51
|
Drinking beyond a lifetime: New and emerging insights into paternal alcohol exposure on subsequent generations. Alcohol 2015; 49:461-70. [PMID: 25887183 DOI: 10.1016/j.alcohol.2015.02.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 02/07/2023]
Abstract
Alcohol-use disorder (AUD) is prevalent and associated with substantial socioeconomic costs. While heritability estimates of AUD are ∼50%, identifying specific gene variants associated with risk for AUD has proven challenging despite considerable investment. Emerging research into heritability of complex diseases has implicated transmission of epigenetic variants in the development of behavioral phenotypes, including drug preference and drug-induced behavior. Several recent rodent studies have specifically focused on paternal transmission of epigenetic variants, which is especially relevant because sires are not present for offspring rearing and changes to offspring phenotype are assumed to result from modifications to the sperm epigenome. While considerable interest in paternal transmission of epigenetic variants has emerged recently, paternal alcohol exposures have been studied for 30+ years with interesting behavioral and physiologic effects noted on offspring. However, only recently, with improvements in technology to identify epigenetic modifications in germ cells, has it been possible to identify mechanisms by which paternal ethanol exposure alters offspring behavior. This review presents an overview of epigenetic inheritance in the context of paternal ethanol exposure and suggests future studies to identify specific effects of paternal ethanol exposure on offspring behavior and response to ethanol.
Collapse
|
52
|
Svoboda P, Franke V, Schultz RM. Sculpting the Transcriptome During the Oocyte-to-Embryo Transition in Mouse. Curr Top Dev Biol 2015; 113:305-49. [PMID: 26358877 DOI: 10.1016/bs.ctdb.2015.06.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In mouse, the oocyte-to-embryo transition entails converting a highly differentiated oocyte to totipotent blastomeres. This transition is driven by degradation of maternal mRNAs, which results in loss of oocyte identity, and reprogramming of gene expression during the course of zygotic gene activation, which occurs primarily during the two-cell stage and confers blastomere totipotency. Full-grown oocytes are transcriptionally quiescent and mRNAs are remarkably stable in oocytes due to the RNA-binding protein MSY2, which stabilizes mRNAs, and low activity of the 5' and 3' RNA degradation machinery. Oocyte maturation initiates a transition from mRNA stability to instability due to phosphorylation of MSY2, which makes mRNAs more susceptible to the RNA degradation machinery, and recruitment of dormant maternal mRNAs that encode for critical components of the 5' and 3' RNA degradation machinery. Small RNAs (miRNA, siRNA, and piRNA) play little, if any, role in mRNA degradation that occurs during maturation. Many mRNAs are totally degraded but a substantial fraction is only partially degraded, their degradation completed by the end of the two-cell stage. Genome activation initiates during the one-cell stage, is promiscuous, low level, and genome wide (and includes both inter- and intragenic regions) and produces transcripts that are inefficiently spliced and polyadenylated. The major wave of genome activation in two-cell embryos involves expression of thousands of new genes. This unique pattern of gene expression is the product of maternal mRNAs recruited during maturation that encode for transcription factors and chromatin remodelers, as well as dramatic changes in chromatin structure due to incorporation of histone variants and modified histones.
Collapse
Affiliation(s)
- Petr Svoboda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Vedran Franke
- Bioinformatics Group, Division of Biology, Faculty of Science, Zagreb University, Zagreb, Croatia
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
53
|
Wang B, Wang Y, Zhang M, Du Y, Zhang Y, Xing X, Zhang L, Su J, Zhang Y, Zheng Y. MicroRNA-34c expression in donor cells influences the early development of somatic cell nuclear transfer bovine embryos. Cell Reprogram 2015; 16:418-27. [PMID: 25437869 DOI: 10.1089/cell.2014.0016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The essence of the reprogramming activity of somatic cell nuclear transfer (SCNT) embryos is to produce normal fertilized embryos. However, reprogramming of somatic cells is not as efficient as the reprogramming of sperm. In this report, we describe the effect of an inducible, specific miR-34 microRNA expression in donor cells that enables a similar level of sperm:transgene expression on the early development of SCNT embryos. Our results showed that donor cells with doxycycline (dox)-induced miR-34c expression for the preparation of SCNT embryos resulted in altered developmental rates, histone modification (H3K9ac and H3K4me3), and extent of apoptosis. The cleavage rate and blastocyst formation of the induced nuclear transfer (NT) group were significantly increased. The immunofluorescence signal of H3K9ac in embryos in the induced NT group significantly increased in two-cell- and eight-cell-stage embryos; that of H3K4me3 increased significantly in eight-cell-stage embryos. Although significant differences in staining signals of apoptosis were not detected between groups, lower apoptosis levels were observed in the induced NT group. In conclusion, miR-34c expression induced by dox treatment enhances the developmental potential of SCNT embryos, modifies the epigenetic status, and changes blastocyst quality.
Collapse
Affiliation(s)
- Bo Wang
- 1 College of Veterinary Medicine, Northwest A&F University , Yangling, 712100, Shaanxi, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Zhao X, Hao H, Du W, Zhu H. Effect of vitrification on the microRNA transcriptome in mouse blastocysts. PLoS One 2015; 10:e0123451. [PMID: 25853900 PMCID: PMC4390370 DOI: 10.1371/journal.pone.0123451] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 03/03/2015] [Indexed: 12/13/2022] Open
Abstract
Vitrification is commonly used in the cryopreservation of mammalian blastocysts to overcome the temporal and spatial limitations of embryo transfer. Previous studies have shown that the implantation ability of vitrified blastocysts is impaired and that microRNAs (miRNAs) regulate the critical genes for embryo implantation. However, little information is available about the effect of vitrification on the miRNA transcriptome in blastocysts. In the present study, the miRNA transcriptomes in fresh and vitrified mouse blastocysts were analyzed by miRNA Taqman assay based method, and the results were validated using quantitative real-time PCR (qRT-PCR). Then, the differentially expressed miRNAs were assessed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Overall, 760 known mouse miRNAs were detected in the vitrified and fresh mouse blastocysts. Of these, the expression levels of five miRNAs differed significantly: in the vitrified blastocysts, four miRNAs (mmu-miR-199a-5p, mmu-miR-329-3p, mmu-miR-136-5p and mmu-miR-16-1-3p) were upregulated, and one (mmu-miR-212-3p) was downregulated. The expression levels of all miRNAs measured by the miRNA Taqman assay based method and qRT-PCR were consistent. The four upregulated miRNAs were predicted to regulate 877 candidate target genes, and the downregulated miRNA was predicted to regulate 231 genes. The biological analysis further showed that the differentially expressed miRNAs mainly regulated the implantation of embryos. In conclusion, the results of our study showed that vitrification significantly altered the miRNA transcriptome in mouse blastocysts, which may decrease the implantation potential of vitrified blastocysts.
Collapse
Affiliation(s)
- Xueming Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, P. R. China
| | - Haisheng Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, P. R. China
| | - Weihua Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, P. R. China
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, P. R. China
- * E-mail:
| |
Collapse
|
55
|
Rando OJ, Simmons RA. I'm eating for two: parental dietary effects on offspring metabolism. Cell 2015; 161:93-105. [PMID: 25815988 PMCID: PMC4465102 DOI: 10.1016/j.cell.2015.02.021] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/22/2015] [Accepted: 02/06/2015] [Indexed: 12/18/2022]
Abstract
It has long been understood that the pathogenesis of complex diseases such as diabetes includes both genetic and environmental components. More recently, it has become clear that not only does an individual's environment influence their own metabolism, but in some cases, the environment experienced by their parents may also contribute to their risk of metabolic disease. Here, we review the evidence that parental diet influences metabolic phenotype in offspring in mammals and provide a current survey of our mechanistic understanding of these effects.
Collapse
Affiliation(s)
- Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Rebecca A Simmons
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
56
|
Zhang Y, Zeng CJ, He L, Ding L, Tang KY, Peng WP. Selection of endogenous reference microRNA genes for quantitative reverse transcription polymerase chain reaction studies of boar spermatozoa cryopreservation. Theriogenology 2015; 83:634-41. [DOI: 10.1016/j.theriogenology.2014.10.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 10/28/2014] [Accepted: 10/28/2014] [Indexed: 10/24/2022]
|
57
|
Small RNAs: Their Possible Roles in Reproductive Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 868:49-79. [PMID: 26178845 DOI: 10.1007/978-3-319-18881-2_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Posttranscriptional gene regulation is a regulatory mechanism which occurs "above the genome" and confers different phenotypes and functions within a cell. Transcript and protein abundance above the level of transcription can be regulated via noncoding ribonucleic acid (ncRNA) molecules, which potentially play substantial roles in the regulation of reproductive function. MicroRNA (miRNA), endogenous small interfering RNA (endo-siRNA), and PIWI-interacting RNA (piRNA) are three primary classes of small ncRNA. Similarities and distinctions between their biogenesis and in the interacting protein machinery that facilitate their function distinguish these three classes. Characterization of the expression and importance of the critical components for the biogenesis of each class in different tissues contributes a clearer understanding of their contributions in specific reproductive tissues and their ability to influence fertility in both males and females. This chapter discusses the expression and potential roles of miRNA, endo-siRNA, and piRNA in the regulation of reproductive function. Additionally, this chapter elaborates on investigations aimed to address and characterize specific mechanisms through which miRNA may influence infertility and the use of miRNA as biomarkers associated with several reproductive calamities such as defective spermatogenesis in males, polycystic ovarian failure, endometriosis and obesity, and chemical-induced subfertility.
Collapse
|
58
|
Du Y, Wang X, Wang B, Chen W, He R, Zhang L, Xing X, Su J, Wang Y, Zhang Y. Deep sequencing analysis of microRNAs in bovine sperm. Mol Reprod Dev 2014; 81:1042-52. [PMID: 25279827 DOI: 10.1002/mrd.22426] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/02/2014] [Indexed: 11/10/2022]
Abstract
microRNAs (miRNAs) are small non-coding RNAs that participates in the regulation of many physiological pathways, but a role for spermatozoon-delivered miRNAs in fertilization and embryonic development remains controversial. A library of miRNAs in bovine sperm was constructed using Illumina high-throughput sequencing technology, along with the predication and the pathway analysis of target genes. miRNAs in mammalian spermatozoon were systematically investigated, and a protocol for RNA isolation from the cauda region of an epididymal biopsy was established. Unique sequences that were 18-26 nucleotides in length were mapped to specific precursors in miRBase 20.0 using BLAST. A total of 951 known miRNAs and 8 novel, highly expressed miRNA candidates were identified. The search for endogenous sperm miRNAs will contribute to a preliminary database for functional and molecular mechanistic studies in embryonic development and sperm epigenetic programming.
Collapse
Affiliation(s)
- Yue Du
- Key Laboratory of Animal Biotechnology of Ministry of Agriculture, Northwest A & F University, Yangling, Shaanxi, China; College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Casas E, Vavouri T. Sperm epigenomics: challenges and opportunities. Front Genet 2014; 5:330. [PMID: 25278962 PMCID: PMC4166955 DOI: 10.3389/fgene.2014.00330] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/03/2014] [Indexed: 11/16/2022] Open
Abstract
Sperm is a highly differentiated cell type whose function is to deliver a haploid genome to the oocyte. The sperm “epigenomes” were traditionally considered to be insignificant – the sperm is transcriptionally inactive, its genome is packaged in sperm-specific protamine toroids instead of nucleosomes, and its DNA methylation profile is erased immediately post-fertilization. Yet, in recent years there has been an increase in the number of reported cases of apparent epigenetic inheritance through the male germline, suggesting that the sperm epigenome may transmit information between generations. At the same time, technical advances have made the genome-wide profiling of different layers of the sperm epigenome feasible. As a result, a large number of datasets have been recently generated and analyzed with the aim to better understand what non-genetic material is contained within the sperm and whether it has any function post-fertilization. Here, we provide an overview of the current knowledge of the sperm epigenomes as well as the challenges in analysing them and the opportunities in understanding the potential non-genetic carriers of information in sperm.
Collapse
Affiliation(s)
- Eduard Casas
- Institute of Predictive and Personalized Medicine of Cancer Barcelona, Spain
| | - Tanya Vavouri
- Institute of Predictive and Personalized Medicine of Cancer Barcelona, Spain
| |
Collapse
|
60
|
Microinjection free delivery of miRNA inhibitor into zygotes. Sci Rep 2014; 4:5417. [PMID: 24957209 PMCID: PMC4067617 DOI: 10.1038/srep05417] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/03/2014] [Indexed: 11/21/2022] Open
Abstract
The development of gene delivery systems into embryos is challenging due to technical difficulties, delivery efficiency and toxicity. Here, we developed an organic compound (VisuFect)-mediated gene delivery system for zygotes. The VisuFect, which is hydrophilic and Cy5.5-labeled, was conjugated with poly(A) oligo (VFA). The VFA into CHO cells showed clathrin-mediated internalization and no toxicity. The VFA successfully penetrated through the zona pellucida of fertilized eggs of various species including pigs, zebrafish, drosophilas and mice. The experiment with VisuFect-mediated delivery of the miR34c inhibitor showed similar results with direct microinjection of the miR34c inhibitor by suppressing the development of zygotes up to the blastocyst stage. Noticeable features of the VisuFect will provide great benefits for further studies on gene function in sperms and embryos.
Collapse
|
61
|
Abstract
Although mounting evidence in mammals suggests that certain ancestral environmental exposures can influence the phenotype in future generations, mechanisms underlying such intergenerational information transfer remain unclear. A recent report suggests that RNA isolated from sperm can inform offspring of a father's history of early life trauma (Gapp et al., 2014).
Collapse
Affiliation(s)
- Upasna Sharma
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
62
|
Park SJ, Komata M, Inoue F, Yamada K, Nakai K, Ohsugi M, Shirahige K. Inferring the choreography of parental genomes during fertilization from ultralarge-scale whole-transcriptome analysis. Genes Dev 2014; 27:2736-48. [PMID: 24352427 PMCID: PMC3877761 DOI: 10.1101/gad.227926.113] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The mechanisms underlying parental genome coordination upon mammalian fertilization remain elusive due to difficulties in preparing large numbers of high-quality preimplantation cells. Here, Park et al. collect an unprecedented number of mouse oocytes and establish detailed transcriptional profiles for four early embryonic stages and parthenogenetic development. Bioinformatic analysis identifies a distinctive gene regulatory network activated in embryos after fertilization compared with parthenotes. This large-scale profile of early mouse embryos yields a valuable resource for developmental biology and stem cell research. Fertilization precisely choreographs parental genomes by using gamete-derived cellular factors and activating genome regulatory programs. However, the mechanism remains elusive owing to the technical difficulties of preparing large numbers of high-quality preimplantation cells. Here, we collected >14 × 104 high-quality mouse metaphase II oocytes and used these to establish detailed transcriptional profiles for four early embryo stages and parthenogenetic development. By combining these profiles with other public resources, we found evidence that gene silencing appeared to be mediated in part by noncoding RNAs and that this was a prerequisite for post-fertilization development. Notably, we identified 817 genes that were differentially expressed in embryos after fertilization compared with parthenotes. The regulation of these genes was distinctly different from those expressed in parthenotes, suggesting functional specialization of particular transcription factors prior to first cell cleavage. We identified five transcription factors that were potentially necessary for developmental progression: Foxd1, Nkx2-5, Sox18, Myod1, and Runx1. Our very large-scale whole-transcriptome profile of early mouse embryos yielded a novel and valuable resource for studies in developmental biology and stem cell research. The database is available at http://dbtmee.hgc.jp.
Collapse
Affiliation(s)
- Sung-Joon Park
- Human Genome Center, the Institute of Medical Science, the University of Tokyo, Tokyo 108-8639, Japan
| | | | | | | | | | | | | |
Collapse
|
63
|
|
64
|
Saab BJ, Mansuy IM. Neurobiological disease etiology and inheritance: an epigenetic perspective. J Exp Biol 2014; 217:94-101. [DOI: 10.1242/jeb.089995] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epigenetic marks in mammals are essential to properly control the activity of the genome. They are dynamically regulated during development and adulthood, and can be modulated by environmental factors throughout life. Changes in the epigenetic profile of a cell can be positive and favor the expression of advantageous genes such as those linked to cell signaling and tumor suppression. However, they can also be detrimental and alter the functions of important genes, thereby leading to disease. Recent evidence has further highlighted that some epigenetic marks can be maintained across meiosis and be transmitted to the subsequent generation to reprogram developmental and cellular features. This short review describes current knowledge on the potential impact of epigenetic processes activated by environmental factors on the inheritance of neurobiological disease risk. In addition, the potential adaptive value of epigenetic inheritance, and relevant current and future questions are discussed.
Collapse
Affiliation(s)
- Bechara J. Saab
- Brain Research Institute, University of Zurich/ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Isabelle M. Mansuy
- Brain Research Institute, University of Zurich/ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
65
|
Abstract
The former perception of the spermatozoon as a delivery device of the male genome has been expanded to include a new understanding of the cell's complex role in fertilization. Once the spermatozoon reaches the oocyte, it triggers egg activation and orchestrates the stages of pre- and post-fertilization in a preprogrammed pattern while tapping the oocyte's resources in an effort to generate a new life.
Collapse
Affiliation(s)
- Queenie V Neri
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, 1305 York Avenue, Suite 720, New York, NY, 10021, USA
| | | | | | | |
Collapse
|
66
|
Dere E, Anderson LM, Hwang K, Boekelheide K. Biomarkers of chemotherapy-induced testicular damage. Fertil Steril 2013; 100:1192-202. [PMID: 24182554 DOI: 10.1016/j.fertnstert.2013.09.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/27/2013] [Accepted: 09/12/2013] [Indexed: 12/16/2022]
Abstract
Increasing numbers of men are having or wanting children after chemotherapy treatment. This can be attributed to improvements in cancer therapies that increase survival. However, a side effect of most chemotherapy drugs is disruption of spermatogenesis and a drastic reduction in sperm count and quality. Although many men eventually recover reproductive function, as indicated by normal semen analyses, there is no clinical test that can assess sperm quality at a high level of sensitivity. Sperm fluorescent in situ hybridization (i.e., FISH) and several different tests for deoxyribonucleic acid (DNA) fragmentation have been used infrequently in clinical assessment. Animal models of chemotherapy-induced testicular damage are currently being used to identify potential molecular biomarkers that may be translatable to humans-these include sperm messenger RNAs, microRNAs, histone modifications, and DNA methylation patterns. Changes in these molecular measurements are quantitative and sensitive, potentially making them important clinical biomarkers of testicular function after chemotherapy treatment.
Collapse
Affiliation(s)
- Edward Dere
- Division of Urology, Rhode Island Hospital, Providence, Rhode Island; Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | | | | | | |
Collapse
|
67
|
Hale BJ, Yang CX, Ross JW. Small RNA regulation of reproductive function. Mol Reprod Dev 2013; 81:148-59. [PMID: 24167089 DOI: 10.1002/mrd.22272] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/20/2013] [Indexed: 12/17/2022]
Abstract
Post-transcriptional gene regulation is one mechanism that occurs "above the genome," allowing the cells of an organism to have dramatically different phenotypes and functions. Non-coding ribonucleic acid (ncRNA) molecules regulate transcript and protein abundance above the level of transcription, and appear to play substantial roles in regulation of reproductive tissues. Three primary classes of small ncRNA are microRNA (miRNA), endogenous small interfering RNA (endo-siRNA), and PIWI-interacting RNA (piRNA). These RNA classes have similarities and clear distinctions between their biogenesis and in the interacting protein machinery that facilitate their effects on cellular phenotype. Characterization of the expression and importance of the critical components for the biogenesis of each class in different tissues is continuously contributing a better understanding of each of these RNA classes in different reproductive cell types. Here, we discuss the expression and potential roles of miRNA, endo-siRNA, and piRNA in reproduction from germ-cell development to pregnancy establishment and placental function. Additionally, the potential contribution of RNA binding proteins, long ncRNAs, and the more recently discovered circular RNAs (circRNAs) in relation to small RNA function is discussed.
Collapse
Affiliation(s)
- Benjamin J Hale
- Department of Animal Science, Iowa State University, Ames, Iowa
| | | | | |
Collapse
|
68
|
Abstract
microRNAs (miRNAs) are a class of small noncoding RNA that bind to complementary sequences in the untranslated regions of multiple target mRNAs resulting in posttranscriptional regulation of gene expression. The recent discovery and expression-profiling studies of miRNAs in domestic livestock have revealed both their tissue-specific and temporal expression pattern. In addition, breed-dependent expression patterns as well as single nucleotide polymorphisms in either the miRNA or in the target mRNA binding site have revealed associations with traits of economic importance and highlight the potential use of miRNAs in future genomic selection programs.
Collapse
Affiliation(s)
- Attia Fatima
- Department of Bioinformatics, National University of Ireland Galway, Galway, Ireland; and
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Mellows Campus, Athenry, Co. Galway, Ireland
| | - Dermot G. Morris
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Mellows Campus, Athenry, Co. Galway, Ireland
| |
Collapse
|
69
|
Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J Neurosci 2013; 33:9003-12. [PMID: 23699511 DOI: 10.1523/jneurosci.0914-13.2013] [Citation(s) in RCA: 513] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neuropsychiatric disease frequently presents with an underlying hyporeactivity or hyperreactivity of the HPA stress axis, suggesting an exceptional vulnerability of this circuitry to external perturbations. Parental lifetime exposures to environmental challenges are associated with increased offspring neuropsychiatric disease risk, and likely contribute to stress dysregulation. While maternal influences have been extensively examined, much less is known regarding the specific role of paternal factors. To investigate the potential mechanisms by which paternal stress may contribute to offspring hypothalamic-pituitary-adrenal (HPA) axis dysregulation, we exposed mice to 6 weeks of chronic stress before breeding. As epidemiological studies support variation in paternal germ cell susceptibility to reprogramming across the lifespan, male stress exposure occurred either throughout puberty or in adulthood. Remarkably, offspring of sires from both paternal stress groups displayed significantly reduced HPA stress axis responsivity. Gene set enrichment analyses in offspring stress regulating brain regions, the paraventricular nucleus (PVN) and the bed nucleus of stria terminalis, revealed global pattern changes in transcription suggestive of epigenetic reprogramming and consistent with altered offspring stress responsivity, including increased expression of glucocorticoid-responsive genes in the PVN. In examining potential epigenetic mechanisms of germ cell transmission, we found robust changes in sperm microRNA (miR) content, where nine specific miRs were significantly increased in both paternal stress groups. Overall, these results demonstrate that paternal experience across the lifespan can induce germ cell epigenetic reprogramming and impact offspring HPA stress axis regulation, and may therefore offer novel insight into factors influencing neuropsychiatric disease risk.
Collapse
|
70
|
Epigenetics in fertilization and preimplantation embryo development. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 113:423-32. [PMID: 23454467 DOI: 10.1016/j.pbiomolbio.2013.02.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 01/10/2013] [Accepted: 02/20/2013] [Indexed: 12/30/2022]
Abstract
Epigenetic reprogramming of the parental genomes upon fertilization is required for proper embryonic development. It has long been appreciated that asymmetric distribution of histone modifications as well as differences in the level of DNA methylation exist between the parental pronuclei in mammalian zygotes and during preimplantation development. The speed at which the paternal genome is demethylated after entering the oocyte and the fact that rapid demethylation occurs in the absence of DNA replication have led many to hypothesize that a DNA demethylase must exist. However, such an enzyme has not been found. That the genome of mammalian preimplantation embryos undergo a wave of global demethylation was first reported 25 years ago but only in the past three years has data surfaced that can partially explain the elusive nature of this phenomenon. In addition to the global reorganization of the methylation and histone modification patterns, oocyte development prior to germinal vesicle breakdown involves the production of numerous small RNA, including miRNA. Despite their presence, miRNA functional activity is thought to be limited in the mature mouse oocyte. Additionally, molecular signatures in the 3' untranslated region of maternally expressed transcripts may impact mRNA stability during the transcriptionally quiescent period following germinal vesicle breakdown and prior to the maternal to zygote transition. In this review, we reference some of the recent works which attempt to shed light into the importance of the dynamic epigenetic landscape observed during oocyte maturation and preimplantation embryo development in mammals.
Collapse
|
71
|
Amaral A, Ramalho-Santos J. The male gamete is not a somatic cell--the possible meaning of varying sperm RNA levels. Antioxid Redox Signal 2013; 18:179-80. [PMID: 22703389 DOI: 10.1089/ars.2012.4715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Alexandra Amaral
- Biology of Reproduction and Human Fertility Research Group, Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
- Human Genetics Research Group, IDIBAPS, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Clinic Hospital, Barcelona, Spain
| | - João Ramalho-Santos
- Biology of Reproduction and Human Fertility Research Group, Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
72
|
Abu-Halima M, Hammadeh M, Schmitt J, Leidinger P, Keller A, Meese E, Backes C. Altered microRNA expression profiles of human spermatozoa in patients with different spermatogenic impairments. Fertil Steril 2013; 99:1249-1255.e16. [PMID: 23312218 DOI: 10.1016/j.fertnstert.2012.11.054] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/30/2012] [Accepted: 11/30/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To determine whether microRNAs are differentially expressed in men with normal versus impaired spermatogenesis, and to find a biomarker for accurate diagnosis of male infertility. DESIGN Microarray with real-time polymerase chain reaction (RT-PCR) validation. SETTING University research and clinical institutes. PATIENT(S) Male partner of selected couples (n = 27) who were undergoing assisted reproduction techniques for infertility treatment. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Statistically significantly altered microRNA expression profiles in normozoospermic versus asthenozoospermic and oligoasthenozoospermic men. RESULT(S) There were 50 miRNAs up-regulated and 27 miRNAs down-regulated in asthenozoospermic males. In oligoasthenozoospermic males, 42 miRNAs were up-regulated and 44 miRNAs down-regulated when compared with normozoospermic males. The miRNAs that exhibited the highest fold changes and area under the receiver operating characteristic curve were miR-34b, miR-122, and miR-1973 in samples from asthenozoospermic men and miR-34b, miR-34b*, miR-15b, miR-34c-5p, miR-122, miR-449a, miR-1973, miR-16, and miR-19a in samples from oligoasthenozoospermic men. Furthermore, quantitative RT-PCR assays on specific miRNAs, including miR-141, miR-200a, miR-122, miR-34b, miR-34c-5p, and miR-16, yielded results that were largely consistent with the microarray data. CONCLUSION(S) Our results reveal an extended number of miRNAs that were differentially expressed in asthenozoospermic and oligoasthenozoospermic males compared with normozoospermic males. These data provide evidence for analysis of miRNA profiles as a future diagnosing tool for male infertility.
Collapse
Affiliation(s)
- Masood Abu-Halima
- Department of Human Genetics, Saarland University, Homburg/Saar, Germany.
| | | | | | | | | | | | | |
Collapse
|
73
|
Kiani J, Rassoulzadegan M. A load of small RNAs in the sperm - how many bits of hereditary information? Cell Res 2013; 23:18-9. [PMID: 23266892 PMCID: PMC3541666 DOI: 10.1038/cr.2012.181] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Transcriptionally silent sperm contains a variety of RNA fragments of both coding and non-coding transcripts. A recent article by Peng and colleagues reveals several new families of small RNAs enriched in sperm, which are derived from the same locus as tRNAs. The finding of these short fragments of tRNA in the sperm raises once again the question of the possible function(s) of such a miniaturized form of information carried by the spermatozoon.
Collapse
Affiliation(s)
- Jafar Kiani
- Inserm, U1091, Nice, F-06108, France
- CNRS, UMR7277, F-06108, France
- University of Nice-Sophia Antipolis, UFR Sciences, Nice, F-06108, France
| | - Minoo Rassoulzadegan
- Inserm, U1091, Nice, F-06108, France
- CNRS, UMR7277, F-06108, France
- University of Nice-Sophia Antipolis, UFR Sciences, Nice, F-06108, France
| |
Collapse
|
74
|
Dama MS, Ahmad MK, Gupta N, Gupta S, Sankhwar S, Mahdi AA, David A, Khanna G, Khanna A, Rajender S. RETRACTED ARTICLE: Transcriptome profile alterations in asthenozoospermic and idiopathic infertile spermatozoa uncovered by microarray. J Assist Reprod Genet 2012; 30:449. [PMID: 23248077 DOI: 10.1007/s10815-012-9901-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 11/19/2012] [Indexed: 10/27/2022] Open
Abstract
This article has been retracted at the request of the Editor-in- Chief. The original submission was made without the approval of the previously listed co-author Dr. Rajender Singh. In addition, the article is being retracted because the corresponding author is not the owner of the data and has no right to publication.
Collapse
|
75
|
Kawano M, Kawaji H, Grandjean V, Kiani J, Rassoulzadegan M. Novel small noncoding RNAs in mouse spermatozoa, zygotes and early embryos. PLoS One 2012; 7:e44542. [PMID: 22984523 PMCID: PMC3440372 DOI: 10.1371/journal.pone.0044542] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 08/06/2012] [Indexed: 01/26/2023] Open
Abstract
The recent discovery of a significant amount of RNA in spermatozoa contradicted the previously held belief that paternal contribution was limited to one copy of the genome. Furthermore, detection of RNA in sperm raised the intriguing question of its possible role in embryonic development. The possibility that RNAs may serve as epigenetic determinants was supported by experiments showing inheritance of epigenetic traits in mice mediated by RNA. We used high-throughput, large-scale sequencing technology to analyze sperm RNA. The RNA sequences generated were diverse in terms of length and included mRNAs, rRNAs, piRNAs, and miRNAs. We studied two small noncoding RNAs enriched in mature sperm, designated sperm RNAs (spR) -12 and -13. They are both encoded in a piRNA locus on chromosome 17, but neither their length (20-21 nt), nor their sequences correspond to known piRNAs or miRNAs. They are resistant to periodate-oxidation-mediated reaction, implying that they undergo terminal post-transcriptional modification. Both were detected in sperm and ovulated unfertilized oocytes, present in one-cell embryos and maintained in preimplantation stages, but not at later differentiation stages. These findings offer a new perspective regarding a possibly important role for gamete-specific small RNAs in early embryogenesis.
Collapse
Affiliation(s)
- Mitsuoki Kawano
- RIKEN Omics Science Center, Yokohama, Kanagawa, Japan
- Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hideya Kawaji
- RIKEN Omics Science Center, Yokohama, Kanagawa, Japan
| | - Valérie Grandjean
- Inserm, U636, Nice, France
- Laboratoire de Génétique du Développement Normal et Pathologique, Université de Nice-Sophia Antipolis, Nice, France
| | - Jafar Kiani
- Inserm, U636, Nice, France
- Laboratoire de Génétique du Développement Normal et Pathologique, Université de Nice-Sophia Antipolis, Nice, France
| | - Minoo Rassoulzadegan
- Inserm, U636, Nice, France
- Laboratoire de Génétique du Développement Normal et Pathologique, Université de Nice-Sophia Antipolis, Nice, France
| |
Collapse
|
76
|
Rodriguez-Osorio N, Urrego R, Cibelli JB, Eilertsen K, Memili E. Reprogramming mammalian somatic cells. Theriogenology 2012; 78:1869-86. [PMID: 22979962 DOI: 10.1016/j.theriogenology.2012.05.030] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 05/20/2012] [Accepted: 05/31/2012] [Indexed: 01/23/2023]
Abstract
Somatic cell nuclear transfer (SCNT), the technique commonly known as cloning, permits transformation of a somatic cell into an undifferentiated zygote with the potential to develop into a newborn animal (i.e., a clone). In somatic cells, chromatin is programmed to repress most genes and express some, depending on the tissue. It is evident that the enucleated oocyte provides the environment in which embryonic genes in a somatic cell can be expressed. This process is controlled by a series of epigenetic modifications, generally referred to as "nuclear reprogramming," which are thought to involve the removal of reversible epigenetic changes acquired during cell differentiation. A similar process is thought to occur by overexpression of key transcription factors to generate induced pluripotent stem cells (iPSCs), bypassing the need for SCNT. Despite its obvious scientific and medical importance, and the great number of studies addressing the subject, the molecular basis of reprogramming in both reprogramming strategies is largely unknown. The present review focuses on the cellular and molecular events that occur during nuclear reprogramming in the context of SCNT and the various approaches currently being used to improve nuclear reprogramming. A better understanding of the reprogramming mechanism will have a direct impact on the efficiency of current SCNT procedures, as well as iPSC derivation.
Collapse
|
77
|
Ma H, Hostuttler M, Wei H, Rexroad CE, Yao J. Characterization of the rainbow trout egg microRNA transcriptome. PLoS One 2012; 7:e39649. [PMID: 22761856 PMCID: PMC3382587 DOI: 10.1371/journal.pone.0039649] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 05/24/2012] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenous small non-coding RNA molecules that regulate post-transcriptional expression of target genes and play important roles in animal development. The objectives of this study were to characterize the egg miRNA transcriptome and identify novel egg-predominant miRNAs in rainbow trout. Small RNAs isolated from mature unfertilized rainbow trout eggs were subjected to deep sequencing using an Illumina Genome Analyzer. The massive sequencing produced 24,621,741 quality reads, among which, 266 known miRNAs were identified and 230 putatively novel miRNAs were predicted. The most abundantly known miRNAs are let-7 and miR-21, accounting for 24.06% and 18.71% of the known miRNAs, respectively. Other known miRNAs which are abundantly present in eggs include miR-24, miR-202, miR-148, miR-30, miR-10, miR-146, miR-25, and miR-143. Real time PCR analysis using cDNAs derived from 10 tissues validated 87 out of 90 selected putative miRNAs and identified three novel miRNAs predominantly expressed in rainbow trout eggs. Each of these novel egg-predominant miRNAs is predicted to target a significant number of genes, most of which are significantly down-regulated in naturally ovulated rainbow trout eggs based on analysis of publicly available microarray data sets. Quantitative real time PCR analysis also demonstrated low expression of a selected number of target genes in eggs relative to liver and muscle tissues. This study represents the first complete survey of miRNAs in fish eggs and provides a starting point for future studies aimed at understanding the roles of miRNAs in controlling egg quality and early embryogenesis in rainbow trout.
Collapse
Affiliation(s)
- Hao Ma
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, United States of America
| | - Mark Hostuttler
- National Center for Cool and Cold Water Aquaculture, Kearneysville, West Virginia, United States of America
| | - Hairong Wei
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, United States of America
| | - Caird E. Rexroad
- National Center for Cool and Cold Water Aquaculture, Kearneysville, West Virginia, United States of America
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, United States of America
| |
Collapse
|
78
|
Marczylo EL, Amoako AA, Konje JC, Gant TW, Marczylo TH. Smoking induces differential miRNA expression in human spermatozoa: a potential transgenerational epigenetic concern? Epigenetics 2012; 7:432-9. [PMID: 22441141 DOI: 10.4161/epi.19794] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recent work has suggested that environmental chemicals, including those contained in cigarette smoke, can have adverse effects on the exposed individuals as well as their future progeny. The mechanisms underlying transmission of environmentally induced phenotypes through the germ line are not well understood. However, a predominant process appears to be the establishment of permanent heritable epigenetic alterations, and a number of studies have implicated microRNAs in such processes. Here, we show that cigarette smoke induces specific differences in the spermatozoal microRNA content of human smokers compared with non-smokers, and that these altered microRNAs appear to predominantly mediate pathways vital for healthy sperm and normal embryo development, particularly cell death and apoptosis. microRNA-mediated perturbation of such pathways may explain how harmful phenotypes can be induced in the progeny of smokers.
Collapse
Affiliation(s)
- Emma L Marczylo
- Systems Toxicology Group, MRC Toxicology Unit, Leicester, UK.
| | | | | | | | | |
Collapse
|
79
|
Li H, Huang S, Guo C, Guan H, Xiong C. Cell-free seminal mRNA and microRNA exist in different forms. PLoS One 2012; 7:e34566. [PMID: 22506029 PMCID: PMC3323549 DOI: 10.1371/journal.pone.0034566] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 03/02/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The great interest in cell-free mRNA, microRNA (miRNA) as molecular biomarkers for clinical applications, and as 'signaling' molecules for intercellular communication highlights the need to reveal their physical nature. Here this issue was explored in human cell-free seminal mRNA (cfs-mRNA) and miRNA (cfs-miRNA). METHODOLOGY/PRINCIPAL FINDINGS Selected male reproductive organ-specific mRNAs, miRNAs, and piRNAs were quantified by quantitative real-time PCR in all experiments. While the stability of cfs-miRNA assessed by time-course analysis (up to 24 h at room temperature) was similar with cfs-mRNA, the reductive changes between cfs-miRNA and cfs-mRNA after filtration and Triton X-100 treatment on seminal plasma were very different, implying their different physical nature. Seminal microvesicles (SMVs) were then recovered and proportions of cfs-mRNA and cfs-miRNA within SMVs were quantified. The amounts of SMVs- sequestered cfs-mRNAs almost were the same as total cfs-mRNA, and were highly variable depending on the different sizes of SMVs. But most of cfs-miRNA was independent of SMVs and existed in the supernatant. The possible form of cfs-miRNA in the supernatant was further explored by filtration and protease K digestion. It passed through the 0.10-µm pore, but was degraded dramatically after intense protease K digestion. CONCLUSIONS/SIGNIFICANCE The predominant cfs-mRNA is contained in SMVs, while most cfs-miRNA is bound with protein complexes. Our data explained the stability of extracellular RNAs in human semen, and shed light on their origins and potential functions in male reproduction, and strategy of developing them as biomarkers of male reproductive system.
Collapse
Affiliation(s)
- Honggang Li
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Tongji Reproductive Medicine Hospital, Wuhan, China
| | - Shiyun Huang
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Family Planning Department, Beijing Obstetrics and Gynecology Hospital, the Capital University of Medical Science, Beijing, China
| | - Cuicui Guo
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huangtao Guan
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Tongji Reproductive Medicine Hospital, Wuhan, China
| | - Chengliang Xiong
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Tongji Reproductive Medicine Hospital, Wuhan, China
- * E-mail:
| |
Collapse
|
80
|
Li C, Zhou X. Gene transcripts in spermatozoa: markers of male infertility. Clin Chim Acta 2012; 413:1035-8. [PMID: 22445828 DOI: 10.1016/j.cca.2012.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 03/05/2012] [Accepted: 03/05/2012] [Indexed: 11/27/2022]
Abstract
The presence of a complex population of gene transcripts in mature human sperm is well established, and numerous mRNAs and non-coding mRNAs have been identified in sperm of men and other mammalian species using microarray and RT-PCR. The traditional concept that RNAs in mature sperm are only remnants from spermatogenesis and have no biological functions is in doubt. The findings that reverse transcriptases in sperm are active and that sperm can independently activate translation of stored mRNAs suggest that sperm RNAs may have significant effects on male fertility. The differences in expression profiles among RNAs in mature sperm from fertile and infertile men, and the regulation of sperm RNAs in embryonic development make them appealing markers for therapeutic and diagnostic tools in male infertility. In this review, methods for the detection and description of the diversity of gene transcript in sperm are discussed along with their putative roles in functional aspects of sperm and in embryogenesis.
Collapse
Affiliation(s)
- Chunjin Li
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin Province, PR China
| | | |
Collapse
|
81
|
Abstract
OBJECTIVE To provide a focused review of the scientific literature pertaining to spermatozoal RNA. DESIGN Review of the literature and appraisal of relevant articles. SETTING Not applicable. PATIENT(S) Infertile male. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Spermatozoal RNAs as potential epigenetic modifiers in early embryo development and as clinical markers of male infertility. RESULT(S) The nucleus of mature spermatozoa contains a complex population of mRNAs and miRNAs despite its transcriptionally inert state. CONCLUSION(S) A specific set of functional RNAs are delivered into oocytes during fertilization and are thought to contribute extragenomically to early embryonic development. Even if spermatozoal RNAs is merely residual, it still has the potential to greatly improve the investigative and diagnostic potential of male infertility.
Collapse
Affiliation(s)
- Toshio Hamatani
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
82
|
Sperm-borne microRNA-34c is required for the first cleavage division in mouse. Proc Natl Acad Sci U S A 2011; 109:490-4. [PMID: 22203953 DOI: 10.1073/pnas.1110368109] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In mammals, the sperm deliver mRNA of unknown function into the oocytes during fertilization. The role of sperm microRNAs (miRNAs) in preimplantation development is unknown. miRNA profiling identified six miRNAs expressed in the sperm and the zygotes but not in the oocytes or preimplantation embryos. Sperm contained both the precursor and the mature form of one of these miRNAs, miR-34c. The absence of an increased level of miR-34c in zygotes derived from α-amanitin-treated oocytes and in parthenogenetic oocytes supported a sperm origin of zygotic miR-34c. Injection of miR-34c inhibitor into zygotes inhibited DNA synthesis and significantly suppressed first cleavage division. A 3' UTR luciferase assay and Western blotting demonstrated that miR-34c regulates B-cell leukemia/lymphoma 2 (Bcl-2) expression in the zygotes. Coinjection of anti-Bcl-2 antibody in zygotes partially reversed but injection of Bcl-2 protein mimicked the effect of miR-34c inhibition. Oocyte activation is essential for the miR-34c action in zygotes, as demonstrated by a decrease in 3'UTR luciferase reporter activity and Bcl-2 expression after injection of precursor miR-34c into parthenogenetic oocytes. Our findings provide evidence that sperm-borne miR-34c is important for the first cell division via modulation of Bcl-2 expression.
Collapse
|
83
|
Lee YM, Chen HW, Maurya PK, Su CM, Tzeng CR. MicroRNA regulation via DNA methylation during the morula to blastocyst transition in mice. Mol Hum Reprod 2011; 18:184-93. [PMID: 22053057 DOI: 10.1093/molehr/gar072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Epigenetic regulation is responsible for transcriptional silencing of genes and parental imprinting. This study addresses the question whether microRNAs (miRNAs) could be affected by DNA methylation during morula-blastocyst transition. Mouse embryos were treated with/without a DNA methyltransferase inhibitor (5-aza-2'-deoxycytidine, 5-aza-dC, 10 nM-5 μM). Changes of miRNAs were analyzed by quantitative real-time (Q-PCR)-based megaplex pre-amp microRNA assays. Development from morula to blastocyst in mice was inhibited by 5-aza-dC in a dose-dependent manner (10 nM-5 μM), with half of the embryos arrested at morula stage when treated with levels of 5-aza-dC as low as 50 nM. In total, 48 down-regulated microRNAs and 17 up-regulated microRNAs (≥5-fold changes) were identified after 5-aza-dC treatment, including let-7e, mir-20a, mir-21, mir-34b, mir-128b and mir-452. Their predicted targets were selected based on software analysis, published databases and further confirmed by Q-PCR. At least eight targets, including dnmt3a, jagged 1, sp1, edg2, abcg4, numa1, tmsb10 and csf1r were confirmed. In conclusion, 5-aza-dC-modified microRNA profiles and identification of the microRNA's targets during the morula to blastocyst stage in mice provide information that helps us to explore the relationship between fertility, microRNA regulation and epigenetic intervention.
Collapse
Affiliation(s)
- Yee-Ming Lee
- Institute of Pharmacology, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
84
|
Differential expression of porcine sperm microRNAs and their association with sperm morphology and motility. Theriogenology 2011; 76:1532-9. [DOI: 10.1016/j.theriogenology.2011.06.025] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 06/21/2011] [Accepted: 06/24/2011] [Indexed: 11/20/2022]
|
85
|
Krawetz SA, Kruger A, Lalancette C, Tagett R, Anton E, Draghici S, Diamond MP. A survey of small RNAs in human sperm. Hum Reprod 2011; 26:3401-12. [PMID: 21989093 DOI: 10.1093/humrep/der329] [Citation(s) in RCA: 270] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND There has been substantial interest in assessing whether RNAs (mRNAs and sncRNAs, i.e. small non-coding) delivered from mammalian spermatozoa play a functional role in early embryo development. While the cadre of spermatozoal mRNAs has been characterized, comparatively little is known about the distribution or function of the estimated 24,000 sncRNAs within each normal human spermatozoon. METHODS RNAs of <200 bases in length were isolated from the ejaculates from three donors of proved fertility. RNAs of 18-30 nucleotides in length were then used to construct small RNA Digital Gene Expression libraries for Next Generation Sequencing. Known sncRNAs that uniquely mapped to a single location in the human genome were identified. RESULTS Bioinformatic analysis revealed the presence of multiple classes of small RNAs in human spermatozoa. The primary classes resolved included microRNA (miRNAs) (≈ 7%), Piwi-interacting piRNAs (≈ 17%), repeat-associated small RNAs (≈ 65%). A minor subset of short RNAs within the transcription start site/promoter fraction (≈ 11%) frames the histone promoter-associated regions enriched in genes of early embryonic development. These have been termed quiescent RNAs. CONCLUSIONS A complex population of male derived sncRNAs that are available for delivery upon fertilization was revealed. Sperm miRNA-targeted enrichment in the human oocyte is consistent with their role as modifiers of early post-fertilization. The relative abundance of piRNAs and repeat-associated RNAs suggests that they may assume a role in confrontation and consolidation. This may ensure the compatibility of the genomes at fertilization.
Collapse
Affiliation(s)
- Stephen A Krawetz
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA.
| | | | | | | | | | | | | |
Collapse
|
86
|
Zuccotti M, Merico V, Cecconi S, Redi CA, Garagna S. What does it take to make a developmentally competent mammalian egg? Hum Reprod Update 2011; 17:525-40. [DOI: 10.1093/humupd/dmr009] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
87
|
Hales BF, Grenier L, Lalancette C, Robaire B. Epigenetic programming: From gametes to blastocyst. ACTA ACUST UNITED AC 2011; 91:652-65. [DOI: 10.1002/bdra.20781] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/01/2010] [Accepted: 12/07/2010] [Indexed: 01/16/2023]
|
88
|
Borges F, Pereira PA, Slotkin RK, Martienssen RA, Becker JD. MicroRNA activity in the Arabidopsis male germline. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1611-20. [PMID: 21357774 PMCID: PMC5536363 DOI: 10.1093/jxb/erq452] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/13/2010] [Accepted: 12/15/2010] [Indexed: 05/19/2023]
Abstract
Most of the core proteins involved in the microRNA (miRNA) pathway in plants have been identified, and almost simultaneously hundreds of miRNA sequences processed in the Arabidopsis sporophyte have been discovered by exploiting next-generation sequencing technologies. However, there is very limited understanding about potentially distinct mechanisms of post-transcriptional regulation between different cell lineages. In this review the focus is on the Arabidopsis male gametophyte (pollen), where the germline differentiates after meiosis giving rise to the male gametes. Based on comparative analysis of miRNAs identified in sperm cells by in-depth sequencing, their possible functions during germ cell specification and beyond fertilization are discussed. In addition, 25 potentially novel miRNAs processed in sperm cells and pollen were identified, as well as enriched variations in the sequence length of known miRNAs, which might indicate subfunctionalization by association with a putative germline-specific Argonaute complex. ARGONAUTE 5 (AGO5), by close homology to AGO1 and localizing preferentially to the sperm cell cytoplasm in mature pollen, may be part of such a complex.
Collapse
|
89
|
Rivera RM. Epigenetic aspects of fertilization and preimplantation development in mammals: lessons from the mouse. Syst Biol Reprod Med 2011; 56:388-404. [PMID: 20849224 DOI: 10.3109/19396368.2010.482726] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
During gametogenesis, the parental genomes are separated and are epigenetically marked by modifications that will direct the expression profile of genes necessary for meiosis as well as for the formation of the oocyte and sperm cell. Immediately after sperm-egg fusion, the parental haploid genomes show great epigenetic asymmetry with differences in the levels of DNA methylation and histone tail modifications. The epigenetic program acquired during oogenesis and spermatogenesis must be reset for the zygote to successfully proceed through preimplantation development and this occurs as the two genomes approach each other in preparation for karyogamy. During preimplantation development, the embryo is vested with the responsibility of maintaining the primary imprints. In addition, female embryos must silence one of the X-chromosomes in order to transcribe equal levels of X-linked genes as their male counterparts. This review is intended as a survey of the epigenetic modifications and mechanisms present in zygotes and preimplantation mouse embryos, namely DNA methylation, histone modifications, dosage compensation, genomic imprinting, and regulation by non-coding RNAs.
Collapse
|
90
|
Abstract
Genetic factors contribute upto 15%-30% cases of male infertility. Formation of spermatozoa occurs in a sequential manner with mitotic, meiotic, and postmeiotic differentiation phases each of which is controlled by an intricate genetic program. Genes control a variety of physiologic processes, such as hypothalamus-pituitary-gonadal axis, germ cell development, and differentiation. In the era of assisted reproduction technology, it is important to understand the genetic basis of infertility to provide maximum adapted therapeutics and counseling to the couple.
Collapse
Affiliation(s)
- M. B. Shamsi
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - K. Kumar
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - R. Dada
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
91
|
Johnson GD, Lalancette C, Linnemann AK, Leduc F, Boissonneault G, Krawetz SA. The sperm nucleus: chromatin, RNA, and the nuclear matrix. Reproduction 2011; 141:21-36. [PMID: 20876223 PMCID: PMC5358669 DOI: 10.1530/rep-10-0322] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Within the sperm nucleus, the paternal genome remains functionally inert and protected following protamination. This is marked by a structural morphogenesis that is heralded by a striking reduction in nuclear volume. Despite these changes, both human and mouse spermatozoa maintain low levels of nucleosomes that appear non-randomly distributed throughout the genome. These regions may be necessary for organizing higher order genomic structure through interactions with the nuclear matrix. The promoters of this transcriptionally quiescent genome are differentially marked by modified histones that may poise downstream epigenetic effects. This notion is supported by increasing evidence that the embryo inherits these differing levels of chromatin organization. In concert with the suite of RNAs retained in the mature sperm, they may synergistically interact to direct early embryonic gene expression. Irrespective, these features reflect the transcriptional history of spermatogenic differentiation. As such, they may soon be utilized as clinical markers of male fertility. In this review, we explore and discuss how this may be orchestrated.
Collapse
Affiliation(s)
- Graham D. Johnson
- The Center for Molecular Medicine and Genetics, Wayne State University of Medicine, C.S. Mott Center, 275 E. Hancock, Detroit, MI 48201
| | - Claudia Lalancette
- The Center for Molecular Medicine and Genetics, Wayne State University of Medicine, C.S. Mott Center, 275 E. Hancock, Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University of Medicine, C.S. Mott Center, 275 E. Hancock, Detroit, MI 48201
| | - Amelia K. Linnemann
- The Center for Molecular Medicine and Genetics, Wayne State University of Medicine, C.S. Mott Center, 275 E. Hancock, Detroit, MI 48201
| | - Frédéric Leduc
- Department of Biochemistry, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | - Guylain Boissonneault
- Department of Biochemistry, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | - Stephen A. Krawetz
- The Center for Molecular Medicine and Genetics, Wayne State University of Medicine, C.S. Mott Center, 275 E. Hancock, Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University of Medicine, C.S. Mott Center, 275 E. Hancock, Detroit, MI 48201
- Institute for Scientific Computing, Wayne State University of Medicine, C.S. Mott Center, 275 E. Hancock, Detroit, MI 48201
| |
Collapse
|
92
|
Steger K, Cavalcanti MCO, Schuppe HC. Prognostic markers for competent human spermatozoa: fertilizing capacity and contribution to the embryo. ACTA ACUST UNITED AC 2010; 34:513-27. [DOI: 10.1111/j.1365-2605.2010.01129.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
93
|
Dicer is a key player in oocyte maturation. J Assist Reprod Genet 2010; 27:571-80. [PMID: 20827505 DOI: 10.1007/s10815-010-9456-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVE Apply Dicer siRNA to study functions of Dicer and miRNA during oogenesis. MATERIALS AND METHODS Mouse oocytes were injected with Dicer siRNA and negative control siRNA and then matured in vitro. After IVM, oocytes were examined for maturation rates, spindle and chromosomal organization, and various gene expressions. RESULTS Dicer siRNA significantly reduced maturation rates, increased abnormal spindle and chromosomal organization, and reduced the transcripts of Dicer miRNAs, spindle formation proteins (plk1 and AURKA) and spindle check points (Bub1, Bublb). Depletion of bulb16 markedly prohibited the first polar body extrusion and increased the incidence of misaligned chromosomes and abnormal meiotic spindle assembly. CONCLUSION Dicer siRNA triggered a cascade reduction for gene expressions starting from Dicer to miRNAs than to spindle assembly proteins and checkpoints which led to abnormal spindle and chromosomal organization. Thus, Dicer and miRNA appeared to play an important role during oogenesis and were essential for meiotic completion.
Collapse
|
94
|
Luo L, Ye L, Liu G, Shao G, Zheng R, Ren Z, Zuo B, Xu D, Lei M, Jiang S, Deng C, Xiong Y, Li F. Microarray-based approach identifies differentially expressed microRNAs in porcine sexually immature and mature testes. PLoS One 2010; 5:e11744. [PMID: 20805883 PMCID: PMC2923610 DOI: 10.1371/journal.pone.0011744] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 06/29/2010] [Indexed: 11/25/2022] Open
Abstract
Background MicroRNAs (miRNAs) are short non-coding RNA molecules which are proved to be involved in mammalian spermatogenesis. Their expression and function in the porcine germ cells are not fully understood. Methodology We employed a miRNA microarray containing 1260 unique miRNA probes to evaluate the miRNA expression patterns between sexually immature (60-day) and mature (180-day) pig testes. One hundred and twenty nine miRNAs representing 164 reporter miRNAs were expressed differently (p<0.1). Fifty one miRNAs were significantly up-regulated and 78 miRNAs were down-regulated in mature testes. Nine of these differentially expressed miRNAs were validated using quantitative RT-PCR assay. Totally 15919 putative miRNA-target sites were detected by using RNA22 method to align 445 NCBI pig cDNA sequences with these 129 differentially expressed miRNAs, and seven putative target genes involved in spermatogenesis including DAZL, RNF4 gene were simply confirmed by quantitative RT-PCR. Conclusions Overall, the results of this study indicated specific miRNAs expression in porcine testes and suggested that miRNAs had a role in regulating spermatogenesis.
Collapse
Affiliation(s)
- Lifan Luo
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture, and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Lianzhi Ye
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture, and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Gang Liu
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture, and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Guochao Shao
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture, and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Rong Zheng
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture, and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhuqing Ren
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture, and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Bo Zuo
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture, and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Dequan Xu
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture, and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Minggang Lei
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture, and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Siwen Jiang
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture, and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Changyan Deng
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture, and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yuanzhu Xiong
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture, and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Fenge Li
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture, and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
- * E-mail:
| |
Collapse
|
95
|
Payton RR, Rispoli LA, Edwards JL. General features of certain RNA populations from gametes and cumulus cells. J Reprod Dev 2010; 56:583-92. [PMID: 20657155 DOI: 10.1262/jrd.10-007a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Results described herein provide insight regarding certain features of gamete RNA and how they compare to cumulus cell RNA. In particular, 28S/18S rRNA ratio and size distribution of RNA molecules differed in total RNA from oocytes versus surrounding cumulus cells. Specifically, oocyte total RNA had a lower rRNA ratio and an increased abundance of smaller RNA sizes compared to RNA from surrounding cumulus. Extensive efforts demonstrated that observed differences were repeatable whether oocyte maturation occurred in vitro or in vivo, and were similar between the nuclear stages examined. Features of oocyte RNA were conserved across six mammalian species, yet differed from surrounding cumulus. Profiles of sperm RNA were also examined but had no discernible ribosomal RNA peaks and were conserved across four mammalian species. Because the oocyte and spermatozoon are highly specialized cells representing unique molecular entities required for proper embryo development, dissimilarities described herein likely represent real gamete versus cumulus RNA differences.
Collapse
Affiliation(s)
- Rebecca R Payton
- Department of Animal Science, The University of Tennessee Institute of Agriculture and Agricultural Experiment Station, Knoxville, TN 37996-4574, USA
| | | | | |
Collapse
|
96
|
Curley JP, Mashoodh R. Parent-of-origin and trans-generational germline influences on behavioral development: the interacting roles of mothers, fathers, and grandparents. Dev Psychobiol 2010; 52:312-30. [PMID: 20373326 DOI: 10.1002/dev.20430] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mothers and fathers do not contribute equally to the development of their offspring. In addition to the differential investment of mothers versus fathers in the rearing of offspring, there are also a number of germline factors that are transmitted unequally from one parent or the other that contribute significantly to offspring development. This article shall review four major sources of such parent-of-origin effects. Firstly, there is increasing evidence that genes inherited on the sex chromosomes including the nonpseudoautosomal part of the Y chromosome that is only inherited from fathers to sons, contribute to brain development and behavior independently of the organizing effects of sex hormones. Secondly, recent work has demonstrated that mitochondrial DNA that is primarily inherited only from mothers may play a much greater than anticipated role in neurobehavioral development. Thirdly, there exists a class of genes known as imprinted genes that are epigenetically silenced when passed on in a parent-of-origin specific manner and have been shown to regulate brain development and a variety of behaviors. Finally, there is converging evidence from several disciplines that environmental variations experienced by mothers and fathers may lead to plasticity in the development and behavior of offspring and that this phenotypic inheritance can be solely transmitted through the germline. Mechanistically, this may be achieved through altered programming within germ cells of the epigenetic status of particular genes such as retrotransposons and imprinted genes or potentially through altered expression of RNAs within gametes.
Collapse
Affiliation(s)
- J P Curley
- Department of Psychology, Columbia University, Room 406, Schermerhorn Hall, 1190 Amsterdam Avenue, New York, NY 10027, USA.
| | | |
Collapse
|
97
|
O'Flynn O'Brien KL, Varghese AC, Agarwal A. The genetic causes of male factor infertility: a review. Fertil Steril 2010; 93:1-12. [PMID: 20103481 DOI: 10.1016/j.fertnstert.2009.10.045] [Citation(s) in RCA: 280] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 10/27/2009] [Accepted: 10/27/2009] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To illustrate the necessity for an enhanced understanding of the genetic basis of male factor infertility, to present a comprehensive synopsis of these genetic elements, and to review techniques being utilized to produce new insights in fertility research. BACKGROUND Male factor infertility is a complex disorder that affects a large sector of the population; however, many of its etiologies are unknown. By elucidating the underlying genetic basis of infertile phenotypes, it may be possible to discover the causes of infertility and determine effective treatments for patients. METHOD(S) The PubMed database was consulted for the most relevant papers published in the last 3 years pertaining to male factor infertility using the keywords "genetics" and "male infertility." RESULT(S) Advances have been made in the characterization of the roles of specific genes, but further research is necessary before these results can be used as guidelines for diagnosing and treating male factor infertility. The accurate transmission of epigenetic information also has considerable influence on fertility in males and on the fertility of their offspring. CONCLUSION(S) Analysis of the genetic factors that impact male factor infertility will provide valuable insights into the creation of targeted treatments for patients and the determination of the causes of idiopathic infertility. Novel technologies that analyze the influence of genetics from a global perspective may lead to further developments in the understanding of the etiology of male factor infertility through the identification of specific infertile phenotype signatures.
Collapse
Affiliation(s)
- Katherine L O'Flynn O'Brien
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
98
|
Castro FO, Sharbati S, Rodríguez-Alvarez LL, Cox JF, Hultschig C, Einspanier R. MicroRNA expression profiling of elongated cloned and in vitro-fertilized bovine embryos. Theriogenology 2010; 73:71-85. [PMID: 19836069 DOI: 10.1016/j.theriogenology.2009.08.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 08/14/2009] [Accepted: 08/18/2009] [Indexed: 11/25/2022]
Abstract
The objective of this study was to identify microRNAs (miRNAs) expressed in bovine (Bos Taurus) cloned embryos at Day 17 of development (Day 0=day of nucleus transfer or in vitro fertilization) during elongation. Day 7 bovine expanded blastocysts produced by hand made cloning (HMC) or in vitro fertilization were bulk-transferred to synchronized recipient cattle (48 HMC embryos to 10 recipients and 28 in vitro-produced embryos to four recipients). Elongated embryos were retrieved at Day 17; miRNAs were isolated and subjected to microarray screening using custom composite slides spotted with human, mouse, and rat and in silico-predicted miRNAs. An initial profile of expressed miRNAs was determined in cloned embryos and somatic donor cells; this profile changed after somatic cell nucleus transfer, identifying differentially expressed miRNAs between cloned and in vitro-produced bovine embryos. Furthermore, microarray data were validated using a miRNA-specific quantitative reverse transcription-polymerase chain reaction (qRT-PCR) approach (miR-Q). There was an 83% correlation (P=0.01) between microarray and qPCR data. Based on qRT-PCR, correct reprogramming of some miRNAs from the donor cells was confirmed in cloned bovine embryos, whereas other somatic miRNAs were not appropriately reprogrammed. Some of the miRNAs that were equally reprogrammed clustered on the same chromosomal location in the bovine genome. In conclusion, reprogramming of miRNAs seemed to occur in cloned bovine embryos. This could have profound implications for elucidating nuclear reprogramming in somatic cloning, as well as for the role of miRNAs in preimplantation mammalian development.
Collapse
Affiliation(s)
- F O Castro
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Avenida Vicente Méndez 595, Chillán 537, Chile.
| | | | | | | | | | | |
Collapse
|
99
|
Abstract
The profound architectural changes that transform spermatids into spermatozoa result in a high degree of DNA packaging within the sperm head. However, the mature sperm chromatin that harbors imprinted genes exhibits a dual nucleoprotamine/nucleohistone structure with DNase-sensitive regions, which could be implicated in the establishment of efficient epigenetic information in the developing embryo. Despite its apparent transcriptionally inert state, the sperm nucleus contains diverse RNA populations, mRNAs, antisense and miRNAs, that have been transcribed throughout spermatogenesis. There is also an endogenous reverse transcriptase that may be activated under certain circumstances. It is now commonly accepted that sperm can deliver some RNAs to the ovocyte at fertilization. This review presents potential links between male-specific genomic imprinting, chromatin organization, and the presence of diverse RNA populations within the sperm nucleus and discusses the functional significance of these RNAs in the spermatozoon itself and in the early embryo following fertilization. Some recent data are provided, supporting the view that analyzing the profile of spermatozoal RNAs could be useful for assessment of male fertility.
Collapse
|
100
|
Dickinson HG, Grant-Downton R. Bridging the generation gap: flowering plant gametophytes and animal germlines reveal unexpected similarities. Biol Rev Camb Philos Soc 2009; 84:589-615. [DOI: 10.1111/j.1469-185x.2009.00088.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|