51
|
Tang Z, Li S, Guan X, Schmitt-Kopplin P, Lin S, Cai Z. Rapid assessment of the coenzyme Q10 redox state using ultrahigh performance liquid chromatography tandem mass spectrometry. Analyst 2015; 139:5600-4. [PMID: 25140668 DOI: 10.1039/c4an00760c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An improved method for accurate and rapid assessment of the coenzyme Q10 (CoQ10) redox state using ultrahigh performance liquid chromatography tandem mass spectrometry was described, with particular attention given to the instability of the reduced form of CoQ10 during sample preparation, chromatographic separation and mass spectrometric detection. As highly lipophilic compounds in complex biological matrices, both reduced and oxidized forms of CoQ10 were extracted simultaneously from the tissue samples by methanol which is superior to ethanol and isopropanol. After centrifugation, the supernatants were immediately separated on a C18 column with isocratic elution using methanol containing 2 mM ammonium acetate as a non-aqueous mobile phase, and detected by positive electrospray ionization tandem mass spectrometry in multiple reaction monitoring (MRM) mode. Ammonium acetate as an additive in methanol provided enhanced mass spectrometric responses for both forms of CoQ10, primarily due to stable formation of adduct ions [M + NH4](+), which served as precursor ions in positive ionization MRM transitions. The assay showed a linear range of 8.6-8585 ng mL(-1) for CoQ10H2 and 8.6-4292 ng mL(-1) for CoQ10. The limits of detection (LODs) were 7.0 and 1.0 ng mL(-1) and limits of quantification (LOQs) were 15.0 and 5.0 ng mL(-1) for CoQ10H2 and CoQ10, respectively. This rapid extractive and analytical method could avoid artificial auto-oxidation of the reduced form of CoQ10, enabling the native redox state assessment. This reliable method was also successfully applied for the measurement of the CoQ10 redox state in liver tissues of mice exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin, revealing the down-regulated mitochondrial electron transport chain.
Collapse
Affiliation(s)
- Zhi Tang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China.
| | | | | | | | | | | |
Collapse
|
52
|
Lee J, Prokopec SD, Watson JD, Sun RX, Pohjanvirta R, Boutros PC. Male and female mice show significant differences in hepatic transcriptomic response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. BMC Genomics 2015; 16:625. [PMID: 26290441 PMCID: PMC4546048 DOI: 10.1186/s12864-015-1840-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/13/2015] [Indexed: 12/21/2022] Open
Abstract
Background 2,3,7,8–tetrachlorodibenzo-p-dixion (TCDD) is the most potent of the dioxin congeners, capable of causing a wide range of toxic effects across numerous animal models. Previous studies have demonstrated that males and females of the same species can display divergent sensitivity phenotypes to TCDD toxicities. Although it is now clear that most TCDD-induced toxic outcomes are mediated by the aryl hydrocarbon receptor (AHR), the mechanism of differential responses to TCDD exposure between sexes remains largely unknown. To investigate the differential sensitivities in male and female mice, we profiled the hepatic transcriptomic responses 4 days following exposure to various amounts of TCDD (125, 250, 500 or 1000 μg/kg) in adult male and female C57BL/6Kuo mice. Results Several key findings were revealed by our study. 1) Hepatic transcriptomes varied significantly between the sexes at all doses examined. 2) The liver transcriptome of males was more dysregulated by TCDD than that of females. 3) The alteration of “AHR-core” genes was consistent in magnitude, regardless of sex. 4) A subset of genes demonstrated sex-dependent TCDD-induced transcriptional changes, including Fmo3 and Nr1i3, which were significantly induced in livers of male mice only. In addition, a meta-analysis was performed to contrast transcriptomic profiles of various organisms and tissues following exposure to equitoxic doses of TCDD. Minimal overlap was observed in the differences between TCDD-sensitive or TCDD-resistant models. Conclusions Sex-dependent sensitivities to TCDD exposure are associated with a set of sex-specific TCDD-responsive genes. In addition, complex interactions between the aryl hydrocarbon and sex hormone receptors may affect the observable differences in sensitivity phenotypes between the sexes. Further work is necessary to better understand the roles of those genes altered by TCDD in a sex-dependent manner, and their association with changes to sex hormones and receptors. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1840-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jamie Lee
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto, Canada.
| | - Stephenie D Prokopec
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto, Canada.
| | - John D Watson
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto, Canada.
| | - Ren X Sun
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto, Canada. .,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada.
| | - Raimo Pohjanvirta
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland. .,Laboratory of Toxicology, National Institute for Health and Welfare, Kuopio, Finland.
| | - Paul C Boutros
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto, Canada. .,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| |
Collapse
|
53
|
Harrill JA, Layko D, Nyska A, Hukkanen RR, Manno RA, Grassetti A, Lawson M, Martin G, Budinsky RA, Rowlands JC, Thomas RS. Aryl hydrocarbon receptor knockout rats are insensitive to the pathological effects of repeated oral exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Appl Toxicol 2015; 36:802-14. [PMID: 26278112 DOI: 10.1002/jat.3211] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/24/2015] [Accepted: 06/14/2015] [Indexed: 12/31/2022]
Abstract
Sustained activation of the aryl hydrocarbon receptor (AHR) is believed to be the initial key event in AHR receptor-mediated tumorigenesis in the rat liver. The role of AHR in mediating pathological changes in the liver prior to tumor formation was investigated in a 4-week, repeated-dose study using adult female wild-type (WT) and AHR knockout (AHR-KO) rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Beginning at 8 weeks of age, AHR-KO and WT rats were dosed by oral gavage with varying concentrations of TCDD (0, 3, 22, 100, 300 and 1000 ng kg(-1) day(-1) ). Lung, liver and thymus histopathology, hematology, serum chemistry and the distribution of TCDD in liver and adipose tissue were examined. Treatment-related increases in the severity of liver and thymus pathology were observed in WT, but not AHR-KO rats. In the liver, these included hepatocellular hypertrophy, bile duct hyperplasia, multinucleated hepatocytes and inflammatory cell foci. A loss of cellularity in the thymic cortex and thymic atrophy was observed. Treatment-related changes in serum chemistry parameters were also observed in WT, but not AHR-KO rats. Finally, dose-dependent accumulation of TCDD was observed primarily in the liver of WT rats and primarily in the adipose tissue of AHR-KO rats. The results suggest that AHR activation is the initial key event underlying the progression of histological effects leading to liver tumorigenesis following TCDD treatment. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Joshua A Harrill
- The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, Research Triangle Park, NC, 27709, USA
| | - Debra Layko
- The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, Research Triangle Park, NC, 27709, USA
| | - Abraham Nyska
- Consultant in Toxicologic Pathology, Sackler School of Medicine, Tel Aviv University, Timrat, 36576, Israel
| | | | | | | | - Marie Lawson
- The Dow Chemical Company, Midland, MI, 48640, USA
| | - Greg Martin
- The Dow Chemical Company, Midland, MI, 48640, USA
| | | | | | - Russell S Thomas
- The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
54
|
Leclerc E, Hamon J, Bois FY. Investigation of ifosfamide and chloroacetaldehyde renal toxicity through integration of in vitro liver-kidney microfluidic data and pharmacokinetic-system biology models. J Appl Toxicol 2015; 36:330-9. [PMID: 26152902 DOI: 10.1002/jat.3191] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/06/2015] [Accepted: 05/06/2015] [Indexed: 12/13/2022]
Abstract
We have integrated in vitro and in silico data to describe the toxicity of chloroacetaldehyde (CAA) on renal cells via its production from the metabolism of ifosfamide (IFO) by hepatic cells. A pharmacokinetic (PK) model described the production of CAA by the hepatocytes and its transport to the renal cells. A system biology model was coupled to the PK model to describe the production of reactive oxygen species (ROS) induced by CAA in the renal cells. In response to the ROS production, the metabolism of glutathione (GSH) and its depletion were modeled by the action of an NFE2L2 gene-dependent pathway. The model parameters were estimated in a Bayesian context via Markov Chain Monte Carlo (MCMC) simulations based on microfluidic experiments and literature in vitro data. Hepatic IFO and CAA in vitro intrinsic clearances were estimated to be 1.85 x 10(-9) μL s(-1) cell(-1) and 0.185 x 10(-9) μL s(-1) cell(-1) ,respectively (corresponding to an in vivo intrinsic IFO clearance estimate of 1.23 l h(-1) , to be compared to IFO published values ranging from 3 to 10 l h(-1) ). After model calibration, simulations made at therapeutic doses of IFO showed CAA renal intracellular concentrations ranging from 11 to 131 μM. Intracellular CAA concentrations above 70 μM induced intense ROS production and GSH depletion. Those responses were time and dose dependent, showing transient and non-linear kinetics. Those results are in agreement with literature data reporting that intracellular CAA toxic concentrations range from 35 to 320 μM, after therapeutic ifosfamide dosing. The results were also consistent with in vitro CAA renal cytotoxicity data.
Collapse
Affiliation(s)
- Eric Leclerc
- CNRS UMR 7338, Laboratoire de Biomécanique et Bio ingénierie, Université de Technologie de Compiègne, France
| | - Jeremy Hamon
- CNRS UMR 7338, Laboratoire de Biomécanique et Bio ingénierie, Université de Technologie de Compiègne, France
| | - Frederic Yves Bois
- CNRS UMR 7338, Laboratoire de Biomécanique et Bio ingénierie, Université de Technologie de Compiègne, France.,Chaire de Toxicologie Prédictive, Université de Technologie de Compiègne, France.,Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Modèles pour l'Écotoxicologie et la Toxicologie, Parc ALATA, BP2, 60550, Verneuil en Halatte, France
| |
Collapse
|
55
|
Becker RA, Patlewicz G, Simon TW, Rowlands JC, Budinsky RA. The adverse outcome pathway for rodent liver tumor promotion by sustained activation of the aryl hydrocarbon receptor. Regul Toxicol Pharmacol 2015; 73:172-90. [PMID: 26145830 DOI: 10.1016/j.yrtph.2015.06.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 12/29/2022]
Abstract
An Adverse Outcome Pathway (AOP) represents the existing knowledge of a biological pathway leading from initial molecular interactions of a toxicant and progressing through a series of key events (KEs), culminating with an apical adverse outcome (AO) that has to be of regulatory relevance. An AOP based on the mode of action (MOA) of rodent liver tumor promotion by dioxin-like compounds (DLCs) has been developed and the weight of evidence (WoE) of key event relationships (KERs) evaluated using evolved Bradford Hill considerations. Dioxins and DLCs are potent aryl hydrocarbon receptor (AHR) ligands that cause a range of species-specific adverse outcomes. The occurrence of KEs is necessary for inducing downstream biological responses and KEs may occur at the molecular, cellular, tissue and organ levels. The common convention is that an AOP begins with the toxicant interaction with a biological response element; for this AOP, this initial event is binding of a DLC ligand to the AHR. Data from mechanistic studies, lifetime bioassays and approximately thirty initiation-promotion studies have established dioxin and DLCs as rat liver tumor promoters. Such studies clearly show that sustained AHR activation, weeks or months in duration, is necessary to induce rodent liver tumor promotion--hence, sustained AHR activation is deemed the molecular initiating event (MIE). After this MIE, subsequent KEs are 1) changes in cellular growth homeostasis likely associated with expression changes in a number of genes and observed as development of hepatic foci and decreases in apoptosis within foci; 2) extensive liver toxicity observed as the constellation of effects called toxic hepatopathy; 3) cellular proliferation and hyperplasia in several hepatic cell types. This progression of KEs culminates in the AO, the development of hepatocellular adenomas and carcinomas and cholangiolar carcinomas. A rich data set provides both qualitative and quantitative knowledge of the progression of this AOP through KEs and the KERs. Thus, the WoE for this AOP is judged to be strong. Species-specific effects of dioxins and DLCs are well known--humans are less responsive than rodents and rodent species differ in sensitivity between strains. Consequently, application of this AOP to evaluate potential human health risks must take these differences into account.
Collapse
Affiliation(s)
- Richard A Becker
- Regulatory and Technical Affairs Department, American Chemistry Council (ACC), Washington, DC 20002, USA.
| | - Grace Patlewicz
- DuPont Haskell Global Centers for Health and Environmental Sciences, Newark, DE 19711, USA
| | - Ted W Simon
- Ted Simon LLC, 4184 Johnston Road, Winston, GA 30187, USA
| | - J Craig Rowlands
- The Dow Chemical Company, Toxicology & Environmental Research & Consulting, 1803 Building Washington Street, Midland, MI 48674, USA
| | - Robert A Budinsky
- The Dow Chemical Company, Toxicology & Environmental Research & Consulting, 1803 Building Washington Street, Midland, MI 48674, USA
| |
Collapse
|
56
|
Nault R, Fader KA, Zacharewski T. RNA-Seq versus oligonucleotide array assessment of dose-dependent TCDD-elicited hepatic gene expression in mice. BMC Genomics 2015; 16:373. [PMID: 25958198 PMCID: PMC4456707 DOI: 10.1186/s12864-015-1527-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/27/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Dose-dependent differential gene expression provides critical information required for regulatory decision-making. The lower costs associated with RNA-Seq have made it the preferred technology for transcriptomic analysis. However, concordance between RNA-Seq and microarray analyses in dose response studies has not been adequately vetted. RESULTS We compared the hepatic transcriptome of C57BL/6 mice following gavage with sesame oil vehicle, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, or 30 μg/kg TCDD every 4 days for 28 days using Illumina HiSeq RNA-Sequencing (RNA-Seq) and Agilent 4 × 44 K microarrays using the same normalization and analysis approach. RNA-Seq and microarray analysis identified a total of 18,063 and 16,403 genes, respectively, that were expressed in the liver. RNA-Seq analysis for differentially expressed genes (DEGs) varied dramatically depending on the P1(t) cut-off while microarray results varied more based on the fold change criteria, although responses strongly correlated. Verification by WaferGen SmartChip QRTPCR revealed that RNA-Seq had a false discovery rate of 24% compared to 54% for microarray analysis. Dose-response modeling of RNA-Seq and microarray data demonstrated similar point of departure (POD) and ED50 estimates for common DEGs. CONCLUSIONS There was a strong correspondence between RNA-Seq and Agilent array transcriptome profiling when using the same samples and analysis strategy. However, RNA-Seq provided superior quantitative data, identifying more genes and DEGs, as well as qualitative information regarding identity and annotation for dose response modeling in support of regulatory decision-making.
Collapse
Affiliation(s)
- Rance Nault
- Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
| | - Kelly A Fader
- Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
| | - Tim Zacharewski
- Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
57
|
Interspecies uncertainty in molecular responses and toxicity of mixtures. EXPERIENTIA SUPPLEMENTUM (2012) 2015; 101:361-79. [PMID: 22945575 DOI: 10.1007/978-3-7643-8340-4_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Most of the experimental toxicity testing data for chemicals are generated through the use of laboratory animals, namely, rodents such as rats and mice or other species. Interspecies extrapolation is needed to nullify the differences between species so as to use such data for human health/risk assessment. Thus, understanding of interspecies differences is important in extrapolating the laboratory results to humans and conducting human risk assessments based on current credible scientific knowledge. Major causes of interspecies differences in anatomy and physiology, toxicokinetics, injury repair, molecular receptors, and signal transduction pathways responsible for variations in responses to toxic chemicals are outlined. In the risk assessment process, uncertainty associated with data gaps in our knowledge is reflected by application of uncertainty factors for interspecies differences. Refinement of the risk assessment methods is the ultimate goal as we strive to realistically evaluate the impact of toxic chemicals on human populations. Using specific examples from current risk assessment practice, this chapter illustrates the integration of interspecies differences in evaluation of individual chemicals and chemical mixtures.
Collapse
|
58
|
Katarzyńska D, Hrabia A, Kowalik K, Sechman A. Comparison of the in vitro effects of TCDD, PCB 126 and PCB 153 on thyroid-restricted gene expression and thyroid hormone secretion by the chicken thyroid gland. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:496-503. [PMID: 25682001 DOI: 10.1016/j.etap.2015.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 01/16/2015] [Accepted: 01/23/2015] [Indexed: 06/04/2023]
Abstract
The aim of this study was to compare the in vitro effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3,3',4,4',5-pentachlorobiphenyl (PCB 126; a coplanar PCB congener) and 2,2'4,4',5,5'-hexachlorobiphenyl (PCB153; non-coplanar PCB) on mRNA expression of thyroid-restricted genes, i.e. sodium iodide symporter (NIS), thyroid peroxidase (TPO) and thyroglobulin (TG), and thyroid hormone secretion from the thyroid gland of the laying chicken. Relative expression levels of NIS, TG and TPO genes and thyroxine (T4) and triiodothyronine (T3) secretion from the thyroidal explants were quantified by the real-time qPCR and RIA methods, respectively. In comparison with the control group, TCDD and PCB 126 significantly increased mRNA expression of TPO and TG genes. TCDD did not affect NIS mRNA levels, but PCB 126 decreased its expression. No effect of PCB 153 on the expression of these genes was observed. TCDD and PCB 126 significantly decreased T4 and T3 secretion. There was no significant effect of PCB 153 on these hormone secretions. In conclusion, the results obtained show that in comparison with non-coplanar PCB 153, TCDD and coplanar PCB 126 can directly affect thyroid hormone synthesis and secretion, and in consequence, they may disrupt the endocrine function of the thyroid gland of the laying chicken.
Collapse
Affiliation(s)
- Dorota Katarzyńska
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Poland
| | - Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Poland
| | - Kinga Kowalik
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Poland
| | - Andrzej Sechman
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Poland.
| |
Collapse
|
59
|
Prokopec SD, Watson JD, Lee J, Pohjanvirta R, Boutros PC. Sex-related differences in murine hepatic transcriptional and proteomic responses to TCDD. Toxicol Appl Pharmacol 2015; 284:188-96. [PMID: 25703434 DOI: 10.1016/j.taap.2015.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/06/2015] [Accepted: 02/10/2015] [Indexed: 12/14/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant that produces myriad toxicities in most mammals. In rodents alone, there is a huge divergence in the toxicological response across species, as well as among different strains within a species. But there are also significant differences between males and females animals of a single strain. These differences are inconsistent across model systems: the severity of toxicity is greater in female rats than males, while male mice and guinea pigs are more sensitive than females. Because the specific events that underlie this difference remain unclear, we characterized the hepatic transcriptional response of adult male and female C57BL/6 mice to 500μg/kg TCDD at multiple time-points. The transcriptional profile diverged significantly between the sexes. Female mice demonstrated a large number of altered transcripts as early as 6h following treatment, suggesting a large primary response. Conversely, male animals showed the greatest TCDD-mediated response 144h following exposure, potentially implicating significant secondary responses. Nr1i3 was statistically significantly induced at all time-points in the sensitive male animals. This mRNA encodes the constitutive androstane receptor (CAR), a transcription factor involved in the regulation of xenobiotic metabolism, lipid metabolism, cell cycle and apoptosis. Surprisingly though, changes at the protein level (aside from the positive control, CYP1A1) were modest, with only FMO3 showing clear induction, and no genes with sex-differences. Thus, while male and female mice show transcriptional differences in their response to TCDD, their association with TCDD-induced toxicities remains unclear.
Collapse
Affiliation(s)
- Stephenie D Prokopec
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto, Canada
| | - John D Watson
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto, Canada
| | - Jamie Lee
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada
| | - Raimo Pohjanvirta
- Laboratory of Toxicology, National Institute for Health and Welfare, Kuopio Finland; Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Paul C Boutros
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| |
Collapse
|
60
|
Patlewicz G, Simon TW, Rowlands JC, Budinsky RA, Becker RA. Proposing a scientific confidence framework to help support the application of adverse outcome pathways for regulatory purposes. Regul Toxicol Pharmacol 2015; 71:463-77. [PMID: 25707856 DOI: 10.1016/j.yrtph.2015.02.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 02/13/2015] [Accepted: 02/16/2015] [Indexed: 10/24/2022]
Abstract
An adverse outcome pathway (AOP) describes the causal linkage between initial molecular events and an adverse outcome at individual or population levels. Whilst there has been considerable momentum in AOP development, far less attention has been paid to how AOPs might be practically applied for different regulatory purposes. This paper proposes a scientific confidence framework (SCF) for evaluating and applying a given AOP for different regulatory purposes ranging from prioritizing chemicals for further evaluation, to hazard prediction, and ultimately, risk assessment. The framework is illustrated using three different AOPs for several typical regulatory applications. The AOPs chosen are ones that have been recently developed and/or published, namely those for estrogenic effects, skin sensitisation, and rodent liver tumor promotion. The examples confirm how critical the data-richness of an AOP is for driving its practical application. In terms of performing risk assessment, human dosimetry methods are necessary to inform meaningful comparisons with human exposures; dosimetry is applied to effect levels based on non-testing approaches and in vitro data. Such a comparison is presented in the form of an exposure:activity ratio (EAR) to interpret biological activity in the context of exposure and to provide a basis for product stewardship and regulatory decision making.
Collapse
Affiliation(s)
- Grace Patlewicz
- DuPont Haskell Global Centers for Health and Environmental Sciences, 1090 Elkton Road, Newark, DE 19711, USA.
| | - Ted W Simon
- Ted Simon LLC, 4184 Johnston Road, Winston, GA 30187, USA
| | - J Craig Rowlands
- The Dow Chemical Company, Toxicology & Environmental Research & Consulting, 1803 Building Washington Street, Midland, MI 48674, USA
| | - Robert A Budinsky
- The Dow Chemical Company, Toxicology & Environmental Research & Consulting, 1803 Building Washington Street, Midland, MI 48674, USA
| | - Richard A Becker
- Regulatory and Technical Affairs Department, American Chemistry Council (ACC), Washington, DC 20002, USA
| |
Collapse
|
61
|
Nishijo M, Tai PT, Anh NTN, Nghi TN, Nakagawa H, Van Luong H, Anh TH, Morikawa Y, Waseda T, Kido T, Nishijo H. Urinary amino acid alterations in 3-year-old children with neurodevelopmental effects due to perinatal dioxin exposure in Vietnam: a nested case-control study for neurobiomarker discovery. PLoS One 2015; 10:e0116778. [PMID: 25584822 PMCID: PMC4293140 DOI: 10.1371/journal.pone.0116778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/12/2014] [Indexed: 11/19/2022] Open
Abstract
In our previous study of 3-year-old children in a dioxin contamination hot spot in Vietnam, the high total dioxin toxic equivalent (TEQ-PCDDs/Fs)-exposed group during the perinatal period displayed lower Bayley III neurodevelopmental scores, whereas the high 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-exposed group displayed increased autistic traits. In autistic children, urinary amino acid profiles have revealed metabolic alterations in the amino acids that serve as neurotransmitters in the developing brain. Therefore, our present study aimed to investigate the use of alterations in urinary amino acid excretion as biomarkers of dioxin exposure-induced neurodevelopmental deficits in highly exposed 3-year-old children in Vietnam. A nested case-control study of urinary analyses was performed for 26 children who were selected from 111 3-year-old children whose perinatal dioxin exposure levels and neurodevelopmental status were examined in follow-up surveys conducted in a dioxin contaminated hot spot. We compared urinary amino acid levels between the following 4 groups: (1) a high TEQ-PCDDs/Fs and high TCDD-exposed group; (2) a high TEQ-PCDDs/Fs but low TCDD-exposed group; (3) a low TEQ-PCDDs/Fs exposed and poorly developed group; and (4) a low TEQ-PCDDs/Fs exposed and well-developed group. Urinary levels of histidine and tryptophan were significantly decreased in the high TEQ-PCDDs/Fs and high TCDD group, as well as in the high TEQ-PCDDs/Fs but low TCDD group, compared with the low TEQ-PCDDs/Fs and well-developed group. However, the ratio of histidine to glycine was significantly lower only in the high TEQ-PCDDs/Fs and high TCDD group. Furthermore, urinary histidine levels and the ratio of histidine to glycine were significantly correlated with neurodevelopmental scores, particularly for language and fine motor skills. These results indicate that urinary histidine is specifically associated with dioxin exposure-induced neurodevelopmental deficits, suggesting that urinary histidine may be a useful marker of dioxin-induced neurodevelopmental deficits and that histaminergic neurotransmission may be an important pathological contributor to dioxin-mediated neurotoxicity.
Collapse
Affiliation(s)
- Muneko Nishijo
- Department of Public Health, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
- * E-mail:
| | - Pham The Tai
- Biomedical and Pharmaceutical Research Center, Vietnam Military Medical University, Ha Noi, Vietnam
| | - Nguyen Thi Nguyet Anh
- Department of Public Health, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Tran Ngoc Nghi
- Department of Public Health, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Hideaki Nakagawa
- Department of Public Health, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Hoang Van Luong
- Biomedical and Pharmaceutical Research Center, Vietnam Military Medical University, Ha Noi, Vietnam
| | - Tran Hai Anh
- Biomedical and Pharmaceutical Research Center, Vietnam Military Medical University, Ha Noi, Vietnam
| | - Yuko Morikawa
- School of Nursing, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Tomoo Waseda
- Department of Obstetrics and Gynecology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Teruhiko Kido
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-0942, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
62
|
Sun RX, Chong LC, Simmons TT, Houlahan KE, Prokopec SD, Watson JD, Moffat ID, Lensu S, Lindén J, P'ng C, Okey AB, Pohjanvirta R, Boutros PC. Cross-species transcriptomic analysis elucidates constitutive aryl hydrocarbon receptor activity. BMC Genomics 2014; 15:1053. [PMID: 25467400 PMCID: PMC4301818 DOI: 10.1186/1471-2164-15-1053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/19/2014] [Indexed: 12/04/2022] Open
Abstract
Background Research on the aryl hydrocarbon receptor (AHR) has largely focused on variations in toxic outcomes resulting from its activation by halogenated aromatic hydrocarbons. But the AHR also plays key roles in regulating pathways critical for development, and after decades of research the mechanisms underlying physiological regulation by the AHR remain poorly characterized. Previous studies identified several core genes that respond to xenobiotic AHR ligands across a broad range of species and tissues. However, only limited inferences have been made regarding its role in regulating constitutive gene activity, i.e. in the absence of exogenous ligands. To address this, we profiled transcriptomic variations between AHR-active and AHR-less-active animals in the absence of an exogenous agonist across five tissues, three of which came from rats (hypothalamus, white adipose and liver) and two of which came from mice (kidney and liver). Because AHR status alone has been shown sufficient to alter transcriptomic responses, we reason that by contrasting profiles amongst AHR-variant animals, we may elucidate effects of the AHR on constitutive mRNA abundances. Results We found significantly more overlap in constitutive mRNA abundances amongst tissues within the same species than from tissues between species and identified 13 genes (Agt, Car3, Creg1, Ctsc, E2f6, Enpp1, Gatm, Gstm4, Kcnj8, Me1, Pdk1, Slc35a3, and Sqrdl) that are affected by AHR-status in four of five tissues. One gene, Creg1, was significantly up-regulated in all AHR-less-active animals. We also find greater overlap between tissues at the pathway level than at the gene level, suggesting coherency to the AHR signalling response within these processes. Analysis of regulatory motifs suggests that the AHR mostly mediates transcriptional regulation via direct binding to response elements. Conclusions These findings, though preliminary, present a platform for further evaluating the role of the AHR in regulation of constitutive mRNA levels and physiologic function. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1053) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Paul C Boutros
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto, Canada.
| |
Collapse
|
63
|
Prokopec SD, Watson JD, Pohjanvirta R, Boutros PC. Identification of reference proteins for Western blot analyses in mouse model systems of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity. PLoS One 2014; 9:e110730. [PMID: 25329058 PMCID: PMC4201576 DOI: 10.1371/journal.pone.0110730] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 09/24/2014] [Indexed: 01/15/2023] Open
Abstract
Western blotting is a well-established, inexpensive and accurate way of measuring protein content. Because of technical variation between wells, normalization is required for valid interpretation of results across multiple samples. Typically this involves the use of one or more endogenous controls to adjust the measured levels of experimental molecules. Although some endogenous controls are widely used, validation is required for each experimental system. This is critical when studying transcriptional-modulators, such as toxicants like 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).To address this issue, we examined hepatic tissue from 192 mice representing 47 unique combinations of strain, sex, Ahr-genotype, TCDD dose and treatment time. We examined 7 candidate reference proteins in each animal and assessed consistency of protein abundance through: 1) TCDD-induced fold-difference in protein content from basal levels, 2) inter- and intra- animal stability, and 3) the ability of each candidate to reduce instability of the other candidates. Univariate analyses identified HPRT as the most stable protein. Multivariate analysis indicated that stability generally increased with the number of proteins used, but gains from using >3 proteins were small. Lastly, by comparing these new data to our previous studies of mRNA controls on the same animals, we were able to show that the ideal mRNA and protein control-genes are distinct, and use of only 2–3 proteins provides strong stability, unlike in mRNA studies in the same cohort, where larger control-gene batteries were needed.
Collapse
Affiliation(s)
- Stephenie D. Prokopec
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - John D. Watson
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Raimo Pohjanvirta
- Laboratory of Toxicology, National Institute for Health and Welfare, Kuopio, Finland
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Paul C. Boutros
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
64
|
Niimi S, Imoto M, Kunisue T, Watanabe MX, Kim EY, Nakayama K, Yasunaga G, Fujise Y, Tanabe S, Iwata H. Effects of persistent organochlorine exposure on the liver transcriptome of the common minke whale (Balaenoptera acutorostrata) from the North Pacific. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 108:95-105. [PMID: 25046851 DOI: 10.1016/j.ecoenv.2014.06.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/20/2014] [Accepted: 06/20/2014] [Indexed: 06/03/2023]
Abstract
Hepatic concentrations of persistent organochlorines (OCs) were determined in the common minke whale (Balaenoptera acutorostrata) from the North Pacific. To investigate the effects of OCs on the transcriptome in the minke whale, the present study constructed a hepatic oligo array of this species where 985 unique oligonucleotides were spotted and further analyzed the relationship between the OC levels and gene expression profiles of liver tissues. The stepwise multiple linear regression analysis identified 32 genes that correlated with hepatic OC levels. The mRNA expression levels of seven cytochrome P450 (CYP) genes, CYP1A1, 1A2, 2C78, 2E1, 3A72, 4A35, and 4V6 showed no clear correlations with the concentration of each OC, suggesting that the accumulated OCs in the liver did not reach levels that could alter CYP expression. Among the genes screened by the custom oligo array analysis, hepatic mRNA expression levels of 16 genes were further measured using quantitative real-time reverse transcription polymerase chain reaction. The mRNA levels of vitamin D-binding protein (DBP) were negatively correlated with non-ortho coplanar polychlorinated biphenyl (PCB) levels. Androgen receptor-associated coregulator 70 (ARA70) expression levels showed a significant positive correlation with concentrations of non-ortho coplanar PCB169. These correlations suggest that coplanar PCB-reduced DBP expression could suppress vitamin D receptor-mediated signaling cascades in peripheral tissues. Alternatively, the suppression of vitamin D receptor signaling cascade could be enhanced through competition with the androgen receptor signaling pathway for ARA70. In addition, a negative correlation between kynureninase and PCB169 levels was also observed, which suggest an enhanced accumulation of an endogenous aryl hydrocarbon receptor agonist, kynurenine in the minke whale population. Further studies are necessary to translate the changes in the transcriptome to toxicological outcomes including the disruption of the nervous and immune systems.
Collapse
Affiliation(s)
- Satoko Niimi
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Mai Imoto
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Michio X Watanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Eun-Young Kim
- Department of Life and Nanopharmaceutical Science and Department of Biology, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Republic of Korea
| | - Kei Nakayama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Genta Yasunaga
- The Institute of Cetacean Research, Toyomi-cho 4-5, Chuo-ku, Tokyo 104-0055, Japan
| | - Yoshihiro Fujise
- The Institute of Cetacean Research, Toyomi-cho 4-5, Chuo-ku, Tokyo 104-0055, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan.
| |
Collapse
|
65
|
Taura J, Takeda T, Fujii M, Hattori Y, Ishii Y, Kuroki H, Tsukimori K, Uchi H, Furue M, Yamada H. 2,3,4,7,8-Pentachlorodibenzofuran is far less potent than 2,3,7,8-tetrachlorodibenzo-p-dioxin in disrupting the pituitary-gonad axis of the rat fetus. Toxicol Appl Pharmacol 2014; 281:48-57. [PMID: 25220434 DOI: 10.1016/j.taap.2014.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/19/2014] [Accepted: 09/01/2014] [Indexed: 01/24/2023]
Abstract
The effect of 2,3,4,7,8-pentachlorodibenzofuran (PnCDF) on the fetal pituitary-gonad axis was compared with that produced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in Wistar rats. Maternal treatment at gestational day (GD) 15 with PnCDF and TCDD reduced the fetal expression at GD20 of pituitary luteinizing hormone (LH) and the testicular proteins necessary for steroidogenesis. The relative potencies of PnCDF ranged from 1/42nd to 1/63rd of the TCDD effect. While PnCDF, at a dose sufficient to cause a reduction in fetal LH, provoked defects in sexual behavior at adulthood, a dose less than the ED50 failed to produce any abnormality. There was a loss of fetal body weight following in utero exposure to PnCDF, and the effect of PnCDF was also much less than that of TCDD. The disturbance in fetal growth was suggested to be due to a reduction in the level of fetal growth hormone (GH) by dioxins. The disorder caused by PnCDF/TCDD in the fetal pituitary-gonad axis occurred at doses less than those needed to cause wasting syndrome in pubertal rats. The harmful effect of PnCDF relative to TCDD was more pronounced in fetal rats than in pubertal rats. These lines of evidence suggest that: 1) PnCDF as well as TCDD imprints defects in sexual behavior by disrupting the fetal pituitary-gonad axis; 2) these dioxins hinder fetal growth by reducing the expression of fetal GH; and 3) the fetal effects of PnCDF/TCDD are more sensitive than sub-acute toxicity during puberty, and the relative effect of PnCDF varies markedly depending on the indices used.
Collapse
Affiliation(s)
- Junki Taura
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoki Takeda
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Misaki Fujii
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukiko Hattori
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuji Ishii
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Kiyomi Tsukimori
- Department of Obstetrics, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Hiroshi Uchi
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka, Japan
| | - Masutaka Furue
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka, Japan; Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideyuki Yamada
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
66
|
Jin Y, Miao W, Lin X, Wu T, Shen H, Chen S, Li Y, Pan Q, Fu Z. Sub-chronically exposing mice to a polycyclic aromatic hydrocarbon increases lipid accumulation in their livers. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:353-363. [PMID: 25124514 DOI: 10.1016/j.etap.2014.07.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/11/2014] [Accepted: 07/19/2014] [Indexed: 06/03/2023]
Abstract
The potential for exposing humans and wildlife to environmental polycyclic aromatic hydrocarbons (PAHs) has increased. Risk assessments describing how PAHs disturb lipid metabolism and induce hepatotoxicity have only received limited attention. In the present study, seven-week-old male ICR mice received intraperitoneal injections of 0, 0.01, 0.1 or 1mg/kg body weight 3-methylcholanthrene (3MC) per week for 10 weeks. A high-fat diet was provided during the exposure. Histopathological lipid accumulation and lipid metabolism-related genes were measured. We observed that sub-chronic 3MC exposure significantly increased lipid droplet and triacylglycerol (TG) levels in the livers. A low dose of 3MC activated the aryl hydrocarbon receptor, which negatively regulated lipid synthesis in the livers. The primary genes including acetyl-CoA carboxylase (Acc), fatty acid synthase (Fas) and stearoyl-CoA desaturase 1 (Scd1) decreased significantly when compared with those in the control group, indicating that de novo fatty acid synthesis in the hepatocytes was significantly inhibited by the sub-chronic 3MC exposure. However, the free fatty acid (FFA) synthesis in the adipose tissue was greatly enhanced by up-regulating the expression of peroxisome proliferator-activated receptor γ (PPARγ) and sterol regulatory element binding protein-1c (SREBP1C) and target genes including Acc, Fas and Scd1. The synthesized FFA was released into the blood and then transported into the liver by the up-regulation of Fat and Fatp2, which resulted in the gradual accumulation of lipids in the liver. In conclusion, histological examinations and molecular level analyses highlighted the development of lipid accumulation and confirmed that 3MC significantly impaired lipid metabolism in mice.
Collapse
Affiliation(s)
- Yuanxiang Jin
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Wenyu Miao
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiaojian Lin
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Tao Wu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Hangjie Shen
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shan Chen
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yanhong Li
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qiaoqiao Pan
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
67
|
LeBaron MJ, Rasoulpour RJ, Gollapudi BB, Sura R, Kan HL, Schisler MR, Pottenger LH, Papineni S, Eisenbrandt DL. Characterization of Nuclear Receptor-Mediated Murine Hepatocarcinogenesis of the Herbicide Pronamide and Its Human Relevance. Toxicol Sci 2014; 142:74-92. [DOI: 10.1093/toxsci/kfu155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
68
|
Okyere J, Oppon E, Dzidzienyo D, Sharma L, Ball G. Cross-species gene expression analysis of species specific differences in the preclinical assessment of pharmaceutical compounds. PLoS One 2014; 9:e96853. [PMID: 24823806 PMCID: PMC4019543 DOI: 10.1371/journal.pone.0096853] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 04/11/2014] [Indexed: 01/11/2023] Open
Abstract
Animals are frequently used as model systems for determination of safety and efficacy in pharmaceutical research and development. However, significant quantitative and qualitative differences exist between humans and the animal models used in research. This is as a result of genetic variation between human and the laboratory animal. Therefore the development of a system that would allow the assessment of all molecular differences between species after drug exposure would have a significant impact on drug evaluation for toxicity and efficacy. Here we describe a cross-species microarray methodology that identifies and selects orthologous probes after cross-species sequence comparison to develop an orthologous cross-species gene expression analysis tool. The assumptions made by the use of this orthologous gene expression strategy for cross-species extrapolation is that; conserved changes in gene expression equate to conserved pharmacodynamic endpoints. This assumption is supported by the fact that evolution and selection have maintained the structure and function of many biochemical pathways over time, resulting in the conservation of many important processes. We demonstrate this cross-species methodology by investigating species specific differences of the peroxisome proliferator-activator receptor (PPAR) α response in rat and human.
Collapse
Affiliation(s)
- John Okyere
- CrossGen Limited, BioCity Nottingham, Pennyfoot Street, Nottingham, United Kingdom
- * E-mail:
| | - Ekow Oppon
- CrossGen Limited, BioCity Nottingham, Pennyfoot Street, Nottingham, United Kingdom
| | - Daniel Dzidzienyo
- CrossGen Limited, BioCity Nottingham, Pennyfoot Street, Nottingham, United Kingdom
| | - Lav Sharma
- CrossGen Limited, BioCity Nottingham, Pennyfoot Street, Nottingham, United Kingdom
| | - Graham Ball
- John Van Geest Cancer Research Centre, Nottingham Trent University, Clifton Campus, Clifton Lane, Nottingham, United Kingdom
| |
Collapse
|
69
|
Watson JD, Prokopec SD, Smith AB, Okey AB, Pohjanvirta R, Boutros PC. TCDD dysregulation of 13 AHR-target genes in rat liver. Toxicol Appl Pharmacol 2014; 274:445-54. [DOI: 10.1016/j.taap.2013.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 12/02/2013] [Accepted: 12/05/2013] [Indexed: 12/20/2022]
|
70
|
DeGroot DE, Hayashi A, Denison MS. Lack of ligand-selective binding of the aryl hydrocarbon receptor to putative DNA binding sites regulating expression of Bax and paraoxonase 1 genes. Arch Biochem Biophys 2014; 541:13-20. [PMID: 24200861 PMCID: PMC3875388 DOI: 10.1016/j.abb.2013.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 10/25/2013] [Accepted: 10/28/2013] [Indexed: 12/29/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates the biological and toxicological effects of structurally diverse chemicals through its ability to bind specific DNA recognition sites (dioxin responsive elements (DREs)), and activate transcription of adjacent genes. While the DRE has a highly conserved consensus sequence, it has been suggested that the nucleotide specificity of AhR DNA binding may be ligand-dependent. The upstream regulatory regions of the murine Bax and human paraoxonase 1 (PON1) genes reportedly contain unique DRE-like sequences that respond to AhRs activated by some ligands but not others. Given the significant implications of this observation to understanding the diversity in AhR responses and that of other ligand-dependent nuclear receptors, a combination of DNA binding, nuclear translocation and gene expression analysis was used to investigate the molecular mechanisms underlying these ligand-selective responses. Although known AhR agonists stimulated AhR nuclear translocation, DRE binding and gene expression, the ligand-selective DRE-like DNA elements identified in the Bax and PON1 upstream regulatory regions failed to bind ligand-activated AhR or confer AhR-responsiveness upon a reporter gene. These results argue against the reported ligand-selectivity of AhR DNA binding and suggest DNA binding by ligand activated AhR involves DRE-containing DNA.
Collapse
Affiliation(s)
- Danica E DeGroot
- Department of Environmental Toxicology, University of California, Davis, CA 95616, United States
| | - Ai Hayashi
- Department of Environmental Toxicology, University of California, Davis, CA 95616, United States
| | - Michael S Denison
- Department of Environmental Toxicology, University of California, Davis, CA 95616, United States.
| |
Collapse
|
71
|
Qiu Y, Hong M, Li H, Tang N, Ma J, Hsu CH, Dong W. Time-series pattern of gene expression profile in gentamycin-induced nephrotoxicity. Toxicol Mech Methods 2013; 24:142-50. [PMID: 24274596 DOI: 10.3109/15376516.2013.869780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
There have been many studies investigating the genomic biomarker and/or molecular mechanism of nephrotoxicity using microarray. However, most of these researches were carried out by studying gene expression changes at one specific time point. As gene expression varies with time and disease stage, the current study investigated the time-series pattern of gene expression in a rat model using a typical nephrotoxic compound. Rats were administrated with 80 mg/kg gentamycin or saline by intramuscular injection for 14 consecutive days followed by a 28-d recovery. Rats were scarified on D2, D4, D8, D15 and Recovery Day (R29), when kidneys were obtained for whole-genome microarray analysis and histological examination. Urine was collected at each necropsy for kidney injury molecular-1 (KIM-1) analysis. The KIM-1 detection and histological examination confirmed the nephrotoxicity. After differentially expression genes (DEGs) identification, there were 4360 and 4323 regulated genes for females and males, respectively. However, few overlapping expression genes co-regluated at each time point were found. By principle component analysis (PCA) and hierarchical cluster, the gene expression patterns were observed to be apparently associated with the disease stage. GO Annotation showed (1) immune response and related process, response to wounding, cell locomotion on D2; (2) cell death and apoptosis was also noted on D4; (3) processes of organic acid or carboxylic acid, apoptosis or cell death on D8 and D15; (4) processes of cell cycle, mitosis, division cell cycle on R29. In conclusion, the authors mapped the time-series gene expression patterns at the initiation, development and recovery stage of gentamycin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Yunliang Qiu
- National Shanghai Center for New Drug Safety Evaluation and Research , Shanghai , China and
| | | | | | | | | | | | | |
Collapse
|
72
|
Budinsky RA, Schrenk D, Simon T, Van den Berg M, Reichard JF, Silkworth JB, Aylward LL, Brix A, Gasiewicz T, Kaminski N, Perdew G, Starr TB, Walker NJ, Rowlands JC. Mode of action and dose–response framework analysis for receptor-mediated toxicity: The aryl hydrocarbon receptor as a case study. Crit Rev Toxicol 2013; 44:83-119. [DOI: 10.3109/10408444.2013.835787] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
73
|
Pierre S, Chevallier A, Teixeira-Clerc F, Ambolet-Camoit A, Bui LC, Bats AS, Fournet JC, Fernandez-Salguero P, Aggerbeck M, Lotersztajn S, Barouki R, Coumoul X. Aryl hydrocarbon receptor-dependent induction of liver fibrosis by dioxin. Toxicol Sci 2013; 137:114-24. [PMID: 24154488 DOI: 10.1093/toxsci/kft236] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The contribution of environmental pollutants to liver fibrosis is an important and poorly explored issue. In vitro studies suggest that the environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other aryl hydrocarbon receptor (AhR) ligands induce several genes that are known to be upregulated during liver fibrosis. Our aim was to determine whether exposure to such pollutants can lead to liver fibrosis and to characterize the mechanisms of action. Mice were treated for 2, 14, or 42 days, once a week with 25 µg/kg of TCDD. Gene and protein expression, in vitro and in vivo, as well as liver histology were investigated for each treatment. Treatment of mice with TCDD for 2 weeks modified the hepatic expression of markers of fibrosis such as collagen 1A1 and α-smooth muscle actin. This is not observed in AhR knockout mice. Following 6 weeks of treatment, histological features of murine hepatic fibrosis became apparent. In parallel, the levels of inflammatory cytokines (interleukin-1 beta, tumor necrosis factor α) and of markers of activated fibroblasts(fibroblast-specific protein 1) were found to be upregulated. Interestingly, we also found increased expression of genes of the TGF-β pathway and a concomitant decrease of miR-200a levels. Because the transcription factors of the Snail family were shown to be involved in liver fibrosis, we studied their regulation by TCDD. Two members of the Snail family were increased, whereas their negative targets, the epithelial marker E-cadherin and Claudin 1, were decreased. Further, the expression of mesenchymal markers was increased. Finally, we confirmed that Snai2 is a direct transcriptional target of TCDD in the human hepatocarcinoma cell line, HepG2. The AhR ligand, TCDD, induces hepatic fibrosis by directly regulating profibrotic pathways.
Collapse
Affiliation(s)
- Stéphane Pierre
- * INSERM UMR-S 747, Toxicologie Pharmacologie et Signalisation Cellulaire, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Rowlands JC, Budinsky R, Gollapudi B, Black MB, Wolfinger RD, Cukovic D, Dombkowski A, Thompson CM, Urban JD, Thomas RS. A genomics-based analysis of relative potencies of dioxin-like compounds in primary rat hepatocytes. Toxicol Sci 2013; 136:595-604. [PMID: 24046277 DOI: 10.1093/toxsci/kft203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Toxic equivalency factors (TEFs) for dioxin-like compounds are largely based on relative potency (REP) values derived from biochemical endpoints such as enzyme activity. As of yet, REPs based on gene expression changes have not been accounted for in the TEF values. In this study, primary rat hepatocytes were treated for 24h with 11 concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin, 2,3,4,7,8-pentachlorodibenzofuran (4-PeCDF), or 2,3,7,8-tetrachlorodibenzofuran (TCDF) ranging from 0.00001 to 100 nM. Differential changes in gene expression were analyzed using analysis of variance to assess the relative contributions of concentration, congener, and the interaction between concentration and congener for each gene. A total of 3283 genes showed significant changes with concentration (false discovery rate < .05 and fold-change ± 1.5 in at least 1 concentration for 1 congener). Among these genes, 399 were significant for both concentration and congener effects indicating parallel concentration-response curves with significant differences in potency. Only 8 genes showed a significant concentration and congener interaction term indicating a minority of genes show nonparallel dose-response curves among the 3 congeners. Benchmark dose (BMD) modeling was used to derive BMD values for induced individual genes and signaling pathways. The REP values for 4-PeCDF and TCDF were generally 3- to 5-fold lower than the World Health Organization (WHO) TEF values on both a gene and pathway basis. These findings suggest that the WHO TEF values may possibly overpredict the potency of these polychlorinated dibenzofuran congeners and demonstrate the importance of identifying functional pathways relevant to the toxicological modes of action for establishing pertinent REPs.
Collapse
Affiliation(s)
- J Craig Rowlands
- * Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan 48674
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Prokopec SD, Buchner NB, Fox NS, Chong LC, Mak DY, Watson JD, Petronis A, Pohjanvirta R, Boutros PC. Validating reference genes within a mouse model system of 2,3,7,8-tetrachlorodibenzo- p -dioxin (TCDD) toxicity. Chem Biol Interact 2013; 205:63-71. [DOI: 10.1016/j.cbi.2013.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 05/23/2013] [Accepted: 06/10/2013] [Indexed: 01/26/2023]
|
76
|
Harrill JA, Hukkanen RR, Lawson M, Martin G, Gilger B, Soldatow V, Lecluyse EL, Budinsky RA, Rowlands JC, Thomas RS. Knockout of the aryl hydrocarbon receptor results in distinct hepatic and renal phenotypes in rats and mice. Toxicol Appl Pharmacol 2013; 272:503-18. [PMID: 23859880 DOI: 10.1016/j.taap.2013.06.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/29/2013] [Accepted: 06/24/2013] [Indexed: 12/31/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor which plays a role in the development of multiple tissues and is activated by a large number of ligands, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In order to examine the roles of the AHR in both normal biological development and response to environmental chemicals, an AHR knockout (AHR-KO) rat model was created and compared with an existing AHR-KO mouse. AHR-KO rats harboring either 2-bp or 29-bp deletion mutation in exon 2 of the AHR were created on the Sprague-Dawley genetic background using zinc-finger nuclease (ZFN) technology. Rats harboring either mutation type lacked expression of AHR protein in the liver. AHR-KO rats were also insensitive to thymic involution, increased hepatic weight and the induction of AHR-responsive genes (Cyp1a1, Cyp1a2, Cyp1b1, Ahrr) following acute exposure to 25 μg/kg TCDD. AHR-KO rats had lower basal expression of transcripts for these genes and also accumulated ~30-45-fold less TCDD in the liver at 7 days post-exposure. In untreated animals, AHR-KO mice, but not AHR-KO rats, had alterations in serum analytes indicative of compromised hepatic function, patent ductus venosus of the liver and persistent hyaloid arteries in the eye. AHR-KO rats, but not AHR-KO mice, displayed pathological alterations to the urinary tract: bilateral renal dilation (hydronephrosis), secondary medullary tubular and uroepithelial degenerative changes and bilateral ureter dilation (hydroureter). The present data indicate that the AHR may play significantly different roles in tissue development and homeostasis and toxicity across rodent species.
Collapse
Key Words
- 2,3,7,8-tetracholorodibenzo-p-dioxin
- 90-kDa heat shock protein
- AHR
- AHR-KO
- AIP
- ALB
- ALP
- ALT
- ARNT
- AST
- Ahrr
- Aryl hydrocarbon receptor knockout mouse
- Aryl hydrocarbon receptor knockout rat
- BAS
- BILI
- BLO
- BUN
- CA
- CAOX
- CBC
- CHOL
- CL
- CREA
- CYP1A1
- CYP1A2
- CYP1B1
- Comparison
- DRE
- EOS
- EPI
- GGT
- GLOB
- GLUC
- HB
- HBSS
- HCT
- HSP90
- Hank's Balanced Salt Solution
- K
- KET
- Kidney
- LD(50)
- LEUC
- LYM
- Liver
- MCH
- MCHC
- MCV
- MON
- NA
- NEU
- PHOS
- PLT
- RBC
- SG
- TBA
- TBIL
- TCDD
- TP
- TPHO
- TRIG
- Tissue phenotypes
- UBIL
- UGLU
- ULEUC
- UPRO
- URBC
- UWBC
- WT
- ZFN
- alanine aminotransferase
- alkaline phosphatase
- aryl hydrocarbon receptor
- aryl hydrocarbon receptor interacting protein
- aryl hydrocarbon receptor knockout
- aryl hydrocarbon receptor nuclear translocator
- aryl hydrocarbon receptor repressor
- aspartate aminotransferase
- basophils
- blood urea nitrogen
- calcium
- calcium oxalate crystals
- chloride
- cholesterol
- complete blood count
- creatinine
- cytochrome P450, family 1, subfamily A, polypeptide 1
- cytochrome P450, family 1, subfamily A, polypeptide 2
- cytochrome P450, family 1, subfamily B, polypeptide 1
- dioxin-response element
- eosinophils
- hematocrit
- hemoglobin
- leukocytes
- lymphocytes
- mean corpuscular hemoglobin
- mean corpuscular hemoglobin concentration
- mean corpuscular volume
- median lethal dose
- monocytes
- neutrophils
- phosphorus
- platelets
- potassium
- red blood cells
- serum albumin
- serum globulin
- serum glucose
- sodium
- total bile acid
- total bilirubin
- total serum protein
- total white blood cells
- triglycerides
- triple phosphate crystals
- urine bilinogen
- urine bilirubin
- urine epithelial cells
- urine glucose
- urine ketones
- urine leukocytes
- urine occult blood
- urine protein
- urine red blood cells
- urine specific gravity
- wild-type
- zinc finger nuclease
- γ-glutamyl transpeptidase
Collapse
Affiliation(s)
- Joshua A Harrill
- The Hamner Institute for Health Sciences, Institute for Chemical Safety Sciences, RTP, NC 27709, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
LeBaron MJ, Geter DR, Rasoulpour RJ, Gollapudi BB, Thomas J, Murray J, Kan HL, Wood AJ, Elcombe C, Vardy A, McEwan J, Terry C, Billington R. An integrated approach for prospectively investigating a mode-of-action for rodent liver effects. Toxicol Appl Pharmacol 2013; 270:164-73. [DOI: 10.1016/j.taap.2013.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/28/2013] [Accepted: 04/01/2013] [Indexed: 12/26/2022]
|
78
|
Selenium-binding protein 1: its physiological function, dependence on aryl hydrocarbon receptors, and role in wasting syndrome by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biochim Biophys Acta Gen Subj 2013; 1830:3616-24. [PMID: 23500078 DOI: 10.1016/j.bbagen.2013.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 02/15/2013] [Accepted: 03/06/2013] [Indexed: 01/31/2023]
Abstract
BACKGROUND Selenium-binding protein 1 (Selenbp1) is suggested to play a role in tumor suppression, and may be involved in the toxicity produced by dioxin, an activator of aryl hydrocarbon receptors (AhR). However, the mechanism or likelihood is largely unknown because of the limited information available about the physiological role of Selenbp1. METHODS To address this issue, we generated Selenbp1-null [Selenbp1 (-/-)] mice, and examined the toxic effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in this mouse model. RESULTS Selenbp1 (-/-) mice exhibited only a few differences from wild-type mice in their apparent phenotypes. However, a DNA microarray experiment showed that many genes including Notch1 and Cdk1, which are known to be enhanced in ovarian carcinoma, are also increased in the ovaries of Selenbp1 (-/-) mice. Based on the different responses to TCDD between C57BL/6J and DBA/2J strains of mice, the expression of Selenbp1 is suggested to be under the control of AhR. However, wasting syndrome by TCDD occurred equally in Selenbp1 (-/-) and (+/+) mice. CONCLUSIONS The above pieces of evidence suggest that 1) Selenbp1 suppresses the expression of tumor-promoting genes although a reduction in Selenbp1 alone is not very serious as far as the animals are concerned; and 2) Selenbp1 induction by TCDD is neither a pre-requisite for toxicity nor a protective response for combating TCDD toxicity. GENERAL SIGNIFICANCE Selenbp1 (-/-) mice exhibit little difference in their apparent phenotype and responsiveness to dioxin compared with the wild-type. This may be due to the compensation of Selenbp1 function by a closely-related protein, Selenbp2.
Collapse
|
79
|
Forgacs AL, Dere E, Angrish MM, Zacharewski TR. Comparative analysis of temporal and dose-dependent TCDD-elicited gene expression in human, mouse, and rat primary hepatocytes. Toxicol Sci 2013; 133:54-66. [PMID: 23418086 DOI: 10.1093/toxsci/kft028] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-elicited time- and dose-dependent differential gene expression was compared in human, mouse, and rat primary hepatocytes. Comprehensive time course (10 nM TCDD or dimethyl sulfoxide vehicle control for 1, 2, 4, 8, 12, 24, and 48h) studies identified 495, 2305, and 711 differentially expressed orthologous genes in human, mouse, and rat hepatocytes, respectively. However, only 16 orthologs were differentially expressed across all three species, with the majority of orthologs exhibiting species-specific expression (399 human, 2097 mouse, and 533 rat), consistent with species-specific expression reported in other in vitro and in vivo comparative studies. TCDD also elicited the dose-dependent induction of 397 human, 100 mouse, and 443 rat genes at 12h and 615 human, 426 mouse, and 314 rat genes at 24h. Comparable EC50 values were obtained for AhR battery genes including Cyp1a1 (0.1 nM human, 0.05 nM mouse, 0.08 nM rat at 24h) and Tiparp (0.97 nM human, 0.63 nM mouse, 0.14 nM rat at 12h). Overrepresented functions and pathways included amino acid metabolism in humans, immune response in mice, and energy homeostasis in rats. Differentially expressed genes functionally associated with lipid transport, processing, and metabolism were overrepresented in all three species but exhibited species-specific expression consistent with the induction of hepatic steatosis in mice but not in rats following a single oral gavage of TCDD. Furthermore, human primary hepatocytes showed lipid accumulation following 48h of treatment with TCDD, suggesting that AhR-mediated steatosis in mice more closely resembles human hepatic fat accumulation compared with that in rats. Collectively, these results suggest that species-specific gene expression profiles mediate the species-specific effects of TCDD despite the conservation of the AhR and its signaling mechanism.
Collapse
Affiliation(s)
- Agnes L Forgacs
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
80
|
Całkosiński I, Rosińczuk-Tonderys J, Bronowicka-Szydełko A, Dzierzba K, Bazan J, Dobrzyński M, Majda J, Gamian A. Effect of tocopherol on biochemical blood parameters in pleuritis-induced rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Ind Health 2013; 31:510-22. [PMID: 23406955 DOI: 10.1177/0748233713475497] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study was to evaluate the effect of tocopherol on pleuritis-induced rats exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Rats were treated with a single TCDD dose of 5 μg/kg body weight (b.w.) and then for 3 weeks they were daily supplemented with tocopherol at a dose of 30 mg/kg b.w. The inflammation was initiated by intrapleural injection of a single dose of 1% carrageenin solution in a volume of 0.15 ml. Changes in biochemical blood parameters were measured three times at the 24th, 72nd and 120th hour of pleuritis and the blood was collected from 20 animals of each group of rats (group with the control inflammation; group treated with TCDD and with control inflammation; group treated with TCDD, supplemented with tocopherol and with the inflammation). The following biochemical parameters were measured: tumor necrosis factor (TNF), interleukin-1 (IL-1), IL-2, IL-4, IL-6, procollagen, telopeptide, fibrinogen, cholesterol, urea, creatinine, aspartate aminotransferase (AspAT) and alanine aminotransferase (AlAT). Daily supplementation of tocopherol caused significant changes in the level of TNF, IL-1, IL-4, IL-6, urea, creatinine, AspAT and AlAT. According to the results of these studies, we suggest that tocopherol supplementation in high doses could act as a protective treatment to improve liver metabolism.
Collapse
Affiliation(s)
- Ireneusz Całkosiński
- Department of Nervous System Diseases, The Faculty of Health Science, Wroclaw Medical University, Poland
| | - Joanna Rosińczuk-Tonderys
- Department of Nervous System Diseases, The Faculty of Health Science, Wroclaw Medical University, Poland
| | | | | | - Justyna Bazan
- Department of Medical Biochemistry, Wroclaw Medical University, Poland Department of Medical Biochemistry, Wroclaw Medical University, Poland
| | - Maciej Dobrzyński
- Department of Conservative Dentistry and Pedodontics, Wroclaw Medical University, Poland
| | - Jacek Majda
- Department of Diagnostics Laboratory, 4th Military Academic Hospital in Wroclaw, Poland
| | - Andrzej Gamian
- Department of Nervous System Diseases, The Faculty of Health Science, Wroclaw Medical University, Poland Polish Academy of Sciences, Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| |
Collapse
|
81
|
Wahlang B, Beier JI, Clair HB, Bellis-Jones HJ, Falkner KC, McClain CJ, Cave MC. Toxicant-associated steatohepatitis. Toxicol Pathol 2013; 41:343-60. [PMID: 23262638 PMCID: PMC5114851 DOI: 10.1177/0192623312468517] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hepatotoxicity is the most common organ injury due to occupational and environmental exposures to industrial chemicals. A wide range of liver pathologies ranging from necrosis to cancer have been observed following chemical exposures both in humans and in animal models. Toxicant-associated fatty liver disease (TAFLD) is a recently named form of liver injury pathologically similar to alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD). Toxicant-associated steatohepatitis (TASH) is a more severe form of TAFLD characterized by hepatic steatosis, inflammatory infiltrate, and in some cases, fibrosis. While subjects with TASH have exposures to industrial chemicals, such as vinyl chloride, they do not have traditional risk factors for fatty liver such as significant alcohol consumption or obesity. Conventional biomarkers of hepatotoxicity including serum alanine aminotransferase activity may be normal in TASH, making screening problematic. This article examines selected chemical exposures associated with TAFLD in human subjects or animal models and concisely reviews the closely related NAFLD and ALD.
Collapse
Affiliation(s)
- Banrida Wahlang
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Juliane I. Beier
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Heather B. Clair
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Heather J. Bellis-Jones
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - K. Cameron Falkner
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Craig J. McClain
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Robley Rex Louisville VAMC, Louisville, Kentucky, USA
| | - Matt C. Cave
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Robley Rex Louisville VAMC, Louisville, Kentucky, USA
| |
Collapse
|
82
|
Robinson JF, Piersma AH. Toxicogenomic approaches in developmental toxicology testing. Methods Mol Biol 2013; 947:451-73. [PMID: 23138921 DOI: 10.1007/978-1-62703-131-8_31] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The emergence of toxicogenomic applications provides new tools to characterize, classify, and potentially predict teratogens. However, due to the vast number of experimental and statistical procedural steps, toxicogenomic studies are challenging. Here, we guide researchers through the basic framework of conducting toxicogenomic investigations in the field of developmental toxicology, providing examples of biological and technical factors that may influence response and interpretation. Furthermore, we review current, diverse applications of toxicogenomic-based approaches in teratology testing, including exposure-response characterization (dose and duration), chemical classification studies, and cross-model comparisons study designs. This review is intended to guide scientists through the challenging and complex structure of conducting toxicogenomic analyses, while considering the many applications of using toxicogenomics in study designs and the future of these types of "omics" approaches in developmental toxicology.
Collapse
Affiliation(s)
- Joshua F Robinson
- Laboratory for Health Protection Research-National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | | |
Collapse
|
83
|
Nault R, Kim S, Zacharewski TR. Comparison of TCDD-elicited genome-wide hepatic gene expression in Sprague-Dawley rats and C57BL/6 mice. Toxicol Appl Pharmacol 2012; 267:184-91. [PMID: 23238561 DOI: 10.1016/j.taap.2012.11.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/16/2012] [Accepted: 11/19/2012] [Indexed: 12/16/2022]
Abstract
Although the structure and function of the AhR are conserved, emerging evidence suggests that downstream effects are species-specific. In this study, rat hepatic gene expression data from the DrugMatrix database (National Toxicology Program) were compared to mouse hepatic whole-genome gene expression data following treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). For the DrugMatrix study, male Sprague-Dawley rats were gavaged daily with 20μg/kg TCDD for 1, 3 and 5days, while female C57BL/6 ovariectomized mice were examined 1, 3 and 7days after a single oral gavage of 30μg/kg TCDD. A total of 649 rat and 1386 mouse genes (|fold change|≥1.5, P1(t)≥0.99) were differentially expressed following treatment. HomoloGene identified 11,708 orthologs represented across the rat Affymetrix 230 2.0 GeneChip (12,310 total orthologs), and the mouse 4×44K v.1 Agilent oligonucleotide array (17,578 total orthologs). Comparative analysis found 563 and 922 orthologs differentially expressed in response to TCDD in the rat and mouse, respectively, with 70 responses associated with immune function and lipid metabolism in common to both. Moreover, QRTPCR analysis of Ceacam1, showed divergent expression (induced in rat; repressed in mouse) functionally consistent with TCDD-elicited hepatic steatosis in the mouse but not the rat. Functional analysis identified orthologs involved in nucleotide binding and acetyltransferase activity in rat, while mouse-specific responses were associated with steroid, phospholipid, fatty acid, and carbohydrate metabolism. These results provide further evidence that TCDD elicits species-specific regulation of distinct gene networks, and outlines considerations for future comparisons of publicly available microarray datasets.
Collapse
Affiliation(s)
- Rance Nault
- Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
84
|
Bulmer AC, Verkade HJ, Wagner KH. Bilirubin and beyond: a review of lipid status in Gilbert's syndrome and its relevance to cardiovascular disease protection. Prog Lipid Res 2012. [PMID: 23201182 DOI: 10.1016/j.plipres.2012.11.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gilbert's syndrome (GS) is characterized by a benign, mildly elevated bilirubin concentration in the blood. Recent reports show clear protection from cardiovascular disease in this population. Protection of lipids, proteins and other macromolecules from oxidation by bilirubin represents the most commonly accepted mechanism contributing to protection in this group. However, a recent meta-analysis estimated that bilirubin only accounts for ~34% of the cardioprotective effects within analysed studies. To reveal the additional contributing variables we have explored circulating cholesterol and triacylglycerol concentrations, which appear to be decreased in hyperbilirubinemic individuals/animals, and are accompanied by lower body mass index in highly powered studies. These results suggest that bilirubin could be responsible for the development of a lean and hypolipidemic state in GS. Here we also discuss the possible contributing mechanisms that might reduce circulating cholesterol and triacylglycerol concentrations in individuals with syndromes affecting bilirubin metabolism/excretion, which we hope will stimulate future research in the area. In summary, this article is the first review of lipid status in animal and human studies of hyperbilirubinemia and explores possible mechanisms that could contribute to lowering circulating lipid parameters and further explain cardiovascular protection in Gilbert's syndrome.
Collapse
Affiliation(s)
- A C Bulmer
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Australia
| | | | | |
Collapse
|
85
|
Kiss EA, Vonarbourg C. Aryl hydrocarbon receptor: a molecular link between postnatal lymphoid follicle formation and diet. Gut Microbes 2012; 3:577-82. [PMID: 22909905 PMCID: PMC3495797 DOI: 10.4161/gmic.21865] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Intestinal homeostasis results from a complex mutualism between gut microbiota and host cells. Defining the molecular network regulating such mutualism is currently of increasing interest, as its deregulation is reported to lead to increased susceptibility to infections, chronic inflammatory bowel diseases and cancer. Until now, the focus has been on the mechanism, by which the composition of indigenous microbiota shapes the immune system. In a recent study, we have shown that dietary compounds have also the ability to affect innate immune system. This regulation involves aryl hydrocarbon receptor (AhR), a sensor of plant-derived phytochemicals, which mediates the maintenance of Retinoic acid related orphan receptor γ t-expressing innate lymphoid cells (RORγt(+) ILC) in the gut and consequently formation of postnatal lymphoid follicles. Thus, AhR represents the first evidence of a molecular link between diet and immunity at intestinal mucosal surfaces.
Collapse
Affiliation(s)
- Elina A. Kiss
- Institute of Medical Microbiology and Hygiene (IMMH); University of Freiburg Medical Center; Freiburg, Germany,Spemann Graduate School of Biology and Medicine; Freiburg, Germany.,Correspondence to: Elina A. Kiss,
| | - Cedric Vonarbourg
- Institute of Medical Microbiology and Hygiene (IMMH); University of Freiburg Medical Center; Freiburg, Germany
| |
Collapse
|
86
|
Angrish MM, Dominici CY, Zacharewski TR. TCDD-elicited effects on liver, serum, and adipose lipid composition in C57BL/6 mice. Toxicol Sci 2012; 131:108-15. [PMID: 22977169 DOI: 10.1093/toxsci/kfs277] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) mediates alterations in hepatic lipid composition elicited by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In order to further investigate the effects of TCDD, liver, serum, and gonadal white adipose tissue (gWAT) fatty acid methyl esters (FAMEs) and lipids were examined in fasted 4-week-old female mice orally gavaged with 30 µg/kg TCDD at 24, 72, and 168 h postdose. Mean hepatic FAME levels increased (236.7 µmol/g in controls compared with 392.2 µmol/g in TCDD treated) with minimal changes in gWAT and serum. In the liver, TCDD decreased saturated fatty acids (SFAs 16:0, 18:0, 20:0, and 22:0) and increased monounsaturated fatty acids (MUFAs 16:1n7, 18:1n9, and 20:1n9). Hepatic polyunsaturated fatty acids (PUFAs) 20:2n6, 20:3n6, 18:3n3, and 22:5n3 also increased, whereas 20:4n6 and 22:6n3 levels decreased. gWAT PUFAs 20:2n6 and 20:3n6 exhibited modest increases, whereas serum 18:0 decreased and 18:1n9 increased. Serum analyses also identified a ~25% decrease in total cholesterol (CHOL), low-density lipoprotein (LDL), and high-density lipoprotein following TCDD treatment. The decrease in serum CHOL was consistent with the induction of hepatic reverse CHOL transport genes Lcat (2.0-fold), Apoa1 (1.7-fold), and Ldlr (3.6-fold), and the repression of CHOL biosynthesis genes Hmgcs1 (-2.1-fold) and Hmgcr (-2.3-fold). In addition, TCDD decreased serum Apob100 (4.4-fold) and Apob48 (2.2-fold) protein levels, suggesting serum lipid clearance and decreased hepatic efflux. Collectively, the TCDD-elicited decreases in serum lipid levels are consistent with AhR-mediated enhancement of dietary fat distribution to the liver.
Collapse
Affiliation(s)
- Michelle Manente Angrish
- Genetics Program, Center for Integrative ToxicologyMichigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
87
|
Turkez H, Geyikoglu F, Yousef MI, Togar B, Gürbüz H, Celik K, Akbaba GB, Polat Z. Hepatoprotective potential of astaxanthin against 2,3,7,8-tetrachlorodibenzo-p-dioxin in cultured rat hepatocytes. Toxicol Ind Health 2012; 30:101-12. [PMID: 22778115 DOI: 10.1177/0748233712452607] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The purpose of this study was to evaluate the effect of carotenoid astaxanthin (ASTA) on cultured primary rat hepatocytes treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the cell viability (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, MTT), lactate dehydrogenase (LDH) activity, 8-oxo-2-deoxyguanosine (8-OH-dG), total antioxidant capacity (TAC), and total oxidative stress (TOS) levels, and liver micronucleus rates. ASTA (2.5, 5, and 10 µM) was added to cultures alone or simultaneously with TCDD (5 and 10 µM) for 48 h. The results of MTT and LDH assays showed that both doses of TCDD caused significant decrease in cell viability. Also, TCDD significantly increased TOS and decreased TAC level in rat hepatocytes. On the basis of increasing doses, the dioxin caused significant increase in micronucleated hepatocytes) and 8-OH-dG level as compared to control culture. The presence of ASTA with TCDD minimized its effects on primary hepatocytes cultures and DNA damages.
Collapse
Affiliation(s)
- Hasan Turkez
- 1Department of Molecular Biology and Genetics, Faculty of Sciences, Erzurum Technical University, Erzurum, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Kiss EA, Diefenbach A. Role of the Aryl Hydrocarbon Receptor in Controlling Maintenance and Functional Programs of RORγt(+) Innate Lymphoid Cells and Intraepithelial Lymphocytes. Front Immunol 2012; 3:124. [PMID: 22666222 PMCID: PMC3364460 DOI: 10.3389/fimmu.2012.00124] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/02/2012] [Indexed: 12/14/2022] Open
Abstract
Mucosal retinoic receptor-related orphan receptor (ROR)γt-expressing innate lymphoid cells (ILC) play an important role in the defense against intestinal pathogens and in promoting epithelial homeostasis and adaptation, thereby effectively protecting the vertebrate host against intestinal inflammatory disorders. The functional activity of RORγt(+) ILC is under the control of environmental cues. However, the molecular sensors for such environmental signals are largely unknown. Recently, the aryl hydrocarbon receptor (AhR) has emerged as a master regulator for the postnatal maintenance of intestinal RORγt(+) ILC and intraepithelial lymphocytes. AhR is a highly conserved transcription factor whose activity is regulated by environmental and dietary small molecule ligands. Here, we review the role of AhR signaling for the maintenance of intestinal immune cells and its impact on the immunological protection against intestinal infections and debilitating chronic inflammatory disorders.
Collapse
Affiliation(s)
- Elina A Kiss
- Institute of Medical Microbiology and Hygiene, University of Freiburg Freiburg, Germany
| | | |
Collapse
|
89
|
Angrish MM, Mets BD, Jones AD, Zacharewski TR. Dietary fat is a lipid source in 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (TCDD)-elicited hepatic steatosis in C57BL/6 mice. Toxicol Sci 2012; 128:377-86. [PMID: 22539624 DOI: 10.1093/toxsci/kfs155] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-ρ-dioxin (TCDD) increases fatty acid (FA) transport and FA levels resulting in hepatic steatosis in mice. Diet as a source of lipids was investigated using customized diets, stearoyl-CoA desaturase 1 (Scd1) null mice, and (14)C-oleate (18:1n9) uptake studies. C57BL/6 mice fed with 5, 10, or 15% fat or 50, 60 or 70% carbohydrate diets exhibited increased relative liver weight following gavage with 30 µg/kg TCDD for 168 h. Hepatic lipid extract analysis from mice fed with 5, 10, and 15% fat diets identified a dose-dependent increase in total FAs induced by TCDD. Mice fed with fat diet also exhibited a dose-dependent increase in the dietary essential linoleic (18:2n6) and α-linolenic (18:3n3) acids. No dose-dependent FA increase was detected on carbohydrate diets, suggesting dietary fat as a source of lipids in TCDD-induced steatosis as opposed to de novo lipogenesis. TCDD also induced oleate levels threefold in Scd1 null mice that are incapable of desaturating stearate (18:0). This is consistent with oleate representing > 90% of all monounsaturated FAs in rodent chow. Moreover, TCDD increased hepatic (14)C-oleate levels twofold in wild type and 2.4-fold in Scd1 null mice concurrent with the induction of intestinal and hepatic lipid transport genes (Slc27a, Fabp, Ldlr, Cd36, and Apob). In addition, computational scanning identified putative dioxin response elements and in vivo ChIP-chip analysis revealed regions of aryl hydrocarbon receptor (AhR) enrichment in lipid transport genes differentially regulated by TCDD. Collectively, these results suggest the AhR mediates increased uptake of dietary fats that contribute to TCDD-elicited hepatic steatosis.
Collapse
|
90
|
Black MB, Budinsky RA, Dombkowski A, Cukovic D, LeCluyse EL, Ferguson SS, Thomas RS, Rowlands JC. Cross-species comparisons of transcriptomic alterations in human and rat primary hepatocytes exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci 2012; 127:199-215. [PMID: 22298810 DOI: 10.1093/toxsci/kfs069] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A toxicogenomics approach was used to qualitatively and quantitatively compare the gene expression changes in human and rat primary hepatocytes exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Hepatocytes from five individual rats and five individual humans were exposed for 24 h to 11 concentrations of TCDD ranging from 0.00001 to 100nM and a vehicle control. Gene expression changes were analyzed using whole-genome microarrays containing 13,002 orthologs. Significant changes in expression of individual orthologs at any concentration (fold change [FC] ± 1.5 and false discovery rate < 0.05) were higher in the rat (1547) compared with human hepatocytes (475). Only 158 differentially expressed orthologs were common between rats and humans. Enrichment analysis was performed on the differentially expressed orthologs in each species with 49 and 34 enriched human and rat pathways, respectively. Only 12 enriched pathways were shared between the two species. The results demonstrate significant cross-species differences in expression at both the gene and pathway level. Benchmark dose analysis of gene expression changes showed an average 18-fold cross-species difference in potency among differentially expressed orthologs with the rat more sensitive than the human. Similar cross-species differences in potency were observed for signaling pathways. Using the maximum FC in gene expression as a measure of efficacy, the human hepatocytes showed on average a 20% lower efficacy among the individual orthologs showing differential expression. The results provide evidence for divergent cross-species gene expression changes in response to TCDD and are consistent with epidemiological and clinical evidence showing humans to be less sensitive to TCDD-induced hepatotoxicity.
Collapse
Affiliation(s)
- Michael B Black
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Shen H, Robertson LW, Ludewig G. Regulation of paraoxonase 1 (PON1) in PCB 126-exposed male Sprague Dawley rats. Toxicol Lett 2012; 209:291-8. [PMID: 22266287 DOI: 10.1016/j.toxlet.2012.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 01/03/2012] [Accepted: 01/04/2012] [Indexed: 10/14/2022]
Abstract
3,3',4,4',5-Pentachlorobiphenyl (PCB 126), an aryl hydrocarbon receptor (AhR) agonist and most potent dioxin-like PCB congener, significantly alters gene expression, lipid metabolism, and oxidative stress in the liver. PON1, an antioxidant and anti-atherogenic enzyme, is produced in the liver and secreted into the blood where it is incorporated into high density lipoprotein (HDL) and protects LDL and cellular membranes against lipid peroxidation. To explore the regulation of PON1, male Sprague-Dawley rats were treated with ip injections of corn oil or 1 μmol/kg or 5 μmol/kg PCB 126 and euthanized up to two weeks afterwards. Serum total and HDL-cholesterol were increased by low dose and decreased by high dose exposure, while LDL-cholesterol was unchanged. PCB 126 significantly increased hepatic PON1 gene expression and liver and serum PON1 activities. Liver and serum thiobarbituric acid reactive substances levels were not elevated except for high dose and long exposure times. Serum antioxidant capacity was unchanged across all exposure doses and time points. This study, the first describing the regulation of gene expression of PON1 by a PCB congener, raises interesting questions whether elevated PON1 is able to ameliorate PCB 126-induced lipid peroxidation and whether serum PON1 levels may serve as a new biomarker of exposure to dioxin-like compounds.
Collapse
Affiliation(s)
- Hua Shen
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, 100 Oakdale Campus, IREH, Iowa City, IA, USA
| | | | | |
Collapse
|
92
|
Dunnick JK, Brix A, Cunny H, Vallant M, Shockley KR. Characterization of polybrominated diphenyl ether toxicity in Wistar Han rats and use of liver microarray data for predicting disease susceptibilities. Toxicol Pathol 2012; 40:93-106. [PMID: 22267650 PMCID: PMC4816085 DOI: 10.1177/0192623311429973] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The toxicity of polybrominated diphenyl ethers (PBDEs), flame-retardant components, was characterized in offspring from Wistar Han dams exposed by gavage to a PBDE mixture (DE71) starting at gestation day 6 and continuing to weaning on postnatal day (PND) 21. Offspring from the dams underwent PBDE direct dosing by gavage at the same dose as their dams from PND 12 to PND 21, and then after weaning for another thirteen weeks. Liver samples were collected at PND 22 and week 13 for liver gene expression analysis (Affymetrix Rat Genome 230 2.0 Array). Treatment with PBDE induced 1,066 liver gene transcript changes in females and 1,200 transcriptional changes in males at PND 22 (false discovery rate < 0.01), but only 263 liver transcriptional changes at thirteen weeks in male rats (false discovery rate < 0.05). No significant differences in dose response were found between male and female pups. Transcript changes at PND 22 coded for proteins in xenobiotic, sterol, and lipid metabolism, and cell cycle regulation, and overlapped rodent liver transcript patterns after a high-fat diet or phenobarbital exposure. These findings, along with the observed PBDE-induced liver hypertrophy and vacuolization, suggest that long-term PBDE exposure has the potential to modify cell functions that contribute to metabolic disease and/or cancer susceptibilities.
Collapse
Affiliation(s)
- June K Dunnick
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | |
Collapse
|
93
|
Robinson JF, Pennings JLA, Piersma AH. A review of toxicogenomic approaches in developmental toxicology. Methods Mol Biol 2012; 889:347-371. [PMID: 22669676 DOI: 10.1007/978-1-61779-867-2_22] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Over the past decade, the use of gene expression profiling (i.e., toxicogenomics or transcriptomics) has been established as the vanguard "omics" technology to investigate exposure-induced molecular changes that underlie the development of disease. As this technology quickly advances, researchers are striving to keep pace in grasping the complexity of toxicogenomic response while at the same time determine its applicability for the field of developmental toxicology. Initial studies suggest toxicogenomics to be a promising tool for multiple types of study designs, including exposure-response investigations (dose and duration), chemical classification, and model comparisons. In this review, we examine the use of toxicogenomics in developmental toxicology, discussing biological and technical factors that influence response and interpretation. Additionally, we provide a framework to guide toxicogenomic investigations in the field of developmental toxicology.
Collapse
Affiliation(s)
- Joshua F Robinson
- National Institute for Public Health and the Environment-RIVM, Bilthoven, The Netherlands
| | | | | |
Collapse
|
94
|
Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol 2011; 259:270-80. [PMID: 22230336 DOI: 10.1016/j.taap.2011.12.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 12/13/2011] [Accepted: 12/15/2011] [Indexed: 11/21/2022]
Abstract
We have analyzed transcriptomic, proteomic and metabolomic profiles of hepatoma cells cultivated inside a microfluidic biochip with or without acetaminophen (APAP). Without APAP, the results show an adaptive cellular response to the microfluidic environment, leading to the induction of anti-oxidative stress and cytoprotective pathways. In presence of APAP, calcium homeostasis perturbation, lipid peroxidation and cell death are observed. These effects can be attributed to APAP metabolism into its highly reactive metabolite, N-acetyl-p-benzoquinone imine (NAPQI). That toxicity pathway was confirmed by the detection of GSH-APAP, the large production of 2-hydroxybutyrate and 3-hydroxybutyrate, and methionine, cystine, and histidine consumption in the treated biochips. Those metabolites have been reported as specific biomarkers of hepatotoxicity and glutathione depletion in the literature. In addition, the integration of the metabolomic, transcriptomic and proteomic collected profiles allowed a more complete reconstruction of the APAP injury pathways. To our knowledge, this work is the first example of a global integration of microfluidic biochip data in toxicity assessment. Our results demonstrate the potential of that new approach to predictive toxicology.
Collapse
|
95
|
Prot JM, Leclerc E. The Current Status of Alternatives to Animal Testing and Predictive Toxicology Methods Using Liver Microfluidic Biochips. Ann Biomed Eng 2011; 40:1228-43. [DOI: 10.1007/s10439-011-0480-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/23/2011] [Indexed: 01/17/2023]
|
96
|
Lee J, Cella M, McDonald K, Garlanda C, Kennedy GD, Nukaya M, Mantovani A, Kopan R, Bradfield CA, Newberry R, Colonna M. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat Immunol 2011; 13:144-51. [PMID: 22101730 PMCID: PMC3468413 DOI: 10.1038/ni.2187] [Citation(s) in RCA: 586] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 11/14/2011] [Indexed: 12/13/2022]
Abstract
Innate lymphoid cells (ILCs) of the ILC22 type protect the intestinal mucosa from infection by secreting interleukin 22 (IL-22). ILC22 cells include NKp46(+) and lymphoid tissue-inducer (LTi)-like subsets that express the aryl hydrocarbon receptor (AHR). Here we found that Ahr(-/-) mice had a considerable deficit in ILC22 cells that resulted in less secretion of IL-22 and inadequate protection against intestinal bacterial infection. Ahr(-/-) mice also lacked postnatally 'imprinted' cryptopatches and isolated lymphoid follicles (ILFs), but not embryonically 'imprinted' Peyer's patches. AHR induced the transcription factor Notch, which was required for NKp46(+) ILCs, whereas LTi-like ILCs, cryptopatches and ILFs were partially dependent on Notch signaling. Thus, AHR was essential for ILC22 cells and postnatal intestinal lymphoid tissues. Moreover, ILC22 subsets were heterogeneous in their requirement for Notch and their effect on the generation of intestinal lymphoid tissues.
Collapse
Affiliation(s)
- Jacob Lee
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Keely McDonald
- Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Cecilia Garlanda
- Laboratory of Immunology and Inflammation, Istituto Clinico Humanitas, IRCCS, Milan, Italy
| | - Gregory D. Kennedy
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1599, USA
| | - Manabu Nukaya
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1599, USA
| | - Alberto Mantovani
- Laboratory of Immunology and Inflammation, Istituto Clinico Humanitas, IRCCS, Milan, Italy
| | - Raphael Kopan
- Developmental Biology and Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Christopher A. Bradfield
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1599, USA
| | - Rodney Newberry
- Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
97
|
Türkez H, Geyikoğlu F, Yousef MI. Modulatory effect of l-glutamine on 2,3,7,8 tetrachlorodibenzo-p-dioxin-induced liver injury in rats. Toxicol Ind Health 2011; 28:663-72. [DOI: 10.1177/0748233711420474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The aim of this study was to explore the effectiveness of l-glutamine (Gln) in alleviating the toxicity of 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) in liver of rats. Rats were intraperitoneally administered Gln and TCDD doses daily for 21 days. In the liver of rats, the biochemical tests, pathological examination and micronucleus (MN) test were performed. TCDD significantly decreased the activities of antioxidant enzymes and serious pathological findings. Moreover, the rate of MNs in hepatocytes increased after treatment with dioxin. In rats treated with Gln alone, the MNs remained unchanged, but the ratio of glutathione (GSH) and the activity of glutathione peroxidase (GSH-Px) were significantly increased. Gln also prevented the suppression of GSH-Px (except for superoxide dismutase and catalase) and GSH in the livers of animals exposed to TCDD and displayed a strong protective effect against MNs. Thus, our findings for Gln might provide new insight into the development of therapeutic and preventive approaches in TCDD toxicity.
Collapse
Affiliation(s)
- Hasan Türkez
- Department of Biology, Atatürk University, Erzurum, Turkey
| | | | - Mokhtar I Yousef
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
98
|
Türkez H, Geyikoglu F, Yousef MI. Ameliorative effect of docosahexaenoic acid on 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced histological changes, oxidative stress, and DNA damage in rat liver. Toxicol Ind Health 2011; 28:687-96. [PMID: 21996711 DOI: 10.1177/0748233711420475] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant that leads to the development of hepatotoxicity. Docosahexaenoic acid (DHA) has been proposed to counteract oxidative stress and improve antioxidant status, and several studies suggest that supplementations with antioxidants can influence hepatotoxicity. The aim of the current study was to explore the role of DHA in modulating the toxicity of TCDD in the liver of Sprague-Dawley rats. Animals were assigned to four groups (n = 5): control (only dimethyl sulfoxide (DMSO)), 8 μg/kg body weight (b.w.) TCDD in DMSO solution; 250 mg/kg b.w. DHA and TCDD plus DHA; respectively. Rats were intraperitoneally administered their respective doses daily for 21 days. On day 21, the animals were killed, and then biochemical tests, pathological examination, and micronucleus (MN) assay were performed in the liver. Our results showed that the activities of antioxidant enzymes were significantly decreased and serious pathological findings were established in rats that received TCDD. Beside the rate of MNs in hepatocytes was increased after the treatment with dioxin. In rats treated with DHA alone, MNs were not changed and the activities of antioxidant enzymes were significantly increased. The presence of DHA with TCDD alleviated its pathological effects in hepatic tissue. DHA also prevented the suppression of antioxidant enzymes in the livers of animals exposed to TCDD and displayed a strong protective effect against MNs. It can be concluded that DHA has beneficial influences and could be able to antagonize TCDD toxicity in liver.
Collapse
Affiliation(s)
- Hasan Türkez
- Department of Biology, Atatürk University, Erzurum, Turkey
| | | | | |
Collapse
|
99
|
Wang B, Robertson LW, Wang K, Ludewig G. Species difference in the regulation of cytochrome P450 2S1: lack of induction in rats by the aryl hydrocarbon receptor agonist PCB126. Xenobiotica 2011; 41:1031-43. [PMID: 21970748 DOI: 10.3109/00498254.2011.603763] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CYP2S1 is an evolutionarily conserved, mainly extra-hepatic member of the CYP2 family and proposed to be regulated by the aryl hydrocarbon receptor (AhR). The present study explores AhR's regulation of CYP2S1 in male Sprague Dawley rats using PCB126 (3,3',4,4',5-pentachlorobiphenyl), the most potent AhR agonist among the PCBs. Additionally, CYP2S1 expression was examined after treatments with the classic CYP-inducers β-naphthoflavone (β-NF, AhR activator), phenobarbital (PB, CAR activator) and dexamethasone (Dex, PXR activator). CYP2S1 and CYP1A1/2, CYP1B1, CYP2B and CYP3A mRNAs were measured in liver, lung, spleen, stomach, kidney, and thymus at different time points. Constitutive CYP2S1 was expressed at comparable levels to other CYPs with the highest expression levels in stomach, kidney and lung. CYP2S1 mRNA was only non-significantly elevated by β-NF in liver tissues. PCB126 did not increase CYP2S1 mRNA in any organ and at any time point examined despite a significant induction of CYP1 genes. PCB126 reduced CYP2S1 mRNA by 40% (not significant) from the 7th post-exposure day in thymus. PB and Dex had no effect on CYP2S1 mRNA levels. These observations show that in this model CYP2S1 is not, or only weakly, regulated by AhR and not induced by CAR or PXR activators.
Collapse
Affiliation(s)
- Bingxuan Wang
- Human Toxicology, University of Iowa, Iowa City, USA
| | | | | | | |
Collapse
|
100
|
Søfteland L, Petersen K, Stavrum AK, Wu T, Olsvik PA. Hepatic in vitro toxicity assessment of PBDE congeners BDE47, BDE153 and BDE154 in Atlantic salmon (Salmo salar L.). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:246-263. [PMID: 21767471 DOI: 10.1016/j.aquatox.2011.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 03/11/2011] [Accepted: 03/22/2011] [Indexed: 05/31/2023]
Abstract
The brominated flame retardant congeners BDE47, BDE153 and BDE154 are among the congeners accumulating to the highest degree in fish. In order to gain knowledge about the toxicological effects of PBDEs in fish, microarray-based transcriptomic and 2D-DIGE/MALDI-TOF/TOF proteomic approaches were used to screen for effects in primary Atlantic salmon hepatocytes exposed to these congeners alone or in combination (PBDE-MIX). A small set of stress related transcripts and proteins were differentially expressed in the PBDE exposed hepatocytes. The PBDE-MIX, and BDE153 to a lesser degree, seems to have induced metabolic disturbances by affecting several pathways related to glucose homeostasis. Further, effects on cell cycle control and proliferation signal pathways in PBDE-MIX-exposed hepatocytes clearly suggest that the PBDE exposure affected cell proliferation processes. CYP1A was 7.41- and 7.37-fold up-regulated in hepatocytes exposed to BDE47 and PBDE-MIX, respectively, and was the only biotransformation pathway affected by the PBDE exposure. The factorial design and PLS regression analyses of the effect of the PBDE-MIX indicated that BDE47 contributed the most to the observed CYP1A response, suggesting that this congener should be incorporated in the toxic equivalent (TEQ) concept in future risk assessment of dioxin-like chemicals. Additionally, a significant up-regulation of the ER-responsive genes VTG and ZP3 was observed in cells exposed to BDE47 and PBDE-MIX. Further analyses suggested that BDE47 and BDE154 have an estrogenic effect in male fish. The data also suggested an antagonistic interaction between BDE153 and BDE154. In conclusion, this study shows that PBDEs can affect several biological systems in Atlantic salmon cells, and demonstrates the need for more studies on the simultaneous exposure to chemical mixtures to identify combined effects of chemicals.
Collapse
Affiliation(s)
- Liv Søfteland
- National Institute of Nutrition and Seafood Research, PO Box 2029 Nordnes, N-5817 Bergen, Norway.
| | | | | | | | | |
Collapse
|