51
|
Østerstrøm FF, Andersen C, da Silva G. Mechanistic study of the reaction of CH 2F 2 with Cl atoms in the absence and presence of CH 4 or C 2H 6: decomposition of CHF 2OH and fate of the CHF 2O radical. Phys Chem Chem Phys 2019; 21:9376-9383. [PMID: 30994634 DOI: 10.1039/c8cp06425c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To assess the atmospheric fate of fluorinated compounds, chamber experiments were performed with Fourier transform infrared spectroscopy investigating the products of difluoromethane, CH2F2, at 296 ± 2 K. The reactions were initiated by reaction of CH2F2 with Cl atoms in the absence and presence of CH4 or C2H6 in air or O2. No evidence of formation of the fluorinated alcohol, CHF2OH, from the reactions of the CHF2O2 radical with either CH3O2 or CH3CH2O2 was observed. However, evidence of an alkoxy radical pathway was observed to form CHF2OH. The alkoxy radical, CHF2O, abstracts a hydrogen atom from CH2F2 (with reaction mixtures of high initial CH2F2 concentrations) to give the alcohol CHF2OH that in turn decomposes with a rate coefficient of k(CHF2OH) = (1.68 × 10-3 ± 0.19 × 10-3) s-1, giving a half-life of the alcohol of (412 ± 48) s. Theoretical calculations indicate that the CHF2OH decomposition is unlikely to be a unimolecular process, and we instead propose that it is catalyzed by -OH groups present in molecules, or on particles or surfaces. HC(O)F is formed in a yield indistinguishable from 100% from the decomposition of CHF2OH. The competition between the reaction of CHF2O radicals with O2 and with CH2F2 was investigated and an experimental rate coefficient ratio of 0.57 ± 0.08 of reaction with O2 over reaction with CH2F2 was determined. Ab initio calculations support a larger reaction barrier for the O2 reaction by 0.5 kcal mol-1, with transition state theory predicting a rate coefficient ratio of 0.35, in reasonable agreement with experiment. The primary product of the atmospheric degradation of CH2F2 is expected to be C(O)F2 formed by the reaction of CHF2O with O2.
Collapse
Affiliation(s)
- Freja F Østerstrøm
- Copenhagen Center for Atmospheric Research, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
52
|
Caban-Martinez AJ, Schaefer Solle N, Louzado Feliciano P, Griffin K, Santiago KM, Lee DJ, Daunert S, Deo SK, Fent K, Calkins M, Burgess JL, Kobetz EN. Use of Aqueous Film-Forming Foams and Knowledge of Perfluorinated Compounds Among Florida Firefighters. J Occup Environ Med 2019; 61:e227-e231. [PMID: 31045850 PMCID: PMC8811722 DOI: 10.1097/jom.0000000000001566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Alberto J. Caban-Martinez
- Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, USA
- Department of Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Natasha Schaefer Solle
- Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Department of Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Paola Louzado Feliciano
- Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Kevin Griffin
- Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Katerina M. Santiago
- Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - David J. Lee
- Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, USA
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
- Department of Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Sapna K. Deo
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
- Department of Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Kenneth Fent
- Division of Surveillance, Hazard Evaluations, and Field Studies, National Institute for Occupational Safety and Health (NIOSH), Cincinnati, OH, USA
| | - Miriam Calkins
- Division of Surveillance, Hazard Evaluations, and Field Studies, National Institute for Occupational Safety and Health (NIOSH), Cincinnati, OH, USA
| | - Jefferey L. Burgess
- Mel and Enid Zuckerman College of Public Health, The University of Arizona, Tucson, AZ, USA
| | - Erin N. Kobetz
- Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, USA
- Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Department of Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
53
|
Li X, Wang Z, Klaunig JE. The effects of perfluorooctanoate on high fat diet induced non-alcoholic fatty liver disease in mice. Toxicology 2019; 416:1-14. [DOI: 10.1016/j.tox.2019.01.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/21/2019] [Accepted: 01/29/2019] [Indexed: 01/28/2023]
|
54
|
Berrueta Martínez Y, Bava YB, Cavasso Filho RL, Erben MF, Romano RM, Della Védova CO. Valence and Inner Electronic Excitation, Ionization, and Fragmentation of Perfluoropropionic Acid. J Phys Chem A 2018; 122:9842-9850. [DOI: 10.1021/acs.jpca.8b09252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yanina Berrueta Martínez
- CEQUINOR (UNLP-CONICET-CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, 1900 La Plata, República Argentina
| | - Yanina B. Bava
- CEQUINOR (UNLP-CONICET-CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, 1900 La Plata, República Argentina
| | | | - Mauricio F. Erben
- CEQUINOR (UNLP-CONICET-CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, 1900 La Plata, República Argentina
| | - Rosana M. Romano
- CEQUINOR (UNLP-CONICET-CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, 1900 La Plata, República Argentina
| | - Carlos O. Della Védova
- CEQUINOR (UNLP-CONICET-CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, 1900 La Plata, República Argentina
| |
Collapse
|
55
|
Macheka-Tendenguwo LR, Olowoyo JO, Mugivhisa LL, Abafe OA. Per- and polyfluoroalkyl substances in human breast milk and current analytical methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:36064-36086. [PMID: 30382519 DOI: 10.1007/s11356-018-3483-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/16/2018] [Indexed: 04/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have since become a major health concern as they have been reportedly found in human tissues, blood and breast milk. The main aim of the study was to review the current data on PFASs in human breast milk, including the challenges of analysis as well as the possible modes of transfer from maternal blood. In this paper, previously published data on the concentrations of PFASs in human breast milk from around the world were reviewed and summarised. Eligible studies with reference lists published before 1 June 2017 were included by searching several databases (including Scopus, ScienceOpen and SciFinder). From this search, studies with the number of participants in each study ranging from 2 to 1237 were identified. The review indicated that based on the structural profiles and concentration levels, there was variation in the geographical distribution of these compounds in breast milk. Although there are no recorded investigations on the modes of transfer from maternal blood to breast milk, literature suggests that the PFASs tend to be transferred through binding to various proteins. The review also examined the different sample preparation and analytical methods employed to measure the concentrations of PFASs in human breast milk. This showed that solid phase extraction was the most common extraction method. After extraction, liquid chromatography coupled with tandem mass spectrometry was the most common analysis method. Since several of these methods were initially dedicated to monitoring PFASs in food and water, they demonstrate some limitations with regard to specificity and sensitivity to human fluids. Additionally, there are currently no published records of certified reference materials and/or proficiency scheme devoted to standardising PFAS concentrations in breast milk.
Collapse
Affiliation(s)
| | - Joshua O Olowoyo
- Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | | | | |
Collapse
|
56
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Vleminckx C, Vollmer G, Wallace H, Bodin L, Cravedi JP, Halldorsson TI, Haug LS, Johansson N, van Loveren H, Gergelova P, Mackay K, Levorato S, van Manen M, Schwerdtle T. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J 2018; 16:e05194. [PMID: 32625773 PMCID: PMC7009575 DOI: 10.2903/j.efsa.2018.5194] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in food. Regarding PFOS and PFOA occurrence, the final data set available for dietary exposure assessment contained a total of 20,019 analytical results (PFOS n = 10,191 and PFOA n = 9,828). There were large differences between upper and lower bound exposure due to analytical methods with insufficient sensitivity. The CONTAM Panel considered the lower bound estimates to be closer to true exposure levels. Important contributors to the lower bound mean chronic exposure were 'Fish and other seafood', 'Meat and meat products' and 'Eggs and egg products', for PFOS, and 'Milk and dairy products', 'Drinking water' and 'Fish and other seafood' for PFOA. PFOS and PFOA are readily absorbed in the gastrointestinal tract, excreted in urine and faeces, and do not undergo metabolism. Estimated human half-lives for PFOS and PFOA are about 5 years and 2-4 years, respectively. The derivation of a health-based guidance value was based on human epidemiological studies. For PFOS, the increase in serum total cholesterol in adults, and the decrease in antibody response at vaccination in children were identified as the critical effects. For PFOA, the increase in serum total cholesterol was the critical effect. Also reduced birth weight (for both compounds) and increased prevalence of high serum levels of the liver enzyme alanine aminotransferase (ALT) (for PFOA) were considered. After benchmark modelling of serum levels of PFOS and PFOA, and estimating the corresponding daily intakes, the CONTAM Panel established a tolerable weekly intake (TWI) of 13 ng/kg body weight (bw) per week for PFOS and 6 ng/kg bw per week for PFOA. For both compounds, exposure of a considerable proportion of the population exceeds the proposed TWIs.
Collapse
|
57
|
Tian M, Huang Q, Wang H, Martin FL, Liu L, Zhang J, Shen H. Biphasic effects of perfluorooctanoic acid on steroidogenesis in mouse Leydig tumour cells. Reprod Toxicol 2018; 83:54-62. [PMID: 30508572 DOI: 10.1016/j.reprotox.2018.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 01/09/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent organic pollutant, which may possess endocrine disrupting properties. Herein, we investigated the possible mechanism(s) of toxicity and steroidogenesis in mouse Leydig cells. MLTC-1 (mouse Leydig tumour cells) cells were exposed to 0, 50, 100 or 200 μM PFOA for 48 h to ascertain their effects on the nuclear (membrane) receptor responses, steroidogenesis pathway and related regulated gene expression and steroid hormone secretion profiles. Our results reveal that nuclear receptors PXR, SR-B1 and LHR are sensitive to PFOA exposure. PFOA can accumulate in mitochondria and alter cholesterol precursor (fatty acid) mitochondrial transport process-related gene expression and thus inhibit steroid hormone precursor (cholesterol) production. In particular, PFOA exhibits biphasic effects on testosterone and progesterone production at differing levels of exposure. These findings indicate the potential endocrine-related effects of PFOA on steroid hormone secretion in Leydig cells and point to a novel disruption model.
Collapse
Affiliation(s)
- Meiping Tian
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Heng Wang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhejiang Zhoushan, 316021, China
| | - Francis L Martin
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| | - Liangpo Liu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jie Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Heqing Shen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
58
|
Peropadre A, Fernández Freire P, Hazen MJ. A moderate exposure to perfluorooctanoic acid causes persistent DNA damage and senescence in human epidermal HaCaT keratinocytes. Food Chem Toxicol 2018; 121:351-359. [DOI: 10.1016/j.fct.2018.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 01/15/2023]
|
59
|
Choi H, Bae IA, Choi JC, Park SJ, Kim M. Perfluorinated compounds in food simulants after migration from fluorocarbon resin-coated frying pans, baking utensils, and non-stick baking papers on the Korean market. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2018; 11:264-272. [PMID: 30052135 DOI: 10.1080/19393210.2018.1499677] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Perfluorinated compounds (PFCs) are used in manufacturing food contact materials, including non-stick cookware coatings and oil- and moisture-resistant paper coatings. The chemical stability of PFCs poses an issue for human safety, as they do not degrade well naturally and hence may accumulate in the body. In terms of food safety, since dietary intake is thought to be a major source of exposure to PFCs, it is necessary to assess the migration of PFCs from food packaging articles to food under typical cooking and storage conditions. An analytical method was developed for assessing the migration of 16 PFCs from food contact materials to food simulants using liquid chromatography-tandem mass spectrometry. The applicability of the method for regular inspection was assessed by monitoring 312 samples. Based on the results of the exposure assessment, all food contact materials deemed to be safe for use, which evaluated migrated concentrations and dietary food intake.
Collapse
Affiliation(s)
- Heeju Choi
- a Food Additives and Packaging Division , National Institute of Food and Drug Safety Evaluation , Cheongju-si , Republic of Korea
| | - In-Ae Bae
- a Food Additives and Packaging Division , National Institute of Food and Drug Safety Evaluation , Cheongju-si , Republic of Korea
| | - Jae Chun Choi
- a Food Additives and Packaging Division , National Institute of Food and Drug Safety Evaluation , Cheongju-si , Republic of Korea
| | - Se-Jong Park
- a Food Additives and Packaging Division , National Institute of Food and Drug Safety Evaluation , Cheongju-si , Republic of Korea
| | - MeeKyung Kim
- a Food Additives and Packaging Division , National Institute of Food and Drug Safety Evaluation , Cheongju-si , Republic of Korea
| |
Collapse
|
60
|
Lv N, Zhao M, Han Y, Cui L, Zhong W, Wang C, Jiang Q. The roles of bone morphogenetic protein 2 in perfluorooctanoic acid induced developmental cardiotoxicity and l-carnitine mediated protection. Toxicol Appl Pharmacol 2018; 352:68-76. [DOI: 10.1016/j.taap.2018.05.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/04/2018] [Accepted: 05/21/2018] [Indexed: 01/06/2023]
|
61
|
Corticosteroid-binding globulin, induced in testicular Leydig cells by perfluorooctanoic acid, promotes steroid hormone synthesis. Arch Toxicol 2018; 92:2013-2025. [DOI: 10.1007/s00204-018-2207-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/25/2018] [Indexed: 12/19/2022]
|
62
|
Convertino M, Church TR, Olsen GW, Liu Y, Doyle E, Elcombe CR, Barnett AL, Samuel LM, MacPherson IR, Evans TRJ. Stochastic Pharmacokinetic-Pharmacodynamic Modeling for Assessing the Systemic Health Risk of Perfluorooctanoate (PFOA). Toxicol Sci 2018; 163:293-306. [PMID: 29462473 PMCID: PMC5920327 DOI: 10.1093/toxsci/kfy035] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A phase 1 dose-escalation trial assessed the chemotherapeutic potential of ammonium perfluorooctanoate (APFO). Forty-nine primarily solid-tumor cancer patients who failed standard therapy received weekly APFO doses (50-1200 mg) for 6 weeks. Clinical chemistries and plasma PFOA (anionic APFO) were measured predose and weekly thereafter. Several clinical measures including total cholesterol, high-density lipoproteins (HDLs), thyroid stimulating hormone (TSH), and free thyroxine (fT4), relative to PFOA concentrations were examined by: Standard statistical analyses using generalized estimating equations (GEE) and a probabilistic analysis using probability distribution functions (pdf) at various PFOA concentrations; and a 2-compartment pharmacokinetic/pharmacodynamic (PK/PD) model to directly estimate mean changes. Based on the GEE, the average rates of change in total cholesterol and fT4 associated with increasing PFOA were approximately -1.2×10-3 mmol/l/μM and 2.8×10-3 pmol/l/μM, respectively. The PK/PD model predicted more closely the trends observed in the data as well as the pdfs of biomarkers. A decline in total cholesterol was observed, with a clear transition in shape and range of the pdfs, manifested by the maximum value of the Kullback-Leibler (KL) divergence, that occurred at plasma PFOA between 420 and 565 μM (175 000-230 000 ng/ml). High-density lipoprotein was unchanged. An increase in fT4 was observed at a higher PFOA transition point, albeit TSH was unchanged. Our findings are consistent with some animal models and may motivate re-examination of the epidemiologic studies to PFOA at levels several orders of magnitude lower than this study. These observational studies have reported contrary associations, but currently understood biology does not support the existence of such conflicting effects.
Collapse
Affiliation(s)
- Matteo Convertino
- Division of Environmental Health Sciences and Public Health Informatics Program, HumNat Lab, School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455
- Institute on the Environment, University of Minnesota, St. Paul, Minnesota 55455
- Institute for Engineering in Medicine
- Biomedical Informatics and Computational Biology Program
| | - Timothy R Church
- Division of Environmental Health Sciences, School of Public Health
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455
| | - Geary W Olsen
- Medical Department, 3M Company, St. Paul, Minnesota 55144
| | - Yang Liu
- Division of Environmental Health Sciences and Public Health Informatics Program, HumNat Lab, School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455
| | | | | | | | | | - Iain R MacPherson
- Institute of Cancer Sciences, CR-UK Beatson Institute, University of Glasgow, Glasgow G12 8Q, UK
| | - Thomas R J Evans
- Institute of Cancer Sciences, CR-UK Beatson Institute, University of Glasgow, Glasgow G12 8Q, UK
| |
Collapse
|
63
|
Seo SH, Son MH, Choi SD, Lee DH, Chang YS. Influence of exposure to perfluoroalkyl substances (PFASs) on the Korean general population: 10-year trend and health effects. ENVIRONMENT INTERNATIONAL 2018; 113:149-161. [PMID: 29425899 DOI: 10.1016/j.envint.2018.01.025] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 05/20/2023]
Abstract
This study demonstrated the 10-year trend of 13 perfluoroalkyl substances (PFASs) serum levels among 786 adults living in Seoul, Korea. PFAS levels gradually increased from 2006 to 2013, decreasing thereafter. We found that PFAS levels were higher in male than in female participants and were positively correlated with age. PFASs were not significantly correlated with body mass index, although we observed positive correlations with total cholesterol, low-density lipoprotein cholesterol, and triglycerides and negative correlations with high-density lipoprotein cholesterol. Uric acid and free thyroxine (fT4) also showed positive correlations with major congeners while correlations between thyroid stimulating hormone and PFASs were inconsistent. We demonstrated significant correlations between fT4 and perfluorononanoic acid (PFNA), perfluorohexane sulfonate (PFHxS), and perfluorodecanoic acid (PFDA). There were significant differences in PFHxS and perfluorododecanoic acid (PFDoDA) levels between participants with and without diabetes. Furthermore, principal component analysis suggested possible differences in disease manifestation based on the congener distribution of PFASs. This study is the first study of temporal trends of 13 PFAS congeners in serum samples obtained from the Korean general population; it is currently longest and largest scale study of this type.
Collapse
Affiliation(s)
- Sung-Hee Seo
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 37673, Republic of Korea
| | - Min-Hui Son
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 37673, Republic of Korea
| | - Sung-Deuk Choi
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Duk-Hee Lee
- Department of Preventive Medicine and Health Promotion Research Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yoon-Seok Chang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 37673, Republic of Korea.
| |
Collapse
|
64
|
Perfluorooctanoic acid (PFOA) exposure promotes proliferation, migration and invasion potential in human breast epithelial cells. Arch Toxicol 2018; 92:1729-1739. [PMID: 29502166 PMCID: PMC5962621 DOI: 10.1007/s00204-018-2181-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/28/2018] [Indexed: 12/05/2022]
Abstract
Despite significant advances in early detection and treatment, breast cancer remains a major cause of morbidity and mortality. Perfluorooctanoic acid (PFOA) is a suspected endocrine disruptor and a common environmental pollutant associated with various diseases including cancer. However, the effects of PFOA and its mechanisms of action on hormone-responsive cells remain unclear. Here, we explored the potential tumorigenic activity of PFOA (100 nM–1 mM) in human breast epithelial cells (MCF-10A). MCF-10A cells exposed to 50 and 100 µM PFOA demonstrated a higher growth rate compared to controls. The compound promoted MCF-10A proliferation by accelerating G0/G1 to S phase transition of the cell cycle. PFOA increased cyclin D1 and CDK4/6 levels, concomitant with a decrease in p27. In contrast to previous studies of perfluorooctane sulfate (PFOS), the estrogen receptor antagonist ICI 182,780 had no effect on PFOA-induced cell proliferation, whereas the PPARα antagonist GW 6471 was able to prevent the MCF-10A proliferation, indicating that the underlying mechanisms involve PPARα-dependent pathways. Interestingly, we also showed that PFOA is able to stimulate cell migration and invasion, demonstrating its potential to induce neoplastic transformation of human breast epithelial cells. These results suggest that more attention should be paid to the roles of PFOA in the development and progression of breast cancer.
Collapse
|
65
|
Corton JC, Peters JM, Klaunig JE. The PPARα-dependent rodent liver tumor response is not relevant to humans: addressing misconceptions. Arch Toxicol 2017; 92:83-119. [PMID: 29197930 DOI: 10.1007/s00204-017-2094-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/12/2017] [Indexed: 12/17/2022]
Abstract
A number of industrial chemicals and therapeutic agents cause liver tumors in rats and mice by activating the nuclear receptor peroxisome proliferator-activated receptor α (PPARα). The molecular and cellular events by which PPARα activators induce rodent hepatocarcinogenesis have been extensively studied elucidating a number of consistent mechanistic changes linked to the increased incidence of liver neoplasms. The weight of evidence relevant to the hypothesized mode of action (MOA) for PPARα activator-induced rodent hepatocarcinogenesis is summarized here. Chemical-specific and mechanistic data support concordance of temporal and dose-response relationships for the key events associated with many PPARα activators. The key events (KE) identified in the MOA are PPARα activation (KE1), alteration in cell growth pathways (KE2), perturbation of hepatocyte growth and survival (KE3), and selective clonal expansion of preneoplastic foci cells (KE4), which leads to the apical event-increases in hepatocellular adenomas and carcinomas (KE5). In addition, a number of concurrent molecular and cellular events have been classified as modulating factors, because they potentially alter the ability of PPARα activators to increase rodent liver cancer while not being key events themselves. These modulating factors include increases in oxidative stress and activation of NF-kB. PPARα activators are unlikely to induce liver tumors in humans due to biological differences in the response of KEs downstream of PPARα activation. This conclusion is based on minimal or no effects observed on cell growth pathways and hepatocellular proliferation in human primary hepatocytes and absence of alteration in growth pathways, hepatocyte proliferation, and tumors in the livers of species (hamsters, guinea pigs and cynomolgus monkeys) that are more appropriate human surrogates than mice and rats at overlapping dose levels. Despite this overwhelming body of evidence and almost universal acceptance of the PPARα MOA and lack of human relevance, several reviews have selectively focused on specific studies that, as discussed, contradict the consensus opinion and suggest uncertainty. In the present review, we systematically address these most germane suggested weaknesses of the PPARα MOA.
Collapse
Affiliation(s)
- J Christopher Corton
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr, MD-B105-03, Research Triangle Park, NC, 27711, USA.
| | - Jeffrey M Peters
- The Department of Veterinary and Biomedical Sciences and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, 16803, USA
| | - James E Klaunig
- Department of Environmental Health, Indiana University, Bloomington, IN, 47402, USA
| |
Collapse
|
66
|
Zhao M, Jiang Q, Geng M, Zhu L, Xia Y, Khanal A, Wang C. The role of PPAR alpha in perfluorooctanoic acid induced developmental cardiotoxicity and l-carnitine mediated protection-Results of in ovo gene silencing. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:136-144. [PMID: 28934691 DOI: 10.1016/j.etap.2017.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/04/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent organic pollutant. This study established an in ovo peroxisome proliferator-activated receptor alpha (PPAR alpha) silencing model in chicken embryo heart, and investigated the role of PPAR alpha in PFOA induced developmental cardiotoxicity. The in ovo silencing was achieved by introducing lentivirus expressing PPAR alpha siRNA into ED2 chicken embryo via microinjection (0.05ul/g egg weight). Transfection efficacy was confirmed by fluorescent microscopy and western blotting. To assess the developmental cardiotoxicity, cardiac function (heart rate) and morphology (right ventricular wall thickness) were measured in D1 hatchling chickens. 2mg/kg (egg weight) PFOA exposure at ED0 induced significant elevation of heart rate and thinning of right ventricular wall thickness in D1 hatchling chickens. PPAR alpha silencing did not prevent PFOA-induced elevation of heart rate; however, it did significantly increase the right ventricular wall thickness as compared to PFOA exposed animals. Meanwhile, PPAR alpha silencing did not abolish the protective effects exerted by exposure to 100mg/kg (egg weight) l-carnitine. In conclusion, PFOA-induced heart rate elevation is likely PPAR alpha independent, while the right ventricular wall thinning seems to be PPAR alpha dependent. The protective effects of l-carnitine do not require PPAR alpha.
Collapse
Affiliation(s)
- Meng Zhao
- Qingdao University Medical College, China
| | | | - Min Geng
- Qingdao University Medical College, China
| | - Li Zhu
- The Affiliated Hospital of Qingdao University, China
| | - Yunqiu Xia
- Qingdao University Medical College, China
| | | | | |
Collapse
|
67
|
Zhao M, Jiang Q, Wang W, Geng M, Wang M, Han Y, Wang C. The Roles of Reactive Oxygen Species and Nitric Oxide in Perfluorooctanoic Acid-Induced Developmental Cardiotoxicity and l-Carnitine Mediated Protection. Int J Mol Sci 2017; 18:ijms18061229. [PMID: 28594376 PMCID: PMC5486052 DOI: 10.3390/ijms18061229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 05/27/2017] [Accepted: 06/05/2017] [Indexed: 12/16/2022] Open
Abstract
Perfluorooctanoic acid (PFOA) is an environmental contaminant that could induce developmental cardiotoxicity in a chicken embryo, which may be alleviated by l-carnitine. To explore the roles of reactive oxygen species (ROS) and nitric oxide (NO) in such changes and the potential effects of l-carnitine, fertile chicken eggs were exposed to PFOA via an air cell injection, with or without l-carnitine co-treatment. The ROS and NO levels in chicken embryo hearts were determined with electron spin resonance (ESR), and the protein levels of the nuclear factor κ-light chain-enhancer of activated B cells (NF-κB) p65 and inducible nitric oxide synthase (iNOS) in chicken embryo hearts were assessed with western blotting. The results of ESR indicated that PFOA exposure induced an elevation in the ROS levels in ED19 chicken embryo hearts and hatchling chicken hearts, while l-carnitine could alleviate such changes. Meanwhile, increased NO levels were observed in ED19 embryo hearts and hatchling hearts following PFOA exposure, while l-carnitine co-treatment exerted modulatory effects. Western blotting revealed that p65 translocation in ED19 embryo hearts and hatchling hearts was enhanced by PFOA, while l-carnitine co-treatment alleviated such changes. iNOS expression levels in ED19 embryo hearts followed the same pattern as NO levels, while a suppression of expression was observed in hatchling hearts exposed to PFOA. ROS/NF-κB p65 and iNOS/NO seem to be involved in the late stage (ED19 and post hatch) of PFOA-induced developmental cardiotoxicity in a chicken embryo. l-carnitine could exert anti-oxidant and NO modulatory effects in the developing chicken embryo hearts, which likely contribute to its cardioprotective effects.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Pharmacology, Qingdao University Medical College, 308 Ning Xia Road, Qingdao 266071, China.
| | - Qixiao Jiang
- Department of Pharmacology, Qingdao University Medical College, 308 Ning Xia Road, Qingdao 266071, China.
| | - Wencheng Wang
- Qingdao Municipal Center for Disease Control & Prevention, 175 Shandong Road, Qingdao 266071, China.
| | - Min Geng
- Department of Pharmacology, Qingdao University Medical College, 308 Ning Xia Road, Qingdao 266071, China.
| | - Meng Wang
- Department of Pharmacology, Qingdao University Medical College, 308 Ning Xia Road, Qingdao 266071, China.
| | - Yantao Han
- Department of Pharmacology, Qingdao University Medical College, 308 Ning Xia Road, Qingdao 266071, China.
| | - Chunbo Wang
- Department of Pharmacology, Qingdao University Medical College, 308 Ning Xia Road, Qingdao 266071, China.
| |
Collapse
|
68
|
Cho S, Yoon JY. Organ-on-a-chip for assessing environmental toxicants. Curr Opin Biotechnol 2017; 45:34-42. [PMID: 28088094 PMCID: PMC5474140 DOI: 10.1016/j.copbio.2016.11.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 11/24/2016] [Indexed: 10/20/2022]
Abstract
Man-made xenobiotics, whose potential toxicological effects are not fully understood, are oversaturating the already-contaminated environment. Due to the rate of toxicant accumulation, unmanaged disposal, and unknown adverse effects to the environment and the human population, there is a crucial need to screen for environmental toxicants. Animal models and in vitro models are ineffective models in predicting in vivo responses due to inter-species difference and/or lack of physiologically-relevant 3D tissue environment. Such conventional screening assays possess limitations that prevent dynamic understanding of toxicants and their metabolites produced in the human body. Organ-on-a-chip systems can recapitulate in vivo like environment and subsequently in vivo like responses generating a realistic mock-up of human organs of interest, which can potentially provide human physiology-relevant models for studying environmental toxicology. Feasibility, tunability, and low-maintenance features of organ-on-chips can also make possible to construct an interconnected network of multiple-organs-on-chip toward a realistic human-on-a-chip system. Such interconnected organ-on-a-chip network can be efficiently utilized for toxicological studies by enabling the study of metabolism, collective response, and fate of toxicants through its journey in the human body. Further advancements can address the challenges of this technology, which potentiates high predictive power for environmental toxicology studies.
Collapse
Affiliation(s)
- Soohee Cho
- Department of Agricultural and Biosystems Engineering, The University of Arizona, Tucson, AZ 85721-0038, USA
| | - Jeong-Yeol Yoon
- Department of Agricultural and Biosystems Engineering, The University of Arizona, Tucson, AZ 85721-0038, USA; Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721-0020, USA.
| |
Collapse
|
69
|
Madureira TV, Pinheiro I, Malhão F, Lopes C, Urbatzka R, Castro LFC, Rocha E. Cross-interference of two model peroxisome proliferators in peroxisomal and estrogenic pathways in brown trout hepatocytes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 187:153-162. [PMID: 28415051 DOI: 10.1016/j.aquatox.2017.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/16/2017] [Accepted: 04/04/2017] [Indexed: 06/07/2023]
Abstract
Peroxisome proliferators cause species-specific effects, which seem to be primarily transduced by peroxisome proliferator-activated receptor alpha (PPARα). Interestingly, PPARα has a close interrelationship with estrogenic signaling, and this latter has already been promptly activated in brown trout primary hepatocytes. Thus, and further exploring this model, we assess here the reactivity of two PPARα agonists in direct peroxisomal routes and, in parallel the cross-interferences in estrogen receptor (ER) mediated paths. To achieve these goals, three independent in vitro studies were performed using single exposures to clofibrate - CLF (50, 500 and 1000μM), Wy-14,643 - Wy (50 and 150μM), GW6471 - GW (1 and 10μM), and mixtures, including PPARα agonist or antagonist plus an ER agonist or antagonist. Endpoints included gene expression analysis of peroxisome/lipidic related genes (encoding apolipoprotein AI - ApoAI, fatty acid binding protein 1 - Fabp1, catalase - Cat, 17 beta-hydroxysteroid dehydrogenase 4 - 17β-HSD4, peroxin 11 alpha - Pex11α, PPARαBb, PPARαBa and urate oxidase - Uox) and those encoding estrogenic targets (ERα, ERβ-1 and vitellogenin A - VtgA). A quantitative morphological approach by using a pre-validated catalase immunofluorescence technique allowed checking possible changes in peroxisomes. Our results show a low responsiveness of trout hepatocytes to model PPARα agonists in direct target receptor pathways. Additionally, we unveiled interferences in estrogenic signaling caused by Wy, leading to an up-regulation VtgA and ERα at 150μM; these effects seem counteracted with a co-exposure to an ER antagonist. The present data stress the potential of this in vitro model for further exploring the physiological/toxicological implications related with this nuclear receptor cross-regulation.
Collapse
Affiliation(s)
- Tânia Vieira Madureira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U. Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U. Porto), Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal.
| | - Ivone Pinheiro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U. Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U. Porto), Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal
| | - Fernanda Malhão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U. Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U. Porto), Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal
| | - Célia Lopes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U. Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U. Porto), Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal
| | - Ralph Urbatzka
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U. Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - L Filipe C Castro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U. Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Faculty of Sciences (FCUP), University of Porto (U. Porto), Department of Biology, Rua do Campo Alegre, P 4169-007 Porto, Portugal
| | - Eduardo Rocha
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U. Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U. Porto), Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal
| |
Collapse
|
70
|
Butenhoff JL, Olsen GW, Chang S. Toxicological response of Sprague Dawley rats from inhalation exposure to perfluorooctane sulfonyl fluoride (POSF). Toxicol Lett 2017; 271:38-49. [DOI: 10.1016/j.toxlet.2017.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/15/2017] [Accepted: 02/19/2017] [Indexed: 11/28/2022]
|
71
|
Chen Y, Zhou L, Xu J, Zhang L, Li M, Xie X, Xie Y, Luo D, Zhang D, Yu X, Yang B, Kuang H. Maternal exposure to perfluorooctanoic acid inhibits luteal function via oxidative stress and apoptosis in pregnant mice. Reprod Toxicol 2017; 69:159-166. [PMID: 28219760 DOI: 10.1016/j.reprotox.2017.02.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 11/16/2022]
Abstract
Perfluorooctanoic acid (PFOA) is a synthetic perfluorinated compound, which has been reported to exert adverse effect on the pregnancy. However, whether it is associated with alteration of luteal function remains unknown. Mice were administered PFOA by gavage from gestational days (GD) 1-7 or 13. PFOA treatment did not significantly affect numbers of embryo implantation. Nevertheless, on GD 13, 10mg/kg PFOA treatment significantly increased numbers of resorbed embryo. Furthermore, PFOA exposure markedly reduced serum progesterone levels but did not affect estradiol levels. Treatment also showed concomitant decreases in transcript levels for key steroidogenic enzymes, and reduced numbers and sizes of corpora lutea. In addition, PFOA administration inhibited activities of superoxide dismutase and catalase, and increased generation of hydrogen peroxide and malondialdehyde, and down-regulated level of Bcl-2 and up-regulated p53 and BAX proteins. In conclusion, PFOA exposure significantly inhibits luteal function via oxidative stress and apoptosis in pregnant mice.
Collapse
Affiliation(s)
- Yilu Chen
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology and Department of Physiology, School of Medicine, Nanchang University, Nanchang, Jiangxi, China.
| | - Ling Zhou
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology and Department of Physiology, School of Medicine, Nanchang University, Nanchang, Jiangxi, China.
| | - Jingjie Xu
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology and Department of Physiology, School of Medicine, Nanchang University, Nanchang, Jiangxi, China.
| | - Lu Zhang
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology and Department of Physiology, School of Medicine, Nanchang University, Nanchang, Jiangxi, China.
| | - Mo Li
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology and Department of Physiology, School of Medicine, Nanchang University, Nanchang, Jiangxi, China.
| | - Xingxing Xie
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology and Department of Physiology, School of Medicine, Nanchang University, Nanchang, Jiangxi, China.
| | - Yajuan Xie
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology and Department of Physiology, School of Medicine, Nanchang University, Nanchang, Jiangxi, China.
| | - Dan Luo
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology and Department of Physiology, School of Medicine, Nanchang University, Nanchang, Jiangxi, China.
| | - Dalei Zhang
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology and Department of Physiology, School of Medicine, Nanchang University, Nanchang, Jiangxi, China.
| | - Xiaochun Yu
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology and Department of Physiology, School of Medicine, Nanchang University, Nanchang, Jiangxi, China.
| | - Bei Yang
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology and Department of Physiology, School of Medicine, Nanchang University, Nanchang, Jiangxi, China.
| | - Haibin Kuang
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology and Department of Physiology, School of Medicine, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
72
|
Coperchini F, Awwad O, Rotondi M, Santini F, Imbriani M, Chiovato L. Thyroid disruption by perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA). J Endocrinol Invest 2017; 40:105-121. [PMID: 27837466 DOI: 10.1007/s40618-016-0572-z] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/22/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are two fluorinated compounds widely used in industry because of their useful chemical characteristics. They were identified as endocrine disruptors due to their ability to interfere with thyroid function. The resistance of PFOA and PFOS to environmental degradation, their bio-accumulation in food chains, and their long half-life raised concern in the scientific community, and several studies were performed with the aim to establish the real dangerousness of these compounds for the human health. PURPOSE The present review will focus on the effects of PFOA and PFOS on the thyroid gland taking into account in vitro experiments, animal studies, and human data. PFOS and PFOA reduce the circulating levels of thyroid hormones in diet-exposed animals, mainly by increasing their metabolic clearance rate. CONCLUSIONS An accumulation of PFOS and PFOA was documented in thyroid cells, and a cytotoxic effect was observed after exposure to extremely high concentrations of these compounds. In environmentally exposed communities and in the general population, the most consistent effect of exposure to PFOA, and to a less extent to PFOS, is the occurrence of hypothyroidism. Women and children appear to be more at risk of developing mild thyroid failure. Pregnant women with circulating thyroid antibodies might be at risk of developing subclinical hypothyroidism, mainly when exposed at high doses of PFOS. The relative risks for thyroid cancer in people exposed to PFOA and PFOS were low and based on a few cases. Moreover, there was no consistent finding across all or even most studies.
Collapse
Affiliation(s)
- F Coperchini
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors Fondazione, Salvatore Maugeri I.R.C.C.S., Chair of Endocrinology, University of Pavia, Via Maugeri 10, 27100, Pavia, Italy
| | - O Awwad
- Department of Biopharmaceutics and Clinical Pharmacy, The University of Jordan, Amman, Jordan
| | - M Rotondi
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors Fondazione, Salvatore Maugeri I.R.C.C.S., Chair of Endocrinology, University of Pavia, Via Maugeri 10, 27100, Pavia, Italy
| | - F Santini
- Endocrinology Unit 1, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - M Imbriani
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - L Chiovato
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors Fondazione, Salvatore Maugeri I.R.C.C.S., Chair of Endocrinology, University of Pavia, Via Maugeri 10, 27100, Pavia, Italy.
| |
Collapse
|
73
|
Li K, Gao P, Xiang P, Zhang X, Cui X, Ma LQ. Molecular mechanisms of PFOA-induced toxicity in animals and humans: Implications for health risks. ENVIRONMENT INTERNATIONAL 2017; 99:43-54. [PMID: 27871799 DOI: 10.1016/j.envint.2016.11.014] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/13/2016] [Accepted: 11/13/2016] [Indexed: 05/22/2023]
Abstract
As an emerging persistent organic pollutant (POP), perfluorooctanoate (PFOA) is one of the most abundant perfluorinated compounds (PFCs) in the environment. This review summarized the molecular mechanisms and signaling pathways of PFOA-induced toxicity in animals and humans as well as their implications for health risks in humans. Traditional PFOA-induced signal pathways such as peroxisome proliferating receptor alpha (PPARα), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), and pregnane-X receptor (PXR) may not be important for PFOA-induced health effects on humans. Instead, pathways including p53/mitochondrial pathway, nuclear lipid hyperaccumulation, phosphatidylinositol 3-kinase-serine/threonine protein kinase (PI3K-AKT), and tumor necrosis factor-α/nuclear factor κB (TNF-α/NF-κB) may play an important role for PFOA-induced health risks in humans. Both in vivo and in vitro studies are needed to better understand the PFOA-induced toxicity mechanisms as well as the associated health risk in humans.
Collapse
Affiliation(s)
- Kan Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Peng Gao
- Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States
| | - Ping Xiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
74
|
Mahapatra CT, Damayanti NP, Guffey SC, Serafin JS, Irudayaraj J, Sepúlveda MS. Comparativein vitrotoxicity assessment of perfluorinated carboxylic acids. J Appl Toxicol 2016; 37:699-708. [PMID: 27917506 DOI: 10.1002/jat.3418] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 10/25/2016] [Accepted: 10/25/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Cecon T. Mahapatra
- Purdue University; Department of Forestry and Natural Resources; West Lafayette IN 47907 USA
| | - Nur P. Damayanti
- Bindley Bioscience Center; Purdue University; West Lafayette IN USA
| | - Samuel C. Guffey
- Purdue University; Department of Forestry and Natural Resources; West Lafayette IN 47907 USA
| | - Jennifer S. Serafin
- Purdue University; Department of Forestry and Natural Resources; West Lafayette IN 47907 USA
| | | | - Maria S. Sepúlveda
- Purdue University; Department of Forestry and Natural Resources; West Lafayette IN 47907 USA
| |
Collapse
|
75
|
Jiang Q, Wang C, Xue C, Xue L, Wang M, Li C, Deng Z, Wang Q. Changes in the levels of l-carnitine, acetyl-l-carnitine and propionyl-l-carnitine are involved in perfluorooctanoic acid induced developmental cardiotoxicity in chicken embryo. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 48:116-124. [PMID: 27771504 DOI: 10.1016/j.etap.2016.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/16/2016] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
Perfluorooctanoic acid (PFOA), a persistent organic pollutant, is associated with developmental toxicity. This study investigated the mechanism of PFOA-induced developmental cardiotoxicity in chicken embryo, focusing on the interactions between developmental exposure to PFOA and the levels of l-carnitine (LC), acetyl-l-carnitine (ALC) and propionyl-l-carnitine (PLC) in the heart. To evaluate the developmental cardiotoxicity, fertile chicken eggs were exposed to 0.1, 0.5, 1, 2 or 5mg/kg PFOA via air cell injection. Furthermore, exposure to 2mg/kg PFOA, with or without 100mg/kg LC were applied to investigate the effects of LC supplement. The results of functional and morphological assessments confirmed PFOA induced developmental cardiotoxicity in chicken embryo, which could be alleviated by co-exposure to LC. LC-MS/MS results also revealed remarkable decrease in LC, ALC and PLC levels in embryonic day six (ED6) chicken embryo hearts as well as LC level in embryonic day fifteen (ED15) chicken embryo hearts following developmental exposure to 2mg/kg PFOA. Meanwhile, co-exposure to 100mg/kg LC significantly elevated the levels of LC, ALC and PLC in chicken embryo hearts. Significantly elevated expression level of carnitine acetyltransferase (CRAT) in PFOA-exposed ED6 chicken embryo hearts was observed via western blotting, while LC co-exposure counteracted such changes. In conclusion, changes in the levels of LC, ALC and PLC in early embryonic stages are associated with PFOA induced developmental cardiotoxicity in chicken embryos.
Collapse
Affiliation(s)
- Qixiao Jiang
- Qingdao University Medical College, 308 Ningxia Road, Qingdao, Shandong 266021, China.
| | - Chunbo Wang
- Qingdao University Medical College, 308 Ningxia Road, Qingdao, Shandong 266021, China.
| | - Chan Xue
- Qingdao University Medical College, 308 Ningxia Road, Qingdao, Shandong 266021, China
| | - Lingfang Xue
- Qingdao University Medical College, 308 Ningxia Road, Qingdao, Shandong 266021, China
| | - Meiting Wang
- Qingdao University Medical College, 308 Ningxia Road, Qingdao, Shandong 266021, China
| | - Changhao Li
- Qingdao University Medical College, 308 Ningxia Road, Qingdao, Shandong 266021, China
| | - Ziwen Deng
- Qingdao University Medical College, 308 Ningxia Road, Qingdao, Shandong 266021, China
| | - Qian Wang
- Qingdao University Medical College, 308 Ningxia Road, Qingdao, Shandong 266021, China
| |
Collapse
|
76
|
Kim SJ, Heo SH, Lee DS, Hwang IG, Lee YB, Cho HY. Gender differences in pharmacokinetics and tissue distribution of 3 perfluoroalkyl and polyfluoroalkyl substances in rats. Food Chem Toxicol 2016; 97:243-255. [DOI: 10.1016/j.fct.2016.09.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 11/27/2022]
|
77
|
Jiang Q, Ma W, Wu J, Wingard CJ, DeWitt JC. Perfluorooctanoic acid-induced toxicity in primary cultures of chicken embryo cardiomyocytes. ENVIRONMENTAL TOXICOLOGY 2016; 31:1580-1590. [PMID: 26098785 DOI: 10.1002/tox.22162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/01/2015] [Accepted: 06/07/2015] [Indexed: 06/04/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a widespread environmental contaminant that induces developmental cardiotoxicity. It is detectable in late stage chicken embryos and hatchling chickens. To investigate mechanism(s) of cardiotoxicity, primary cultures of cardiomyocytes were prepared from 10-day-old chicken embryos that were (A) pre-exposed to vehicle or 2 mg of PFOA/kg of egg weight in ovo or (B) incubated with PFOA in vitro at concentrations ranging from 0 to 100 µg/mL in medium for 1 or 36 h. When viability was assessed, survival of cardiomyocytes prepared from pre-exposed embryos did not differ from vehicle controls, even under conditions of serum starvation designed to challenge the cells. However, 1 h of exposure to 100 µg/mL of PFOA in vitro and 36 h of exposure to 75 and 100 µg/mL PFOA in vitro decreased viability. When contractility was evaluated, cardiomyocytes cultured from pre-exposed embryos exhibited decreases in time to maximum departure velocity and cell length at peak contraction, whereas cardiomyocytes exposed in vitro exhibited a reduction in the 50% relaxation time at a concentration of 1 µg/mL relative to vehicle controls. Morphological assessment revealed decreased cardiomyocytes axial length following in ovo PFOA exposure and 24 h in vitro PFOA 50 µg/mL exposure. Reactive oxygen species (ROS) generation, which was evaluated only in cardiomyocytes exposed to PFOA in vitro, was significantly elevated following incubation with 50 µg/mL of PFOA for 1 h. These data indicate that while in vitro exposure to relatively high concentrations of PFOA can induce cytotoxicity and ROS, developmental cardiotoxicity observed in ovo is not likely mediated via PFOA-induced overt cytotoxicity, but likely by altering early cardiac morphologic and function processes. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1580-1590, 2016.
Collapse
Affiliation(s)
- Qixiao Jiang
- Department of Pharmacology, Qingdao University Medical College, 422 Boya Building, 308 Ningxia Road, Qingdao, Shandong, 266071, China.
- Department of Pharmacology and Toxicology Brody School of Medicine, East Carolina University, 600 Moye Blvd., Greenville, North Carolina, 27834, USA.
| | - Weiping Ma
- Department of Pharmacology, Qingdao University Medical College, 422 Boya Building, 308 Ningxia Road, Qingdao, Shandong, 266071, China
| | - Jie Wu
- Center of Disease Control of Qingdao, 175 Shandong Road, Qingdao, Shandong, 266001, China
| | - Christopher J Wingard
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Blvd., Greenville, North Carolina, 27834, USA
| | - Jamie C DeWitt
- Department of Pharmacology and Toxicology Brody School of Medicine, East Carolina University, 600 Moye Blvd., Greenville, North Carolina, 27834, USA.
| |
Collapse
|
78
|
Jantzen CE, Annunziato KA, Bugel SM, Cooper KR. PFOS, PFNA, and PFOA sub-lethal exposure to embryonic zebrafish have different toxicity profiles in terms of morphometrics, behavior and gene expression. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:160-70. [PMID: 27058923 PMCID: PMC5204304 DOI: 10.1016/j.aquatox.2016.03.026] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 05/03/2023]
Abstract
Polyfluorinated compounds (PFC) are a class of anthropogenic, persistent and toxic chemicals. PFCs are detected worldwide and consist of fluorinated carbon chains of varying length, terminal groups, and industrial uses. Previous zebrafish studies in the literature as well as our own studies have shown that exposure to these chemicals at a low range of concentrations (0.02-2.0μM; 20-2000ppb) resulted in chemical specific developmental defects and reduced post hatch survival. It was hypothesized that sub-lethal embryonic exposure to perfluorooctanesulfonic acid (PFOS), perfluorononanoic acid (PFNA), or perfluorooctanoic acid (PFOA) would result in different responses with regard to morphometric, behavior, and gene expression in both yolk sac fry and larval zebrafish. Zebrafish were exposed to PFOS, PFOA, and PFNA (0.02, 0.2, 2.0μM) for the first five days post fertilization (dpf) and analyzed for morphometrics (5 dpf, 14 dpf), targeted gene expression (5 dpf, 14 dpf), and locomotive behavior (14 dpf). All three PFCs commonly resulted in a decrease in total body length, increased tfc3a (muscle development) expression and decreased ap1s (protein transport) expression at 5dpf, and hyperactive locomotor activity 14 dpf. All other endpoints measured at both life-stage time points varied between each of the PFCs. PFOS, PFNA, and PFOA exposure resulted in significantly altered responses in terms of morphometric, locomotion, and gene expression endpoints, which could be manifested in field exposed teleosts.
Collapse
Affiliation(s)
- Carrie E Jantzen
- Rutgers, The State University of New Jersey, Department of Environmental Sciences, New Brunswick, NJ, USA.
| | - Kate A Annunziato
- Rutgers, The State University of New Jersey, Department of Biochemistry and Microbiology, New Brunswick, NJ, USA
| | - Sean M Bugel
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Keith R Cooper
- Rutgers, The State University of New Jersey, Department of Environmental Sciences, New Brunswick, NJ, USA; Rutgers, The State University of New Jersey, Department of Biochemistry and Microbiology, New Brunswick, NJ, USA
| |
Collapse
|
79
|
Wen LL, Lin CY, Chou HC, Chang CC, Lo HY, Juan SH. Perfluorooctanesulfonate Mediates Renal Tubular Cell Apoptosis through PPARgamma Inactivation. PLoS One 2016; 11:e0155190. [PMID: 27171144 PMCID: PMC4865156 DOI: 10.1371/journal.pone.0155190] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/25/2016] [Indexed: 01/12/2023] Open
Abstract
Perfluorinated chemicals (PFCs) are ubiquitously distributed in the environments including stainless pan-coating, raincoat, fire extinguisher, and semiconductor products. The PPAR family has been shown to contribute to the toxic effects of PFCs in thymus, immune and excretory systems. Herein, we demonstrated that perfluorooctanesulfonate (PFOS) caused cell apoptosis through increasing ratio of Bcl-xS/xL, cytosolic cytochrome C, and caspase 3 activation in renal tubular cells (RTCs). In addition, PFOS increased transcription of inflammatory cytokines (i.e., TNFα, ICAM1, and MCP1) by NFκB activation. Conversely, PFOS reduced the mRNA levels of antioxidative enzymes, such as glutathione peroxidase, catalase, and superoxide dismutase, as a result of reduced PPARγ transactivational activity by using reporter and chromatin immuoprecipitation (ChIP) assays. PFOS reduced the protein interaction between PPARγ and PPARγ coactivator-1 alpha (PGC1α) by PPARγ deacetylation through Sirt1 upregulation, of which the binding of PPARγ and PGC1α to a peroxisome proliferator response element (PPRE) in the promoter regions of these antioxidative enzymes was alleviated in the ChIP assay. Furthermore, Sirt1 also deacetylated p53 and then increased the binding of p53 to Bax, resulting in increased cytosolic cytochrome C. The effect of PPARγ inactivation by PFOS was validated using the PPARγ antagonist GW9662, whereas the adverse effects of PFOS were prevented by PPARγ overexpression and activators, rosiglitozone and L-carnitine, in RTCs. The in vitro finding of protective effect of L-carnitine was substantiated in vivo using Balb/c mice model subjected to PFOS challenge. Altogether, we provide in vivo and in vitro evidence for the protective mechanism of L-carnitine in eliminating PFOS-mediated renal injury, at least partially, through PPARγ activation.
Collapse
Affiliation(s)
- Li-Li Wen
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
- Department of Clinical Laboratory, En Chu Kong Hospital, New Taipei City, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu, Taiwan
| | - Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Hsiu-Chu Chou
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Cheng Chang
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hau-Yin Lo
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shu-Hui Juan
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
80
|
Rosenmai AK, Taxvig C, Svingen T, Trier X, van Vugt-Lussenburg BMA, Pedersen M, Lesné L, Jégou B, Vinggaard AM. Fluorinated alkyl substances and technical mixtures used in food paper-packaging exhibit endocrine-related activity in vitro. Andrology 2016; 4:662-72. [DOI: 10.1111/andr.12190] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/25/2016] [Accepted: 03/02/2016] [Indexed: 01/02/2023]
Affiliation(s)
- A. K. Rosenmai
- Division of Diet, Disease Prevention, and Toxicology; National Food Institute; Technical University of Denmark; Søborg Denmark
| | - C. Taxvig
- Division of Diet, Disease Prevention, and Toxicology; National Food Institute; Technical University of Denmark; Søborg Denmark
| | - T. Svingen
- Division of Diet, Disease Prevention, and Toxicology; National Food Institute; Technical University of Denmark; Søborg Denmark
| | - X. Trier
- Research Group for Analytical Food Chemistry; National Food Institute; Technical University of Denmark; Søborg Denmark
| | | | - M. Pedersen
- Research Group for Analytical Food Chemistry; National Food Institute; Technical University of Denmark; Søborg Denmark
| | - L. Lesné
- Inserm (Institut national de la santé et de la recherche médicale); IRSET, U1085; Rennes CEDEX France
- Université de Rennes I; Rennes CEDEX France
| | - B. Jégou
- Inserm (Institut national de la santé et de la recherche médicale); IRSET, U1085; Rennes CEDEX France
- Université de Rennes I; Rennes CEDEX France
- EHESP - School of Public Health; Rennes CEDEX France
| | - A. M. Vinggaard
- Division of Diet, Disease Prevention, and Toxicology; National Food Institute; Technical University of Denmark; Søborg Denmark
| |
Collapse
|
81
|
Harada Y, Tanaka N, Ichikawa M, Kamijo Y, Sugiyama E, Gonzalez FJ, Aoyama T. PPARα-dependent cholesterol/testosterone disruption in Leydig cells mediates 2,4-dichlorophenoxyacetic acid-induced testicular toxicity in mice. Arch Toxicol 2016; 90:3061-3071. [PMID: 26838045 DOI: 10.1007/s00204-016-1669-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/13/2016] [Indexed: 10/22/2022]
Abstract
It was reported that 2,4-dichlorophenoxyacetic acid (2,4-D), a commonly used herbicide and a possible endocrine disruptor, can disturb spermatogenesis, but the precise mechanism is not understood. Since 2,4-D is a weak peroxisome proliferator in hepatocytes and peroxisome proliferator-activated receptor α (PPARα) is also expressed in Leydig cells, this study aimed to investigate the link between PPARα and 2,4-D-mediated testicular dysfunction. 2,4-D (130 mg/kg/day) was administered to wild-type and Ppara-null mice for 2 weeks, and the alterations in testis and testosterone/cholesterol metabolism in Leydig cells were examined. Treatment with 2,4-D markedly decreased testicular testosterone in wild-type mice, leading to degeneration of spermatocytes and Sertoli cells. The 2,4-D decreased cholesterol levels in Leydig cells of wild-type mice through down-regulating the expression of 3-hydroxy-3-methylglutaryl coenzyme A synthase 1 and reductase, involved in de novo cholesterogenesis. However, the mRNAs encoding the important proteins involved in testosterone synthesis were unchanged by 2,4-D except for CYP17A1, indicating that exhausted cholesterol levels in the cells is a main reason for reduced testicular testosterone. Additionally, pregnancy rate and the number of pups between 2,4-D-treated wild-type male mice and untreated female mice were significantly lower compared with those between untreated couples. These phenomena were not observed in 2,4-D-treated Ppara-null males. Collectively, these results suggest a critical role for PPARα in 2,4-D-induced testicular toxicity due to disruption of cholesterol/testosterone homeostasis in Leydig cells. This study yields novel insights into the possible mechanism of testicular dysfunction and male infertility caused by 2,4-D.
Collapse
Affiliation(s)
- Yukiko Harada
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.,Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naoki Tanaka
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan. .,Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Motoki Ichikawa
- Department of Family and Child Nursing, Shinshu University School of Health Sciences, Matsumoto, Japan
| | - Yuji Kamijo
- Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Eiko Sugiyama
- Department of Nutritional Science, Nagano Prefectural College, Nagano, Japan
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Toshifumi Aoyama
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| |
Collapse
|
82
|
Microbial degradation of fluorinated drugs: biochemical pathways, impacts on the environment and potential applications. Appl Microbiol Biotechnol 2016; 100:2617-27. [PMID: 26830103 DOI: 10.1007/s00253-016-7304-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 12/25/2022]
Abstract
Since the discovery over 60 years ago of fluorocortisone's biological properties (9-α-Fluoro derivatives of cortisone and hydrocortisone; Fried J and Sabo EF, J Am Chem Soc 76: 1455-1456, 1954), the number of fluorinated drugs has steadily increased. With the improvement in synthetic methodologies, this trend is likely to continue and will lead to the introduction of new fluorinated substituents into pharmaceutical compounds. Although the biotransformation of organofluorine compounds by microorganisms has been well studied, specific investigations on fluorinated drugs are relatively few, despite the increase in the number and variety of fluorinated drugs that are available. The strength of the carbon-fluorine bond conveys stability to fluorinated drugs; thus, they are likely to be recalcitrant in the environment or may be partially metabolized to a more toxic metabolite. This review examines the research done on microbial biotransformation and biodegradation of fluorinated drugs and highlights the importance of understanding how microorganisms interact with this class of compound from environmental, clinical and biotechnological perspectives.
Collapse
|
83
|
Cui R, Zhang H, Guo X, Cui Q, Wang J, Dai J. Proteomic analysis of cell proliferation in a human hepatic cell line (HL-7702) induced by perfluorooctane sulfonate using iTRAQ. JOURNAL OF HAZARDOUS MATERIALS 2015; 299:361-370. [PMID: 26143199 DOI: 10.1016/j.jhazmat.2015.06.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/08/2015] [Accepted: 06/18/2015] [Indexed: 06/04/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a commonly used and widely distributed perfluorinated compound proven to cause adverse health outcomes. However, how PFOS affects liver cell proliferation is not well understood. In this experiment, we exposed a human liver cell line (HL-7702) to 50 μM PFOS for 48 h and 96 h. We identified 52 differentially expressed proteins using a quantitative proteomic approach. Among them, 27 were associated with cell proliferation, including hepatoma-derived growth factor (Hdgf) and proliferation biomarkers Mk167 (Ki67) and Top2α. Results from MTT, cell counting, and cell cycle analysis showed low-dose PFOS (<200 μM) stimulated HL-7702 cell viability at 48 h and 96 h, reduced the G0/G1 percentage, and increased the S+G2/M percentage. Moreover, levels of Cyclin D1, Cyclin E2, Cyclin A2, Cyclin B1 and their partner Cdks were elevated, and the expression of regulating proteins like c-Myc, p53, p21 waf/cip1 and Myt1, as well as the phosphorylation levels of p-Wee1(S642), p-Chk1(S345) and p-Chk2(T68), were disturbed. We hypothesized that low-dose PFOS stimulated HL-7702 proliferation by driving cells into G1 through elevating cyclins/cdks expression, and by promoting cell cycle progression through altering other regulating proteins. This research will shed light on the mechanisms behind PFOS-mediated human hepatotoxicity.
Collapse
Affiliation(s)
- Ruina Cui
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Hongxia Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, PR China
| | - Qianqian Cui
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jianshe Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
84
|
Kato H, Fujii S, Takahashi M, Matsumoto M, Hirata-Koizumi M, Ono A, Hirose A. Repeated dose and reproductive/developmental toxicity of perfluorododecanoic acid in rats. ENVIRONMENTAL TOXICOLOGY 2015; 30:1244-63. [PMID: 24753098 DOI: 10.1002/tox.21996] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 03/25/2014] [Accepted: 04/04/2014] [Indexed: 05/18/2023]
Abstract
Perfluoroalkyl carboxylic acids (PFCAs) are a series of environmental contaminants that have received attention because of their possible adverse effects on wildlife and human health. Although many toxicological studies have been performed on perfluorooctanoic acid with carbon chain length C8, available toxicity data on PFCAs with longer chains are still insufficient to evaluate their hazard. A combined repeated dose and reproductive/developmental toxicity screening study for perfluorododecanoic acid (PFDoA; C12) was conducted in accordance with OECD guideline 422 to fill these toxicity data gaps. PFDoA was administered by gavage to male and female rats at 0.1, 0.5, or 2.5 mg/kg/day. The administration of PFDoA at 0.5 and 2.5 mg/kg/day for 42-47 days mainly affected the liver, in which hypertrophy, necrosis, and inflammatory cholestasis were noted. Body weight gain was markedly inhibited in the 2.5 mg/kg/day group, and a decrease in hematopoiesis in the bone marrow and atrophic changes in the spleen, thymus, and adrenal gland were also observed. Regarding reproductive/developmental toxicity, various histopathological changes, including decreased spermatid and spermatozoa counts, were observed in the male reproductive organs, while continuous diestrous was observed in the females of the 2.5 mg/kg/day group. Seven of twelve females receiving 2.5 mg/kg/day died during late pregnancy while four other females in this group did not deliver live pups. No reproductive or developmental parameters changed at 0.1 or 0.5 mg/kg/day. Based on these results, the NOAELs of PFDoA were concluded to be 0.1 mg/kg/day for repeated dose toxicity and 0.5 mg/kg/day for reproductive/developmental toxicity.
Collapse
Affiliation(s)
- Hina Kato
- Division of Risk Assessment, Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-Ku, Tokyo, 158-8501, Japan
| | - Sakiko Fujii
- Safety Research Institute for Chemical Compounds Co., Ltd., 363-24 Sin-ei, Kiyota-ku, Sapporo, Hokkaido, 004-0839, Japan
| | - Mika Takahashi
- Division of Risk Assessment, Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-Ku, Tokyo, 158-8501, Japan
| | - Mariko Matsumoto
- Division of Risk Assessment, Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-Ku, Tokyo, 158-8501, Japan
| | - Mutsuko Hirata-Koizumi
- Division of Risk Assessment, Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-Ku, Tokyo, 158-8501, Japan
| | - Atsushi Ono
- Division of Risk Assessment, Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-Ku, Tokyo, 158-8501, Japan
| | - Akihiko Hirose
- Division of Risk Assessment, Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-Ku, Tokyo, 158-8501, Japan
| |
Collapse
|
85
|
Sonthithai P, Suriyo T, Thiantanawat A, Watcharasit P, Ruchirawat M, Satayavivad J. Perfluorinated chemicals, PFOS and PFOA, enhance the estrogenic effects of 17β-estradiol in T47D human breast cancer cells. J Appl Toxicol 2015; 36:790-801. [DOI: 10.1002/jat.3210] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 06/12/2015] [Accepted: 06/12/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Pacharapan Sonthithai
- Laboratory of Pharmacology; Chulabhorn Research Institute; Bangkok 10210 Thailand
- Chulabhorn Graduate Institute; Bangkok 10210 Thailand
| | - Tawit Suriyo
- Laboratory of Pharmacology; Chulabhorn Research Institute; Bangkok 10210 Thailand
| | - Apinya Thiantanawat
- Laboratory of Pharmacology; Chulabhorn Research Institute; Bangkok 10210 Thailand
- Chulabhorn Graduate Institute; Bangkok 10210 Thailand
| | - Piyajit Watcharasit
- Laboratory of Pharmacology; Chulabhorn Research Institute; Bangkok 10210 Thailand
- Chulabhorn Graduate Institute; Bangkok 10210 Thailand
| | - Mathuros Ruchirawat
- Laboratory of Environmental Toxicology; Chulabhorn Research Institute; Bangkok 10210 Thailand
- Center of Excellence on Environmental Health and Toxicology, Office of Higher Education Commission; Ministry of Education; Bangkok 10400 Thailand
| | - Jutamaad Satayavivad
- Laboratory of Pharmacology; Chulabhorn Research Institute; Bangkok 10210 Thailand
- Chulabhorn Graduate Institute; Bangkok 10210 Thailand
- Center of Excellence on Environmental Health and Toxicology, Office of Higher Education Commission; Ministry of Education; Bangkok 10400 Thailand
| |
Collapse
|
86
|
Caverly Rae JM, Craig L, Slone TW, Frame SR, Buxton LW, Kennedy GL. Evaluation of chronic toxicity and carcinogenicity of ammonium 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate in Sprague-Dawley rats. Toxicol Rep 2015; 2:939-949. [PMID: 28962433 PMCID: PMC5598527 DOI: 10.1016/j.toxrep.2015.06.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/04/2015] [Accepted: 06/01/2015] [Indexed: 11/30/2022] Open
Abstract
Ammonium 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate, developed for use as a polymerization processing aid in the manufacture of fluoropolymers, was tested for its potential chronic toxicity and carcinogenicity in a 2-year oral dosing study in Sprague-Dawley rats. Male rats were given daily doses of either 0, 0.1, 1 or 50 mg/kg; females were given either 0, 1, 50 or 500 mg/kg. Body weights, food consumption and clinical signs were monitored daily; clinical pathology was conducted at designated intervals and animals were given a complete pathological evaluation after 12 months and 24 months of dosing. Normal survival was seen in all groups, no abnormal clinical signs were seen, and body weight gain was reduced only in female rats at 500 mg/kg. Both sexes at the high dose had mild decreases in red cell mass which were somewhat more pronounced in females. Clinical pathology indicative of liver injury was present in males that received 50 mg/kg and correlated with histomorphological liver changes that included both hypertrophic and degenerative/necrotic lesions. Similar histomorphological lesions were seen in the livers of females at 500 mg/kg. Previous shorter term toxicity studies have identified this chemical as a PPARα agonist and the finding of benign tumors of the liver, pancreas and/or testes in males at 50 mg/kg and females at 500 mg/kg is consistent with the rat response to peroxisome proliferators and is of questionable human relevance. Changes in the kidney, tongue, and stomach were observed only at the highest dose of 500 mg/kg in females. The no-observed-adverse-effect-level in this study lies between 1 and 50 mg/kg for males and between 50 and 500 mg/kg for females.
Collapse
Affiliation(s)
- J M Caverly Rae
- E I. du Pont de Nemours and Company, Inc., Haskell Global Centers for Health & Environmental Sciences, Newark, DE 19714, USA
| | - Lisa Craig
- MPI Research, Inc., Mattawan, MI 49071, USA
| | | | - Steven R Frame
- E I. du Pont de Nemours and Company, Inc., Haskell Global Centers for Health & Environmental Sciences, Newark, DE 19714, USA
| | - L William Buxton
- E I. duPont de Nemours and Company, Inc., Chemicals and Fluoroproducts, Wilmington, DE 19805, USA
| | | |
Collapse
|
87
|
Liu W, Yang B, Wu L, Zou W, Pan X, Zou T, Liu F, Xia L, Wang X, Zhang D. Involvement of NRF2 in Perfluorooctanoic Acid-Induced Testicular Damage in Male Mice. Biol Reprod 2015; 93:41. [PMID: 26108789 DOI: 10.1095/biolreprod.115.128819] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/11/2015] [Indexed: 01/06/2023] Open
Abstract
Perfluorooctane acid (PFOA) is a hazardous environmental pollutant that has been reported to exert adverse effects on animal and human health. In this study, male mice were orally administered different concentrations of PFOA (2.5, 5, or 10 mg/kg/day) to evaluate the reproductive toxicity. Exposure to PFOA for 14 consecutive days obviously disrupted seminiferous tubules and reduced sperm count. The highest concentration of PFOA (10 mg/kg/day) caused growth retardation and diminished absolute testis weight. Furthermore, PFOA treatment significantly increased the generation of oxidative stress indicators malondialdehyde and hydrogen peroxide, decreased the expression of transcription factor NRF2, and inhibited the activities of antioxidant enzymes superoxide dismutase and catalase in the testis. Moreover, PFOA exposure up-regulated p-p53 and BAX expression and down-regulated BCL-2 expression in the testis. These results indicated that PFOA-induced male reproductive disorders might be involved in developmental impairment and inhibition of NRF2-mediated antioxidant response in the testis of mice.
Collapse
Affiliation(s)
- Wenwen Liu
- Department of Physiology, Medical College of Nanchang University, Nanchang, PR China
| | - Bei Yang
- Department of Physiology, Medical College of Nanchang University, Nanchang, PR China
| | - Lei Wu
- Department of Physiology, Medical College of Nanchang University, Nanchang, PR China
| | - Weiying Zou
- Department of Physiology, Medical College of Nanchang University, Nanchang, PR China
| | | | - Ting Zou
- Department of Physiology, Medical College of Nanchang University, Nanchang, PR China
| | - Fangming Liu
- Library, Nanchang University, Nanchang, PR China
| | - Liping Xia
- Library, Nanchang University, Nanchang, PR China
| | - Xiang Wang
- Library, Nanchang University, Nanchang, PR China
| | - Dalei Zhang
- Department of Physiology, Medical College of Nanchang University, Nanchang, PR China
| |
Collapse
|
88
|
Botelho SC, Saghafian M, Pavlova S, Hassan M, DePierre JW, Abedi-Valugerdi M. Complement activation is involved in the hepatic injury caused by high-dose exposure of mice to perfluorooctanoic acid. CHEMOSPHERE 2015; 129:225-31. [PMID: 25108893 DOI: 10.1016/j.chemosphere.2014.06.093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 05/28/2023]
Abstract
High-dose exposure of mice to perfluorooctanoate (PFOA) induces both hepatotoxicity and immunotoxicity. Here, we characterized the effects of 10-day dietary treatment with PFOA (0.002-0.02%, w/w) on the liver and complement system of male C57BL/6 mice. At all four doses, this compound caused hepatomegaly and reduced the serum level of triglycerides (an indicator for activation of the peroxisome proliferator-activated receptor-alpha (PPARα)). At the highest dose (0.02%, w/w), this hepatomegaly was associated with the hepatic injury, as reflected in increased activity of alanine aminotranferase (ALAT) in the serum, severe hepatocyte hypertrophy and hepatocellular necrosis. PFOA-induced hepatic injury was associated with in vivo activation of the complement system as indicated by (i) significant attenuation of the serum activities of both the classical and alternative pathways; (ii) a marked reduction in the serum level of the complement factor C3; and (iii) deposition of the complement factor C3 fragment (C3a) in the hepatic parenchyma. PFOA did not activate the alternative pathway of complement in vitro. At doses lower than 0.02%, PFOA induced hepatocyte hypertrophy without causing liver injury or activating complement. These results reveal substantial involvement of activation of complement in the pathogenesis of PFOA-induced hepatotoxicity.
Collapse
Affiliation(s)
- Salomé Calado Botelho
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for the Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Maryam Saghafian
- Experimental Cancer Medicine, Clinical Research Center, Novum, Karolinska University Hospital, Huddinge, 141 86 Stockholm, Sweden.
| | - Svetlana Pavlova
- Experimental Cancer Medicine, Clinical Research Center, Novum, Karolinska University Hospital, Huddinge, 141 86 Stockholm, Sweden.
| | - Moustapha Hassan
- Experimental Cancer Medicine, Clinical Research Center, Novum, Karolinska University Hospital, Huddinge, 141 86 Stockholm, Sweden.
| | - Joseph W DePierre
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for the Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Manuchehr Abedi-Valugerdi
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for the Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden; Experimental Cancer Medicine, Clinical Research Center, Novum, Karolinska University Hospital, Huddinge, 141 86 Stockholm, Sweden; ImmunoBioTox (IBT) AB, 16954 Solna, Sweden.
| |
Collapse
|
89
|
Zeng XW, Qian Z, Emo B, Vaughn M, Bao J, Qin XD, Zhu Y, Li J, Lee YL, Dong GH. Association of polyfluoroalkyl chemical exposure with serum lipids in children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 512-513:364-370. [PMID: 25638651 DOI: 10.1016/j.scitotenv.2015.01.042] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/16/2015] [Accepted: 01/17/2015] [Indexed: 05/19/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs), as well as polymers of PFASs, have been widely used in commercial applications and have been detected in humans and the environment. Previous epidemiological studies have shown associations between particular PFAS chemicals and serum lipid concentrations in adults, particularly perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). There exists, however, limited information concerning the effect of PFASs have on serum lipids among children. In the present cross-sectional study, 225 Taiwanese children (12-15 years of age) were recruited to determine the relationship between serum level PFASs and lipid concentration. Results showed that eight out of ten particular PFASs were detected in the serum of >94% of the participants. Serum PFOS and perfluorotetradecanoic acid (PFTA) levels were at an order of magnitude higher than the other PFASs, with arithmetical means of 32.4 and 30.7 ng/ml in boys and 34.2 and 27.4 ng/ml in girls, respectively. However, the variation in serum PFTA concentration was quite large. Following covariate adjustment, linear regression models revealed that PFOS, PFOA, and perfluorononanoic acid (PFNA) were positively associated with total cholesterol (TC), low-density lipoprotein (LDL) and triglycerides (TG), particularly for PFOS and PFTA. Quartile analysis, with the lowest exposure quartile as a reference, yielded associations between serum PFTA and elevations in TC (p=0.002) and LDL (p=0.004). Though not statistically significant, high-density lipoprotein (HDL) appeared to decrease linearly across quartiles for PFOS and PFOA exposure. In conclusion, a significant association was observed between serum PFASs and lipid level in Taiwanese children. These findings for PFTA are novel, and emphasize the need to investigate the exposure route and toxicological evidence of PFASs beyond PFOS and PFOA.
Collapse
Affiliation(s)
- Xiao-Wen Zeng
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhengmin Qian
- Department of Epidemiology, College of Public Health and Social Justice, Saint Louis University, Saint Louis, MO 63104, USA
| | - Brett Emo
- Department of Environmental and Occupational Health, College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO 63104, USA
| | - Michael Vaughn
- School of Social Work, College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO 63104, USA
| | - Jia Bao
- School of Environmental Science, Shenyang University of Technology, Shenyang 110870, China
| | - Xiao-Di Qin
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yu Zhu
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jie Li
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yungling Leo Lee
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 100, Taiwan.
| | - Guang-Hui Dong
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
90
|
Perfluorooctanoic acid (PFOA) affects distinct molecular signalling pathways in human primary hepatocytes. Toxicology 2015; 333:53-62. [PMID: 25868421 DOI: 10.1016/j.tox.2015.04.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/24/2015] [Accepted: 04/09/2015] [Indexed: 01/20/2023]
Abstract
Perfluorooctanoic acid (PFOA) was shown to damage the liver of rodents and to impair embryonic development. At the molecular level, the hepatotoxic effects were attributed to the PFOA-mediated activation of peroxisome proliferator-activated receptor alpha (PPARα). In general, PPARα-dependent effects are less pronounced in humans than in rodents, and the hazard potential of PFOA for humans is controversially discussed. To analyse the effects of PFOA in human hepatocytes, a microarray analysis was conducted to screen for PFOA-mediated alterations in the transcriptome of human primary hepatocytes. A subsequent network analysis revealed that PFOA had an impact on several signalling pathways in addition to the well-known activation of PPARα. The microarray data confirmed earlier findings that PFOA: (i) affects the estrogen receptor ERα, (ii) activates the peroxisome proliferator-activated receptor gamma (PPARγ), and (iii) inhibits the function of the hepatocyte nuclear factor 4α (HNF4α) which is an essential factor for liver development and embryogenesis. Finally, as a novel finding, PFOA was shown to stimulate gene expression of the proto-oncogenes c-Jun and c-Fos. This was confirmed by using the HepG2 cell line as a model for human hepatocytes. PFOA stimulated cellular proliferation and the metabolic activity of the cells, and upregulated the expression of various cyclins which have a central function in the regulation of cell cycle control. Functional studies, however, indicated that PFOA had no impact on c-Jun and c-Fos phosphorylation and on AP-1-dependent gene transcription, thus demonstrating that PFOA-induced proliferation occurs largely independent of c-Jun and c-Fos.
Collapse
|
91
|
Tucker DK, Macon MB, Strynar MJ, Dagnino S, Andersen E, Fenton SE. The mammary gland is a sensitive pubertal target in CD-1 and C57Bl/6 mice following perinatal perfluorooctanoic acid (PFOA) exposure. Reprod Toxicol 2014; 54:26-36. [PMID: 25499722 DOI: 10.1016/j.reprotox.2014.12.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/26/2014] [Accepted: 12/03/2014] [Indexed: 01/09/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a developmental toxicant in mice, with varied strain outcomes depending on dose and period of exposure. The impact of PFOA on female mouse pubertal development at low doses (≤1mg/kg) has yet to be determined. Therefore, female offspring from CD-1 and C57Bl/6 dams exposed to PFOA, creating serum concentrations similar to humans, were examined for pubertal onset, including mammary gland development. Pups demonstrated a shorter PFOA elimination half-life than that reported for adult mice. Prenatal exposure to PFOA caused significant mammary developmental delays in female offspring in both strains. Delays started during puberty and persisted into young adulthood; severity was dose-dependent. Also an evaluation of female serum hormone levels and pubertal timing onset revealed no effects of PFOA compared to controls in either strain. These data suggest that the mammary gland is more sensitive to early low level PFOA exposures compared to other pubertal endpoints, regardless of strain.
Collapse
Affiliation(s)
- Deirdre K Tucker
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, United States; National Toxicology Program Laboratory, Division of the NTP, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| | - Madisa B Macon
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, United States; National Toxicology Program Laboratory, Division of the NTP, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| | - Mark J Strynar
- Methods Development and Application Branch, Human Exposure and Atmospheric Sciences Division, National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | - Sonia Dagnino
- ORISE fellow at the National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | - Erik Andersen
- Exposure Measurements and Analysis Branch, Human Exposure and Atmospheric Sciences Division, National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | - Suzanne E Fenton
- National Toxicology Program Laboratory, Division of the NTP, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
92
|
Filgo AJ, Quist EM, Hoenerhoff MJ, Brix AE, Kissling GE, Fenton SE. Perfluorooctanoic Acid (PFOA)-induced Liver Lesions in Two Strains of Mice Following Developmental Exposures: PPARα Is Not Required. Toxicol Pathol 2014; 43:558-68. [PMID: 25398757 DOI: 10.1177/0192623314558463] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a ubiquitous pollutant that causes liver toxicity in rodents, a process believed to be dependent on peroxisome proliferator-activated receptor-alpha (PPARα) activation. Differences between humans and rodents have made the human relevance of some health effects caused by PFOA controversial. We analyzed liver toxicity at 18 months following gestational PFOA exposure in CD-1 and 129/Sv strains of mice and compared PFOA-induced effects between strains and in wild type (WT) and PPARα-knockout (KO) 129/Sv mice. Pregnant mice were exposed daily to doses (0.01-5 mg/kg/BW) of PFOA from gestation days 1 to 17. The female offspring were necropsied at 18 months, and liver sections underwent a full pathology review. Hepatocellular adenomas formed in PFOA-exposed PPARα-KO 129/Sv and CD-1 mice and were absent in untreated controls from those groups and WT 129/Sv. Hepatocellular hypertrophy was significantly increased by PFOA exposure in CD-1, and an increased severity was found in WT 129/Sv mice. PFOA significantly increased nonneoplastic liver lesions in PPARα-KO mice (hepatocyte hypertrophy, bile duct hyperplasia, and hematopoietic cell proliferation). Low-dose gestational exposures to PFOA induced latent PPARα-independent liver toxicity that was observed in aged mice. Evidence of liver toxicity in PPARα-KO mice warrants further investigation into PPARα-independent pathways.
Collapse
Affiliation(s)
- Adam J Filgo
- Curriculum in Toxicology, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA NTP Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Erin M Quist
- NTP Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA Comparative Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA Cellular and Molecular Pathology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Mark J Hoenerhoff
- Cellular and Molecular Pathology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Amy E Brix
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| | - Grace E Kissling
- Biostatistics Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Suzanne E Fenton
- NTP Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
93
|
Hansmeier N, Chao TC, Herbstman JB, Goldman LR, Witter FR, Halden RU. Elucidating the molecular basis of adverse health effects from exposure to anthropogenic polyfluorinated compounds using toxicoproteomic approaches. J Proteome Res 2014; 14:51-8. [PMID: 25350270 DOI: 10.1021/pr500990w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Linear, short-chain polyfluorinated and perfluorinated alkyl compounds, often referred to as PFCs, have been in worldwide use as surfactants and polymer precursors for decades, and environmental dispersal of these highly persistent compounds represents a public health threat. Whereas ubiquitous low-level exposure to these compounds has been demonstrated in human populations from around the world, the exact mechanisms of toxicity and their toxic potency remain subject to investigation and scientific dispute. As with other environmental exposures, a major hurdle for gaining a better understanding of their human health impacts is the limited utility of cell culture and animal models serving as convenient, yet imperfect proxies to human physiology and disease. The present communication provides a brief overview of the current understanding of potential health effects of PFC exposure and examines how new toxicoproteomic methodologies can provide insight into the molecular mechanism of PFC exposure. Furthermore, we showcase an exemplary data set to illustrate how toxicoproteomic, population-wide studies might overcome limitations of animal models to more fully understand the metabolism and effects of PFCs and other environmental stressors where it matters most, in human populations experiencing real-world, chronic, low-level exposures.
Collapse
Affiliation(s)
- Nicole Hansmeier
- Department of Biology, University of Osnabrück , Barbarastrasse 11, Osnabrück 49076, Germany
| | | | | | | | | | | |
Collapse
|
94
|
Kamendulis LM, Wu Q, Sandusky GE, Hocevar BA. Perfluorooctanoic acid exposure triggers oxidative stress in the mouse pancreas. Toxicol Rep 2014; 1:513-521. [PMID: 28962265 PMCID: PMC5598264 DOI: 10.1016/j.toxrep.2014.07.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/09/2014] [Accepted: 07/23/2014] [Indexed: 01/09/2023] Open
Abstract
PFOA triggers focal ductal hyperplasia following 7 day exposure. PFOA exposure increases 8-iso-PGF2α levels in the pancreas. Antioxidant gene expression is upregulated in the pancreas following PFOA exposure.
Perfluorooctanoic acid (PFOA) is used in the manufacture of many industrial and commercial products. PFOA does not readily decompose in the environment, and is biologically persistent. Human epidemiologic and animal studies suggest that PFOA exposure elicits adverse effects on the pancreas. While multiple animal studies have examined PFOA-mediated toxicity in the liver, little is known about the potential adverse effects of PFOA on the pancreas. To address this, we treated C57Bl/6 mice with vehicle, or PFOA at doses of 0.5, 2.5 or 5.0 mg/kg BW/day for 7 days. Significant accumulation of PFOA was found in the serum, liver and pancreas of PFOA-treated animals. Histopathologic examination of the pancreas revealed focal ductal hyperplasia in mice treated with 2.5 and 5.0 mg/kg BW/day PFOA, while inflammation was observed only in the high dose group. Elevated serum levels of amylase and lipase were observed in the 2.5 mg/kg BW/day PFOA treatment group. In addition, PFOA exposure resulted in a dose-dependent increase in the level of the lipid peroxidation product 8-iso-PGF2α and induction of the antioxidant response genes Sod1, Sod2, Gpx2 and Nqo1. Our findings provide additional evidence that the pancreas is a target organ for PFOA-mediated toxicity and suggest that oxidative stress may be a mechanism through which PFOA induces histopathological changes in the pancreas.
Collapse
Affiliation(s)
- Lisa M Kamendulis
- Department of Environmental Health, Indiana University School of Public Health, Bloomington, IN 47405, USA
| | - Qiangen Wu
- Department of Environmental Health, Indiana University School of Public Health, Bloomington, IN 47405, USA
| | - George E Sandusky
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Barbara A Hocevar
- Department of Environmental Health, Indiana University School of Public Health, Bloomington, IN 47405, USA
| |
Collapse
|
95
|
Raleigh KK, Alexander BH, Olsen GW, Ramachandran G, Morey SZ, Church TR, Logan PW, Scott LLF, Allen EM. Mortality and cancer incidence in ammonium perfluorooctanoate production workers. Occup Environ Med 2014; 71:500-6. [PMID: 24832944 PMCID: PMC4078701 DOI: 10.1136/oemed-2014-102109] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/03/2014] [Accepted: 04/27/2014] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To evaluate mortality and cancer incidence in a cohort of ammonium perfluorooctanoate (APFO) exposed workers. METHODS We linked a combined cohort (n=9027) of employees from APFO and non-APFO production facilities in Minnesota to the National Death Index and to cancer registries of Minnesota and Wisconsin. Industrial hygiene data and expert evaluation were used to create a task-based job exposure matrix to estimate APFO exposure. Standardised mortality ratios were estimated using Minnesota population rates. HRs and 95% CIs for time-dependent cumulative APFO exposure were estimated with an extended Cox model. A priori outcomes of interest included cancers of the liver, pancreas, testes, kidney, prostate and breast, and mortality from cardiovascular, cerebrovascular and chronic renal diseases. RESULTS Mortality rates in the APFO-exposed cohort were at or below the expected, compared with Minnesota. The HR for dying from the cancer and non-cancer outcomes of interest did not show an association with APFO exposure. Similarly, there was little evidence that the incident cancers were associated with APFO exposure. Compared to the non-exposed population, modestly elevated, but quite imprecise HRs were observed in the higher-exposure quartiles for bladder cancer (HR=1.66, 95% CI 0.86 to 3.18) and pancreatic cancer (HR=1.36, 95% CI 0.59 to 3.11). No association was observed between APFO exposure and kidney, prostate or breast cancers. CONCLUSIONS This analysis did not support an association between occupational APFO exposure and the evaluated health endpoints, however, the study had limited power to evaluate some conditions of interest.
Collapse
Affiliation(s)
- Katherine K Raleigh
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bruce H Alexander
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Gurumurthy Ramachandran
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Timothy R Church
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Laura L F Scott
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Elizabeth M Allen
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
96
|
Ngo HT, Hetland RB, Sabaredzovic A, Haug LS, Steffensen IL. In utero exposure to perfluorooctanoate (PFOA) or perfluorooctane sulfonate (PFOS) did not increase body weight or intestinal tumorigenesis in multiple intestinal neoplasia (Min/+) mice. ENVIRONMENTAL RESEARCH 2014; 132:251-263. [PMID: 24834819 DOI: 10.1016/j.envres.2014.03.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/13/2014] [Accepted: 03/21/2014] [Indexed: 06/03/2023]
Abstract
We examined whether perfluorooctanoate (PFOA) or perfluorooctane sulfonate (PFOS) had obesogenic effects and if they increased spontaneous intestinal tumorigenesis in the mouse model C57BL/6J-Min/+ (multiple intestinal neoplasia) after in utero exposure. The dams were exposed to PFOA or PFOS (0.01, 0.1 or 3.0mg/kg bw/day) by po gavage on GD1-17. The Min/+ and wild-type offspring were terminated at week 11 for examination of intestinal tumorigenesis or at week 20 for obesogenic effect, respectively. Body weights of the dams and pups were recorded throughout life. Food intake was determined at week 6 and 10. Blood glucose (non-fasted) was measured at week 6 and 11. No obesogenic effect of PFOA or PFOS was observed up to 20 weeks of age. PFOA or PFOS did not increase the incidence or number of tumors in the small intestine or colon of the Min/+ mice or affect their location along the intestines. Feed intake was not affected. There were some indications of toxicity of PFOA, but not of PFOS. There was lower survival of pups after 3.0mg/kg PFOA, lower body weight in pups after 3.0 and possibly 0.1mg/kg PFOA, and increased relative liver weight after 0.01 and possibly 0.1mg/kg PFOA. Plasma glucose was lower after 0.01 and 0.1mg/kg PFOA. In conclusion, exposure to PFOA and PFOS in utero with the doses used did not have obesogenic effect on either Min/+ or wild-type mice, at least not up to 11 or 20 weeks of age, nor increased intestinal tumorigenesis in Min/+ mice.
Collapse
Affiliation(s)
- Ha Thi Ngo
- Department of Food, Water and Cosmetics, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, NO-0403 Oslo, Norway.
| | - Ragna Bogen Hetland
- Department of Food, Water and Cosmetics, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, NO-0403 Oslo, Norway.
| | - Azemira Sabaredzovic
- Department of Exposure and Risk Assessment, Division of Environmental Medicine, Norwegian Institute of Public Health, NO-0403 Oslo, Norway.
| | - Line Småstuen Haug
- Department of Exposure and Risk Assessment, Division of Environmental Medicine, Norwegian Institute of Public Health, NO-0403 Oslo, Norway.
| | - Inger-Lise Steffensen
- Department of Food, Water and Cosmetics, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, NO-0403 Oslo, Norway.
| |
Collapse
|
97
|
Venkatesan AK, Halden RU. Loss and in situ production of perfluoroalkyl chemicals in outdoor biosolids-soil mesocosms. ENVIRONMENTAL RESEARCH 2014; 132:321-7. [PMID: 24834828 PMCID: PMC4122524 DOI: 10.1016/j.envres.2014.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 04/10/2014] [Accepted: 04/16/2014] [Indexed: 05/29/2023]
Abstract
An outdoor mesocosm study was conducted in Baltimore, Maryland, to explore the fate of thirteen perfluoroalkyl substances (PFASs) over the course of three years in biosolids/soil mixtures (1:2) exposed to ambient outdoor conditions. Analysis by liquid chromatography tandem mass spectrometry showed perfluorooctanoate (PFOA) to be the most abundant analyte found early in the soil weathering experiment at 24.1 ng/g dry weight (dw), followed by perfluoroundecanoate (PFUnDA) and perfluorodecanoate (PFDA) at 18.4 and 17.4 ng/g dw, respectively. Short-chain perfluorinated carboxylates (PFCAs; C4-C8) showed observable loss from biosolids/soil mixtures, with experimentally determined first-order half-lives in soil ranging from 385 to 866 days. Perfluorooctane sulfonate (PFOS), perfluorononaoate (PFNA) and PFUnDA levels in biosolids/soil mixtures remained stable, while other long-chain PFCAs [PFDA, perfluorododecanoate (PFDoDA)] and perfluorooctane sulfonamide (PFOSA) levels increased over time, presumably due to the breakdown of unidentified precursors in a process analogous to that reported previously for wastewater treatment plants. This study informs risk assessment initiatives by furnishing data on the environmental persistence of PFASs while also constituting the first report on in situ production of long-chained PFASs in terrestrial environments.
Collapse
Affiliation(s)
- Arjun K Venkatesan
- Center for Environmental Security, The Biodesign Institute, Security and Defense Systems Initiative, Arizona State University, 781 E, Terrace Road, Tempe, AZ 85287, United States
| | - Rolf U Halden
- Center for Environmental Security, The Biodesign Institute, Security and Defense Systems Initiative, Arizona State University, 781 E, Terrace Road, Tempe, AZ 85287, United States.
| |
Collapse
|
98
|
Zhang H, Lu Y, Luo B, Yan S, Guo X, Dai J. Proteomic analysis of mouse testis reveals perfluorooctanoic acid-induced reproductive dysfunction via direct disturbance of testicular steroidogenic machinery. J Proteome Res 2014; 13:3370-85. [PMID: 24940614 DOI: 10.1021/pr500228d] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a ubiquitous environmental pollutant suspected of being an endocrine disruptor; however, mechanisms of male reproductive disorders induced by PFOA are poorly understood. In this study, male mice were exposed to 0, 0.31, 1.25, 5, and 20 mg PFOA/kg/day by oral gavage for 28 days. PFOA significantly damaged the seminiferous tubules and reduced testosterone and progesterone levels in the testis in a dose-dependent manner. Furthermore, PFOA exposure reduced sperm quality. We identified 93 differentially expressed proteins between the control and the 5 mg/kg/d PFOA treated mice using a quantitative proteomic approach. Among them, insulin like-factor 3 (INSL3) and cytochrome P450 cholesterol side-chain cleavage enzyme (CYP11A1) as Leydig-cell-specific markers were significantly decreased. We examined in detail the expression patterns of CYP11A1 and associated genes involved in steroidogenesis in the mouse testis. PFOA inhibited the mRNA and protein levels of CYP11A1 and the mRNA levels of 17β-hydroxysteroid dehydrogenase (17β-HSD) in a dose-dependent manner. Moreover, in vitro study showed the reduction in progesterone levels was accompanied by decreased expression of CYP11A1 in cAMP-stimulated mLTC-1 cells. Our findings indicate that PFOA exposure can impair male reproductive function, possibly by disturbing testosterone levels, and CPY11A1 may be a major steroidogenic enzyme targeted by PFOA.
Collapse
Affiliation(s)
- Hongxia Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing, 100101, P.R. China
| | | | | | | | | | | |
Collapse
|
99
|
Lin LY, Wen LL, Su TC, Chen PC, Lin CY. Negative association between serum perfluorooctane sulfate concentration and bone mineral density in US premenopausal women: NHANES, 2005-2008. J Clin Endocrinol Metab 2014; 99:2173-80. [PMID: 24606077 DOI: 10.1210/jc.2013-3409] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
CONTEXT Perfluorooctanoic acid (PFOA) and perfluorooctane sulfate (PFOS) are used in a variety of products worldwide. However, the relationship among serum PFOA, PFOS concentration, bone mineral density (BMD), and the risk of fractures has never been addressed. OBJECTIVES The study examined the association among serum PFOA, PFOS concentration, and lumbar spine and total hip BMD in the general US population. DESIGN AND PARTICIPANTS We analyzed data on 2339 adults (aged ≧20 y) from the National Health and Nutrition Examination Survey conducted in 2005-2006 and 2007-2008 to determine the relationship among serum PFOA, PFOS concentration, and total lumbar spine and total hip BMD measured by dual-energy x-ray absorptiometry and history of fractures cross-sectionally. RESULTS After weighting for sampling strategy, a 1-U increase in the natural log-transformed serum PFOS level was associated with a decrease in total lumbar spine BMD by 0.022 g/cm(2) (95% confidence interval -0.038, -0.007; P = .006) in women not in menopause. There was no association among PFOA, PFOS concentration, and self-reported fracture in adults. CONCLUSION Serum PFOS concentration is associated with decreased total lumbar spine BMD in women not in menopause. However, the potential biological significance of this effect is marginal and subclinical in the general US population. Further studies are warranted to clarify the causal relationship between perfluorinated chemical exposure and BMD.
Collapse
Affiliation(s)
- Lian-Yu Lin
- Department of Internal Medicine (L.-Y.L.), National Taiwan University Hospital, Taipei 100, Taiwan; and Departments of Clinical Laboratory (L.-L.W., T.-C.S.) and Internal Medicine (C.-Y.L.), En Chu Kong Hospital, New Taipei City 237, Taiwan; Institute of Occupational Medicine and Industrial Hygiene (P.-C.C.) and Department of Public Health (P.-C.C.), National Taiwan University College of Public Health, Taipei 100, Taiwan; Department of Environmental and Occupational Medicine (P.-C.C.), National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei 100, Taiwan; and School of Medicine (C.-Y.L.), Fu Jen Catholic University, New Taipei City 242, Taiwan
| | | | | | | | | |
Collapse
|
100
|
Klaunig JE, Shinohara M, Iwai H, Chengelis CP, Kirkpatrick JB, Wang Z, Bruner RH. Evaluation of the Chronic Toxicity and Carcinogenicity of Perfluorohexanoic Acid (PFHxA) in Sprague-Dawley Rats. Toxicol Pathol 2014; 43:209-20. [DOI: 10.1177/0192623314530532] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Perfluorohexanoic acid (PFHxA), a 6-carbon perfluoroalkyl (C6; CAS # 307-24-4), has been proposed as a replacement for the commonly used 8-carbon perfluoroalkyls: perfluorooctanoic acid and perfluorooctane sulfonate. PFHxA is not currently a commercial product but rather the ultimate degradation product of C6 fluorotelomer used to make C6 fluorotelomer acrylate polymers. It can be expected that, to a greater or lesser extent, the environmental loading of PFHxA will increase, as C6 fluorotelomer acrylate treatments are used and waste is generated. This article reports on a chronic study (duration 104 weeks) that was performed to evaluate the possible toxicologic and carcinogenic effects of PFHxA in gavage (daily gavage, 7 days per week) treated male and female Sprague-Dawley (SD) rats. In the current study, dosage levels of 0, 2.5, 15, and 100 mg/kg/day of PFHxA (males) and 5, 30, and 200 mg/kg/day of PFHxA (females) were selected based on a previous subchronic investigation. No effects on body weights, food consumption, a functional observational battery, or motor activity were observed after exposure to PFHxA. While no difference in survival rates in males was seen, a dose-dependent decrease in survival in PFHxA-treated female rats was observed. Hematology and serum chemistry were unaffected by PFHxA. PFHxA-related histologic changes were noted in the kidneys of the 200-mg/kg/day group females. Finally, there was no evidence that PFHxA was tumorigenic in male or female SD rats at any of the dosage levels examined.
Collapse
Affiliation(s)
- James E. Klaunig
- Department of Environmental Health, Indiana University, Bloomington, Indiana, USA
| | - Motoki Shinohara
- AGC Chemicals, Asahi Glass Com., Ltd., Ichihara-shi, Chiba, Japan
| | - Hiroyuki Iwai
- Daikin Industries, Ltd. Chemicals Division EHS Department, Settsu, Osaka, Japan
| | | | | | - Zemin Wang
- Department of Environmental Health, Indiana University, Bloomington, Indiana, USA
| | | |
Collapse
|