51
|
Wan P, Xie M, Chen G, Dai Z, Hu B, Zeng X, Sun Y. Anti-inflammatory effects of dicaffeoylquinic acids from Ilex kudingcha on lipopolysaccharide-treated RAW264.7 macrophages and potential mechanisms. Food Chem Toxicol 2019; 126:332-342. [PMID: 30654100 DOI: 10.1016/j.fct.2019.01.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 01/05/2023]
Abstract
Increasing evidence has shown that dicaffeoylquinic acids (DiCQAs) have anti-inflammatory activity. However, the underlying molecular mechanisms of the anti-inflammatory effects of DiCQAs are still unclear. In the present study, the anti-inflammatory effects of DiCQAs from the leaves of Ilex kudingcha and the potential molecular mechanisms on LPS-induced inflammatory responses in RAW264.7 macrophage cells were investigated. The results showed that pretreatment with DiCQAs could suppress the production of NO, PGE2 and also pro-inflammatory cytokines TNF-α, IL-1β and IL-6, and the mRNA expression of two major inflammatory mediators of COX-2 and iNOS. The phosphorylated IκBα, ERK, JNK and p38 proteins in LPS-treated cells were significantly increased, which could be reversed by pretreatment with DiCQAs in a concentration-dependent manner. Taken together, the results suggest that DiCQAs from I. kudingcha have potent anti-inflammatory effects on LPS-induced inflammatory responses by inhibiting the NF-κB and MAPKs pathways and may be a prophylactic for inflammation.
Collapse
Affiliation(s)
- Peng Wan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Minhao Xie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhuqing Dai
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bing Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yi Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
52
|
Shi Z, Fultz RS, Engevik MA, Gao C, Hall A, Major A, Mori-Akiyama Y, Versalovic J. Distinct roles of histamine H1- and H2-receptor signaling pathways in inflammation-associated colonic tumorigenesis. Am J Physiol Gastrointest Liver Physiol 2019; 316:G205-G216. [PMID: 30462522 PMCID: PMC6383385 DOI: 10.1152/ajpgi.00212.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD) is a well-known risk factor for the development of colorectal cancer. Prior studies have demonstrated that microbial histamine can ameliorate intestinal inflammation in mice. We tested the hypothesis whether microbe-derived luminal histamine suppresses inflammation-associated colon cancer in Apcmin/+ mice. Mice were colonized with the human-derived Lactobacillus reuteri. Chronic inflammation was induced by repeated cycles of low-dose dextran sulfate sodium (DSS). Mice that were given histamine-producing L. reuteri via oral gavage developed fewer colonic tumors, despite the presence of a complex mouse gut microbiome. We further demonstrated that administration of a histamine H1-receptor (H1R) antagonist suppressed tumorigenesis, while administration of histamine H2-receptor (H2R) antagonist significantly increased both tumor number and size. The bimodal functions of histamine include protumorigenic effects through H1R and antitumorigenic effects via H2R, and these results were supported by gene expression profiling studies on tumor specimens of patients with colorectal cancer. Greater ratios of gene expression of H2R ( HRH2) vs. H1R ( HRH1) were correlated with improved overall survival outcomes in patients with colorectal cancer. Additionally, activation of H2R suppressed phosphorylation of mitogen-activated protein kinases (MAPKs) and inhibited chemokine gene expression induced by H1R activation in colorectal cancer cells. Moreover, the combination of a H1R antagonist and a H2R agonist yielded potent suppression of lipopolysaccharide-induced MAPK signaling in macrophages. Given the impact on intestinal epithelial and immune cells, simultaneous modulation of H1R and H2R signaling pathways may be a promising therapeutic target for the prevention and treatment of inflammation-associated colorectal cancer. NEW & NOTEWORTHY Histamine-producing Lactobacillus reuteri can suppress development of inflammation-associated colon cancer in an established mouse model. The net effects of histamine may depend on the relative activity of H1R and H2R signaling pathways in the intestinal mucosa. Our findings suggest that treatment with H1R or H2R antagonists could yield opposite effects. However, by harnessing the ability to block H1R signaling while stimulating H2R signaling, novel strategies for suppression of intestinal inflammation and colorectal neoplasia could be developed.
Collapse
Affiliation(s)
- Zhongcheng Shi
- 1Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,2Department of Pathology, Texas Children’s Hospital, Houston, Texas
| | - Robert S. Fultz
- 2Department of Pathology, Texas Children’s Hospital, Houston, Texas,3Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas
| | - Melinda A. Engevik
- 1Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,2Department of Pathology, Texas Children’s Hospital, Houston, Texas
| | - Chunxu Gao
- 4Alkek Center for Metagenomics and Microbiome Research, Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Anne Hall
- 2Department of Pathology, Texas Children’s Hospital, Houston, Texas,5Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Angela Major
- 2Department of Pathology, Texas Children’s Hospital, Houston, Texas
| | - Yuko Mori-Akiyama
- 1Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,2Department of Pathology, Texas Children’s Hospital, Houston, Texas
| | - James Versalovic
- 1Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,2Department of Pathology, Texas Children’s Hospital, Houston, Texas
| |
Collapse
|
53
|
Olive oil polyphenols reduce oxysterols -induced redox imbalance and pro-inflammatory response in intestinal cells. Redox Biol 2018; 17:348-354. [PMID: 29793168 PMCID: PMC6007813 DOI: 10.1016/j.redox.2018.05.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/30/2018] [Accepted: 05/12/2018] [Indexed: 02/07/2023] Open
Abstract
Dietary habits may strongly influence intestinal homeostasis. Oxysterols, the oxidized products of cholesterol present in cholesterol-containing foodstuffs, have been shown to exert pro-oxidant and pro-inflammatory effects, altering intestinal epithelial layer and thus contributing to the pathogenesis of human inflammatory bowel diseases and colon cancer. Extra virgin olive oil polyphenols possess antioxidant and anti-inflammatory properties, and concentrate in the intestinal lumen, where may help in preventing intestinal diseases. In the present study we evaluated the ability of an extra virgin olive oil phenolic extract to counteract the pro-oxidant and pro-inflammatory action of a representative mixture of dietary oxysterols in the human colon adenocarcinoma cell line (Caco-2) undergoing full differentiation into enterocyte-like cells. Oxysterols treatment significantly altered differentiated Caco-2 cells redox status, leading to oxidant species production and a decrease of GSH levels, after 1 h exposure, followed by an increase of cytokines production, IL-6 and IL-8, after 24 h. Oxysterol cell treatment also induced after 48 h an increase of NO release, due to the induction of iNOS. Pretreatment with the phenolic extract counteracted oxysterols effects, at least in part by modulating one of the main pathways activated in the cellular response to the action of oxysterols, the MAPK-NF-kB pathway. We demonstrated the ability of the phenolic extract to directly modulate p38 and JNK1/2 phosphorylation and activation of NF-kB, following its inhibitor IkB phosphorylation. The phenolic extract also inhibited iNOS induction, keeping NO concentration at the control level. Our results suggest a protective effect at intestinal level of extra virgin olive oil polyphenols, able to prevent or limit redox unbalance and the onset and progression of chronic intestinal inflammation. Dietary oxysterols exerted pro-oxidant and pro-inflammatory effects in differentiated Caco-2 cells. H2O2 production, GSH decrease, IL-6 and IL-8 release were detected. NO release due to iNOS induction was higher than controls in oxysterols treated cells. Olive oil phenolic extract efficiently counteracted oxysterols effects. Phenolic extract directly modulated p38 and JNK MAPK/NF-κB signaling axis.
Collapse
|
54
|
Myeloperoxidase in the inflamed colon: A novel target for treating inflammatory bowel disease. Arch Biochem Biophys 2018; 645:61-71. [DOI: 10.1016/j.abb.2018.03.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 12/17/2022]
|
55
|
Maik-Rachline G, Zehorai E, Hanoch T, Blenis J, Seger R. The nuclear translocation of the kinases p38 and JNK promotes inflammation-induced cancer. Sci Signal 2018; 11:11/525/eaao3428. [PMID: 29636389 DOI: 10.1126/scisignal.aao3428] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The stimulated nuclear translocation of signaling proteins, such as MAPKs, is a necessity for the initiation and regulation of their physiological functions. Previously, we determined that nuclear translocation of the MAPKs p38 and JNK involves binding to heterodimers comprising importin 3 and either importin 7 or importin 9. Here, we identified the importin-binding region in p38 and JNK and developed a myristoylated peptide targeting this site that we called PERY. The PERY peptide specifically blocked the interaction of p38 and JNK with the importins, restricted their nuclear translocation, and inhibited phosphorylation of their nuclear (but not cytoplasmic) substrates. Through these effects, the PERY peptide reduced the proliferation of several (but not all) cancer cell lines in culture and inhibited the growth of a human breast cancer xenograft in mice. In addition, the PERY peptide substantially inhibited inflammation in mice, as manifested in models of colitis and colitis-associated colon cancer. The PERY peptide more effectively prevented colon cancer development than did a commercial p38 inhibitor. In vivo analysis further suggested that this effect was mediated by PERY peptide-induced prevention of the nuclear translocation of p38 in macrophages. Together, these results support the use of the nuclear translocation of p38 and JNK as a novel drug target to treat various cancers and inflammation-induced diseases.
Collapse
Affiliation(s)
- Galia Maik-Rachline
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elder Zehorai
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tamar Hanoch
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - John Blenis
- Weill Cornell Medicine, New York, NY 10021, USA
| | - Rony Seger
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
56
|
Yang G, Bibi S, Du M, Suzuki T, Zhu MJ. Regulation of the intestinal tight junction by natural polyphenols: A mechanistic perspective. Crit Rev Food Sci Nutr 2018; 57:3830-3839. [PMID: 27008212 DOI: 10.1080/10408398.2016.1152230] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Impairment of the epithelial barrier function is closely linked to the pathogenesis of various gastrointestinal diseases, food allergies, type I diabetes, and other systematic diseases. Plant-derived polyphenols are natural secondary metabolites and exert various physiological benefits, including anti-inflammatory, anti-oxidative, anti-carcinogenic, and anti-aging effects. Recent studies also show the role of plant polyphenols in regulation of the intestinal barrier and prevention of intestinal inflammatory diseases. Here we summarize the regulatory pathways and mediators linking polyphenols to their beneficial effects on tight junction and gut epithelial barrier functions, and provide useful information about using polyphenols as nutraceuticals for intestinal diseases.
Collapse
Affiliation(s)
- Guan Yang
- a School of Food Science , Washington State University , Pullman , Washington , USA
| | - Shima Bibi
- a School of Food Science , Washington State University , Pullman , Washington , USA
| | - Min Du
- b Department of Animal Science , Washington State University , Pullman , Washington , USA
| | - Takuya Suzuki
- c Department of Biofunctional Science and Technology , Hiroshima University , Higashi-Hiroshima , Japan
| | - Mei-Jun Zhu
- a School of Food Science , Washington State University , Pullman , Washington , USA
| |
Collapse
|
57
|
Tomlinson ML, Butelli E, Martin C, Carding SR. Flavonoids from Engineered Tomatoes Inhibit Gut Barrier Pro-inflammatory Cytokines and Chemokines, via SAPK/JNK and p38 MAPK Pathways. Front Nutr 2017; 4:61. [PMID: 29326940 PMCID: PMC5741681 DOI: 10.3389/fnut.2017.00061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/24/2017] [Indexed: 12/29/2022] Open
Abstract
Flavonoids are a diverse group of plant secondary metabolites, known to reduce inflammatory bowel disease symptoms. How they achieve this is largely unknown. Our study focuses on the gut epithelium as it receives high topological doses of dietary constituents, maintains gut homeostasis, and orchestrates gut immunity. Dysregulation leads to chronic gut inflammation, via dendritic cell (DC)-driven immune responses. Tomatoes engineered for enriched sets of flavonoids (anthocyanins or flavonols) provided a unique and complex naturally consumed food matrix to study the effect of diet on chronic inflammation. Primary murine colonic epithelial cell-based inflammation assays consist of chemokine induction, apoptosis and proliferation, and effects on kinase pathways. Primary murine leukocytes and DCs were used to assay effects on transmigration. A murine intestinal cell line was used to assay wound healing. Engineered tomato extracts (enriched in anthocyanins or flavonols) showed strong and specific inhibitory effects on a set of key epithelial pro-inflammatory cytokines and chemokines. Chemotaxis assays showed a resulting reduction in the migration of primary leukocytes and DCs. Activation of epithelial cell SAPK/JNK and p38 MAPK signaling pathways were specifically inhibited. The epithelial wound healing-associated STAT3 pathway was unaffected. Cellular migration, proliferation, and apoptosis assays confirmed that wound healing processes were not affected by flavonoids. We show flavonoids target epithelial pro-inflammatory kinase pathways, inhibiting chemotactic signals resulting in reduced leukocyte and DC chemotaxis. Thus, both anthocyanins and flavonols modulate epithelial cells to become hyporesponsive to bacterial stimulation. Our results identify a viable mechanism to explain the in vivo anti-inflammatory effects of flavonoids.
Collapse
Affiliation(s)
- Matthew L. Tomlinson
- Gut Health and Food Safety Research Programme, Quadram Institute, Norwich, United Kingdom
- Martin Laboratory, The John Innes Centre, Norwich, United Kingdom
| | - Eugenio Butelli
- Martin Laboratory, The John Innes Centre, Norwich, United Kingdom
| | - Cathie Martin
- Martin Laboratory, The John Innes Centre, Norwich, United Kingdom
| | - Simon R. Carding
- Gut Health and Food Safety Research Programme, Quadram Institute, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
58
|
Inflammation-regulated mRNA stability and the progression of vascular inflammatory diseases. Clin Sci (Lond) 2017; 131:2687-2699. [PMID: 29109302 DOI: 10.1042/cs20171373] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/22/2022]
Abstract
Cardiovascular disease remains a major medical and socioeconomic burden in developed and developing societies, and will increase with an aging and increasingly sedentary society. Vascular disease and atherosclerotic vascular syndromes are essentially inflammatory disorders, and transcriptional and post-transcriptional processes play essential roles in the ability of resident vascular and inflammatory cells to adapt to environmental stimuli. The regulation of mRNA translocation, stability, and translation are key processes of post-transcriptional regulation that permit these cells to rapidly respond to inflammatory stimuli. For the most part, these processes are controlled by elements in the 3'-UTR of labile, proinflammatory transcripts. Since proinflammatory transcripts almost exclusively contain AU-rich elements (AREs), this represents a tightly regulated and specific mechanism for initiation and maintenance of the proinflammatory phenotype. RNA-binding proteins (RBPs) recognize cis elements in 3'-UTR, and regulate each of these processes, but there is little literature exploring the concept that RBPs themselves can be directly regulated by inflammatory stimuli. Conceptually, inflammation-responsive RBPs represent an attractive target of rational therapies to combat vascular inflammatory syndromes. Herein we briefly describe the cellular and molecular etiology of atherosclerosis, and summarize our current understanding of RBPs and their specific roles in regulation of inflammatory mRNA stability. We also detail RBPs as targets of current anti-inflammatory modalities and how this may translate into better treatment for vascular inflammatory diseases.
Collapse
|
59
|
de Bruyn M, Vermeire S. NOD2 and bacterial recognition as therapeutic targets for Crohn’s disease. Expert Opin Ther Targets 2017; 21:1123-1139. [DOI: 10.1080/14728222.2017.1397627] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Magali de Bruyn
- Translational Research in GastroIntestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Translational Research in GastroIntestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| |
Collapse
|
60
|
He X, Da Ros S, Nelson J, Zhu X, Jiang T, Okram B, Jiang S, Michellys PY, Iskandar M, Espinola S, Jia Y, Bursulaya B, Kreusch A, Gao MY, Spraggon G, Baaten J, Clemmer L, Meeusen S, Huang D, Hill R, Nguyen-Tran V, Fathman J, Liu B, Tuntland T, Gordon P, Hollenbeck T, Ng K, Shi J, Bordone L, Liu H. Identification of Potent and Selective RIPK2 Inhibitors for the Treatment of Inflammatory Diseases. ACS Med Chem Lett 2017; 8:1048-1053. [PMID: 29057049 DOI: 10.1021/acsmedchemlett.7b00258] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/27/2017] [Indexed: 12/16/2022] Open
Abstract
NOD2 (nucleotide-binding oligomerization domain-containing protein 2) is an internal pattern recognition receptor that recognizes bacterial peptidoglycan and stimulates host immune responses. Dysfunction of NOD2 pathway has been associated with a number of autoinflammatory disorders. To date, direct inhibitors of NOD2 have not been described due to technical challenges of targeting the oligomeric protein complex. Receptor interacting protein kinase 2 (RIPK2) is an intracellular serine/threonine/tyrosine kinase, a key signaling partner, and an obligate kinase for NOD2. As such, RIPK2 represents an attractive target to probe the pathological roles of NOD2 pathway. To search for selective RIPK2 inhibitors, we employed virtual library screening (VLS) and structure based design that eventually led to a potent and selective RIPK2 inhibitor 8 with excellent oral bioavailability, which was used to evaluate the effects of inhibition of RIPK2 in various in vitro assays and ex vivo and in vivo pharmacodynamic models.
Collapse
Affiliation(s)
- Xiaohui He
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Sara Da Ros
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - John Nelson
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Xuefeng Zhu
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Tao Jiang
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Barun Okram
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Songchun Jiang
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Pierre-Yves Michellys
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Maya Iskandar
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Sheryll Espinola
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Yong Jia
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Badry Bursulaya
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Andreas Kreusch
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Mu-Yun Gao
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Glen Spraggon
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Janine Baaten
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Leah Clemmer
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Shelly Meeusen
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - David Huang
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Robert Hill
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Vân Nguyen-Tran
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - John Fathman
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Bo Liu
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Tove Tuntland
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Perry Gordon
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Thomas Hollenbeck
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Kenneth Ng
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Jian Shi
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Laura Bordone
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Hong Liu
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| |
Collapse
|
61
|
Aggarwal S, Ahuja V, Paul J. Attenuated GABAergic Signaling in Intestinal Epithelium Contributes to Pathogenesis of Ulcerative Colitis. Dig Dis Sci 2017; 62:2768-2779. [PMID: 28667430 DOI: 10.1007/s10620-017-4662-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neuromediators produced by enteric nervous system regulate inflammatory processes via interacting with enteric immune system. Role of γ-aminobutyric acid (GABA), which is also a neuromediator, has been implicated in autoimmune diseases like multiple sclerosis, type 1 diabetes, and rheumatoid arthritis, where they modulate the immune responses. However, its role in ulcerative colitis (UC) has not been defined. AIMS This study was carried out to investigate the role of GABA and its signaling components in pathogenesis of UC. METHODS Peripheral blood, colon mucosal biopsy, and fecal specimens were collected from UC and control groups. Quantification of GABA was done using ELISA. Expression of GABAergic signal system components was analyzed through RT-PCR analysis. Enumeration of GABA-producing bacteria was done by qPCR analysis. Activity of p38 MAPK and expression of proinflammatory cytokines were determined by immunohistochemistry and RT-PCR analysis, respectively. RESULTS GABA levels were significantly reduced in patients with UC as compared to control group when measured in serum and colon biopsy. Altered expression of GABAergic signal system was observed in UC patients. Reduced abundance of selected GABA-producing bacteria was detected in stool samples of UC patients as compared to control. p38 MAPK activity and expression of its downstream effector cytokines were found to be increased in UC patients as compared to control. CONCLUSIONS Reduced levels of GABA were observed in patients with UC, and this leads to hyperactivation of p38 MAPK and overexpression of downstream effector cytokines suggesting a role of GABA in pathogenesis of UC.
Collapse
Affiliation(s)
- Surbhi Aggarwal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Vineet Ahuja
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110067, India
| | - Jaishree Paul
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
62
|
You BH, Chae HS, Song J, Ko HW, Chin YW, Choi YH. α-Mangostin ameliorates dextran sulfate sodium-induced colitis through inhibition of NF-κB and MAPK pathways. Int Immunopharmacol 2017; 49:212-221. [PMID: 28601023 DOI: 10.1016/j.intimp.2017.05.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/18/2017] [Accepted: 05/22/2017] [Indexed: 12/22/2022]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) of the colon as a target site. Previous reports regarding the efficacy of α-mangostin (αMG) to inhibit nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) as well as relatively high distribution to the colon suggested the therapeutic potential of this compound in UC model. In dextran sodium sulfate (DSS)-induced colitis mice (DSS mice), the disease activity index scores involving diarrhea, bloody stool, body weight reduction, and myeloperoxidase (MPO) activities of the esophagus and colon increased with the reduced colon length. Also histologic disturbances and changes of NF-κB and MAPK pathways including phosphorylation of IκB kinase, ERK1/2, SAPK/JNK and p38 were observed in the colon of the DSS mice. However, all of these impaired conditions in the DSS mice were restored by αMG treatment, and the intestinal metabolism of αMG decreased, increasing its distribution to the colons in the DSS mice compared with the control mice. All of these results suggest that high distribution of αMG in the colon might attenuate DSS-induced colitis by inhibiting NF-κB and MAPK pathways in the colon.
Collapse
Affiliation(s)
- Byoung Hoon You
- College of Pharmacy, Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Hee-Sung Chae
- College of Pharmacy, Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Jieun Song
- College of Pharmacy, Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Hyuk Wan Ko
- College of Pharmacy, Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Young-Won Chin
- College of Pharmacy, Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea.
| | - Young Hee Choi
- College of Pharmacy, Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
63
|
Matsushita T, Date M, Kano M, Mizumaki K, Tennichi M, Kobayashi T, Hamaguchi Y, Hasegawa M, Fujimoto M, Takehara K. Blockade of p38 Mitogen-Activated Protein Kinase Inhibits Murine Sclerodermatous Chronic Graft-versus-Host Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:841-850. [PMID: 28189565 DOI: 10.1016/j.ajpath.2016.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/28/2016] [Accepted: 12/19/2016] [Indexed: 01/29/2023]
Abstract
Bone marrow transplantation (BMT) of B10.D2 mice into sublethally irradiated BALB/c mice across minor histocompatibility loci is a well-established animal model for human sclerodermatous chronic graft-versus-host disease (Scl-cGVHD) and systemic sclerosis (SSc). The p38 mitogen-activated protein kinase (MAPK) pathway is a key regulator of inflammation and cytokine production. Furthermore, the activation of p38 MAPK plays an important role in collagen production in SSc. We investigated the effects of p38 MAPK inhibitor, VX-702, on Scl-cGVHD mice. VX-702 was orally administered to Scl-cGVHD mice from day 7 to 35 after BMT. We compared skin fibrosis of Scl-cGVHD mice between the VX-702-treated group and control group. Allogeneic BMT increased the phosphorylation of p38 MAPK in the skin. The administration of VX-702 attenuated the skin fibrosis of Scl-cGVHD compared to the control mice. Immunohistochemical staining showed that VX-702 suppressed the infiltration of CD4+ T cells, CD8+ T cells, and CD11b+ cells into the dermis of Scl-cGVHD mice compared to the control mice. VX-702 attenuated the mRNA expression of extracellular matrix and fibrogenic cytokines, such as IL-6 and IL-13, in the skin of Scl-cGVHD mice. In addition, VX-702 directly inhibited collagen production from fibroblasts in vitro. VX-702 was shown to be a promising candidate for use in treating patients with Scl-cGVHD and SSc.
Collapse
Affiliation(s)
- Takashi Matsushita
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| | - Mutsumi Date
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Miyu Kano
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kie Mizumaki
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Momoko Tennichi
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Tadahiro Kobayashi
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yasuhito Hamaguchi
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Minoru Hasegawa
- Department of Dermatology, University of Fukui, Fukui, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuhiko Takehara
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
64
|
Monteleone I, Marafini I, Dinallo V, Di Fusco D, Troncone E, Zorzi F, Laudisi F, Monteleone G. Sodium chloride-enriched Diet Enhanced Inflammatory Cytokine Production and Exacerbated Experimental Colitis in Mice. J Crohns Colitis 2017; 11:237-245. [PMID: 27473029 DOI: 10.1093/ecco-jcc/jjw139] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/01/2016] [Accepted: 07/22/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIM Environmental factors are supposed to play a decisive role in the pathogenesis of inflammatory bowel diseases [IBDs]. Increased dietary salt intake has been linked with the development of autoimmune diseases, but the impact of a salt-enriched diet on the course of IBD remains unknown. In this study, we examined whether high salt intake alters mucosal cytokine production and exacerbates colitis. METHODS Normal intestinal lamina propria mononuclear cells [LPMCs] were activated with anti-CD3/CD28 in the presence or absence of increasing concentrations of sodium chloride [NaCl] and/or SB202190, a specific inhibitor of p38/MAP Kinase. For in vivo experiments, a high dose of NaCl was administered to mice 15 days before induction of trinitrobenzene-sulfonic acid [TNBS]-colitis or dextran sulfate sodium [DSS]-colitis. In parallel, mice were given SB202190 before induction of TNBS-colitis. Transcription factors and effector cytokines were evaluated by flow-cytometry and real-time PCR. RESULTS IL-17A, IL-23R, TNF-α, and Ror-γT were significantly increased in human LPMCs following NaCl exposure, while there was no significant change in IFN-γ, T-bet or Foxp3. Pharmacologic inhibition of p38/MAPK abrogated the NaCl-inducing effect on LPMC-derived cytokines. Mice receiving the high-salt diet developed a more severe colitis than control mice, and this effect was preventable by SB202190. CONCLUSIONS Our data indicated that exposure of intestinal mononuclear cells to a high-NaCl diet enhanced effector cytokine production and contributed to the exacerbation of experimental colitis in mice.
Collapse
Affiliation(s)
- Ivan Monteleone
- Dipartimento di Biomedicina e Prevenzione, Università Tor Vergata, Rome, Italy;
| | - Irene Marafini
- Cattedra di Gastroenterologia, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Vincenzo Dinallo
- Cattedra di Gastroenterologia, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Davide Di Fusco
- Cattedra di Gastroenterologia, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Edoardo Troncone
- Cattedra di Gastroenterologia, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Francesca Zorzi
- Cattedra di Gastroenterologia, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Federica Laudisi
- Cattedra di Gastroenterologia, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Giovanni Monteleone
- Cattedra di Gastroenterologia, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| |
Collapse
|
65
|
Dun Y, Liu M, Chen J, Peng D, Zhao H, Zhou Z, Wang T, Liu C, Guo Y, Zhang C, Yuan D. Regulatory effects of saponins from Panax japonicus on colonic epithelial tight junctions in aging rats. J Ginseng Res 2016; 42:50-56. [PMID: 29348722 PMCID: PMC5766693 DOI: 10.1016/j.jgr.2016.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 10/27/2016] [Accepted: 12/20/2016] [Indexed: 12/24/2022] Open
Abstract
Background Saponins from Panax japonicus (SPJ) are the most abundant and main active components of P. japonicus, which replaces ginseng roots in treatment for many kinds of diseases in the minority ethnic group in China. Our previous studies have demonstrated that SPJ has the effects of anti-inflammation through the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways. The present study was designed to investigate whether SPJ can modulate intestinal tight junction barrier in aging rats and further to explore the potential mechanism. Methods Aging rats had been treated with different doses (10 mg/kg, 30 mg/kg, and 60 mg/kg) of SPJ for 6 mo since they were 18 mo old. After the rats were euthanized, the colonic samples were harvested. Levels of tight junctions (claudin-1 and occludin) were determined by immunohistochemical staining. Levels of proinflammatory cytokines (interleukin-1β and tumor necrosis factor-α) were examined by Western blot. NF-κB and phosphorylation of MAPK signaling pathways were also determined by Western blot. Results We found that SPJ increased the expression of the tight junction proteins claudin-1 and occludin in the colon of aging rats. Treatment with SPJ decreased the levels of interleukin-1β and tumor necrosis factor-α, reduced the phosphorylation of three MAPK isoforms, and inhibited the expression of NF-κB in the colon of aging rats. Conclusion The studies demonstrated that SPJ modulates the damage of intestinal epithelial tight junction in aging rats, inhibits inflammation, and downregulates the phosphorylation of the MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Yaoyan Dun
- Medical College of China Three Gorges University, Yichang, China
| | - Min Liu
- Medical College of China Three Gorges University, Yichang, China
| | - Jing Chen
- Medical College of China Three Gorges University, Yichang, China
| | - Danli Peng
- Medical College of China Three Gorges University, Yichang, China
| | - Haixia Zhao
- Medical College of China Three Gorges University, Yichang, China
| | - Zhiyong Zhou
- Medical College of China Three Gorges University, Yichang, China
| | - Ting Wang
- Medical College of China Three Gorges University, Yichang, China
| | - Chaoqi Liu
- Medical College of China Three Gorges University, Yichang, China
| | - Yuhui Guo
- Medical College of China Three Gorges University, Yichang, China
| | - Changcheng Zhang
- Medical College of China Three Gorges University, Yichang, China
| | - Ding Yuan
- Renhe Hospital of China Three Gorges University, Yichang, China
| |
Collapse
|
66
|
Feng YJ, Li YY, Lin XH, Li K, Cao MH. Anti-inflammatory effect of cannabinoid agonist WIN55, 212 on mouse experimental colitis is related to inhibition of p38MAPK. World J Gastroenterol 2016; 22:9515-9524. [PMID: 27920472 PMCID: PMC5116595 DOI: 10.3748/wjg.v22.i43.9515] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/04/2016] [Accepted: 09/28/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the anti-inflammatory effect and the possible mechanisms of an agonist of cannabinoid (CB) receptors, WIN55-212-2 (WIN55), in mice with experimental colitis, so as to supply experimental evidence for its clinical use in future.
METHODS We established the colitis model in C57BL/6 mice by replacing the animals’ water supply with 4% dextran sulfate sodium (DSS) for 7 consecutive days. A colitis scoring system was used to evaluate the severity of colon local lesion. The plasma levels of proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), and the myeloperoxidase (MPO) activity in colon tissue were measured. The expressions of cannabinoid receptors, claudin-1 protein, p38 mitogen-activated protein kinase (p38MAPK) and its phosphorylated form (p-p38) in colon tissue were determined by immunohistochemistry and Western blot. In addition, the effect of SB203580 (SB), an inhibitor of p38, was investigated in parallel experiments, and the data were compared with those from intervention groups of WIN55 and SB alone or used together.
RESULTS The results demonstrated that WIN55 or SB treatment alone or together improved the pathological changes in mice with DSS colitis, decreased the plasma levels of TNF-α, and IL-6, and MPO activity in colon. The enhanced expression of claudin-1 and the inhibited expression of p-p38 in colon tissues were found in the WIN55-treated group. Besides, the expression of CB1 and CB2 receptors was enhanced in the colon after the induction of DSS colitis, but reduced when p38MAPK was inhibited.
CONCLUSION These results confirmed the anti-inflammatory effect and protective role of WIN55 on the mice with experimental colitis, and revealed that this agent exercises its action at least partially by inhibiting p38MAPK. Furthermore, the results showed that SB203580, affected the expression of CB1 and CB2 receptors in the mouse colon, suggesting a close linkage and cross-talk between the p38MAPK signaling pathway and the endogenous CB system.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Benzoxazines/pharmacology
- Cannabinoid Receptor Agonists/pharmacology
- Colitis/chemically induced
- Colitis/enzymology
- Colitis/pathology
- Colitis/prevention & control
- Colon/drug effects
- Colon/enzymology
- Colon/pathology
- Dextran Sulfate
- Disease Models, Animal
- Female
- Imidazoles/pharmacology
- Interleukin-6/blood
- Male
- Mice, Inbred C57BL
- Morpholines/pharmacology
- Naphthalenes/pharmacology
- Peroxidase/metabolism
- Protein Kinase Inhibitors/pharmacology
- Pyridines/pharmacology
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/metabolism
- Signal Transduction/drug effects
- Tumor Necrosis Factor-alpha/blood
- p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
|
67
|
Pharmacological opportunities to control inflammatory diseases through inhibition of the leukocyte recruitment. Pharmacol Res 2016; 112:37-48. [DOI: 10.1016/j.phrs.2016.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 12/30/2022]
|
68
|
Rahimian R, Zirak MR, Keshavarz M, Fakhraei N, Mohammadi-Farani A, Hamdi H, Mousavizadeh K. Involvement of PPARγ in the protective action of tropisetron in an experimental model of ulcerative colitis. Immunopharmacol Immunotoxicol 2016; 38:432-440. [DOI: 10.1080/08923973.2016.1231202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Reza Rahimian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| | - Mohammad Reza Zirak
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Keshavarz
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nahid Fakhraei
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences Tehran, Tehran, Iran
| | - Ahmad Mohammadi-Farani
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Pharmacology, Toxicology and Medical Services, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hanan Hamdi
- Cellular and Molecular Research Center and Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences, Tehran, Iran
| | - Kazem Mousavizadeh
- Cellular and Molecular Research Center and Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
69
|
Sun S, Chen D, Lin F, Chen M, Yu H, Hou L, Li C. Role of interleukin-4, the chemokine CCL3 and its receptor CCR5 in neuropathic pain. Mol Immunol 2016; 77:184-92. [PMID: 27522478 DOI: 10.1016/j.molimm.2016.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 08/04/2016] [Accepted: 08/04/2016] [Indexed: 02/08/2023]
|
70
|
McDaniel DK, Eden K, Ringel VM, Allen IC. Emerging Roles for Noncanonical NF-κB Signaling in the Modulation of Inflammatory Bowel Disease Pathobiology. Inflamm Bowel Dis 2016; 22:2265-79. [PMID: 27508514 PMCID: PMC4992436 DOI: 10.1097/mib.0000000000000858] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Crohn's disease and ulcerative colitis are common and debilitating manifestations of inflammatory bowel disease (IBD). IBD is characterized by a radical imbalance in the activation of proinflammatory and anti-inflammatory signaling pathways in the gut. These pathways are controlled by NF-κB, which is a master regulator of gene transcription. In IBD patients, NF-κB signaling is often dysregulated resulting in overzealous inflammation. NF-κB activation occurs through 2 distinct pathways, defined as either canonical or noncanonical. Canonical NF-κB pathway activation is well studied in IBD and is associated with the rapid, acute production of diverse proinflammatory mediators, such as COX-2, IL-1β, and IL-6. In contrast to the canonical pathway, the noncanonical or "alternative" NF-κB signaling cascade is tightly regulated and is responsible for the production of highly specific chemokines that tend to be associated with less acute, chronic inflammation. There is a relative paucity of literature regarding all aspects of noncanonical NF-ĸB signaling. However, it is clear that this alternative signaling pathway plays a considerable role in maintaining immune system homeostasis and likely contributes significantly to the chronic inflammation underlying IBD. Noncanonical NF-κB signaling may represent a promising new direction in the search for therapeutic targets and biomarkers associated with IBD. However, significant mechanistic insight is still required to translate the current basic science findings into effective therapeutic strategies.
Collapse
Affiliation(s)
- Dylan K. McDaniel
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
| | - Kristin Eden
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
| | - Veronica M. Ringel
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
71
|
Reyes-Gibby CC, Wang J, Silvas MRT, Yu R, Yeung SCJ, Shete S. MAPK1/ERK2 as novel target genes for pain in head and neck cancer patients. BMC Genet 2016; 17:40. [PMID: 26872611 PMCID: PMC4752805 DOI: 10.1186/s12863-016-0348-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 02/05/2016] [Indexed: 01/23/2023] Open
Abstract
Background Genetic susceptibility plays an important role in the risk of developing pain in individuals with cancer. As a complex trait, multiple genes underlie this susceptibility. We used gene network analyses to identify novel target genes associated with pain in patients newly diagnosed with squamous cell carcinoma of the head and neck (HNSCC). Results We first identified 36 cancer pain-related genes (i.e., focus genes) from 36 publications based on a literature search. The Ingenuity Pathway Analysis (IPA) analysis identified additional genes that are functionally related to the 36 focus genes through pathway relationships yielding a total of 82 genes. Subsequently, 800 SNPs within the 82 IPA-selected genes on the Illumina HumanOmniExpress-12v1 platform were selected from a large-scale genotyping effort. Association analyses between the 800 candidate SNPs (covering 82 genes) and pain in a patient cohort of 1368 patients with HNSCC (206 patients with severe pain vs. 1162 with non-severe pain) showed the highest significance for MAPK1/ERK2, a gene belonging to the MAP kinase family (rs8136867, p value = 8.92 × 10−4; odds ratio [OR] = 1.33, 95 % confidence interval [CI]: 1.13–1.58). Other top genes were PIK3C2G (a member of PI3K [complex], rs10770367, p value = 1.10 × 10−3; OR = 1.46, 95 % CI: 1.16–1.82), TCRA (the alpha chain of T-cell receptor, rs6572493, p value = 2.84 × 10−3; OR = 0.70, 95 % CI: 0.55–0.88), PDGFC (platelet-derived growth factor C, rs6845322, p value = 4.88 × 10−3; OR = 1.32, 95 % CI: 1.09–1.60), and CD247 (a member of CD3, rs2995082, p value = 7.79 × 10−3; OR = 0.76, 95 % CI: 0.62–0.93). Conclusions Our findings provide novel candidate genes and biological pathways underlying pain in cancer patients. Further study of the variations of these candidate genes could inform clinical decision making when treating cancer pain. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0348-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cielito C Reyes-Gibby
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, U.S.A..
| | - Jian Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, U.S.A..
| | - Mary Rose T Silvas
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, U.S.A..
| | - Robert Yu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, U.S.A..
| | - Sai-Ching J Yeung
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, U.S.A..
| | - Sanjay Shete
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, U.S.A.. .,Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, U.S.A.
| |
Collapse
|
72
|
Langosch S, Wehner R, Malecka A, Franks HA, Schäkel K, Bachmann M, Jackson AM, Schmitz M. Impact of p38 mitogen-activated protein kinase inhibition on immunostimulatory properties of human 6-sulfo LacNAc dendritic cells. Immunobiology 2016; 221:166-74. [DOI: 10.1016/j.imbio.2015.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/13/2015] [Accepted: 09/07/2015] [Indexed: 02/07/2023]
|
73
|
Money KM, Olah Z, Korade Z, Garbett KA, Shelton RC, Mirnics K. An altered peripheral IL6 response in major depressive disorder. Neurobiol Dis 2016; 89:46-54. [PMID: 26804030 DOI: 10.1016/j.nbd.2016.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 12/26/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most prevalent major psychiatric disorders with a lifetime prevalence of 17%. Recent evidence suggests MDD is not only a brain dysfunction, but a systemic disease affecting the whole body. Central and peripheral inflammatory changes seem to be a centerpiece of MDD pathology: a subset of patients show elevated blood cytokine and chemokine levels that partially normalize with symptom improvement over the course of anti-depressant treatment. As this inflammatory process in MDD is poorly understood, we hypothesized that the peripheral tissues of MDD patients will respond differently to inflammatory stimuli, resulting in an aberrant transcriptional response to elevated pro-inflammatory cytokines. To test this, we used MDD patient- and control-derived dermal fibroblast cultures to investigate their response to an acute treatment with IL6, IL1β, TNFα, or vehicle. Following RNA isolation and subsequent cDNA synthesis, quantitative PCR was used to determine the relative expression level of several families of inflammation-responsive genes. Our results showed comparable expression of the tested genes between MDD patients and controls at baseline. In contrast, MDD patient fibroblasts had a diminished transcriptional response to IL6 in all the gene sets tested (oxidative stress response, mitochondrial function, and lipid metabolism). We also found a significant increase in baseline and IL6 stimulated transcript levels of the IL6 receptor gene. This IL6 receptor transcript increase in MDD fibroblasts was accompanied by an IL6 stimulated increase in induction of SOCS3, which dampens IL6 receptor signaling. Altogether our results demonstrate that there is an altered transcriptional response to IL6 in MDD, which may represent one of the molecular mechanisms contributing to disease pathophysiology. Ultimately we hope that these studies will lead to validation of novel MDD drug targets focused on normalizing the altered IL6 response in patients.
Collapse
Affiliation(s)
- Kelli M Money
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Medical Scientist Training Program, Vanderbilt University, Nashville, TN 37232, USA
| | - Zita Olah
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt International Scholar Program, Vanderbilt University, Nashville, TN 37232, USA; Department of Psychiatry, University of Szeged, 6725 Szeged, Hungary
| | - Zeljka Korade
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Richard C Shelton
- Department of Psychiatry, University of Alabama, Birmingham, AL 35294, USA
| | - Karoly Mirnics
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
74
|
Goullee H, Wadley AL, Cherry CL, Allcock RJN, Black M, Kamerman PR, Price P. Polymorphisms in CAMKK2 may predict sensory neuropathy in African HIV patients. J Neurovirol 2016; 22:508-17. [PMID: 26785644 DOI: 10.1007/s13365-015-0421-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 01/06/2023]
Abstract
HIV-associated sensory neuropathy (HIV-SN) is the most common neurological condition associated with HIV. HIV-SN has characteristics of an inflammatory pathology caused by the virus itself and/or by antiretroviral treatment (ART). Here, we assess the impact of single-nucleotide polymorphisms (SNPs) in a cluster of three genes that affect inflammation and neuronal repair: P2X7R, P2X4R and CAMKK2. HIV-SN status was assessed using the Brief Peripheral Neuropathy Screening tool, with SN defined by bilateral symptoms and signs. Forty-five SNPs in P2X7R, P2X4R and CAMKK2 were genotyped using TaqMan fluorescent probes, in DNA samples from 153 HIV(+) black Southern African patients exposed to stavudine. Haplotypes were derived using the fastPHASE algorithm, and SNP genotypes and haplotypes associated with HIV-SN were identified. Optimal logistic regression models included demographics (age and height), with SNPs (model p < 0.0001; R (2) = 0.19) or haplotypes (model p < 0.0001; R (2) = 0.18, n = 137 excluding patients carrying CAMKK2 haplotypes perfectly associated with SN). Overall, CAMKK2 exhibited the strongest associations with HIV-SN, with two SNPs and six haplotypes predicting SN status in black Southern Africans. This gene warrants further study.
Collapse
Affiliation(s)
- Hayley Goullee
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
| | - Antonia L Wadley
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Catherine L Cherry
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa.,Department of Infectious Diseases, Alfred Hospital and Monash University, and Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | - Richard J N Allcock
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
| | - Michael Black
- Centre for Comparative Genomics, Murdoch University, Perth, Australia
| | - Peter R Kamerman
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Patricia Price
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa. .,School of Biomedical Science, Curtin University of Technology, Bentley, Western Australia, 6845, Australia.
| |
Collapse
|
75
|
Muraro D, Simmons A. An integrative analysis of gene expression and molecular interaction data to identify dys-regulated sub-networks in inflammatory bowel disease. BMC Bioinformatics 2016; 17:42. [PMID: 26787018 PMCID: PMC4719745 DOI: 10.1186/s12859-016-0886-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 01/08/2016] [Indexed: 01/12/2023] Open
Abstract
Background Inflammatory bowel disease (IBD) consists of two main disease-subtypes, Crohn’s disease (CD) and ulcerative colitis (UC); these subtypes share overlapping genetic and clinical features. Genome-wide microarray data enable unbiased documentation of alterations in gene expression that may be disease-specific. As genetic diseases are believed to be caused by genetic alterations affecting the function of signalling pathways, module-centric optimisation algorithms, whose aim is to identify sub-networks that are dys-regulated in disease, are emerging as promising approaches. Results In order to account for the topological structure of molecular interaction networks, we developed an optimisation algorithm that integrates databases of known molecular interactions with gene expression data; such integration enables identification of differentially regulated network modules. We verified the performance of our algorithm by testing it on simulated networks; we then applied the same method to study experimental data derived from microarray analysis of CD and UC biopsies and human interactome databases. This analysis allowed the extraction of dys-regulated subnetworks under different experimental conditions (inflamed and uninflamed tissues in CD and UC). Optimisation was performed to highlight differentially expressed network modules that may be common or specific to the disease subtype. Conclusions We show that the selected subnetworks include genes and pathways of known relevance for IBD; in particular, the solutions found highlight cross-talk among enriched pathways, mainly the JAK/STAT signalling pathway and the EGF receptor signalling pathway. In addition, integration of gene expression with molecular interaction data highlights nodes that, although not being differentially expressed, interact with differentially expressed nodes and are part of pathways that are relevant to IBD. The method proposed here may help identifying dys-regulated sub-networks that are common in different diseases and sub-networks whose dys-regulation is specific to a particular disease. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-0886-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniele Muraro
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, OX3 9DS Oxford, UK.
| | - Alison Simmons
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, OX3 9DS Oxford, UK.
| |
Collapse
|
76
|
Oxidative Stress and Carbonyl Lesions in Ulcerative Colitis and Associated Colorectal Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:9875298. [PMID: 26823956 PMCID: PMC4707327 DOI: 10.1155/2016/9875298] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/14/2015] [Accepted: 10/25/2015] [Indexed: 12/15/2022]
Abstract
Oxidative stress has long been known as a pathogenic factor of ulcerative colitis (UC) and colitis-associated colorectal cancer (CAC), but the effects of secondary carbonyl lesions receive less emphasis. In inflammatory conditions, reactive oxygen species (ROS), such as superoxide anion free radical (O2 (∙-)), hydrogen peroxide (H2O2), and hydroxyl radical (HO(∙)), are produced at high levels and accumulated to cause oxidative stress (OS). In oxidative status, accumulated ROS can cause protein dysfunction and DNA damage, leading to gene mutations and cell death. Accumulated ROS could also act as chemical messengers to activate signaling pathways, such as NF-κB and p38 MAPK, to affect cell proliferation, differentiation, and apoptosis. More importantly, electrophilic carbonyl compounds produced by lipid peroxidation may function as secondary pathogenic factors, causing further protein and membrane lesions. This may in turn exaggerate oxidative stress, forming a vicious cycle. Electrophilic carbonyls could also cause DNA mutations and breaks, driving malignant progression of UC. The secondary lesions caused by carbonyl compounds may be exceptionally important in the case of host carbonyl defensive system deficit, such as aldo-keto reductase 1B10 deficiency. This review article updates the current understanding of oxidative stress and carbonyl lesions in the development and progression of UC and CAC.
Collapse
|
77
|
Regulatory role of CARD3 in left ventricular remodelling and dysfunction after myocardial infarction. Basic Res Cardiol 2015; 110:56. [PMID: 26463597 DOI: 10.1007/s00395-015-0515-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 10/06/2015] [Indexed: 01/01/2023]
|
78
|
Choo J, Lee Y, Yan XJ, Noh TH, Kim SJ, Son S, Pothoulakis C, Moon HR, Jung JH, Im E. A Novel Peroxisome Proliferator-activated Receptor (PPAR)γ Agonist 2-Hydroxyethyl 5-chloro-4,5-didehydrojasmonate Exerts Anti-Inflammatory Effects in Colitis. J Biol Chem 2015; 290:25609-19. [PMID: 26342083 DOI: 10.1074/jbc.m115.673046] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Indexed: 01/28/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease with increasing incidence and prevalence worldwide. Here we investigated the newly synthesized jasmonate analogue 2-hydroxyethyl 5-chloro-4,5-didehydrojasmonate (J11-Cl) for its anti-inflammatory effects on intestinal inflammation. First, to test whether J11-Cl can activate peroxisome proliferator-activated receptors (PPARs), we performed docking simulations because J11-Cl has a structural similarity with anti-inflammatory 15-deoxy-Δ(12,14)-prostaglandin J2 (15d-PGJ2), one of the endogenous ligands of PPARγ. J11-Cl bound to the ligand binding domain of PPARγ in the same manner as 15d-PGJ2 and rosiglitazone, and significantly increased transcriptional activity of PPARγ. In animal experiments, colitis was significantly reduced in mice with J11-Cl treatment, determined by analyses of survival rate, body weight changes, clinical symptoms, and histological evaluation. Moreover, J11-Cl decreased production of pro-inflammatory cytokines including IL-6, IL-8, and G-CSF as well as chemokines including chemokine (C-C motif) ligand (CCL)20, chemokine (C-X-C motif) ligand (CXCL)2, CXCL3, and chemokine (C-X3-C motif) ligand 1 (CX3CL1) in colon tissues, and LPS or TNF-α-stimulated macrophages and epithelial cells. In contrast, production of anti-inflammatory cytokines including IL-2 and IL-4 as well as the proliferative factor, GM-CSF, was increased by J11-Cl. Furthermore, inhibition of MAPKs and NF-κB activation by J11-Cl was also observed. J11-Cl reduced intestinal inflammation by increasing the transcriptional activity of PPARγ and modulating inflammatory signaling pathways. Therefore, our study suggests that J11-Cl may serve as a novel therapeutic agent against IBD.
Collapse
Affiliation(s)
- Jieun Choo
- From the College of Pharmacy, Pusan National University, Busan, 609-735, Korea
| | - Yunna Lee
- From the College of Pharmacy, Pusan National University, Busan, 609-735, Korea
| | - Xin-Jia Yan
- College of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang Province 150076, P.R. China, and
| | - Tae Hwan Noh
- From the College of Pharmacy, Pusan National University, Busan, 609-735, Korea
| | - Seong Jin Kim
- From the College of Pharmacy, Pusan National University, Busan, 609-735, Korea
| | - Sujin Son
- From the College of Pharmacy, Pusan National University, Busan, 609-735, Korea
| | - Charalabos Pothoulakis
- Section of Inflammatory Bowel Disease & Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095
| | - Hyung Ryong Moon
- From the College of Pharmacy, Pusan National University, Busan, 609-735, Korea
| | - Jee H Jung
- From the College of Pharmacy, Pusan National University, Busan, 609-735, Korea
| | - Eunok Im
- From the College of Pharmacy, Pusan National University, Busan, 609-735, Korea,
| |
Collapse
|
79
|
Gallic acid ameliorates renal functions by inhibiting the activation of p38 MAPK in experimentally induced type 2 diabetic rats and cultured rat proximal tubular epithelial cells. Chem Biol Interact 2015; 240:292-303. [PMID: 26341651 DOI: 10.1016/j.cbi.2015.08.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/14/2015] [Accepted: 08/31/2015] [Indexed: 12/26/2022]
Abstract
Diabetic nephropathy (DN) is one of the leading causes of morbidity and mortality in diabetic patients that accounts for about 40% of deaths in type 2 diabetes. p38 mitogen activated protein kinase (p38 MAPK), a serine-threonine kinase, plays an important role in tissue inflammation and is known to be activated under conditions of oxidative stress and hyperglycemia. The role of p38 MAPK has been demonstrated in DN, and its inhibition has been suggested as an alternative approach in the treatment of DN. In the present study, we investigated the nephroprotective effects of an anti-inflammatory phenolic compound, gallic acid (GA, 3,4,5-trihydroxybenzoic acid), in high fat diet/streptozotocin (HFD/STZ) induce type 2 diabetic wistar albino rats. GA (25 mg/kgbw and 50 mg/kgbw, p.o.) treatment for 16 weeks post induction of diabetes led to a significant reduction in the levels of blood glucose, HbA1c, serum creatinine, blood urea nitrogen and proteinuria as well as a significant reduction in the levels of creatinine clearance. GA significantly inhibited the renal p38 MAPK and nuclear factor kappa B (N-κB) activation as well as significantly reduced the levels of renal transforming growth factor beta (TGF-β) and fibronectin. Treatment with GA resulted in a significant reduction in the serum levels of proinflammatory cytokines viz. interleukin 1 beta (IL-1β), IL-6 and tumor necrosis factor alpha (TNF-α). Moreover, GA significantly lowered renal pathology and attenuated renal oxidative stress. In cultured rat NRK 52E proximal tubular epithelial cells, GA treatment inhibited high glucose induced activation of p38 MAPK and NF-κB as well as suppressed proinflammatory cytokine synthesis. The results of the present study provide in vivo and in vitro evidences that the p38 MAPK pathway plays an important role in the pathogenesis of DN, and GA attenuates the p38 MAPK-mediated renal dysfunction in HFD/STZ induced type 2 diabetic rats.
Collapse
|
80
|
Abstract
BACKGROUND Caspase activation and recruitment domain 3 (CARD3) is a 61-kDa protein kinase. Recent evidence shows the importance of CARD3 in the immune response and inflammatory diseases. To elucidate its impact on inflammatory bowel disease, we studied the effects of the loss of CARD3 in the acute dextran sodium sulfate-induced colitis. METHODS Colitis was induced by administration of dextran sodium sulfate to wild-type and CARD3 mice. Colon tissues were analyzed. RESULTS CARD3 mice were less susceptible to the development of colitis than wild-type controls as determined by weight loss, disease activity, colon histology, neutrophil infiltration, and cytokine expression. Reduced susceptibility of CARD3 mice to colitis was closely related to increased density of colonic epithelial cells relative to wild-type controls, which was because of decreased levels of apoptosis that resulted in enhanced epithelial barrier function. Finally, CARD3 levels were increased in intestinal tissue from patients with IBD. CONCLUSIONS These results imply a role for CARD3 as a positive regulator of intestinal epithelial cell apoptosis in the inflamed colon. Genetic loss of CARD3 is protective against colitis through decreased epithelial cell apoptosis and consequent enhancement of intestinal epithelial barrier function. Thus, targeted CARD3 inhibition may represent a new therapeutic approach in IBD.
Collapse
|
81
|
Cao MH, Xu J, Cai HD, Lv ZW, Feng YJ, Li K, Chen CQ, Li YY. p38 MAPK inhibition alleviates experimental acute pancreatitis in mice. Hepatobiliary Pancreat Dis Int 2015; 14:101-6. [PMID: 25655298 DOI: 10.1016/s1499-3872(15)60327-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The mitogen-activated protein kinases (MAPKs) signaling pathway is involved in inflammatory process. However, the mechanism is not clear. The present study was to investigate the role of p38 MAPK in acute pancreatitis in mice. METHODS Mice were divided into 4 groups: saline control; acute pancreatitis induced with repeated injections of cerulein; control plus p38 MAPK inhibitor SB203580; and acute pancreatitis plus SB203580. The pancreatic histology, pancreatic enzymes, cytokines, myeloperoxidase activity, p38 MAPK and heat shock protein (HSP) 60 and 70 were evaluated. RESULTS Repeated injections of cerulein resulted in acute pancreatitis in mice, accompanying with the activation of p38 MAPK and overexpression of HSP60 and HSP70 in the pancreatic tissues. Treatment with SB203580 significantly inhibited the activation of p38 MAPK, and furthermore, inhibited the expression of HSP60 and HSP70 in the pancreas, the inflammatory cytokines in the serum, and myeloperoxidase activity in the lung. CONCLUSION The p38 MAPK signaling pathway is involved in the regulation of inflammatory response and the expression of HSP60 and HSP70 in acute pancreatitis.
Collapse
Affiliation(s)
- Ming-Hua Cao
- Department of Pathophysiology, Institute of Digestive Disease, Tongji University School of Medicine, Shanghai 200092, China.
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Guo CC, Deng Y, Ye H, Zhu YZ, Zheng XB. Role of MAPK signaling pathways in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2015; 23:229-235. [DOI: 10.11569/wcjd.v23.i2.229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are a group of highly conserved serine protein kinases which are distributed in the cytoplasm. MAPK signal transduction pathways play a major role in inflammatory reactions and have a close relation with inflammatory bowel disease (IBD). They could be involved in the regulation of inflammatory mediators as well as IBD-associated genes. This paper reviews the role of MAPK signaling pathways in the pathogenesis of IBD, aiming at providing a new method for the treatment of IBD.
Collapse
|
83
|
Lo JY, Kamarudin MNA, Hamdi OAA, Awang K, Kadir HA. Curcumenol isolated from Curcuma zedoaria suppresses Akt-mediated NF-κB activation and p38 MAPK signaling pathway in LPS-stimulated BV-2 microglial cells. Food Funct 2015; 6:3550-9. [DOI: 10.1039/c5fo00607d] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Curcumenol attenuates the inflammatory responses induced by LPS in BV-2 microglial cells.
Collapse
Affiliation(s)
- Jia Ye Lo
- Biomolecular Research Group
- Biochemistry Program
- Institute of Biological Sciences
- Faculty of Science
- University of Malaya
| | | | | | - Khalijah Awang
- Department of Chemistry
- Faculty of Science
- University of Malaya
- Kuala Lumpur
- Malaysia
| | - Habsah Abdul Kadir
- Biomolecular Research Group
- Biochemistry Program
- Institute of Biological Sciences
- Faculty of Science
- University of Malaya
| |
Collapse
|
84
|
Rodríguez-Nogales A, Algieri F, Vezza T, Garrido-Mesa N, Olivares M, Comalada M, Riccardi C, Utrilla MP, Rodríguez-Cabezas ME, Galvez J. The viability of Lactobacillus fermentum CECT5716 is not essential to exert intestinal anti-inflammatory properties. Food Funct 2015; 6:1176-84. [DOI: 10.1039/c4fo00938j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The viability ofL. fermentumCECT5716 did not affect its immune-modulatory and anti-inflammatory properties.
Collapse
Affiliation(s)
- Alba Rodríguez-Nogales
- CIBER-EHD
- Department of Pharmacology
- ibs.GRANADA
- Center for Biomedical Research (CIBM)
- University of Granada
| | - Francesca Algieri
- CIBER-EHD
- Department of Pharmacology
- ibs.GRANADA
- Center for Biomedical Research (CIBM)
- University of Granada
| | - Teresa Vezza
- CIBER-EHD
- Department of Pharmacology
- ibs.GRANADA
- Center for Biomedical Research (CIBM)
- University of Granada
| | - Natividad Garrido-Mesa
- CIBER-EHD
- Department of Pharmacology
- ibs.GRANADA
- Center for Biomedical Research (CIBM)
- University of Granada
| | | | | | - Carlo Riccardi
- Department of Clinical and Experimental Medicine
- University of Perugia
- Italy
| | - Ma Pilar Utrilla
- CIBER-EHD
- Department of Pharmacology
- ibs.GRANADA
- Center for Biomedical Research (CIBM)
- University of Granada
| | - Ma Elena Rodríguez-Cabezas
- CIBER-EHD
- Department of Pharmacology
- ibs.GRANADA
- Center for Biomedical Research (CIBM)
- University of Granada
| | - Julio Galvez
- CIBER-EHD
- Department of Pharmacology
- ibs.GRANADA
- Center for Biomedical Research (CIBM)
- University of Granada
| |
Collapse
|
85
|
Yang SC, Sung PJ, Lin CF, Kuo J, Chen CY, Hwang TL. Anti-inflammatory effects of secondary metabolites of marine Pseudomonas sp. in human neutrophils are through inhibiting P38 MAPK, JNK, and calcium pathways. PLoS One 2014; 9:e114761. [PMID: 25474595 PMCID: PMC4256452 DOI: 10.1371/journal.pone.0114761] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/13/2014] [Indexed: 01/01/2023] Open
Abstract
Activated neutrophils play a significant role in the pathogenesis of many inflammatory diseases. The metabolites of marine microorganisms are increasingly employed as sources for developing new drugs; however, very few marine drugs have been studied in human neutrophils. Herein, we showed that secondary metabolites of marine Pseudomonas sp. (N11) significantly inhibited superoxide anion generation and elastase release in formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-activated human neutrophils, with IC50 values of 0.67±0.38 µg/ml and 0.84±0.12 µg/ml, respectively. In cell-free systems, neither superoxide anion-scavenging effect nor inhibition of elastase activity was associated with the suppressive effects of N11. N11 inhibited the phosphorylation of p38 MAP kinase and JNK, but not Erk and Akt, in FMLP-induced human neutrophils. Also, N11 dose-dependently attenuated the transient elevation of intracellular calcium concentration in activated neutrophils. In contrast, N11 failed to alter phorbol myristate acetate-induced superoxide anion generation, and the inhibitory effects of N11 were not reversed by protein kinase A inhibitor. In conclusion, the anti-inflammatory effects of N11 on superoxide anion generation and elastase release in activated human neutrophils are through inhibiting p38 MAP kinase, JNK, and calcium pathways. Our results suggest that N11 has the potential to be developed to treat neutrophil-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Shun-Chin Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ping-Jyun Sung
- Department of Life Science and Graduate Institute of Biotechnology, Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung, Taiwan
| | - Chwan-Fwu Lin
- Department of Cosmetic Science, and Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Jimmy Kuo
- National Museum of Marine Biology & Aquarium, Pingtung, Taiwan
| | - Chun-Yu Chen
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, School of Traditional Medicine, College of Medicine, and Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
86
|
Yang K, Qiu BY, Yan J, Yang YX, Zhang T, Chen X, Zou YP, Gan HT, Huang XL. Blockade of p38 mitogen-activated protein kinase pathway ameliorates delayed gastric emptying in streptozotocin-induced diabetic rats. Int Immunopharmacol 2014; 23:696-700. [PMID: 25445962 DOI: 10.1016/j.intimp.2014.10.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIM Gastrointestinal dysfunction is one of the major complications of diabetes. The roles of inflammation in diabetes and its associated complications are increasingly recognized. p38 mitogen-activated protein kinase (MAPK) has been shown to be involved in the production of pro-inflammatory mediators. The aims of this study were to investigate the effects of SB203580, a specific p38 MAPK inhibitor, on delayed gastric emptying in diabetic rats and to elucidate its possible mechanism. METHODS SB203580 was administered in diabetic rats induced by intraperitoneal injection of streptozotocin. The gastric emptying rate of rats was measured by using phenol red solution, and blood glucose levels and body weights were observed. p38 MAPK activity and iNOS expression were assessed by Western blot analysis. The expression of tumor necrosis factor (TNF)-α and interleukin (IL)-1β were determined by enzyme-linked immunosorbent assay. RESULTS Gastric emptying was delayed significantly in diabetic rats and improved significantly with SB203580; high glucose significantly activated p38 MAPK and increased the expression of iNOS, TNF-α and IL-1β. The administration of SB203580 led to a significant decrease in the activation of p38 MAPK and the expression of iNOS, TNF-α and IL-1β. CONCLUSIONS Inflammation was associated with the development of delayed gastric emptying, and blockade of p38 MAPK pathway with SB203580 ameliorates delayed gastric emptying in diabetic rats, at least in part, by inhibiting the expression of iNOS, TNF-a and IL-1β. Therefore, p38MAPK may serve as a novel target for the therapy of diabetes-related gastrointestinal dysmotility.
Collapse
Affiliation(s)
- Kun Yang
- Department of Geriatrics Medicine and Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bo Yun Qiu
- Department of Geriatrics Medicine and Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yan
- Department of Geriatrics Medicine and Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Xue Yang
- Department of Geriatrics Medicine and Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tao Zhang
- Department of Geriatrics Medicine and Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xi Chen
- Department of Geriatrics Medicine and Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Pei Zou
- Department of Geriatrics Medicine and Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hua Tian Gan
- Department of Geriatrics Medicine and Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiao Li Huang
- Department of Geriatrics Medicine and Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
87
|
Deletion of serum amyloid A3 improves high fat high sucrose diet-induced adipose tissue inflammation and hyperlipidemia in female mice. PLoS One 2014; 9:e108564. [PMID: 25251243 PMCID: PMC4177399 DOI: 10.1371/journal.pone.0108564] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/22/2014] [Indexed: 12/17/2022] Open
Abstract
Serum amyloid A (SAA) increases in response to acute inflammatory stimuli and is modestly and chronically elevated in obesity. SAA3, an inducible form of SAA, is highly expressed in adipose tissue in obese mice where it promotes monocyte chemotaxis, providing a mechanism for the macrophage accumulation that occurs with adipose tissue expansion in obesity. Humans do not express functional SAA3 protein, but instead express SAA1 and SAA2 in hepatic as well as extrahepatic tissues, making it difficult to distinguish between liver and adipose tissue-specific SAA effects. SAA3 does not circulate in plasma, but may exert local effects that impact systemic inflammation. We tested the hypothesis that SAA3 contributes to chronic systemic inflammation and adipose tissue macrophage accumulation in obesity using mice deficient for Saa3 (Saa3(-/-)). Mice were rendered obese by feeding a pro-inflammatory high fat, high sucrose diet with added cholesterol (HFHSC). Both male and female Saa3(-/-) mice gained less weight on the HFHSC diet compared to Saa3(+/+) littermate controls, with no differences in body composition or resting metabolism. Female Saa3(-/-) mice, but not males, had reduced HFHSC diet-induced adipose tissue inflammation and macrophage content. Both male and female Saa3(-/-) mice had reduced liver Saa1 and Saa2 expression in association with reduced plasma SAA. Additionally, female Saa3(-/-) mice, but not males, showed improved plasma cholesterol, triglycerides, and lipoprotein profiles, with no changes in glucose metabolism. Taken together, these results suggest that the absence of Saa3 attenuates liver-specific SAA (i.e., SAA1/2) secretion into plasma and blunts weight gain induced by an obesogenic diet. Furthermore, adipose tissue-specific inflammation and macrophage accumulation are attenuated in female Saa3(-/-) mice, suggesting a novel sexually dimorphic role for this protein. These results also suggest that Saa3 influences liver-specific SAA1/2 expression, and that SAA3 could play a larger role in the acute phase response than previously thought.
Collapse
|
88
|
Sasa quelpaertensis leaf extract suppresses dextran sulfate sodium-induced colitis in mice by inhibiting the proinflammatory mediators and mitogen-activated protein kinase phosphorylation. Nutr Res 2014; 34:894-905. [PMID: 25287291 DOI: 10.1016/j.nutres.2014.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/29/2014] [Accepted: 09/05/2014] [Indexed: 01/06/2023]
Abstract
Sasa quelpaertensis leaves exert anti-inflammatory and anticarcinogenic effects, although it remains unclear whether these leaves can suppress inflammation-related intestinal diseases. This study hypothesized that Sasa quelpaertensis leaf extract (SQE) exerts a protective effect against inflammation in a dextran sulfate sodium (DSS)-induced colitis mouse model. Therefore, colon tissues of DSS-induced colitis mice that were treated with SQE were assayed for levels of proinflammatory markers, mitogen-activated protein kinase signaling, and activation of nuclear factor κB. For this purpose, mice were pretreated with SQE (100 mg/kg or 300 mg/kg body weight) by gavage for a 2-week period. Mice then received either SQE or sulfasalazine (100 mg/kg body weight) with 2.5% DSS in drinking water for 7 days twice daily and 7 days of tap water ad libitum between DSS treatment. Treatment with SQE was found to attenuate the severity of DSS-induced colitis, as assessed by disease activity index scores, shrinkage of colon length, and histopathologic changes. SQE reduced DSS-induced proliferation in distal colon tissues. It also significantly suppressed levels of tumor necrosis factor-α in serum and colon tissues, nitric oxide synthase, cyclooxygenase, and levels of phosphorylated c-Jun N-terminal kinases, p38, extracellular-signal-regulated kinases 1/2, and IκBα in colon tissues. To our knowledge, this is the first study to demonstrate that SQE supplementation can exert an anti-inflammatory effect on experimental chronic colitis.
Collapse
|
89
|
del Reino P, Alsina-Beauchamp D, Escós A, Cerezo-Guisado MI, Risco A, Aparicio N, Zur R, Fernandez-Estévez M, Collantes E, Montans J, Cuenda A. Pro-Oncogenic Role of Alternative p38 Mitogen-Activated Protein Kinases p38γ and p38δ, Linking Inflammation and Cancer in Colitis-Associated Colon Cancer. Cancer Res 2014; 74:6150-60. [DOI: 10.1158/0008-5472.can-14-0870] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
90
|
Tigno-Aranjuez JT, Benderitter P, Rombouts F, Deroose F, Bai X, Mattioli B, Cominelli F, Pizarro TT, Hoflack J, Abbott DW. In vivo inhibition of RIPK2 kinase alleviates inflammatory disease. J Biol Chem 2014; 289:29651-64. [PMID: 25213858 DOI: 10.1074/jbc.m114.591388] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The RIPK2 kinase transduces signaling downstream of the intracellular peptidoglycan sensors NOD1 and NOD2 to promote a productive inflammatory response. However, excessive NOD2 signaling has been associated with numerous diseases, including inflammatory bowel disease (IBD), sarcoidosis and inflammatory arthritis, making pharmacologic inhibition of RIPK2 an appealing strategy. In this work, we report the generation, identification, and evaluation of novel RIPK2 specific inhibitors. These compounds potently inhibit the RIPK2 tyrosine kinase activity in in vitro biochemical assays and cellular assays, as well as effectively reduce RIPK2-mediated effects in an in vivo peritonitis model. In conjunction with the development of these inhibitors, we have also defined a panel of genes whose expression is regulated by RIPK2 kinase activity. Such RIPK2 activation markers may serve as a useful tool for predicting settings likely to benefit from RIPK2 inhibition. Using these markers and the FDA-approved RIPK2 inhibitor Gefitinib, we show that pharmacologic RIPK2 inhibition drastically improves disease in a spontaneous model of Crohn Disease-like ileitis. Furthermore, using novel RIPK2-specific inhibitors, we show that cellular recruitment is inhibited in an in vivo peritonitis model. Altogether, the data presented in this work provides a strong rationale for further development and optimization of RIPK2-targeted pharmaceuticals and diagnostics.
Collapse
Affiliation(s)
| | - Pascal Benderitter
- Oncodesign S.A., 20, Rue Jean Mazen, B.P. 27 627, 21 076 Dijon Cedex, France
| | - Frederik Rombouts
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Frederik Deroose
- Asclepia Outsourcing Solutions, Damvalleistraat 49, B-9070 Destelbergen, Belgium
| | - XiaoDong Bai
- RNA Center, Case Western Reserve University, Cleveland, Ohio 44106-4973, and
| | - Benedetta Mattioli
- From the Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106-4973
| | - Fabio Cominelli
- From the Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106-4973, Division of Gastroenterology, Department of Medicine, University Hospitals of Cleveland, Cleveland, Ohio 44106-4973
| | - Theresa T Pizarro
- From the Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106-4973
| | - Jan Hoflack
- Oncodesign S.A., 20, Rue Jean Mazen, B.P. 27 627, 21 076 Dijon Cedex, France
| | - Derek W Abbott
- From the Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106-4973,
| |
Collapse
|
91
|
Diminazene aceturate (Berenil), a new use for an old compound? Int Immunopharmacol 2014; 21:342-5. [DOI: 10.1016/j.intimp.2014.05.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 11/20/2022]
|
92
|
Zhang Q, Xiao X, Li M, Li W, Yu M, Zhang H, Ping F, Wang Z, Zheng J. Berberine moderates glucose metabolism through the GnRH-GLP-1 and MAPK pathways in the intestine. Altern Ther Health Med 2014; 14:188. [PMID: 24912407 PMCID: PMC4057525 DOI: 10.1186/1472-6882-14-188] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 06/03/2014] [Indexed: 11/10/2022]
Abstract
Background Berberine is known to improve glucose and lipid metabolism disorders, but it poorly absorbed into the blood stream from the gut. Therefore, the exact underlying mechanism for berberine is still unknown. In this study, we investigated the effect of berberine on glucose metabolism in diabetic rats and tested the hypothesis that berberine acts directly in the terminal ileums. Methods Rats were divided into a control group, diabetic group (DM), low dose of berberine group (BerL) and high dose of berberine group (BerH). Ileum samples were analyzed using a Roche NimbleGen mRNA array, qPCR and immunohistochemistry. Results We found that 8 weeks of treatment with berberine significantly decreased fasting blood glucose levels. An oral glucose tolerance test (OGTT) showed that blood glucose was significantly reduced in the BerL and BerH groups before and at 30 min, 60 min and 120 min after oral glucose administration. Plasma postprandial glucagon-like peptide-1 (GLP-1) levels were increased in the berberine-treated groups. The ileum from the BerH group had 2112 genes with significantly changed expression (780 increased, 1332 decreased). KEGG pathway analyses indicated that all differentially expressed genes included 9 KEGG pathways. The top two pathways were the MAPK signaling pathway and the GnRH signaling pathway. Q-RT-PCR and immunohistochemistry verified that glucagon-like peptide 1 receptor (Glp1r) and mitogen activated protein kinase 10 (Mapk10) were significantly up-regulated, in contrast, gonadotropin releasing hormone receptor (Gnrhr) and gonadotropin-releasing hormone 1 (Gnrh1) were down-regulated in the BerH group. Conclusion Our data suggest that berberine can improve blood glucose levels in diabetic rats. The mechanisms involved may be in the MAPK and GnRh-Glp-1 pathways in the ileum.
Collapse
|
93
|
Enterococcus faecalis from healthy infants modulates inflammation through MAPK signaling pathways. PLoS One 2014; 9:e97523. [PMID: 24830946 PMCID: PMC4022717 DOI: 10.1371/journal.pone.0097523] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/19/2014] [Indexed: 02/06/2023] Open
Abstract
Colonizing commensal bacteria after birth are required for the proper development of the gastrointestinal tract. It is believed that bacterial colonization pattern in neonatal gut affects gut barrier function and immune system maturation. Studies on the development of faecal microbiota in infants showed that the neonatal gut was first colonized with enterococci followed by other microbiota such as Bifidobacterium. Other studies showed that babies who developed allergy were less often colonized with Enterococcus during the first month of life as compared to healthy infants. Many studies have been conducted to elucidate how bifidobacteria or lactobacilli, some of which are considered probiotic, regulate infant gut immunity. However, fewer studies have been focused on enterococi. In our study, we demonstrate that E. faecalis, isolated from healthy newborns, suppress inflammatory responses activated in vivo and in vitro. We found E. faecalis attenuates proinflammatory cytokine secretions, especially IL-8, through JNK and p38 signaling pathways. This finding shed light on how the first colonizer, E.faecalis, regulates inflammatory responses in the host.
Collapse
|
94
|
Bak YK, Lampe JW, Sung MK. Effects of dietary supplementation of glucosamine sulfate on intestinal inflammation in a mouse model of experimental colitis. J Gastroenterol Hepatol 2014; 29:957-63. [PMID: 24325781 DOI: 10.1111/jgh.12485] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/05/2013] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIM Epidemiological evidences suggested an inverse association between the use of glucosamine supplements and colorectal cancer (CRC) risk. In this study, the efficacy of glucosamine to attenuate dextran sodium sulfate (DSS)-induced colitis, a precancerous condition for CRC, was evaluated. METHODS C57BL/6 mice were separated into three groups receiving glucosamine sulfate at concentrations of 0, 0.05, and 0.10% (w/w) of AIN-93G diet, respectively for 4 weeks. Colitis was induced by supplying two cycles (5 days per cycle) of 2% DSS in the animals' drinking water. RESULTS Glucosamine supplementation at the level of 0.10% of the diet (w/w) reduced colitis-associated symptoms as measured by disease activity index (DAI). Tumor necrosis factor-α (TNF-α), interleukin-1β, and nuclear factor-kappa B mRNA expression in the colonic mucosa was significantly lower in animals fed 0.10% glucosamine compared with those of the control group. Expression of the tight junction proteins ZO-1 and occludin was significantly higher in the 0.10% glucosamine-supplemented group compared with the other groups. Also, colonic protein expression of lipocalin 2, and serum concentrations of interleukin-8 and amyloid P component (SAP) were significantly reduced in the 0.10% glucosamine-supplemented group compared with the control group. CONCLUSION These results suggest that glucosamine attenuates the colitis disease activity by suppressing NF-κB activation and related inflammatory responses.
Collapse
Affiliation(s)
- Youn-Kyung Bak
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, Korea
| | | | | |
Collapse
|
95
|
Krementsov DN, Noubade R, Dragon JA, Otsu K, Rincon M, Teuscher C. Sex-specific control of central nervous system autoimmunity by p38 mitogen-activated protein kinase signaling in myeloid cells. Ann Neurol 2014; 75:50-66. [PMID: 24027119 DOI: 10.1002/ana.24020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/02/2013] [Accepted: 08/27/2013] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS), characterized by a global increasing incidence driven by relapsing-remitting disease in females. Investigators have described p38 mitogen-activated protein kinase (MAPK) as a key regulator of inflammatory responses in autoimmunity, but its role in the sexual dimorphism in MS or MS models remains unexplored. METHODS Toward this end, we used experimental autoimmune encephalomyelitis (EAE), the principal animal model of MS, combined with pharmacologic and genetic inhibition of p38 MAPK activity and transcriptomic analyses. RESULTS Pharmacologic inhibition of p38 MAPK selectively ameliorated EAE in female mice. Conditional deletion studies demonstrated that p38α signaling in macrophages/myeloid cells, but not T cells or dendritic cells, mediated this sexual dimorphism, which was dependent on the presence of adult sex hormones. Analysis of CNS inflammatory infiltrates showed that female but not male mice lacking p38α in myeloid cells exhibited reduced immune cell activation compared with controls, whereas peripheral T-cell priming was unaffected in both sexes. Transcriptomic analyses of myeloid cells revealed differences in p38α-controlled transcripts comprising female- and male-specific gene modules, with greater p38α dependence of proinflammatory gene expression in females. INTERPRETATION Our findings demonstrate a key role for p38α in myeloid cells in CNS autoimmunity and uncover important molecular mechanisms underlying sex differences in disease pathogenesis. Taken together, our results suggest that the p38 MAPK signaling pathway represents a novel target for much needed disease-modifying therapies for MS.
Collapse
Affiliation(s)
- Dimitry N Krementsov
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, VT
| | | | | | | | | | | |
Collapse
|
96
|
Patterson H, Nibbs R, McInnes I, Siebert S. Protein kinase inhibitors in the treatment of inflammatory and autoimmune diseases. Clin Exp Immunol 2014; 176:1-10. [PMID: 24313320 PMCID: PMC3958149 DOI: 10.1111/cei.12248] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2013] [Indexed: 12/12/2022] Open
Abstract
Protein kinases mediate protein phosphorylation, which is a fundamental component of cell signalling, with crucial roles in most signal transduction cascades: from controlling cell growth and proliferation to the initiation and regulation of immunological responses. Aberrant kinase activity is implicated in an increasing number of diseases, with more than 400 human diseases now linked either directly or indirectly to protein kinases. Protein kinases are therefore regarded as highly important drug targets, and are the subject of intensive research activity. The success of small molecule kinase inhibitors in the treatment of cancer, coupled with a greater understanding of inflammatory signalling cascades, has led to kinase inhibitors taking centre stage in the pursuit for new anti-inflammatory agents for the treatment of immune-mediated diseases. Herein we discuss the main classes of kinase inhibitors; namely Janus kinase (JAK), mitogen-activated protein kinase (MAPK) and spleen tyrosine kinase (Syk) inhibitors. We provide a mechanistic insight into how these inhibitors interfere with kinase signalling pathways and discuss the clinical successes and failures in the implementation of kinase-directed therapeutics in the context of inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- H Patterson
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of GlasgowGlasgow, UK
| | - R Nibbs
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of GlasgowGlasgow, UK
| | - I McInnes
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of GlasgowGlasgow, UK
| | - S Siebert
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of GlasgowGlasgow, UK
| |
Collapse
|
97
|
Alvira CM. Nuclear factor-kappa-B signaling in lung development and disease: one pathway, numerous functions. ACTA ACUST UNITED AC 2014; 100:202-16. [PMID: 24639404 PMCID: PMC4158903 DOI: 10.1002/bdra.23233] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/28/2014] [Accepted: 01/29/2014] [Indexed: 01/04/2023]
Abstract
In contrast to other organs, the lung completes a significant portion of its development after term birth. During this stage of alveolarization, division of the alveolar ducts into alveolar sacs by secondary septation, and expansion of the pulmonary vasculature by means of angiogenesis markedly increase the gas exchange surface area of the lung. However, postnatal completion of growth renders the lung highly susceptible to environmental insults such as inflammation that disrupt this developmental program. This is particularly evident in the setting of preterm birth, where impairment of alveolarization causes bronchopulmonary dysplasia, a chronic lung disease associated with significant morbidity. The nuclear factor κ-B (NFκB) family of transcription factors are ubiquitously expressed, and function to regulate diverse cellular processes including proliferation, survival, and immunity. Extensive evidence suggests that activation of NFκB is important in the regulation of inflammation and in the control of angiogenesis. Therefore, NFκB-mediated downstream effects likely influence the lung response to injury and may also mediate normal alveolar development. This review summarizes the main biologic functions of NFκB, and highlights the regulatory mechanisms that allow for diversity and specificity in downstream gene activation. This is followed by a description of the pro and anti-inflammatory functions of NFκB in the lung, and of NFκB-mediated angiogenic effects. Finally, this review summarizes the clinical and experimental data that support a role for NFκB in mediating postnatal angiogenesis and alveolarization, and discusses the challenges that remain in developing therapies that can selectively block the detrimental functions of NFκB yet preserve the beneficial effects.
Collapse
Affiliation(s)
- Cristina M Alvira
- Division of Critical Care Medicine Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
98
|
Marín M, María Giner R, Ríos JL, Recio MC. Intestinal anti-inflammatory activity of ellagic acid in the acute and chronic dextrane sulfate sodium models of mice colitis. JOURNAL OF ETHNOPHARMACOLOGY 2013; 150:925-934. [PMID: 24140585 DOI: 10.1016/j.jep.2013.09.030] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/15/2013] [Accepted: 09/10/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pomegranate (Punica granatum L.; Lythraceae) has traditionally been used for the treatment of various inflammatory diseases, including ulcerative colitis (UC). Because its fruits and extracts are rich in ellagitannins, which release ellagic acid when hydrolyzed, consumption of pomegranate products is currently being widely promoted for their potential health effects, including the prevention of inflammatory diseases and cancer. To evaluate the anti-inflammatory effects of ellagic acid on dextran sulfate sodium (DSS)-induced acute and chronic experimental colitis in two different strains of mice and to elucidate its possible mechanisms of action. MATERIALS AND METHODS In the acute UC model, female Balb/C mice were treated with DSS (5%) for seven days while concomitantly receiving a dietary supplement of ellagic acid (2%). In the chronic UC model, female C57BL/6 mice received four week-long cycles of DSS (1% and 2%) interspersed with week-long recovery periods along with a diet supplemented with ellagic acid (0.5%). RESULTS In acute model of UC, ellagic acid ameliorated disease severity slightly as observed both macroscopically and through the profile of inflammatory mediators (IL-6, TNF-α, and IFN-γ). In the chronic UC model, ellagic acid significantly inhibited the progression of the disease, reducing intestinal inflammation and decreasing histological scores. Moreover, mediators such as COX-2 and iNOS were downregulated and the signaling pathways p38 MAPK, NF-κB, and STAT3 were blocked. CONCLUSIONS Our study reinforces the hypothetical use of ellagic acid as an anti-inflammatory complement to conventional UC treatment in chronic UC patients and could be considered in the dietary prevention of intestinal inflammation and related cancer development.
Collapse
Affiliation(s)
- Marta Marín
- Department of Pharmacology, Faculty of Pharmacy, University of Valencia Avda./Vicent Andrés Estellés sn, 46100 Burjassot-Valencia, Spain
| | | | | | | |
Collapse
|
99
|
Yao H, Chen Y, Zhang L, He X, He X, Lian L, Wu X, Lan P. Carnosol inhibits cell adhesion molecules and chemokine expression by tumor necrosis factor-α in human umbilical vein endothelial cells through the nuclear factor-κB and mitogen-activated protein kinase pathways. Mol Med Rep 2013; 9:476-80. [PMID: 24316968 DOI: 10.3892/mmr.2013.1839] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 11/13/2013] [Indexed: 11/05/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are gastrointestinal disorders associated with chronic inflammatory processes. Carnosol has been demonstrated to possess anti-inflammatory properties. This study examined the suppressive effect of carnosol on the expression of cell adhesion molecules (CAMs) and chemokines in human umbilical vein endothelial cells (HUVECs) and the possible underlying mechanism. The effect of carnosol on CAM and chemokine expression in HUVECs was identified by western blotting and ELISA, respectively. nuclear factor (NF)-κB activation of HUVECs was analyzed using the TransAM NF-κB Family kit. The effect of carnosol on the tumor necrosis factor (TNF)-α-induced activation of the NF-κB and mitogen-activated protein kinase (MAPK) pathways, and was subsequently analyzed using western blotting. Carnosol not only inhibited TNF-α-induced protein expression of intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1 and E-selectin in HUVECs, but also suppressed interleukin (IL)-8 and monocyte chemoattractant protein (MCP)-1 expression. In addition, carnosol inhibited the TNF-α-induced phosphorylation of p-65 and IκB-α, as well as the activation of NF-κB. The same result was observed in TNF-α-stimulated phosphorylation of ERK1/2 and p-38. It was demonstrated that carnosol inhibited TNF-α-induced CAM and chemokine expression in HUVECs. The underlying mechanism may be associated with the blocking of the NF-κB and MAPK pathways. These results indicate that carnosol may be a novel therapeutic agent for targeting endothelial cells in IBDs.
Collapse
Affiliation(s)
- Hui Yao
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangdong Gastrointestinal Hospital, Guangzhou, Guangdong 510655, P.R. China
| | - Yufeng Chen
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangdong Gastrointestinal Hospital, Guangzhou, Guangdong 510655, P.R. China
| | - Longjuan Zhang
- Laboratory of Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaosheng He
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangdong Gastrointestinal Hospital, Guangzhou, Guangdong 510655, P.R. China
| | - Xiaowen He
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangdong Gastrointestinal Hospital, Guangzhou, Guangdong 510655, P.R. China
| | - Lei Lian
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangdong Gastrointestinal Hospital, Guangzhou, Guangdong 510655, P.R. China
| | - Xiaojian Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangdong Gastrointestinal Hospital, Guangzhou, Guangdong 510655, P.R. China
| | - Ping Lan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangdong Gastrointestinal Hospital, Guangzhou, Guangdong 510655, P.R. China
| |
Collapse
|
100
|
Zhang Q, Xiao X, Li M, Li W, Yu M, Zhang H, Wang Z, Xiang H. Acarbose reduces blood glucose by activating miR-10a-5p and miR-664 in diabetic rats. PLoS One 2013; 8:e79697. [PMID: 24260283 PMCID: PMC3832586 DOI: 10.1371/journal.pone.0079697] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/04/2013] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNA molecules involved in the post-transcriptional regulation of a large number of genes, including those involved in glucose metabolism. Acarbose is an α-glucosidase inhibitor that improves glycemic control by decreasing the intestinal absorption of glucose, thereby decreasing the elevation of postprandial blood glucose. However, acarbose is poorly absorbed into the blood stream from the gut. Therefore, the exact mechanisms by which acarbose affects glucose metabolism are unclear. This study investigated the effect of acarbose on glucose metabolism in diabetic rats and tested the hypothesis that acarbose acts directly through miRNA-regulated expression in the intestinal epithelium. Rats were divided into four groups: a control group, a diabetic group (DM), a low dose of acarbose group (AcarL) and a high dose of acarbose group (AcarH). Ileum samples were analyzed using miRCURY LNA™ microRNA Array, qPCR and immunohistochemistry. We found that 8-week treatment with acarbose significantly decreased fasting blood glucose. Oral glucose tolerance tests (OGTT) showed that blood glucose was significantly reduced in the AcarL and AcarH groups at 30 min, 60 min and 120 min after oral glucose administration. We found that miR-151*, miR-10a-5p, miR-205, miR-17-5p, miR-145 and miR-664 were up-regulated in the AcarH group, while miR-541 and miR-135b were down-regulated. Through target gene analysis, real time PCR and immunohistochemistry verification, we found that these miRNAs suppressed the expression of proinflammatory cytokines [IL6 (interleukin 6) and TNF (tumor necrosis factor)] and mitogen activated protein kinase 1 (MAPK1). Our data suggest that acarbose can improve blood glucose in diabetic rats through the MAPK pathway and can down-regulate proinflammatory factors by activating miR-10a-5p and miR-664 in the ileum.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- * E-mail:
| | - Ming Li
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenhui Li
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Yu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Huabing Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhixin Wang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongding Xiang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|