51
|
Li P, Ma S, Ma X, Ding D, Zhu X, Zhang H, Liu J, Mu J, Zhang M. Reversal of neurovascular decoupling and cognitive impairment in patients with end-stage renal disease during a hemodialysis session: Evidence from a comprehensive fMRI analysis. Hum Brain Mapp 2022; 44:989-1001. [PMID: 36269166 PMCID: PMC9875915 DOI: 10.1002/hbm.26122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 01/28/2023] Open
Abstract
Neurovascular (NV) decoupling is a potential neuropathologic mechanism of cognitive impairment in patients with end-stage renal disease (ESRD). Hemodialysis improves cognitive impairment at 24 h post-dialysis, which suggests a potential neuroprotective effect of hemodialysis treatment on the brain. We investigated the effects of hemodialysis treatment on the reversal of NV decoupling associated with cognitive improvement. A total of 39 patients with ESRD and 39 healthy controls were enrolled. All patients were imaged twice during a dialysis session: before hemodialysis (T1pre-dialysis ) and at 24 h after dialysis (T2post-dialysis ). The healthy controls were imaged once. NV coupling was characterized based on correlation coefficients between four types of blood oxygen level-dependent signals and cerebral blood flow (CBF). A battery of neuropsychological and blood tests was performed before the imaging. Patients with ESRD showed improvements in memory and executive function at T2post-dialysis compared with that at T1pre-dialysis . At both T1pre-dialysis and T2post-dialysis , patients with ESRD had lower amplitude of low-frequency fluctuation (ALFF)-CBF coupling than healthy controls. Additionally, patients with ESRD had higher ALFF-CBF coupling at T2post-dialysis than at T1pre-dialysis . Higher memory scores, higher hemoglobin level, lower total plasma homocysteine level, lower systolic blood pressure variance, and lower ultrafiltration volume were associated with higher ALFF-CBF coupling in patients with ESRD after a hemodialysis session. These findings indicate that partial correction of anemia and hyperhomocysteinemia, stable systolic blood pressure, and fluid restriction may be closely linked to the reversal of NV decoupling and improvement in cognition in patients with ESRD.
Collapse
Affiliation(s)
- Peng Li
- Department of Medical ImagingFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina,Department of Medical ImagingNuclear Industry 215 Hospital of Shaanxi ProvinceXianyangShaanxiChina
| | - Shaohui Ma
- Department of Medical ImagingFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Xueying Ma
- Department of Medical ImagingThe Affiliated Hospital of Inner Mongolia Medical UniversityHohhotInner MongoliaChina
| | - Dun Ding
- Department of Medical ImagingSecond Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Xinyi Zhu
- Department of Medical ImagingFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Huawen Zhang
- Department of Medical ImagingNuclear Industry 215 Hospital of Shaanxi ProvinceXianyangShaanxiChina
| | - Jixin Liu
- Center for Brain ImagingSchool of Life Science and Technology, Xidian UniversityXi'anChina
| | - Junya Mu
- Department of Medical ImagingFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Ming Zhang
- Department of Medical ImagingFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
52
|
Zhang W, Li M, Zhou X, Huang C, Wan K, Li C, Yin J, Zhao W, Zhang C, Zhu X, Sun Z. Altered serum amyloid beta and cerebral perfusion and their associations with cognitive function in patients with subcortical ischemic vascular disease. Front Neurosci 2022; 16:993767. [PMID: 36312019 PMCID: PMC9608371 DOI: 10.3389/fnins.2022.993767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/08/2022] [Indexed: 01/07/2024] Open
Abstract
Subcortical ischemic vascular disease (SIVD) is one of the important causes of cognitive dysfunction, altered amyloid-beta (Aβ) and cerebral perfusion may be involved in the pathophysiological mechanism of SIVD and are closely related to cognitive function. We aimed to investigate altered serum Aβ and cerebral perfusion in patients with SIVD and their correlation with cognitive function. Seventy-four healthy controls (HCs) and 74 SIVD patients, including 38 SIVD patients with no cognitive impairment (SIVD-NCI) and 36 SIVD patients with mild cognitive impairment (SIVD-MCI) underwent the measurement of serum Aβ40 and Aβ42 levels, pseudo-continuous arterial spin labeling MRI scanning, and cognitive evaluation. Compared to the healthy controls (HCs), the level of serum Aβ40 and Aβ40/42 ratio increased and Aβ42 decreased in SIVD patients. The serum Aβ40 level and Aβ40/42 ratio in patients with SIVD-MCI were significantly higher than those in the HCs and SIVD-NCI, and the level of Aβ42 in the SIVD-MCI was lower than the HCs. In addition, the serum Aβ40/42 ratio provided high diagnostic accuracy for SIVD and SIVD-MCI, it was further identified as an independent risk factor for cognitive impairment. Patients with SIVD-NCI and SIVD-MCI exhibited both increased and decreased cerebral blood flow (CBF) in regional. The Aβ40/42 ratio was associated with global CBF, while altered global and regional CBF was associated with cognitive deficits. In addition, white matter hyperintensities volume (WMHV) correlated with Aβ40/42 ratio, CBF, and cognition. The relationship between Aβ40/42 ratio and cognition was partially mediated by altered CBF. Based on these results, we conclude that the serum Aβ40/42 ratio may be a potential biomarker that can complement current methods for the prediction and diagnosis of cognitive impairment in SIVD patients. In addition, serum Aβ may play a role in cognitive function by regulating CBF, which provides new insights into the intervention, treatment, and prevention of cognitive impairment in SIVD.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mingxu Li
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xia Zhou
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chaojuan Huang
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ke Wan
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chenchen Li
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiabin Yin
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenming Zhao
- Department of Radiology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cun Zhang
- Department of Radiology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoqun Zhu
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhongwu Sun
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
53
|
Wang R, Mo F, Shen Y, Song Y, Cai H, Zhu J. Functional connectivity gradients of the insula to different cerebral systems. Hum Brain Mapp 2022; 44:790-800. [PMID: 36206289 PMCID: PMC9842882 DOI: 10.1002/hbm.26099] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 01/25/2023] Open
Abstract
The diverse functional roles of the insula may emerge from its heavy connectivity to an extensive network of cortical and subcortical areas. Despite several previous attempts to investigate the hierarchical organization of the insula by applying the recently developed gradient approach to insula-to-whole brain connectivity data, little is known about whether and how there is variability across connectivity gradients of the insula to different cerebral systems. Resting-state functional MRI data from 793 healthy subjects were used to discover and validate functional connectivity gradients of the insula, which were computed based on its voxel-wise functional connectivity profiles to distinct cerebral systems. We identified three primary patterns of functional connectivity gradients of the insula to distinct cerebral systems. The connectivity gradients to the higher-order transmodal associative systems, including the prefrontal, posterior parietal, temporal cortices, and limbic lobule, showed a ventroanterior-dorsal axis across the insula; those to the lower-order unimodal primary systems, including the motor, somatosensory, and occipital cortices, displayed radiating transitions from dorsoanterior toward both ventroanterior and dorsoposterior parts of the insula; the connectivity gradient to the subcortical nuclei exhibited an organization along the anterior-posterior axis of the insula. Apart from complementing and extending previous literature on the heterogeneous connectivity patterns of insula subregions, the presented framework may offer ample opportunities to refine our understanding of the role of the insula in many brain disorders.
Collapse
Affiliation(s)
- Rui Wang
- Department of RadiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina,Research Center of Clinical Medical Imaging, Anhui ProvinceHefeiChina,Anhui Provincial Institute of Translational MedicineHefeiChina
| | - Fan Mo
- Department of RadiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina,Research Center of Clinical Medical Imaging, Anhui ProvinceHefeiChina,Anhui Provincial Institute of Translational MedicineHefeiChina
| | - Yuhao Shen
- Department of RadiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina,Research Center of Clinical Medical Imaging, Anhui ProvinceHefeiChina,Anhui Provincial Institute of Translational MedicineHefeiChina
| | - Yu Song
- Department of RadiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina,Research Center of Clinical Medical Imaging, Anhui ProvinceHefeiChina,Anhui Provincial Institute of Translational MedicineHefeiChina
| | - Huanhuan Cai
- Department of RadiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina,Research Center of Clinical Medical Imaging, Anhui ProvinceHefeiChina,Anhui Provincial Institute of Translational MedicineHefeiChina
| | - Jiajia Zhu
- Department of RadiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina,Research Center of Clinical Medical Imaging, Anhui ProvinceHefeiChina,Anhui Provincial Institute of Translational MedicineHefeiChina
| |
Collapse
|
54
|
Schmithorst VJ, Adams PS, Badaly D, Lee VK, Wallace J, Beluk N, Votava-Smith JK, Weinberg JG, Beers SR, Detterich J, Wood JC, Lo CW, Panigrahy A. Impaired Neurovascular Function Underlies Poor Neurocognitive Outcomes and Is Associated with Nitric Oxide Bioavailability in Congenital Heart Disease. Metabolites 2022; 12:metabo12090882. [PMID: 36144286 PMCID: PMC9504090 DOI: 10.3390/metabo12090882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022] Open
Abstract
We use a non-invasive MRI proxy of neurovascular function (pnvf) to assess the ability of the vasculature to supply baseline metabolic demand, to compare pediatric and young adult congenital heart disease (CHD) patients to normal referents and relate the proxy to neurocognitive outcomes and nitric oxide bioavailability. In a prospective single-center study, resting-state blood-oxygen-level-dependent (BOLD) and arterial spin labeling (ASL) MRI scans were successfully obtained from 24 CHD patients (age = 15.4 ± 4.06 years) and 63 normal referents (age = 14.1 ± 3.49) years. Pnvf was computed on a voxelwise basis as the negative of the ratio of functional connectivity strength (FCS) estimated from the resting-state BOLD acquisition to regional cerebral blood flow (rCBF) as estimated from the ASL acquisition. Pnvf was used to predict end-tidal CO2 (PETCO2) levels and compared to those estimated from the BOLD data. Nitric oxide availability was obtained via nasal measurements (nNO). Pnvf was compared on a voxelwise basis between CHD patients and normal referents and correlated with nitric oxide availability and neurocognitive outcomes as assessed via the NIH Toolbox. Pnvf was shown as highly predictive of PETCO2 using theoretical modeling. Pnvf was found to be significantly reduced in CHD patients in default mode network (DMN, comprising the ventromedial prefrontal cortex and posterior cingulate/precuneus), salience network (SN, comprising the insula and dorsal anterior cingulate), and central executive network (CEN, comprising posterior parietal and dorsolateral prefrontal cortex) regions with similar findings noted in single cardiac ventricle patients. Positive correlations of Pnvf in these brain regions, as well as the hippocampus, were found with neurocognitive outcomes. Similarly, positive correlations between Pnvf and nitric oxide availability were found in frontal DMN and CEN regions, with particularly strong correlations in subcortical regions (putamen). Reduced Pnvf in CHD patients was found to be mediated by nNO. Mediation analyses further supported that reduced Pnvf in these regions underlies worse neurocognitive outcome in CHD patients and is associated with nitric oxide bioavailability. Impaired neuro-vascular function, which may be non-invasively estimated via combined arterial-spin label and BOLD MR imaging, is a nitric oxide bioavailability dependent factor implicated in adverse neurocognitive outcomes in pediatric and young adult CHD.
Collapse
Affiliation(s)
| | - Phillip S. Adams
- Department of Pediatric Anesthesiology, UPMC Children’s Hospital, Pittsburgh, PA 15224, USA
| | - Daryaneh Badaly
- Learning and Development Center, Child Mind Institute, New York, NY 10022, USA
| | - Vincent K. Lee
- Department of Pediatric Radiology, UPMC Children’s Hospital, Pittsburgh, PA 15224, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Julia Wallace
- Department of Pediatric Radiology, UPMC Children’s Hospital, Pittsburgh, PA 15224, USA
| | - Nancy Beluk
- Department of Pediatric Radiology, UPMC Children’s Hospital, Pittsburgh, PA 15224, USA
| | | | | | - Sue R. Beers
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jon Detterich
- Heart Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - John C. Wood
- Heart Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Cecilia W. Lo
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ashok Panigrahy
- Department of Pediatric Radiology, UPMC Children’s Hospital, Pittsburgh, PA 15224, USA
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Correspondence: ; Tel.: +1-412-692-5510; Fax: +1-412-692-6929
| |
Collapse
|
55
|
Shang S, Ye J, Wu J, Zhang H, Dou W, Krishnan Muthaiah VP, Tian Y, Zhang Y, Chen YC, Yin X. Early disturbance of dynamic synchronization and neurovascular coupling in cognitively normal Parkinson's disease. J Cereb Blood Flow Metab 2022; 42:1719-1731. [PMID: 35473430 PMCID: PMC9441726 DOI: 10.1177/0271678x221098503] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pathological process in Parkinson's disease (PD) is accompanied with functional and metabolic alterations. The time-varying properties of functional coherence and their coupling to regional perfusion are still rarely elucidated. To investigate early disruption of dynamic regional homogeneity (dReho) and neurovascular coupling in cognitively normal PD patients, dynamic neuronal synchronization and regional perfusion were measured using dReho and cerebral blood flow (CBF), respectively. Neurovascular coupling was assessed by CBF-ReHo correlation coefficient and CBF/ReHo ratio. Multivariate pattern analysis was conducted for the differentiating ability of each feature. Relative to healthy controls (HC) subjects, PD patients demonstrated increased dReho in middle temporal gyrus (MTG), rectus gyrus, middle occipital gyrus, and precuneus, whereas reduced dReho in putamen and supplementary motor area (SMA); while higher CBF/dReho ratio was located in putamen, SMA, paracentral lobule, and postcentral gyrus, whereas lower CBF/dReho ratio in superior temporal gyrus, MTG, precuneus, and angular gyrus (AG). Global and regional CBF-Reho decoupling were both observed in PD groups. The CBF/Reho ratio features achieved more powerful classification performance than other features. From the view of dynamic neural synchronization and neurovascular coupling, this study reinforced the insights into neural basis underlying PD and the potential role in the disease diagnosis and differentiation.
Collapse
Affiliation(s)
- Song'an Shang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Ye
- Department of Radiology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Jingtao Wu
- Department of Radiology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Hongying Zhang
- Department of Radiology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Weiqiang Dou
- MR Research China, GE Healthcare, Beijing, China
| | | | - Youyong Tian
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yingdong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
56
|
Xiong Y, Chen RS, Wang XY, Li X, Dai LQ, Yu RQ. Cerebral blood flow in adolescents with drug-naive, first-episode major depressive disorder: An arterial spin labeling study based on voxel-level whole-brain analysis. Front Neurosci 2022; 16:966087. [PMID: 35968369 PMCID: PMC9363766 DOI: 10.3389/fnins.2022.966087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE The major depressive disorder (MDD) can be a threat to the health of people all over the world. Although governments have developed and implemented evidence-based interventions and prevention programs to prevent MDD and maintain mental health in adolescents, the number of adolescents with this condition has been on the rise for the past 10 years. METHODS A total of 60 adolescents were recruited, including 32 drug-naive adolescents with first-episode MDD and 28 healthy controls (HCs). Alterations in the intrinsic cerebral activity of the adolescents with MDD were explored using arterial spin labeling (ASL) while differences in the regional cerebral blood flow (rCBF) of the two groups were assessed based on voxel-based whole-brain analysis. Finally, correlations between the regional functional abnormalities and clinical variables were investigated for adolescents with MDD. RESULTS Compared with HCs, MDD patients had a lower rCBF in the left triangular part of the inferior frontal gyrus (IFGtriang) but a higher one in the right Precental gyrus (PreCG). Negative correlations were also noted between the CBF in the left IFGtriang and the Hamilton depression scale (HAMD) scores of MDD patients. CONCLUSION Elucidating the neurobiological features of adolescent patients with MDD is important to adequately develop methods that can assist in early diagnosis, precaution and intervention.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Hematology, Chongqing General Hospital, Chongqing, China
| | - Rong-Sheng Chen
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xing-Yu Wang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin-Qi Dai
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ren-Qiang Yu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
57
|
Shared and specific characteristics of regional cerebral blood flow and functional connectivity in unmedicated bipolar and major depressive disorders. J Affect Disord 2022; 309:77-84. [PMID: 35452757 DOI: 10.1016/j.jad.2022.04.099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Identifying brain similarities and differences between bipolar disorder (BD) and major depressive disorder (MDD) can help us better understand their pathophysiological mechanisms and develop more effective treatments. However, the features of whole-brain regional cerebral blood flow (CBF) and intrinsic functional connectivity (FC) underlying BD and MDD have not been directly compared. METHODS Eighty-eight unmedicated BD II depression patients, 95 unmedicated MDD patients, and 96 healthy controls (HCs) underwent three-dimensional arterial spin labeling (3D ASL) and resting-state functional MRI (rs-fMRI). The functional properties of whole brain CBF and seed-based resting-state FC further performed based on those regions with changed CBF were analyzed between the three groups. RESULTS The patients with BD and MDD showed commonly increased CBF in the left posterior lobe of the cerebellum and the left middle temporal gyrus (MTG) compared with HCs. The CBF of the left MTG was positively associated with 24-items Hamilton Depression Rating Scale scores in MDD patients. Decreased FC between the left posterior lobe of the cerebellum and the left inferior frontal gyrus (IFG) was observed only in patients with BD compared with HCs. CONCLUSION Patients with BD and those with MDD shared common features of CBF in the posterior lobe of the cerebellum and the MTG. The altered posterior lobe of the cerebellum-IFG FC can be considered as a potential biomarker for the differentiation of patients with BD from those with MDD.
Collapse
|
58
|
Kang YF, Chen RT, Ding H, Li L, Gao JM, Liu LZ, Zhang YM. Structure–Function Decoupling: A Novel Perspective for Understanding the Radiation-Induced Brain Injury in Patients With Nasopharyngeal Carcinoma. Front Neurosci 2022; 16:915164. [PMID: 35860295 PMCID: PMC9289669 DOI: 10.3389/fnins.2022.915164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022] Open
Abstract
Radiation-induced functional and structural brain alterations are well documented in patients with nasopharyngeal carcinoma (NPC), followed by radiotherapy (RT); however, alterations in structure–function coupling remain largely unknown. Herein, we aimed to assess radiation-induced structure–function decoupling and its importance in predicting radiation encephalopathy (RE). We included 62 patients with NPC (22 patients in the pre-RT cohort, 18 patients in the post-RT-RE+ve cohort, and 22 patients in the post-RT-RE–ve cohort). A metric of regional homogeneity (ReHo)/voxel-based morphometry (VBM) was used to detect radiation-induced structure–function decoupling, which was then used as a feature to construct a predictive model for RE. Compared with the pre-RT group, patients in the post-RT group (which included post-RT-RE+ve and post-RT-RE–ve) showed higher ReHo/VBM coupling values in the substantia nigra (SN), the putamen, and the bilateral thalamus and lower values in the brain stem, the cerebellum, the bilateral medial temporal lobes (MTLs), the bilateral insula, the right precentral and postcentral gyri, the medial prefrontal cortex (MPFC), and the left inferior parietal lobule (IPL). In the post-RT group, negative correlations were observed between maximum dosage of RT (MDRT) to the ipsilateral temporal lobe and ReHo/VBM values in the ipsilateral middle temporal gyrus (MTG). Moreover, structure–function decoupling in the bilateral superior temporal gyrus (STG), the bilateral precentral and postcentral gyri, the paracentral lobules, the right precuneus and IPL, and the right MPFC exhibited excellent predictive performance (accuracy = 88.0%) in identifying patients likely to develop RE. These findings show that ReHo/VBM may be a novel effective imaging metric that reflects the neural mechanism underlying RE in patients with NPC.
Collapse
Affiliation(s)
- Ya-fei Kang
- Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, School of Psychology, Shaanxi Normal University, Xi’an, China
| | - Rui-ting Chen
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Ding
- Department of Radiology, Affiliated Hospital of Guilin Medical University, Guilin, China
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian-ming Gao
- State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li-zhi Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - You-ming Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: You-ming Zhang,
| |
Collapse
|
59
|
Loss of superiority illusion in bipolar depressive disorder: A combined functional and structural MRI study. J Psychiatr Res 2022; 151:391-398. [PMID: 35580402 DOI: 10.1016/j.jpsychires.2022.04.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/02/2022] [Accepted: 04/25/2022] [Indexed: 11/23/2022]
Abstract
Superiority illusion (SI) is a positive cognitive bias related to self, manifested as overestimated self-appraisal. Negative self-schema is a core feature of the cognitive model of depression, including bipolar depressive disorder (BDD). However, only little research has explored the impaired self-processing in BDD. The potential alteration of positive self-bias and the corresponding neural mechanism in BDD remains unclear. This study aimed to investigate the underlying neural mechanism of self-processing in BDD combining task-related functional magnetic resonance imaging and high-resolution T1 structural imaging. Forty-three BDD and forty-eight healthy controls were recruited and underwent a self-related task, where participants were required to evaluate how they compared with their average peers on a serial of positive and negative traits. We defined the ratio of neural activation and gray matter volume (GMV) in a region as the functional-structural coupling index to detect the changes of brain image in BDD. Furthermore, we used moderation analysis to explore the relationship among functional-structural coupling, behavioral scores and depression symptoms. BDD exhibited decreased task activation, GMV, and functional-structural coupling in bilateral anterior insula (AI) and inferior parietal lobule (IPL). The associations between functional-structural coupling in the right AI, IPL and negative trait self-rating scores were moderated by depressive symptom severity. The study revealed disturbed self-related processing and provided new evidences to neuropsychological dysfunction in BDD.
Collapse
|
60
|
Guilbert J, Légaré A, De Koninck P, Desrosiers P, Desjardins M. Toward an integrative neurovascular framework for studying brain networks. NEUROPHOTONICS 2022; 9:032211. [PMID: 35434179 PMCID: PMC8989057 DOI: 10.1117/1.nph.9.3.032211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/11/2022] [Indexed: 05/28/2023]
Abstract
Brain functional connectivity based on the measure of blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) signals has become one of the most widely used measurements in human neuroimaging. However, the nature of the functional networks revealed by BOLD fMRI can be ambiguous, as highlighted by a recent series of experiments that have suggested that typical resting-state networks can be replicated from purely vascular or physiologically driven BOLD signals. After going through a brief review of the key concepts of brain network analysis, we explore how the vascular and neuronal systems interact to give rise to the brain functional networks measured with BOLD fMRI. This leads us to emphasize a view of the vascular network not only as a confounding element in fMRI but also as a functionally relevant system that is entangled with the neuronal network. To study the vascular and neuronal underpinnings of BOLD functional connectivity, we consider a combination of methodological avenues based on multiscale and multimodal optical imaging in mice, used in combination with computational models that allow the integration of vascular information to explain functional connectivity.
Collapse
Affiliation(s)
- Jérémie Guilbert
- Université Laval, Department of Physics, Physical Engineering, and Optics, Québec, Canada
- Université Laval, Centre de recherche du CHU de Québec, Québec, Canada
| | - Antoine Légaré
- Université Laval, Department of Physics, Physical Engineering, and Optics, Québec, Canada
- Centre de recherche CERVO, Québec, Canada
- Université Laval, Department of Biochemistry, Microbiology, and Bioinformatics, Québec, Canada
| | - Paul De Koninck
- Centre de recherche CERVO, Québec, Canada
- Université Laval, Department of Biochemistry, Microbiology, and Bioinformatics, Québec, Canada
| | - Patrick Desrosiers
- Université Laval, Department of Physics, Physical Engineering, and Optics, Québec, Canada
- Centre de recherche CERVO, Québec, Canada
| | - Michèle Desjardins
- Université Laval, Department of Physics, Physical Engineering, and Optics, Québec, Canada
- Université Laval, Centre de recherche du CHU de Québec, Québec, Canada
| |
Collapse
|
61
|
Zhang J, Shang D, Ye J, Ling Y, Zhong S, Zhang S, Zhang W, Zhang L, Yu Y, He F, Ye X, Luo B. Altered Coupling Between Cerebral Blood Flow and Voxel-Mirrored Homotopic Connectivity Affects Stroke-Induced Speech Comprehension Deficits. Front Aging Neurosci 2022; 14:922154. [PMID: 35813962 PMCID: PMC9260239 DOI: 10.3389/fnagi.2022.922154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022] Open
Abstract
The neurophysiological basis of the association between interhemispheric connectivity and speech comprehension processing remains unclear. This prospective study examined regional cerebral blood flow (CBF), homotopic functional connectivity, and neurovascular coupling, and their effects on comprehension performance in post-stroke aphasia. Multimodal imaging data (including data from functional magnetic resonance imaging and arterial spin labeling imaging) of 19 patients with post-stroke aphasia and 22 healthy volunteers were collected. CBF, voxel-mirrored homotopic connectivity (VMHC), CBF-VMHC correlation, and CBF/VMHC ratio maps were calculated. Between-group comparisons were performed to identify neurovascular changes, and correlation analyses were conducted to examine their relationship with the comprehension domain. The correlation between CBF and VMHC of the global gray matter decreased in patients with post-stroke aphasia. The total speech comprehension score was significantly associated with VMHC in the peri-Wernicke area [posterior superior temporal sulcus (pSTS): r = 0.748, p = 0.001; rostroventral area 39: r = 0.641, p = 0.008]. The decreased CBF/VMHC ratio was also mainly associated with the peri-Wernicke temporoparietal areas. Additionally, a negative relationship between the mean CBF/VMHC ratio of the cingulate gyrus subregion and sentence-level comprehension was observed (r = −0.658, p = 0.006). These findings indicate the contribution of peri-Wernicke homotopic functional connectivity to speech comprehension and reveal that abnormal neurovascular coupling of the cingulate gyrus subregion may underly comprehension deficits in patients with post-stroke aphasia.
Collapse
Affiliation(s)
- Jie Zhang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Neurology, Brain Medical Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Desheng Shang
- Department of Radiology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Ye
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yi Ling
- Department of Neurology, Brain Medical Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shuchang Zhong
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Shuangshuang Zhang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Wei Zhang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Li Zhang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yamei Yu
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fangping He
- Department of Neurology, Brain Medical Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangming Ye
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Xiangming Ye,
| | - Benyan Luo
- Department of Neurology, Brain Medical Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China
- Benyan Luo,
| |
Collapse
|
62
|
Chen G, Hu J, Ran H, Nie L, Tang W, Li X, Li Q, He Y, Liu J, Song G, Xu G, Liu H, Zhang T. Alterations of Cerebral Perfusion and Functional Connectivity in Children With Idiopathic Generalized Epilepsy. Front Neurosci 2022; 16:918513. [PMID: 35769697 PMCID: PMC9236200 DOI: 10.3389/fnins.2022.918513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/25/2022] [Indexed: 12/02/2022] Open
Abstract
Background Studies have demonstrated that adults with idiopathic generalized epilepsy (IGE) have functional abnormalities; however, the neuropathological pathogenesis differs between adults and children. This study aimed to explore alterations in the cerebral blood flow (CBF) and functional connectivity (FC) to comprehensively elucidate the neuropathological mechanisms of IGE in children. Methods We obtained arterial spin labeling (ASL) and resting state functional magnetic resonance imaging data of 28 children with IGE and 35 matched controls. We used ASL to determine differential CBF regions in children with IGE. A seed-based whole-brain FC analysis was performed for regions with significant CBF changes. The mean CBF and FC of brain areas with significant group differences was extracted, then its correlation with clinical variables in IGE group was analyzed by using Pearson correlation analysis. Results Compared to controls, children with IGE had CBF abnormalities that were mainly observed in the right middle temporal gyrus, right middle occipital gyrus (MOG), right superior frontal gyrus (SFG), left inferior frontal gyrus (IFG), and triangular part of the left IFG (IFGtriang). We observed that the FC between the left IFGtriang and calcarine fissure (CAL) and that between the right MOG and bilateral CAL were decreased in children with IGE. The CBF in the right SFG was correlated with the age at IGE onset. FC in the left IFGtriang and left CAL was correlated with the IGE duration. Conclusion This study found that CBF and FC were altered simultaneously in the left IFGtriang and right MOG of children with IGE. The combination of CBF and FC may provide additional information and insight regarding the pathophysiology of IGE from neuronal and vascular integration perspectives.
Collapse
|
63
|
Guo Y, Lv X, Wei Q, Wu Y, Chen Y, Ji Y, Hou Q, Lv H, Zhou N, Wang K, Tian Y. Impaired neurovascular coupling and cognitive deficits in anti-N-methyl-D-aspartate receptor encephalitis. Brain Imaging Behav 2022; 16:1065-1076. [PMID: 34735667 DOI: 10.1007/s11682-021-00588-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 10/17/2021] [Indexed: 10/19/2022]
Abstract
Anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis is a recently identified autoimmune disorder with heterogeneous neurological, psychiatric, and cognitive manifestations. The NMDAR is a key signaling node for neurovascular coupling, the mechanism by which cerebral blood perfusion is enhanced to meet local metabolic requirements from increased neuronal activity. Therefore, anti-NMDAR encephalitis may disrupt neurovascular coupling and induce cognitive deficits. This study examined neurovascular coupling and cognitive function in anti-NMDAR encephalitis patients to identify prognostic biomarkers, reveal potential pathogenic mechanisms, and provide clues to possible therapeutic strategies. In this study, twenty-three anti-NMDAR encephalitis patients and thirty healthy controls received neuropsychological testing and multimodal magnetic resonance imaging (MRI). Cerebral blood flow (CBF) was calculated from arterial spin labeling, and regional homogeneity (ReHo) was computed from functional MRI. Pearson's correlation coefficients between CBF and ReHo were calculated to obtain neurovascular coupling. At the whole gray matter level, CBF‒ReHo coupling was reduced in patients compared to healthy controls. At the regional level, CBF‒ReHo was significantly lower among patients in the precentral gyrus, frontal gyrus, insula, cuneus, inferior parietal lobe, supramarginal gyrus, angular gyrus, precuneus, temporal gyrus, and temporal pole. Reduced CBF‒ReHo in the left superior medial frontal gyrus of patients was significantly correlated with a deficit in verbal inhibition control, and the reduced CBF‒ReHo in the left insula was significantly correlated with impaired executive function. In conclusion, anti-NMDAR encephalitis is associated with both global and regional disruptions in neurovascular coupling that may in turn lead to deficits in specific cognitive domains.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Anhui Province, Hefei, 230022, China
| | - Xinyi Lv
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Qiang Wei
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Anhui Province, Hefei, 230022, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, 230022, Hefei, China
| | - Yue Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Anhui Province, Hefei, 230022, China
| | - Yue Chen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Anhui Province, Hefei, 230022, China
| | - Yang Ji
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Anhui Province, Hefei, 230022, China
| | - Qiangqiang Hou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Anhui Province, Hefei, 230022, China
| | - Huaming Lv
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Anhui Province, Hefei, 230022, China
| | - Nong Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Anhui Province, Hefei, 230022, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Anhui Province, Hefei, 230022, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, 230022, Hefei, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 230022, Hefei, China.
- School of Mental Health and Psychological Sciences, Anhui Medical University, 230022, Hefei, China.
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, 230022, Hefei, China.
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Anhui Province, Hefei, 230022, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, 230022, Hefei, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 230022, Hefei, China.
- School of Mental Health and Psychological Sciences, Anhui Medical University, 230022, Hefei, China.
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, 230022, Hefei, China.
| |
Collapse
|
64
|
Wei Y, Han S, Chen J, Wang C, Wang W, Li H, Song X, Xue K, Zhang Y, Cheng J. Abnormal interhemispheric and intrahemispheric functional connectivity dynamics in drug-naïve first-episode schizophrenia patients with auditory verbal hallucinations. Hum Brain Mapp 2022; 43:4347-4358. [PMID: 35611547 PMCID: PMC9435010 DOI: 10.1002/hbm.25958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/15/2022] [Accepted: 05/08/2022] [Indexed: 11/23/2022] Open
Abstract
Numerous studies indicate altered static local and long‐range functional connectivity of multiple brain regions in schizophrenia patients with auditory verbal hallucinations (AVHs). However, the temporal dynamics of interhemispheric and intrahemispheric functional connectivity patterns remain unknown in schizophrenia patients with AVHs. We analyzed resting‐state functional magnetic resonance imaging data for drug‐naïve first‐episode schizophrenia patients, 50 with AVHs and 50 without AVH (NAVH), and 50 age‐ and sex‐matched healthy controls. Whole‐brain functional connectivity was decomposed into ipsilateral and contralateral parts, and sliding‐window analysis was used to calculate voxel‐wise interhemispheric and intrahemispheric dynamic functional connectivity density (dFCD). Finally, the correlation analysis was performed between abnormal dFCD variance and clinical measures in the AVH and NAVH groups. Compared with the NAVH group and healthy controls, the AVH group showed weaker interhemispheric dFCD variability in the left middle temporal gyrus (p < .01; p < .001), as well as stronger interhemispheric dFCD variability in the right thalamus (p < .001; p < .001) and right inferior temporal gyrus (p < .01; p < .001) and stronger intrahemispheric dFCD variability in the left inferior frontal gyrus (p < .001; p < .01). Moreover, abnormal contralateral dFCD variability of the left middle temporal gyrus correlated with the severity of AVHs in the AVH group (r = −.319, p = .024). The findings demonstrate that abnormal temporal variability of interhemispheric and intrahemispheric dFCD in schizophrenia patients with AVHs mainly focus on the temporal and frontal cortices and thalamus that are pivotal components of auditory and language pathways.
Collapse
Affiliation(s)
- Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingli Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weijian Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kangkang Xue
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
65
|
Kim WS, Shen J, Tsogt U, Odkhuu S, Chung YC. Altered thalamic subregion functional networks in patients with treatment-resistant schizophrenia. World J Psychiatry 2022; 12:693-707. [PMID: 35663295 PMCID: PMC9150031 DOI: 10.5498/wjp.v12.i5.693] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/25/2021] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The thalamus plays a key role in filtering information and has extensive interconnectivity with other brain regions. A large body of evidence points to impaired functional connectivity (FC) of the thalamocortical pathway in schizophrenia. However, the functional network of the thalamic subregions has not been investigated in patients with treatment-resistant schizophrenia (TRS).
AIM To identify the neural mechanisms underlying TRS, we investigated FC of thalamic sub-regions with cortical networks and voxels, and the associations of this FC with clinical symptoms. We hypothesized that the FC of thalamic sub-regions with cortical networks and voxels would differ between TRS patients and HCs.
METHODS In total, 50 patients with TRS and 61 healthy controls (HCs) matched for age, sex, and education underwent resting-state functional magnetic resonance imaging (rs-fMRI) and clinical evaluation. Based on the rs-fMRI data, we conducted a FC analysis between thalamic subregions and cortical functional networks and voxels, and within thalamic subregions and cortical functional networks, in the patients with TRS. A functional parcellation atlas was used to segment the thalamus into nine subregions. Correlations between altered FC and TRS symptoms were explored.
RESULTS We found differences in FC within thalamic subregions and cortical functional networks between patients with TRS and HCs. In addition, increased FC was observed between thalamic subregions and the sensorimotor cortex, frontal medial cortex, and lingual gyrus. These abnormalities were associated with the pathophysiology of TRS.
CONCLUSION Our findings suggest that disrupted FC within thalamic subregions and cortical functional networks, and within the thalamocortical pathway, has potential as a marker for TRS. Our findings also improve our understanding of the relationship between the thalamocortical pathway and TRS symptoms.
Collapse
Affiliation(s)
- Woo-Sung Kim
- Department of Psychiatry, Jeonbuk National University, Jeon-ju 54907, South Korea
| | - Jie Shen
- Department of Psychiatry, Jeonbuk National University, Jeon-ju 54907, South Korea
| | - Uyanga Tsogt
- Department of Psychiatry, Jeonbuk National University, Jeon-ju 54907, South Korea
| | - Soyolsaikhan Odkhuu
- Department of Psychiatry, Jeonbuk National University, Jeon-ju 54907, South Korea
| | - Young-Chul Chung
- Department of Psychiatry, Jeonbuk National University, Jeon-ju 54907, South Korea
| |
Collapse
|
66
|
Chen J, Xue K, Yang M, Wang K, Xu Y, Wen B, Cheng J, Han S, Wei Y. Altered Coupling of Cerebral Blood Flow and Functional Connectivity Strength in First-Episode Schizophrenia Patients With Auditory Verbal Hallucinations. Front Neurosci 2022; 16:821078. [PMID: 35546878 PMCID: PMC9083321 DOI: 10.3389/fnins.2022.821078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Auditory verbal hallucinations (AVHs) are a major symptom of schizophrenia and are connected with impairments in auditory and speech-related networks. In schizophrenia with AVHs, alterations in resting-state cerebral blood flow (CBF) and functional connectivity have been described. However, the neurovascular coupling alterations specific to first-episode drug-naïve schizophrenia (FES) patients with AVHs remain unknown. Methods Resting-state functional MRI and arterial spin labeling (ASL) was performed on 46 first-episode drug-naïve schizophrenia (FES) patients with AVHs (AVH), 39 FES drug-naïve schizophrenia patients without AVHs (NAVH), and 48 healthy controls (HC). Then we compared the correlation between the CBF and functional connection strength (FCS) of the entire gray matter between the three groups, as well as the CBF/FCS ratio of each voxel. Correlation analyses were performed on significant results between schizophrenia patients and clinical measures scale. Results The CBF/FCS ratio was reduced in the cognitive and emotional brain regions in both the AVH and NAVH groups, primarily in the crus I/II, vermis VI/VII, and cerebellum VI. In the AVH group compared with the HC group, the CBF/FCS ratio was higher in auditory perception and language-processing areas, primarily the left superior and middle temporal gyrus (STG/MTG). The CBF/FCS ratio in the left STG and left MTG positively correlates with the score of the Auditory Hallucination Rating Scale in AVH patients. Conclusion These findings point to the difference in neurovascular coupling failure between AVH and NAVH patients. The dysfunction of the forward model based on the predictive and computing role of the cerebellum may increase the excitability in the auditory cortex, which may help to understand the neuropathological mechanism of AVHs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
67
|
McIntosh RC, Lobo J, Paparozzi J, Goodman Z, Kornfeld S, Nomi J. Neutrophil to lymphocyte ratio is a transdiagnostic biomarker of depression and structural and functional brain alterations in older adults. J Neuroimmunol 2022; 365:577831. [PMID: 35217366 PMCID: PMC11092564 DOI: 10.1016/j.jneuroim.2022.577831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 12/30/2022]
Abstract
The neutrophil to lymphocyte ratio (N:L) is an emergent transdiagnostic biomarker shown to predict peripheral inflammation as well as neuropsychiatric impairment. The afferent signaling of inflammation to the central nervous system has been implicated in the pathophysiology of sickness behavior and depression. Here, the N:L was compared to structural and functional limbic alterations found concomitant with depression within a geriatric cohort. Venous blood was collected for a complete blood count, and magnetic resonance imaging as well as phenotypic data were collected from the 66 community-dwelling older adults (aged 65-86 years). The N:L was regressed on gray matter volume and resting-state functional connectivity (rsFC) of the subgenual anterior cingulate (sgACC). Thresholded parameter estimates were extracted from structural and functional brain scans and bivariate associations tested with scores on the geriatric depression scale. Greater N:L predicted lower volume of hypothalamus and rsFC of sgACC with ventromedial prefrontal cortex. Both parameters were correlated (p < 0.05) with greater symptomology in those reporting moderate to severe levels of depression. These findings support the N:L as a transdiagnostic biomarker of limbic alteration underpinning mood disturbance in non-treated older adults.
Collapse
Affiliation(s)
- Roger C McIntosh
- Department of Psychology, University of Miami, Coral Gables, FL 33124, United States of America.
| | - Judith Lobo
- Department of Psychology, University of Miami, Coral Gables, FL 33124, United States of America
| | - Jeremy Paparozzi
- Department of Psychology, University of Miami, Coral Gables, FL 33124, United States of America
| | - Zach Goodman
- Department of Psychology, University of Miami, Coral Gables, FL 33124, United States of America
| | - Salome Kornfeld
- Department of Psychology, University of Miami, Coral Gables, FL 33124, United States of America
| | - Jason Nomi
- Department of Psychology, University of Miami, Coral Gables, FL 33124, United States of America
| |
Collapse
|
68
|
Zhu J, Wang C, Qian Y, Cai H, Zhang S, Zhang C, Zhao W, Zhang T, Zhang B, Chen J, Liu S, Yu Y. Multimodal neuroimaging fusion biomarkers mediate the association between gut microbiota and cognition. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110468. [PMID: 34736997 DOI: 10.1016/j.pnpbp.2021.110468] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 02/06/2023]
Abstract
Background The field of microbiota-gut-brain research in animals has progressed, while the exact nature of gut microbiota-brain-cognition relationship in humans is not completely elucidated, likely due to small sample sizes and single neuroimaging modality utilized to delineate limited aspects of the brain. We aimed to comprehensively investigate such association in a large sample using multimodal MRI. Methods Fecal samples were collected from 157 healthy young adults and 16S sequencing was used to assess gut microbial diversity and enterotypes. Five brain imaging measures, including regional homogeneity (ReHo) and functional connectivity density (FCD) from resting-state functional MRI, cerebral blood flow (CBF) from arterial spin labeling, gray matter volume (GMV) from structural MRI, and fractional anisotropy (FA) from diffusion tensor imaging, were jointly analyzed with a data-driven multivariate fusion method. Cognition was evaluated by 3-back and digit span tasks. Results We found significant associations of gut microbial diversity with ReHo, FCD, CBF, and GMV within the frontoparietal, default mode and visual networks, as well as with FA in a distributed set of juxtacortical white matter regions. In addition, there were FCD, CBF, GMV, and FA differences between Prevotella- versus Bacteroides-enterotypes in females and between Prevotella- versus Ruminococcaceae-enterotypes in males. Moreover, the identified neuroimaging fusion biomarkers could mediate the associations between microbial diversity and cognition. Conclusions Our findings not only expand existing knowledge of the microbiota-gut-brain axis, but also have potential clinical and translational implications by exposing the gut microbiota as a promising treatment and prevention target for cognitive impairment and related brain disorders.
Collapse
Affiliation(s)
- Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Chunli Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Shujun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Cun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Tingting Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Biao Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Jingyao Chen
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Siyu Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China.
| |
Collapse
|
69
|
Goldstein BI, MacIntosh BJ. The unrealized promise of cerebrovascular magnetic resonance imaging in psychiatric research across the lifespan. Eur Neuropsychopharmacol 2022; 55:11-13. [PMID: 34749052 DOI: 10.1016/j.euroneuro.2021.10.862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/11/2021] [Accepted: 10/17/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada; Departments of Psychiatry and Pharmacology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Bradley J MacIntosh
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
70
|
Li X, Xu N, Dai C, Meng X, Qiu X, Ding H, Zeng R, Lv H, Zhao P, Yang Z, Gong S, Wang Z. Altered Neurovascular Coupling in Unilateral Pulsatile Tinnitus. Front Neurosci 2022; 15:791436. [PMID: 35126039 PMCID: PMC8815060 DOI: 10.3389/fnins.2021.791436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/09/2021] [Indexed: 12/02/2022] Open
Abstract
Objective Altered cerebral blood flow (CBF) and regional homogeneity (ReHo) have been reported in pulsatile tinnitus (PT) patients. We aimed to explore regional neurovascular coupling changes in PT patients. Materials and Methods Twenty-four right PT patients and 25 sex- and age-matched normal controls were included in this study. All subjects received arterial spin labeling imaging to measure CBF and functional MRI to compute ReHo. CBF/ReHo ratio was used to assess regional neurovascular coupling between the two groups. We also analyzed the correlation between CBF/ReHo ratio and clinical data from the PT patients. Results PT patients exhibited increased CBF/ReHo ratio in left middle temporal gyrus and right angular gyrus than normal controls, and no decreased CBF/ReHo ratio was found. CBF/ReHo ratio in the left middle temporal gyrus of PT patients was positively correlated with Tinnitus Handicap Inventory score (r = 0.433, p = 0.035). Conclusion These findings indicated that patients with PT exhibit abnormal neurovascular coupling, which provides new information for understanding the neuropathological mechanisms underlying PT.
Collapse
Affiliation(s)
- Xiaoshuai Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ning Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chihang Dai
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xuxu Meng
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoyu Qiu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Heyu Ding
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Rong Zeng
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Han Lv,
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Pengfei Zhao,
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Zhenchang Wang,
| |
Collapse
|
71
|
Zhuo C, Chen G, Chen J, Tian H, Ma X, Li Q, Yang L, Zhang Q, Li R, Song X, Huang C. Lithium bidirectionally regulates depression- and mania-related brain functional alterations without worsening cognitive function in patients with bipolar disorder. Front Psychiatry 2022; 13:963005. [PMID: 36186884 PMCID: PMC9520085 DOI: 10.3389/fpsyt.2022.963005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/15/2022] [Indexed: 01/10/2023] Open
Abstract
Lithium monotherapy has been proposed to have antidepressant and antimanic effects in patients with bipolar disorder (BP). However, so far, it is lack of evidence to support this proposition. The main aim of this study was to test the hypothesis that lithium bidirectionally regulates depression- and mania-related brain functional abnormalities in patients with BP. We also assessed the effects of lithium, alone and in combination with other pharmacological treatments, on patients' cognitive performance. We enrolled 149 drug-naïve patients with BP; 99 patients experiencing first depressive episodes were allocated randomly to four treatment groups [lithium (DP/Li), lithium with lamotrigine (LTG; DP/Li+LTG), LTG (DP/LTG), and valproate (VPA) with LTG (DP/VPA+LTG)], and 50 experiencing first hypo-manic episodes were allocated to two treatment groups (MA/Li and MA/VPA). For comparative analysis, 60 age-matched healthy individuals were also recruited. Whole-brain global and regional resting-state cerebral blood flow (rs-CBF) and cognitive alterations were examined before and after 12-week treatment. We have the following findings: DP/Li+LTG, and to a lesser extent DP/Li, alleviated the depression-related reduction in rs-CBF. MA/VPA and MA/Li reversed the mania-related elevation of rs-CBF completely and partially, respectively. Lithium alone improved cognitive performance during depressive and manic episodes; other tested treatments have no such effect or worsened cognitive ability. Our results showed that lithium bidirectionally regulates depression- and mania-associated brain functional abnormalities in patients with BP. Lithium monotherapy has a better antimanic effect than VPA, is superior to other tested treatments in improving cognition during the course of BP, and has satisfactory antidepressant effects in patients with BP.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Key Laboratory of Real Time Tracing of Brain Circuits of Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital Affiliated to Tianjin Medical University, Tianjin Fourth Center Hospital, Tianjin, China.,Department of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, China.,Key Laboratory of Psychiatric-Neuroimaging-Genetics Laboratory (PNGC_Lab), Tianjin Mental Health Center of Tianjin Medical University, Tianjin Anding Hospital, Tianjin, China.,Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangdong Chen
- Department of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Jiayue Chen
- Key Laboratory of Real Time Tracing of Brain Circuits of Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital Affiliated to Tianjin Medical University, Tianjin Fourth Center Hospital, Tianjin, China
| | - Hongjun Tian
- Key Laboratory of Real Time Tracing of Brain Circuits of Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital Affiliated to Tianjin Medical University, Tianjin Fourth Center Hospital, Tianjin, China
| | - Xiaoyan Ma
- Key Laboratory of Psychiatric-Neuroimaging-Genetics Laboratory (PNGC_Lab), Tianjin Mental Health Center of Tianjin Medical University, Tianjin Anding Hospital, Tianjin, China
| | - Qianchen Li
- Key Laboratory of Real Time Tracing of Brain Circuits of Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital Affiliated to Tianjin Medical University, Tianjin Fourth Center Hospital, Tianjin, China
| | - Lei Yang
- Key Laboratory of Real Time Tracing of Brain Circuits of Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital Affiliated to Tianjin Medical University, Tianjin Fourth Center Hospital, Tianjin, China
| | - Qiuyu Zhang
- Key Laboratory of Real Time Tracing of Brain Circuits of Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital Affiliated to Tianjin Medical University, Tianjin Fourth Center Hospital, Tianjin, China
| | - Ranli Li
- Key Laboratory of Psychiatric-Neuroimaging-Genetics Laboratory (PNGC_Lab), Tianjin Mental Health Center of Tianjin Medical University, Tianjin Anding Hospital, Tianjin, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunhai Huang
- Department of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| |
Collapse
|
72
|
Zhuo C, Chen G, Chen J, Yang L, Zhang Q, Li Q, Wang L, Ma X, Sun Y, Jia F, Tian H, Jiang D. Baseline global brain structural and functional alterations at the time of symptom onset can predict subsequent cognitive deterioration in drug-naïve first-episode schizophrenia patients: Evidence from a follow-up study. Front Psychiatry 2022; 13:1012428. [PMID: 36311504 PMCID: PMC9615917 DOI: 10.3389/fpsyt.2022.1012428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/26/2022] [Indexed: 01/10/2023] Open
Abstract
Alterations in the global brain gray matter volume (gGMV) and global functional connectivity density (gFCD) play a pivotal role in the cognitive impairment and further deterioration in schizophrenia. This study aimed to assess the correlation between alterations in the gGMV and gFCD at baseline (ΔgGMV and ΔgFCD), and the subsequent alterations of cognitive function in schizophrenia patients after 2-year antipsychotic treatment. Global-brain magnetic resonance imaging scans were acquired from 877 drug-naïve, first-episode schizophrenia patients at baseline and after two years of antipsychotic treatment with adequate dosage and duration, and 200 healthy controls. According to ΔgGMV at baseline, schizophrenia patients were divided into mild, moderate, and severe alteration groups. The MATRICS consensus cognitive battery and Global Deficit Score (GDS) were used to assess cognitive impairment. We found that ΔgGMV and ΔgFCD at baseline were significantly correlated with the severity of the cognitive deterioration (ΔGDS). The correlation coefficient indicated a significant positive correlation between baseline ΔgFCD and subsequent cognitive deterioration, with a relatively stronger relation in the mild alteration group (r = 0.31). In addition, there was a significant positive correlation between baseline ΔgGMV and subsequent cognitive deterioration, with a stronger relation in the moderate and severe alteration groups (r = 0.303; r = 0.302, respectively). Our results showed that ΔgGMV and ΔgFCD are correlated with the severity of cognitive deterioration after completion of a 2-year antipsychotic treatment in schizophrenia patients. These findings suggest that baseline alterations in gGMV and gFCD hold potential for predicting subsequent cognitive decline in schizophrenia.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated of Tianjin Fourth Center Hospital, Tianjin, China.,Department of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, China.,Department of Psychiatry, Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Guangdong Chen
- Department of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Jiayue Chen
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated of Tianjin Fourth Center Hospital, Tianjin, China
| | - Lei Yang
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated of Tianjin Fourth Center Hospital, Tianjin, China
| | - Qiuyu Zhang
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated of Tianjin Fourth Center Hospital, Tianjin, China
| | - Qianchen Li
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated of Tianjin Fourth Center Hospital, Tianjin, China
| | - Lina Wang
- Department of Psychiatry, Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Xiaoyan Ma
- Department of Psychiatry, Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Yun Sun
- Department of Psychiatry, Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Feng Jia
- Department of Psychiatry, Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Hongjun Tian
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated of Tianjin Fourth Center Hospital, Tianjin, China
| | - Deguo Jiang
- Department of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| |
Collapse
|
73
|
Chen Y, Cui Q, Sheng W, Tang Q, Lu F, Pang Y, Nan X, He Z, Li D, Lei T, Chen H. Anomalous neurovascular coupling in patients with generalized anxiety disorder evaluated by combining cerebral blood flow and functional connectivity strength. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110379. [PMID: 34111495 DOI: 10.1016/j.pnpbp.2021.110379] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 05/06/2021] [Accepted: 06/04/2021] [Indexed: 01/10/2023]
Abstract
Coupling between neuronal activity and blood perfusion is termed neurovascular coupling, and it provides a new mechanistic perspective into understanding numerous brain diseases. Although abnormal brain activity and blood supply have been separately reported in generalized anxiety disorder (GAD), whether anomalous neurovascular coupling would still be presented in such disease is hitherto unknown. In this study, the neuronal activity and blood supply were measured using the functional connectivity strength (FCS) and cerebral blood flow (CBF). The voxel-wise CBF-FCS correlations and CBF/FCS ratio were separately used to assess global and local neurovascular coupling in participants. Patients with GAD showed decreased voxel-wise CBF-FCS correlation, implicating global neurovascular decoupling. They also exhibited increased CBF/FCS ratio in the right superior parietal gyrus (SPG), and the enhanced CBF/FCS ratio in this region was negatively correlated with the self-esteem scores of GAD. The abnormal neurovascular coupling of GAD may indicate the disrupted balance between the intrinsic functional organization of the brain and corresponding blood perfusion of patients, and the abnormally increased local neurovascular coupling of the right SPG may be correlated with the abnormal self in GAD. These findings provide new information in understanding the brain dysfunction and abnormal cognition of GAD from the perspective of neurovascular coupling.
Collapse
Affiliation(s)
- Yuyan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China.
| | - Wei Sheng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qin Tang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yajing Pang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Nan
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Di Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ting Lei
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Lab for Neuroinformation; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China; Department of Radiology, First Affiliated Hospital to Army Medical University, Chongqing, China.
| |
Collapse
|
74
|
Maly IV, Morales MJ, Pletnikov MV. Astrocyte Bioenergetics and Major Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:173-227. [PMID: 34888836 DOI: 10.1007/978-3-030-77375-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ongoing research continues to add new elements to the emerging picture of involvement of astrocyte energy metabolism in the pathophysiology of major psychiatric disorders, including schizophrenia, mood disorders, and addictions. This review outlines what is known about the energy metabolism in astrocytes, the most numerous cell type in the brain, and summarizes the recent work on how specific perturbations of astrocyte bioenergetics may contribute to the neuropsychiatric conditions. The role of astrocyte energy metabolism in mental health and disease is reviewed on the organism, organ, and cell level. Data arising from genomic, metabolomic, in vitro, and neurobehavioral studies is critically analyzed to suggest future directions in research and possible metabolism-focused therapeutic interventions.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Michael J Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
75
|
Shang S, Zhang H, Feng Y, Wu J, Dou W, Chen YC, Yin X. Region-Specific Neurovascular Decoupling Associated With Cognitive Decline in Parkinson's Disease. Front Aging Neurosci 2021; 13:770528. [PMID: 34867297 PMCID: PMC8636132 DOI: 10.3389/fnagi.2021.770528] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Cognitive deficits are prominent non-motor symptoms in Parkinson’s disease (PD) and have been shown to involve the neurovascular unit (NVU). However, there is a lack of sufficient neuroimaging research on the associated modulating mechanisms. The objective of this study was to identify the contribution of neurovascular decoupling to the pathogenesis of cognitive decline in PD. Methods: Regional homogeneity (ReHo), a measure of neuronal activity, and cerebral blood flow (CBF), a measure of vascular responses, were obtained from patients with PD with mild cognitive impairment (MCI) and normal cognition (NC) as well as matched healthy controls (HCs). Imaging metrics of neurovascular coupling (global and regional CBF-ReHo correlation coefficients and CBF-ReHo ratios) were compared among the groups. Results: Neurovascular coupling was impaired in patients with PD-MCI with a decreased global CBF-ReHo correlation coefficient relative to HC subjects (P < 0.05). Regional dysregulation was specific to the PD-MCI group and localized to the right middle frontal gyrus, right middle cingulate cortex, right middle occipital gyrus, right inferior parietal gyrus, right supramarginal gyrus, and right angular gyrus (P < 0.05). Compared with HC subjects, patients with PD-MCI showed higher CBF-ReHo ratios in the bilateral lingual gyri (LG), bilateral putamen, and left postcentral gyrus and lower CBF-ReHo ratios in the right superior temporal gyrus, bilateral middle temporal gyri, bilateral parahippocampal gyri, and right inferior frontal gyrus. Relative to the HC and PD-NC groups, the PD-MCI group showed an increased CBF-ReHo ratio in the left LG, which was correlated with poor visual–spatial performance (r = −0.36 and P = 0.014). Conclusion: The involvement of neurovascular decoupling in cognitive impairment in PD is regionally specific and most prominent in the visual–spatial cortices, which could potentially provide a complementary understanding of the pathophysiological mechanisms underlying cognitive deficits in PD.
Collapse
Affiliation(s)
- Song'an Shang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hongying Zhang
- Department of Radiology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yuan Feng
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jingtao Wu
- Department of Radiology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Weiqiang Dou
- MR Research China, GE Healthcare, Beijing, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
76
|
Huang H, Zhao K, Zhu W, Li H, Zhu W. Abnormal Cerebral Blood Flow and Functional Connectivity Strength in Subjects With White Matter Hyperintensities. Front Neurol 2021; 12:752762. [PMID: 34744987 PMCID: PMC8564178 DOI: 10.3389/fneur.2021.752762] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
White matter hyperintensities (WMHs) are common neuroimaging findings in the aging population and are associated with various clinical symptoms, especially cognitive impairment. Abnormal global cerebral blood flow (CBF) and specific functional connections have been reported in subjects with higher WMH loads. Nevertheless, the comprehensive functional mechanisms underlying WMH are yet to be established. In this study, by combining resting-state functional magnetic resonance imaging and arterial spin labeling, we investigated the neurovascular dysfunction in subjects with WMH in CBF, functional connectivity strength (FCS), and CBF–FCS coupling. The whole-brain alterations of all these measures were explored among non-dementia subjects with different WMH loads using a fine-grained Human Brainnetome Atlas. In addition, exploratory mediation analyses were conducted to further determine the relationships between these neuroimaging indicators, WMH load, and cognition. The results showed that subjects with higher WMH loads displayed decreased CBF and FCS mainly in regions involving the cognitive- and emotional-related brain networks, including the default mode network, salience network, and central executive network. Notably, subjects with higher WMH loads also showed an abnormal regional CBF–FCS coupling in several regions of the thalamus, posterior cingulate cortex, and parahippocampal gyrus involving the default mode network. Furthermore, regional CBF in the right inferior temporal gyrus and right dorsal caudate may mediate the relationship between WMH load and cognition in WMH subjects. These findings indicated characteristic changes in cerebral blood supply, brain activity, and neurovascular coupling in regions involving specific brain networks with the development of WMH, providing further information on pathophysiology underpinnings of the WMH and related cognitive impairment.
Collapse
Affiliation(s)
- Hao Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Zhao
- School of Biological Science & Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenhao Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
77
|
Liu S, Wang C, Yang Y, Cai H, Zhang M, Si L, Zhang S, Xu Y, Zhu J, Yu Y. Brain structure and perfusion in relation to serum renal function indexes in healthy young adults. Brain Imaging Behav 2021; 16:1014-1025. [PMID: 34709557 DOI: 10.1007/s11682-021-00565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2021] [Indexed: 11/30/2022]
Abstract
Prior neuroimaging studies of the relationship between the kidney and the brain have been limited to clinical populations and have largely relied on a single modality. We sought to examine the kidney-brain associations in healthy subjects using a combined analysis of multi-modal imaging data. Structural, diffusion, and perfusion magnetic resonance imaging (MRI) scans were performed to measure cortical thickness, white matter integrity, and cerebral blood flow in 157 healthy young adults. Peripheral venous blood samples were collected to measure serum renal function indexes. Correlation analyses were performed to investigate the relations between brain MRI measures and renal function indexes. Results showed that higher serum uric acid level was associated with increased cortical thickness in the transverse temporal gyrus. We also found that decreased serum creatinine level was linked to lower white matter integrity in the sagittal stratum, anterior corona radiata, superior corona radiata, and external capsule. Furthermore, we observed that increased serum uric acid level was related to hyperperfusion in the opercular and triangular parts of inferior frontal gyrus and supramarginal gyrus, and hypoperfusion in the calcarine sulcus, cuneus and lingual gyrus. More importantly, mediation analysis revealed that the relationship between serum uric acid and working memory performance was mediated by perfusion in the supramarginal gyrus and lingual gyrus. These findings not only may extend current knowledge regarding the relationship between the kidney and the brain, but also may inform real-world clinical practice by identification of potential brain regions vulnerable to renal dysfunction.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Chunli Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ying Yang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Huanhuan Cai
- Medical Imaging Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Min Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Li Si
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Shujun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China.
| |
Collapse
|
78
|
Ouellette J, Lacoste B. From Neurodevelopmental to Neurodegenerative Disorders: The Vascular Continuum. Front Aging Neurosci 2021; 13:749026. [PMID: 34744690 PMCID: PMC8570842 DOI: 10.3389/fnagi.2021.749026] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Structural and functional integrity of the cerebral vasculature ensures proper brain development and function, as well as healthy aging. The inability of the brain to store energy makes it exceptionally dependent on an adequate supply of oxygen and nutrients from the blood stream for matching colossal demands of neural and glial cells. Key vascular features including a dense vasculature, a tightly controlled environment, and the regulation of cerebral blood flow (CBF) all take part in brain health throughout life. As such, healthy brain development and aging are both ensured by the anatomical and functional interaction between the vascular and nervous systems that are established during brain development and maintained throughout the lifespan. During critical periods of brain development, vascular networks remodel until they can actively respond to increases in neural activity through neurovascular coupling, which makes the brain particularly vulnerable to neurovascular alterations. The brain vasculature has been strongly associated with the onset and/or progression of conditions associated with aging, and more recently with neurodevelopmental disorders. Our understanding of cerebrovascular contributions to neurological disorders is rapidly evolving, and increasing evidence shows that deficits in angiogenesis, CBF and the blood-brain barrier (BBB) are causally linked to cognitive impairment. Moreover, it is of utmost curiosity that although neurodevelopmental and neurodegenerative disorders express different clinical features at different stages of life, they share similar vascular abnormalities. In this review, we present an overview of vascular dysfunctions associated with neurodevelopmental (autism spectrum disorders, schizophrenia, Down Syndrome) and neurodegenerative (multiple sclerosis, Huntington's, Parkinson's, and Alzheimer's diseases) disorders, with a focus on impairments in angiogenesis, CBF and the BBB. Finally, we discuss the impact of early vascular impairments on the expression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Julie Ouellette
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
79
|
Li P, Mu J, Ma X, Ding D, Ma S, Zhang H, Liu J, Zhang M. Neurovascular coupling dysfunction in end-stage renal disease patients related to cognitive impairment. J Cereb Blood Flow Metab 2021; 41:2593-2606. [PMID: 33853410 PMCID: PMC8504946 DOI: 10.1177/0271678x211007960] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We aimed to investigate the neurovascular coupling (NVC) dysfunction in end-stage renal disease (ESRD) patients related with cognitive impairment. Twenty-five ESRD patients and 22 healthy controls were enrolled. To assess the NVC dysfunctional pattern, resting-state functional MRI and arterial spin labeling were explored to estimate the coupling of spontaneous neuronal activity and cerebral blood perfusion based on amplitude of low-frequency fluctuation (ALFF)-cerebral blood flow (CBF), fractional ALFF (fALFF)-CBF, regional homogeneity (ReHo)-CBF, and degree centrality (DC)-CBF correlation coefficients. Multivariate partial least-squares correlation and mediation analyses were used to evaluate the relationship among NVC dysfunctional pattern, cognitive impairment and clinical characteristics. The NVC dysfunctional patterns in ESRD patients were significantly decreased in 34 brain regions compared with healthy controls. The decreased fALFF-CBF coefficients in the cingulate gyrus (CG) were associated positively with lower kinetic transfer/volume urea (Kt/V) and lower short-term memory scores, and were negatively associated with higher serum urea. The relationship between Kt/V and memory deficits of ESRD patients was partially mediated by the fALFF-CBF alteration of the CG. These findings reveal the NVC dysfunction may be a potential neural mechanism for cognitive impairment in ESRD. The regional NVC dysfunction may mediate the impact of dialysis adequacy on memory function.
Collapse
Affiliation(s)
- Peng Li
- Department of Medical Imaging, First Affiliated Hospital of Xi'an, Jiaotong University, Xi'an, China.,Department of Medical Imaging, Hospital of Shaanxi Nuclear Geology, Xianyang, China
| | - Junya Mu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Xueying Ma
- Department of Medical Imaging, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Dun Ding
- Department of Medical Imaging, The Second Affiliated Hospital of Xi'an, Jiaotong University, Xi'an, China
| | - Shaohui Ma
- Department of Medical Imaging, First Affiliated Hospital of Xi'an, Jiaotong University, Xi'an, China
| | - Huawen Zhang
- Department of Medical Imaging, Hospital of Shaanxi Nuclear Geology, Xianyang, China
| | - Jixin Liu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Ming Zhang
- Department of Medical Imaging, First Affiliated Hospital of Xi'an, Jiaotong University, Xi'an, China
| |
Collapse
|
80
|
Wei W, Wang T, Abulizi T, Li B, Liu J. Altered Coupling Between Resting-State Cerebral Blood Flow and Functional Connectivity Strength in Cervical Spondylotic Myelopathy Patients. Front Neurol 2021; 12:713520. [PMID: 34566857 PMCID: PMC8455933 DOI: 10.3389/fneur.2021.713520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/20/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Changes in regional neural activity and functional connectivity in cervical spondylotic myelopathy (CSM) patients have been reported. However, resting-state cerebral blood flow (CBF) changes and coupling between CBF and functional connectivity in CSM patients are largely unknown. Methods: Twenty-seven CSM patients and 24 sex/age-matched healthy participants underwent resting-state functional MRI and arterial spin labeling imaging to compare functional connectivity strength (FCS) and CBF between the two groups. The CBF–FCS coupling of the whole gray matter and specific regions of interest was also compared between the groups. Results: Compared with healthy individuals, CBF–FCS coupling was significantly lower in CSM patients. The decrease in CBF–FCS coupling in CSM patients was observed in the superior frontal gyrus, bilateral thalamus, and right calcarine cortex, whereas the increase in CBF–FCS coupling was observed in the middle frontal gyrus. Moreover, low CBF and high FCS were observed in sensorimotor cortices and visual cortices, respectively. Conclusion: In general, neurovascular decoupling at cortical level may be a potential neuropathological mechanism of CSM.
Collapse
Affiliation(s)
- Wuzeng Wei
- Department of Joints, Tianjin Hospital, Tianjin University, Tianjin, China.,Clinical College of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Tao Wang
- Clinical College of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Tuersong Abulizi
- Clinical College of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Bing Li
- Department of Joints, Tianjin Hospital, Tianjin University, Tianjin, China.,Clinical College of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Jun Liu
- Department of Joints, Tianjin Hospital, Tianjin University, Tianjin, China.,Clinical College of Orthopedics, Tianjin Medical University, Tianjin, China
| |
Collapse
|
81
|
Liu X, Cheng R, Chen L, Gong J, Luo T, Lv F. Altered Neurovascular Coupling in Subcortical Ischemic Vascular Disease. Front Aging Neurosci 2021; 13:598365. [PMID: 34054499 PMCID: PMC8149589 DOI: 10.3389/fnagi.2021.598365] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/18/2021] [Indexed: 11/18/2022] Open
Abstract
Patients with subcortical ischemic vascular disease (SIVD) exhibit a high risk of cognitive impairment that might be caused by neurologic deficits and vascular injuries. However, the mechanism remains unknown. In current study, 24 normal controls (NC) and 54 SIVD patients, including 26 SIVD patients with no cognitive impairment (SIVD-NCI) and 28 SIVD patients with mild cognitive impairment (SIVD-MCI) underwent the resting-state functional MRI (rs-fMRI) and neuropsychological assessments. We combined regional homogeneity (ReHo) and cerebral blood flow (CBF) by using the global ReHo-CBF correlations coefficient and the ReHo/CBF ratio to detect the inner link between neuronal activity and vascular responses. Correlations between the ReHo/CBF ratio and neuropsychological assessments were explored in patients with SIVD. As a result, we identified significantly decreased global ReHo-CBF coupling in the SIVD-NCI group and SIVD- MCI group with respect to the NC. The SIVD-MCI group showed more serious decoupling of the global ReHo-CBF correlation. We also found a significantly abnormal ReHo/CBF ratio predominantly located in cognitive-related brain regions, including the left insula, right middle temporal gyrus, right precuneus, left precentral gyrus, and left inferior parietal lobule but not the supramarginal and angular gyri. The SIVD-MCI group showed more severe disorders of neurovascular coupling than the other two groups. Moreover, the ReHo/CBF ratio in the left precentral gyrus of the SIVD-NCI group exhibited a positive correlation with the MMSE scores. These findings suggested that patients with SIVD show abnormal neurovascular coupling at the early stage of the disease and during disease development. It might be associated with disease severity and cognitive impairment. Neurovascular decoupling in brain may be a possible neuropathological mechanism of SIVD.
Collapse
Affiliation(s)
- Xiaoshuang Liu
- Department of Radiology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Runtian Cheng
- Department of Radiology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Chen
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Junwei Gong
- Department of Radiology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianyou Luo
- Department of Radiology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fajin Lv
- Department of Radiology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
82
|
Wang Q, Qu X, Chen W, Wang H, Huang C, Li T, Wang N, Xian J. Altered coupling of cerebral blood flow and functional connectivity strength in visual and higher order cognitive cortices in primary open angle glaucoma. J Cereb Blood Flow Metab 2021; 41:901-913. [PMID: 32580669 PMCID: PMC7983497 DOI: 10.1177/0271678x20935274] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/08/2020] [Accepted: 05/26/2020] [Indexed: 01/30/2023]
Abstract
Primary open-angle glaucoma (POAG) has been suggested to be a neurodegenerative disease associated with altered cerebral vascular hemodynamics and widespread disruption of neuronal activity within the visual, working memory, attention and executive networks. We hypothesized that disturbed neurovascular coupling in visual and higher order cognitive cortices exists in POAG patients and correlates with glaucoma stage and visual field defects. Through multimodal magnetic resonance imaging, we evaluated the cerebral blood flow (CBF)-functional connectivity strength (FCS) correlations of the whole gray matter and CBF/FCS ratio per voxel for all subjects. Compared with normal controls, POAG patients showed reduced global CBF-FCS coupling and altered CBF/FCS ratios, predominantly in regions in the visual cortex, salience network, default mode network, and dorsal attentional network. The CBF/FCS ratio was negatively correlated with glaucoma stage, and positively correlated with visual field defects in the lingual gyrus in POAG patients. Moreover, early brain changes were detected in early POAG. These findings indicate neurovascular coupling dysfunction might exist in the visual and higher order cognitive cortices in POAG patients and its clinical relevance. The results may contribute to the monitoring of POAG progression and provide insight into the pathophysiology of the neurodegenerative process in POAG.
Collapse
Affiliation(s)
- Qian Wang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiaoxia Qu
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Weiwei Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University
| | - Huaizhou Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University
| | - Caiyun Huang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ting Li
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
83
|
Chen J, Liu S, Wang C, Zhang C, Cai H, Zhang M, Si L, Zhang S, Xu Y, Zhu J, Yu Y. Associations of Serum Liver Function Markers With Brain Structure, Function, and Perfusion in Healthy Young Adults. Front Neurol 2021; 12:606094. [PMID: 33716920 PMCID: PMC7947675 DOI: 10.3389/fneur.2021.606094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Previous neuroimaging studies have demonstrated brain abnormalities in patients with hepatic diseases. However, the identified liver-brain associations are largely limited to disease-affected populations, and the nature and extent of such relations in healthy subjects remain unclear. We hypothesized that serum liver function markers within a normal level would affect brain properties. Method: One hundred fifty-seven healthy young adults underwent structural, resting-state functional, and arterial spin labeling MRI scans. Gray matter volume (GMV), regional homogeneity (ReHo), and cerebral blood flow (CBF) analyses were performed to assess brain structure, function, and perfusion, respectively. Peripheral venous blood samples were collected to measure serum liver function markers. Correlation analyses were conducted to test potential associations between liver function markers and brain imaging parameters. Results: First, serum proteins showed relations to brain structure characterized by higher albumin associated with increased GMV in the parahippocampal gyrus and amygdala and lower globulin and a higher albumin/globulin ratio with increased GMV in the olfactory cortex and parahippocampal gyrus. Second, serum bilirubin was linked to brain function characterized by higher bilirubin associated with increased ReHo in the precuneus, middle cingulate gyrus, inferior parietal lobule, and supramarginal gyrus and decreased ReHo in the caudate nucleus. Third, serum alanine transaminase (ALT) was related to brain perfusion characterized by higher ALT associated with increased CBF in the superior frontal gyrus and decreased CBF in the middle occipital gyrus, angular gyrus, precuneus, and middle temporal gyrus. More importantly, we found that CBF in the superior frontal gyrus was a significant mediator of the association between serum ALT level and working memory performance. Conclusion: These findings may not only expand existing knowledge about the relationship between the liver and the brain but also have clinical implications for studying brain impairments secondary to liver diseases as well as providing potential neural targets for their diagnosis and treatment.
Collapse
Affiliation(s)
- Jingyao Chen
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Siyu Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chunli Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huanhuan Cai
- Medical Imaging Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Min Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Si
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shujun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
84
|
Zhang Y, Zhou T, Feng S, Wang W, Liu H, Wang P, Sha Z, Yu X. The chronic effect of cortisol on orchestrating cerebral blood flow and brain functional connectivity: evidence from Cushing's disease. Metabolism 2021; 115:154432. [PMID: 33197455 DOI: 10.1016/j.metabol.2020.154432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Cortisol has long been considered to play a crucial role in the pathogenesis of stress-related disorders. Cushing's disease (CD) provides an excellent "hyperexpression model" to investigate the chronic effects of cortisol on brain physiology and cognition. Previous studies have shown that cortisol is associated with neurophysiological alterations in animal models, which has also been examined by neural activity and cerebral blood flow (CBF) in human studies. However, the manner in which cortisol affects the coupling between brain activity and metabolic demand remains largely unknown. METHODS Here we used functional magnetic resonance imaging and arterial-spin-labeling imaging to investigate neurophysiological coupling by examining the ratio of CBF and functional connectivity strength (FCS) in 100 participants (47 CD patients and 53 healthy controls). RESULTS The results showed that CD was associated with lower CBF-FCS coupling predominantly in regions involving cognitive processing, such as the left dorsolateral prefrontal cortex and precuneus, as well as greater CBF-FCS coupling in subcortical structures, including the bilateral thalamus, right putamen, and hippocampus (P < 0.05, false discovery rate corrected). Moreover, regions with disrupted CBF-FCS coupling were associated with cortisol dosage and cognitive decline in CD patients. CONCLUSIONS Together, these findings elucidate the effect of cortisol excess on cerebral microenvironment regulation and associated cognitive disturbances in the human brain.
Collapse
Affiliation(s)
- Yanyang Zhang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Tao Zhou
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Shiyu Feng
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Wenxin Wang
- Department of Radiology, The First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Hailong Liu
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Peng Wang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Zhiqiang Sha
- Department of Psychiatry, Western Psychiatric Institute and Clinic, , University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Xinguang Yu
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, PR China.
| |
Collapse
|
85
|
Carrier M, Guilbert J, Lévesque JP, Tremblay MÈ, Desjardins M. Structural and Functional Features of Developing Brain Capillaries, and Their Alteration in Schizophrenia. Front Cell Neurosci 2021; 14:595002. [PMID: 33519380 PMCID: PMC7843388 DOI: 10.3389/fncel.2020.595002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022] Open
Abstract
Schizophrenia affects more than 1% of the world's population and shows very high heterogeneity in the positive, negative, and cognitive symptoms experienced by patients. The pathogenic mechanisms underlying this neurodevelopmental disorder are largely unknown, although it is proposed to emerge from multiple genetic and environmental risk factors. In this work, we explore the potential alterations in the developing blood vessel network which could contribute to the development of schizophrenia. Specifically, we discuss how the vascular network evolves during early postnatal life and how genetic and environmental risk factors can lead to detrimental changes. Blood vessels, capillaries in particular, constitute a dynamic and complex infrastructure distributing oxygen and nutrients to the brain. During postnatal development, capillaries undergo many structural and anatomical changes in order to form a fully functional, mature vascular network. Advanced technologies like magnetic resonance imaging and near infrared spectroscopy are now enabling to study how the brain vasculature and its supporting features are established in humans from birth until adulthood. Furthermore, the contribution of the different neurovascular unit elements, including pericytes, endothelial cells, astrocytes and microglia, to proper brain function and behavior, can be dissected. This investigation conducted among different brain regions altered in schizophrenia, such as the prefrontal cortex, may provide further evidence that schizophrenia can be considered a neurovascular disorder.
Collapse
Affiliation(s)
- Micaël Carrier
- Axe Neurosciences, Centre de recherche du CHU de Québec - Université Laval, Québec, QC, Canada.,Department of Molecular Medicine, Université Laval, Québec, QC, Canada
| | - Jérémie Guilbert
- Axe Oncologie, Centre de recherche du CHU de Québec, Université Laval, Québec, QC, Canada.,Department of Physics, Physical Engineering and Optics, Université Laval, Québec, QC, Canada
| | - Jean-Philippe Lévesque
- Axe Oncologie, Centre de recherche du CHU de Québec, Université Laval, Québec, QC, Canada.,Department of Physics, Physical Engineering and Optics, Université Laval, Québec, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec - Université Laval, Québec, QC, Canada.,Department of Molecular Medicine, Université Laval, Québec, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.,Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada
| | - Michèle Desjardins
- Axe Oncologie, Centre de recherche du CHU de Québec, Université Laval, Québec, QC, Canada.,Department of Physics, Physical Engineering and Optics, Université Laval, Québec, QC, Canada
| |
Collapse
|
86
|
Guo X, Wang S, Chen YC, Wei HL, Zhou GP, Yu YS, Yin X, Wang K, Zhang H. Aberrant Brain Functional Connectivity Strength and Effective Connectivity in Patients with Type 2 Diabetes Mellitus. J Diabetes Res 2021; 2021:5171618. [PMID: 34877358 PMCID: PMC8645376 DOI: 10.1155/2021/5171618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/03/2021] [Indexed: 12/04/2022] Open
Abstract
Alterations of brain functional connectivity in patients with type 2 diabetes mellitus (T2DM) have been reported by resting-state functional magnetic resonance imaging studies, but the underlying precise neuropathological mechanism remains unclear. This study is aimed at investigating the implicit alterations of functional connections in T2DM by integrating functional connectivity strength (FCS) and Granger causality analysis (GCA) and further exploring their associations with clinical characteristics. Sixty T2DM patients and thirty-three sex-, age-, and education-matched healthy controls (HC) were recruited. Global FCS analysis of resting-state functional magnetic resonance imaging was performed to explore seed regions with significant differences between the two groups; then, GCA was applied to detect directional effective connectivity (EC) between the seeds and other brain regions. Correlations of EC with clinical variables were further explored in T2DM patients. Compared with HC, T2DM patients showed lower FCS in the bilateral fusiform gyrus, right superior frontal gyrus (SFG), and right postcentral gyrus, but higher FCS in the right supplementary motor area (SMA). Moreover, altered directional EC was found between the left fusiform gyrus and bilateral lingual gyrus and right medial frontal gyrus (MFG), as well as between the right SFG and bilateral frontal regions. In addition, triglyceride, insulin, and plasma glucose levels were correlated with the abnormal EC of the left fusiform, while disease duration and cognitive function were associated with the abnormal EC of the right SFG in T2DM patients. These results suggest that T2DM patients show aberrant brain function connectivity strength and effective connectivity which is associated with the diabetes-related metabolic characteristics, disease duration, and cognitive function, providing further insights into the complex neural basis of diabetes.
Collapse
Affiliation(s)
- Xi Guo
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 211100, China
| | - Su Wang
- Department of Endocrinology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 211100, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210006, China
| | - Heng-Le Wei
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 211100, China
| | - Gang-Ping Zhou
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 211100, China
| | - Yu-Sheng Yu
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 211100, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210006, China
| | - Kun Wang
- Department of Endocrinology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 211100, China
| | - Hong Zhang
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 211100, China
| |
Collapse
|
87
|
Zhang Y, Zhang X, Ma G, Qin W, Yang J, Lin J, Zhang Q. Neurovascular coupling alterations in type 2 diabetes: a 5-year longitudinal MRI study. BMJ Open Diabetes Res Care 2021; 9:9/1/e001433. [PMID: 33462074 PMCID: PMC7816934 DOI: 10.1136/bmjdrc-2020-001433] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Respective alterations in resting-state brain neural activity and cerebral blood flow (CBF) in type 2 diabetes mellitus (T2DM) have been reported. However, their coupling alteration in T2DM remains largely unknown. RESEARCH DESIGN AND METHODS Twenty-seven patients with T2DM aged 40-67 years and 36 well-matched healthy controls (HCs) underwent resting-state functional MRI (rs-fMRI) and arterial spin labeling (ASL) scans at two time points with a 5-year interval. Regional homogeneity (ReHo) and CBF were calculated from rs-fMRI and ASL, respectively. The standardized ReHo:CBF ratio (mReHo:mCBF ratio), the spontaneous neuronal activity per unit CBF supply, was compared between the two time points. Relationships between the mReHo:mCBF ratio and memory performance were analyzed. RESULTS Over 5 years, decreased mReHo:mCBF ratios in patients with T2DM were mainly distributed in four regions, among which the left insula exhibited more severely decreased mReHo:mCBF ratio in patients with T2DM than in HCs, while the left postcentral gyrus, the right Rolandic operculum, and the right precentral gyrus showed no significant intergroup difference. Correlations between the mReHo:mCBF ratio and memory performance were also found in patients with T2DM. CONCLUSIONS This study suggests that T2DM may accelerate neurovascular coupling impairment in specific brain regions (the left insula), contributing to memory decline. This study implies that the mReHo:mCBF ratio is a potential imaging marker for detecting neurovascular changes.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaolu Zhang
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Guangyang Ma
- Department of Radiology, Tianjin Medical University Metabolic Diseases Hospital, Tianjin, China
| | - Wen Qin
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiayang Yang
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiahui Lin
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Quan Zhang
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
88
|
Potvin S, Giguère CÉ, Mendrek A. Functional Connectivity During Visuospatial Processing in Schizophrenia: A Classification Study Using Lasso Regression. Neuropsychiatr Dis Treat 2021; 17:1077-1087. [PMID: 33888984 PMCID: PMC8055358 DOI: 10.2147/ndt.s304434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/16/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Robust evidence shows that schizophrenia is associated with significant cognitive impairments, including deficits in visuospatial abilities. While other cognitive domains have sparked several functional neuroimaging studies in schizophrenia, only a few brain activation studies have examined the neural correlates of visuospatial abilities in schizophrenia. PURPOSE Here, we propose to perform a functional connectivity study on visuospatial processing in schizophrenia, and to determine the classification accuracy of the observed alterations. METHODS Thirty-nine schizophrenia patients and 42 healthy controls were scanned using functional magnetic resonance imaging while performing a mental rotation task. Task-based functional connectivity was examined using a region-of-interest (ROI) to ROI approach, as implemented in the CONN Toolbox. ROIs were selected from a previous meta-analysis on mental rotation. Logistic regression with Lasso regularization was performed, using train-test cross-validation. RESULTS Schizophrenia was associated with a complex pattern of dysconnectivity between the superior, middle and inferior frontal gyrus, the precentral gyrus, the superior parietal lobule (SPL) and the inferior lateral occipital cortex. The classification accuracy was 86.1%. Mental rotation performance was predicted by the dysconnectivity between the right and left superior frontal gyrus (SFG), as well as between the left SFG and left SPL. CONCLUSION The results of the current study highlight that visuospatial processing is useful for examining the widespread dysconnectivity between executive, motor and visual brain regions in schizophrenia. We also demonstrate that very good classification accuracy can be achieved using visuospatial-related functional connectivity data.
Collapse
Affiliation(s)
- Stéphane Potvin
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal, Quebec, Canada.,Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Charles-Édouard Giguère
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal, Quebec, Canada
| | - Adrianna Mendrek
- Department of Psychology, Bishop's University, Lennoxville, Quebec, Canada
| |
Collapse
|
89
|
Wei Y, Wu L, Wang Y, Liu J, Miao P, Wang K, Wang C, Cheng J. Disrupted Regional Cerebral Blood Flow and Functional Connectivity in Pontine Infarction: A Longitudinal MRI Study. Front Aging Neurosci 2020; 12:577899. [PMID: 33328960 PMCID: PMC7710811 DOI: 10.3389/fnagi.2020.577899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/12/2020] [Indexed: 11/28/2022] Open
Abstract
Abnormal cerebral blood flow (CBF) and resting-state functional connectivity (rs-FC) are sensitive biomarkers of disease progression and prognosis. This study investigated neural underpinnings of motor and cognitive recovery by longitudinally studying the changes of CBF and FC in pontine infarction (PI). Twenty patients underwent three-dimensional pseudo-continuous arterial spin labeling (3D-pcASL), resting-state functional magnetic resonance imaging (rs-fMRI) scans, and behavioral assessments at 1 week, 1, 3, and 6 months after stroke. Twenty normal control (NC) subjects underwent the same examination once. First, we investigated CBF changes in the acute stage, and longitudinal changes from 1 week to 6 months after PI. Brain regions with longitudinal CBF changes were then used as seeds to investigate longitudinal FC alterations during the follow-up period. Compared with NC, patients in the left PI (LPI) and right PI (RPI) groups showed significant CBF alterations in the bilateral cerebellum and some supratentorial brain regions at the baseline stage. Longitudinal analysis revealed that altered CBF values in the right supramarginal (SMG_R) for the LPI group, while the RPI group showed significantly dynamic changes of CBF in the left calcarine sulcus (CAL_L), middle occipital gyrus (MOG_L), and right supplementary motor area (SMA_R). Using the SMG_R as the seed in the LPI group, FC changes were found in the MOG_L, middle temporal gyrus (MTG_L), and prefrontal lobe (IFG_L). Correlation analysis showed that longitudinal CBF changes in the SMG_R and FC values between the SMG_R and MOG_L were associated with motor and memory scores in the LPI group, and longitudinal CBF changes in the CAL_L and SMA_R were related to memory and motor recovery in the RPI group. These longitudinal CBF and accompany FC alterations may provide insights into the neural mechanism underlying functional recovery after PI, including that of motor and cognitive functions.
Collapse
Affiliation(s)
- Ying Wei
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Luobing Wu
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingying Wang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingchun Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Peifang Miao
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaiyu Wang
- GE Healthcare MR Research, Beijing, China
| | - Caihong Wang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
90
|
Hariharan A, Weir N, Robertson C, He L, Betsholtz C, Longden TA. The Ion Channel and GPCR Toolkit of Brain Capillary Pericytes. Front Cell Neurosci 2020; 14:601324. [PMID: 33390906 PMCID: PMC7775489 DOI: 10.3389/fncel.2020.601324] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
Brain pericytes reside on the abluminal surface of capillaries, and their processes cover ~90% of the length of the capillary bed. These cells were first described almost 150 years ago (Eberth, 1871; Rouget, 1873) and have been the subject of intense experimental scrutiny in recent years, but their physiological roles remain uncertain and little is known of the complement of signaling elements that they employ to carry out their functions. In this review, we synthesize functional data with single-cell RNAseq screens to explore the ion channel and G protein-coupled receptor (GPCR) toolkit of mesh and thin-strand pericytes of the brain, with the aim of providing a framework for deeper explorations of the molecular mechanisms that govern pericyte physiology. We argue that their complement of channels and receptors ideally positions capillary pericytes to play a central role in adapting blood flow to meet the challenge of satisfying neuronal energy requirements from deep within the capillary bed, by enabling dynamic regulation of their membrane potential to influence the electrical output of the cell. In particular, we outline how genetic and functional evidence suggest an important role for Gs-coupled GPCRs and ATP-sensitive potassium (KATP) channels in this context. We put forth a predictive model for long-range hyperpolarizing electrical signaling from pericytes to upstream arterioles, and detail the TRP and Ca2+ channels and Gq, Gi/o, and G12/13 signaling processes that counterbalance this. We underscore critical questions that need to be addressed to further advance our understanding of the signaling topology of capillary pericytes, and how this contributes to their physiological roles and their dysfunction in disease.
Collapse
Affiliation(s)
- Ashwini Hariharan
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Nick Weir
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Colin Robertson
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Liqun He
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Christer Betsholtz
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Medicine Huddinge (MedH), Karolinska Institutet & Integrated Cardio Metabolic Centre, Huddinge, Sweden
| | - Thomas A Longden
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
91
|
Hu B, Yu Y, Wang W, Cui GB. MICA: A toolkit for multimodal image coupling analysis. J Neurosci Methods 2020; 347:108962. [PMID: 33017645 DOI: 10.1016/j.jneumeth.2020.108962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Analytical methods of brain research involving across-voxel correlation between multimodal images are currently tedious and slow due to the amount of manual interaction required. We have developed a new software package to automate and simplify many of these tasks. NEW METHOD AND RESULTS Our software performs four primary functions to aid in research. First, it helps with consistent renaming of files preprocessed with other software, enabling more accurate analysis. Second, it automates ROI extraction using data from existing and custom brain atlases. Third, it performs coupling analysis to obtain across-voxel Pearson correlation coefficients between images of different modalities based on these brain atlases or custom ROIs. Fourth, it automatically performs multiple comparison correction to correct the P-value using two false discovery rate (FDR) methods and a Bonferroni method to reduce the false-positive rate. COMPARISON WITH EXISTING METHODS Previous researchers have investigated the couplings between blood supply and brain functional topology in healthy brains and those from patients with type 2 diabetes, chronic migraine, and schizophrenia. These studies conducted analyses of both the whole and parts of the brain in terms of neuronal activity and blood perfusion, but the procedures were laborious and time-consuming. CONCLUSION We have developed a convenient and time-saving software package using MATLAB 2014a to automate the data preparation and analysis of across-voxel coupling between multimodal images.
Collapse
Affiliation(s)
- Bo Hu
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, Shaanxi, China
| | - Ying Yu
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, Shaanxi, China
| | - Wen Wang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, Shaanxi, China.
| | - Guang-Bin Cui
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, Shaanxi, China.
| |
Collapse
|
92
|
Xiu MH, Lang X, Chen DC, Cao B, Kosten TR, Cho RY, Shi H, Wei CW, Wu AS, Zhang XY. Cognitive Deficits and Clinical Symptoms with Hippocampal Subfields in First-Episode and Never-Treated Patients with Schizophrenia. Cereb Cortex 2020; 31:89-96. [PMID: 32901269 DOI: 10.1093/cercor/bhaa208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/20/2020] [Accepted: 07/06/2020] [Indexed: 11/13/2022] Open
Abstract
Memory dysfunction and associated hippocampal disturbances play crucial roles in cognitive impairment of schizophrenia. To examine the relationships between cognitive function and the hippocampal subfields (HSs) in first-episode never-treated (FENT) schizophrenia patients, the HSs were segmented in 39 FENT patients and 30 healthy controls using a state-of the-art automated algorithm. We found no significant differences in any HSs between the patients and controls. However, multivariate regression analysis showed that the left cornu ammonis 1 (CA1), left hippocampal tail, left presubiculum, and right molecular layer contributed 40% to the variance of the PANSS negative symptom score. After adjusting for sex, age, education, and intracranial volume, the partial correlation analysis showed that the volumes of left CA1, CA3, CA4, molecular layer, granule cell layer and both left and right subiculum were negatively correlated with the MATRICS consensus cognitive battery (MCCB) Hopkins Verbal Learning Test (HVLT). Multiple regression analysis showed that the left CA1 and CA3 hippocampal abnormalities contributed 66% to the variance of the HVLT. Our results suggest no detectable HS deficits were found in FENT schizophrenia patients. However, the HSs may be involved in the symptoms and cognitive deficits of schizophrenia patients in the early phase of their illness.
Collapse
Affiliation(s)
- Mei Hong Xiu
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China
| | - XiaoE Lang
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, 03000, China
| | - Da Chun Chen
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China
| | - Bo Cao
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, T6G 2B7, Canada
| | - Thomas R Kosten
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Raymond Y Cho
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hui Shi
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Chang Wei Wei
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - An Shi Wu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiang Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
93
|
Structural imaging of the retina in psychosis spectrum disorders: current status and perspectives. Curr Opin Psychiatry 2020; 33:476-483. [PMID: 32639357 DOI: 10.1097/yco.0000000000000624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Structural changes of the retina in schizophrenia and other psychotic disorders seem plausible as these conditions are accompanied by widespread morphological abnormalities of the brain. Advances in structural retinal imaging have led to the possibility of precise quantification of individual retinal layers, using optical coherence tomography (OCT) scanners. RECENT FINDINGS The aggregation of information related to OCT findings in schizophrenia has resulted in three metaanalyses, which are currently described. Areas where retinal changes were reported include retinal nerve fiber layer (RNFL), ganglion cell layer complex (GCC), macular volume, and macular thickness, but findings on affected retinal segments vary to some extent across studies. Discrepancies in individual studies could be because of small samples, heterogeneity within schizophrenia (phase of the illness, illness duration, predominant symptomatology), inconsistent reporting of antipsychotic therapy, insufficient control of confounding variables (somatic comorbidities, smoking, and so on), and use of the different types of OCT scanners. SUMMARY Exploration of potential disturbances in retinal architecture could provide new insights into neuronal changes associated with psychosis spectrum disorders, with potential to elucidate the nature and timing of developmental, progressive, inflammatory, and degenerative aspects of neuropathology and pathophysiology, and to assist with characterizing heterogeneity and facilitating personalized treatment approaches.
Collapse
|
94
|
Zhu J, Zhang S, Cai H, Wang C, Yu Y. Common and distinct functional stability abnormalities across three major psychiatric disorders. NEUROIMAGE-CLINICAL 2020; 27:102352. [PMID: 32721869 PMCID: PMC7393318 DOI: 10.1016/j.nicl.2020.102352] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 11/14/2022]
Abstract
Functional stability is a recently developed dynamic functional connectivity approach. Schizophrenia individuals had a distributed pattern of higher and lower stability. Individuals with bipolar disorder only manifested local higher stability. Individuals with attention deficit/hyperactivity disorder exhibited no stability differences. Psychiatric disorders show common and distinct functional stability abnormalities.
Delineating the neuropathological characteristics across psychiatric disorders is critical for understanding their pathophysiology. The purpose of this study was to investigate common and distinct brain functional abnormalities across psychiatric disorders by using functional stability, a recently developed dynamic functional connectivity approach. Resting-state functional magnetic resonance imaging data were collected from a transdisease sample of healthy controls (n = 115) and individuals with schizophrenia (SZ) (n = 47), bipolar disorder (BD) (n = 44), and attention deficit/hyperactivity disorder (ADHD) (n = 40). Functional stability of each voxel was calculated by measuring the concordance of dynamic functional connectivity over time. Differences in functional stability among the four groups were assessed voxel-wisely. Compared to healthy controls, individuals with SZ demonstrated a distributed pattern of higher functional stability in the bilateral inferior temporal gyrus yet lower stability in the bilateral calcarine sulcus and left insula; individuals with BD only manifested local higher stability in the left inferior temporal gyrus; no differences were found between ADHD and healthy individuals. Notably, individuals with SZ and BD had common higher functional stability in the left inferior temporal gyrus, whereas higher functional stability in the right inferior temporal gyrus and lower stability in the bilateral calcarine sulcus and left insula were unique abnormalities in individuals with SZ. Additionally, direct comparisons between disorders revealed that individuals with SZ showed lower functional stability in the right calcarine sulcus compared to those with BD and higher stability in the left inferior temporal gyrus compared to those with ADHD. However, no significant associations between functional stability and clinical symptoms were observed. Our findings suggest that the functional stability approach has the potential to be extended to the domain of psychiatry and encourage further investigations of shared and unique neuropathology of psychiatric disorders.
Collapse
Affiliation(s)
- Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Shujun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Chunli Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
95
|
Xie X, Zu M, Zhang L, Bai T, Wei L, Huang W, Ji GJ, Qiu B, Hu P, Tian Y, Wang K. A common variant of the NOTCH4 gene modulates functional connectivity of the occipital cortex and its relationship with schizotypal traits. BMC Psychiatry 2020; 20:363. [PMID: 32646407 PMCID: PMC7346398 DOI: 10.1186/s12888-020-02773-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/29/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Schizotypal traits are considered as inheritable traits and the endophenotype for schizophrenia. A common variant in the NOTCH4 gene, rs204993, has been linked with schizophrenia, but the neural underpinnings are largely unknown. METHODS In present study, we compared the differences of brain functions between different genotypes of rs204993 and its relationship with schizotypal traits among 402 Chinese Han healthy volunteers. The brain function was evaluated with functional connectivity strength (FCS) using the resting-state functional magnetic resonance image(rs-fMRI). The schizotypal traits were measured by the schizotypal personality questionnaire (SPQ). RESULTS Our results showed that carriers with the AA genotype showed reduced FCS in the left occipital cortex when compared with carriers with the AG and GG genotypes, and the carriers with the AG genotype showed reduced FCS in the left occipital cortex when compared with carriers with the GG genotype. The FCS values in the left occipital lobe were negatively associated with the SPQ scores and its subscale scores within the carriers with the GG genotype, but not within the carriers with AA or AG genotype. CONCLUSION Our results suggested that the common variant in the NOTCH4 gene, rs204993, modulates the function of the occipital cortex, which may contribute to schizotypal traits. These findings provide insight for genetic effects on schizotypal traits and its potential neural substrate.
Collapse
Affiliation(s)
- Xiaohui Xie
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Meidan Zu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Long Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Tongjian Bai
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ling Wei
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
| | - Wanling Huang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Gong-Jun Ji
- Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
- Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, Hefei, China
| | - Bensheng Qiu
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Panpan Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Anhui Medical University, Hefei, 230022, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China.
- Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, Hefei, China.
| |
Collapse
|
96
|
Hu Y, LV F, Li Q, Liu R. Effect of post-labeling delay on regional cerebral blood flow in arterial spin-labeling MR imaging. Medicine (Baltimore) 2020; 99:e20463. [PMID: 32629629 PMCID: PMC7337483 DOI: 10.1097/md.0000000000020463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Investigating the effect of post-labeling delay (PLD) on regional cerebral blood flow (CBF) in adults and optimizing the PLD for arterial spin-labeling (ASL) magnetic resonance (MR) imaging are important. METHODS Pseudo-continuous ASL imaging with a three PLDs protocol was performed in 90 healthy adult volunteers from January 2018 to February 2019. Healthy subjects were divided into youth group (mean age, 30.63 years; age range, 20-44 years), middle-aged group (mean age, 52.16 years; age range 45-59 years) and elderly group (mean age, 66.07 years; age range, 60-77 years). After preprocessing, analyses of variance (ANOVA) and volume-of-interest (VOI) were conducted to compare the CBF in each brain region. According to the trends of CBF changing with PLD and the results of ANOVA, we optimized the PLD for ASL imaging in different brain regions and age groups. RESULTS The CBF values of 87 VOIs [global gray matter (global GM) and other 86 VOIs] for each subject were obtained. Young people had less statistically significant VOIs than middle-aged and elderly people [Numbers of VOIs which had statistical significance (P < .05) in the analysis of ANOVA: 42 (youth group), 79 (middle-aged group), and 71 (elderly group)]. In youth group, the deep GM, occipital lobe and temporal lobe were more affected by PLDs than limbic system, frontal lobe and parietal lobe [VOIs with statistical significance (P < .05)/total VOIs: 8/8 (deep GM) > 8/12 (occipital lobe) > (8/14) (temporal lobe) > 5/12 (limbic system) > 11/28 (frontal lobe) > (2/12) parietal lobe]. In middle-aged group, the limbic system, deep GM and temporal lobe were more affected by PLDs than parietal lobe, frontal lobe and occipital lobe [VOIs with statistical significance (P < 0.05)/total VOIs: 12/12 (limbic system) = 8/8 (deep GM) > (13/14) (temporal lobe) > (11/12) parietal lobe > 25/28 (frontal lobe) > 9/12 (occipital lobe)]. In elderly group, the temporal lobe, parietal lobe, and frontal lobe were more affected by PLDs than occipital lobe, limbic system, and deep GM [VOIs with statistical significance (P < .05)/total VOIs: 14/14 (temporal lobe) > 12/12 (parietal lobe) > 22/28 (frontal lobe) > 9/12 (occipital lobe) > 8/12 (limbic system) > 5/8 (deep GM)]. The optimal PLD for most VOIs in youth group was 1525 ms. However, for middle-aged and elderly group, the optimal PLD for most VOIs was 2525 ms. CONCLUSION Young people are less affected by PLDs than middle-aged and elderly people. The middle-aged people are most affected by PLDs. In addition, the spatial distributions of PLD effect were different among the three age groups. Optimizing the PLD for ASL imaging according to age and brain regions can obtain more accurate and reliable CBF values.
Collapse
Affiliation(s)
- Ying Hu
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan
| | | | - Qi Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rongbo Liu
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan
| |
Collapse
|
97
|
Silverstein SM, Demmin DL, Schallek JB, Fradkin SI. Measures of Retinal Structure and Function as Biomarkers in Neurology and Psychiatry. Biomark Neuropsychiatry 2020. [DOI: 10.1016/j.bionps.2020.100018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
98
|
Jin M, Wang L, Wang H, Han X, Diao Z, Guo W, Yang Z, Ding H, Wang Z, Zhang P, Zhao P, Lv H, Liu W, Wang Z. Disturbed neurovascular coupling in hemodialysis patients. PeerJ 2020; 8:e8989. [PMID: 32328355 PMCID: PMC7166048 DOI: 10.7717/peerj.8989] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/26/2020] [Indexed: 01/14/2023] Open
Abstract
Background Altered cerebral blood flow (CBF) and amplitude of low-frequency fluctuation (ALFF) have been reported in hemodialysis patients. However, neurovascular coupling impairments, which provide a novel insight into the human brain, have not been reported in hemodialysis patients. Methods We combined arterial spin labeling (ASL) and blood oxygen level dependent (BOLD) techniques to investigate neurovascular coupling alterations and its relationships with demographic and clinical data in 46 hemodialysis patients and 47 healthy controls. To explore regional neuronal activity, ALFF was obtained from resting-state functional MRI. To measure cerebral vascular response, CBF was calculated from ASL. The across-voxel CBF-ALFF correlations for global neurovascular coupling and CBF/ALFF ratio for regional neurovascular coupling were compared between hemodialysis patients and healthy controls. Two-sample t-tests were used to compare the intergroup differences in CBF and ALFF. Multiple comparisons were corrected using a voxel-wise false discovery rate (FDR) method (P < 0.05). Results All hemodialysis patients and healthy controls showed significant across-voxel correlations between CBF and ALFF. Hemodialysis patients showed a significantly reduced global CBF-ALFF coupling (P = 0.0011) compared to healthy controls at the voxel-level. Of note, decreased CBF/ALFF ratio was exclusively located in the bilateral amygdala involved in emotional regulation and cognitive processing in hemodialysis patients. In hemodialysis patients, the decreased CBF (right olfactory cortex, anterior cingulate gyrus and bilateral insula) and ALFF (bilateral precuneus and superior frontal gyrus) were mainly located in the default mode network and salience network-related regions as well as increased CBF in the bilateral thalamus. Conclusions These novel findings reveal that disrupted neurovascular coupling may be a potential neural mechanism in hemodialysis patients.
Collapse
Affiliation(s)
- Mei Jin
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Liyan Wang
- Department of Nephrology, Faculty of Kidney Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hao Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xue Han
- Department of Nephrology, Faculty of Kidney Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zongli Diao
- Department of Nephrology, Faculty of Kidney Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wang Guo
- Department of Nephrology, Faculty of Kidney Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Heyu Ding
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zheng Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Peng Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wenhu Liu
- Department of Nephrology, Faculty of Kidney Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
99
|
Hummer TA, Yung MG, Goñi J, Conroy SK, Francis MM, Mehdiyoun NF, Breier A. Functional network connectivity in early-stage schizophrenia. Schizophr Res 2020; 218:107-115. [PMID: 32037204 DOI: 10.1016/j.schres.2020.01.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/29/2022]
Abstract
Schizophrenia is a disorder of altered neural connections resulting in impaired information integration. Whole brain assessment of within- and between-network connections may determine how information processing is disrupted in schizophrenia. Patients with early-stage schizophrenia (n = 56) and a matched control sample (n = 32) underwent resting-state fMRI scans. Gray matter regions were organized into nine distinct functional networks. Functional connectivity was calculated between 278 gray matter regions for each subject. Network connectivity properties were defined by the mean and variance of correlations of all regions. Whole-brain network measures of global efficiency (reflecting overall interconnectedness) and locations of hubs (key regions for communication) were also determined. The control sample had greater connectivity between the following network pairs: somatomotor-limbic, somatomotor-default mode, dorsal attention-default mode, ventral attention-limbic, and ventral attention-default mode. The patient sample had greater variance in interactions between ventral attention network and other functional networks. Illness duration was associated with overall increases in the variability of network connections. The control group had higher global efficiency and more hubs in the cerebellum network, while patient group hubs were more common in visual, frontoparietal, or subcortical networks. Thus, reduced functional connectivity in patients was largely present between distinct networks, rather than within-networks. The implications of these findings for the pathophysiology of schizophrenia are discussed.
Collapse
Affiliation(s)
- Tom A Hummer
- Department of Psychiatry, Indiana University School of Medicine, United States of America; Indiana University Psychotic Disorders Program, Indiana University School of Medicine, United States of America.
| | - Matthew G Yung
- Department of Psychiatry, Indiana University School of Medicine, United States of America
| | - Joaquín Goñi
- Center for Neuroimaging, Indiana University School of Medicine, United States of America; Weldon School of Biomedical Engineering, Purdue University, United States of America
| | - Susan K Conroy
- Department of Psychiatry, Indiana University School of Medicine, United States of America
| | - Michael M Francis
- Department of Psychiatry, Indiana University School of Medicine, United States of America
| | - Nicole F Mehdiyoun
- Department of Psychiatry, Indiana University School of Medicine, United States of America
| | - Alan Breier
- Department of Psychiatry, Indiana University School of Medicine, United States of America
| |
Collapse
|
100
|
Altered intrinsic brain activity and regional cerebral blood flow in patients with chronic neck and shoulder pain. Pol J Radiol 2020; 85:e155-e162. [PMID: 32322322 PMCID: PMC7172875 DOI: 10.5114/pjr.2020.94063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose To identify the changes of intrinsic brain activity and regional cerebral blood flow in patients with chronic neck and shoulder pain (CNSP) by using amplitude of low-frequency fluctuation (ALFF) analysis and arterial spin labelling study. Material and methods In total, 28 CNSP patients and 25 age-matched and sex-matched healthy controls (HCs) participated in the study. Resting-state functional magnetic resonance imaging (rs-fMRI) and arterial spin labelling (ASL) MRI were acquired. Correlations between ALFF and cerebral blood flow (CBF) were analysed. Subsequently, the differences in ALFF and CBF were compared in the two groups. Finally, the visual analogue scale (VAS) was also assessed in the CNSP group. Results Compared with HCs, CNSP patients showed significantly abnormal ALFF and CBF in several brain regions, including the cerebellum posterior lobe, middle orbitofrontal gyrus, medial superior frontal gyrus, middle temporal gyrus, precuneus, cingulate gyrus, middle occipital gyrus, middle frontal gyrus, postcentral gyrus, precentral gyrus, and superior parietal gyrus. Correlation analysis showed that the ALFF value of the medial superior frontal gyrus positively correlated with the VAS score. However, no correlation was found between the CBF values and the VAS score. Conclusions The altered ALFF and CBF values in CNSP patients were observed in different pain-related brain regions that were involved in pain modulation and perception. The combination of rs-fMRI and ASL MRI might provide complementary information for increasing our understanding of the neuropathology in CNSP.
Collapse
|