) isolates recovered from different food and clinical sources was performed. We identified 10 type II TA systems belonging to four TA families predicted in Campylobacter genomes. Furthermore, there was a significant association between the clonal population structure and distribution of TA modules; more specifically, most (12/13) of the Campylobacter isolates belonging to ST-21 isolates possess HicB-HicA TA modules. Finally, we observed a high degree of shared synteny among isolates bearing certain TA systems or even coexisting pairs of TA systems. Collectively, these findings provide useful insights about the distribution of TA modules in a heterogeneous pool of Campylobacter isolates from different sources, thus developing a better understanding regarding the mechanisms by which these pathogens survive stressful environmental conditions, which will further aid in the future designing of more targeted antimicrobials.
Collapse
Affiliation(s)
- Bishoy Wadie
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza 12578, Egypt; (B.W.); (A.Y.); (S.F.M.)
| | - Mohamed A. Abdel-Fattah
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt;
| | - Alshymaa Yousef
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza 12578, Egypt; (B.W.); (A.Y.); (S.F.M.)
| | - Shaimaa F. Mouftah
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza 12578, Egypt; (B.W.); (A.Y.); (S.F.M.)
| | - Mohamed Elhadidy
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza 12578, Egypt; (B.W.); (A.Y.); (S.F.M.)
- Department of Bacteriology, Mycology, and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence: (M.E.); (T.Z.S.); Tel.: +20-1220786861 (M.E.); +20-1014114122 (T.Z.S.)
| | - Tamer Z. Salem
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza 12578, Egypt; (B.W.); (A.Y.); (S.F.M.)
- Department of Microbial Genetics, AGERI, ARC, Giza 12619, Egypt
- Correspondence: (M.E.); (T.Z.S.); Tel.: +20-1220786861 (M.E.); +20-1014114122 (T.Z.S.)
| |
Collapse
|
60
|
Song Y, Luo G, Zhu Y, Li T, Li C, He L, Zhao N, Zhao C, Yang J, Huang Q, Mu X, Tang X, Kang M, Wu S, He Y, Bao R. Pseudomonas aeruginosa antitoxin HigA functions as a diverse regulatory factor by recognizing specific pseudopalindromic DNA motifs. Environ Microbiol 2020; 23:1541-1558. [PMID: 33346387 DOI: 10.1111/1462-2920.15365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/05/2023]
Abstract
Type II toxin-antitoxin (TA) systems modulate many essential cellular processes in prokaryotic organisms. Recent studies indicate certain type II antitoxins also transcriptionally regulate other genes, besides neutralizing toxin activity. Herein, we investigated the diverse transcriptional repression properties of type II TA antitoxin PaHigA from Pseudomonas aeruginosa. Biochemical and functional analyses showed that PaHigA recognized variable pseudopalindromic DNA sequences and repressed expression of multiple genes. Furthermore, we presented high resolution structures of apo-PaHigA, PaHigA-PhigBA and PaHigA-Ppa2440 complex, describing how the rearrangements of the HTH domain accounted for the different DNA-binding patterns among HigA homologues. Moreover, we demonstrated that the N-terminal loop motion of PaHigA was associated with its apo and DNA-bound states, reflecting a switch mechanism regulating HigA antitoxin function. Collectively, this work extends our understanding of how the PaHigB/HigA system regulates multiple metabolic pathways to balance the growth and stress response in P. aeruginosa and could guide further development of anti-TA oriented strategies for pathogen treatment.
Collapse
Affiliation(s)
- Yingjie Song
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Guihua Luo
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yibo Zhu
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Tao Li
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Changcheng Li
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Lihui He
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Ninglin Zhao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Chang Zhao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Jing Yang
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Qin Huang
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xingyu Mu
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xinyue Tang
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Mei Kang
- Department of Laboratory medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Siying Wu
- Department of Laboratory medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yongxing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Rui Bao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| |
Collapse
|
61
|
Abstract
The current TB treatment regimen involves a combination of drugs administered for an extended duration that could last for 6 months to 2 years. This could lead to noncompliance and the emergence of newer drug resistance strains. The worldwide increase in the frequency of multidrug-resistant and extensively drug-resistant cases of tuberculosis is mainly due to therapeutic noncompliance associated with a lengthy treatment regimen. Depending on the drug susceptibility profile, the treatment duration can extend from 6 months to 2 years. This protracted regimen is attributed to a supposedly nonreplicating and metabolically inert subset of the Mycobacterium tuberculosis population, called “persisters.” The mechanism underlying stochastic generation and enrichment of persisters is not fully known. We have previously reported that the utilization of host cholesterol is essential for mycobacterial persistence. In this study, we have demonstrated that cholesterol-induced activation of a RNase toxin (VapC12) inhibits translation by targeting proT tRNA in M. tuberculosis. This results in cholesterol-specific growth modulation that increases the frequency of generation of the persisters in a heterogeneous M. tuberculosis population. Also, a null mutant strain of this toxin (ΔvapC12) demonstrated an enhanced growth phenotype in a guinea pig model of M. tuberculosis infection, depicting its role in disease persistence. Thus, we have identified a novel strategy through which cholesterol-specific activation of a toxin-antitoxin module in M. tuberculosis enhances persister formation during infection. The current findings provide an opportunity to target persisters, a new paradigm facilitating tuberculosis drug development. IMPORTANCE The current TB treatment regimen involves a combination of drugs administered for an extended duration that could last for 6 months to 2 years. This could lead to noncompliance and the emergence of newer drug resistance strains. It is widely perceived that the major culprits are the so-called nonreplicating and metabolically inactive “persister” bacteria. The importance of cholesterol utilization during the persistence stage of M. tuberculosis infection and its potential role in the generation of persisters is very intriguing. We explored the mechanism involved in the cholesterol-mediated generation of persisters in mycobacteria. In this study, we have identified a toxin-antitoxin (TA) system essential for the generation of persisters during M. tuberculosis infection. This study verified that M. tuberculosis strain devoid of the VapBC12 TA system failed to persist and showed a hypervirulent phenotype in a guinea pig infection model. Our studies indicate that the M. tuberculosis VapBC12 TA system acts as a molecular switch regulating persister generation during infection. VapBC12 TA system as a drug target offers opportunities to develop shorter and more effective treatment regimens against tuberculosis.
Collapse
|
62
|
Transcriptional Landscape of Waddlia chondrophila Aberrant Bodies Induced by Iron Starvation. Microorganisms 2020; 8:microorganisms8121848. [PMID: 33255276 PMCID: PMC7760296 DOI: 10.3390/microorganisms8121848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/05/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022] Open
Abstract
Chronic infections caused by obligate intracellular bacteria belonging to the Chlamydiales order are related to the formation of persistent developmental forms called aberrant bodies (ABs), which undergo DNA replication without cell division. These enlarged bacteria develop and persist upon exposure to different stressful conditions such as β-lactam antibiotics, iron deprivation and interferon-γ. However, the mechanisms behind ABs biogenesis remain uncharted. Using an RNA-sequencing approach, we compared the transcriptional profile of ABs induced by iron starvation to untreated bacteria in the Chlamydia-related species Waddliachondrophila, a potential agent of abortion in ruminants and miscarriage in humans. Consistent with the growth arrest observed following iron depletion, our results indicate a significant reduction in the expression of genes related to energy production, carbohydrate and amino acid metabolism and cell wall/envelope biogenesis, compared to untreated, actively replicating bacteria. Conversely, three putative toxin-antitoxin modules were among the most up-regulated genes upon iron starvation, suggesting that their activation might be involved in growth arrest in adverse conditions, an uncommon feature in obligate intracellular bacteria. Our work represents the first complete transcriptomic profile of a Chlamydia-related species in stressful conditions and sets the grounds for further investigations on the mechanisms underlying chlamydial persistence.
Collapse
|
63
|
Abstract
In life's constant battle for survival, it takes one to kill but two to conquer. Toxin-antitoxin or toxin-antidote (TA) elements are genetic dyads that cheat the laws of inheritance to guarantee their transmission to the next generation. This seemingly simple genetic arrangement—a toxin linked to its antidote—is capable of quickly spreading and persisting in natural populations. TA elements were first discovered in bacterial plasmids in the 1980s and have recently been characterized in fungi, plants, and animals, where they underlie genetic incompatibilities and sterility in crosses between wild isolates. In this review, we provide a unified view of TA elements in both prokaryotic and eukaryotic organisms and highlight their similarities and differences at the evolutionary, genetic, and molecular levels. Finally, we propose several scenarios that could explain the paradox of the evolutionary origin of TA elements and argue that these elements may be key evolutionary players and that the full scope of their roles is only beginning to be uncovered.
Collapse
Affiliation(s)
- Alejandro Burga
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Eyal Ben-David
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los Angeles, California 90095, USA
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem 91120, Israel
| | - Leonid Kruglyak
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
64
|
Identification of Uncharacterized Components of Prokaryotic Immune Systems and Their Diverse Eukaryotic Reformulations. J Bacteriol 2020; 202:JB.00365-20. [PMID: 32868406 DOI: 10.1128/jb.00365-20] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022] Open
Abstract
Nucleotide-activated effector deployment, prototyped by interferon-dependent immunity, is a common mechanistic theme shared by immune systems of several animals and prokaryotes. Prokaryotic versions include CRISPR-Cas with the CRISPR polymerase domain, their minimal variants, and systems with second messenger oligonucleotide or dinucleotide synthetase (SMODS). Cyclic or linear oligonucleotide signals in these systems help set a threshold for the activation of potentially deleterious downstream effectors in response to invader detection. We establish such a regulatory mechanism to be a more general principle of immune systems, which can also operate independently of such messengers. Using sensitive sequence analysis and comparative genomics, we identify 12 new prokaryotic immune systems, which we unify by this principle of threshold-dependent effector activation. These display regulatory mechanisms paralleling physiological signaling based on 3'-5' cyclic mononucleotides, NAD+-derived messengers, two- and one-component signaling that includes histidine kinase-based signaling, and proteolytic activation. Furthermore, these systems allowed the identification of multiple new sensory signal sensory components, such as a tetratricopeptide repeat (TPR) scaffold predicted to recognize NAD+-derived signals, unreported versions of the STING domain, prokaryotic YEATS domains, and a predicted nucleotide sensor related to receiver domains. We also identify previously unrecognized invader detection components and effector components, such as prokaryotic versions of the Wnt domain. Finally, we show that there have been multiple acquisitions of unidentified STING domains in eukaryotes, while the TPR scaffold was incorporated into the animal immunity/apoptosis signal-regulating kinase (ASK) signalosome.IMPORTANCE Both prokaryotic and eukaryotic immune systems face the dangers of premature activation of effectors and degradation of self-molecules in the absence of an invader. To mitigate this, they have evolved threshold-setting regulatory mechanisms for the triggering of effectors only upon the detection of a sufficiently strong invader signal. This work defines general templates for such regulation in effector-based immune systems. Using this, we identify several previously uncharacterized prokaryotic immune mechanisms that accomplish the regulation of downstream effector deployment by using nucleotide, NAD+-derived, two-component, and one-component signals paralleling physiological homeostasis. This study has also helped identify several previously unknown sensor and effector modules in these systems. Our findings also augment the growing evidence for the emergence of key animal immunity and chromatin regulatory components from prokaryotic progenitors.
Collapse
|
65
|
The Small Toxic Salmonella Protein TimP Targets the Cytoplasmic Membrane and Is Repressed by the Small RNA TimR. mBio 2020; 11:mBio.01659-20. [PMID: 33172998 PMCID: PMC7667032 DOI: 10.1128/mbio.01659-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Next-generation sequencing (NGS) has enabled the revelation of a vast number of genomes from organisms spanning all domains of life. To reduce complexity when new genome sequences are annotated, open reading frames (ORFs) shorter than 50 codons in length are generally omitted. However, it has recently become evident that this procedure sorts away ORFs encoding small proteins of high biological significance. For instance, tailored small protein identification approaches have shown that bacteria encode numerous small proteins with important physiological functions. As the number of predicted small ORFs increase, it becomes important to characterize the corresponding proteins. In this study, we discovered a conserved but previously overlooked small enterobacterial protein. We show that this protein, which we dubbed TimP, is a potent toxin that inhibits bacterial growth by targeting the cell membrane. Toxicity is relieved by a small regulatory RNA, which binds the toxin mRNA to inhibit toxin synthesis. Small proteins are gaining increased attention due to their important functions in major biological processes throughout the domains of life. However, their small size and low sequence conservation make them difficult to identify. It is therefore not surprising that enterobacterial ryfA has escaped identification as a small protein coding gene for nearly 2 decades. Since its identification in 2001, ryfA has been thought to encode a noncoding RNA and has been implicated in biofilm formation in Escherichia coli and pathogenesis in Shigella dysenteriae. Although a recent ribosome profiling study suggested ryfA to be translated, the corresponding protein product was not detected. In this study, we provide evidence that ryfA encodes a small toxic inner membrane protein, TimP, overexpression of which causes cytoplasmic membrane leakage. TimP carries an N-terminal signal sequence, indicating that its membrane localization is Sec-dependent. Expression of TimP is repressed by the small RNA (sRNA) TimR, which base pairs with the timP mRNA to inhibit its translation. In contrast to overexpression, endogenous expression of TimP upon timR deletion permits cell growth, possibly indicating a toxicity-independent function in the bacterial membrane.
Collapse
|
66
|
Xue L, Yue J, Ke J, Khan MH, Wen W, Sun B, Zhu Z, Niu L. Distinct oligomeric structures of the YoeB-YefM complex provide insights into the conditional cooperativity of type II toxin-antitoxin system. Nucleic Acids Res 2020; 48:10527-10541. [PMID: 32845304 PMCID: PMC7544224 DOI: 10.1093/nar/gkaa706] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022] Open
Abstract
YoeB-YefM, the widespread type II toxin-antitoxin (TA) module, binds to its own promoter to autoregulate its transcription: repress or induce transcription under normal or stress conditions, respectively. It remains unclear how YoeB-YefM regulates its transcription depending on the YoeB to YefM TA ratio. We find that YoeB-YefM complex from S.aureus exists as two distinct oligomeric assemblies: heterotetramer (YoeB-YefM2-YoeB) and heterohexamer (YoeB-YefM2-YefM2-YoeB) with low and high DNA-binding affinities, respectively. Structures of the heterotetramer alone and heterohexamer bound to promoter DNA reveals that YefM C-terminal domain undergoes disorder to order transition upon YoeB binding, which allosterically affects the conformation of N-terminal DNA-binding domain. At TA ratio of 1:2, unsaturated binding of YoeB to the C-terminal regions of YefM dimer forms an optimal heterohexamer for DNA binding, and two YefM dimers with N-terminal domains dock into the adjacent major grooves of DNA to specifically recognize the 5'-TTGTACAN6AGTACAA-3' palindromic sequence, resulting in transcriptional repression. In contrast, at TA ratio of 1:1, binding of two additional YoeB molecules onto the heterohexamer induces the completely ordered conformation of YefM and disassembles the heterohexamer into two heterotetramers, which are unable to bind the promoter DNA optimally due to steric clashes, hence derepresses TA operon transcription.
Collapse
Affiliation(s)
- Lu Xue
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui 230026, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian Yue
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui 230026, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiyuan Ke
- Lead Discovery Department, H3 Biomedicine Inc, 300 Technology Square FL 5, Cambridge, MA 02139, USA
| | - Muhammad Hidayatullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui 230026, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wen Wen
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Baolin Sun
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhongliang Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui 230026, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Liwen Niu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui 230026, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
67
|
Hampton HG, Smith LM, Ferguson S, Meaden S, Jackson SA, Fineran PC. Functional genomics reveals the toxin-antitoxin repertoire and AbiE activity in Serratia. Microb Genom 2020; 6:mgen000458. [PMID: 33074086 PMCID: PMC7725324 DOI: 10.1099/mgen.0.000458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/02/2020] [Indexed: 12/17/2022] Open
Abstract
Bacteriophage defences are divided into innate and adaptive systems. Serratia sp. ATCC 39006 has three CRISPR-Cas adaptive immune systems, but its innate immune repertoire is unknown. Here, we re-sequenced and annotated the Serratia genome and predicted its toxin-antitoxin (TA) systems. TA systems can provide innate phage defence through abortive infection by causing infected cells to 'shut down', limiting phage propagation. To assess TA system function on a genome-wide scale, we utilized transposon insertion and RNA sequencing. Of the 32 TA systems predicted bioinformatically, 4 resembled pseudogenes and 11 were demonstrated to be functional based on transposon mutagenesis. Three functional systems belonged to the poorly characterized but widespread, AbiE, abortive infection/TA family. AbiE is a type IV TA system with a predicted nucleotidyltransferase toxin. To investigate the mode of action of this toxin, we measured the transcriptional response to AbiEii expression. We observed dysregulated levels of tRNAs and propose that the toxin targets tRNAs resulting in bacteriostasis. A recent report on a related toxin shows this occurs through addition of nucleotides to tRNA(s). This study has demonstrated the utility of functional genomics for probing TA function in a high-throughput manner, defined the TA repertoire in Serratia and shown the consequences of AbiE induction.
Collapse
Affiliation(s)
- Hannah G. Hampton
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Leah M. Smith
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Shaun Ferguson
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Sean Meaden
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Simon A. Jackson
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, Dunedin 9054, New Zealand
| | - Peter C. Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, Dunedin 9054, New Zealand
- Bio-protection Research Centre, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
68
|
Lite TLV, Grant RA, Nocedal I, Littlehale ML, Guo MS, Laub MT. Uncovering the basis of protein-protein interaction specificity with a combinatorially complete library. eLife 2020; 9:e60924. [PMID: 33107822 PMCID: PMC7669267 DOI: 10.7554/elife.60924] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022] Open
Abstract
Protein-protein interaction specificity is often encoded at the primary sequence level. However, the contributions of individual residues to specificity are usually poorly understood and often obscured by mutational robustness, sequence degeneracy, and epistasis. Using bacterial toxin-antitoxin systems as a model, we screened a combinatorially complete library of antitoxin variants at three key positions against two toxins. This library enabled us to measure the effect of individual substitutions on specificity in hundreds of genetic backgrounds. These distributions allow inferences about the general nature of interface residues in promoting specificity. We find that positive and negative contributions to specificity are neither inherently coupled nor mutually exclusive. Further, a wild-type antitoxin appears optimized for specificity as no substitutions improve discrimination between cognate and non-cognate partners. By comparing crystal structures of paralogous complexes, we provide a rationale for our observations. Collectively, this work provides a generalizable approach to understanding the logic of molecular recognition.
Collapse
Affiliation(s)
- Thuy-Lan V Lite
- Department of Biology Massachusetts Institute of TechnologyCambridgeUnited States
| | - Robert A Grant
- Department of Biology Massachusetts Institute of TechnologyCambridgeUnited States
| | - Isabel Nocedal
- Department of Biology Massachusetts Institute of TechnologyCambridgeUnited States
| | - Megan L Littlehale
- Department of Biology Massachusetts Institute of TechnologyCambridgeUnited States
| | - Monica S Guo
- Department of Biology Massachusetts Institute of TechnologyCambridgeUnited States
| | - Michael T Laub
- Department of Biology Massachusetts Institute of TechnologyCambridgeUnited States
- Howard Hughes Medical Institute Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
69
|
Rapid growth inhibitory activity of a YafQ-family endonuclease toxin of the Helicobacter pylori tfs4 integrative and conjugative element. Sci Rep 2020; 10:18171. [PMID: 33097748 PMCID: PMC7584586 DOI: 10.1038/s41598-020-72063-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022] Open
Abstract
Prokaryotic and archaeal chromosomes encode a diversity of toxin–antitoxin (TA) systems that contribute to a variety of stress-induced cellular processes in addition to stability and maintenance of mobile elements. Here, we find DinJ-YafQ family TA systems to be broadly distributed amongst diverse phyla, consistent with other ParE/RelE superfamily TAs, but more unusually occurring as a multiplicity of species-specific subtypes. In the gastric pathogen Helicobacter pylori we identify six distinct subtypes, of which three are predominantly associated with the mobilome, including the disease-associated integrative and conjugative element (ICE), tfs4. Whereas, the ICE-encoded proteins have characteristic features of DinJ-YafQ family Type II TA systems in general, the toxin component is distinguished by a broad metal-ion-dependent endonuclease activity with specificity for both RNA and DNA. We show that the remarkably rapid growth inhibitory activity of the ICE toxin is a correlate of a C-terminal lysine doublet which likely augments catalytic activity by increasing the positive electrostatic potential in the vicinity of the conserved active site. Our collective results reveal a structural feature of an ICE TA toxin that influences substrate catalysis and toxin function which may be relevant to specific TA-mediated responses in diverse genera of bacteria.
Collapse
|
70
|
Klimkaitė L, Armalytė J, Skerniškytė J, Sužiedėlienė E. The Toxin-Antitoxin Systems of the Opportunistic Pathogen Stenotrophomonas maltophilia of Environmental and Clinical Origin. Toxins (Basel) 2020; 12:E635. [PMID: 33019620 PMCID: PMC7650669 DOI: 10.3390/toxins12100635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022] Open
Abstract
Stenotrophomonas maltophilia is a ubiquitous environmental bacterium that has recently emerged as a multidrug-resistant opportunistic pathogen causing bloodstream, respiratory, and urinary tract infections. The connection between the commensal environmental S. maltophilia and the opportunistic pathogen strains is still under investigation. Bacterial toxin-antitoxin (TA) systems have been previously associated with pathogenic traits, such as biofilm formation and resistance to antibiotics, which are important in clinical settings. The same species of the bacterium can possess various sets of TAs, possibly influencing their overall stress response. While the TA systems of other important opportunistic pathogens have been researched, nothing is known about the TA systems of S. maltophilia. Here, we report the identification and characterization of S. maltophilia type II TA systems and their prevalence in the isolates of clinical and environmental origins. We found 49 putative TA systems by bioinformatic analysis in S. maltophilia genomes. Despite their even spread in sequenced S. maltophilia genomes, we observed that relBE, hicAB, and previously undescribed COG3832-ArsR operons were present solely in clinical S. maltophilia isolates collected in Lithuania, while hipBA was more frequent in the environmental ones. The kill-rescue experiments in Escherichia coli proved higBA, hicAB, and relBE systems to be functional TA modules. Together with different TA profiles, the clinical S. maltophilia isolates exhibited stronger biofilm formation, increased antibiotic, and serum resistance compared to environmental isolates. Such tendencies suggest that certain TA systems could be used as indicators of virulence traits.
Collapse
Affiliation(s)
| | - Julija Armalytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, LT-1025 Vilnius, Lithuania; (L.K.); (J.S.)
| | | | - Edita Sužiedėlienė
- Institute of Biosciences, Life Sciences Center, Vilnius University, LT-1025 Vilnius, Lithuania; (L.K.); (J.S.)
| |
Collapse
|
71
|
Fucich D, Chen F. Presence of toxin-antitoxin systems in picocyanobacteria and their ecological implications. ISME JOURNAL 2020; 14:2843-2850. [PMID: 32814864 DOI: 10.1038/s41396-020-00746-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/22/2020] [Accepted: 08/10/2020] [Indexed: 11/09/2022]
Abstract
Picocyanobacteria (mainly Synechococcus and Prochlorococcus) contribute significantly to ocean's primary production. Toxin-Antitoxin (TA) systems present in bacteria and archaea are known to regulate cell growth in response to environmental stresses. However, little is known about the presence of TA systems in picocyanobacteria. This study investigated complete genomes of Synechococcus and Prochlorococcus to understand the prevalence of TA systems in picocyanobacteria. Using the TAfinder software, Type II TA systems were predicted in 27 of 33 (81%) Synechococcus strains, but none of 38 Prochlorococcus strains contain TA genes. Synechococcus strains with larger genomes tend to contain more putative type II TA systems. The number of TA pairs varies from 0 to 42 in Synechococcus strains isolated from various environments. A linear correlation between the genome size and the number of putative TA systems in both coastal and freshwater Synechococcus was established. In general, open ocean Synechococcus contain no or few TA systems, while coastal and freshwater Synechococcus contain more TA systems. The type II TA systems inhibit microbial translation via ribonucleases and allow cells to enter the "dormant" stage in adverse environments. Inheritance of TA genes in freshwater and coastal Synechococcus could confer a recoverable persister mechanism important to survive in variable environments.
Collapse
Affiliation(s)
- Daniel Fucich
- The Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Feng Chen
- The Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA.
| |
Collapse
|
72
|
A Novel Mobilizing Tool Based on the Conjugative Transfer System of the IncM Plasmid pCTX-M3. Appl Environ Microbiol 2020; 86:AEM.01205-20. [PMID: 32591385 PMCID: PMC7440800 DOI: 10.1128/aem.01205-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/23/2020] [Indexed: 11/20/2022] Open
Abstract
Conjugative plasmids are the main players in horizontal gene transfer in Gram-negative bacteria. DNA transfer tools constructed on the basis of such plasmids enable gene manipulation even in strains of clinical or environmental origin, which are often difficult to work with. The conjugation system of the IncM plasmid pCTX-M3 isolated from a clinical strain of Citrobacter freundii has been shown to enable efficient mobilization of oriT pCTX-M3-bearing plasmids into a broad range of hosts comprising Alpha-, Beta-, and Gammaproteobacteria We constructed a helper plasmid, pMOBS, mediating such mobilization with an efficiency up to 1,000-fold higher than that achieved with native pCTX-M3. We also constructed Escherichia coli donor strains with chromosome-integrated conjugative transfer genes: S14 and S15, devoid of one putative regulator (orf35) of the pCTX-M3 tra genes, and S25 and S26, devoid of two putative regulators (orf35 and orf36) of the pCTX-M3 tra genes. Strains S14 and S15 and strains S25 and S26 are, respectively, up to 100 and 1,000 times more efficient in mobilization than pCTX-M3. Moreover, they also enable plasmid mobilization into the Gram-positive bacteria Bacillus subtilis and Lactococcus lactis Additionally, the constructed E. coli strains carried no antibiotic resistance genes that are present in pCTX-M3 to facilitate manipulations with antibiotic-resistant recipient strains, such as those of clinical origin. To demonstrate possible application of the constructed tool, an antibacterial conjugation-based system was designed. Strain S26 was used for introduction of a mobilizable plasmid coding for a toxin, resulting in the elimination of over 90% of recipient E. coli cells.IMPORTANCE The conjugation of donor and recipient bacterial cells resulting in conjugative transfer of mobilizable plasmids is the preferred method enabling the introduction of DNA into strains for which other transfer methods are difficult to establish (e.g., clinical strains). We have constructed E. coli strains carrying the conjugation system of the IncM plasmid pCTX-M3 integrated into the chromosome. To increase the mobilization efficiency up to 1,000-fold, two putative regulators of this system, orf35 and orf36, were disabled. The constructed strains broaden the repertoire of tools for the introduction of DNA into the Gram-negative Alpha-, Beta-, and Gammaproteobacteria, as well as into Gram-positive bacteria such as Bacillus subtilis and Lactococcus lactis The antibacterial procedure based on conjugation with the use of the orf35- and orf36-deficient strain lowered the recipient cell number by over 90% owing to the mobilizable plasmid-encoded toxin.
Collapse
|
73
|
Cheleuitte-Nieves C, Heselpoth RD, Westblade LF, Lipman NS, Fischetti VA. Searching for a Bacteriophage Lysin to Treat Corynebacterium bovis in Immunocompromised Mice. Comp Med 2020; 70:328-335. [PMID: 32471521 PMCID: PMC7446641 DOI: 10.30802/aalas-cm-19-000096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/23/2019] [Accepted: 12/22/2019] [Indexed: 01/21/2023]
Abstract
Corynebacterium bovis is the causative agent of Corynebacterium-associated hyperkeratosis in immunocompromised mice. The resulting skin pathology can be profound and can be associated with severe wasting, making the animals unsuitable for research. Although the administration of antibiotics is effective in resolving clinical symptoms, antibiotics do not eradicate the offending bacterium. Furthermore, antibiotic use may be contraindicated as it can affect tumor growth and is associated with Clostridioides difficile enterotoxemia in highly immunocompromised murine strains. Lysins, which are lytic enzymes obtained from bacteriophages, are novel antimicrobial agents for treating bacterial diseases. The advantage of lysins are its target specificity, with minimal off-target complications that could affect the host or the biology of the engrafted tumor. The aim of this study was to identify lysins active against C. bovis. Chemical activation of latent prophages by using mitomycin C in 3 C. bovis isolates did not cause bacteriophage induction as determined through plaque assays and transmission electron microscopy. As an alternative approach, 8 lysins associated with other bacterial species, including those from the closely related species C. falsenii, were tested for their lytic action against C. bovis but were unsuccessful. These findings were congruent with the previously reported genomic analysis of 21 C. bovis isolates, which failed to reveal bacteriophage sequences by using the PHAST and PHASTER web server tools. From these results, we suggest C. bovis is among those rare bacterial species devoid of lysogenic bacteriophages, thus making the identification of C. bovis-specific lysins more challenging. However, C. bovis may be a useful model organism for studying the effects of antiphage systems.
Collapse
Affiliation(s)
- Christopher Cheleuitte-Nieves
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York; Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York;,
| | - Ryan D Heselpoth
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York
| | - Lars F Westblade
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York; Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York
| | - Neil S Lipman
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York; Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York
| | - Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York
| |
Collapse
|
74
|
Tandon H, Melarkode Vattekatte A, Srinivasan N, Sandhya S. Molecular and Structural Basis of Cross-Reactivity in M. tuberculosis Toxin-Antitoxin Systems. Toxins (Basel) 2020; 12:E481. [PMID: 32751054 PMCID: PMC7472061 DOI: 10.3390/toxins12080481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 01/12/2023] Open
Abstract
Mycobacterium tuberculosis genome encodes over 80 toxin-antitoxin (TA) systems. While each toxin interacts with its cognate antitoxin, the abundance of TA systems presents an opportunity for potential non-cognate interactions. TA systems mediate manifold interactions to manage pathogenicity and stress response network of the cell and non-cognate interactions may play vital roles as well. To address if non-cognate and heterologous interactions are feasible and to understand the structural basis of their interactions, we have performed comprehensive computational analyses on the available 3D structures and generated structural models of paralogous M. tuberculosis VapBC and MazEF TA systems. For a majority of the TA systems, we show that non-cognate toxin-antitoxin interactions are structurally incompatible except for complexes like VapBC15 and VapBC11, which show similar interfaces and potential for cross-reactivity. For TA systems which have been experimentally shown earlier to disfavor non-cognate interactions, we demonstrate that they are structurally and stereo-chemically incompatible. For selected TA systems, our detailed structural analysis identifies specificity conferring residues. Thus, our work improves the current understanding of TA interfaces and generates a hypothesis based on congenial binding site, geometric complementarity, and chemical nature of interfaces. Overall, our work offers a structure-based explanation for non-cognate toxin-antitoxin interactions in M. tuberculosis.
Collapse
Affiliation(s)
- Himani Tandon
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India; (H.T.); (A.M.V.)
| | - Akhila Melarkode Vattekatte
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India; (H.T.); (A.M.V.)
- Biologie Intégrée du Globule Rouge UMR_S1134, INSERM, Université Paris, Université de la Réunion, Université des Antilles, F-75739 Paris, France
- Laboratoire d’Excellence GR-Ex, F-75739 Paris, France
- Faculté des Sciences et Technologies, Saint Denis Messag, F-97715 La Réunion, France
- Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France
| | - Narayanaswamy Srinivasan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India; (H.T.); (A.M.V.)
| | - Sankaran Sandhya
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India; (H.T.); (A.M.V.)
| |
Collapse
|
75
|
Jahanshahi S, Li Y. An Effective Method for Quantifying RNA Expression of IbsC-SibC, a Type I Toxin-Antitoxin System in Escherichia coli. Chembiochem 2020; 21:3120-3130. [PMID: 32516493 DOI: 10.1002/cbic.202000280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/04/2020] [Indexed: 01/28/2023]
Abstract
Toxin and antitoxin (TA) systems are small genetic modules consisting of a toxin protein and an RNA or protein antitoxin. It is difficult to study their functions in a large part due to the lack of effective methods to study toxin RNAs, which usually exist at exceptionally low levels. Herein, we describe a sensitive reverse transcription quantitative PCR (RT-qPCR) method that is able to quantitate such RNA species. The method was directed at detection of the toxin mRNA of the ibsC-sibC TA pair, and its high specificity was validated by sequencing. The approach was used to determine relative expression of the IbsC and SibC RNAs at different cell-growth phases; this revealed an expression pattern that cannot be explained by the prevailing notion of growth stasis by the toxin and rescue by the antitoxin. The usefulness of the method was further showcased by the determination of average cellular copy numbers of the IbsC-SibC RNAs in wild-type E. coli cells and RNA abundance in E. coli cells engineered with extra copies of the ibsC-sibC genes. With a robust method to quantitate cellular small RNAs at very low concentrations, we are now equipped to study the expression of TA systems under different conditions to gain useful insights about their functions.
Collapse
Affiliation(s)
- Shahrzad Jahanshahi
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4 K1, Canada
| | - Yingfu Li
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4 K1, Canada
| |
Collapse
|
76
|
Evaluating the Potential for Cross-Interactions of Antitoxins in Type II TA Systems. Toxins (Basel) 2020; 12:toxins12060422. [PMID: 32604745 PMCID: PMC7354431 DOI: 10.3390/toxins12060422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/21/2023] Open
Abstract
The diversity of Type-II toxin–antitoxin (TA) systems in bacterial genomes requires tightly controlled interaction specificity to ensure protection of the cell, and potentially to limit cross-talk between toxin–antitoxin pairs of the same family of TA systems. Further, there is a redundant use of toxin folds for different cellular targets and complexation with different classes of antitoxins, increasing the apparent requirement for the insulation of interactions. The presence of Type II TA systems has remained enigmatic with respect to potential benefits imparted to the host cells. In some cases, they play clear roles in survival associated with unfavorable growth conditions. More generally, they can also serve as a “cure” against acquisition of highly similar TA systems such as those found on plasmids or invading genetic elements that frequently carry virulence and resistance genes. The latter model is predicated on the ability of these highly specific cognate antitoxin–toxin interactions to form cross-reactions between chromosomal antitoxins and invading toxins. This review summarizes advances in the Type II TA system models with an emphasis on antitoxin cross-reactivity, including with invading genetic elements and cases where toxin proteins share a common fold yet interact with different families of antitoxins.
Collapse
|
77
|
Abstract
Facing frequent phage challenges, bacteria have evolved numerous mechanisms to resist phage infection. A commonly used phage resistance strategy is abortive infection (Abi), in which the infected cell commits suicide before the phage can complete its replication cycle. Abi prevents the phage epidemic from spreading to nearby cells, thus protecting the bacterial colony. The Abi strategy is manifested by a plethora of mechanistically diverse defense systems that are abundant in bacterial genomes. In turn, phages have developed equally diverse mechanisms to overcome bacterial Abi. This review summarizes the current knowledge on bacterial defense via cell suicide. It describes the principles of Abi, details how these principles are implemented in a variety of natural defense systems, and discusses phage counter-defense mechanisms.
Collapse
Affiliation(s)
- Anna Lopatina
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Nitzan Tal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel;
| |
Collapse
|
78
|
Hernández-Ramírez KC, Valerio-Arellano B, Valle-Maldonado MI, Ruíz-Herrera LF, Meza-Carmen V, Ramírez-Díaz MI. Virulence Conferred by PumA Toxin from the Plasmid-Encoded PumAB Toxin-Antitoxin System is Regulated by Quorum System. Curr Microbiol 2020; 77:2535-2543. [PMID: 32556478 DOI: 10.1007/s00284-020-02083-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/08/2020] [Indexed: 12/01/2022]
Abstract
Toxin-antitoxin (TA) systems are small genetic elements composed of a toxin gene and its cognate antitoxin that are important for plasmid stabilization (plasmid-encoded) and bacterial virulence (chromosome-encoded). These systems are also related to biofilm and persister cell formations. Pseudomonas aeruginosa is an antibiotic-resistant human pathogen that produces virulence factors modulated by quorum sensing (QS) and can form biofilms. The type II PumAB TA system of pUM505, isolated from a clinical strain of P. aeruginosa, confers plasmid stability. Additionally, the PumA toxin increases P. aeruginosa virulence and is neutralized by the PumB antitoxin. In this study, we determined whether virulence conferred by PumA toxin is regulated by QS. The pumA gene was transferred to P. aeruginosa lasI/rhlI, a mutant strain in the LasI and RhlI QS systems, to analyze the effect on virulence of the transformants. pumA transfer did not increase bacterial virulence in lettuce and Caenorhabditis elegans, suggesting that the virulence conferred by PumA requires QS modulation. pumA mRNA levels drastically decreased in the P. aeruginosa lasI/rhlI (pUC_pumA) strain, suggesting positive regulation of pumA gene expression by QS. Supplementation of the growth medium of P. aeruginosa lasI/rhlI (pUC_pumA) with C4-AHL and 3-oxo-C12-AHL autoinducers increased pumA mRNA levels and restored bacterial virulence, suggesting that both autoinducers complemented the mutations and positively regulated the toxic effects of PumA. This strengthened the hypothesis that QS regulates bacterial virulence conferred by the PumA toxin. Thus, this report establishes an important function of QS in the virulence conferred by plasmid-encoded TA systems in bacterial pathogens.
Collapse
Affiliation(s)
- Karen C Hernández-Ramírez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - Brenda Valerio-Arellano
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Marco I Valle-Maldonado
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - León F Ruíz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - Victor Meza-Carmen
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - Martha I Ramírez-Díaz
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
79
|
Klimina KM, Voroshilova VN, Poluektova EU, Veselovsky VA, Yunes RA, Kovtun AS, Kudryavtseva AV, Kasianov AS, Danilenko VN. Toxin-Antitoxin Systems: A Tool for Taxonomic Analysis of Human Intestinal Microbiota. Toxins (Basel) 2020; 12:toxins12060388. [PMID: 32545455 PMCID: PMC7354421 DOI: 10.3390/toxins12060388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 01/14/2023] Open
Abstract
The human gastrointestinal microbiota (HGM) is known for its rich diversity of bacterial species and strains. Yet many studies stop at characterizing the HGM at the family level. This is mainly due to lack of adequate methods for a high-resolution profiling of the HGM. One way to characterize the strain diversity of the HGM is to look for strain-specific functional markers. Here, we propose using type II toxin-antitoxin systems (TAS). To identify TAS systems in the HGM, we previously developed the software TAGMA. This software was designed to detect the TAS systems, MazEF and RelBE, in lactobacilli and bifidobacteria. In this study, we updated the gene catalog created previously and used it to test our software anew on 1346 strains of bacteria, which belonged to 489 species and 49 genera. We also sequenced the genomes of 20 fecal samples and analyzed the results with TAGMA. Although some differences were detected at the strain level, the results showed no particular difference in the bacterial species between our method and other classic analysis software. These results support the use of the updated catalog of genes encoding type II TAS as a useful tool for computer-assisted species and strain characterization of the HGM.
Collapse
Affiliation(s)
- Ksenia M. Klimina
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia; (V.N.V.); (E.U.P.); (R.A.Y.); (A.S.K.); (A.S.K.); (V.N.D.)
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia;
- Correspondence:
| | - Viktoriya N. Voroshilova
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia; (V.N.V.); (E.U.P.); (R.A.Y.); (A.S.K.); (A.S.K.); (V.N.D.)
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Moscow, Russia
| | - Elena U. Poluektova
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia; (V.N.V.); (E.U.P.); (R.A.Y.); (A.S.K.); (A.S.K.); (V.N.D.)
| | - Vladimir A. Veselovsky
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia;
| | - Roman A. Yunes
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia; (V.N.V.); (E.U.P.); (R.A.Y.); (A.S.K.); (A.S.K.); (V.N.D.)
| | - Aleksey S. Kovtun
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia; (V.N.V.); (E.U.P.); (R.A.Y.); (A.S.K.); (A.S.K.); (V.N.D.)
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Moscow, Russia
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Artem S. Kasianov
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia; (V.N.V.); (E.U.P.); (R.A.Y.); (A.S.K.); (A.S.K.); (V.N.D.)
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Moscow, Russia
| | - Valery N. Danilenko
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia; (V.N.V.); (E.U.P.); (R.A.Y.); (A.S.K.); (A.S.K.); (V.N.D.)
- Faculty of Ecology, International Institute for Strategic Development of Sectoral Economics, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
80
|
Zhang SP, Wang Q, Quan SW, Yu XQ, Wang Y, Guo DD, Peng L, Feng HY, He YX. Type II toxin–antitoxin system in bacteria: activation, function, and mode of action. BIOPHYSICS REPORTS 2020. [DOI: 10.1007/s41048-020-00109-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
81
|
Kang SM, Koo JS, Kim CM, Kim DH, Lee BJ. mRNA Interferase Bacillus cereus BC0266 Shows MazF-Like Characteristics Through Structural and Functional Study. Toxins (Basel) 2020; 12:toxins12060380. [PMID: 32521689 PMCID: PMC7354611 DOI: 10.3390/toxins12060380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 11/16/2022] Open
Abstract
Toxin–antitoxin (TA) systems are prevalent in bacteria and are known to regulate cellular growth in response to stress. As various functions related to TA systems have been revealed, the importance of TA systems are rapidly emerging. Here, we present the crystal structure of putative mRNA interferase BC0266 and report it as a type II toxin MazF. The MazF toxin is a ribonuclease activated upon and during stressful conditions, in which it cleaves mRNA in a sequence-specific, ribosome-independent manner. Its prolonged activity causes toxic consequences to the bacteria which, in turn, may lead to bacterial death. In this study, we conducted structural and functional investigations of Bacillus cereus MazF and present the first toxin structure in the TA system of B. cereus. Specifically, B. cereus MazF adopts a PemK-like fold and also has an RNA substrate-recognizing loop, which is clearly observed in the high-resolution structure. Key residues of B. cereus MazF involved in the catalytic activity are also proposed, and in vitro assay together with mutational studies affirm the ribonucleic activity and the active sites essential for its cellular toxicity.
Collapse
Affiliation(s)
- Sung-Min Kang
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanakgu, Seoul 08826, Korea; (S.-M.K.); (J.S.K.); (C.-M.K.)
| | - Ji Sung Koo
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanakgu, Seoul 08826, Korea; (S.-M.K.); (J.S.K.); (C.-M.K.)
| | - Chang-Min Kim
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanakgu, Seoul 08826, Korea; (S.-M.K.); (J.S.K.); (C.-M.K.)
| | - Do-Hee Kim
- College of Pharmacy, Jeju National University, Jeju 63243, Korea;
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanakgu, Seoul 08826, Korea; (S.-M.K.); (J.S.K.); (C.-M.K.)
- Correspondence: ; Tel.: +82-2-880-7869
| |
Collapse
|
82
|
Rosendahl S, Tamman H, Brauer A, Remm M, Hõrak R. Chromosomal toxin-antitoxin systems in Pseudomonas putida are rather selfish than beneficial. Sci Rep 2020; 10:9230. [PMID: 32513960 PMCID: PMC7280312 DOI: 10.1038/s41598-020-65504-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/06/2020] [Indexed: 11/09/2022] Open
Abstract
Chromosomal toxin-antitoxin (TA) systems are widespread genetic elements among bacteria, yet, despite extensive studies in the last decade, their biological importance remains ambivalent. The ability of TA-encoded toxins to affect stress tolerance when overexpressed supports the hypothesis of TA systems being associated with stress adaptation. However, the deletion of TA genes has usually no effects on stress tolerance, supporting the selfish elements hypothesis. Here, we aimed to evaluate the cost and benefits of chromosomal TA systems to Pseudomonas putida. We show that multiple TA systems do not confer fitness benefits to this bacterium as deletion of 13 TA loci does not influence stress tolerance, persistence or biofilm formation. Our results instead show that TA loci are costly and decrease the competitive fitness of P. putida. Still, the cost of multiple TA systems is low and detectable in certain conditions only. Construction of antitoxin deletion strains showed that only five TA systems code for toxic proteins, while other TA loci have evolved towards reduced toxicity and encode non-toxic or moderately potent proteins. Analysis of P. putida TA systems' homologs among fully sequenced Pseudomonads suggests that the TA loci have been subjected to purifying selection and that TA systems spread among bacteria by horizontal gene transfer.
Collapse
Affiliation(s)
- Sirli Rosendahl
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Hedvig Tamman
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Age Brauer
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Maido Remm
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Rita Hõrak
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
83
|
Al Marjania MF, Kouhsari E, Ali FS, Authman SH. Evaluation of type II Toxin-Antitoxin Systems, Antibiotic Resistance Profiles, and Biofilm Quorum Sensing Genes in Acinetobacter Baumannii Isolates in Iraq. Infect Disord Drug Targets 2020; 21:180-186. [PMID: 32484105 DOI: 10.2174/1871526520666200525170318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Bacterial Toxin-Antitoxin (TAs) systems are extensive two-component elements in the bacterial genome, which are involved in many key biological functions, including growth arrest, survival, biofilm formation, plasmid maintenance, defense against phages, persistence, and virulence. AIM This study aimed to assess the molecular determinants involved in TAs, biofilm quorum sensing, and antibiotic resistance profiles in Acinetobacter baumannii isolated from Baghdad's hospitals in Iraq. METHODS A total of 127 A. baumannii isolates were collected from 2160 different clinical samples. The antimicrobial susceptibility test was performed using the disk diffusion test. All isolates were characterized for molecular determinants involved in TAs and biofilm formation using the wellknown PCR-based sequencing assay. RESULTS A high multi-drug resistant (MDR) (96.06%; 122/127) and imipenem resistance (84.25%; 107/127) rates were observed from A.baumannii isolates. Results showed the presence of rhlIR gene in three isolates (2.36%), and lasIR gene appeared in two isolates (1.57%) isolates, whilst, mazEF, ccdAB, and relBE genes have not been detected among any of the isolates. CONCLUSION A high MDR and imipenem resistance rates within a low prevalence of rhlIR, and lasIR genes could be found in clinical A. baumannii isolates from some of the Iraqi hospitals.
Collapse
Affiliation(s)
| | - Ebrahim Kouhsari
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Fatima S Ali
- Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Sawsan H Authman
- Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
84
|
Bustamante P, Iredell JR. The roles of HicBA and a novel toxin-antitoxin-like system, TsxAB, in the stability of IncX4 resistance plasmids in Escherichia coli. J Antimicrob Chemother 2020; 74:553-556. [PMID: 30535076 DOI: 10.1093/jac/dky491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To identify toxin-antitoxin (TA)-like plasmid stability loci on IncX4 plasmids. METHODS TA-like loci were identified bioinformatically and their contribution to stability of the IncX4 plasmid pJIE143 was tested in optimal growth conditions in vitro. The conservation of the TA-like loci identified was analysed within an updated IncX plasmid database. RESULTS A novel TA-like locus, tsxAB, was identified on the IncX4 plasmid pJIE143, carrying the important plasmid-borne antibiotic resistance gene blaCTX-M-15. pJIE143 (the WT plasmid) and its tsxA mutant are stable for 80 bacterial generations in the absence of selective pressure but a tsxB deletion mutant of pJIE143 is relatively quickly lost without positive selection (91.1% ± 1.5% loss after 50 generations). Nine IncX subclasses were identified among 272 fully sequenced IncX plasmids, dominated by those identified as IncX3, IncX1 and IncX4 subclasses in PlasmidFinder. The novel TA-like locus, tsxAB, appears to be a feature of IncX4 plasmids, being present in 64 of 67 so identified, but only present in a single IncX1 plasmid (of 79 identified) and present in no other IncX plasmids. CONCLUSIONS tsxAB, a novel TA-like stability locus, is highly conserved in IncX4 plasmids associated with transmission of important antibiotic resistance genes. Previous in silico analysis indicated that IncX4 encodes only HicBA among the known TA systems. Here we show that HicBA does not contribute to plasmid stability in optimal growth conditions for Escherichia coli and instead demonstrate this role for a completely novel TA-like system, TsxAB, that appears both necessary and sufficient for E. coli addiction to IncX4 resistance plasmids.
Collapse
Affiliation(s)
- Paula Bustamante
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Jonathan R Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
85
|
Horesh G, Fino C, Harms A, Dorman MJ, Parts L, Gerdes K, Heinz E, Thomson NR. Type II and type IV toxin-antitoxin systems show different evolutionary patterns in the global Klebsiella pneumoniae population. Nucleic Acids Res 2020; 48:4357-4370. [PMID: 32232417 PMCID: PMC7192599 DOI: 10.1093/nar/gkaa198] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/21/2020] [Accepted: 03/16/2020] [Indexed: 12/15/2022] Open
Abstract
The Klebsiella pneumoniae species complex includes important opportunistic pathogens which have become public health priorities linked to major hospital outbreaks and the recent emergence of multidrug-resistant hypervirulent strains. Bacterial virulence and the spread of multidrug resistance have previously been linked to toxin-antitoxin (TA) systems. TA systems encode a toxin that disrupts essential cellular processes, and a cognate antitoxin which counteracts this activity. Whilst associated with the maintenance of plasmids, they also act in bacterial immunity and antibiotic tolerance. However, the evolutionary dynamics and distribution of TA systems in clinical pathogens are not well understood. Here, we present a comprehensive survey and description of the diversity of TA systems in 259 clinically relevant genomes of K. pneumoniae. We show that TA systems are highly prevalent with a median of 20 loci per strain. Importantly, these toxins differ substantially in their distribution patterns and in their range of cognate antitoxins. Classification along these properties suggests different roles of TA systems and highlights the association and co-evolution of toxins and antitoxins.
Collapse
Affiliation(s)
- Gal Horesh
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1RQ, UK
| | - Cinzia Fino
- Centre of Excellence for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Alexander Harms
- Centre of Excellence for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Matthew J Dorman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1RQ, UK
| | - Leopold Parts
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1RQ, UK
- Department of Computer Science, University of Tartu, Tartu, 50090, Estonia
| | - Kenn Gerdes
- Centre of Excellence for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Eva Heinz
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1RQ, UK
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Nicholas R Thomson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1RQ, UK
- Department of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| |
Collapse
|
86
|
Walter T, Klim J, Jurkowski M, Gawor J, Köhling I, Słodownik M, Zielenkiewicz U. Plasmidome of an environmental Acinetobacter lwoffii strain originating from a former gold and arsenic mine. Plasmid 2020; 110:102505. [PMID: 32380021 DOI: 10.1016/j.plasmid.2020.102505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/20/2020] [Accepted: 04/12/2020] [Indexed: 02/08/2023]
Abstract
Emerging important Acinetobacter strains commonly accommodate a plethora of mobile elements including plasmids of different size. Plasmids, apart from encoding modules enabling their self-replication and/or transmission, can carry a diverse number of genes, allowing the host cell to survive in an environment that would otherwise be lethal or restrictive for growth. The present study characterizes the plasmidome generated from an arsenic-resistant strain named ZS207, classified as Acinetobacter lwoffii. Sequencing effort revealed the presence of nine plasmids in the size between 4.3 and 38.4 kb as well as one 186.6 kb megaplasmid. All plasmids, except the megaplasmid, do apparently not confer distinguishing phenotypic features. In contrast, the megaplasmid carries arsenic and heavy metals resistance regions similar to those found in permafrost A. lwoffii strains. In-depth in silico analyses have shown a significant similarity between the regions from these plasmids, especially concerning multiple transposable elements, transfer and mobilization genes, and toxin-antitoxin systems. Since ars genes encode proteins of major significance in terms of potential use in bioremediation, arsenic resistance level of ZS207 was determined and the functionality of selected ars genes was examined. Additionally, we checked the functionality of plasmid-encoded toxin-antitoxin systems and their impact on the formation of persister cells.
Collapse
Affiliation(s)
- Tomasz Walter
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a Str., 02-106 Warsaw, Poland
| | - Joanna Klim
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a Str., 02-106 Warsaw, Poland
| | - Marcin Jurkowski
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a Str., 02-106 Warsaw, Poland
| | - Jan Gawor
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a Str., 02-106 Warsaw, Poland
| | - Iwona Köhling
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a Str., 02-106 Warsaw, Poland
| | - Małgorzata Słodownik
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a Str., 02-106 Warsaw, Poland
| | - Urszula Zielenkiewicz
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a Str., 02-106 Warsaw, Poland.
| |
Collapse
|
87
|
A widespread toxin-antitoxin system exploiting growth control via alarmone signaling. Proc Natl Acad Sci U S A 2020; 117:10500-10510. [PMID: 32345719 PMCID: PMC7229694 DOI: 10.1073/pnas.1916617117] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The alarmone (p)ppGpp is a central signaling nucleotide that is synthesized by RelA-SpoT Homologue (RSH) enzymes, and rewires bacterial physiology in response to stress. It is an unanswered question why bacteria often carry multiple (p)ppGpp-synthesising RSHs in the same genome. We have answered that question for five subfamilies of small alarmone synthetases (SASs) by discovering that they are toxins of a novel toxin−antitoxin system, and that they act by synthesizing ppGpp and its unusual analogue—ppApp. These distinct toxic SAS (toxSAS) subfamilies are neutralized by six neighboring antitoxin genes. The toxSAS system and its weaponizing of nucleotide second messengers gives a new angle to the hotly debated and controversial topic of cross-talk between TAs and the alarmone-mediated stringent response. Under stressful conditions, bacterial RelA-SpoT Homolog (RSH) enzymes synthesize the alarmone (p)ppGpp, a nucleotide second messenger. (p)ppGpp rewires bacterial transcription and metabolism to cope with stress, and, at high concentrations, inhibits the process of protein synthesis and bacterial growth to save and redirect resources until conditions improve. Single-domain small alarmone synthetases (SASs) are RSH family members that contain the (p)ppGpp synthesis (SYNTH) domain, but lack the hydrolysis (HD) domain and regulatory C-terminal domains of the long RSHs such as Rel, RelA, and SpoT. We asked whether analysis of the genomic context of SASs can indicate possible functional roles. Indeed, multiple SAS subfamilies are encoded in widespread conserved bicistronic operon architectures that are reminiscent of those typically seen in toxin−antitoxin (TA) operons. We have validated five of these SASs as being toxic (toxSASs), with neutralization by the protein products of six neighboring antitoxin genes. The toxicity of Cellulomonas marina toxSAS FaRel is mediated by the accumulation of alarmones ppGpp and ppApp, and an associated depletion of cellular guanosine triphosphate and adenosine triphosphate pools, and is counteracted by its HD domain-containing antitoxin. Thus, the ToxSAS–antiToxSAS system with its multiple different antitoxins exemplifies how ancient nucleotide-based signaling mechanisms can be repurposed as TA modules during evolution, potentially multiple times independently.
Collapse
|
88
|
Jurėnas D, Van Melderen L. The Variety in the Common Theme of Translation Inhibition by Type II Toxin-Antitoxin Systems. Front Genet 2020; 11:262. [PMID: 32362907 PMCID: PMC7180214 DOI: 10.3389/fgene.2020.00262] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Type II Toxin-antitoxin (TA) modules are bacterial operons that encode a toxic protein and its antidote, which form a self-regulating genetic system. Antitoxins put a halter on toxins in many ways that distinguish different types of TA modules. In type II TA modules, toxin and antitoxin are proteins that form a complex which physically sequesters the toxin, thereby preventing its toxic activity. Type II toxins inhibit various cellular processes, however, the translation process appears to be their favorite target and nearly every step of this complex process is inhibited by type II toxins. The structural features, enzymatic activities and target specificities of the different toxin families are discussed. Finally, this review emphasizes that the structural folds presented by these toxins are not restricted to type II TA toxins or to one particular cellular target, and discusses why so many of them evolved to target translation as well as the recent developments regarding the role(s) of these systems in bacterial physiology and evolution.
Collapse
Affiliation(s)
- Dukas Jurėnas
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, CNRS, Aix-Marseille Université, Marseille, France
| | - Laurence Van Melderen
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
89
|
Computational evidence for antitoxins associated with RelE/ParE, RatA, Fic, and AbiEii-family toxins in Wolbachia genomes. Mol Genet Genomics 2020; 295:891-909. [DOI: 10.1007/s00438-020-01662-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
|
90
|
Abstract
Type II toxin-antitoxin (TA) systems are small genetic elements composed of a toxic protein and its cognate antitoxin protein, the latter counteracting the toxicity of the former. While TA systems were initially discovered on plasmids, functioning as addiction modules through a phenomenon called postsegregational killing, they were later shown to be massively present in bacterial chromosomes, often in association with mobile genetic elements. Extensive research has been conducted in recent decades to better understand the physiological roles of these chromosomally encoded modules and to characterize the conditions leading to their activation. Type II toxin-antitoxin (TA) systems are small genetic elements composed of a toxic protein and its cognate antitoxin protein, the latter counteracting the toxicity of the former. While TA systems were initially discovered on plasmids, functioning as addiction modules through a phenomenon called postsegregational killing, they were later shown to be massively present in bacterial chromosomes, often in association with mobile genetic elements. Extensive research has been conducted in recent decades to better understand the physiological roles of these chromosomally encoded modules and to characterize the conditions leading to their activation. The diversity of their proposed roles, ranging from genomic stabilization and abortive phage infection to stress modulation and antibiotic persistence, in conjunction with the poor understanding of TA system regulation, resulted in the generation of simplistic models, often refuted by contradictory results. This review provides an epistemological and critical retrospective on TA modules and highlights fundamental questions concerning their roles and regulations that still remain unanswered.
Collapse
|
91
|
Kaur G, Burroughs AM, Iyer LM, Aravind L. Highly regulated, diversifying NTP-dependent biological conflict systems with implications for the emergence of multicellularity. eLife 2020; 9:e52696. [PMID: 32101166 PMCID: PMC7159879 DOI: 10.7554/elife.52696] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Social cellular aggregation or multicellular organization pose increased risk of transmission of infections through the system upon infection of a single cell. The generality of the evolutionary responses to this outside of Metazoa remains unclear. We report the discovery of several thematically unified, remarkable biological conflict systems preponderantly present in multicellular prokaryotes. These combine thresholding mechanisms utilizing NTPase chaperones (the MoxR-vWA couple), GTPases and proteolytic cascades with hypervariable effectors, which vary either by using a reverse transcriptase-dependent diversity-generating system or through a system of acquisition of diverse protein modules, typically in inactive form, from various cellular subsystems. Conciliant lines of evidence indicate their deployment against invasive entities, like viruses, to limit their spread in multicellular/social contexts via physical containment, dominant-negative interactions or apoptosis. These findings argue for both a similar operational 'grammar' and shared protein domains in the sensing and limiting of infections during the multiple emergences of multicellularity.
Collapse
Affiliation(s)
- Gurmeet Kaur
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
92
|
Reassessing the Role of the Type II MqsRA Toxin-Antitoxin System in Stress Response and Biofilm Formation: mqsA Is Transcriptionally Uncoupled from mqsR. mBio 2019; 10:mBio.02678-19. [PMID: 31848281 PMCID: PMC6918082 DOI: 10.1128/mbio.02678-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxin-antitoxin (TA) systems are broadly distributed modules whose biological roles remain mostly unknown. The mqsRA system is a noncanonical TA system in which the toxin and antitoxins genes are organized in operon but with the particularity that the toxin gene precedes that of the antitoxin. This system was shown to regulate global processes such as resistance to bile salts, motility, and biofilm formation. In addition, the MqsA antitoxin was shown to be a master regulator that represses the transcription of the csgD, cspD, and rpoS global regulator genes, thereby displaying a pleiotropic regulatory role. Here, we identified two promoters located in the toxin sequence driving the constitutive expression of mqsA, allowing thereby excess production of the MqsA antitoxin compared to the MqsR toxin. Our results show that both antitoxin-specific and operon promoters are not regulated by stresses such as amino acid starvation, oxidative shock, or bile salts. Moreover, we show that the MqsA antitoxin is not a global regulator as suggested, since the expression of csgD, cspD and rpoS is similar in wild-type and ΔmqsRA mutant strains. Moreover, these two strains behave similarly in terms of biofilm formation and sensitivity to oxidative stress or bile salts.IMPORTANCE There is growing controversy regarding the role of chromosomal toxin-antitoxin systems in bacterial physiology. mqsRA is a peculiar toxin-antitoxin system, as the gene encoding the toxin precedes that of the antitoxin. This system was previously shown to play a role in stress response and biofilm formation. In this work, we identified two promoters specifically driving the constitutive expression of the antitoxin, thereby decoupling the expression of antitoxin from the toxin. We also showed that mqsRA contributes neither to the regulation of biofilm formation nor to the sensitivity to oxidative stress and bile salts. Finally, we were unable to confirm that the MqsA antitoxin is a global regulator. Altogether, our data are ruling out the involvement of the mqsRA system in Escherichia coli regulatory networks.
Collapse
|
93
|
Zamakhaev MV, Goncharenko AV, Shumkov MS. Toxin-Antitoxin Systems and Bacterial Persistence (Review). APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819060140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
94
|
Alhusseini LB, Maleki A, Kouhsari E, Ghafourian S, Mahmoudi M, Al Marjani MF. Evaluation of type II toxin-antitoxin systems, antibiotic resistance, and biofilm production in clinical MDR Pseudomonas aeruginosa isolates in Iraq. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
95
|
Finkelstein S, Negrete F, Jang H, Gangiredla J, Mammel M, Patel IR, Chase HR, Woo J, Lee Y, Wang CZ, Weinstein L, Tall BD, Gopinath GR. Prevalence, Distribution, and Phylogeny of Type Two Toxin-Antitoxin Genes Possessed by Cronobacter Species where C. sakazakii Homologs Follow Sequence Type Lineages. Microorganisms 2019; 7:E554. [PMID: 31726673 PMCID: PMC6920972 DOI: 10.3390/microorganisms7110554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/04/2019] [Accepted: 11/09/2019] [Indexed: 12/28/2022] Open
Abstract
Cronobacter species are a group of foodborne pathogenic bacteria that cause both intestinal and systemic human disease in individuals of all age groups. Little is known about the mechanisms that Cronobacter employ to survive and persist in foods and other environments. Toxin-antitoxin (TA) genes are thought to play a role in bacterial stress physiology, as well as in the stabilization of horizontally-acquired re-combinatorial elements such as plasmids, phage, and transposons. TA systems have been implicated in the formation of a persistence phenotype in some bacterial species including Escherichia coli and Salmonella. This project's goal was to understand the phylogenetic relatedness among TA genes present in Cronobacter. Preliminary studies showed that two typical toxin genes, fic and hipA followed species evolutionary lines. A local database of 22 TA homologs was created for Cronobacter sakazakii and a Python version 3 shell script was generated to extract TA FASTA sequences present in 234 C. sakazakii genomes previously sequenced as part of Center for Food Safety and Applied Nutrition's (CFSAN) GenomeTrakr project. BLAST analysis showed that not every C. sakazakii strain possessed all twenty-two TA loci. Interestingly, some strains contained either a toxin or an antitoxin component, but not both. Five common toxin genes: ESA_00258 (parDE toxin-antitoxin family), ESA_00804 (relBE family), ESA_01887 (relBE family), ESA_03838 (relBE family), and ESA_04273 (YhfG-Fic family) were selected for PCR analysis and the primers were designed to detect these genes. PCR analysis showed that 55 of 63 strains possessed three of these genes Sequence analysis identified homologs of the target genes and some of the strains were PCR-negative for one or more of the genes, pointing to potential nucleotide polymorphisms in those loci or that these toxin genes were absent. Phylogenetic studies using a Cronobacter pan genomic microarray showed that for the most part TAs follow species evolutionary lines except for a few toxin genes possessed by some C. malonaticus and C. universalis strains; this demonstrates that some TA orthologues share a common phylogeny. Within the C. sakazakii strains, the prevalence and distribution of these TA homologs by C. sakazakii strain BAA-894 (a powdered infant formula isolate) followed sequence-type evolutionary lineages. Understanding the phylogeny of TAs among the Cronobacter species is essential to design future studies to realize the physiological mechanisms and roles for TAs in stress adaptation and persistence of Cronobacter within food matrices and food processing environments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Ben D. Tall
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, 8301 MuirKirk Rd, Laurel, MD 20708, USA; (S.F.); (F.N.); (H.J.); (J.G.); (M.M.); (I.R.P.); (H.R.C.); (J.W.); (Y.L.); (C.Z.W.); (L.W.); (G.R.G.)
| | | |
Collapse
|
96
|
A CUGGU/UUGGU-specific MazF homologue from Methanohalobium evestigatum. Biochem Biophys Res Commun 2019; 518:533-540. [PMID: 31445700 DOI: 10.1016/j.bbrc.2019.08.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 11/22/2022]
Abstract
MazF is a sequence-specific endoribonuclease or mRNA interferase, which cleaves RNA at a specific sequence. Since the expression of a specific gene or a group of specific genes can be regulated by MazF, expanding the repertoire of recognition sequences by MazF mRNA interferases is highly desirable for biotechnological and medical applications. Here, we identified a gene for a MazF homologue (MazFme) from Methanohalobium evestigatum, an extremely halophilic archaeon. In order to suppress the toxicity of MazFme to the E. coli cells, the C-terminal half of the cognate antitoxin MazEme was fused to the N-terminal end of MazFme. Since the fusion of the C-terminal half of MazEme to MazFme was able to neutralize MazFme toxicity, the MazEme-MazFme fusion protein was expressed in a large amount without any toxic effects. After purification of the MazEme, the free MazFme RNA cleavage specificity was determined by primer extension and synthetic ribonucleotides, revealing that MazFme is a CUGGU/UUGGU-specific endoribonuclease.
Collapse
|
97
|
Expression of DinJ-YafQ System of Lactobacillus casei Group Strains in Response to Food Processing Stresses. Microorganisms 2019; 7:microorganisms7100438. [PMID: 31614503 PMCID: PMC6843646 DOI: 10.3390/microorganisms7100438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 11/19/2022] Open
Abstract
Toxin-antitoxin (TA) systems are widely distributed in bacterial genomes and are involved in the adaptive response of microorganisms to stress conditions. Few studies have addressed TA systems in Lactobacillus and their role in the adaptation to food environments and processes. In this work, for six strains belonging to L. casei group isolated from dairy products, the expression of DinJ-YafQ TA system was investigated after exposure to various food-related stresses (nutrient starvation, low pH, high salt concentration, oxidative stress, and high temperature), as well as to the presence of antibiotics. In particular, culturability and DinJ-YafQ expression were evaluated for all strains and conditions by plate counts and RT qPCR. Among all the food-related stress conditions, only thermal stress was capable to significantly affect culturability. Furthermore, exposure to ampicillin significantly decreased the culturability of two L. rhamnosus strains. The regulation of DinJ-YafQ TA system resulted strain-specific; however, high temperature was the most significant stress condition able to modulate DinJ-YafQ expression. The increasing knowledge about TA systems activity and regulation might offer new perspectives to understand the mechanisms that L. casei group strains exploit to adapt to different niches or production processes.
Collapse
|
98
|
Wilcox B, Osterman I, Serebryakova M, Lukyanov D, Komarova E, Gollan B, Morozova N, Wolf YI, Makarova KS, Helaine S, Sergiev P, Dubiley S, Borukhov S, Severinov K. Escherichia coli ItaT is a type II toxin that inhibits translation by acetylating isoleucyl-tRNAIle. Nucleic Acids Res 2019; 46:7873-7885. [PMID: 29931259 PMCID: PMC6125619 DOI: 10.1093/nar/gky560] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/07/2018] [Indexed: 11/14/2022] Open
Abstract
Prokaryotic toxin-antitoxin (TA) modules are highly abundant and are involved in stress response and drug tolerance. The most common type II TA modules consist of two interacting proteins. The type II toxins are diverse enzymes targeting various essential intracellular targets. The antitoxin binds to cognate toxin and inhibits its function. Recently, TA modules whose toxins are GNAT-family acetyltransferases were described. For two such systems, the target of acetylation was shown to be aminoacyl-tRNA: the TacT toxin targets aminoacylated elongator tRNAs, while AtaT targets the amino acid moiety of initiating tRNAMet. We show that the itaRT gene pair from Escherichia coli encodes a TA module with acetyltransferase toxin ItaT that specifically and exclusively acetylates Ile-tRNAIle thereby blocking translation and inhibiting cell growth. ItaT forms a tight complex with the ItaR antitoxin, which represses the transcription of itaRT operon. A comprehensive bioinformatics survey of GNAT acetyltransferases reveals that enzymes encoded by validated or putative TA modules are common and form a distinct branch of the GNAT family tree. We speculate that further functional analysis of such TA modules will result in identification of enzymes capable of specifically targeting many, perhaps all, aminoacyl tRNAs.
Collapse
Affiliation(s)
- Brendan Wilcox
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia
| | - Ilya Osterman
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Lomonosov Moscow State University, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | - Marina Serebryakova
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Lomonosov Moscow State University, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | - Dmitry Lukyanov
- Lomonosov Moscow State University, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | - Ekaterina Komarova
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Lomonosov Moscow State University, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | - Bridget Gollan
- MRC Centre for Molecular Bacteriology and Infection, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, UK
| | - Natalia Morozova
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Peter the Great St. Petersburg State Polytechnic University, St. Petersburg, Russia
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Sophie Helaine
- MRC Centre for Molecular Bacteriology and Infection, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, UK
| | - Petr Sergiev
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Lomonosov Moscow State University, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | - Svetlana Dubiley
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Institute of Gene Biology of the Russian Academy of Sciences, Moscow 119334, Russia
| | - Sergei Borukhov
- Department of Cell Biology, Rowan University School of Osteopathic Medicine at Stratford, Stratford, NJ 08084-1489, USA
| | - Konstantin Severinov
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Institute of Gene Biology of the Russian Academy of Sciences, Moscow 119334, Russia.,Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
99
|
Chen R, Tu J, Tan Y, Cai X, Yang C, Deng X, Su B, Ma S, Liu X, Ma P, Du C, Xie W. Structural and Biochemical Characterization of the Cognate and Heterologous Interactions of the MazEF-mt9 TA System. ACS Infect Dis 2019; 5:1306-1316. [PMID: 31267737 DOI: 10.1021/acsinfecdis.9b00001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Toxin-antitoxin (TA) modules widely exist in bacteria, and their activities are associated with the persister phenotype of the pathogen Mycobacterium tuberculosis (M. tb). M. tb causes tuberculosis, a contagious and severe airborne disease. There are 10 MazEF TA systems in M. tb that play important roles in stress adaptation. How the antitoxins antagonize toxins in M. tb or how the 10 TA systems crosstalk to each other are of interest, but the detailed molecular mechanisms are largely unclear. MazEF-mt9 is a unique member among the MazEF family due to its tRNase activity, which is usually carried out by the VapC toxins. Here, we present the cocrystal structure of the MazEF-mt9 complex at 2.7 Å. By characterizing the association mode between the TA pairs through various techniques, we found that MazF-mt9 bound not only its cognate antitoxin but also the noncognate antitoxin MazE-mt1, a phenomenon that could be also observed in vivo. Based on our structural and biochemical work, we propose that the cognate and heterologous interactions among different TA systems work together in vivo to relieve the toxicity of MazF-mt9 toward M. tb cells.
Collapse
Affiliation(s)
- Ran Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, 135 W. Xingang Road, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Jie Tu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, 135 W. Xingang Road, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Yaoju Tan
- Guangzhou Chest Hospital, 62 HengzhiGang Road, Guangzhou, Guangdong 510095, People’s Republic of China
| | - Xingshan Cai
- Guangzhou Chest Hospital, 62 HengzhiGang Road, Guangzhou, Guangdong 510095, People’s Republic of China
| | - Chengwen Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, 135 W. Xingang Road, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Xiangyu Deng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, 135 W. Xingang Road, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Biyi Su
- Guangzhou Chest Hospital, 62 HengzhiGang Road, Guangzhou, Guangdong 510095, People’s Republic of China
| | - Shangming Ma
- Guangzhou Chest Hospital, 62 HengzhiGang Road, Guangzhou, Guangdong 510095, People’s Republic of China
| | - Xin Liu
- Guangzhou Chest Hospital, 62 HengzhiGang Road, Guangzhou, Guangdong 510095, People’s Republic of China
| | - Pinyun Ma
- Guangzhou Chest Hospital, 62 HengzhiGang Road, Guangzhou, Guangdong 510095, People’s Republic of China
| | - Chaochao Du
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 E. Dongfeng Road, Guangzhou, Guangdong 510060, People’s Republic of China
| | - Wei Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, 135 W. Xingang Road, Guangzhou, Guangdong 510006, People’s Republic of China
| |
Collapse
|
100
|
Large-Scale Analyses of Human Microbiomes Reveal Thousands of Small, Novel Genes. Cell 2019; 178:1245-1259.e14. [PMID: 31402174 DOI: 10.1016/j.cell.2019.07.016] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/06/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022]
Abstract
Small proteins are traditionally overlooked due to computational and experimental difficulties in detecting them. To systematically identify small proteins, we carried out a comparative genomics study on 1,773 human-associated metagenomes from four different body sites. We describe >4,000 conserved protein families, the majority of which are novel; ∼30% of these protein families are predicted to be secreted or transmembrane. Over 90% of the small protein families have no known domain and almost half are not represented in reference genomes. We identify putative housekeeping, mammalian-specific, defense-related, and protein families that are likely to be horizontally transferred. We provide evidence of transcription and translation for a subset of these families. Our study suggests that small proteins are highly abundant and those of the human microbiome, in particular, may perform diverse functions that have not been previously reported.
Collapse
|