51
|
Scherer G, Newland K, Papadopoulou E, Minet E. A correlation study applied to biomarkers of internal and effective dose for acrylonitrile and 4-aminobiphenyl in smokers. Biomarkers 2014; 19:291-301. [PMID: 24754403 PMCID: PMC4133968 DOI: 10.3109/1354750x.2014.910271] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The urinary metabolites 2-cyanoethylmercapturic acid and 4-aminobiphenyl have been correlated with tobacco smoke exposure. Similarly, 2-cyanoethylvaline and 4-aminobiphenyl haemoglobin adducts have been used as biomarkers of effective dose for the exposure to acrylonitrile and 4-aminobiphenyl, respectively. Each pair of biomarkers is derived from the same parent chemical; however, the correlation between the urinary and the haemoglobin biomarkers has not been investigated. Using clinical study samples, we report a weak correlation between urinary and haemoglobin biomarkers due to different accumulation and elimination rates. Time course analysis showed that a reduction in exposure was paralleled by a delayed reduction in haemoglobin adducts.
Collapse
Affiliation(s)
- Gerhard Scherer
- Analytisch-biologisches Forschungslabor GmbH , Munich , Germany
| | | | | | | |
Collapse
|
52
|
Gohar EY, El-gowilly SM, El-Gowelli HM, El-Demellawy MA, El-Mas MM. PI3K/Akt-independent NOS/HO activation accounts for the facilitatory effect of nicotine on acetylcholine renal vasodilations: modulation by ovarian hormones. PLoS One 2014; 9:e95079. [PMID: 24733557 PMCID: PMC3986343 DOI: 10.1371/journal.pone.0095079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 03/24/2014] [Indexed: 12/21/2022] Open
Abstract
We investigated the effect of chronic nicotine on cholinergically-mediated renal vasodilations in female rats and its modulation by the nitric oxide synthase (NOS)/heme oxygenase (HO) pathways. Dose-vasodilatory response curves of acetylcholine (0.01–2.43 nmol) were established in isolated phenylephrine-preconstricted perfused kidneys obtained from rats treated with or without nicotine (0.5–4.0 mg/kg/day, 2 weeks). Acetylcholine vasodilations were potentiated by low nicotine doses (0.5 and 1 mg/kg/day) in contrast to no effect for higher doses (2 and 4 mg/kg/day). The facilitatory effect of nicotine was acetylcholine specific because it was not observed with other vasodilators such as 5′-N-ethylcarboxamidoadenosine (NECA, adenosine receptor agonist) or papaverine. Increases in NOS and HO-1 activities appear to mediate the nicotine-evoked enhancement of acetylcholine vasodilation because the latter was compromised after pharmacologic inhibition of NOS (L-NAME) or HO-1 (zinc protoporphyrin, ZnPP). The renal protein expression of phosphorylated Akt was not affected by nicotine. We also show that the presence of the two ovarian hormones is necessary for the nicotine augmentation of acetylcholine vasodilations to manifest because nicotine facilitation was lost in kidneys of ovariectomized (OVX) and restored after combined, but not individual, supplementation with medroxyprogesterone acetate (MPA) and estrogen (E2). Together, the data suggests that chronic nicotine potentiates acetylcholine renal vasodilation in female rats via, at least partly, Akt-independent HO-1 upregulation. The facilitatory effect of nicotine is dose dependent and requires the presence of the two ovarian hormones.
Collapse
Affiliation(s)
- Eman Y. Gohar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sahar M. El-gowilly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Hanan M. El-Gowelli
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Maha A. El-Demellawy
- Medical Biotechnology Department, City for Scientific Research & Technology Applications, Borg El-Arab, Alexandria, Egypt
| | - Mahmoud M. El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- * E-mail:
| |
Collapse
|
53
|
Appleton S, Olegario RM, Lipowicz PJ. TSNA exposure from cigarette smoking: 18Years of urinary NNAL excretion data. Regul Toxicol Pharmacol 2014; 68:269-74. [DOI: 10.1016/j.yrtph.2013.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/12/2013] [Accepted: 07/28/2013] [Indexed: 02/05/2023]
|
54
|
Simple, fast and sensitive LC–MS/MS analysis for the simultaneous quantification of nicotine and 10 of its major metabolites. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 951-952:7-15. [DOI: 10.1016/j.jchromb.2014.01.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/03/2014] [Accepted: 01/10/2014] [Indexed: 11/19/2022]
|
55
|
Kotapati S, Sangaraju D, Esades A, Hallberg L, Walker VE, Swenberg JA, Tretyakova NY. Bis-butanediol-mercapturic acid (bis-BDMA) as a urinary biomarker of metabolic activation of butadiene to its ultimate carcinogenic species. Carcinogenesis 2014; 35:1371-8. [PMID: 24531806 DOI: 10.1093/carcin/bgu047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human carcinogen 1,3-butadiene (BD) undergoes metabolic activation to 3,4-epoxy-1-butene (EB), hydroxymethylvinyl ketone (HMVK), 3,4-epoxy-1,2-butanediol (EBD) and 1,2,3,4-diepoxybutane (DEB). Among these, DEB is by far the most genotoxic metabolite and is considered the ultimate carcinogenic species of BD. We have shown previously that BD-exposed laboratory mice form 8- to 10-fold more DEB-DNA adducts than rats exposed at the same conditions, which may be responsible for the enhanced sensitivity of mice to BD-mediated cancer. In the present study, we have identified 1,4-bis-(N-acetyl-L-cystein-S-yl)butane-2,3-diol (bis-BDMA) as a novel DEB-specific urinary biomarker. Isotope dilution high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry was employed to quantify bis-BDMA and three other BD-mercapturic acids, 2-(N-acetyl-L-cystein-S-yl)-1-hydroxybut-3-ene/1-(N-acetyl-L-cystein-S-yl)-2-hydroxy-but-3-ene (MHBMA, from EB), 4-(N-acetyl-L-cystein-S-yl)-1,2-dihydroxybutane (DHBMA, from HMVK) and 4-(N-acetyl-L-cystein-S-yl)-1,2,3-trihydroxybutane (THBMA, from EBD), in urine of confirmed smokers, occupationally exposed workers and BD-exposed laboratory rats. Bis-BDMA was formed in a dose-dependent manner in urine of rats exposed to 0-200 p.p.m. BD by inhalation, although it was a minor metabolite (1%) as compared with DHBMA (47%) and THBMA (37%). In humans, DHBMA was the most abundant BD-mercapturic acid excreted (93%), followed by THBMA (5%) and MHBMA (2%), whereas no bis-BDMA was detected. These results reveal significant differences in metabolism of BD between rats and humans.
Collapse
Affiliation(s)
- Srikanth Kotapati
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA, Sealy Center for Environmental Health and Medicine (SCEHM) and the Department of Preventive Medicine and Community Health, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA, Department of Pathology, University of Vermont, Burlington, VT 05405, USA and Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dewakar Sangaraju
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA, Sealy Center for Environmental Health and Medicine (SCEHM) and the Department of Preventive Medicine and Community Health, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA, Department of Pathology, University of Vermont, Burlington, VT 05405, USA and Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Amanda Esades
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA, Sealy Center for Environmental Health and Medicine (SCEHM) and the Department of Preventive Medicine and Community Health, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA, Department of Pathology, University of Vermont, Burlington, VT 05405, USA and Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lance Hallberg
- Sealy Center for Environmental Health and Medicine (SCEHM) and the Department of Preventive Medicine and Community Health, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Vernon E Walker
- Department of Pathology, University of Vermont, Burlington, VT 05405, USA and
| | - James A Swenberg
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalia Y Tretyakova
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA, Sealy Center for Environmental Health and Medicine (SCEHM) and the Department of Preventive Medicine and Community Health, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA, Department of Pathology, University of Vermont, Burlington, VT 05405, USA and Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
56
|
Carmella SG, Chen M, Zarth A, Hecht SS. High throughput liquid chromatography-tandem mass spectrometry assay for mercapturic acids of acrolein and crotonaldehyde in cigarette smokers' urine. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 935:36-40. [PMID: 23934173 PMCID: PMC3925436 DOI: 10.1016/j.jchromb.2013.07.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/05/2013] [Accepted: 07/07/2013] [Indexed: 01/07/2023]
Abstract
3-Hydroxypropylmercapturic acid (3-HPMA) and 3-hydroxy-1-methylpropylmercapturic acid (HMPMA) are urinary metabolites of the toxicants acrolein and crotonaldehyde, respectively. Virtually all human urine samples contain these metabolites, resulting from the action of glutathione-S-transferases on acrolein and crotonaldehyde, which are lipid peroxidation products, environmental and dietary contaminants, and constituents of cigarette smoke. We have developed a high throughput liquid chromatography-tandem mass spectrometry method for quantitative analysis of 3-HPMA and HMPMA in large numbers of small urine samples, as would be required in molecular epidemiology and clinical studies relating levels of these metabolites to cancer risk. Solid-phase extraction on mixed mode reverse phase-anion exchange 96-well plates provided sufficient purification for LC-MS/MS analysis, which was performed by auto-injection using a 96-well format, and resulted in clean, readily interpretable chromatograms, with detection limits of 4.5pmol/mL urine for 3-HPMA and 3.5pmol/mL urine for HMPMA. Accuracy was 92% for 3-HPMA and 97% for HMPMA while inter-day precision was 9.1% (coefficient of variation) for 3-HPMA and 11.0% for HMPMA. The method was applied to more than 2600 urine samples from smokers; mean levels of 3-HPMA and HMPMA were 4800±5358 (S.D.)pmol/mL and 3302±3341pmol/mL, respectively.
Collapse
Affiliation(s)
- Steven G Carmella
- Masonic Cancer Center, University of Minnesota, 420 Delaware Street SE, MMC 806, Minneapolis, MN 55455, USA.
| | | | | | | |
Collapse
|
57
|
|
58
|
Carmella SG, Ming X, Olvera N, Brookmeyer C, Yoder A, Hecht SS. High throughput liquid and gas chromatography-tandem mass spectrometry assays for tobacco-specific nitrosamine and polycyclic aromatic hydrocarbon metabolites associated with lung cancer in smokers. Chem Res Toxicol 2013; 26:1209-17. [PMID: 23837805 PMCID: PMC3803150 DOI: 10.1021/tx400121n] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We developed and applied high throughput liquid and gas chromatography-tandem mass spectrometry (LC-MS/MS and GC-MS/MS) methods for the cigarette smoking-associated biomarkers 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and r-1,t-2,3,c-4-tetrahydroxy-1,2,3,4-tetrahydrophenanthrene (PheT), which are urinary metabolites of the carcinogenic tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and the polycyclic aromatic hydrocarbon phenanthrene. NNAL and PheT levels have been linked to lung cancer in previous studies of smokers. Confirmation of these relationships will require further molecular epidemiology studies, necessitating improved methodology applicable to large numbers of small urine samples. Furthermore, NNAL is excreted in urine either unconjugated or as an N- or O-glucuronide, but little data are available on the amounts of each in urine. For the high throughput analysis of NNAL, 3 aliquots were processed from each urine sample, one for the analysis of free NNAL, one for free NNAL plus NNAL-N-Gluc, and one for total NNAL (the sum of free NNAL, NNAL-N-Gluc, and NNAL-O-Gluc). Ninety-six well plate technology was used for sample enrichment by supported liquid extraction plates, mixed mode reverse-phase/cation exchange solid-phase extraction, and LC-MS/MS analysis. For the analysis of PheT, the urine samples were cleaned up by solid-phase extraction on styrene-divinylbenzene sorbent, silylated, and analyzed by GC-MS/MS, both in 96-well format. The methods were validated analytically with respect to accuracy and precision, and applied in an ongoing molecular epidemiology study of smokers. The amount of total NNAL in smokers' urine was (mean ± SD) 1.65 ± 2.13 pmol/mL (N = 2641). Free NNAL, NNAL-N-Gluc, and NNAL-O-Gluc represented (mean ± SD) 31 ± 11%, 22 ± 14%, and 48 ± 15% of total NNAL, respectively. The amount of PheT in smokers' urine was (mean ± SD) 1.43 ± 2.16 pmol/mL (N = 2613). The methodology described here should be widely applicable in future studies of tobacco use and cancer.
Collapse
Affiliation(s)
- Steven G Carmella
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | |
Collapse
|
59
|
Gohar EY, El-gowilly SM, El-Gowelli HM, El-Mas MM. Nicotine paradoxically affects the facilitatory effect of ovarian hormones on the adenosine receptor-mediated renal vasodilation. Eur J Pharmacol 2013; 710:1-9. [DOI: 10.1016/j.ejphar.2013.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 04/17/2013] [Accepted: 04/17/2013] [Indexed: 01/08/2023]
|
60
|
Eckert E, Leng G, Gries W, Göen T. Excretion of mercapturic acids in human urine after occupational exposure to 2-chloroprene. Arch Toxicol 2013; 87:1095-102. [DOI: 10.1007/s00204-013-1016-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 01/22/2013] [Indexed: 11/27/2022]
|
61
|
Phillips DH, Venitt S. DNA and protein adducts in human tissues resulting from exposure to tobacco smoke. Int J Cancer 2012; 131:2733-53. [PMID: 22961407 DOI: 10.1002/ijc.27827] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 09/03/2012] [Indexed: 12/15/2022]
Abstract
Tobacco smoke contains a variety of genotoxic carcinogens that form adducts with DNA and protein in the tissues of smokers. Not only are these biochemical events relevant to the carcinogenic process, but the detection of adducts provides a means of monitoring exposure to tobacco smoke. Characterization of smoking-related adducts has shed light on the mechanisms of smoking-related diseases and many different types of smoking-derived DNA and protein adducts have been identified. Such approaches also reveal the potential harm of environmental tobacco smoke (ETS) to nonsmokers, infants and children. Because the majority of tobacco-smoke carcinogens are not exclusive to this source of exposure, studies comparing smokers and nonsmokers may be confounded by other environmental sources. Nevertheless, certain DNA and protein adducts have been validated as biomarkers of exposure to tobacco smoke, with continuing applications in the study of ETS exposures, cancer prevention and tobacco product legislation. Our article is a review of the literature on smoking-related adducts in human tissues published since 2002.
Collapse
Affiliation(s)
- David H Phillips
- Analytical and Environmental Sciences Division, MRC-HPA Centre for Environment and Health, King's College London, London, United Kingdom.
| | | |
Collapse
|
62
|
Liang Q, Sarkar M. Intra- and inter-individual variability in urinary nicotine excretion and plasma cotinine in adult cigarette smokers. Regul Toxicol Pharmacol 2012; 64:388-93. [PMID: 23000417 DOI: 10.1016/j.yrtph.2012.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 09/10/2012] [Accepted: 09/12/2012] [Indexed: 11/16/2022]
Abstract
Urinary nicotine equivalents (NE) and plasma cotinine are widely used as a biomarker for exposure to tobacco products, but there is limited information on intra- and inter-individual variability in the literature. Data were gathered from 13 randomized controlled clinical studies sponsored by Philip Morris USA, with study durations between 2 and 8 days for the short term (ST) and 3-12 months for the long term (LT) studies. Coefficients of variation (CV) were compared and a linear mixed model was used to partition the total study variability into inter- and intra-individual variability. In the ST and LT studies respectively, the root-mean-square (RMS) intra-individual CV was 19% and 29% for NE (mg/24 h); 19% and 33% for NE (mg/cig) and 13% and 22% for plasma cotinine. The RSM inter-individual CV was 38% and 38% for NE (mg/24h), 25% and 32% for NE (mg/cig) and 38% and 37% for plasma cotinine, in ST and LT study, respectively. Intra-individual CV was smaller in ST studies than in LT studies, and was significantly less than inter-individual CV in ST studies. Daily cigarette consumption alone could not explain all the variability in NE and plasma cotinine. The variability estimates could be used for clinical study design of clinical and developing regulatory guidance.
Collapse
Affiliation(s)
- Qiwei Liang
- Altria Client Services, Richmond, VA 23219, USA.
| | | |
Collapse
|
63
|
El-Mas MM, El-Gowelli HM, El-Gowilly SM, Fouda MA, Helmy MM. Estrogen provokes the depressant effect of chronic nicotine on vagally mediated reflex chronotropism in female rats. J Pharmacol Exp Ther 2012; 342:568-75. [PMID: 22619254 DOI: 10.1124/jpet.112.191940] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
We recently reported that acute nicotine impairs reflex tachycardic activity in estrogen-depleted, but not estrogen-repleted, female rats, suggesting a restraining influence for estrogen against the nicotine effect. In this study, we tested whether the baroreflex-protective effect of estrogen can be replicated when nicotine was administered chronically. We also report on the dose dependence and autonomic modulation of the nicotine-baroreflex interaction. The effects of nicotine (0.5, 1, or 2 mg/kg/day for 14 days) on baroreflex curves relating changes in heart rate to increases [phenylephrine (PE)] or decreases [sodium nitroprusside (SNP)] in blood pressure were evaluated in sham-operated (SO), ovariectomized (OVX), and estrogen-replaced OVX (OVXE(2)) rats. Slopes of the curves were taken as a measure of baroreflex sensitivity (BRS(PE) and BRS(SNP)). In SO rats, both reflex bradycardic and tachycardic responses were attenuated by nicotine in a dose-related fashion. In nicotine-treated rats, blockade of β-adrenergic (propranolol), but not muscarinic (atropine), receptors caused additional reductions in reflex chronotropic responses, implying that nicotine selectively impairs reflex vagal activity. OVX selectively decreased BRS(PE) but not BRS(SNP) and abolished the nicotine-induced impairment of either response. These effects of OVX were reversed after treatment with estrogen or the estrogen receptor modulator raloxifene. In atropine-treated rats, comparable BRS values were demonstrated in all rat preparations regardless of the estrogen or nicotine milieu. Collectively, the inhibition of vagal activity accounts for the depressant effect of chronic nicotine on baroreflex activity. Furthermore, contrary to nicotine's acute effects, the baroreflex-attenuating effect of chronic nicotine is exacerbated by estrogen.
Collapse
Affiliation(s)
- Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | | | | | | | | |
Collapse
|
64
|
Brinkman MC, Chuang JC, Gordon SM, Kim H, Kroeger RR, Polzin GM, Richter PA. Exposure to and deposition of fine and ultrafine particles in smokers of menthol and nonmenthol cigarettes. Inhal Toxicol 2012; 24:255-69. [PMID: 22486344 DOI: 10.3109/08958378.2012.667218] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Research on the deposition of mainstream smoke particulate in the respiratory tract of smokers is needed to understand how exposure may vary based on cigarette menthol content. METHODS We conducted a nine-participant crossover study in which smokers were randomly assigned to cigarettes differing primarily in menthol content. Participants smoked the test cigarettes ad libitum for one week, provided spot urine samples, and then smoked four test cigarettes in a laboratory session; this was repeated for the other test cigarette in week two. Fine and ultrafine particulate matter in exhaled breath were characterized, and smoking behavior was monitored. Participant-specific mainstream smoke, generated using each participant's topography data, was characterized. During home smoking, participants collected their spent test cigarette butts for estimates of mouth-level exposures (MLE) to mainstream nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). RESULTS Participant-specific mainstream smoke NNK was higher (39%) and daily MLE to NNK was also higher (52%) when participants smoked the menthol cigarette. Nicotine was not significantly different. Participants retained more ultrafine particulate (43%) and fine particulate benzo(a)pyrene (43%) when smoking the menthol cigarette. There were no significant differences in the levels of urinary biomarkers for nicotine, NNK, or pyrene. CONCLUSION This study demonstrates the use of noninvasive real-time techniques to measure exposure differences between cigarettes differing primarily in menthol content. Differences between NNK exposure, ultrafine particle and benzo(a)pyrene deposition, and smoking behavior were observed. Additional research using these techniques with cigarettes that differ only in menthol content is required to unequivocally attribute the exposure differences to presence or absence of menthol.
Collapse
Affiliation(s)
- Marielle C Brinkman
- Battelle Centers for Public Health Research and Evaluation , Columbus, OH 43201, USA.
| | | | | | | | | | | | | |
Collapse
|
65
|
Kotapati S, Matter BA, Grant AL, Tretyakova NY. Quantitative analysis of trihydroxybutyl mercapturic acid, a urinary metabolite of 1,3-butadiene, in humans. Chem Res Toxicol 2011; 24:1516-26. [PMID: 21749114 PMCID: PMC3208903 DOI: 10.1021/tx2001306] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1,3-Butadiene (BD) is a known human carcinogen present in cigarette smoke and in automobile exhaust, leading to widespread exposure of human populations. BD requires cytochrome P450-mediated metabolic activation to electrophilic species, e.g. 3,4-epoxy-1-butene (EB), hydroxymethyl vinyl ketone (HMVK), and 3,4-epoxy-1,2-diol (EBD), which form covalent adducts with DNA. EB, HMVK, and EBD can be conjugated with glutathione and ultimately excreted in urine as monohydroxybutenyl mercapturic acid (MHBMA), dihydroxybutyl mercapturic acid (DHBMA), and trihydroxybutyl mercapturic acid (THBMA), respectively, which can serve as biomarkers of BD exposure and metabolic processing. While MHBMA and DHBMA have been found in smokers and nonsmokers, THBMA has not been previously detected in humans. In the present work, an isotope dilution HPLC-ESI(-)-MS/MS methodology was developed and employed to quantify THBMA in urine of known smokers and nonsmokers (19-27 per group). The new method has excellent sensitivity (LOQ, 1 ng/mL urine) and achieves accurate quantitation using a small sample volume (100 μL). Mean urinary THBMA concentrations in smokers and nonsmokers were found to be 21.6 and 13.7 ng/mg creatinine, respectively, suggesting that there are sources of THBMA other than exposure to tobacco smoke in humans, as is also the case for DHBMA. However, THBMA concentrations are significantly greater in urine of smokers than that of nonsmokers (p < 0.01). Furthermore, THBMA amounts in human urine declined 25-50% following smoking cessation, suggesting that smoking is an important source of this metabolite in humans. The HPLC-ESI(-)-MS/MS methodology developed in the present work will be useful for future epidemiological studies of BD exposure and metabolism.
Collapse
Affiliation(s)
- Srikanth Kotapati
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Brock A. Matter
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Amy L. Grant
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
| | - Natalia Y. Tretyakova
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
66
|
Abstract
Survival functions from smoking cessation interventions are described by a three-state Markov model. On quitting, smokers transit through a state of withdrawal characterized by a high rate of relapse, and then into a more secure state of long-term abstinence. The Markov model embodies the dynamic nature of the cessation/relapse process; it permits stronger inference to long-term abstinence rates, provides measures of treatment efficacy, describes the outcomes of new quit attempts, and suggests mechanisms for the survival process.
Collapse
Affiliation(s)
- Peter R Killeen
- Department of Psychology, Arizona State University, Tempe, AZ 85287-1104, USA.
| |
Collapse
|
67
|
Lindner D, Smith S, Leroy CM, Tricker AR. Comparison of exposure to selected cigarette smoke constituents in adult smokers and nonsmokers in a European, multicenter, observational study. Cancer Epidemiol Biomarkers Prev 2011; 20:1524-36. [PMID: 21613391 DOI: 10.1158/1055-9965.epi-10-1186] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND This multicenter, observational study was conducted in three European countries (Germany, Switzerland, and the United Kingdom) to determine the exposure of adult cigarette smokers and nonsmokers to selected cigarette smoke constituents: 1,3-butadiene, 2-naphthylamine, 4-aminobiphenyl, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), acrolein, benzene, carbon monoxide, nicotine, pyrene, and o-toluidine. METHODS Smokers were grouped by tar category (TC) according to the tar yield of their regular cigarette brand: TC1: ≤4 mg tar, TC2: 5-7 mg tar, and TC3: ≥8 mg tar [to the legal tar yield ceiling in the respective countries (10 or 12 mg tar)]. Levels of biomarkers of exposure to the aforementioned cigarette smoke constituents were compared between smokers and nonsmokers, and within smokers across tar categories. RESULTS The full population consisted of 1,631 subjects (1,223 smokers and 408 nonsmokers). Biomarkers of exposure were analyzed for 1,558 subjects (valid case population) as follows: 1,159 smokers (TC1: n = 402, TC2: n = 379, TC3: n = 378), and 399 nonsmokers. Exposure levels were higher in smokers than nonsmokers and increased with increasing tar yield and cigarette consumption. An association of tar category and exposure level was observed for all smoke constituents, except pyrene, 4-aminobiphenyl, and o-toluidine, whereas only NNK exposure was different in all three tar categories. CONCLUSIONS Smoking status and, among smokers, daily cigarette consumption and tar yield were observed to affect biomarker of exposure levels. IMPACT This research provides a comprehensive evaluation of smoke constituent exposure of adult cigarette smokers and nonsmokers in three European countries.
Collapse
Affiliation(s)
- Dirk Lindner
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland.
| | | | | | | |
Collapse
|
68
|
Liu J, Liang Q, Frost-Pineda K, Muhammad-Kah R, Rimmer L, Roethig H, Mendes P, Sarkar M. Relationship between biomarkers of cigarette smoke exposure and biomarkers of inflammation, oxidative stress, and platelet activation in adult cigarette smokers. Cancer Epidemiol Biomarkers Prev 2011; 20:1760-9. [PMID: 21708936 DOI: 10.1158/1055-9965.epi-10-0987] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Cigarette smoking is a risk factor for several diseases, including cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer, but the role of specific smoke constituents in these diseases has not been clearly established. METHODS The relationships between biomarkers of potential harm (BOPH), associated with inflammation [white blood cell (WBC), high sensitivity C-reactive protein (hs-CRP), fibrinogen, and von Willebrand factor (vWF)], oxidative stress [8-epi-prostaglandin F(2α) (8-epiPGF(2α))] and platelet activation [11-dehydro-thromboxin B(2) (11-dehTxB(2))], and machine-measured tar yields (grouped into four categories), biomarkers of exposure (BOE) to cigarette smoke: nicotine and its five metabolites (nicotine equivalents), 4-methylnitrosamino-1-(3-pyridyl)-1-butanol (total NNAL), carboxyhemoglobin, 1-hydroxypyrene, 3-hydroxypropylmercapturic acid, and monohydroxybutenyl-mercapturic acid, were investigated in 3,585 adult smokers and 1,077 nonsmokers. RESULTS Overall, adult smokers had higher levels of BOPHs than nonsmokers. Body mass index (BMI), smoking duration, tar category, and some of the BOEs were significant factors in the multiple regression models. Based on the F value, BMI was the highest ranking factor in the models for WBC, hs-CRP, fibrinogen, and 8-epiPGF(2α), respectively, and gender and smoking duration for 11-dehTxB(2) and vWF, respectively. CONCLUSIONS Although several demographic factors and some BOEs were statistically significant in the model, the R(2) values indicate that only up to 22% of the variability can be explained by these factors, reflecting the complexity and multifactorial nature of the disease mechanisms. IMPACT The relationships between the BOEs and BOPHs observed in this study may help with the identification of appropriate biomarkers and improve the design of clinical studies in smokers.
Collapse
Affiliation(s)
- Jianmin Liu
- Center for Research and Technology, Altria Client Services Inc., Richmond, VA 23219, USA.
| | | | | | | | | | | | | | | |
Collapse
|
69
|
The relationship between nicotine dependence scores and biomarkers of exposure in adult cigarette smokers. Regul Toxicol Pharmacol 2011; 60:79-83. [DOI: 10.1016/j.yrtph.2011.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 11/22/2022]
|
70
|
Mercapturic acids as metabolites of alkylating substances in urine samples of German inhabitants. Int J Hyg Environ Health 2011; 214:196-204. [DOI: 10.1016/j.ijheh.2011.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 03/01/2011] [Accepted: 03/06/2011] [Indexed: 11/20/2022]
|
71
|
Benowitz NL, Dains KM, Dempsey D, Wilson M, Jacob P. Racial differences in the relationship between number of cigarettes smoked and nicotine and carcinogen exposure. Nicotine Tob Res 2011; 13:772-83. [PMID: 21546441 DOI: 10.1093/ntr/ntr072] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Black smokers are reported to have higher lung cancer rates and greater tobacco dependence at lower levels of cigarette consumption compared to non-Hispanic White smokers. We studied the relationship between cigarettes per day (CPD) and biomarkers of nicotine and carcinogen exposure in Black and White smokers. METHODS In 128 Black and White smokers, we measured plasma nicotine and its main proximate metabolite cotinine, urine nicotine equivalents, 4-(methylnitrosamino)-1-(3)pyridyl-1-butanol (NNAL), and polycyclic aromatic hydrocarbon (PAH) metabolites. RESULTS The dose-response between CPD and nicotine equivalents, and NNAL and PAH was flat for Black but positive for White smokers (Race × CPD interaction, all ps < .05). Regression estimates for the Race × CPD interactions were 0.042 (95% CI 0.013-0.070), 0.054 (0.023-0.086), and 0.028 (0.004-0.052) for urine nicotine equivalents, NNAL, and PAHs, respectively. In contrast there was a strong correlation between nicotine equivalents and NNAL and PAH independent of race. Nicotine and carcinogen exposure per individual cigarette was inversely related to CPD. This inverse correlation was stronger in Black compared to White smokers and stronger in menthol compared to regular cigarette smokers (not mutually adjusted). CONCLUSIONS Our data indicate that Blacks on average smoke cigarettes differently than White smokers such that CPD predicts smoke intake more poorly in Black than in White smokers.
Collapse
Affiliation(s)
- Neal L Benowitz
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-1220, USA.
| | | | | | | | | |
Collapse
|
72
|
Yerger VB. Menthol's potential effects on nicotine dependence: a tobacco industry perspective. Tob Control 2011; 20 Suppl 2:ii29-36. [PMID: 21504929 PMCID: PMC3088468 DOI: 10.1136/tc.2010.041970] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 02/03/2011] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To examine what the tobacco industry knows about the potential effects menthol may have on nicotine dependence. METHODS A snowball strategy was used to systematically search the Legacy Tobacco Documents Library (http://legacy.library.ucsf.edu/) between 22 February and 29 April, 2010. Of the approximately 11 million documents available in the Legacy Tobacco Documents Library, the iterative searches returned tens of thousands of results. We qualitatively analysed a final collection of 309 documents relevant the effects of menthol on nicotine dependence. RESULTS The tobacco industry knows that menthol overrides the harsh taste of tobacco and alleviates nicotine's irritating effects, synergistically interacts with nicotine, stimulates the trigeminal nerve to elicit a 'liking' response for a tobacco product, and makes low tar, low nicotine tobacco products more acceptable to smokers than non-mentholated low delivery products. CONCLUSION Menthol is not only used in cigarettes as a flavour additive; tobacco companies know that menthol also has sensory effects and interacts with nicotine to produce tobacco products that are easier to smoke, thereby making it easier to expose smokers, especially those who are new and uninitiated, to the addictive power of nicotine.
Collapse
Affiliation(s)
- Valerie B Yerger
- Department of Social and Behavioral Sciences, Box 0612, University of California, San Francisco, San Francisco, CA 94143-0612, USA.
| |
Collapse
|
73
|
Rangiah K, Hwang WT, Mesaros C, Vachani A, Blair IA. Nicotine exposure and metabolizer phenotypes from analysis of urinary nicotine and its 15 metabolites by LC-MS. Bioanalysis 2011; 3:745-61. [PMID: 21452992 PMCID: PMC3134267 DOI: 10.4155/bio.11.42] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Smokers who inhale less deeply are exposed to lower amounts of the toxic substances present in tobacco smoke. In order to more rigorously assess tobacco smoke exposure, it is necessary to have an accurate method for quantifying nicotine and all of its known metabolites. METHODS A stable-isotope dilution LC-MRM/MS assay has been developed for quantification of urinary nicotine and the 15 possible metabolites that could arise from known metabolic pathways. Nicotine, cotinine, trans-3´-hydroxy-cotinine, nicotine-N-oxide, cotinine-N-oxide, nornicotine, norcotinine and 4-hydroxy-4-(3-pyridyl)butanoic acid were quantified by direct analysis. The corresponding glucuronide metabolites were quantified after urine hydrolysis with β-glucuronidase. RESULTS Nicotine and all 15 nicotine metabolites were quantified by LC-MRM/MS in most urine samples from 61 tobacco smokers. Urinary nicotine and metabolite concentrations ranged from 7.9 to 337.8 µM (mean 75.5 ± 67.8 µM). Three nicotine metabolizer phenotypes were established as reduced metabolizers (ratio < 8), normal metabolizers (ratio 8-30), and extensive metabolizers (ratio > 30). 4-hydroxy-4-(3-pyridyl)butanoic acid, which has not been quantified previously, was an abundant metabolite in all three phenotypes. CONCLUSION Using this assay it will now be possible to determine whether there are relationships between nicotine exposure and/or metabolizer phenotype with exposure to toxic substances that are present in tobacco smoke and/or to biological response biomarkers to tobacco smoking. This will help in identifying individuals at high risk for developing smoking-related diseases as well as those amenable to smoking cessation programs.
Collapse
Affiliation(s)
- Kannan Rangiah
- Centers for Cancer Pharmacology, Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
- Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Wei-Ting Hwang
- Department of Biostatistics & Epidemiology, University of Pennsylvania School of Medicine, PA, USA
| | - Clementina Mesaros
- Centers for Cancer Pharmacology, Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
- Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Anil Vachani
- Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
- Division of Pulmonary Medicine, University of Pennsylvania School of Medicine, PA, USA
| | - Ian A Blair
- Centers for Cancer Pharmacology, Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
- Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| |
Collapse
|
74
|
Abstract
Systems biology applies advances in technology and new fields of study including genomics, transcriptomics, proteomics, and metabolomics to the development of new treatments and approaches of care for the critically ill and injured patient. An understanding of systems biology enhances a nurse's ability to implement evidence-based practice and to educate patients and families on novel testing and therapies. Systems biology is an integrated and holistic view of humans in relationship with the environment. Biomarkers are used to measure the presence and severity of disease and are rapidly expanding in systems biology endeavors. A systems biology approach using predictive, preventive, and participatory involvement is being utilized in a plethora of conditions of critical illness and injury including sepsis, cancer, pulmonary disease, and traumatic injuries.
Collapse
|
75
|
Xia Y, Bernert JT, Jain RB, Ashley DL, Pirkle JL. Tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in smokers in the United States: NHANES 2007-2008. Biomarkers 2011; 16:112-9. [PMID: 21114376 DOI: 10.3109/1354750x.2010.533288] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), a metabolite of the tobacco-specific nitrosamine (TSNA) 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), has been measured in urine samples from all participants aged 6 years and older from the National Health and Nutrition Examination Survey 2007-2008. Participants with a serum cotinine concentration of ≥ 10 ng/mL were identified as tobacco users, primarily cigarette smokers. Regression models were developed to calculate geometric mean NNAL concentrations adjusted for serum cotinine, urinary creatinine, cigarettes per day, and Federal Trade Commission tar values of the cigarettes smoked. Significant differences were found by gender (p=0.003) and race/ethnicity (p=0.022 for non-Hispanic white versus non-Hispanic black smokers), but not by menthol type of the cigarettes. Females and non-Hispanic white smokers had the highest adjusted means for urinary NNAL (353 and 336 pg/mL, respectively). The results from this study demonstrated significant relationships between NNAL concentrations and serum cotinine (p<0.001) and urine creatinine (p<0.001). The joint effect of linear and quadratic terms for number of cigarettes smoked per day was also statistically significant (p=0.001). In addition to addressing current NNK exposure levels, these results will form a baseline for future estimates of tobacco users' exposure to this carcinogen.
Collapse
Affiliation(s)
- Yang Xia
- Division of Laboratory Science, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, USA.
| | | | | | | | | |
Collapse
|
76
|
Wang J, Liang Q, Mendes P, Sarkar M. Is 24h nicotine equivalents a surrogate for smoke exposure based on its relationship with other biomarkers of exposure? Biomarkers 2011; 16:144-54. [PMID: 21323604 DOI: 10.3109/1354750x.2010.536257] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UNLABELLED Nicotine and its 5 major metabolites (Nicotine equivalents, NE) may serve as a surrogate biomarker for smoke exposure. OBJECTIVE To investigate the relationship between nicotine equivalents (NE) and biomarkers of exposure (BOE) to cigarette smoke. METHODS Data from nine controlled studies in 916 adult smokers were used. BOEs to nicotine, NNK, pyrene, acrolein, benzene, 1,3-butadiene and CO were used. RESULTS Among all the factors investigated (NE, cigarette type, age, gender, BMI and study), NE was the most statistically significant factor for all biomarker relationships. Weak to moderate relationships (0.32 ≤ R(2) ≤ 0.65) were found between NE and the BOEs. CONCLUSIONS Based on the relationships with BOEs, NE may be considered as a surrogate biomarker of total cigarette smoke exposure.
Collapse
Affiliation(s)
- Jingzhu Wang
- Altria Client Services, Center for Research and Technology, 601 E. Jackson Street, Richmond, VA 23219, USA
| | | | | | | |
Collapse
|
77
|
Naufal ZS, Marano KM, Kathman SJ, Wilson CL. Differential exposure biomarker levels among cigarette smokers and smokeless tobacco consumers in the National Health and Nutrition Examination Survey 1999-2008. Biomarkers 2011; 16:222-35. [PMID: 21348778 DOI: 10.3109/1354750x.2010.546013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Assessment of biomarkers is an appropriate way to estimate exposure to cigarette mainstream smoke and smokeless tobacco (SLT) constituents in tobacco consumers. Using the US National Health and Nutrition Examination Survey (NHANES, 1999-2008), biomarkers of volatile organic compounds, halogenated aromatic hydrocarbons (HAHs), polycyclic aromatic hydrocarbons (PAHs), acrylamide, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and metals were evaluated. In general, biomarker levels in SLT consumers were significantly lower than in smokers (excluding NNK and some HAHs) and were not significantly different compared with nonconsumers (excluding NNK and some PAHs). These results provide useful information for science-based risk assessment and regulation of tobacco products.
Collapse
Affiliation(s)
- Ziad S Naufal
- R.J. Reynolds Tobacco Company, 950 Reynolds Blvd., Winston-Salem, NC 27105, USA.
| | | | | | | |
Collapse
|
78
|
Frost-Pineda K, Liang Q, Liu J, Rimmer L, Jin Y, Feng S, Kapur S, Mendes P, Roethig H, Sarkar M. Biomarkers of potential harm among adult smokers and nonsmokers in the total exposure study. Nicotine Tob Res 2011; 13:182-93. [PMID: 21330277 DOI: 10.1093/ntr/ntq235] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION There is overwhelming medical and scientific consensus that cigarette smoking causes lung cancer, heart disease, emphysema, and other serious diseases in smokers. In the Total Exposure Study, 29 biomarkers of potential harm (BOPH) were measured in a cross-sectional sample of 3,585 adult smokers (AS) and 1,077 nonsmokers (NS). The BOPH included markers of oxidative stress, inflammation, platelet activation, endothelial function, lipid metabolism, hematology, metabolism, the cardiovascular system, lung function, kidney function, and liver function. METHODS Multiple stepwise regression was used to examine the effect of demographic factors (age, gender, body mass index [BMI], and race) and smoking (number of cigarettes smoked per day or nicotine equivalents [NE] per 24 hr and smoking duration) on each BOPH. RESULTS As compared with NS, AS had >10% higher levels of 8-epi-prostaglandin F(2α) (8-epi-PG F(2α), 42%), 11-dehydrothromboxane B₂ (11-DHTB, 29%), white blood cell (WBC) count (19%), high-sensitivity C-reactive protein (15%), triglycerides (16%), and alkaline phosphatase (11%) and had 18% lower total bilirubin. Multiple stepwise regression revealed that although NE (milligrams per 24 hours) was statistically significant for 18 of the 29 BOPH, it was the most important factor only for WBCs and 11-DHTB. Smoking duration was the most important factor for forced expiratory volume in 1 second. In contrast, BMI was the most important factor for 12 BOPH. CONCLUSIONS These results contribute to the understanding of the relationship between tobacco smoking and potential biological effects.
Collapse
|
79
|
Human blood concentrations of cotinine, a biomonitoring marker for tobacco smoke, extrapolated from nicotine metabolism in rats and humans and physiologically based pharmacokinetic modeling. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:3406-21. [PMID: 20948932 PMCID: PMC2954553 DOI: 10.3390/ijerph7093406] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/20/2010] [Accepted: 08/31/2010] [Indexed: 11/30/2022]
Abstract
The present study defined a simplified physiologically based pharmacokinetic (PBPK) model for nicotine and its primary metabolite cotinine in humans, based on metabolic parameters determined in vitro using relevant liver microsomes, coefficients derived in silico, physiological parameters derived from the literature, and an established rat PBPK model. The model consists of an absorption compartment, a metabolizing compartment, and a central compartment for nicotine and three equivalent compartments for cotinine. Evaluation of a rat model was performed by making comparisons with predicted concentrations in blood and in vivo experimental pharmacokinetic values obtained from rats after oral treatment with nicotine (1.0 mg/kg, a no-observed-adverseeffect level) for 14 days. Elimination rates of nicotine in vitro were established from data from rat liver microsomes and from human pooled liver microsomes. Human biomonitoring data (17 ng nicotine and 150 ng cotinine per mL plasma 1 h after smoking) from pooled five male Japanese smokers (daily intake of 43 mg nicotine by smoking) revealed that these blood concentrations could be calculated using a human PBPK model. These results indicate that a simplified PBPK model for nicotine/cotinine is useful for a forward dosimetry approach in humans and for estimating blood concentrations of other related compounds resulting from exposure to low chemical doses.
Collapse
|
80
|
Biomonitoring of urinary cotinine concentrations associated with plasma levels of nicotine metabolites after daily cigarette smoking in a male Japanese population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:2953-64. [PMID: 20717551 PMCID: PMC2922738 DOI: 10.3390/ijerph7072953] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 06/17/2010] [Accepted: 07/16/2010] [Indexed: 11/17/2022]
Abstract
Human biomonitoring of plasma and urinary levels of nicotine, cotinine, and 3′-hydroxycotinine was conducted after daily cigarette smoking in a population of 92 male Japanese smokers with a mean age of 37 years who had smoked an average of 23 cigarettes per day for 16 years. Members of the population were genotyped for the nicotine-metabolizing enzyme cytochrome P450 2A6 (CYP2A6). The mean levels of nicotine, the levels of its metabolites cotinine and 3′-hydroxycotinine, and the sum of these three levels in subjects one hour after smoking the first cigarette on the sampling day were 20.1, 158, 27.7, and 198 ng/mL in plasma and 846, 1,020, 1,010, and 2,870 ng/mL in urine under daily smoking conditions. Plasma levels of 3′-hydroxycotinine and urinary levels of nicotine and 3′-hydroxycotinine were dependent on the CYP2A6 phenotype group, which was estimated from the CYP2A6 genotypes of the subjects, including those with whole gene deletion. Plasma cotinine levels were significantly correlated with the number of cigarettes smoked on the day before sampling (r = 0.71), the average number of cigarettes smoked daily (r = 0.58), and the Brinkman index (daily cigarettes × years, r = 0.48) under the present conditions. The sum of nicotine, cotinine, and 3′-hydroxycotinine concentrations in plasma showed a similar relationship to that of the plasma cotinine levels. Urinary concentrations of cotinine and the sum of nicotine metabolite concentrations also showed significant correlations with the plasma levels and the previous day’s and average cigarette consumption. The numbers of cigarettes smoked per day by two subjects with self-reported light smoking habits were predicted by measuring the urinary cotinine concentrations and using linear regression equations derived from above-mentioned data. These results indicate that biomonitoring of the urinary cotinine concentration is a good, easy-to-use marker for plasma levels of cotinine and the sum of nicotine metabolites in smokers independent of genetic polymorphism of CYP2A6.
Collapse
|
81
|
Hecht SS, Yuan JM, Hatsukami D. Applying tobacco carcinogen and toxicant biomarkers in product regulation and cancer prevention. Chem Res Toxicol 2010; 23:1001-8. [PMID: 20408564 PMCID: PMC2891118 DOI: 10.1021/tx100056m] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tobacco carcinogen and toxicant biomarkers are metabolites or protein or DNA adducts of specific compounds in tobacco products. Highly reliable analytical methods, based mainly on mass spectrometry, have been developed and applied in large studies of many of these biomarkers. A panel of tobacco carcinogen and toxicant biomarkers is suggested here, and typical values for smokers and nonsmokers are summarized. This panel of biomarkers has potential applications in the new and challenging area of tobacco product regulation and in the development of rational approaches to cancer prevention by establishing carcinogen and toxicant uptake and excretion in people exposed to tobacco products.
Collapse
Affiliation(s)
- Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
82
|
Church TR, Anderson KE, Le C, Zhang Y, Kampa DM, Benoit AR, Yoder AR, Carmella SG, Hecht SS. Temporal stability of urinary and plasma biomarkers of tobacco smoke exposure among cigarette smokers. Biomarkers 2010; 15:345-52. [PMID: 20374068 PMCID: PMC2871960 DOI: 10.3109/13547501003753881] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Intraindividual variability of measurements of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), nicotine, cotinine, and r-1,t-2,3,c-4-tetrahydroxy-1,2,3,4-tetrahydrophenanthrene (PheT) over time is uncertain. From 70 habitual smokers' plasma and urine sampled bimonthly for a year we analysed plasma for NNAL, cotinine and PheT, and urine for NNAL, cotinine and nicotine. We estimated the intraclass correlation coefficients (rho(I)) for each measurement. Plasma and creatinine-corrected urinary NNAL were stable (rho(I) > or =70%); plasma PheT and plasma and urinary total cotinine were fairly stable (rho(I) > or =50%), but urinary nicotine rho(I) approximately 40% was not. Except for nicotine, single measurements from plasma or urine adequately represent individual mean exposure over time.
Collapse
Affiliation(s)
- Timothy R Church
- Division of Environmental Health Sciences, University of Minnesota School of Public Health, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Lee DJ, Messiah A. Population biomarker estimates and tobacco exposure: comment on the article by Roethig et al. Nicotine Tob Res 2010; 12:540; author reply 541-2. [PMID: 20231240 DOI: 10.1093/ntr/ntq046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
84
|
|
85
|
Warner JH, Liang Q, Sarkar M, Mendes PE, Roethig HJ. Adaptive regression modeling of biomarkers of potential harm in a population of U.S. adult cigarette smokers and nonsmokers. BMC Med Res Methodol 2010; 10:19. [PMID: 20233412 PMCID: PMC2846953 DOI: 10.1186/1471-2288-10-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 03/16/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This article describes the data mining analysis of a clinical exposure study of 3585 adult smokers and 1077 nonsmokers. The analysis focused on developing models for four biomarkers of potential harm (BOPH): white blood cell count (WBC), 24 h urine 8-epi-prostaglandin F2alpha (EPI8), 24 h urine 11-dehydro-thromboxane B2 (DEH11), and high-density lipoprotein cholesterol (HDL). METHODS Random Forest was used for initial variable selection and Multivariate Adaptive Regression Spline was used for developing the final statistical models RESULTS The analysis resulted in the generation of models that predict each of the BOPH as function of selected variables from the smokers and nonsmokers. The statistically significant variables in the models were: platelet count, hemoglobin, C-reactive protein, triglycerides, race and biomarkers of exposure to cigarette smoke for WBC (R-squared = 0.29); creatinine clearance, liver enzymes, weight, vitamin use and biomarkers of exposure for EPI8 (R-squared = 0.41); creatinine clearance, urine creatinine excretion, liver enzymes, use of Non-steroidal antiinflammatory drugs, vitamins and biomarkers of exposure for DEH11 (R-squared = 0.29); and triglycerides, weight, age, sex, alcohol consumption and biomarkers of exposure for HDL (R-squared = 0.39). CONCLUSIONS Levels of WBC, EPI8, DEH11 and HDL were statistically associated with biomarkers of exposure to cigarette smoking and demographics and life style factors. All of the predictors together explain 29%-41% of the variability in the BOPH.
Collapse
Affiliation(s)
- John H Warner
- Pharsight Corporation, a Certara Company, Mountain View, CA 94041-1530, USA
| | | | | | | | | |
Collapse
|
86
|
Goniewicz ML, Havel CM, Peng MW, Jacob P, Dempsey D, Yu L, Zielinska-Danch W, Koszowski B, Czogala J, Sobczak A, Benowitz NL. Elimination kinetics of the tobacco-specific biomarker and lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol. Cancer Epidemiol Biomarkers Prev 2010; 18:3421-5. [PMID: 19959691 DOI: 10.1158/1055-9965.epi-09-0874] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) is tobacco specific and has a longer half-life than other tobacco biomarkers studied thus far. An accurate measurement of the NNAL half-life is important for optimal use to assess exposure to tobacco smoke. We determined the half-life of NNAL in urine in eight daily smokers on a clinical research ward and in five occasional smokers in a real-life environment. Total NNAL in urine was monitored for 14 days in daily smokers after stopping smoking and for up to 60 days in occasional smokers. The average half-life for the terminal phase in the daily smoker group using a two-compartmental body model was 10.3 days (beta phase), and using a noncompartmental model, it was 9.1 days. In the occasional group, these values were 17.6 and 16.0 days, respectively. The alpha-phase half-lives were 14.3 and 27.8 hours for the two groups, respectively. The inter-subject coefficient of variation of the NNAL terminal half-life ranged from 14% to 30%, and the intra-subject coefficient of variation ranged from 3% to 18%. There was very good agreement between the plasma and urinary half-lives in two subjects with plasma analyses: 7.4 versus 7.9 days and 9.2 versus 10.7 days. Mean renal clearance of NNAL was 13 +/- 2.3 mL/min. The terminal half-life of NNAL of 10 to 18 days indicates that this biomarker can be used to detect tobacco smoke exposure for 6 to 12 weeks after cessation of exposure and requires a similar time to assess the steady levels of NNAL after switching from one tobacco product to another.
Collapse
|