51
|
Tang W, Li X, Ye B, Shi B, Zhang H, Dang Z, Sun Y, Danqu L, Xia C, Quzhen D, Zhao X, Chui W, Huang F. Characterization of the complete mitochondrial genome and phylogenetic analyses of Haemaphysalis tibetensis Hoogstraal, 1965 (Acari: Ixodidae). Ticks Tick Borne Dis 2024; 15:102311. [PMID: 38262211 DOI: 10.1016/j.ttbdis.2024.102311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/25/2024]
Abstract
Ticks are specialized ectoparasites that feed on blood, causing physical harm to the host and facilitating pathogen transmission. The genus Haemaphysalis contains vectors for numerous infectious agents. These agents cause various diseases in humans and animals. Mitochondrial genome sequences serve as reliable molecular markers, forming a crucial basis for evolutionary analyses, studying species origins, and exploring molecular phylogeny. We extracted mitochondrial genome from the enriched mitochondria of Haemaphysalis tibetensis and obtained a 14,714-bp sequence. The mitochondrial genome consists of 13 protein-coding genes (PCGs), two ribosomal RNA, 22 transfer RNAs (tRNAs), and two control regions. The nucleotide composition of H. tibetensis mitochondrial genome was 38.38 % for A, 9.61 % for G, 39.32 % for T, and 12.69 % for C. The A + T content of H. tibetensis mitochondrial genome was 77.7 %, significantly higher than the G + C content. The repeat units of H. tibetensis exhibited two identical repeat units of 33 bp in length, positioned downstream of nad1 and rrnL genes. Furthermore, phylogenetic analyses based on the 13 PCGs indicated that Haemaphysalis tibetensis (subgenus Allophysalis) formed a monophyletic clade with Haemaphysalis nepalensis (subgenus Herpetobia) and Haemaphysalis danieli (subgenus Allophysalis). Although the species Haemaphysalis inermis, Haemaphysalis kitaokai, Haemaphysalis kolonini, and Haemaphysalis colasbelcouri belong to the subgenus Alloceraea, which were morphologically primitive hemaphysalines just like H. tibetensis, these four tick species cannot form a single clade with H. tibetensis. In this study, the whole mitochondrial genome sequence of H. tibetensis from Tibet was obtained, which enriched the mitochondrial genome data of ticks and provided genetic markers to study the population heredity and molecular evolution of the genus Haemaphysalis.
Collapse
Affiliation(s)
- Wenqiang Tang
- Institute of Animal Science, Tibet Academy of Agriculture and Animal Husbandry Sciences, Tibet Lhasa 850009, China; State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Lhasa 850002, China
| | - Xin Li
- School of Life Science and Engineering, Foshan University, Guangdong Foshan 528225, China
| | - Bijin Ye
- School of Life Science and Engineering, Foshan University, Guangdong Foshan 528225, China
| | - Bin Shi
- Institute of Animal Science, Tibet Academy of Agriculture and Animal Husbandry Sciences, Tibet Lhasa 850009, China; State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Lhasa 850002, China
| | - Haoji Zhang
- School of Life Science and Engineering, Foshan University, Guangdong Foshan 528225, China
| | - Zhisheng Dang
- National Institute of Parasitic Diseases at China CDC/Chinese Center for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, NHC Key Laboratory for Parasite and Vector Biology, Shanghai 200025, China
| | - Yuexiang Sun
- School of Life Science and Engineering, Foshan University, Guangdong Foshan 528225, China
| | - Lamu Danqu
- Institute of Animal Science, Tibet Academy of Agriculture and Animal Husbandry Sciences, Tibet Lhasa 850009, China; State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Lhasa 850002, China
| | - Chenyang Xia
- Institute of Animal Science, Tibet Academy of Agriculture and Animal Husbandry Sciences, Tibet Lhasa 850009, China; State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Lhasa 850002, China
| | - Danzeng Quzhen
- Institute of Animal Science, Tibet Academy of Agriculture and Animal Husbandry Sciences, Tibet Lhasa 850009, China; State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Lhasa 850002, China
| | - Xialing Zhao
- Institute of Animal Science, Tibet Academy of Agriculture and Animal Husbandry Sciences, Tibet Lhasa 850009, China
| | - Wenting Chui
- Animal Disease Prevention and Control Center of Qinghai Province, China
| | - Fuqiang Huang
- School of Life Science and Engineering, Foshan University, Guangdong Foshan 528225, China.
| |
Collapse
|
52
|
Bierenbroodspot MJ, Darienko T, de Vries S, Fürst-Jansen JMR, Buschmann H, Pröschold T, Irisarri I, de Vries J. Phylogenomic insights into the first multicellular streptophyte. Curr Biol 2024; 34:670-681.e7. [PMID: 38244543 PMCID: PMC10849092 DOI: 10.1016/j.cub.2023.12.070] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024]
Abstract
Streptophytes are best known as the clade containing the teeming diversity of embryophytes (land plants).1,2,3,4 Next to embryophytes are however a range of freshwater and terrestrial algae that bear important information on the emergence of key traits of land plants. Among these, the Klebsormidiophyceae stand out. Thriving in diverse environments-from mundane (ubiquitous occurrence on tree barks and rocks) to extreme (from the Atacama Desert to the Antarctic)-Klebsormidiophyceae can exhibit filamentous body plans and display remarkable resilience as colonizers of terrestrial habitats.5,6 Currently, the lack of a robust phylogenetic framework for the Klebsormidiophyceae hampers our understanding of the evolutionary history of these key traits. Here, we conducted a phylogenomic analysis utilizing advanced models that can counteract systematic biases. We sequenced 24 new transcriptomes of Klebsormidiophyceae and combined them with 14 previously published genomic and transcriptomic datasets. Using an analysis built on 845 loci and sophisticated mixture models, we establish a phylogenomic framework, dividing the six distinct genera of Klebsormidiophyceae in a novel three-order system, with a deep divergence more than 830 million years ago. Our reconstructions of ancestral states suggest (1) an evolutionary history of multiple transitions between terrestrial-aquatic habitats, with stem Klebsormidiales having conquered land earlier than embryophytes, and (2) that the body plan of the last common ancestor of Klebsormidiophyceae was multicellular, with a high probability that it was filamentous whereas the sarcinoids and unicells in Klebsormidiophyceae are likely derived states. We provide evidence that the first multicellular streptophytes likely lived about a billion years ago.
Collapse
Affiliation(s)
- Maaike J Bierenbroodspot
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Tatyana Darienko
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Sophie de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Janine M R Fürst-Jansen
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany
| | - Henrik Buschmann
- University of Applied Sciences Mittweida, Faculty of Applied Computer Sciences and Biosciences, Section Biotechnology and Chemistry, Molecular Biotechnology, Technikumplatz 17, 09648 Mittweida, Germany
| | - Thomas Pröschold
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Innsbruck, Research Department for Limnology, 5310 Mondsee, Austria
| | - Iker Irisarri
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany; Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature, Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany.
| | - Jan de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany.
| |
Collapse
|
53
|
Harada R, Hirakawa Y, Yabuki A, Kim E, Yazaki E, Kamikawa R, Nakano K, Eliáš M, Inagaki Y. Encyclopedia of Family A DNA Polymerases Localized in Organelles: Evolutionary Contribution of Bacteria Including the Proto-Mitochondrion. Mol Biol Evol 2024; 41:msae014. [PMID: 38271287 PMCID: PMC10877234 DOI: 10.1093/molbev/msae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
DNA polymerases synthesize DNA from deoxyribonucleotides in a semiconservative manner and serve as the core of DNA replication and repair machinery. In eukaryotic cells, there are 2 genome-containing organelles, mitochondria, and plastids, which were derived from an alphaproteobacterium and a cyanobacterium, respectively. Except for rare cases of genome-lacking mitochondria and plastids, both organelles must be served by nucleus-encoded DNA polymerases that localize and work in them to maintain their genomes. The evolution of organellar DNA polymerases has yet to be fully understood because of 2 unsettled issues. First, the diversity of organellar DNA polymerases has not been elucidated in the full spectrum of eukaryotes. Second, it is unclear when the DNA polymerases that were used originally in the endosymbiotic bacteria giving rise to mitochondria and plastids were discarded, as the organellar DNA polymerases known to date show no phylogenetic affinity to those of the extant alphaproteobacteria or cyanobacteria. In this study, we identified from diverse eukaryotes 134 family A DNA polymerase sequences, which were classified into 10 novel types, and explored their evolutionary origins. The subcellular localizations of selected DNA polymerases were further examined experimentally. The results presented here suggest that the diversity of organellar DNA polymerases has been shaped by multiple transfers of the PolI gene from phylogenetically broad bacteria, and their occurrence in eukaryotes was additionally impacted by secondary plastid endosymbioses. Finally, we propose that the last eukaryotic common ancestor may have possessed 2 mitochondrial DNA polymerases, POP, and a candidate of the direct descendant of the proto-mitochondrial DNA polymerase I, rdxPolA, identified in this study.
Collapse
Affiliation(s)
- Ryo Harada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yoshihisa Hirakawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Akinori Yabuki
- Deep-Sea Biodiversity Research Group, Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Eunsoo Kim
- Division of EcoScience, Ewha Womans University, Seoul, South Korea
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Euki Yazaki
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization, Tsukuba, Japan
- Interdisciplinary Theoretical and Mathematical Sciences program (iTHEMS), RIKEN, Wako, Saitama, Japan
| | - Ryoma Kamikawa
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kentaro Nakano
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Yuji Inagaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
54
|
Eglit Y, Shiratori T, Jerlström-Hultqvist J, Williamson K, Roger AJ, Ishida KI, Simpson AGB. Meteora sporadica, a protist with incredible cell architecture, is related to Hemimastigophora. Curr Biol 2024; 34:451-459.e6. [PMID: 38262350 DOI: 10.1016/j.cub.2023.12.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 01/25/2024]
Abstract
"Kingdom-level" branches are being added to the tree of eukaryotes at a rate approaching one per year, with no signs of slowing down.1,2,3,4 Some are completely new discoveries, whereas others are morphologically unusual protists that were previously described but lacked molecular data. For example, Hemimastigophora are predatory protists with two rows of flagella that were known since the 19th century but proved to represent a new deep-branching eukaryote lineage when phylogenomic analyses were conducted.2Meteora sporadica5 is a protist with a unique morphology; cells glide over substrates along a long axis of anterior and posterior projections while a pair of lateral "arms" swing back and forth, a motility system without any obvious parallels. Originally, Meteora was described by light microscopy only, from a short-term enrichment of deep-sea sediment. A small subunit ribosomal RNA (SSU rRNA) sequence was reported recently, but the phylogenetic placement of Meteora remained unresolved.6 Here, we investigated two cultivated Meteora sporadica isolates in detail. Transmission electron microscopy showed that both the anterior-posterior projections and the arms are supported by microtubules originating from a cluster of subnuclear microtubule organizing centers (MTOCs). Neither have a flagellar axoneme-like structure. Sequencing the mitochondrial genome showed this to be among the most gene-rich known, outside jakobids. Remarkably, phylogenomic analyses of 254 nuclear protein-coding genes robustly support a close relationship with Hemimastigophora. Our study suggests that Meteora and Hemimastigophora together represent a morphologically diverse "supergroup" and thus are important for resolving the tree of eukaryote life and early eukaryote evolution.
Collapse
Affiliation(s)
- Yana Eglit
- Institute for Comparative Genomics, Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Takashi Shiratori
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Jon Jerlström-Hultqvist
- Institute for Comparative Genomics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Kelsey Williamson
- Institute for Comparative Genomics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Andrew J Roger
- Institute for Comparative Genomics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Ken-Ichiro Ishida
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| | - Alastair G B Simpson
- Institute for Comparative Genomics, Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
55
|
Cai C. Ant backbone phylogeny resolved by modelling compositional heterogeneity among sites in genomic data. Commun Biol 2024; 7:106. [PMID: 38233456 PMCID: PMC10794244 DOI: 10.1038/s42003-024-05793-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024] Open
Abstract
Ants are the most ubiquitous and ecologically dominant arthropods on Earth, and understanding their phylogeny is crucial for deciphering their character evolution, species diversification, and biogeography. Although recent genomic data have shown promise in clarifying intrafamilial relationships across the tree of ants, inconsistencies between molecular datasets have also emerged. Here I re-examine the most comprehensive published Sanger-sequencing and genome-scale datasets of ants using model comparison methods that model among-site compositional heterogeneity to understand the sources of conflict in phylogenetic studies. My results under the best-fitting model, selected on the basis of Bayesian cross-validation and posterior predictive model checking, identify contentious nodes in ant phylogeny whose resolution is modelling-dependent. I show that the Bayesian infinite mixture CAT model outperforms empirical finite mixture models (C20, C40 and C60) and that, under the best-fitting CAT-GTR + G4 model, the enigmatic Martialis heureka is sister to all ants except Leptanillinae, rejecting the more popular hypothesis supported under worse-fitting models, that place it as sister to Leptanillinae. These analyses resolve a lasting controversy in ant phylogeny and highlight the significance of model comparison and adequate modelling of among-site compositional heterogeneity in reconstructing the deep phylogeny of insects.
Collapse
Affiliation(s)
- Chenyang Cai
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
56
|
Maire J, Collingro A, Tandon K, Jameson VJ, Judd LM, Horn M, Blackall LL, van Oppen MJH. Chlamydiae as symbionts of photosynthetic dinoflagellates. THE ISME JOURNAL 2024; 18:wrae139. [PMID: 39046276 PMCID: PMC11317633 DOI: 10.1093/ismejo/wrae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/13/2024] [Accepted: 07/23/2024] [Indexed: 07/25/2024]
Abstract
Chlamydiae are ubiquitous intracellular bacteria and infect a wide diversity of eukaryotes, including mammals. However, chlamydiae have never been reported to infect photosynthetic organisms. Here, we describe a novel chlamydial genus and species, Candidatus Algichlamydia australiensis, capable of infecting the photosynthetic dinoflagellate Cladocopium sp. (originally isolated from a scleractinian coral). Algichlamydia australiensis was confirmed to be intracellular by fluorescence in situ hybridization and confocal laser scanning microscopy and temporally stable at the population level by monitoring its relative abundance across four weeks of host growth. Using a combination of short- and long-read sequencing, we recovered a high-quality (completeness 91.73% and contamination 0.27%) metagenome-assembled genome of A. australiensis. Phylogenetic analyses show that this chlamydial taxon represents a new genus and species within the Simkaniaceae family. Algichlamydia australiensis possesses all the hallmark genes for chlamydiae-host interactions, including a complete type III secretion system. In addition, a type IV secretion system is encoded on a plasmid and has previously been observed for only three other chlamydial species. Twenty orthologous groups of genes are unique to A. australiensis, one of which is structurally similar to a protein known from Cyanobacteria and Archaeplastida involved in thylakoid biogenesis and maintenance, hinting at potential chlamydiae interactions with the chloroplasts of Cladocopium cells. Our study shows that chlamydiae infect dinoflagellate symbionts of cnidarians, the first photosynthetic organism reported to harbor chlamydiae, thereby expanding the breadth of chlamydial hosts and providing a new contribution to the discussion around the role of chlamydiae in the establishment of the primary plastid.
Collapse
Affiliation(s)
- Justin Maire
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Astrid Collingro
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Kshitij Tandon
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Vanta J Jameson
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute of Infection and Immunity, Parkville, VIC 3010, Australia
- Melbourne Cytometry Platform, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Louise M Judd
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Linda L Blackall
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Madeleine J H van Oppen
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| |
Collapse
|
57
|
Cho A, Tikhonenkov DV, Lax G, Prokina KI, Keeling PJ. Phylogenomic position of genetically diverse phagotrophic stramenopile flagellates in the sediment-associated MAST-6 lineage and a potentially halotolerant placididean. Mol Phylogenet Evol 2024; 190:107964. [PMID: 37951557 DOI: 10.1016/j.ympev.2023.107964] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Unlike morphologically conspicuous ochrophytes, many flagellates belonging to basally branching stramenopiles are small and often overlooked. As a result, many of these lineages are known only through molecular surveys and identified as MArine STramenopiles (MAST), and remain largely uncharacterized at the cellular or genomic level. These likely phagotrophic flagellates are not only phylogenetically diverse, but also extremely abundant in some environments, making their characterization all the more important. MAST-6 is one example of a phylogenetically distinct group that has been known to be associated with sediments, but little else is known about it. Indeed, until the present study, only a single species from this group, Pseudophyllomitus vesiculosus (Pseudophyllomitidae), has been both formally described and associated with genomic information. Here, we describe four new species including two new genera of sediment-dwelling MAST-6, Vomastramonas tehuelche gen. et sp. nov., Mastreximonas tlaamin gen. et sp. nov., one undescribed Pseudophyllomitus sp., BSC2, and a new species belonging to Placididea, the potentially halotolerant Haloplacidia sinai sp. nov. We also provide two additional bikosian transcriptomes from a public culture collection, to allow for better phylogenetic reconstructions of deep-branching stramenopiles. With the SSU rRNA sequences of the new MAST-6 species, we investigate the phylogenetic diversity of the MAST-6 group and show a high relative abundance of MAST-6 related to M. tlaamin in samples across various depths and geographical locations. Using the new MAST-6 species, we also update the phylogenomic tree of stramenopiles, particularly focusing on the paraphyly of Bigyra.
Collapse
Affiliation(s)
- Anna Cho
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada.
| | - Denis V Tikhonenkov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Science, Borok 152742, Russia
| | - Gordon Lax
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Kristina I Prokina
- Papanin Institute for Biology of Inland Waters, Russian Academy of Science, Borok 152742, Russia; Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| |
Collapse
|
58
|
Jones RE, Tice AK, Eliáš M, Eme L, Kolísko M, Nenarokov S, Pánek T, Rokas A, Salomaki E, Strassert JFH, Shen XX, Žihala D, Brown MW. Create, Analyze, and Visualize Phylogenomic Datasets Using PhyloFisher. Curr Protoc 2024; 4:e969. [PMID: 38265166 PMCID: PMC11491051 DOI: 10.1002/cpz1.969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
PhyloFisher is a software package written primarily in Python3 that can be used for the creation, analysis, and visualization of phylogenomic datasets that consist of protein sequences from eukaryotic organisms. Unlike many existing phylogenomic pipelines, PhyloFisher comes with a manually curated database of 240 protein-coding genes, a subset of a previous phylogenetic dataset sampled from 304 eukaryotic taxa. The software package can also utilize a user-created database of eukaryotic proteins, which may be more appropriate for shallow evolutionary questions. PhyloFisher is also equipped with a set of utilities to aid in running routine analyses, such as the prediction of alternative genetic codes, removal of genes and/or taxa based on occupancy/completeness of the dataset, testing for amino acid compositional heterogeneity among sequences, removal of heterotachious and/or fast-evolving sites, removal of fast-evolving taxa, supermatrix creation from randomly resampled genes, and supermatrix creation from nucleotide sequences. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Constructing a phylogenomic dataset Basic Protocol 2: Performing phylogenomic analyses Support Protocol 1: Installing PhyloFisher Support Protocol 2: Creating a custom phylogenomic database.
Collapse
Affiliation(s)
- Robert E. Jones
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS, USA
| | - Alexander K. Tice
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS, USA
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic
| | - Laura Eme
- Unité d’Ecologie, Systématique et Evolution, CNRS, Université Paris-Saclay France
| | - Martin Kolísko
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, České Budějovice Czech Republic
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| | - Serafim Nenarokov
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, České Budějovice Czech Republic
| | - Tomáš Pánek
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Antonis Rokas
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Eric Salomaki
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, České Budějovice Czech Republic
- Center for Computational Biology of Human Disease and Center for Computation and Visualization, Brown University, Providence, RI, United States
| | - Jürgen F. H. Strassert
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Xing-Xing Shen
- Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - David Žihala
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic
| | - Matthew W. Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
59
|
Nishihara H, Toda Y, Kuramoto T, Kamohara K, Goto A, Hoshino K, Okada S, Kuraku S, Okabe M, Ishimaru Y. A vertebrate-wide catalogue of T1R receptors reveals diversity in taste perception. Nat Ecol Evol 2024; 8:111-120. [PMID: 38093021 PMCID: PMC10781636 DOI: 10.1038/s41559-023-02258-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/25/2023] [Indexed: 01/12/2024]
Abstract
Taste is a vital chemical sense for feeding behaviour. In mammals, the umami and sweet taste receptors comprise three members of the taste receptor type 1 (T1R/TAS1R) family: T1R1, T1R2 and T1R3. Because their functional homologues exist in teleosts, only three TAS1R genes generated by gene duplication are believed to have been inherited from the common ancestor of bony vertebrates. Here, we report five previously uncharacterized TAS1R members in vertebrates, TAS1R4, TAS1R5, TAS1R6, TAS1R7 and TAS1R8, based on genome-wide survey of diverse taxa. We show that mammalian and teleost fish TAS1R2 and TAS1R3 genes are paralogues. Our phylogenetic analysis suggests that the bony vertebrate ancestor had nine TAS1Rs resulting from multiple gene duplications. Some TAS1Rs were lost independently in descendent lineages resulting in retention of only three TAS1Rs in mammals and teleosts. Combining functional assays and expression analysis of non-teleost fishes we show that the novel T1Rs form heterodimers in taste-receptor cells and recognize a broad range of ligands such as essential amino acids, including branched-chain amino acids, which have not been previously considered as T1R ligands. This study reveals diversity of taste sensations in both modern vertebrates and their ancestors, which might have enabled vertebrates to adapt to diverse habitats on Earth.
Collapse
Affiliation(s)
- Hidenori Nishihara
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara, Japan.
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.
| | - Yasuka Toda
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Tae Kuramoto
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara, Japan
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Kota Kamohara
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Azusa Goto
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Kyoko Hoshino
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Shinji Okada
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigehiro Kuraku
- Molecular Life History Laboratory, National Institute of Genetics, Mishima, Japan
- Department of Genetics, SOKENDAI (Graduate University for Advanced Studies), Mishima, Japan
| | - Masataka Okabe
- Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshiro Ishimaru
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Japan.
| |
Collapse
|
60
|
Morreale DP, St Geme III JW, Planet PJ. Phylogenomic analysis of the understudied Neisseriaceae species reveals a poly- and paraphyletic Kingella genus. Microbiol Spectr 2023; 11:e0312323. [PMID: 37882538 PMCID: PMC10715097 DOI: 10.1128/spectrum.03123-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/15/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Understanding the evolutionary relationships between the species in the Neisseriaceae family has been a persistent challenge in bacterial systematics due to high recombination rates in these species. Previous studies of this family have focused on Neisseria meningitidis and N. gonorrhoeae. However, previously understudied Neisseriaceae species are gaining new attention, with Kingella kingae now recognized as a common human pathogen and with Alysiella and Simonsiella being unique in the bacterial world as multicellular organisms. A better understanding of the genomic evolution of the Neisseriaceae can lead to the identification of specific genes and traits that underlie the remarkable diversity of this family.
Collapse
Affiliation(s)
- Daniel P. Morreale
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Joseph W. St Geme III
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Paul J. Planet
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Comparative Genomics, American Museum of Natural History, New York, New York, USA
| |
Collapse
|
61
|
Huang F, Li X, Ye B, Zhou Y, Dang Z, Tang W, Wang L, Zhang H, Chui W, Kui J. Characterization of the Complete Mitochondrial Genome and Phylogenetic Analyses of Eurytrema coelomaticum (Trematoda: Dicrocoeliidae). Genes (Basel) 2023; 14:2199. [PMID: 38137020 PMCID: PMC10743053 DOI: 10.3390/genes14122199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Eurytrema coelomaticum, a pancreatic fluke, is recognized as a causative agent of substantial economic losses in ruminants. This infection, commonly referred to as eurytrematosis, is a significant concern due to its detrimental impact on livestock production. However, there is a paucity of knowledge regarding the mitochondrial genome of E. coelomaticum. In this study, we performed the initial sequencing of the complete mitochondrial genome of E. coelomaticum. Our findings unveiled that the mitochondrial genome of E. coelomaticum spans a length of 15,831 bp and consists of 12 protein-coding genes, 22 tRNA genes, two rRNA genes, and two noncoding regions. The A+T content constituted 62.49% of the genome. Moreover, all 12 protein-coding genes of E. coelomaticum exhibit the same arrangement as those of E. pancreaticum and other published species belonging to the family Dicrocoeliidae. The presence of a short string of additional amino acids (approximately 20~23 aa) at the N-terminal of the cox1 protein in both E. coelomaticum and E. pancreaticum mitochondrial genomes has contributed to the elongation of the cox1 gene in genus Eurytrema, surpassing that of all previously sequenced Dicrocoeliidae. The phylogenetic analysis displayed a close relationship between E. coelomaticum and E. pancreaticum, along with a genus-level association between Eurytrema and Lyperosomum. These findings underscore the importance of mitochondrial genomic data for comparative studies of Dicrocoeliidae and even Digenea, offering valuable DNA markers for future investigations in the systematic, epidemiological, and population genetic studies of this parasite and other digenean trematodes.
Collapse
Affiliation(s)
- Fuqiang Huang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (X.L.)
| | - Xin Li
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (X.L.)
| | - Bijin Ye
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (X.L.)
| | - Yule Zhou
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (X.L.)
| | - Zhisheng Dang
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China (NHC), World Health Organization (WHO) Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Wenqiang Tang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China
- Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China
| | - Long Wang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (X.L.)
| | - Haoji Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (X.L.)
| | - Wenting Chui
- Animal Disease Prevention and Control Center of Qinghai Province, Xining 810003, China
| | - Jun Kui
- Huangzhong District Animal Husbandry and Veterinary Station, Xining 811600, China
| |
Collapse
|
62
|
Bowman J, Enard D, Lynch VJ. Phylogenomics reveals an almost perfect polytomy among the almost ungulates ( Paenungulata). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570590. [PMID: 38106080 PMCID: PMC10723481 DOI: 10.1101/2023.12.07.570590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Phylogenetic studies have resolved most relationships among Eutherian Orders. However, the branching order of elephants (Proboscidea), hyraxes (Hyracoidea), and sea cows (Sirenia) (i.e., the Paenungulata) has remained uncertain since at least 1758, when Linnaeus grouped elephants and manatees into a single Order (Bruta) to the exclusion of hyraxes. Subsequent morphological, molecular, and large-scale phylogenomic datasets have reached conflicting conclusions on the branching order within Paenungulates. We use a phylogenomic dataset of alignments from 13,388 protein-coding genes across 261 Eutherian mammals to infer phylogenetic relationships within Paenungulates. We find that gene trees almost equally support the three alternative resolutions of Paenungulate relationships and that despite strong support for a Proboscidea+Hyracoidea split in the multispecies coalescent (MSC) tree, there is significant evidence for gene tree uncertainty, incomplete lineage sorting, and introgression among Proboscidea, Hyracoidea, and Sirenia. Indeed, only 8-10% of genes have statistically significant phylogenetic signal to reject the hypothesis of a Paenungulate polytomy. These data indicate little support for any resolution for the branching order Proboscidea, Hyracoidea, and Sirenia within Paenungulata and suggest that Paenungulata may be as close to a real, or at least unresolvable, polytomy as possible.
Collapse
Affiliation(s)
- Jacob Bowman
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, USA
| | - David Enard
- Department of Ecology and Evolutionary Biology. University of Arizona, Tucson, AZ, USA
| | - Vincent J. Lynch
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, USA
| |
Collapse
|
63
|
Harada R, Inagaki Y. Gleaning Euglenozoa-specific DNA polymerases in public single-cell transcriptome data. Protist 2023; 174:125997. [PMID: 38039844 DOI: 10.1016/j.protis.2023.125997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
Multiple genes encoding family A DNA polymerases (famA DNAPs), which are evolutionary relatives of DNA polymerase I (PolI) in bacteria and phages, have been found in eukaryotic genomes, and many of these proteins are used mainly in organelles. Among members of the phylum Euglenozoa, distinct types of famA DNAP, PolIA, PolIBCD+, POP, and eugPolA, have been found. It is intriguing how the suite of famA DNAPs had been established during the evolution of Euglenozoa, but the DNAP data have not been sampled from the taxa that sufficiently represent the diversity of this phylum. In particular, little sequence data were available for basal branching species in Euglenozoa until recently. Thanks to the single-cell transcriptome data from symbiontids and phagotrophic euglenids, we have an opportunity to cover the "hole" in the repertory of famA DNAPs in the deep branches in Euglenozoa. The current study identified 16 new famA DNAP sequences in the transcriptome data from 33 phagotrophic euglenids and two symbiontids, respectively. Based on the new famA DNAP sequences, the updated diversity and evolution of famA DNAPs in Euglenozoa are discussed.
Collapse
Affiliation(s)
- Ryo Harada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan
| | - Yuji Inagaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan; Center for Computational Sciences, University of Tsukuba, Japan.
| |
Collapse
|
64
|
Thomé PC, Irisarri I, Wolinska J, Monaghan MT, Strassert JFH. Single-cell genomics reveals new rozellid lineages and supports their sister relationship to Microsporidia. Biol Lett 2023; 19:20230398. [PMID: 38087939 PMCID: PMC10716661 DOI: 10.1098/rsbl.2023.0398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The phylum Rozellomycota has been proposed for a group of early-branching holomycotan lineages representing obligate parasites and hyperparasites of zoosporic fungi, oomycotes or phytoplankton. Given their predominantly intracellular lifestyle, rozellids are typically known from environmental ribosomal DNA data, except for the well-studied Rozella species. To date, the phylogenetic relationship between rozellids and microsporidians (Microsporidia) is not fully understood and most reliable hypotheses are based on phylogenomic analyses that incorporate the only publicly available rozellid genome of Rozella allomycis. Here, we provide genomic data of three new rozellid lineages obtained by single-cell sequencing from environmental samples and show with a phylogenomic approach that rozellids form a monophyletic group that is sister to microsporidians, corroborating the previously proposed phylum Rozellomycota. Whereas no mitochondrial genes coding for the respiratory Complex I could be found, we discovered a gene coding for a nucleotide phosphate transporter in one of the three draft genomes. The scattered absence of Complex I genes and scattered presence of nucleotide transporter genes across diverse microsporidian and rozellid lineages suggest that these adaptations to a parasitic lifestyle, which reduce the parasite's capability to synthesize ATP but enables it to steal ATP from its host, evolved independently in microsporidians and rozellids.
Collapse
Affiliation(s)
- Pauline C. Thomé
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Iker Irisarri
- Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Museum of Nature Hamburg, Hamburg, Germany
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Michael T. Monaghan
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Jürgen F. H. Strassert
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| |
Collapse
|
65
|
Cao W, Wu LY, Xia XY, Chen X, Wang ZX, Pan XM. A sequence-based evolutionary distance method for Phylogenetic analysis of highly divergent proteins. Sci Rep 2023; 13:20304. [PMID: 37985846 PMCID: PMC10662474 DOI: 10.1038/s41598-023-47496-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023] Open
Abstract
Because of the limited effectiveness of prevailing phylogenetic methods when applied to highly divergent protein sequences, the phylogenetic analysis problem remains challenging. Here, we propose a sequence-based evolutionary distance algorithm termed sequence distance (SD), which innovatively incorporates site-to-site correlation within protein sequences into the distance estimation. In protein superfamilies, SD can effectively distinguish evolutionary relationships both within and between protein families, producing phylogenetic trees that closely align with those based on structural information, even with sequence identity less than 20%. SD is highly correlated with the similarity of the protein structure, and can calculate evolutionary distances for thousands of protein pairs within seconds using a single CPU, which is significantly faster than most protein structure prediction methods that demand high computational resources and long run times. The development of SD will significantly advance phylogenetics, providing researchers with a more accurate and reliable tool for exploring evolutionary relationships.
Collapse
Affiliation(s)
- Wei Cao
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Lu-Yun Wu
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xia-Yu Xia
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiang Chen
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhi-Xin Wang
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xian-Ming Pan
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
66
|
Kapli P, Kotari I, Telford MJ, Goldman N, Yang Z. DNA Sequences Are as Useful as Protein Sequences for Inferring Deep Phylogenies. Syst Biol 2023; 72:1119-1135. [PMID: 37366056 PMCID: PMC10627555 DOI: 10.1093/sysbio/syad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 06/28/2023] Open
Abstract
Inference of deep phylogenies has almost exclusively used protein rather than DNA sequences based on the perception that protein sequences are less prone to homoplasy and saturation or to issues of compositional heterogeneity than DNA sequences. Here, we analyze a model of codon evolution under an idealized genetic code and demonstrate that those perceptions may be misconceptions. We conduct a simulation study to assess the utility of protein versus DNA sequences for inferring deep phylogenies, with protein-coding data generated under models of heterogeneous substitution processes across sites in the sequence and among lineages on the tree, and then analyzed using nucleotide, amino acid, and codon models. Analysis of DNA sequences under nucleotide-substitution models (possibly with the third codon positions excluded) recovered the correct tree at least as often as analysis of the corresponding protein sequences under modern amino acid models. We also applied the different data-analysis strategies to an empirical dataset to infer the metazoan phylogeny. Our results from both simulated and real data suggest that DNA sequences may be as useful as proteins for inferring deep phylogenies and should not be excluded from such analyses. Analysis of DNA data under nucleotide models has a major computational advantage over protein-data analysis, potentially making it feasible to use advanced models that account for among-site and among-lineage heterogeneity in the nucleotide-substitution process in inference of deep phylogenies.
Collapse
Affiliation(s)
- Paschalia Kapli
- Department of Genetics, University College London, Gower Street, London WC1E 6BT, UK
| | - Ioanna Kotari
- Department of Genetics, University College London, Gower Street, London WC1E 6BT, UK
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, 1210, Austria
| | - Maximilian J Telford
- Department of Genetics, University College London, Gower Street, London WC1E 6BT, UK
| | - Nick Goldman
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ziheng Yang
- Department of Genetics, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
67
|
Roberts WR, Ruck EC, Downey KM, Pinseel E, Alverson AJ. Resolving Marine-Freshwater Transitions by Diatoms Through a Fog of Gene Tree Discordance. Syst Biol 2023; 72:984-997. [PMID: 37335140 DOI: 10.1093/sysbio/syad038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023] Open
Abstract
Despite the obstacles facing marine colonists, most lineages of aquatic organisms have colonized and diversified in freshwaters repeatedly. These transitions can trigger rapid morphological or physiological change and, on longer timescales, lead to increased rates of speciation and extinction. Diatoms are a lineage of ancestrally marine microalgae that have diversified throughout freshwater habitats worldwide. We generated a phylogenomic data set of genomes and transcriptomes for 59 diatom taxa to resolve freshwater transitions in one lineage, the Thalassiosirales. Although most parts of the species tree were consistently resolved with strong support, we had difficulties resolving a Paleocene radiation, which affected the placement of one freshwater lineage. This and other parts of the tree were characterized by high levels of gene tree discordance caused by incomplete lineage sorting and low phylogenetic signal. Despite differences in species trees inferred from concatenation versus summary methods and codons versus amino acids, traditional methods of ancestral state reconstruction supported six transitions into freshwaters, two of which led to subsequent species diversification. Evidence from gene trees, protein alignments, and diatom life history together suggest that habitat transitions were largely the product of homoplasy rather than hemiplasy, a condition where transitions occur on branches in gene trees not shared with the species tree. Nevertheless, we identified a set of putatively hemiplasious genes, many of which have been associated with shifts to low salinity, indicating that hemiplasy played a small but potentially important role in freshwater adaptation. Accounting for differences in evolutionary outcomes, in which some taxa became locked into freshwaters while others were able to return to the ocean or become salinity generalists, might help further distinguish different sources of adaptive mutation in freshwater diatoms.
Collapse
Affiliation(s)
- Wade R Roberts
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Elizabeth C Ruck
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Kala M Downey
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Eveline Pinseel
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Andrew J Alverson
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
68
|
Brabec J, Salomaki ED, Kolísko M, Scholz T, Kuchta R. The evolution of endoparasitism and complex life cycles in parasitic platyhelminths. Curr Biol 2023; 33:4269-4275.e3. [PMID: 37729914 DOI: 10.1016/j.cub.2023.08.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/05/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
Within flatworms, the vast majority of parasitism is innate to Neodermata, the most derived and diversified group of the phylum Platyhelminthes.1,2 The four major lineages of Neodermata maintain various combinations of life strategies.3 They include both externally (ecto-) and internally feeding (endo-) parasites. Some lineages complete their life cycles directly by infecting a single host, whereas others succeed only through serial infections of multiple hosts of various vertebrate and invertebrate groups. Food sources and modes of digestion add further combinatorial layers to the often incompletely understood mosaic of neodermatan life histories. Their evolutionary trajectories have remained molecularly unresolved because of conflicting evolutionary inferences and a lack of genomic data.4 Here, we generated transcriptomes for nine early branching neodermatan representatives and performed detailed phylogenomic analyses to address these critical gaps. Polyopisthocotylea, mostly hematophagous ectoparasites, form a group with the mostly hematophagous but endoparasitic trematodes (Trematoda), rather than sharing a common ancestor with Monopisthocotylea, ectoparasitic epithelial feeders. Phylogenetic placement of the highly specialized endoparasitic Cestoda alters depending on the model. Regardless of this uncertainty, this study brings an unconventional perspective on the evolution of platyhelminth parasitism, rejecting a common origin for the endoparasitic lifestyle intrinsic to cestodes and trematodes. Instead, our data indicate that complex life cycles and invasion of vertebrates' gut lumen, the hallmark features of these parasites, evolved independently within Neodermata. We propose the demise of the traditionally recognized class Monogenea and the promotion of its two subclasses to the class level as Monopisthocotyla new class and Polyopisthocotyla new class.
Collapse
Affiliation(s)
- Jan Brabec
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice 37005, Czech Republic.
| | - Eric D Salomaki
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice 37005, Czech Republic; Center for Computational Biology of Human Disease and Center for Computation and Visualization, Brown University, 180 George St, Providence, RI 02906, USA
| | - Martin Kolísko
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice 37005, Czech Republic
| | - Tomáš Scholz
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice 37005, Czech Republic
| | - Roman Kuchta
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice 37005, Czech Republic
| |
Collapse
|
69
|
Dai M, He SL, Chen B, Li TJ. Phylogeny of Rhynchium and Its Related Genera (Hymenoptera: Eumeninae) Based on Universal Single-Copy Orthologs and Ultraconserved Elements. INSECTS 2023; 14:775. [PMID: 37754743 PMCID: PMC10532281 DOI: 10.3390/insects14090775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
The subfamily Eumeninae is a large group of fierce predatory insects that prey mainly on the larvae of Lepidoptera pests. Because of the highly similar morphologies of the genus Rhynchium and its related genera in the subfamily, including Rhynchium Spinola, Allorhynchium van der Vecht, Anterhynchium de Saussure, Pararrhynchium de Saussure, it is essential to delineate their relationships. A previous phylogenetic analysis based on mitochondrial genomes suggested the inconsistent relationships of these genera under traditional classification based on morphological characters. In this study, we first used single-copy orthologs [USCO] and ultraconserved elements [UCE] extracted from 10 newly sequenced low-coverage whole genomes to resolve the phylogenetic relationships of the above genera. The newly sequenced genomes are 152.99 Mb to 211.49 Mb in size with high completeness (BUSCO complete: 91.5-95.6%) and G + C content (36.31-38.76%). Based on extracted 5811 USCOs and 2312 UCEs, the phylogenetic relationships of Rhynchium and its related genera were: ((Allorhynchium + Lissodynerus) + (Pararrhynchium + (Anterhynchium + (Dirhynchium + Rhynchium)))), which was consistent with the mitochondrial genome results. The results supported the genus Rhynchium as monophyletic, whereas Anterhynchium was recovered as paraphyletic, with Anterhynchium (Dirhynchium) as a sister to Rhynchium and hence deserving generic status; In addition, in the genus Pararrhynchium, P. septemfasciatus feanus and P. venkataramani were separated, not clustered on a branch, just as P. septemfasciatus feanus was not together with P. striatum based on mitochondrial genomes. Since Lissodynerus septemfasciatus, the type species of the genus Lissodynerus, was transferred to Pararrhynchium, it is considered that the genus Lissodynerus should be restituted as a valid genus, not a synonym of Pararrhynchium.
Collapse
Affiliation(s)
| | | | | | - Ting-Jing Li
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Science, Chongqing Normal University, Chongqing 401331, China; (M.D.); (S.-L.H.); (B.C.)
| |
Collapse
|
70
|
Bailey NP, Shao Y, Du S, Foster PG, Fettweis J, Hall N, Wang Z, Hirt RP. Evolutionary conservation of Trichomonas-mycoplasma symbiosis across the host species barrier. Front Microbiol 2023; 14:1242275. [PMID: 37808290 PMCID: PMC10557491 DOI: 10.3389/fmicb.2023.1242275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction The protozoan parasite Trichomonas vaginalis is the most common cellular sexually transmitted disease in humans, and the closely related species Trichomonas gallinae is an avian parasite of ecological and economic importance. Phylogenetic evidence suggests T. vaginalis arose during bird to human transmission of a T. gallinae-like ancestor. Trichomonas vaginalis shares a strong clinical association with the independent sexually transmitted pathogen Metamycoplasma (formerly Mycoplasma) hominis, and the uncultured bacterium "Candidatus Malacoplasma (formerly Mycoplasma) girerdii," with the latter association being an order of magnitude stronger. Both bacterial species have been shown to profoundly influence T. vaginalis growth, energy production and virulence-associated mechanisms. Methods Evidence for a novel Malacoplasma sp. was discovered by in vivo Illumina metatranscriptomics sequencing of the T. gallinae-infected pigeon mouth. We leveraged published 16S rDNA profiling data from digestive tract of 12 healthy and 24 T. gallinae-infected pigeons to investigate association between the novel Malacoplasma sp. and T. gallinae. We utilised Illumina metagenomics sequencing targeted to pigeon oral and crop samples infected with the novel Malacoplasma sp. to generate its full-length genome sequence. Sequence similarity network analysis was used to compare annotated proteins from the novel Malacoplasma sp. with a range of other related species. Results Here we present evidence for a novel Malacoplasma species, related to "Ca. M. girerdii," that is strongly associated with T. gallinae in the upper digestive tract of domestic pigeons. Analysis of the genome sequence revealed gene features apparently specific to a Trichomonas-symbiotic Malacoplasma lineage. Discussion These data support a model of long-term association between Trichomonas and Malacoplasma spp. that has been conserved across diversification of the Trichomonas lineage and the host species barrier from birds to human.
Collapse
Affiliation(s)
- Nicholas P. Bailey
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Yuxin Shao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shaodua Du
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | | | | | - Neil Hall
- Earlham Institute, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Zheng Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Robert P. Hirt
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
71
|
Blaz J, Galindo LJ, Heiss AA, Kaur H, Torruella G, Yang A, Alexa Thompson L, Filbert A, Warring S, Narechania A, Shiratori T, Ishida KI, Dacks JB, López-García P, Moreira D, Kim E, Eme L. One high quality genome and two transcriptome datasets for new species of Mantamonas, a deep-branching eukaryote clade. Sci Data 2023; 10:603. [PMID: 37689692 PMCID: PMC10492846 DOI: 10.1038/s41597-023-02488-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/18/2023] [Indexed: 09/11/2023] Open
Abstract
Mantamonads were long considered to represent an "orphan" lineage in the tree of eukaryotes, likely branching near the most frequently assumed position for the root of eukaryotes. Recent phylogenomic analyses have placed them as part of the "CRuMs" supergroup, along with collodictyonids and rigifilids. This supergroup appears to branch at the base of Amorphea, making it of special importance for understanding the deep evolutionary history of eukaryotes. However, the lack of representative species and complete genomic data associated with them has hampered the investigation of their biology and evolution. Here, we isolated and described two new species of mantamonads, Mantamonas vickermani sp. nov. and Mantamonas sphyraenae sp. nov., for each of which we generated transcriptomic sequence data, as well as a high-quality genome for the latter. The estimated size of the M. sphyraenae genome is 25 Mb; our de novo assembly appears to be highly contiguous and complete with 9,416 predicted protein-coding genes. This near-chromosome-scale genome assembly is the first described for the CRuMs supergroup.
Collapse
Affiliation(s)
- Jazmin Blaz
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Luis Javier Galindo
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Aaron A Heiss
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
- Department of Oceanography, Kyungpook National University, Daegu, South Korea
| | - Harpreet Kaur
- Division of Infectious Disease, Department of Medicine, University of Alberta and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Guifré Torruella
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Ashley Yang
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - L Alexa Thompson
- Division of Infectious Disease, Department of Medicine, University of Alberta and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Alexander Filbert
- Division of Infectious Disease, Department of Medicine, University of Alberta and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Sally Warring
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Apurva Narechania
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Takashi Shiratori
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ken-Ichiro Ishida
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Joel B Dacks
- Department of Oceanography, Kyungpook National University, Daegu, South Korea
- Centre for Life's Origin and Evolution, Department of Genetics, Evolution & Environment, University College London, London, United Kingdom
| | - Purificación López-García
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - David Moreira
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Eunsoo Kim
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA.
- Division of EcoScience, Ewha Womans University, Seoul, South Korea.
| | - Laura Eme
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France.
| |
Collapse
|
72
|
Farrell AA, Nesbø CL, Zhaxybayeva O. Early Divergence and Gene Exchange Highways in the Evolutionary History of Mesoaciditogales. Genome Biol Evol 2023; 15:evad156. [PMID: 37616556 PMCID: PMC10476701 DOI: 10.1093/gbe/evad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
The placement of a nonhyperthermophilic order Mesoaciditogales as the earliest branching clade within the Thermotogota phylum challenges the prevailing hypothesis that the last common ancestor of Thermotogota was a hyperthermophile. Yet, given the long branch leading to the only two Mesoaciditogales described to date, the phylogenetic position of the order may be due to the long branch attraction artifact. By testing various models and applying data recoding in phylogenetic reconstructions, we observed that early branching of Mesoaciditogales within Thermotogota is strongly supported by the conserved marker genes assumed to be vertically inherited. However, based on the taxonomic content of 1,181 gene families and a phylogenetic analysis of 721 gene family trees, we also found that a substantial number of Mesoaciditogales genes are more closely related to species from the order Petrotogales. These genes contribute to coenzyme transport and metabolism, fatty acid biosynthesis, genes known to respond to heat and cold stressors, and include many genes of unknown functions. The Petrotogales comprise moderately thermophilic and mesophilic species with similar temperature tolerances to that of Mesoaciditogales. Our findings hint at extensive horizontal gene transfer (HGT) between, or parallel independent gene gains by, the two ecologically similar lineages and suggest that the exchanged genes may be important for adaptation to comparable temperature niches.
Collapse
Affiliation(s)
- Anne A Farrell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Camilla L Nesbø
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Olga Zhaxybayeva
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
73
|
Esser SP, Rahlff J, Zhao W, Predl M, Plewka J, Sures K, Wimmer F, Lee J, Adam PS, McGonigle J, Turzynski V, Banas I, Schwank K, Krupovic M, Bornemann TLV, Figueroa-Gonzalez PA, Jarett J, Rattei T, Amano Y, Blaby IK, Cheng JF, Brazelton WJ, Beisel CL, Woyke T, Zhang Y, Probst AJ. A predicted CRISPR-mediated symbiosis between uncultivated archaea. Nat Microbiol 2023; 8:1619-1633. [PMID: 37500801 DOI: 10.1038/s41564-023-01439-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
CRISPR-Cas systems defend prokaryotic cells from invasive DNA of viruses, plasmids and other mobile genetic elements. Here, we show using metagenomics, metatranscriptomics and single-cell genomics that CRISPR systems of widespread, uncultivated archaea can also target chromosomal DNA of archaeal episymbionts of the DPANN superphylum. Using meta-omics datasets from Crystal Geyser and Horonobe Underground Research Laboratory, we find that CRISPR spacers of the hosts Candidatus Altiarchaeum crystalense and Ca. A. horonobense, respectively, match putative essential genes in their episymbionts' genomes of the genus Ca. Huberiarchaeum and that some of these spacers are expressed in situ. Metabolic interaction modelling also reveals complementation between host-episymbiont systems, on the basis of which we propose that episymbionts are either parasitic or mutualistic depending on the genotype of the host. By expanding our analysis to 7,012 archaeal genomes, we suggest that CRISPR-Cas targeting of genomes associated with symbiotic archaea evolved independently in various archaeal lineages.
Collapse
Affiliation(s)
- Sarah P Esser
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Janina Rahlff
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Weishu Zhao
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI, USA
- Shanghai Jiao Tong University, School of Life Sciences and Biotechnology, International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, China
| | - Michael Predl
- Computational Systems Biology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Julia Plewka
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Katharina Sures
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Franziska Wimmer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Janey Lee
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Panagiotis S Adam
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Julia McGonigle
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Victoria Turzynski
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Indra Banas
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Katrin Schwank
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
- University of Regensburg, Biochemistry III, Regensburg, Germany
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Till L V Bornemann
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Perla Abigail Figueroa-Gonzalez
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Jessica Jarett
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Thomas Rattei
- Computational Systems Biology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Yuki Amano
- Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, Tokai, Japan
| | - Ian K Blaby
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jan-Fang Cheng
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
- Medical faculty, University of Würzburg, Würzburg, Germany
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI, USA
| | - Alexander J Probst
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany.
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany.
- Centre of Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
74
|
Li YD, Engel MS, Tihelka E, Cai C. Phylogenomics of weevils revisited: data curation and modelling compositional heterogeneity. Biol Lett 2023; 19:20230307. [PMID: 37727076 PMCID: PMC10509570 DOI: 10.1098/rsbl.2023.0307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
Weevils represent one of the most prolific radiations of beetles and the most diverse group of herbivores on land. The phylogeny of weevils (Curculionoidea) has received extensive attention, and a largely satisfactory framework for their interfamilial relationships has been established. However, a recent phylogenomic study of Curculionoidea based on anchored hybrid enrichment (AHE) data yielded an abnormal placement for the family Belidae (strongly supported as sister to Nemonychidae + Anthribidae). Here we reanalyse the genome-scale AHE data for Curculionoidea using various models of molecular evolution and data filtering methods to mitigate anticipated systematic errors and reduce compositional heterogeneity. When analysed with the infinite mixture model CAT-GTR or using appropriately filtered datasets, Belidae are always recovered as sister to the clade (Attelabidae, (Caridae, (Brentidae, Curculionidae))), which is congruent with studies based on morphology and other sources of molecular data. Although the relationships of the 'higher Curculionidae' remain challenging to resolve, we provide a consistent and robust backbone phylogeny of weevils. Our extensive analyses emphasize the significance of data curation and modelling across-site compositional heterogeneity in phylogenomic studies.
Collapse
Affiliation(s)
- Yan-Da Li
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Michael S. Engel
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA
| | - Erik Tihelka
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Chenyang Cai
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
75
|
Lax G, Keeling PJ. Molecular phylogenetics of sessile Dolium sedentarium, a petalomonad euglenid. J Eukaryot Microbiol 2023; 70:e12991. [PMID: 37424051 DOI: 10.1111/jeu.12991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023]
Abstract
The euglenids are a species-rich group of flagellates with varying modes of nutrition that can be found in diverse habitats. Phagotrophic members of this group gave rise to phototrophs and hold the key to understanding the evolution of euglenids as a whole, including the evolution of complex morphological characters like the euglenid pellicle. Yet to understand the evolution of these characters, a comprehensive sampling of molecular data is needed to correlate morphological and molecular data, and to estimate a basic phylogenetic backbone of the group. While the availability of SSU rDNA and, more recently, multigene data from phagotrophic euglenids has improved, several "orphan" taxa remain without any molecular data whatsoever. Dolium sedentarium is one such taxon: It is a rarely-observed phagotrophic euglenid that inhabits tropical benthic environments and is one of few known sessile euglenids. Based on morphological characters, it has been thought of as part of the earliest branch of euglenids, the Petalomonadida. We report the first molecular sequencing data for Dolium using single-cell transcriptomics, adding another small piece in the puzzle of euglenid evolution. Both SSU rDNA and multigene phylogenies confirm it as a solitary branch within Petalomonadida.
Collapse
Affiliation(s)
- Gordon Lax
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
76
|
Szánthó LL, Lartillot N, Szöllősi GJ, Schrempf D. Compositionally Constrained Sites Drive Long-Branch Attraction. Syst Biol 2023; 72:767-780. [PMID: 36946562 PMCID: PMC10405358 DOI: 10.1093/sysbio/syad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Accurate phylogenies are fundamental to our understanding of the pattern and process of evolution. Yet, phylogenies at deep evolutionary timescales, with correspondingly long branches, have been fraught with controversy resulting from conflicting estimates from models with varying complexity and goodness of fit. Analyses of historical as well as current empirical datasets, such as alignments including Microsporidia, Nematoda, or Platyhelminthes, have demonstrated that inadequate modeling of across-site compositional heterogeneity, which is the result of biochemical constraints that lead to varying patterns of accepted amino acids along sequences, can lead to erroneous topologies that are strongly supported. Unfortunately, models that adequately account for across-site compositional heterogeneity remain computationally challenging or intractable for an increasing fraction of contemporary datasets. Here, we introduce "compositional constraint analysis," a method to investigate the effect of site-specific constraints on amino acid composition on phylogenetic inference. We show that more constrained sites with lower diversity and less constrained sites with higher diversity exhibit ostensibly conflicting signals under models ignoring across-site compositional heterogeneity that lead to long-branch attraction artifacts and demonstrate that more complex models accounting for across-site compositional heterogeneity can ameliorate this bias. We present CAT-posterior mean site frequencies (PMSF), a pipeline for diagnosing and resolving phylogenetic bias resulting from inadequate modeling of across-site compositional heterogeneity based on the CAT model. CAT-PMSF is robust against long-branch attraction in all alignments we have examined. We suggest using CAT-PMSF when convergence of the CAT model cannot be assured. We find evidence that compositionally constrained sites are driving long-branch attraction in two metazoan datasets and recover evidence for Porifera as the sister group to all other animals. [Animal phylogeny; cross-site heterogeneity; long-branch attraction; phylogenomics.].
Collapse
Affiliation(s)
- Lénárd L Szánthó
- Department of Biological Physics, Eötvös University, Budapest, Hungary
- ELTE-MTA “Lendület” Evolutionary Genomics Research Group, Budapest, Hungary
- Institute of Evolution, Centre for Ecological Research, Budapest, Hungary
| | - Nicolas Lartillot
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université de Lyon, Villeurbanne, France
| | - Gergely J Szöllősi
- Department of Biological Physics, Eötvös University, Budapest, Hungary
- ELTE-MTA “Lendület” Evolutionary Genomics Research Group, Budapest, Hungary
- Institute of Evolution, Centre for Ecological Research, Budapest, Hungary
| | - Dominik Schrempf
- Department of Biological Physics, Eötvös University, Budapest, Hungary
| |
Collapse
|
77
|
Knyshov A, Gordon ERL, Masonick PK, Castillo S, Forero D, Hoey-Chamberlain R, Hwang WS, Johnson KP, Lemmon AR, Moriarty Lemmon E, Standring S, Zhang J, Weirauch C. Chromosome-Aware Phylogenomics of Assassin Bugs (Hemiptera: Reduvioidea) Elucidates Ancient Gene Conflict. Mol Biol Evol 2023; 40:msad168. [PMID: 37494292 PMCID: PMC10411492 DOI: 10.1093/molbev/msad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Though the phylogenetic signal of loci on sex chromosomes can differ from those on autosomes, chromosomal-level genome assemblies for nonvertebrates are still relatively scarce and conservation of chromosomal gene content across deep phylogenetic scales has therefore remained largely unexplored. We here assemble a uniquely large and diverse set of samples (17 anchored hybrid enrichment, 24 RNA-seq, and 70 whole-genome sequencing samples of variable depth) for the medically important assassin bugs (Reduvioidea). We assess the performance of genes based on multiple features (e.g., nucleotide vs. amino acid, nuclear vs. mitochondrial, and autosomal vs. X chromosomal) and employ different methods (concatenation and coalescence analyses) to reconstruct the unresolved phylogeny of this diverse (∼7,000 spp.) and old (>180 Ma) group. Our results show that genes on the X chromosome are more likely to have discordant phylogenies than those on autosomes. We find that the X chromosome conflict is driven by high gene substitution rates that impact the accuracy of phylogenetic inference. However, gene tree clustering showed strong conflict even after discounting variable third codon positions. Alternative topologies were not particularly enriched for sex chromosome loci, but spread across the genome. We conclude that binning genes to autosomal or sex chromosomes may result in a more accurate picture of the complex evolutionary history of a clade.
Collapse
Affiliation(s)
- Alexander Knyshov
- Department of Entomology, University of California, Riverside, CA, USA
| | - Eric R L Gordon
- Ecology and Evolutionary Biology Department, University of Connecticut, Storrs, CT, USA
| | - Paul K Masonick
- Department of Entomology, University of California, Riverside, CA, USA
| | | | - Dimitri Forero
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogota, Colombia
| | | | - Wei Song Hwang
- Lee Kong Chian Natural History Museum, National University of Singapore, Queenstown, Singapore
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL, USA
| | | | | | - Junxia Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, Hebei, China
| | | |
Collapse
|
78
|
Bernot JP, Owen CL, Wolfe JM, Meland K, Olesen J, Crandall KA. Major Revisions in Pancrustacean Phylogeny and Evidence of Sensitivity to Taxon Sampling. Mol Biol Evol 2023; 40:msad175. [PMID: 37552897 PMCID: PMC10414812 DOI: 10.1093/molbev/msad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 08/10/2023] Open
Abstract
The clade Pancrustacea, comprising crustaceans and hexapods, is the most diverse group of animals on earth, containing over 80% of animal species and half of animal biomass. It has been the subject of several recent phylogenomic analyses, yet relationships within Pancrustacea show a notable lack of stability. Here, the phylogeny is estimated with expanded taxon sampling, particularly of malacostracans. We show small changes in taxon sampling have large impacts on phylogenetic estimation. By analyzing identical orthologs between two slightly different taxon sets, we show that the differences in the resulting topologies are due primarily to the effects of taxon sampling on the phylogenetic reconstruction method. We compare trees resulting from our phylogenomic analyses with those from the literature to explore the large tree space of pancrustacean phylogenetic hypotheses and find that statistical topology tests reject the previously published trees in favor of the maximum likelihood trees produced here. Our results reject several clades including Caridoida, Eucarida, Multicrustacea, Vericrustacea, and Syncarida. Notably, we find Copepoda nested within Allotriocarida with high support and recover a novel relationship between decapods, euphausiids, and syncarids that we refer to as the Syneucarida. With denser taxon sampling, we find Stomatopoda sister to this latter clade, which we collectively name Stomatocarida, dividing Malacostraca into three clades: Leptostraca, Peracarida, and Stomatocarida. A new Bayesian divergence time estimation is conducted using 13 vetted fossils. We review our results in the context of other pancrustacean phylogenetic hypotheses and highlight 15 key taxa to sample in future studies.
Collapse
Affiliation(s)
- James P Bernot
- Department of Invertebrate Zoology, US National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Christopher L Owen
- Systematic Entomology Laboratory, USDA-ARS, ℅ National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Joanna M Wolfe
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Kenneth Meland
- Department of Biology, University of Bergen, Bergen, Norway
| | - Jørgen Olesen
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Keith A Crandall
- Department of Invertebrate Zoology, US National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| |
Collapse
|
79
|
Collingro A, Köstlbacher S, Siegl A, Toenshoff ER, Schulz F, Mitchell SO, Weinmaier T, Rattei T, Colquhoun DJ, Horn M. The Fish Pathogen "Candidatus Clavichlamydia salmonicola"-A Missing Link in the Evolution of Chlamydial Pathogens of Humans. Genome Biol Evol 2023; 15:evad147. [PMID: 37615694 PMCID: PMC10448858 DOI: 10.1093/gbe/evad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2023] [Indexed: 08/25/2023] Open
Abstract
Chlamydiae like Chlamydia trachomatis and Chlamydia psittaci are well-known human and animal pathogens. Yet, the chlamydiae are a much larger group of evolutionary ancient obligate intracellular bacteria that includes predominantly symbionts of protists and diverse animals. This makes them ideal model organisms to study evolutionary transitions from symbionts in microbial eukaryotes to pathogens of humans. To this end, comparative genome analysis has served as an important tool. Genome sequence data for many chlamydial lineages are, however, still lacking, hampering our understanding of their evolutionary history. Here, we determined the first high-quality draft genome sequence of the fish pathogen "Candidatus Clavichlamydia salmonicola", representing a separate genus within the human and animal pathogenic Chlamydiaceae. The "Ca. Clavichlamydia salmonicola" genome harbors genes that so far have been exclusively found in Chlamydia species suggesting that basic mechanisms important for the interaction with chordate hosts have evolved stepwise in the history of chlamydiae. Thus, the genome sequence of "Ca. Clavichlamydia salmonicola" allows to constrain candidate genes to further understand the evolution of chlamydial virulence mechanisms required to infect mammals.
Collapse
Affiliation(s)
- Astrid Collingro
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Stephan Köstlbacher
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Alexander Siegl
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Elena R Toenshoff
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich (ETH), Zürich, Switzerland
| | - Frederik Schulz
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- DOE Joint Genome Institute, Berkeley, California, USA
| | | | - Thomas Weinmaier
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Thomas Rattei
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | | | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| |
Collapse
|
80
|
Mongiardino Koch N, Tilic E, Miller AK, Stiller J, Rouse GW. Confusion will be my epitaph: genome-scale discordance stifles phylogenetic resolution of Holothuroidea. Proc Biol Sci 2023; 290:20230988. [PMID: 37434530 PMCID: PMC10336381 DOI: 10.1098/rspb.2023.0988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023] Open
Abstract
Sea cucumbers (Holothuroidea) are a diverse clade of echinoderms found from intertidal waters to the bottom of the deepest oceanic trenches. Their reduced skeletons and limited number of phylogenetically informative traits have long obfuscated morphological classifications. Sanger-sequenced molecular datasets have also failed to constrain the position of major lineages. Noteworthy, topological uncertainty has hindered a resolution for Neoholothuriida, a highly diverse clade of Permo-Triassic age. We perform the first phylogenomic analysis of Holothuroidea, combining existing datasets with 13 novel transcriptomes. Using a highly curated dataset of 1100 orthologues, our efforts recapitulate previous results, struggling to resolve interrelationships among neoholothuriid clades. Three approaches to phylogenetic reconstruction (concatenation under both site-homogeneous and site-heterogeneous models, and coalescent-aware inference) result in alternative resolutions, all of which are recovered with strong support and across a range of datasets filtered for phylogenetic usefulness. We explore this intriguing result using gene-wise log-likelihood scores and attempt to correlate these with a large set of gene properties. While presenting novel ways of exploring and visualizing support for alternative trees, we are unable to discover significant predictors of topological preference, and our efforts fail to favour one topology. Neoholothuriid genomes seem to retain an amalgam of signals derived from multiple phylogenetic histories.
Collapse
Affiliation(s)
| | - Ekin Tilic
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Department of Marine Zoology, Senckenberg Research Institute and Museum, Frankfurt, Germany
| | - Allison K. Miller
- Anatomy Department, University of Otago, Dunedin, Otago, New Zealand
| | - Josefin Stiller
- Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Greg W. Rouse
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
81
|
Záhonová K, Valach M, Tripathi P, Benz C, Opperdoes FR, Barath P, Lukáčová V, Danchenko M, Faktorová D, Horváth A, Burger G, Lukeš J, Škodová-Sveráková I. Subunit composition of mitochondrial dehydrogenase complexes in diplonemid flagellates. Biochim Biophys Acta Gen Subj 2023:130419. [PMID: 37451476 DOI: 10.1016/j.bbagen.2023.130419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
In eukaryotes, pyruvate, a key metabolite produced by glycolysis, is converted by a tripartite mitochondrial pyruvate dehydrogenase (PDH) complex to acetyl-coenzyme A, which is fed into the tricarboxylic acid cycle. Two additional enzyme complexes with analogous composition catalyze similar oxidative decarboxylation reactions albeit using different substrates, the branched-chain ketoacid dehydrogenase (BCKDH) complex and the 2-oxoglutarate dehydrogenase (OGDH) complex. Comparative transcriptome analyses of diplonemids, one of the most abundant and diverse groups of oceanic protists, indicate that the conventional E1, E2, and E3 subunits of the PDH complex are lacking. E1 was apparently replaced in the euglenozoan ancestor of diplonemids by an AceE protein of archaeal type, a substitution that we also document in dinoflagellates. Here we demonstrate that the mitochondrion of the model diplonemid Paradiplonema papillatum displays pyruvate and 2-oxoglutarate dehydrogenase activities. Protein mass spectrometry of mitochondria reveal that the AceE protein is as abundant as the E1 subunit of BCKDH. This corroborates the view that the AceE subunit is a functional component of the PDH complex. We hypothesize that by acquiring AceE, the diplonemid ancestor not only lost the eukaryotic-type E1, but also the E2 and E3 subunits of the PDH complex, which are present in other euglenozoans. We posit that the PDH activity in diplonemids seems to be carried out by a complex, in which the AceE protein partners with the E2 and E3 subunits from BCKDH and/or OGDH.
Collapse
Affiliation(s)
- Kristína Záhonová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic; Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic; Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Matus Valach
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Pragya Tripathi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Corinna Benz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Fred R Opperdoes
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Peter Barath
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia; Medirex Group Academy, Nitra, Slovakia
| | | | - Maksym Danchenko
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Anton Horváth
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Gertraud Burger
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| | - Ingrid Škodová-Sveráková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic; Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
82
|
Lax G, Cho A, Keeling PJ. Phylogenomics of novel ploeotid taxa contribute to the backbone of the euglenid tree. J Eukaryot Microbiol 2023; 70:e12973. [PMID: 36912454 DOI: 10.1111/jeu.12973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/14/2023]
Abstract
Euglenids are a diverse group of flagellates that inhabit most environments and exhibit many different nutritional modes. The most prominent euglenids are phototrophs, but phagotrophs constitute the majority of phylogenetic diversity of euglenids. They are pivotal to our understanding of euglenid evolution, yet we are only starting to understand relationships amongst phagotrophs, with the backbone of the tree being most elusive. Ploeotids make up most of this backbone diversity-yet despite their morphological similarities, SSU rDNA analyses and multigene analyses show that they are non-monophyletic. As more ploeotid diversity is sampled, known taxa have coalesced into some subgroups (e.g. Alistosa), but the relationships amongst these are not always supported and some taxa remain unsampled for multigene phylogenetics. Here, we used light microscopy and single-cell transcriptomics to characterize five ploeotid euglenids and place them into a multigene phylogenetic framework. Our analyses place Decastava in Alistosa; while Hemiolia branches with Liburna, establishing the novel clade Karavia. We describe Hemiolia limna, a freshwater-dwelling species in an otherwise marine clade. Intriguingly, two undescribed ploeotids are found to occupy pivotal positions in the tree: Chelandium granulatum nov. gen. nov. sp. branches as sister to Olkasia, and Gaulosia striata nov. gen. nov. sp. remains an orphan taxon.
Collapse
Affiliation(s)
- Gordon Lax
- Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, British Columbia, Canada
| | - Anna Cho
- Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, British Columbia, Canada
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, British Columbia, Canada
| |
Collapse
|
83
|
Balart-García P, Aristide L, Bradford TM, Beasley-Hall PG, Polak S, Cooper SJB, Fernández R. Parallel and convergent genomic changes underlie independent subterranean colonization across beetles. Nat Commun 2023; 14:3842. [PMID: 37386018 PMCID: PMC10310748 DOI: 10.1038/s41467-023-39603-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/21/2023] [Indexed: 07/01/2023] Open
Abstract
Adaptation to life in caves is often accompanied by dramatically convergent changes across distantly related taxa, epitomized by the loss or reduction of eyes and pigmentation. Nevertheless, the genomic underpinnings underlying cave-related phenotypes are largely unexplored from a macroevolutionary perspective. Here we investigate genome-wide gene evolutionary dynamics in three distantly related beetle tribes with at least six instances of independent colonization of subterranean habitats, inhabiting both aquatic and terrestrial underground systems. Our results indicate that remarkable gene repertoire changes mainly driven by gene family expansions occurred prior to underground colonization in the three tribes, suggesting that genomic exaptation may have facilitated a strict subterranean lifestyle parallelly across beetle lineages. The three tribes experienced both parallel and convergent changes in the evolutionary dynamics of their gene repertoires. These findings pave the way towards a deeper understanding of the evolution of the genomic toolkit in hypogean fauna.
Collapse
Affiliation(s)
- Pau Balart-García
- Metazoa Phylogenomics Lab, Biodiversity Program, Institute of Evolutionary Biology (CSIC - Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| | - Leandro Aristide
- Metazoa Phylogenomics Lab, Biodiversity Program, Institute of Evolutionary Biology (CSIC - Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Tessa M Bradford
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, and Environment Institute, University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Museum, Adelaide, SA, 5000, Australia
| | - Perry G Beasley-Hall
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, and Environment Institute, University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Museum, Adelaide, SA, 5000, Australia
| | - Slavko Polak
- Notranjska Museum Postojna, Kolodvorska c. 3, 6230, Postojna, Slovenia
| | - Steven J B Cooper
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, and Environment Institute, University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Museum, Adelaide, SA, 5000, Australia
| | - Rosa Fernández
- Metazoa Phylogenomics Lab, Biodiversity Program, Institute of Evolutionary Biology (CSIC - Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
84
|
Pardo-De la Hoz CJ, Magain N, Piatkowski B, Cornet L, Dal Forno M, Carbone I, Miadlikowska J, Lutzoni F. Ancient Rapid Radiation Explains Most Conflicts Among Gene Trees and Well-Supported Phylogenomic Trees of Nostocalean Cyanobacteria. Syst Biol 2023; 72:694-712. [PMID: 36827095 DOI: 10.1093/sysbio/syad008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 02/12/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023] Open
Abstract
Prokaryotic genomes are often considered to be mosaics of genes that do not necessarily share the same evolutionary history due to widespread horizontal gene transfers (HGTs). Consequently, representing evolutionary relationships of prokaryotes as bifurcating trees has long been controversial. However, studies reporting conflicts among gene trees derived from phylogenomic data sets have shown that these conflicts can be the result of artifacts or evolutionary processes other than HGT, such as incomplete lineage sorting, low phylogenetic signal, and systematic errors due to substitution model misspecification. Here, we present the results of an extensive exploration of phylogenetic conflicts in the cyanobacterial order Nostocales, for which previous studies have inferred strongly supported conflicting relationships when using different concatenated phylogenomic data sets. We found that most of these conflicts are concentrated in deep clusters of short internodes of the Nostocales phylogeny, where the great majority of individual genes have low resolving power. We then inferred phylogenetic networks to detect HGT events while also accounting for incomplete lineage sorting. Our results indicate that most conflicts among gene trees are likely due to incomplete lineage sorting linked to an ancient rapid radiation, rather than to HGTs. Moreover, the short internodes of this radiation fit the expectations of the anomaly zone, i.e., a region of the tree parameter space where a species tree is discordant with its most likely gene tree. We demonstrated that concatenation of different sets of loci can recover up to 17 distinct and well-supported relationships within the putative anomaly zone of Nostocales, corresponding to the observed conflicts among well-supported trees based on concatenated data sets from previous studies. Our findings highlight the important role of rapid radiations as a potential cause of strongly conflicting phylogenetic relationships when using phylogenomic data sets of bacteria. We propose that polytomies may be the most appropriate phylogenetic representation of these rapid radiations that are part of anomaly zones, especially when all possible genomic markers have been considered to infer these phylogenies. [Anomaly zone; bacteria; horizontal gene transfer; incomplete lineage sorting; Nostocales; phylogenomic conflict; rapid radiation; Rhizonema.].
Collapse
Affiliation(s)
| | - Nicolas Magain
- Evolution and Conservation Biology, InBioS Research Center, Université de Liège, Liège 4000, Belgium
| | - Bryan Piatkowski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Luc Cornet
- Evolution and Conservation Biology, InBioS Research Center, Université de Liège, Liège 4000, Belgium
- BCCM/IHEM, Mycology and Aerobiology, Sciensano, Brussels, Belgium
| | | | - Ignazio Carbone
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27606, USA
| | | | | |
Collapse
|
85
|
Eme L, Tamarit D, Caceres EF, Stairs CW, De Anda V, Schön ME, Seitz KW, Dombrowski N, Lewis WH, Homa F, Saw JH, Lombard J, Nunoura T, Li WJ, Hua ZS, Chen LX, Banfield JF, John ES, Reysenbach AL, Stott MB, Schramm A, Kjeldsen KU, Teske AP, Baker BJ, Ettema TJG. Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes. Nature 2023; 618:992-999. [PMID: 37316666 PMCID: PMC10307638 DOI: 10.1038/s41586-023-06186-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
In the ongoing debates about eukaryogenesis-the series of evolutionary events leading to the emergence of the eukaryotic cell from prokaryotic ancestors-members of the Asgard archaea play a key part as the closest archaeal relatives of eukaryotes1. However, the nature and phylogenetic identity of the last common ancestor of Asgard archaea and eukaryotes remain unresolved2-4. Here we analyse distinct phylogenetic marker datasets of an expanded genomic sampling of Asgard archaea and evaluate competing evolutionary scenarios using state-of-the-art phylogenomic approaches. We find that eukaryotes are placed, with high confidence, as a well-nested clade within Asgard archaea and as a sister lineage to Hodarchaeales, a newly proposed order within Heimdallarchaeia. Using sophisticated gene tree and species tree reconciliation approaches, we show that analogous to the evolution of eukaryotic genomes, genome evolution in Asgard archaea involved significantly more gene duplication and fewer gene loss events compared with other archaea. Finally, we infer that the last common ancestor of Asgard archaea was probably a thermophilic chemolithotroph and that the lineage from which eukaryotes evolved adapted to mesophilic conditions and acquired the genetic potential to support a heterotrophic lifestyle. Our work provides key insights into the prokaryote-to-eukaryote transition and a platform for better understanding the emergence of cellular complexity in eukaryotic cells.
Collapse
Affiliation(s)
- Laura Eme
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Laboratoire Écologie, Systématique, Évolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Daniel Tamarit
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Eva F Caceres
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Courtney W Stairs
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Biology, Lund University, Lund, Sweden
| | - Valerie De Anda
- Department of Marine Science, Marine Science Institute, University of Texas Austin, Port Aransas, TX, USA
- Department of Integrative Biology, University of Texas Austin, Austin, TX, USA
| | - Max E Schön
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Kiley W Seitz
- Department of Marine Science, Marine Science Institute, University of Texas Austin, Port Aransas, TX, USA
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Nina Dombrowski
- Department of Marine Science, Marine Science Institute, University of Texas Austin, Port Aransas, TX, USA
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, AB Den Burg, The Netherlands
| | - William H Lewis
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Felix Homa
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Jimmy H Saw
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Jonathan Lombard
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Zheng-Shuang Hua
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, PR China
| | - Lin-Xing Chen
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Emily St John
- Department of Biology, Portland State University, Portland, OR, USA
| | | | - Matthew B Stott
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Andreas Schramm
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Kasper U Kjeldsen
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Andreas P Teske
- Department of Earth, Marine and Environmental Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Brett J Baker
- Department of Marine Science, Marine Science Institute, University of Texas Austin, Port Aransas, TX, USA
- Department of Integrative Biology, University of Texas Austin, Austin, TX, USA
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
86
|
Záhonová K, Low RS, Warren CJ, Cantoni D, Herman EK, Yiangou L, Ribeiro CA, Phanprasert Y, Brown IR, Rueckert S, Baker NL, Tachezy J, Betts EL, Gentekaki E, van der Giezen M, Clark CG, Jackson AP, Dacks JB, Tsaousis AD. Evolutionary analysis of cellular reduction and anaerobicity in the hyper-prevalent gut microbe Blastocystis. Curr Biol 2023:S0960-9822(23)00620-6. [PMID: 37267944 DOI: 10.1016/j.cub.2023.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/22/2023] [Accepted: 05/11/2023] [Indexed: 06/04/2023]
Abstract
Blastocystis is the most prevalent microbial eukaryote in the human and animal gut, yet its role as commensal or parasite is still under debate. Blastocystis has clearly undergone evolutionary adaptation to the gut environment and possesses minimal cellular compartmentalization, reduced anaerobic mitochondria, no flagella, and no reported peroxisomes. To address this poorly understood evolutionary transition, we have taken a multi-disciplinary approach to characterize Proteromonas lacertae, the closest canonical stramenopile relative of Blastocystis. Genomic data reveal an abundance of unique genes in P. lacertae but also reductive evolution of the genomic complement in Blastocystis. Comparative genomic analysis sheds light on flagellar evolution, including 37 new candidate components implicated with mastigonemes, the stramenopile morphological hallmark. The P. lacertae membrane-trafficking system (MTS) complement is only slightly more canonical than that of Blastocystis, but notably, we identified that both organisms encode the complete enigmatic endocytic TSET complex, a first for the entire stramenopile lineage. Investigation also details the modulation of mitochondrial composition and metabolism in both P. lacertae and Blastocystis. Unexpectedly, we identify in P. lacertae the most reduced peroxisome-derived organelle reported to date, which leads us to speculate on a mechanism of constraint guiding the dynamics of peroxisome-mitochondrion reductive evolution on the path to anaerobiosis. Overall, these analyses provide a launching point to investigate organellar evolution and reveal in detail the evolutionary path that Blastocystis has taken from a canonical flagellated protist to the hyper-divergent and hyper-prevalent animal and human gut microbe.
Collapse
Affiliation(s)
- Kristína Záhonová
- Division of Infectious Diseases, Department of Medicine, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton T6G 2G3, Canada; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, České Budějovice (Budweis) 370 05, Czech Republic; Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, Vestec 252 50, Czech Republic; Life Science Research Centre, Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava 710 00, Czech Republic
| | - Ross S Low
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; The Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Christopher J Warren
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Giles Lane, Stacey Building, Canterbury, Kent CT2 7NJ, UK
| | - Diego Cantoni
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Giles Lane, Stacey Building, Canterbury, Kent CT2 7NJ, UK
| | - Emily K Herman
- Division of Infectious Diseases, Department of Medicine, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton T6G 2G3, Canada; Department of Agricultural, Food, and Nutritional Science, Faculty of Agricultural, Life, and Environmental Sciences, University of Alberta, 2-31 General Services Building, Edmonton, AB T6G 2H1, Canada
| | - Lyto Yiangou
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Giles Lane, Stacey Building, Canterbury, Kent CT2 7NJ, UK
| | - Cláudia A Ribeiro
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Giles Lane, Stacey Building, Canterbury, Kent CT2 7NJ, UK
| | - Yasinee Phanprasert
- Division of Infectious Diseases, Department of Medicine, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton T6G 2G3, Canada; School of Science, Mae Fah Luang Universit, 333 Moo 1, T. Tasud, Muang District, Chiang Rai 57100, Thailand
| | - Ian R Brown
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Giles Lane, Stacey Building, Canterbury, Kent CT2 7NJ, UK
| | - Sonja Rueckert
- School of Applied Sciences, Sighthill Campus, Room 3.B.36, Edinburgh EH11 4BN, Scotland; Faculty of Biology, AG Eukaryotische Mikrobiologie, Universitätsstrasse 5, S05 R04 H83, Essen 45141, Germany
| | - Nicola L Baker
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Giles Lane, Stacey Building, Canterbury, Kent CT2 7NJ, UK
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, Vestec 252 50, Czech Republic
| | - Emma L Betts
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Giles Lane, Stacey Building, Canterbury, Kent CT2 7NJ, UK; School of Applied Sciences, Sighthill Campus, Room 3.B.36, Edinburgh EH11 4BN, Scotland
| | - Eleni Gentekaki
- School of Science, Mae Fah Luang Universit, 333 Moo 1, T. Tasud, Muang District, Chiang Rai 57100, Thailand; Gut Microbiome Research Group, Mae Fah Luang University, 333 Moo 1, T. Tasud, Muang District, Chiang Rai 57100, Thailand
| | - Mark van der Giezen
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger Richard Johnsens Gate 4, 4021 Stavanger, Norway; Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - C Graham Clark
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Andrew P Jackson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton T6G 2G3, Canada; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, České Budějovice (Budweis) 370 05, Czech Republic; Centre for Life's Origin and Evolution, Division of Biosciences, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK.
| | - Anastasios D Tsaousis
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Giles Lane, Stacey Building, Canterbury, Kent CT2 7NJ, UK.
| |
Collapse
|
87
|
Gaïa M, Meng L, Pelletier E, Forterre P, Vanni C, Fernandez-Guerra A, Jaillon O, Wincker P, Ogata H, Krupovic M, Delmont TO. Mirusviruses link herpesviruses to giant viruses. Nature 2023; 616:783-789. [PMID: 37076623 PMCID: PMC10132985 DOI: 10.1038/s41586-023-05962-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/16/2023] [Indexed: 04/21/2023]
Abstract
DNA viruses have a major influence on the ecology and evolution of cellular organisms1-4, but their overall diversity and evolutionary trajectories remain elusive5. Here we carried out a phylogeny-guided genome-resolved metagenomic survey of the sunlit oceans and discovered plankton-infecting relatives of herpesviruses that form a putative new phylum dubbed Mirusviricota. The virion morphogenesis module of this large monophyletic clade is typical of viruses from the realm Duplodnaviria6, with multiple components strongly indicating a common ancestry with animal-infecting Herpesvirales. Yet, a substantial fraction of mirusvirus genes, including hallmark transcription machinery genes missing in herpesviruses, are closely related homologues of giant eukaryotic DNA viruses from another viral realm, Varidnaviria. These remarkable chimaeric attributes connecting Mirusviricota to herpesviruses and giant eukaryotic viruses are supported by more than 100 environmental mirusvirus genomes, including a near-complete contiguous genome of 432 kilobases. Moreover, mirusviruses are among the most abundant and active eukaryotic viruses characterized in the sunlit oceans, encoding a diverse array of functions used during the infection of microbial eukaryotes from pole to pole. The prevalence, functional activity, diversification and atypical chimaeric attributes of mirusviruses point to a lasting role of Mirusviricota in the ecology of marine ecosystems and in the evolution of eukaryotic DNA viruses.
Collapse
Affiliation(s)
- Morgan Gaïa
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | - Lingjie Meng
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | - Patrick Forterre
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS, Université Paris-Saclay, Gif sur Yvette, France
- Département de Microbiologie, Institut Pasteur, Paris, France
| | - Chiara Vanni
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Antonio Fernandez-Guerra
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Olivier Jaillon
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Tom O Delmont
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France.
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.
| |
Collapse
|
88
|
Zhang D, He FX, Li XB, Aishan Z, Lin XL. New Mitogenomes of the Polypedilum Generic Complex (Diptera: Chironomidae): Characterization and Phylogenetic Implications. INSECTS 2023; 14:238. [PMID: 36975923 PMCID: PMC10054901 DOI: 10.3390/insects14030238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Mitochondrial genomics, as a useful marker for phylogenetics and systematics of organisms, are important for molecular biology studies. The phylogenetic relationships of the Polypedilum generic complex remains controversial, due to lack taxonomy and molecular information. In this study, we newly sequenced mitogenomes of 14 species of the Polypedilum generic complex. Coupled with three recently published sequences, we analyzed the nucleotide composition, sequence length, and evolutionary rate of this generic complex. The control region showed the highest AT content. The evolution rate of protein coding genes was as follows: ATP8 > ND6 > ND5 > ND3 > ND2 > ND4L > ND4 > COX1 > ND1 > CYTB > APT6 > COX2 > COX3. We reconstructed the phylogenetic relationships among the genera within the Polypedilum generic complex based on 19 mitochondrial genomes (seventeen ingroups and two outgroups), using Bayesian Inference (BI) and Maximum Likelihood (ML) methods for all databases. Phylogenetic analysis of 19 mitochondrial genomes demonstrated that the Endochironomus + Synendotendipes was sister to Phaenopsectra + Sergentia.
Collapse
Affiliation(s)
- Dan Zhang
- Characteristic Laboratory of Forensic Science in Universities of Shandong Province, Shandong University of Political Science and Law, Jinan 250014, China
| | - Fei-Xiang He
- Dongting Lake Eco-Environmental Monitoring Center of Hunan Province, Yueyang 414000, China
| | - Xue-Bo Li
- Characteristic Laboratory of Forensic Science in Universities of Shandong Province, Shandong University of Political Science and Law, Jinan 250014, China
| | - Zhulidezi Aishan
- College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Xiao-Long Lin
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
89
|
Tice AK, Spiegel FW, Brown MW. Phylogenetic placement of the protosteloid amoeba Microglomus paxillus identifies another case of sporocarpic fruiting in Discosea (Amoebozoa). J Eukaryot Microbiol 2023:e12971. [PMID: 36825799 DOI: 10.1111/jeu.12971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/31/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
Protosteloid amoebae are a paraphyletic assemblage of amoeboid protists found exclusively in the eukaryotic assemblage Amoebozoa. These amoebae can facultatively form a dispersal structure known as a fruiting body, or more specifically, a sporocarp, from a single amoeboid cell. Sporocarps consist of one to a few spores atop a noncellular stalk. Protosteloid amoebae are known in two out of three well-established major assemblages of Amoebozoa. Amoebae with a protosteloid life cycle are known in the major Amoebozoa lineages Discosea and Evosea but not in Tubulinea. To date, only one genus, which is monotypic, lacks sequence data and, therefore, remains phylogenetically homeless. To further clarify the evolutionary milieu of sporocarpic fruiting we used single-cell transcriptomics to obtain data from individual sporocarps of isolates of the protosteloid amoeba Microglomus paxillus. Our phylogenomic analyses using 229 protein coding markers suggest that M. paxillus is a member of the Discosea lineage of Amoebozoa most closely related to Mycamoeba gemmipara. Due to the hypervariable nature of the SSU rRNA sequence we were unable to further resolve the phylogenetic position of M. paxillus in taxon rich datasets using only this marker. Regardless, our results widen the known distribution of sporocarpy in Discosea and stimulate the debate between a single or multiple origins of sporocarpic fruiting in Amoebozoa.
Collapse
Affiliation(s)
- Alexander K Tice
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Frederick W Spiegel
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
90
|
The Structure of Evolutionary Model Space for Proteins across the Tree of Life. BIOLOGY 2023; 12:biology12020282. [PMID: 36829559 PMCID: PMC9952988 DOI: 10.3390/biology12020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
The factors that determine the relative rates of amino acid substitution during protein evolution are complex and known to vary among taxa. We estimated relative exchangeabilities for pairs of amino acids from clades spread across the tree of life and assessed the historical signal in the distances among these clade-specific models. We separately trained these models on collections of arbitrarily selected protein alignments and on ribosomal protein alignments. In both cases, we found a clear separation between the models trained using multiple sequence alignments from bacterial clades and the models trained on archaeal and eukaryotic data. We assessed the predictive power of our novel clade-specific models of sequence evolution by asking whether fit to the models could be used to identify the source of multiple sequence alignments. Model fit was generally able to correctly classify protein alignments at the level of domain (bacterial versus archaeal), but the accuracy of classification at finer scales was much lower. The only exceptions to this were the relatively high classification accuracy for two archaeal lineages: Halobacteriaceae and Thermoprotei. Genomic GC content had a modest impact on relative exchangeabilities despite having a large impact on amino acid frequencies. Relative exchangeabilities involving aromatic residues exhibited the largest differences among models. There were a small number of exchangeabilities that exhibited large differences in comparisons among major clades and between generalized models and ribosomal protein models. Taken as a whole, these results reveal that a small number of relative exchangeabilities are responsible for much of the structure of the "model space" for protein sequence evolution. The clade-specific models we generated may be useful tools for protein phylogenetics, and the structure of evolutionary model space that they revealed has implications for phylogenomic inference across the tree of life.
Collapse
|
91
|
Li J, Yan B, He H, Xu X, Ruan Y, Yang M. Characterization of the Complete Mitochondrial Genome of a Flea Beetle Luperomorpha xanthodera (Coleoptera: Chrysomelidae: Galerucinae) and Phylogenetic Analysis. Genes (Basel) 2023; 14:414. [PMID: 36833341 PMCID: PMC9957443 DOI: 10.3390/genes14020414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
In this study, the mitochondrial genome of Luperomorpha xanthodera was assembled and annotated, which is a circular DNA molecule including 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, 2 ribosomal RNA genes (12S rRNA and 16S rRNA), and 1388 bp non-coding regions (A + T rich region), measuring 16,021 bp in length. The nucleotide composition of the mitochondrial genome is 41.3% adenine (A), 38.7% thymine (T), 8.4% guanine (G), and 11.6% cytosine (C). Most of the protein-coding genes presented a typical ATN start codon (ATA, ATT, ATC, ATG), except for ND1, which showed the start codon TTG. Three-quarters of the protein-coding genes showed the complete stop codon TAR (TAA, TAG), except the genes COI, COII, ND4, and ND5, which showed incomplete stop codons (T- or TA-). All the tRNA genes have the typical clover-leaf structure, except tRNASer1 (AGN), which has a missing dihydrouridine arm (DHU). The phylogenetic results determined by both maximum likelihood and Bayesian inference methods consistently supported the monophyly of the subfamily Galerucinae and revealed that the subtribe Luperina and genus Monolepta are polyphyletic groups. Meanwhile, the classification status of the genus Luperomorpha is controversial.
Collapse
Affiliation(s)
- Jingjing Li
- Institute of Entomology, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Bin Yan
- Institute of Entomology, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Hongli He
- Institute of Entomology, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Xiaoli Xu
- Institute of Entomology, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Yongying Ruan
- Plant Protection Research Center, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Maofa Yang
- Institute of Entomology, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| |
Collapse
|
92
|
Feng X, Zheng J, Irisarri I, Yu H, Zheng B, Ali Z, de Vries S, Keller J, Fürst-Jansen JM, Dadras A, Zegers JM, Rieseberg TP, Ashok AD, Darienko T, Bierenbroodspot MJ, Gramzow L, Petroll R, Haas FB, Fernandez-Pozo N, Nousias O, Li T, Fitzek E, Grayburn WS, Rittmeier N, Permann C, Rümpler F, Archibald JM, Theißen G, Mower JP, Lorenz M, Buschmann H, von Schwartzenberg K, Boston L, Hayes RD, Daum C, Barry K, Grigoriev IV, Wang X, Li FW, Rensing SA, Ari JB, Keren N, Mosquna A, Holzinger A, Delaux PM, Zhang C, Huang J, Mutwil M, de Vries J, Yin Y. Chromosome-level genomes of multicellular algal sisters to land plants illuminate signaling network evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526407. [PMID: 36778228 PMCID: PMC9915684 DOI: 10.1101/2023.01.31.526407] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The filamentous and unicellular algae of the class Zygnematophyceae are the closest algal relatives of land plants. Inferring the properties of the last common ancestor shared by these algae and land plants allows us to identify decisive traits that enabled the conquest of land by plants. We sequenced four genomes of filamentous Zygnematophyceae (three strains of Zygnema circumcarinatum and one strain of Z. cylindricum) and generated chromosome-scale assemblies for all strains of the emerging model system Z. circumcarinatum. Comparative genomic analyses reveal expanded genes for signaling cascades, environmental response, and intracellular trafficking that we associate with multicellularity. Gene family analyses suggest that Zygnematophyceae share all the major enzymes with land plants for cell wall polysaccharide synthesis, degradation, and modifications; most of the enzymes for cell wall innovations, especially for polysaccharide backbone synthesis, were gained more than 700 million years ago. In Zygnematophyceae, these enzyme families expanded, forming co-expressed modules. Transcriptomic profiling of over 19 growth conditions combined with co-expression network analyses uncover cohorts of genes that unite environmental signaling with multicellular developmental programs. Our data shed light on a molecular chassis that balances environmental response and growth modulation across more than 600 million years of streptophyte evolution.
Collapse
Affiliation(s)
- Xuehuan Feng
- University of Nebraska-Lincoln, Department of Food Science and Technology, Lincoln, NE 68588, USA
| | - Jinfang Zheng
- University of Nebraska-Lincoln, Department of Food Science and Technology, Lincoln, NE 68588, USA
| | - Iker Irisarri
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany
- Section Phylogenomics, Centre for Molecular biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Zoological Museum Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Huihui Yu
- University of Nebraska-Lincoln, Center for Plant Science Innovation, Lincoln, NE 68588, USA
| | - Bo Zheng
- University of Nebraska-Lincoln, Department of Food Science and Technology, Lincoln, NE 68588, USA
| | - Zahin Ali
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Sophie de Vries
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet-Tolosan, 31326, France
| | - Janine M.R. Fürst-Jansen
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Armin Dadras
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Jaccoline M.S. Zegers
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Tim P. Rieseberg
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Amra Dhabalia Ashok
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Tatyana Darienko
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Maaike J. Bierenbroodspot
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Lydia Gramzow
- University of Jena, Matthias Schleiden Institute / Genetics, 07743, Jena, Germany
| | - Romy Petroll
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Fabian B. Haas
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Noe Fernandez-Pozo
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (UMA-CSIC)
| | - Orestis Nousias
- University of Nebraska-Lincoln, Department of Food Science and Technology, Lincoln, NE 68588, USA
| | - Tang Li
- University of Nebraska-Lincoln, Department of Food Science and Technology, Lincoln, NE 68588, USA
| | - Elisabeth Fitzek
- Computational Biology, Department of Biology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - W. Scott Grayburn
- Northern Illinois University, Molecular Core Lab, Department of Biological Sciences, DeKalb, IL 60115, USA
| | - Nina Rittmeier
- University of Innsbruck, Department of Botany, Research Group Plant Cell Biology, Sternwartestraße 15, A-6020 Innsbruck, Austria
| | - Charlotte Permann
- University of Innsbruck, Department of Botany, Research Group Plant Cell Biology, Sternwartestraße 15, A-6020 Innsbruck, Austria
| | - Florian Rümpler
- University of Jena, Matthias Schleiden Institute / Genetics, 07743, Jena, Germany
| | - John M. Archibald
- Dalhousie University, Department of Biochemistry and Molecular Biology, 5850 College Street, Halifax NS B3H 4R2, Canada
| | - Günter Theißen
- University of Jena, Matthias Schleiden Institute / Genetics, 07743, Jena, Germany
| | - Jeffrey P. Mower
- University of Nebraska-Lincoln, Center for Plant Science Innovation, Lincoln, NE 68588, USA
| | - Maike Lorenz
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Experimental Phycology and Culture Collection of Algae at Goettingen University (EPSAG), Nikolausberger Weg 18, 37073 Goettingen, Germany
| | - Henrik Buschmann
- University of Applied Sciences Mittweida, Faculty of Applied Computer Sciences and Biosciences, Section Biotechnology and Chemistry, Molecular Biotechnology, Technikumplatz 17, 09648 Mittweida, Germany
| | - Klaus von Schwartzenberg
- Universität Hamburg, Institute of Plant Science and Microbiology, Microalgae and Zygnematophyceae Collection Hamburg (MZCH) and Aquatic Ecophysiology and Phycology, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Lori Boston
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Richard D. Hayes
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Chris Daum
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V. Grigoriev
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Xiyin Wang
- North China University of Science and Technology
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA
- Cornell University, Plant Biology Section, Ithaca, NY, USA
| | - Stefan A. Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- University of Freiburg, Centre for Biological Signalling Studies (BIOSS), Freiburg, Germany
| | - Julius Ben Ari
- The Hebrew University of Jerusalem, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot 7610000, Israel
| | - Noa Keren
- The Hebrew University of Jerusalem, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot 7610000, Israel
| | - Assaf Mosquna
- The Hebrew University of Jerusalem, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot 7610000, Israel
| | - Andreas Holzinger
- University of Innsbruck, Department of Botany, Research Group Plant Cell Biology, Sternwartestraße 15, A-6020 Innsbruck, Austria
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet-Tolosan, 31326, France
| | - Chi Zhang
- University of Nebraska-Lincoln, Center for Plant Science Innovation, Lincoln, NE 68588, USA
- University of Nebraska-Lincoln, School of Biological Sciences, Lincoln, NE 68588, USA
| | - Jinling Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Marek Mutwil
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jan de Vries
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany
| | - Yanbin Yin
- University of Nebraska-Lincoln, Department of Food Science and Technology, Lincoln, NE 68588, USA
| |
Collapse
|
93
|
Smith EG, Surm JM, Macrander J, Simhi A, Amir G, Sachkova MY, Lewandowska M, Reitzel AM, Moran Y. Micro and macroevolution of sea anemone venom phenotype. Nat Commun 2023; 14:249. [PMID: 36646703 PMCID: PMC9842752 DOI: 10.1038/s41467-023-35794-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Venom is a complex trait with substantial inter- and intraspecific variability resulting from strong selective pressures acting on the expression of many toxic proteins. However, understanding the processes underlying toxin expression dynamics that determine the venom phenotype remains unresolved. By interspecific comparisons we reveal that toxin expression in sea anemones evolves rapidly and that in each species different toxin family dictates the venom phenotype by massive gene duplication events. In-depth analysis of the sea anemone, Nematostella vectensis, revealed striking variation of the dominant toxin (Nv1) diploid copy number across populations (1-24 copies) resulting from independent expansion/contraction events, which generate distinct haplotypes. Nv1 copy number correlates with expression at both the transcript and protein levels with one population having a near-complete loss of Nv1 production. Finally, we establish the dominant toxin hypothesis which incorporates observations in other venomous lineages that animals have convergently evolved a similar strategy in shaping their venom.
Collapse
Affiliation(s)
- Edward G Smith
- University of North Carolina at Charlotte, Department of Biological Sciences, Charlotte, NC, USA. .,School of Life Sciences, University of Warwick, Coventry, United Kingdom.
| | - Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Jason Macrander
- University of North Carolina at Charlotte, Department of Biological Sciences, Charlotte, NC, USA.,Florida Southern College, Biology Department, Lakeland, FL, USA
| | - Adi Simhi
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Hebrew University of Jerusalem, The School of Computer Science & Engineering, Jerusalem, Israel
| | - Guy Amir
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Hebrew University of Jerusalem, The School of Computer Science & Engineering, Jerusalem, Israel
| | - Maria Y Sachkova
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Magda Lewandowska
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adam M Reitzel
- University of North Carolina at Charlotte, Department of Biological Sciences, Charlotte, NC, USA
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
94
|
Benítez-Álvarez L, Leria L, Dols-Serrate D, Riutort M. Building Phylogenies from Transcriptomic Data. Methods Mol Biol 2023; 2680:1-27. [PMID: 37428368 DOI: 10.1007/978-1-0716-3275-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Transcriptomic data (obtained from RNA sequencing) has become a very powerful source of information to reconstruct the evolutionary relationships among organisms. Although phylogenetic inference using transcriptomes retains the same core steps as when working with few molecular markers (viz., nucleic acid extraction and sequencing, sequence treatment, and tree inference), all of them show significant differences. First, the needed quantity and quality of the extracted RNA has to be very high. Although this may not represent a challenge when working with certain organisms, it may well be a headache with others, especially for those with small body sizes. Second, the tremendous increase in the quantity of sequences obtained requires a high computational power for both treating the sequences and inferring the subsequent phylogenies. This means that transcriptomic data can no longer be analyzed using personal computers nor local programs with a graphical interface. This, in turn, implies the requirement of an increased set of bioinformatic skills from the researchers. Finally, the genomic peculiarities of each group of organisms, such as the level of heterozygosity or the percentage of base composition, also need to be considered when inferring phylogenies using transcriptomic data.
Collapse
Affiliation(s)
- Lisandra Benítez-Álvarez
- Departament de Genètica, Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Laia Leria
- Departament de Genètica, Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Daniel Dols-Serrate
- Departament de Genètica, Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Riutort
- Departament de Genètica, Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
95
|
Phylotranscriptomics interrogation uncovers a complex evolutionary history for the planarian genus Dugesia (Platyhelminthes, Tricladida) in the Western Mediterranean. Mol Phylogenet Evol 2023; 178:107649. [PMID: 36280167 DOI: 10.1016/j.ympev.2022.107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022]
Abstract
The Mediterranean is one of the most biodiverse areas of the Paleartic region. Here, basing on large data sets of single copy orthologs obtained from transcriptomic data, we investigated the evolutionary history of the genus Dugesia in the Western Mediterranean area. The results corroborated that the complex paleogeological history of the region was an important driver of diversification for the genus, speciating as microplates and islands were forming. These processes led to the differentiation of three main biogeographic clades: Iberia-Apennines-Alps, Corsica-Sardinia, and Iberia-Africa. The internal relationships of these major clades were analysed with several representative samples per species. The use of large data sets regarding the number of loci and samples, as well as state-of-the-art phylogenomic inference methods allowed us to answer different unresolved questions about the evolution of particular groups, such as the diversification path of D. subtentaculata in the Iberian Peninsula and its colonization of Africa. Additionally, our results support the differentiation of D. benazzii in two lineages which could represent two species. Finally, we analysed here for the first time a comprehensive number of samples from several asexual Iberian populations whose assignment at the species level has been an enigma through the years. The phylogenies obtained with different inference methods showed a branching topology of asexual individuals at the base of sexual clades. We hypothesize that this unexpected topology is related to long-term asexuality. This work represents the first phylotranscriptomic analysis of Tricladida, laying the first stone of the genomic era in phylogenetic studies on this taxonomic group.
Collapse
|
96
|
Reduced mitochondria provide an essential function for the cytosolic methionine cycle. Curr Biol 2022; 32:5057-5068.e5. [PMID: 36347252 PMCID: PMC9746703 DOI: 10.1016/j.cub.2022.10.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/15/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
The loss of mitochondria in oxymonad protists has been associated with the redirection of the essential Fe-S cluster assembly to the cytosol. Yet as our knowledge of diverse free-living protists broadens, the list of functions of their mitochondrial-related organelles (MROs) expands. We revealed another such function in the closest oxymonad relative, Paratrimastix pyriformis, after we solved the proteome of its MRO with high accuracy, using localization of organelle proteins by isotope tagging (LOPIT). The newly assigned enzymes connect to the glycine cleavage system (GCS) and produce folate derivatives with one-carbon units and formate. These are likely to be used by the cytosolic methionine cycle involved in S-adenosyl methionine recycling. The data provide consistency with the presence of the GCS in MROs of free-living species and its absence in most endobionts, which typically lose the methionine cycle and, in the case of oxymonads, the mitochondria.
Collapse
|
97
|
Zhang D, Niu ZQ, Luo AR, Orr MC, Ferrari RR, Jin JF, Wu QT, Zhang F, Zhu CD. Testing the systematic status of Homalictus and Rostrohalictus with weakened cross-vein groups within Halictini (Hymenoptera: Halictidae) using low-coverage whole-genome sequencing. INSECT SCIENCE 2022; 29:1819-1833. [PMID: 35289982 DOI: 10.1111/1744-7917.13034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The halictid genus Lasioglossum, as one of the most species-rich bee groups with persistently contentious subgeneric boundaries, is one of the most challenging bee groups from a systematic standpoint. An enduring question is the relationship of Lasioglossum and Homalictus, whether all halictine bees with weakened distal wing venation comprise one or multiple genera. Here, we analyzed the phylogenetic relationships among the subgroups within Lasioglossum s.l. based on thousands of single-copy orthologs and ultraconserved elements, which were extracted from 23 newly sequenced low-coverage whole genomes alongside a published genome (22 ingroups plus 2 outgroups). Both marker sets provided consistent results across maximum likelihood and coalescent-based species tree approaches. The phylogenetic and topology test results show that the Lasioglossum and Hemihalictus series are reciprocally monophyletic and Homalictus and Rostrohalictus are valid subgenera of Lasioglossum. Consequently, we lower Homalictus to subgenus status within Lasioglossum again, and we also raise Rostrohalictus to subgenus status from its prior synonymy with subgenus Hemihalictus. Lasioglossum przewalskyi is also transferred to the subgenus Hemihalictus. Ultimately, we redefine Lasioglossum to include all halictine bees with weakened distal wing venation.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ze-Qing Niu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - A-Rong Luo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- International College, University of Chinese Academy of Sciences, Beijing, China
| | - Michael C Orr
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- International College, University of Chinese Academy of Sciences, Beijing, China
| | - Rafael R Ferrari
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jian-Feng Jin
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qing-Tao Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Chao-Dong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
98
|
Ancient origin and constrained evolution of the division and cell wall gene cluster in Bacteria. Nat Microbiol 2022; 7:2114-2127. [PMID: 36411352 DOI: 10.1038/s41564-022-01257-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022]
Abstract
The division and cell wall (dcw) gene cluster in Bacteria comprises 17 genes encoding key steps in peptidoglycan synthesis and cytokinesis. To understand the origin and evolution of this cluster, we analysed its presence in over 1,000 bacterial genomes. We show that the dcw gene cluster is strikingly conserved in both gene content and gene order across all Bacteria and has undergone only a few rearrangements in some phyla, potentially linked to cell envelope specificities, but not directly to cell shape. A large concatenation of the 12 most conserved dcw cluster genes produced a robust tree of Bacteria that is largely consistent with recent phylogenies based on frequently used markers. Moreover, evolutionary divergence analyses show that the dcw gene cluster offers advantages in defining high-rank taxonomic boundaries and indicate at least two main phyla in the Candidate Phyla Radiation (CPR) matching a sharp dichotomy in dcw gene cluster arrangement. Our results place the origin of the dcw gene cluster in the Last Bacterial Common Ancestor and show that it has evolved vertically for billions of years, similar to major cellular machineries such as the ribosome. The strong phylogenetic signal, combined with conserved genomic synteny at large evolutionary distances, makes the dcw gene cluster a robust alternative set of markers to resolve the ever-growing tree of Bacteria.
Collapse
|
99
|
Genomic diversity and biosynthetic capabilities of sponge-associated chlamydiae. THE ISME JOURNAL 2022; 16:2725-2740. [PMID: 36042324 PMCID: PMC9666466 DOI: 10.1038/s41396-022-01305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/24/2022] [Accepted: 08/02/2022] [Indexed: 12/15/2022]
Abstract
Sponge microbiomes contribute to host health, nutrition, and defense through the production of secondary metabolites. Chlamydiae, a phylum of obligate intracellular bacteria ranging from animal pathogens to endosymbionts of microbial eukaryotes, are frequently found associated with sponges. However, sponge-associated chlamydial diversity has not yet been investigated at the genomic level and host interactions thus far remain unexplored. Here, we sequenced the microbiomes of three sponge species and found high, though variable, Chlamydiae relative abundances of up to 18.7% of bacteria. Using genome-resolved metagenomics 18 high-quality sponge-associated chlamydial genomes were reconstructed, covering four chlamydial families. Among these, Candidatus Sororchlamydiaceae shares a common ancestor with Chlamydiaceae animal pathogens, suggesting long-term co-evolution with animals. Based on gene content, sponge-associated chlamydiae resemble members from the same family more than sponge-associated chlamydiae of other families, and have greater metabolic versatility than known chlamydial animal pathogens. Sponge-associated chlamydiae are also enriched in genes for degrading diverse compounds found in sponges. Unexpectedly, we identified widespread genetic potential for secondary metabolite biosynthesis across Chlamydiae, which may represent an unexplored source of novel natural products. This finding suggests that Chlamydiae members may partake in defensive symbioses and that secondary metabolites play a wider role in mediating intracellular interactions. Furthermore, sponge-associated chlamydiae relatives were found in other marine invertebrates, pointing towards wider impacts of the Chlamydiae phylum on marine ecosystems.
Collapse
|
100
|
Tikhonenkov DV, Mikhailov KV, Gawryluk RMR, Belyaev AO, Mathur V, Karpov SA, Zagumyonnyi DG, Borodina AS, Prokina KI, Mylnikov AP, Aleoshin VV, Keeling PJ. Microbial predators form a new supergroup of eukaryotes. Nature 2022; 612:714-719. [PMID: 36477531 DOI: 10.1038/s41586-022-05511-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/02/2022] [Indexed: 12/12/2022]
Abstract
Molecular phylogenetics of microbial eukaryotes has reshaped the tree of life by establishing broad taxonomic divisions, termed supergroups, that supersede the traditional kingdoms of animals, fungi and plants, and encompass a much greater breadth of eukaryotic diversity1. The vast majority of newly discovered species fall into a small number of known supergroups. Recently, however, a handful of species with no clear relationship to other supergroups have been described2-4, raising questions about the nature and degree of undiscovered diversity, and exposing the limitations of strictly molecular-based exploration. Here we report ten previously undescribed strains of microbial predators isolated through culture that collectively form a diverse new supergroup of eukaryotes, termed Provora. The Provora supergroup is genetically, morphologically and behaviourally distinct from other eukaryotes, and comprises two divergent clades of predators-Nebulidia and Nibbleridia-that are superficially similar to each other, but differ fundamentally in ultrastructure, behaviour and gene content. These predators are globally distributed in marine and freshwater environments, but are numerically rare and have consequently been overlooked by molecular-diversity surveys. In the age of high-throughput analyses, investigation of eukaryotic diversity through culture remains indispensable for the discovery of rare but ecologically and evolutionarily important eukaryotes.
Collapse
Affiliation(s)
- Denis V Tikhonenkov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russian Federation. .,AquaBioSafe Laboratory, University of Tyumen, Tyumen, Russian Federation.
| | - Kirill V Mikhailov
- Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.,Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation
| | - Ryan M R Gawryluk
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Artem O Belyaev
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russian Federation.,Department of Zoology and Ecology, Penza State University, Penza, Russian Federation
| | - Varsha Mathur
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Zoology, University of Oxford, Oxford, UK
| | - Sergey A Karpov
- Zoological Institute, Russian Academy of Sciences, Saint Petersburg, Russian Federation.,Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Dmitry G Zagumyonnyi
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russian Federation.,AquaBioSafe Laboratory, University of Tyumen, Tyumen, Russian Federation
| | - Anastasia S Borodina
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russian Federation.,Department of Zoology and Parasitology, Voronezh State University, Voronezh, Russian Federation
| | - Kristina I Prokina
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russian Federation.,Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Alexander P Mylnikov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russian Federation
| | - Vladimir V Aleoshin
- Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.,Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|