51
|
Schröder N, Schaffrath A, Welter JA, Putzka T, Griep A, Ziegler P, Brandt E, Samer S, Heneka MT, Kaddatz H, Zhan J, Kipp E, Pufe T, Tauber SC, Kipp M, Brandenburg LO. Inhibition of formyl peptide receptors improves the outcome in a mouse model of Alzheimer disease. J Neuroinflammation 2020; 17:131. [PMID: 32331524 PMCID: PMC7181500 DOI: 10.1186/s12974-020-01816-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/16/2020] [Indexed: 12/11/2022] Open
Abstract
Background An important hallmark of Alzheimer’s disease (AD) is the increase of Aβ1-42 burden and its accumulation to senile plaques, leading the reactive gliosis and neurodegeneration. The modulation of glia cell function represents an attractive therapeutic strategy, but is currently limited by an incomplete understanding of its relevance for AD. The chemotactic G-protein coupled formyl peptide receptor (FPR), which is known to modulate Aβ1-42 uptake and signal transduction, might be one candidate molecule regulating glia function in AD. Here, we investigate whether the modulation of FPR exerts beneficial effects in an AD preclinical model. Methods To address this question, APP/PS1 double-transgenic AD mice were treated for 20 weeks with either the pro-inflammatory FPR agonist fMLF, the FPR1/2 antagonist Boc2 or the anti-inflammatory FPR2 agonist Ac2-26. Spatial learning and memory were evaluated using a Morris water maze test. Immunohistological staining, gene expression studies, and flow cytometry analyses were performed to study neuronal loss, gliosis, and Aß-load in the hippocampus and cortex, respectively. Results FPR antagonism by Boc2-treatment significantly improved spatial memory performance, reduced neuronal pathology, induced the expression of homeostatic growth factors, and ameliorated microglia, but not astrocyte, reactivity. Furthermore, the elevated levels of amyloid plaques in the hippocampus were reduced by Boc2-treatment, presumably by an induction of amyloid degradation. Conclusions We suggest that the modulation of FPR signaling cascades might be considered as a promising therapeutic approach for alleviating the cognitive deficits associated with early AD. Additional studies are now needed to address the downstream effectors as well as the safety profile of Boc2.
Collapse
Affiliation(s)
- Nicole Schröder
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Anja Schaffrath
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Josua A Welter
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Tim Putzka
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Angelika Griep
- Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany
| | - Patrick Ziegler
- Institute for Occupational and Social Medicine, RWTH Aachen University, Aachen, Germany
| | - Elisa Brandt
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Sebastian Samer
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Hannes Kaddatz
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany
| | - Jiangshan Zhan
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany
| | - Eugenia Kipp
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Simone C Tauber
- Department of Neurology, RWTH University Hospital Aachen, Aachen, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany
| | - Lars-Ove Brandenburg
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany. .,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
52
|
Ge Y, Zhang S, Wang J, Xia F, Wan J, Lu J, Ye RD. Dual modulation of formyl peptide receptor 2 by aspirin‐triggered lipoxin contributes to its anti‐inflammatory activity. FASEB J 2020; 34:6920-6933. [DOI: 10.1096/fj.201903206r] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Yunjun Ge
- State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Macau Special Administrative Region China
| | - Shuo Zhang
- School of Pharmacy Shanghai Jiao Tong University Shanghai China
| | - Junlin Wang
- State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Macau Special Administrative Region China
| | - Fangbo Xia
- State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Macau Special Administrative Region China
| | - Jian‐Bo Wan
- State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Macau Special Administrative Region China
| | - Jinjian Lu
- State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Macau Special Administrative Region China
| | - Richard D. Ye
- State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Macau Special Administrative Region China
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences The Chinese University of Hong Kong Shenzhen China
| |
Collapse
|
53
|
The Novel Small-molecule Annexin-A1 Mimetic, Compound 17b, Elicits Vasoprotective Actions in Streptozotocin-induced Diabetic Mice. Int J Mol Sci 2020; 21:ijms21041384. [PMID: 32085666 PMCID: PMC7073122 DOI: 10.3390/ijms21041384] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/11/2022] Open
Abstract
The formyl peptide receptor (FPR) family are a group of G-protein coupled receptors that play an important role in the regulation of inflammatory processes. It is well-established that activation of FPRs can have cardioprotective properties. Recently, more stable small-molecule FPR1/2 agonists have been described, including both Compound 17b (Cmpd17b) and Compound 43 (Cmpd43). Both agonists activate a range of signals downstream of FPR1/2 activation in human-engineered FPR-expressing cells, including ERK1/2 and Akt. Importantly, Cmpd17b (but not Cmpd43) favours bias away from intracellular Ca2+ mobilisation in this context, which has been associated with greater cardioprotection in response to Cmpd17b over Cmpd43. However, it is unknown whether these FPR agonists impact vascular physiology and/or elicit vasoprotective effects in the context of diabetes. First, we localized FPR1 and FPR2 receptors predominantly in vascular smooth muscle cells in the aortae of male C57BL/6 mice. We then analysed the vascular effects of Cmpd17b and Cmpd43 on the aorta using wire-myography. Cmpd17b but not Cmpd43 evoked a concentration-dependent relaxation of the mouse aorta. Removal of the endothelium or blockade of endothelium-derived relaxing factors using pharmacological inhibitors had no effect on Cmpd17b-evoked relaxation, demonstrating that its direct vasodilator actions were endothelium-independent. In aortae primed with elevated K+ concentration, increasing concentrations of CaCl2 evoked concentration-dependent contraction that is abolished by Cmpd17b, suggesting the involvement of the inhibition of Ca2+ mobilisation via voltage-gated calcium channels. Treatment with Cmpd17b for eight weeks reversed endothelial dysfunction in STZ-induced diabetic aorta through the upregulation of vasodilator prostanoids. Our data indicate that Cmpd17b is a direct endothelium-independent vasodilator, and a vasoprotective molecule in the context of diabetes.
Collapse
|
54
|
Park J, Langmead CJ, Riddy DM. New Advances in Targeting the Resolution of Inflammation: Implications for Specialized Pro-Resolving Mediator GPCR Drug Discovery. ACS Pharmacol Transl Sci 2020; 3:88-106. [PMID: 32259091 DOI: 10.1021/acsptsci.9b00075] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Indexed: 12/19/2022]
Abstract
Chronic inflammation is a component of numerous diseases including autoimmune, metabolic, neurodegenerative, and cancer. The discovery and characterization of specialized pro-resolving mediators (SPMs) critical to the resolution of inflammation, and their cognate G protein-coupled receptors (GPCRs) has led to a significant increase in the understanding of this physiological process. Approximately 20 ligands, including lipoxins, resolvins, maresins, and protectins, and 6 receptors (FPR2/ALX, GPR32, GPR18, chemerin1, BLT1, and GPR37) have been identified highlighting the complex and multilayered nature of resolution. Therapeutic efforts in targeting these receptors have proved challenging, with very few ligands apparently progressing through to preclinical or clinical development. To date, some knowledge gaps remain in the understanding of how the activation of these receptors, and their downstream signaling, results in efficient resolution via apoptosis, phagocytosis, and efferocytosis of polymorphonuclear leukocytes (mainly neutrophils) and macrophages. SPMs bind and activate multiple receptors (ligand poly-pharmacology), while most receptors are activated by multiple ligands (receptor pleiotropy). In addition, allosteric binding sites have been identified signifying the capacity of more than one ligand to bind simultaneously. These fundamental characteristics of SPM receptors enable alternative targeting strategies to be considered, including biased signaling and allosteric modulation. This review describes those ligands and receptors involved in the resolution of inflammation, and highlights the most recent clinical trial results. Furthermore, we describe alternative mechanisms by which these SPM receptors could be targeted, paving the way for the identification of new therapeutics, perhaps with greater efficacy and fidelity.
Collapse
Affiliation(s)
- Julia Park
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Christopher J Langmead
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Darren M Riddy
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
55
|
Negreiros-Lima GL, Lima KM, Moreira IZ, Jardim BLO, Vago JP, Galvão I, Teixeira LCR, Pinho V, Teixeira MM, Sugimoto MA, Sousa LP. Cyclic AMP Regulates Key Features of Macrophages via PKA: Recruitment, Reprogramming and Efferocytosis. Cells 2020; 9:E128. [PMID: 31935860 PMCID: PMC7017228 DOI: 10.3390/cells9010128] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/29/2019] [Accepted: 01/01/2020] [Indexed: 12/14/2022] Open
Abstract
Macrophages are central to inflammation resolution, an active process aimed at restoring tissue homeostasis following an inflammatory response. Here, the effects of db-cAMP on macrophage phenotype and function were investigated. Injection of db-cAMP into the pleural cavity of mice induced monocytes recruitment in a manner dependent on PKA and CCR2/CCL2 pathways. Furthermore, db-cAMP promoted reprogramming of bone-marrow-derived macrophages to a M2 phenotype as seen by increased Arg-1/CD206/Ym-1 expression and IL-10 levels (M2 markers). Db-cAMP also showed a synergistic effect with IL-4 in inducing STAT-3 phosphorylation and Arg-1 expression. Importantly, db-cAMP prevented IFN-γ/LPS-induced macrophage polarization to M1-like as shown by increased Arg-1 associated to lower levels of M1 cytokines (TNF-α/IL-6) and p-STAT1. In vivo, db-cAMP reduced the number of M1 macrophages induced by LPS injection without changes in M2 and Mres numbers. Moreover, db-cAMP enhanced efferocytosis of apoptotic neutrophils in a PKA-dependent manner and increased the expression of Annexin A1 and CD36, two molecules associated with efferocytosis. Finally, inhibition of endogenous PKA during LPS-induced pleurisy impaired the physiological resolution of inflammation. Taken together, the results suggest that cAMP is involved in the major functions of macrophages, such as nonphlogistic recruitment, reprogramming and efferocytosis, all key processes for inflammation resolution.
Collapse
Affiliation(s)
- Graziele L. Negreiros-Lima
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.L.N.-L.); (I.Z.M.); (B.L.O.J.); (L.C.R.T.)
| | - Kátia M. Lima
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Isabella Z. Moreira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.L.N.-L.); (I.Z.M.); (B.L.O.J.); (L.C.R.T.)
| | - Bruna Lorrayne O. Jardim
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.L.N.-L.); (I.Z.M.); (B.L.O.J.); (L.C.R.T.)
| | - Juliana P. Vago
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (J.P.V.); (M.M.T.)
| | - Izabela Galvão
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (I.G.); (V.P.)
| | - Lívia Cristina R. Teixeira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.L.N.-L.); (I.Z.M.); (B.L.O.J.); (L.C.R.T.)
| | - Vanessa Pinho
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (I.G.); (V.P.)
| | - Mauro M. Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (J.P.V.); (M.M.T.)
| | - Michelle A. Sugimoto
- Programa de Pós-Graduação em Doenças Infecciosas e Medicina Tropical, Escola de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Brazil;
| | - Lirlândia P. Sousa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.L.N.-L.); (I.Z.M.); (B.L.O.J.); (L.C.R.T.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| |
Collapse
|
56
|
Tourki B, Kain V, Pullen AB, Norris PC, Patel N, Arora P, Leroy X, Serhan CN, Halade GV. Lack of resolution sensor drives age-related cardiometabolic and cardiorenal defects and impedes inflammation-resolution in heart failure. Mol Metab 2019; 31:138-149. [PMID: 31918915 PMCID: PMC6920298 DOI: 10.1016/j.molmet.2019.10.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/14/2019] [Accepted: 10/25/2019] [Indexed: 12/20/2022] Open
Abstract
Objective Recently, we observed that the specialized proresolving mediator (SPM) entity resolvin D1 activates lipoxin A4/formyl peptide receptor 2 (ALX/FPR2), which facilitates cardiac healing and persistent inflammation is a hallmark of impaired cardiac repair in aging. Splenic leukocyte-directed SPMs are essential for the safe clearance of inflammation and cardiac repair after injury; however, the target of SPMs remains undefined in cardiac healing and repair. Methods To define the mechanistic basis of ALX/FPR2 as a resolvin D1 target, ALX/FPR2-null mice were examined extensively. The systolic-diastolic heart function was assessed using echocardiography, leukocytes were phenotyped using flow cytometry, and SPMs were quantitated using mass spectrometry. The presence of cardiorenal syndrome was validated using histology and renal markers. Results Lack of ALX/FPR2 led to the development of spontaneous obesity and diastolic dysfunction with reduced survival with aging. After cardiac injury, ALX/FPR2−/− mice showed lower expression of lipoxygenases (−5, −12, −15) and a reduction in SPMs in the infarcted left ventricle and spleen, indicating nonresolving inflammation. Reduced SPM levels in the infarcted heart and spleen are suggestive of impaired cross-talk between the injured heart and splenic leukocytes, which are required for the resolution of inflammation. In contrast, cyclooxygenases (−1 and −2) were over amplified in the infarcted heart. Together, these results suggest interorgan signaling in which the spleen acts as both an SPM biosynthesizer and supplier in acute heart failure. ALX/FPR2 dysfunction magnified obesogenic cardiomyopathy and renal inflammation (↑NGAL, ↑TNF-α, ↑CCL2, ↑IL-1β) with elevated plasma creatinine levels in aging mice. At the cellular level, ALX/FPR2−/− mice showed impairment of macrophage phagocytic function ex-vivo with expansion of neutrophils after myocardial infarction. Conclusions Lack of ALX/FPR2 induced obesity, reduced the life span, amplified leukocyte dysfunction, and facilitated profound interorgan nonresolving inflammation. Our study shows the integrative and indispensable role of ALX/FPR2 in lipid metabolism, cardiac inflammation–resolution processes, obesogenic aging, and renal homeostasis. Lack of resolution sensor (ALX/FPR2) led to spontaneous, age-related obesity. Absence of ALX/FPR2 triggered obesogenic cardiomyopathy and renal inflammation. Deficiency of ALX/FPR2 reduced SPMs in the infarcted heart after cardiac injury. ALX/FPR2 dysfunction impaired macrophage function and amplified inflammation.
Collapse
Affiliation(s)
- Bochra Tourki
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Alabama, 35294, United States
| | - Vasundhara Kain
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Alabama, 35294, United States
| | - Amanda B Pullen
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Alabama, 35294, United States
| | - Paul C Norris
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School Boston, Massachusetts, 02115, United States
| | - Nirav Patel
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Alabama, 35294, United States
| | - Pankaj Arora
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Alabama, 35294, United States
| | - Xavier Leroy
- Domain Therapeutics, Steinsoultz, Alsace, France
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School Boston, Massachusetts, 02115, United States
| | - Ganesh V Halade
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Alabama, 35294, United States.
| |
Collapse
|
57
|
Specialized pro-resolving mediators in diabetes: novel therapeutic strategies. Clin Sci (Lond) 2019; 133:2121-2141. [DOI: 10.1042/cs20190067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023]
Abstract
AbstractDiabetes mellitus (DM) is an important metabolic disorder characterized by persistent hyperglycemia resulting from inadequate production and secretion of insulin, impaired insulin action, or a combination of both. Genetic disorders and insulin receptor disorders, environmental factors, lifestyle choices and toxins are key factors that contribute to DM. While it is often referred to as a metabolic disorder, modern lifestyle choices and nutrient excess induce a state of systemic chronic inflammation that results in the increased production and secretion of inflammatory cytokines that contribute to DM. It is chronic hyperglycemia and the low-grade chronic-inflammation that underlies the development of microvascular and macrovascular complications leading to damage in a number of tissues and organs, including eyes, vasculature, heart, nerves, and kidneys. Improvements in the management of risk factors have been beneficial, including focus on intensified glycemic control, but most current approaches only slow disease progression. Even with recent studies employing SGLT2 inhibitors demonstrating protection against cardiovascular and kidney diseases, kidney function continues to decline in people with established diabetic kidney disease (DKD). Despite the many advances and a greatly improved understanding of the pathobiology of diabetes and its complications, there remains a major unmet need for more effective therapeutics to prevent and reverse the chronic complications of diabetes. More recently, there has been growing interest in the use of specialised pro-resolving mediators (SPMs) as an exciting therapeutic strategy to target diabetes and the chronic complications of diabetes.
Collapse
|
58
|
Extracellular annexin-A1 promotes myeloid/granulocytic differentiation of hematopoietic stem/progenitor cells via the Ca 2+/MAPK signalling transduction pathway. Cell Death Discov 2019; 5:135. [PMID: 31552142 PMCID: PMC6755131 DOI: 10.1038/s41420-019-0215-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/19/2019] [Accepted: 08/24/2019] [Indexed: 12/14/2022] Open
Abstract
Annexin A1 (AnxA1) modulates neutrophil life span and bone marrow/blood cell trafficking thorough activation of formyl-peptide receptors (FPRs). Here, we investigated the effect of exogenous AnxA1 on haematopoiesis in the mouse. Treatment of C57BL/6 mice with recombinant AnxA1 (rAnxA1) reduced the granulocyte–macrophage progenitor (GMP) population in the bone marrow, enhanced the number of mature granulocytes Gr-1+Mac-1+ in the bone marrow as well as peripheral granulocytic neutrophils and increased expression of mitotic cyclin B1 on hematopoietic stem cells (HSCs)/progenitor cells (Lin−Sca-1+c-Kit+: LSK). These effects were abolished by simultaneous treatment with Boc-2, an FPR pan-antagonist. In in vitro studies, rAnxA1 reduced both HSC (LSKCD90lowFLK-2−) and GMP populations while enhancing mature cells (Gr1+Mac1+). Moreover, rAnxA1 induced LSK cell proliferation (Ki67+), increasing the percentage of cells in the S/G2/M cell cycle phases and reducing Notch-1 expression. Simultaneous treatment with WRW4, a selective FPR2 antagonist, reversed the in vitro effects elicited by rAnxA1. Treatment of LSK cells with rAnxA1 led to phosphorylation of PCLγ2, PKC, RAS, MEK, and ERK1/2 with increased expression of NFAT2. In long-term bone marrow cultures, rAnxA1 did not alter the percentage of LSK cells but enhanced the Gr-1+Mac-1+ population; treatment with a PLC (U73122), but not with a PKC (GF109203), inhibitor reduced rAnxA1-induced phosphorylation of ERK1/2 and Elk1. Therefore, we identify here rAnxA1 as an inducer of HSC/progenitor cell differentiation, favouring differentiation of the myeloid/granulocytic lineage, via Ca2+/MAPK signalling transduction pathways.
Collapse
|
59
|
Moore KJ, Koplev S, Fisher EA, Tabas I, Björkegren JLM, Doran AC, Kovacic JC. Macrophage Trafficking, Inflammatory Resolution, and Genomics in Atherosclerosis: JACC Macrophage in CVD Series (Part 2). J Am Coll Cardiol 2019; 72:2181-2197. [PMID: 30360827 DOI: 10.1016/j.jacc.2018.08.2147] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/13/2018] [Accepted: 08/03/2018] [Indexed: 12/31/2022]
Abstract
Atherosclerosis is characterized by the retention of modified lipoproteins in the arterial wall. These modified lipoproteins activate resident macrophages and the recruitment of monocyte-derived cells, which differentiate into mononuclear phagocytes that ingest the deposited lipoproteins to become "foam cells": a hallmark of this disease. In this Part 2 of a 4-part review series covering the macrophage in cardiovascular disease, we critically review the contributions and relevant pathobiology of monocytes, macrophages, and foam cells as relevant to atherosclerosis. We also review evidence that via various pathways, a failure of the resolution of inflammation is an additional key aspect of this disease process. Finally, we consider the likely role played by genomics and biological networks in controlling the macrophage phenotype in atherosclerosis. Collectively, these data provide substantial insights on the atherosclerotic process, while concurrently offering numerous molecular and genomic candidates that appear to hold great promise for selective targeting as clinical therapies.
Collapse
Affiliation(s)
- Kathryn J Moore
- Department of Medicine, Leon H. Charney Division of Cardiology, Marc and Ruti Bell Vascular Biology and Disease Program, New York University School of Medicine, New York, New York
| | - Simon Koplev
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Edward A Fisher
- Department of Medicine, Leon H. Charney Division of Cardiology, Marc and Ruti Bell Vascular Biology and Disease Program, New York University School of Medicine, New York, New York
| | - Ira Tabas
- Department of Medicine, Columbia University, New York, New York; Department of Pathology and Cell Biology, Columbia University, New York, New York; Department of Physiology, Columbia University, New York, New York
| | - Johan L M Björkegren
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York; Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
| | - Amanda C Doran
- Department of Medicine, Columbia University, New York, New York
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
60
|
Park GT, Kwon YW, Lee TW, Kwon SG, Ko HC, Kim MB, Kim JH. Formyl Peptide Receptor 2 Activation Ameliorates Dermal Fibrosis and Inflammation in Bleomycin-Induced Scleroderma. Front Immunol 2019; 10:2095. [PMID: 31552041 PMCID: PMC6733889 DOI: 10.3389/fimmu.2019.02095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/20/2019] [Indexed: 02/02/2023] Open
Abstract
Systemic sclerosis is a profibrotic autoimmune disease mediated by the dysregulation of extracellular matrix synthesis. Formyl peptide receptor 2 (Fpr2) is a G protein-coupled receptor that modulates inflammation and host defense by regulating the activation of inflammatory cells, such as macrophages. However, the role of Fpr2 in the development and therapy of scleroderma is still unclear. The present study was conducted to investigate the effects of Fpr2 activation in the treatment of scleroderma fibrosis. We found that intradermal administration of WKYMVm, an Fpr2-specific agonist, alleviated bleomycin-induced scleroderma fibrosis in mice and decreased dermal thickness in scleroderma skin. WKYMVm-treated scleroderma skin tissues displayed reduced numbers of myofibroblasts expressing α-smooth muscle actin, Vimentin, and phosphorylated SMAD3. WKYMVm treatment attenuated macrophage infiltration in scleroderma skin and reduced the number of M2 macrophages. The therapeutic effects of WKYMVm in scleroderma-associated fibrosis and inflammation were completely abrogated in Fpr2 knockout mice. Moreover, WKYMVm treatment reduced the serum levels of inflammatory cytokines, such as tumor necrosis factor-α, and interferon-γ, in the scleroderma model of wild-type mice but not in Fpr2 knockout mice. These results suggest that WKYMVm-induced activation of Fpr2 leads to alleviation of fibrosis by stimulating immune resolution in systemic sclerosis.
Collapse
Affiliation(s)
- Gyu Tae Park
- Department of Physiology, Pusan National University School of Medicine, Yangsan-si, South Korea
| | - Yang Woo Kwon
- Department of Physiology, Pusan National University School of Medicine, Yangsan-si, South Korea
| | - Tae Wook Lee
- Department of Physiology, Pusan National University School of Medicine, Yangsan-si, South Korea
| | - Seong Gyu Kwon
- Department of Physiology, Pusan National University School of Medicine, Yangsan-si, South Korea
| | - Hyun-Chang Ko
- Department of Dermatology, Pusan National University School of Medicine, Yangsan-si, South Korea
| | - Moon Bum Kim
- Department of Dermatology, Pusan National University School of Medicine, Yangsan-si, South Korea
| | - Jae Ho Kim
- Department of Physiology, Pusan National University School of Medicine, Yangsan-si, South Korea.,Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan-si, South Korea
| |
Collapse
|
61
|
Arienti S, Barth ND, Dorward DA, Rossi AG, Dransfield I. Regulation of Apoptotic Cell Clearance During Resolution of Inflammation. Front Pharmacol 2019; 10:891. [PMID: 31456686 PMCID: PMC6701246 DOI: 10.3389/fphar.2019.00891] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/15/2019] [Indexed: 01/17/2023] Open
Abstract
Programmed cell death (apoptosis) has an important role in the maintenance of tissue homeostasis as well as the progression and ultimate resolution of inflammation. During apoptosis, the cell undergoes morphological and biochemical changes [e.g., phosphatidylserine (PtdSer) exposure, caspase activation, changes in mitochondrial membrane potential and DNA cleavage] that act to shut down cellular function and mark the cell for phagocytic clearance. Tissue phagocytes bind and internalize apoptotic cells, bodies, and vesicles, providing a mechanism for the safe disposal of apoptotic material. Phagocytic removal of apoptotic cells before they undergo secondary necrosis reduces the potential for bystander damage to adjacent tissue and importantly initiates signaling pathways within the phagocytic cell that act to dampen inflammation. In a pathological context, excessive apoptosis or failure to clear apoptotic material results in secondary necrosis with the release of pro-inflammatory intracellular contents. In this review, we consider some of the mechanisms by which phagocytosis of apoptotic cells can be controlled. We suggest that matching apoptotic cell load with the capacity for apoptotic cell clearance within tissues may be important for therapeutic strategies that target the apoptotic process for treatment of inflammatory disease.
Collapse
Affiliation(s)
- Simone Arienti
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Nicole D Barth
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David A Dorward
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Adriano G Rossi
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Ian Dransfield
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
62
|
Senchenkova EY, Ansari J, Becker F, Vital SA, Al-Yafeai Z, Sparkenbaugh EM, Pawlinski R, Stokes KY, Carroll JL, Dragoi AM, Qin CX, Ritchie RH, Sun H, Cuellar-Saenz HH, Rubinstein MR, Han YW, Orr AW, Perretti M, Granger DN, Gavins FNE. Novel Role for the AnxA1-Fpr2/ALX Signaling Axis as a Key Regulator of Platelet Function to Promote Resolution of Inflammation. Circulation 2019; 140:319-335. [PMID: 31154815 PMCID: PMC6687438 DOI: 10.1161/circulationaha.118.039345] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Supplemental Digital Content is available in the text. Background: Ischemia reperfusion injury (I/RI) is a common complication of cardiovascular diseases. Resolution of detrimental I/RI-generated prothrombotic and proinflammatory responses is essential to restore homeostasis. Platelets play a crucial part in the integration of thrombosis and inflammation. Their role as participants in the resolution of thromboinflammation is underappreciated; therefore we used pharmacological and genetic approaches, coupled with murine and clinical samples, to uncover key concepts underlying this role. Methods: Middle cerebral artery occlusion with reperfusion was performed in wild-type or annexin A1 (AnxA1) knockout (AnxA1−/−) mice. Fluorescence intravital microscopy was used to visualize cellular trafficking and to monitor light/dye–induced thrombosis. The mice were treated with vehicle, AnxA1 (3.3 mg/kg), WRW4 (1.8 mg/kg), or all 3, and the effect of AnxA1 was determined in vivo and in vitro. Results: Intravital microscopy revealed heightened platelet adherence and aggregate formation post I/RI, which were further exacerbated in AnxA1−/− mice. AnxA1 administration regulated platelet function directly (eg, via reducing thromboxane B2 and modulating phosphatidylserine expression) to promote cerebral protection post-I/RI and act as an effective preventative strategy for stroke by reducing platelet activation, aggregate formation, and cerebral thrombosis, a prerequisite for ischemic stroke. To translate these findings into a clinical setting, we show that AnxA1 plasma levels are reduced in human and murine stroke and that AnxA1 is able to act on human platelets, suppressing classic thrombin-induced inside-out signaling events (eg, Akt activation, intracellular calcium release, and Ras-associated protein 1 [Rap1] expression) to decrease αIIbβ3 activation without altering its surface expression. AnxA1 also selectively modifies cell surface determinants (eg, phosphatidylserine) to promote platelet phagocytosis by neutrophils, thereby driving active resolution. (n=5–13 mice/group or 7–10 humans/group.) Conclusions: AnxA1 affords protection by altering the platelet phenotype in cerebral I/RI from propathogenic to regulatory and reducing the propensity for platelets to aggregate and cause thrombosis by affecting integrin (αIIbβ3) activation, a previously unknown phenomenon. Thus, our data reveal a novel multifaceted role for AnxA1 to act both as a therapeutic and a prophylactic drug via its ability to promote endogenous proresolving, antithromboinflammatory circuits in cerebral I/RI. Collectively, these results further advance our knowledge and understanding in the field of platelet and resolution biology.
Collapse
Affiliation(s)
- Elena Y Senchenkova
- Departments of Molecular and Cellular Physiology (E.Y.S., J.A., S.A.V., K.Y.S., D.N.G., F.N.E.G.)
| | - Junaid Ansari
- Departments of Molecular and Cellular Physiology (E.Y.S., J.A., S.A.V., K.Y.S., D.N.G., F.N.E.G.)
| | - Felix Becker
- Department for General, Visceral, and Transplant Surgery, University Hospital Muenster, Germany (F.B., H.S.)
| | - Shantel A Vital
- Departments of Molecular and Cellular Physiology (E.Y.S., J.A., S.A.V., K.Y.S., D.N.G., F.N.E.G.)
| | - Zaki Al-Yafeai
- Pathology and Translational Pathobiology (Z.A.-Y., A.W.O.)
| | | | - Rafal Pawlinski
- Department of Medicine, University North Carolina Chapel Hill (E.M.S., R.P.)
| | - Karen Y Stokes
- Departments of Molecular and Cellular Physiology (E.Y.S., J.A., S.A.V., K.Y.S., D.N.G., F.N.E.G.)
| | - Jennifer L Carroll
- INLET (J.L.C., A.-M.D.).,Feist-Weiller Cancer Center (J.L.C., A.-M.D.), Louisiana State University Health Sciences Center-Shreveport
| | - Ana-Maria Dragoi
- INLET (J.L.C., A.-M.D.).,Feist-Weiller Cancer Center (J.L.C., A.-M.D.), Louisiana State University Health Sciences Center-Shreveport
| | - Cheng Xue Qin
- Heart Failure Pharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (C.X.Q., R.H.R.)
| | - Rebecca H Ritchie
- Heart Failure Pharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (C.X.Q., R.H.R.)
| | - Hai Sun
- Neurosurgery (H.S., H.H.C.-Z.).,Department for General, Visceral, and Transplant Surgery, University Hospital Muenster, Germany (F.B., H.S.)
| | | | - Mara R Rubinstein
- Division of Periodontics, College of Dental Medicine (M.R.R., Y.W.H.), Columbia University, New York
| | - Yiping W Han
- Division of Periodontics, College of Dental Medicine (M.R.R., Y.W.H.), Columbia University, New York.,Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons (Y.W.H.), Columbia University, New York
| | - A Wayne Orr
- Pathology and Translational Pathobiology (Z.A.-Y., A.W.O.).,Cellular Biology and Anatomy (A.W.O.)
| | - Mauro Perretti
- William Harvey Research Institute, Queen Mary University of London, UK (M.P.)
| | - D Neil Granger
- Departments of Molecular and Cellular Physiology (E.Y.S., J.A., S.A.V., K.Y.S., D.N.G., F.N.E.G.)
| | - Felicity N E Gavins
- Departments of Molecular and Cellular Physiology (E.Y.S., J.A., S.A.V., K.Y.S., D.N.G., F.N.E.G.).,Department of Life Sciences, Brunel University London, Uxbridge, Middlesex, UK (F.N.E.G.)
| |
Collapse
|
63
|
Qin CX, Rosli S, Deo M, Cao N, Walsh J, Tate M, Alexander AE, Donner D, Horlock D, Li R, Kiriazis H, Lee MKS, Bourke JE, Yang Y, Murphy AJ, Du XJ, Gao XM, Ritchie RH. Cardioprotective Actions of the Annexin-A1 N-Terminal Peptide, Ac 2-26, Against Myocardial Infarction. Front Pharmacol 2019; 10:269. [PMID: 31001111 PMCID: PMC6457169 DOI: 10.3389/fphar.2019.00269] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/04/2019] [Indexed: 12/22/2022] Open
Abstract
The anti-inflammatory, pro-resolving annexin-A1 protein acts as an endogenous brake against exaggerated cardiac necrosis, inflammation, and fibrosis following myocardial infarction (MI) in vivo. Little is known, however, regarding the cardioprotective actions of the N-terminal-derived peptide of annexin A1, Ac2-26, particularly beyond its anti-necrotic actions in the first few hours after an ischemic insult. In this study, we tested the hypothesis that exogenous Ac2-26 limits cardiac injury in vitro and in vivo. Firstly, we demonstrated that Ac2-26 limits cardiomyocyte death both in vitro and in mice subjected to ischemia-reperfusion (I-R) injury in vivo (Ac2-26, 1 mg/kg, i.v. just prior to post-ischemic reperfusion). Further, Ac2-26 (1 mg/kg i.v.) reduced cardiac inflammation (after 48 h reperfusion), as well as both cardiac fibrosis and apoptosis (after 7-days reperfusion). Lastly, we investigated whether Ac2-26 preserved cardiac function after MI. Ac2-26 (1 mg/kg/day s.c., osmotic pump) delayed early cardiac dysfunction 1 week post MI, but elicited no further improvement 4 weeks after MI. Taken together, our data demonstrate the first evidence that Ac2-26 not only preserves cardiomyocyte survival in vitro, but also offers cardioprotection beyond the first few hours after an ischemic insult in vivo. Annexin-A1 mimetics thus represent a potential new therapy to improve cardiac outcomes after MI.
Collapse
Affiliation(s)
- Cheng Xue Qin
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC, Australia.,Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Sarah Rosli
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Minh Deo
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Nga Cao
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Jesse Walsh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mitchel Tate
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Amy E Alexander
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Daniel Donner
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Duncan Horlock
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Renming Li
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Helen Kiriazis
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Man K S Lee
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Jane E Bourke
- Department of Pharmacology, Monash University, Clayton, VIC, Australia
| | - Yuan Yang
- Centre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Xiao-Jun Du
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Xiao Ming Gao
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Rebecca H Ritchie
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC, Australia.,Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pharmacology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
64
|
Sugimoto MA, Vago JP, Perretti M, Teixeira MM. Mediators of the Resolution of the Inflammatory Response. Trends Immunol 2019; 40:212-227. [DOI: 10.1016/j.it.2019.01.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 02/06/2023]
|
65
|
Peters EB, Tsihlis ND, Karver MR, Chin SM, Musetti B, Ledford BT, Bahnson EM, Stupp SI, Kibbe MR. Atheroma Niche-Responsive Nanocarriers for Immunotherapeutic Delivery. Adv Healthc Mater 2019; 8:e1801545. [PMID: 30620448 PMCID: PMC6367050 DOI: 10.1002/adhm.201801545] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/24/2018] [Indexed: 11/12/2022]
Abstract
Nanomedicine is a promising, noninvasive approach to reduce atherosclerotic plaque burden. However, drug delivery is limited without the ability of nanocarriers to sense and respond to the diseased microenvironment. In this study, nanomaterials are developed from peptide amphiphiles (PAs) that respond to the increased levels of matrix metalloproteinases 2 and 9 (MMP2/9) or reactive oxygen species (ROS) found within the atherosclerotic niche. A pro-resolving therapeutic, Ac2-26, derived from annexin-A1 protein, is tethered to PAs using peptide linkages that cleave in response to MMP2/9 or ROS. By adjusting the molar ratios and processing conditions, the Ac2-26 PA can be co-assembled with a PA containing an apolipoprotein A1-mimetic peptide to create a targeted, therapeutic nanofiber (ApoA1-Ac226 PA). The ApoA1-Ac2-26 PAs demonstrate release of Ac2-26 within 24 h after treatment with MMP2 or ROS. The niche-responsive ApoA1-Ac2-26 PAs are cytocompatible and reduce macrophage activation from interferon gamma and lipopolysaccharide treatment, evidenced by decreased nitric oxide production. Interestingly, the linkage chemistry of ApoA1-Ac2-26 PAs significantly affects macrophage uptake and retention. Taken together, these findings demonstrate the potential of PAs to serve as an atheroma niche-responsive nanocarrier system to modulate the inflammatory microenvironment, with implications for atherosclerosis treatment.
Collapse
Affiliation(s)
- Erica B. Peters
- Department of Surgery, Division of Vascular Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA
| | - Nick D. Tsihlis
- Department of Surgery, Division of Vascular Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA
| | - Mark R. Karver
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
| | - Stacey M. Chin
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Bruno Musetti
- Institute of Biological Chemistry, Universidad de la República, Montevideo, 11400, Uruguay
| | - Benjamin T. Ledford
- Department of Surgery, Division of Vascular Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA
| | - Edward M. Bahnson
- Department of Surgery, Division of Vascular Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samuel I. Stupp
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science & Engineering and Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Melina R. Kibbe
- Department of Surgery, Division of Vascular Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
66
|
Specialized Pro-resolving Mediators Directs Cardiac Healing and Repair with Activation of Inflammation and Resolution Program in Heart Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:45-64. [PMID: 31562621 DOI: 10.1007/978-3-030-21735-8_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
After myocardial infarction, splenic leukocytes direct biosynthesis of specialized pro-resolving mediators (SPMs) that are essential for the resolution of inflammation and tissue repair. In a laboratory environment, after coronary ligation of healthy risk free rodents (young adult mice) leukocytes biosynthesize SPMs with induced activity of lipoxygenases and cyclooxygenases, which facilitate cardiac repair. Activated monocytes/macrophages drive the biosynthesis of SPMs following experimental myocardial infarction in mice during the acute heart failure. In the presented review, we provided the recent updates on SPMs (resolvins, lipoxins and maresins) in cardiac repair that may serve as novel therapeutics for future heart failure therapy/management. We incorporated the underlying causes of non-resolving inflammation following cardiac injury if superimposed with obesity, hypertension, diabetes, disrupted circadian rhythm, co-medication (painkillers or oncological therapeutics), and/or aging that may delay or impair the biosynthesis of SPMs, intensifying pathological remodeling in heart failure.
Collapse
|
67
|
de Gaetano M, Butler E, Gahan K, Zanetti A, Marai M, Chen J, Cacace A, Hams E, Maingot C, McLoughlin A, Brennan E, Leroy X, Loscher CE, Fallon P, Perretti M, Godson C, Guiry PJ. Asymmetric synthesis and biological evaluation of imidazole- and oxazole-containing synthetic lipoxin A4 mimetics (sLXms). Eur J Med Chem 2019; 162:80-108. [DOI: 10.1016/j.ejmech.2018.10.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/02/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022]
|
68
|
de Gaetano M, McEvoy C, Andrews D, Cacace A, Hunter J, Brennan E, Godson C. Specialized Pro-resolving Lipid Mediators: Modulation of Diabetes-Associated Cardio-, Reno-, and Retino-Vascular Complications. Front Pharmacol 2018; 9:1488. [PMID: 30618774 PMCID: PMC6305798 DOI: 10.3389/fphar.2018.01488] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/05/2018] [Indexed: 12/18/2022] Open
Abstract
Diabetes and its associated chronic complications present a healthcare challenge on a global scale. Despite improvements in the management of chronic complications of the micro-/macro-vasculature, their growing prevalence and incidence highlights the scale of the problem. It is currently estimated that diabetes affects 425 million people globally and it is anticipated that this figure will rise by 2025 to 700 million people. The vascular complications of diabetes including diabetes-associated atherosclerosis and kidney disease present a particular challenge. Diabetes is the leading cause of end stage renal disease, reflecting fibrosis leading to organ failure. Moreover, diabetes associated states of inflammation, neo-vascularization, apoptosis and hypercoagulability contribute to also exacerbate atherosclerosis, from the metabolic syndrome to advanced disease, plaque rupture and coronary thrombosis. Current therapeutic interventions focus on regulating blood glucose, glomerular and peripheral hypertension and can at best slow the progression of diabetes complications. Recently advanced knowledge of the pathogenesis underlying diabetes and associated complications revealed common mechanisms, including the inflammatory response, insulin resistance and hyperglycemia. The major role that inflammation plays in many chronic diseases has led to the development of new strategies aiming to promote the restoration of homeostasis through the "resolution of inflammation." These strategies aim to mimic the spontaneous activities of the 'specialized pro-resolving mediators' (SPMs), including endogenous molecules and their synthetic mimetics. This review aims to discuss the effect of SPMs [with particular attention to lipoxins (LXs) and resolvins (Rvs)] on inflammatory responses in a series of experimental models, as well as evidence from human studies, in the context of cardio- and reno-vascular diabetic complications, with a brief mention to diabetic retinopathy (DR). These data collectively support the hypothesis that endogenously generated SPMs or synthetic mimetics of their activities may represent lead molecules in a new discipline, namely the 'resolution pharmacology,' offering hope for new therapeutic strategies to prevent and treat, specifically, diabetes-associated atherosclerosis, nephropathy and retinopathy.
Collapse
Affiliation(s)
- Monica de Gaetano
- UCD Diabetes Complications Research Centre, Conway Institute and UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Caitriona McEvoy
- UCD Diabetes Complications Research Centre, Conway Institute and UCD School of Medicine, University College Dublin, Dublin, Ireland
- Renal Transplant Program, University Health Network, Toronto, ON, Canada
| | - Darrell Andrews
- UCD Diabetes Complications Research Centre, Conway Institute and UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Antonino Cacace
- UCD Diabetes Complications Research Centre, Conway Institute and UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Jonathan Hunter
- UCD Diabetes Complications Research Centre, Conway Institute and UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Eoin Brennan
- UCD Diabetes Complications Research Centre, Conway Institute and UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Catherine Godson
- UCD Diabetes Complications Research Centre, Conway Institute and UCD School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
69
|
Krishnamoorthy N, Abdulnour REE, Walker KH, Engstrom BD, Levy BD. Specialized Proresolving Mediators in Innate and Adaptive Immune Responses in Airway Diseases. Physiol Rev 2018; 98:1335-1370. [PMID: 29717929 DOI: 10.1152/physrev.00026.2017] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Airborne pathogens and environmental stimuli evoke immune responses in the lung. It is critical to health that these responses be controlled to prevent tissue damage and the compromise of organ function. Resolution of inflammation is a dynamic process that is coordinated by biochemical and cellular mechanisms. Recently, specialized proresolving mediators (SPMs) have been identified in resolution exudates. These molecules orchestrate anti-inflammatory and proresolving actions that are cell type specific. In this review, we highlight SPM biosynthesis, the influence of SPMs on the innate and adaptive immune responses in the lung, as well as recent insights from SPMs on inflammatory disease pathophysiology. Uncovering these mediators and cellular mechanisms for resolution is providing new windows into physiology and disease pathogenesis.
Collapse
Affiliation(s)
- Nandini Krishnamoorthy
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Raja-Elie E Abdulnour
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Katherine H Walker
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Braden D Engstrom
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
70
|
Ampomah PB, Kong WT, Zharkova O, Chua SCJH, Perumal Samy R, Lim LHK. Annexins in Influenza Virus Replication and Pathogenesis. Front Pharmacol 2018; 9:1282. [PMID: 30498445 PMCID: PMC6249340 DOI: 10.3389/fphar.2018.01282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/18/2018] [Indexed: 12/26/2022] Open
Abstract
Influenza A viruses (IAVs) are important human respiratory pathogens which cause seasonal or periodic endemic infections. IAV can result in severe or fatal clinical complications including pneumonia and respiratory distress syndrome. Treatment of IAV infections is complicated because the virus can evade host immunity through antigenic drifts and antigenic shifts, to establish infections making new treatment options desirable. Annexins (ANXs) are a family of calcium and phospholipid binding proteins with immunomodulatory roles in viral infections, lung injury, and inflammation. A current understanding of the role of ANXs in modulating IAV infection and host responses will enable the future development of more effective antiviral therapies. This review presents a comprehensive understanding of the advances made in the field of ANXs, in particular, ANXA1 and IAV research and highlights the importance of ANXs as a suitable target for IAV therapy.
Collapse
Affiliation(s)
- Patrick Baah Ampomah
- Department of Physiology, NUS Immunology Program, Centre for Life Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wan Ting Kong
- Department of Physiology, NUS Immunology Program, Centre for Life Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Olga Zharkova
- Department of Physiology, NUS Immunology Program, Centre for Life Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sonja C. J. H. Chua
- Department of Physiology, NUS Immunology Program, Centre for Life Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - R. Perumal Samy
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lina H. K. Lim
- Department of Physiology, NUS Immunology Program, Centre for Life Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
71
|
Pirault J, Bäck M. Lipoxin and Resolvin Receptors Transducing the Resolution of Inflammation in Cardiovascular Disease. Front Pharmacol 2018; 9:1273. [PMID: 30487747 PMCID: PMC6247824 DOI: 10.3389/fphar.2018.01273] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022] Open
Abstract
A non-resolving inflammation results in a chronic inflammatory response, characteristic of atherosclerosis, abdominal aortic aneurysms and several other cardiovascular diseases. Restoring the levels of specialized proresolving mediators to drive the chronic cardiovascular inflammation toward resolution is emerging as a novel therapeutic principle. The lipid mediators lipoxins and resolvins exert their proresolving actions through specific G-protein coupled receptors (GPCR). So far, four GPCR have been identified as the receptors for lipoxin A4 and the D- and E-series of resolvins, namely ALX/FPR2, DRV1/GPR32, DRV2/GPR18, and ERV1/ChemR23. At the same time, other pro-inflammatory ligands also activate some of these receptors. Recent studies of genetic targeting of these receptors in atherosclerotic mouse strains have revealed a major role for proresolving receptors in atherosclerosis. The present review addresses the complex pharmacology of these four proresolving GPCRs with focus on their therapeutic implications and opportunities for inducing the resolution of inflammation in cardiovascular disease.
Collapse
Affiliation(s)
- John Pirault
- AGing Innovation & Research (AGIR) Program at INSERM U1116, Nancy University Hospital and The University of Lorraine, Nancy, France
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Bäck
- AGing Innovation & Research (AGIR) Program at INSERM U1116, Nancy University Hospital and The University of Lorraine, Nancy, France
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Valvular and Coronary Disease, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
72
|
Doyle R, Sadlier DM, Godson C. Pro-resolving lipid mediators: Agents of anti-ageing? Semin Immunol 2018; 40:36-48. [PMID: 30293857 DOI: 10.1016/j.smim.2018.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/14/2018] [Accepted: 09/24/2018] [Indexed: 12/11/2022]
Abstract
Inflammation is an essential response to injury and its timely and adequate resolution permits tissue repair and avoidance of chronic inflammation. Ageing is associated with increased inflammation, sub-optimal resolution and these act as drivers for a number of ageing-associated pathologies. We describe the role played by specialised proresolving lipid mediators (SPMs) in the resolution of inflammation and how insufficient levels of these mediators, or compromised responsiveness may play a role in the pathogenesis of many ageing-associated pathologies, e.g. Alzheimer's Disease, atherosclerosis, obesity, diabetes and kidney disease. Detailed examination of the resolution phase of inflammation highlights the potential to harness these lipid mediators and or mimetics of their bioactions, in particular, their synthetic analogues to promote effective resolution of inflammation, without compromising the host immune system.
Collapse
Affiliation(s)
- Ross Doyle
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Mater Misericordiae University Hospital, Eccles St., Inns Quay, Dublin 7, Ireland.
| | - Denise M Sadlier
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Mater Misericordiae University Hospital, Eccles St., Inns Quay, Dublin 7, Ireland
| | - Catherine Godson
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
73
|
The atheroprotective role of lipoxin A 4 prevents oxLDL-induced apoptotic signaling in macrophages via JNK pathway. Atherosclerosis 2018; 278:259-268. [PMID: 30340110 DOI: 10.1016/j.atherosclerosis.2018.09.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/18/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS We examined whether the inflammation resolution mediator lipoxin A4 (LXA4) inhibits foam cell formation and oxidized low-density lipoprotein (oxLDL)-induced apoptotic signaling in macrophages and the role of circulating/local LXA4 biosynthesis in atherogenesis. METHODS LXA4 levels were measured by enzyme-linked immunosorbent assay. Dil-oxLDL and Dil-acLDL binding to and uptake by macrophages were evaluated by flow cytometry. Apoptosis was evaluated by TUNEL and Annexin V/PI assays. RESULTS Circulating LXA4 levels in patients with coronary artery disease were much higher than those in respective controls. Local LXA4 levels were much lower in rabbit atherosclerotic vessel walls. Interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α) were elevated in atherosclerotic vessels. After the inflammatory stimulus (IFN-γ, TNF-α, and C-reactive protein), LXA4 synthesis decreased significantly in foam cells. LXA4 dose-dependently suppressed the expression of the cholesterol uptake genes CD36 and SR-A in macrophages, which was blocked by the LXA4 receptor antagonist BOC-2. LXA4 also inhibited oxLDL-induced CD36 upregulation, Dil-oxLDL uptake, and foam cell formation. Furthermore, LXA4 inhibited the oxLDL-activated c-Jun N-terminal kinase pathway and reduced oxLDL-induced macrophage apoptosis by inhibiting caspase-3 activation and restoring the mitochondrial membrane potential. CONCLUSIONS We found that LXA4 inhibited foam cell formation, oxLDL-induced inflammation, and apoptotic signaling in macrophages. Insufficient levels of the anti-inflammatory pro-resolution molecule LXA4 were found in rabbit atherosclerotic arteries, which might contribute to preventing inflammation resolution during atherogenesis.
Collapse
|
74
|
López-Muñoz RA, Molina-Berríos A, Campos-Estrada C, Abarca-Sanhueza P, Urrutia-Llancaqueo L, Peña-Espinoza M, Maya JD. Inflammatory and Pro-resolving Lipids in Trypanosomatid Infections: A Key to Understanding Parasite Control. Front Microbiol 2018; 9:1961. [PMID: 30186271 PMCID: PMC6113562 DOI: 10.3389/fmicb.2018.01961] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/02/2018] [Indexed: 12/30/2022] Open
Abstract
Pathogenic trypanosomatids (Trypanosoma cruzi, Trypanosoma brucei, and Leishmania spp.) are protozoan parasites that cause neglected diseases affecting millions of people in Africa, Asia, and the Americas. In the process of infection, trypanosomatids evade and survive the immune system attack, which can lead to a chronic inflammatory state that induces cumulative damage, often killing the host in the long term. The immune mediators involved in this process are not entirely understood. Most of the research on the immunologic control of protozoan infections has been focused on acute inflammation. Nevertheless, when this process is not terminated adequately, permanent damage to the inflamed tissue may ensue. Recently, a second process, called resolution of inflammation, has been proposed to be a pivotal process in the control of parasite burden and establishment of chronic infection. Resolution of inflammation is an active process that promotes the normal function of injured or infected tissues. Several mediators are involved in this process, including eicosanoid-derived lipids, cytokines such as transforming growth factor (TGF)-β and interleukin (IL)-10, and other proteins such as Annexin-V. For example, during T. cruzi infection, pro-resolving lipids such as 15-epi-lipoxin-A4 and Resolvin D1 have been associated with a decrease in the inflammatory changes observed in experimental chronic heart disease, reducing inflammation and fibrosis, and increasing host survival. Furthermore, Resolvin D1 modulates the immune response in cells of patients with Chagas disease. In Leishmania spp. infections, pro-resolving mediators such as Annexin-V, lipoxins, and Resolvin D1 are related to the modulation of cutaneous manifestation of the disease. However, these mediators seem to have different roles in visceral or cutaneous leishmaniasis. Finally, although T. brucei infections are less well studied in terms of their relationship with inflammation, it has been found that arachidonic acid-derived lipids act as key regulators of the host immune response and parasite burden. Also, cytokines such as IL-10 and TGF-β may be related to increased infection. Knowledge about the inflammation resolution process is necessary to understand the host–parasite interplay, but it also offers an interesting opportunity to improve the current therapies, aiming to reduce the detrimental state induced by chronic protozoan infections.
Collapse
Affiliation(s)
- Rodrigo A López-Muñoz
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Alfredo Molina-Berríos
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Carolina Campos-Estrada
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile.,Centro de Investigación Farmacopea Chilena, Universidad de Valparaíso, Valparaíso, Chile
| | - Patricio Abarca-Sanhueza
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis Urrutia-Llancaqueo
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Miguel Peña-Espinoza
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Juan D Maya
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
75
|
Yin P, Wei Y, Wang X, Zhu M, Feng J. Roles of Specialized Pro-Resolving Lipid Mediators in Cerebral Ischemia Reperfusion Injury. Front Neurol 2018; 9:617. [PMID: 30131754 PMCID: PMC6090140 DOI: 10.3389/fneur.2018.00617] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke contributes to ~80% of all stroke cases. Recanalization with thrombolysis or endovascular thrombectomy are currently critical therapeutic strategies for rebuilding the blood supply following ischemic stroke. However, recanalization is often accompanied by cerebral ischemia reperfusion injury that is mediated by oxidative stress and inflammation. Resolution of inflammation belongs to the end stage of inflammation where inflammation is terminated and the repair of damaged tissue is started. Resolution of inflammation is mediated by a group of newly discovered lipid mediators called specialized pro-resolving lipid mediators (SPMs). Accumulating evidence suggests that SPMs decrease leukocyte infiltration, enhance efferocytosis, reduce local neuronal injury, and decrease both oxidative stress and the production of inflammatory cytokines in various in vitro and in vivo models of ischemic stroke. In this review, we summarize the mechanisms of reperfusion injury and the various roles of SPMs in stroke therapy.
Collapse
Affiliation(s)
- Ping Yin
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China.,First Department of Neurology and Neuroscience Center, Heilongjiang Provincial Hospital, Harbin, China
| | - Yafen Wei
- First Department of Neurology and Neuroscience Center, Heilongjiang Provincial Hospital, Harbin, China
| | - Xu Wang
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Mingqin Zhu
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
76
|
Montanari E, Gennari A, Pelliccia M, Manzi L, Donno R, Oldham NJ, MacDonald A, Tirelli N. Tyrosinase-Mediated Bioconjugation. A Versatile Approach to Chimeric Macromolecules. Bioconjug Chem 2018; 29:2550-2560. [DOI: 10.1021/acs.bioconjchem.8b00227] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Elita Montanari
- NorthWest Centre of Advanced Drug Delivery (NoWCADD), Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PT, Manchester, United Kingdom
- Department of Drug Chemistry and Technologies, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Arianna Gennari
- NorthWest Centre of Advanced Drug Delivery (NoWCADD), Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PT, Manchester, United Kingdom
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Maria Pelliccia
- NorthWest Centre of Advanced Drug Delivery (NoWCADD), Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PT, Manchester, United Kingdom
| | - Lucio Manzi
- School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, United Kingdom
| | - Roberto Donno
- NorthWest Centre of Advanced Drug Delivery (NoWCADD), Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PT, Manchester, United Kingdom
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Neil J. Oldham
- School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, United Kingdom
| | - Andrew MacDonald
- Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity & Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PT, Manchester, United Kingdom
| | - Nicola Tirelli
- NorthWest Centre of Advanced Drug Delivery (NoWCADD), Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PT, Manchester, United Kingdom
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163, Genova, Italy
| |
Collapse
|
77
|
Inhibition of the AnxA1/FPR1 autocrine axis reduces MDA-MB-231 breast cancer cell growth and aggressiveness in vitro and in vivo. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1368-1382. [PMID: 29932988 DOI: 10.1016/j.bbamcr.2018.06.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 06/14/2018] [Accepted: 06/17/2018] [Indexed: 12/18/2022]
Abstract
Breast Cancer (BC) is a highly heterogeneous disease whose most aggressive behavior is displayed by triple-negative breast cancer (TNBC), which lacks an efficient targeted therapy. Despite its controversial role, one of the proteins that having been linked with BC is Annexin A1 (AnxA1), which is a Ca+2 binding protein that acts modulating the immune system, cell membrane organization and vesicular trafficking. In this work we analyzed tissue microarrays of BC samples and observed a higher expression of AnxA1 in TNBCs and in lymph node metastasis. We also observed a positive correlation in primary tumors between expression levels of AnxA1 and its receptor, FPR1. Despite displaying a lesser strength, this correlation also exists in BC lymph node metastasis. In agreement, we have found that AnxA1 was highly expressed and secreted in the TNBC cell line MDA-MB-231 that also expressed high levels of FPR1. Furthermore, we demonstrated, by using the specific FPR1 inhibitor Cyclosporin H (CsH) and the immunosuppressive drug Cyclosporin A (CsA), the existence of an autocrine signaling of AnxA1 through the FPR1. Such signaling, elicited by AnxA1 upon its secretion, increased the aggressiveness and survival of MDA-MB-231 cells. In this manner, we demonstrated that CsA works very efficiently as an FPR1 inhibitor. Finally, by using CsA, we demonstrated that FPR1 inhibition decreased MDA-MB-231 tumor growth and metastasis formation in nude mice. These results indicate that FPR1 inhibition could be a potential intervention strategy to manage TNBCs displaying the characteristics of MDA-MB-231 cells. FPR1 inhibition can be efficiently achieved by CsA.
Collapse
|
78
|
Sagini K, Costanzi E, Emiliani C, Buratta S, Urbanelli L. Extracellular Vesicles as Conveyors of Membrane-Derived Bioactive Lipids in Immune System. Int J Mol Sci 2018; 19:ijms19041227. [PMID: 29670015 PMCID: PMC5979532 DOI: 10.3390/ijms19041227] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/06/2018] [Accepted: 04/14/2018] [Indexed: 12/11/2022] Open
Abstract
Over the last 20 years, extracellular vesicles (EVs) have been established as an additional way to transmit signals outside the cell. They are membrane-surrounded structures of nanometric size that can either originate from the membrane invagination of multivesicular bodies of the late endosomal compartment (exosomes) or bud from the plasma membrane (microvesicles). They contain proteins, lipids, and nucleic acids—namely miRNA, but also mRNA and lncRNA—which are derived from the parental cell, and have been retrieved in every fluid of the body. As carriers of antigens, either alone or in association with major histocompatibility complex (MHC) class II and class I molecules, their immunomodulatory properties have been extensively investigated. Moreover, recent studies have shown that EVs may carry and deliver membrane-derived bioactive lipids that play an important function in the immune system and related pathologies, such as prostaglandins, leukotrienes, specialized pro-resolving mediators, and lysophospholipids. EVs protect bioactive lipids from degradation and play a role in the transcellular synthesis of prostaglandins and leukotrienes. Here, we summarized the role of EVs in the regulation of immune response, specifically focusing our attention on the emerging role of EVs as carriers of bioactive lipids, which is important for immune system function.
Collapse
Affiliation(s)
- Krizia Sagini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| | - Eva Costanzi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| |
Collapse
|
79
|
Motwani MP, Colas RA, George MJ, Flint JD, Dalli J, Richard-Loendt A, De Maeyer RP, Serhan CN, Gilroy DW. Pro-resolving mediators promote resolution in a human skin model of UV-killed Escherichia coli-driven acute inflammation. JCI Insight 2018; 3:94463. [PMID: 29563331 PMCID: PMC5926908 DOI: 10.1172/jci.insight.94463] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 02/20/2018] [Indexed: 12/22/2022] Open
Abstract
While the treatment of inflammatory disorders is generally based on inhibiting factors that drive onset of inflammation, these therapies can compromise healing (NSAIDs) or dampen immunity against infections (biologics). In search of new antiinflammatories, efforts have focused on harnessing endogenous pathways that drive resolution of inflammation for therapeutic gain. Identification of specialized pro-resolving mediators (SPMs) (lipoxins, resolvins, protectins, maresins) as effector molecules of resolution has shown promise in this regard. However, their action on inflammatory resolution in humans is unknown. Here, we demonstrate using a model of UV-killed Escherichia coli–triggered skin inflammation that SPMs are biosynthesized at the local site at the start of resolution, coinciding with the expression of receptors that transduce their actions. These include receptors for lipoxin A4 (ALX/FPR2), resolvin E1 (ChemR23), resolvin D2 (GPR18), and resolvin D1 (GPR32) that were differentially expressed on the endothelium and infiltrating leukocytes. Administering SPMs into the inflamed site 4 hours after bacterial injection caused a reduction in PMN numbers over the ensuing 6 hours, the phase of active resolution in this model. These results indicate that in humans, the appearance of SPMs and their receptors is associated with the beginning of inflammatory resolution and that their therapeutic supplementation enhanced the resolution response. In humans, the appearance of specialized pro-resolving lipid mediators and their receptors is associated with the start of inflammatory resolution.
Collapse
Affiliation(s)
- Madhur P Motwani
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, United Kingdom
| | - Romain A Colas
- Lipid Mediator Unit, Biochemical Pharmacology, William Harvey Research Institute, Bart's and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Marc J George
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, United Kingdom
| | - Julia D Flint
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, United Kingdom
| | - Jesmond Dalli
- Lipid Mediator Unit, Biochemical Pharmacology, William Harvey Research Institute, Bart's and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Angela Richard-Loendt
- Division of Neuropathology and, Department of Neurodegenerative Disease, University College London Institute of Neurology, London, United Kingdom
| | - Roel Ph De Maeyer
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, United Kingdom
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Derek W Gilroy
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
80
|
Boff D, Crijns H, Teixeira MM, Amaral FA, Proost P. Neutrophils: Beneficial and Harmful Cells in Septic Arthritis. Int J Mol Sci 2018; 19:E468. [PMID: 29401737 PMCID: PMC5855690 DOI: 10.3390/ijms19020468] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/17/2022] Open
Abstract
Septic arthritis is an inflammatory joint disease that is induced by pathogens such as Staphylococcus aureus. Infection of the joint triggers an acute inflammatory response directed by inflammatory mediators including microbial danger signals and cytokines and is accompanied by an influx of leukocytes. The recruitment of these inflammatory cells depends on gradients of chemoattractants including formylated peptides from the infectious agent or dying cells, host-derived leukotrienes, complement proteins and chemokines. Neutrophils are of major importance and play a dual role in the pathogenesis of septic arthritis. On the one hand, these leukocytes are indispensable in the first-line defense to kill invading pathogens in the early stage of disease. However, on the other hand, neutrophils act as mediators of tissue destruction. Since the elimination of inflammatory neutrophils from the site of inflammation is a prerequisite for resolution of the acute inflammatory response, the prolonged stay of these leukocytes at the inflammatory site can lead to irreversible damage to the infected joint, which is known as an important complication in septic arthritis patients. Thus, timely reduction of the recruitment of inflammatory neutrophils to infected joints may be an efficient therapy to reduce tissue damage in septic arthritis.
Collapse
Affiliation(s)
- Daiane Boff
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| | - Helena Crijns
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| | - Mauro M Teixeira
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Flavio A Amaral
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
81
|
Stama ML, Lacivita E, Kirpotina LN, Niso M, Perrone R, Schepetkin IA, Quinn MT, Leopoldo M. Functional N-Formyl Peptide Receptor 2 (FPR2) Antagonists Based on the Ureidopropanamide Scaffold Have Potential To Protect Against Inflammation-Associated Oxidative Stress. ChemMedChem 2017; 12:1839-1847. [PMID: 28922577 PMCID: PMC5909973 DOI: 10.1002/cmdc.201700429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/06/2017] [Indexed: 12/11/2022]
Abstract
Formyl peptide receptor 2 (FPR2) is a G protein coupled receptor belonging to the N-formyl peptide receptor (FPR) family that plays critical roles in peripheral and brain inflammatory responses. FPR2 has been proposed as a target for the development of drugs that could facilitate the resolution of chronic inflammatory reactions by enhancing endogenous anti-inflammation systems. Starting from lead compounds previously identified in our laboratories, we designed a new series of ureidopropanamide derivatives with the goal of converting functional activity from agonism into antagonism and to develop new FPR2 antagonists. Although none of the compounds behaved as antagonists, some of the compounds were able to induce receptor desensitization and, thus, functionally behaved as antagonists. Evaluation of these compounds in an in vitro model of neuroinflammation showed that they decreased the production of reactive oxygen species in mouse microglial N9 cells after stimulation with lipopolysaccharide. These FPR2 ligands may protect cells from damage due to inflammation-associated oxidative stress.
Collapse
Affiliation(s)
- Madia L. Stama
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona, 4, 70125 Bari, Italy
| | - Enza Lacivita
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona, 4, 70125 Bari, Italy
| | - Liliya N. Kirpotina
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Mauro Niso
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona, 4, 70125 Bari, Italy
| | - Roberto Perrone
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona, 4, 70125 Bari, Italy
| | - Igor A. Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Mark T. Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Marcello Leopoldo
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona, 4, 70125 Bari, Italy
| |
Collapse
|
82
|
Kain V, Liu F, Kozlovskaya V, Ingle KA, Bolisetty S, Agarwal A, Khedkar S, Prabhu SD, Kharlampieva E, Halade GV. Resolution Agonist 15-epi-Lipoxin A 4 Programs Early Activation of Resolving Phase in Post-Myocardial Infarction Healing. Sci Rep 2017; 7:9999. [PMID: 28855632 PMCID: PMC5577033 DOI: 10.1038/s41598-017-10441-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/09/2017] [Indexed: 01/22/2023] Open
Abstract
Following myocardial infarction (MI), overactive inflammation remodels the left ventricle (LV) leading to heart failure coinciding with reduced levels of 15-epi-Lipoxin A4 (15-epi LXA4). However, the role of 15-epi LXA4 in post-MI acute inflammatory response and resolving phase is unclear. We hypothesize that liposomal fusion of 15-epi-LXA4 (Lipo-15-epi-LXA4) or free 15-epi-LXA4 will expedite the resolving phase in post-MI inflammation. 8 to 12-week-old male C57BL/6 mice were subjected to permanent coronary artery ligation. Lipo-15-epi-LXA4 or 15-epi-LXA4 (1 µg/kg/day) was injected 3 hours post-MI for (d)1 or continued daily till d5. 15-epi-LXA4 activated formyl peptide receptor (FPR2) and GPR120 on alternative macrophages but inhibited GPR40 on classical macrophages in-vitro. The 15-epi-LXA4 injected mice displayed reduced LV and lung mass to body weight ratios and improved ejection fraction at d5 post-MI. In the acute phase of inflammation-(d1), 15-epi-LXA4 primes neutrophil infiltration with a robust increase of Ccl2 and FPR2 expression. During the resolving phase-(d5), 15-epi-LXA4 initiated rapid neutrophils clearance with persistent activation of FPR2 in LV. Compared to MI-control, 15-epi-LXA4 injected mice showed reduced renal inflammation along with decreased levels of ngal and plasma creatinine. In summary, 15-epi-LXA4 initiates the resolving phase early to discontinue inflammation post-MI, thereby reducing LV dysfunction.
Collapse
Affiliation(s)
- Vasundhara Kain
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Alabama, USA
| | - Fei Liu
- Department of Chemistry, The University of Alabama at Birmingham, Alabama, USA
| | | | - Kevin A Ingle
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Alabama, USA
| | | | - Anupam Agarwal
- Division of Nephrology, The University of Alabama at Birmingham, Alabama, USA
| | | | - Sumanth D Prabhu
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Alabama, USA
| | | | - Ganesh V Halade
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Alabama, USA.
| |
Collapse
|
83
|
Szondy Z, Sarang Z, Kiss B, Garabuczi É, Köröskényi K. Anti-inflammatory Mechanisms Triggered by Apoptotic Cells during Their Clearance. Front Immunol 2017; 8:909. [PMID: 28824635 PMCID: PMC5539239 DOI: 10.3389/fimmu.2017.00909] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/17/2017] [Indexed: 12/19/2022] Open
Abstract
In the human body, billions of cells die by apoptosis every day. The subsequent clearance of apoptotic cells by phagocytosis is normally efficient enough to prevent secondary necrosis and the consequent release of cell contents that would induce inflammation and trigger autoimmunity. In addition, apoptotic cells generally induce an anti-inflammatory response, thus removal of apoptotic cells is usually immunologically silent. Since the first discovery that uptake of apoptotic cells leads to transforming growth factor (TGF)-β and interleukin (IL)-10 release by engulfing macrophages, numerous anti-inflammatory mechanisms triggered by apoptotic cells have been discovered, including release of anti-inflammatory molecules from the apoptotic cells, triggering immediate anti-inflammatory signaling pathways by apoptotic cell surface molecules via phagocyte receptors, activating phagocyte nuclear receptors following uptake and inducing the production of anti-inflammatory soluble mediators by phagocytes that may act via paracrine or autocrine mechanisms to amplify and preserve the anti-inflammatory state. Here, we summarize our present knowledge about how these anti-inflammatory mechanisms operate during the clearance of apoptotic cells.
Collapse
Affiliation(s)
- Zsuzsa Szondy
- Department of Biochemistry and Molecular Biology of Medical Faculty, University of Debrecen, Debrecen, Hungary.,Department of Basic Medical Sciences of Dental Faculty, University of Debrecen, Debrecen, Hungary
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology of Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Beáta Kiss
- Department of Biochemistry and Molecular Biology of Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Éva Garabuczi
- Department of Biochemistry and Molecular Biology of Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Krisztina Köröskényi
- Department of Biochemistry and Molecular Biology of Medical Faculty, University of Debrecen, Debrecen, Hungary.,Department of Basic Medical Sciences of Dental Faculty, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
84
|
Ricklefs I, Barkas I, Duvall MG, Cernadas M, Grossman NL, Israel E, Bleecker ER, Castro M, Erzurum SC, Fahy JV, Gaston BM, Denlinger LC, Mauger DT, Wenzel SE, Comhair SA, Coverstone AM, Fajt ML, Hastie AT, Johansson MW, Peters MC, Phillips BR, Levy BD. ALX receptor ligands define a biochemical endotype for severe asthma. JCI Insight 2017; 2:93534. [PMID: 28724795 DOI: 10.1172/jci.insight.93534] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/01/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In health, inflammation resolution is an active process governed by specialized proresolving mediators and receptors. ALX/FPR2 receptors (ALX) are targeted by both proresolving and proinflammatory ligands for opposing signaling events, suggesting pivotal roles for ALX in the fate of inflammatory responses. Here, we determined if ALX expression and ligands were linked to severe asthma (SA). METHODS ALX expression and levels of proresolving ligands (lipoxin A4 [LXA4], 15-epi-LXA4, and annexin A1 [ANXA1]), and a proinflammatory ligand (serum amyloid A [SAA]) were measured in bronchoscopy samples collected in Severe Asthma Research Program-3 (SA [n = 69], non-SA [NSA, n = 51] or healthy donors [HDs, n = 47]). RESULTS Bronchoalveolar lavage (BAL) fluid LXA4 and 15-epi-LXA4 were decreased and SAA was increased in SA relative to NSA. BAL macrophage ALX expression was increased in SA. Subjects with LXA4loSAAhi levels had increased BAL neutrophils, more asthma symptoms, lower lung function, increased relative risk for asthma exacerbation, sinusitis, and gastroesophageal reflux disease, and were assigned more frequently to SA clinical clusters. SAA and aliquots of LXA4loSAAhi BAL fluid induced IL-8 production by lung epithelial cells expressing ALX receptors, which was inhibited by coincubation with 15-epi-LXA4. CONCLUSIONS Together, these findings have established an association between select ALX receptor ligands and asthma severity that define a potentially new biochemical endotype for asthma and support a pivotal functional role for ALX signaling in the fate of lung inflammation. TRIAL REGISTRATION Severe Asthma Research Program-3 (SARP-3; ClinicalTrials.gov NCT01606826)FUNDING Sources. National Heart, Lung and Blood Institute, the NIH, and the German Society of Pediatric Pneumology.
Collapse
Affiliation(s)
- Isabell Ricklefs
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital, and
| | - Ioanna Barkas
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital, and
| | - Melody G Duvall
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital, and.,Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Manuela Cernadas
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital, and
| | - Nicole L Grossman
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital, and
| | - Elliot Israel
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital, and
| | - Eugene R Bleecker
- Center for Genomics and Personalized Medicine Research, School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Mario Castro
- Division of Pulmonary and Critical Care Medicine, Departments of Medicine and Pediatrics, Washington University, St. Louis, Missouri, USA
| | - Serpil C Erzurum
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - John V Fahy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and the Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| | - Benjamin M Gaston
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, Ohio, USA
| | - Loren C Denlinger
- Division of Allergy, Pulmonary, and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - David T Mauger
- Division of Statistics and Bioinformatics, Department of Public Health Sciences, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Sally E Wenzel
- Pulmonary, Allergy and Critical Care Medicine Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Suzy A Comhair
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Andrea M Coverstone
- Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Merritt L Fajt
- Pulmonary, Allergy and Critical Care Medicine Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Annette T Hastie
- Center for Genomics and Personalized Medicine Research, School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Mats W Johansson
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Michael C Peters
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and the Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| | - Brenda R Phillips
- Division of Statistics and Bioinformatics, Department of Public Health Sciences, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital, and
| | | |
Collapse
|
85
|
Geiger S, Hirsch D, Hermann FG. Cell therapy for lung disease. Eur Respir Rev 2017; 26:26/144/170044. [PMID: 28659506 DOI: 10.1183/16000617.0044-2017] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/08/2017] [Indexed: 12/11/2022] Open
Abstract
Besides cancer and cardiovascular diseases, lung disorders are a leading cause of morbidity and death worldwide. For many disease conditions no effective and curative treatment options are available. Cell therapies offer a novel therapeutic approach due to their inherent anti-inflammatory and anti-fibrotic properties. Mesenchymal stem/stromal cells (MSC) are the most studied cell product. Numerous preclinical studies demonstrate an improvement of disease-associated parameters after MSC administration in several lung disorders, including chronic obstructive pulmonary disease, acute respiratory distress syndrome and idiopathic pulmonary fibrosis. Furthermore, results from clinical studies using MSCs for the treatment of various lung diseases indicate that MSC treatment in these patients is safe. In this review we summarise the results of preclinical and clinical studies that indicate that MSCs are a promising therapeutic approach for the treatment of lung diseases. Nevertheless, further investigations are required.
Collapse
Affiliation(s)
- Sabine Geiger
- Preclinical Development, Apceth Biopharma GmbH, Munich, Germany
| | - Daniela Hirsch
- Preclinical Development, Apceth Biopharma GmbH, Munich, Germany
| | - Felix G Hermann
- Preclinical Development, Apceth Biopharma GmbH, Munich, Germany
| |
Collapse
|
86
|
Weyd H. More than just innate affairs - on the role of annexins in adaptive immunity. Biol Chem 2017; 397:1017-29. [PMID: 27467753 DOI: 10.1515/hsz-2016-0191] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/22/2016] [Indexed: 01/21/2023]
Abstract
In more than 30 years of research annexins have been demonstrated to regulate immune responses. The prototype member of this family, annexin (Anx) A1, has been widely recognized as an anti-inflammatory mediator affecting migration and cellular responses of various cell types of the innate immune system. Evidently, effects on innate immune cells also impact on the course of adaptive immune responses. Innate immune cells provide a distinct cytokine milieu during initiation of adaptive immunity which regulates the development of T cell responses. Moreover, innate immune cells such as monocytes can differentiate into dendritic cells and take an active part in T cell stimulation. Accumulating evidence shows a direct role for annexins in adaptive immunity. Anx A1, the annexin protein studied in most detail, has been shown to influence antigen presentation as well as T cells directly. Moreover, immune modulatory roles have been described for several other annexins such as Anx A2, Anx A4, Anx A5 and Anx A13. This review will focus on the involvement of Anx A1 and other annexins in central aspects of adaptive immunity, such as recruitment and activation of antigen presenting cells, T cell differentiation and the anti-inflammatory removal of apoptotic cells.
Collapse
|
87
|
Brennan EP, Cacace A, Godson C. Specialized pro-resolving mediators in renal fibrosis. Mol Aspects Med 2017; 58:102-113. [PMID: 28479307 DOI: 10.1016/j.mam.2017.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 12/31/2022]
Abstract
Inflammation and its timely resolution play a critical role in effective host defence and wound healing. Unresolved inflammatory responses underlie the pathology of many prevalent diseases resulting in tissue fibrosis and eventual organ failure as typified by kidney, lung and liver fibrosis. The role of autocrine and paracrine mediators including cytokines, prostaglandins and leukotrienes in initiating and sustaining inflammation is well established. More recently a physiological role for specialized pro-resolving lipid mediators [SPMs] in modulating inflammatory responses and promoting the resolution of inflammation has been appreciated. As will be discussed in this review, SPMs not only attenuate the development of fibrosis through promoting the resolution of inflammation but may also directly suppress fibrotic responses. These findings suggest novel therapeutic paradigms to treat intractable life-limiting diseases such as renal fibrosis.
Collapse
Affiliation(s)
- Eoin P Brennan
- UCD Diabetes Complications Research Centre, UCD Conway Institute & UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Antonino Cacace
- UCD Diabetes Complications Research Centre, UCD Conway Institute & UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Catherine Godson
- UCD Diabetes Complications Research Centre, UCD Conway Institute & UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
88
|
Sansbury BE, Spite M. Resolution of Acute Inflammation and the Role of Resolvins in Immunity, Thrombosis, and Vascular Biology. Circ Res 2017; 119:113-30. [PMID: 27340271 DOI: 10.1161/circresaha.116.307308] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/26/2016] [Indexed: 12/11/2022]
Abstract
Acute inflammation is a host-protective response that is mounted in response to tissue injury and infection. Initiated and perpetuated by exogenous and endogenous mediators, acute inflammation must be resolved for tissue repair to proceed and for homeostasis to be restored. Resolution of inflammation is an actively regulated process governed by an array of mediators as diverse as those that initiate inflammation. Among these, resolvins have emerged as a genus of evolutionarily conserved proresolving mediators that act on specific cellular receptors to regulate leukocyte trafficking and blunt production of inflammatory mediators, while also promoting clearance of dead cells and tissue repair. Given that chronic unresolved inflammation is emerging as a central causative factor in the development of cardiovascular diseases, an understanding of the endogenous processes that govern normal resolution of acute inflammation is critical for determining why sterile maladaptive cardiovascular inflammation perpetuates. Here, we provide an overview of the process of resolution with a focus on the enzymatic biosynthesis and receptor-dependent actions of resolvins and related proresolving mediators in immunity, thrombosis, and vascular biology. We discuss how nutritional and current therapeutic approaches modulate resolution and propose that harnessing resolution concepts could potentially lead to the development of new approaches for treating chronic cardiovascular inflammation in a manner that is not host disruptive.
Collapse
Affiliation(s)
- Brian E Sansbury
- From the Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Matthew Spite
- From the Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.
| |
Collapse
|
89
|
Petri MH, Laguna-Fernandez A, Arnardottir H, Wheelock CE, Perretti M, Hansson GK, Bäck M. Aspirin-triggered lipoxin A4 inhibits atherosclerosis progression in apolipoprotein E -/- mice. Br J Pharmacol 2017; 174:4043-4054. [PMID: 28071789 DOI: 10.1111/bph.13707] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/18/2016] [Accepted: 12/29/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Atherosclerosis is characterized by a chronic non-resolving inflammation in the arterial wall. Aspirin-triggered lipoxin A4 (ATL) is a potent anti-inflammatory mediator, involved in the resolution of inflammation. However, the therapeutic potential of immune targeting by means of ATL in atherosclerosis has not previously been explored. The aim of the present study was to determine the effects of ATL and its receptor Fpr2 on atherosclerosis development and progression in apolipoprotein E deficient (ApoE-/- ) mice. EXPERIMENTAL APPROACH ApoE-/- × Fpr2+/+ and ApoE-/- × Fpr2-/- mice were generated. Four-week-old mice fed a high-fat diet for 4 weeks and 16-week-old mice fed chow diet received osmotic pumps containing either vehicle or ATL for 4 weeks. Atherosclerotic lesion size and cellular composition were measured in the aortic root and thoracic aorta. Lipid levels and leukocyte counts were measured in blood and mRNA was isolated from abdominal aorta and spleen. KEY RESULTS ATL blocked atherosclerosis progression in the aortic root and thoracic aorta of ApoE-/- mice. In addition, ATL reduced macrophage infiltration and apoptotic cells in atherosclerotic lesions. The mRNA levels of several cytokines and chemokines in the spleen and aorta were reduced by ATL, whereas circulating leukocyte levels were unchanged. The ATL-induced athero-protection was absent in ApoE-/- mice lacking the Fpr2 receptor. CONCLUSION AND IMPLICATIONS ATL blocked atherosclerosis progression by means of an Fpr2-mediated reduced local and systemic inflammation. These results suggest this anti-inflammatory and pro-resolving agent has therapeutic potential for the treatment of atherosclerosis. LINKED ARTICLES This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc.
Collapse
Affiliation(s)
- Marcelo H Petri
- Experimental Cardiovascular Research Group, Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Andrés Laguna-Fernandez
- Experimental Cardiovascular Research Group, Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hildur Arnardottir
- Experimental Cardiovascular Research Group, Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Department of Medical Biochemistry and Biophysics, Karlinska Institutet, Stockholm, Sweden
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Göran K Hansson
- Experimental Cardiovascular Research Group, Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Bäck
- Experimental Cardiovascular Research Group, Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
90
|
Tu Y, Johnstone CN, Stewart AG. Annexin A1 influences in breast cancer: Controversies on contributions to tumour, host and immunoediting processes. Pharmacol Res 2017; 119:278-288. [PMID: 28212890 DOI: 10.1016/j.phrs.2017.02.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 12/20/2022]
Abstract
Annexin A1 is a multifunctional protein characterised by its actions in modulating the innate and adaptive immune response. Accumulating evidence of altered annexin A1 expression in many human tumours raises interest in its functional role in cancer biology. In breast cancer, altered annexin A1 expression levels suggest a potential influence on tumorigenic and metastatic processes. However, reports of conflicting results reveal a relationship that is much more complex than first conceptualised. In this review, we explore the diverse actions of annexin A1 on breast tumour cells and various host cell types, including stromal immune and structural cells, particularly in the context of cancer immunoediting.
Collapse
Affiliation(s)
- Yan Tu
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Melbourne, Australia
| | - Cameron N Johnstone
- Cancer & Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
| | - Alastair G Stewart
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Melbourne, Australia.
| |
Collapse
|
91
|
Lipoxin A 4 activates ALX/FPR2 receptor to regulate conjunctival goblet cell secretion. Mucosal Immunol 2017; 10:46-57. [PMID: 27072607 PMCID: PMC5063650 DOI: 10.1038/mi.2016.33] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/22/2016] [Indexed: 02/04/2023]
Abstract
Conjunctival goblet cells play a major role in maintaining the mucus layer of the tear film under physiological conditions as well as in inflammatory diseases like dry eye and allergic conjunctivitis. Resolution of inflammation is mediated by proresolution agonists such as lipoxin A4 (LXA4) that can also function under physiological conditions. The purpose of this study was to determine the actions of LXA4 on cultured rat conjunctival goblet cell mucin secretion, intracellular [Ca2+] ([Ca2+]i), and identify signaling pathways activated by LXA4. ALX/FPR2 (formyl peptide receptor2) was localized to goblet cells in rat conjunctiva and in cultured goblet cells. LXA4 significantly increased mucin secretion, [Ca2+]i, and extracellular regulated kinase 1/2 (ERK 1/2) activation. These functions were inhibited by ALX/FPR2 inhibitors. Stable analogs of LXA4 increased [Ca2+]i to the same extent as LXA4. Sequential addition of either LXA4 or resolvin D1 followed by the second compound decreased [Ca2+]i of the second compound compared with its initial response. LXA4 activated phospholipases C, D, and A2 and downstream molecules protein kinase C, ERK 1/2, and Ca2+/calmodulin-dependent kinase to increase mucin secretion and [Ca2+]i. We conclude that conjunctival goblet cells respond to LXA4 to maintain the homeostasis of the ocular surface and could be a novel treatment for dry eye diseases.
Collapse
|
92
|
Altering the Anti-inflammatory Lipoxin Microenvironment: a New Insight into Kaposi's Sarcoma-Associated Herpesvirus Pathogenesis. J Virol 2016; 90:11020-11031. [PMID: 27681120 DOI: 10.1128/jvi.01491-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/23/2016] [Indexed: 12/29/2022] Open
Abstract
Lipoxins are host anti-inflammatory molecules that play a vital role in restoring tissue homeostasis. The efficacy of lipoxins and their analog epilipoxins in treating inflammation and its associated diseases has been well documented. Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL) are two well-known inflammation related diseases caused by Kaposi's sarcoma-associated herpesvirus (KSHV). Controlling inflammation is one of the strategies adopted to treat KS and PEL, a primary motivation for exploring and evaluating the therapeutic potential of using lipoxins. This study documents how KSHV manipulates and downregulates the secretion of the anti-inflammatory lipoxin A4 in host cells and the viral factors involved in this process using in vitro KS and PEL cells as models. The presence of the lipoxin A4 receptor/formyl peptidyl receptor (ALX/FPR) in KS patient tissue sections and in vitro KS and PEL cell models offers a novel possibility for treating KS and PEL with lipoxins. Treating de novo KSHV-infected endothelial cells with lipoxin and epilipoxin creates an anti-inflammatory environment by decreasing the levels of NF-κB, AKT, ERK1/2, COX-2, and 5-lipoxygenase. Lipoxin treatment on CRISPR/CAS9 technology-mediated ALX/FPR gene deletion revealed the importance of the lipoxin receptor ALX for effective lipoxin signaling. A viral microRNA (miRNA) cluster was identified as the primary factor contributing to the downregulation of lipoxin A4 secretion in host cells. The KSHV miRNA cluster probably targets enzyme 15-lipoxygenase, which is involved in lipoxin A4 synthesis. This study provides a new insight into the potential treatment of KS and PEL using nature's own anti-inflammatory molecule, lipoxin. IMPORTANCE KSHV infection has been shown to upregulate several host proinflammatory factors, which aid in its survival and pathogenesis. The influence of KSHV infection on anti-inflammatory molecules is not well studied. Since current treatment methods for KS and PEL are fraught with unwanted side effects and low efficiency, the search for new therapeutics is therefore imperative. The use of nature's own molecule lipoxin as a drug is promising. This study opens up new domains in KSHV research focusing on how the virus modulates lipoxin secretion and warrants further investigation of the therapeutic potential of lipoxin using in vitro cell models for KS and PEL.
Collapse
|
93
|
Stalder AK, Lott D, Strasser DS, Cruz HG, Krause A, Groenen PMA, Dingemanse J. Biomarker-guided clinical development of the first-in-class anti-inflammatory FPR2/ALX agonist ACT-389949. Br J Clin Pharmacol 2016; 83:476-486. [PMID: 27730665 DOI: 10.1111/bcp.13149] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/19/2016] [Accepted: 10/04/2016] [Indexed: 12/20/2022] Open
Abstract
AIMS The main objectives of these two phase I studies were to investigate safety and tolerability as well as the pharmacokinetic/pharmacodynamic profile of the novel potent and selective formyl peptide receptor type 2 (FPR2)/Lipoxin A4 receptor (ALX) agonist ACT-389949. A challenge model was used to assess the drug's anti-inflammatory potential, with the aim of selecting a dosing regimen for future patient studies. METHODS Two double-blind, randomized phase I studies investigated the safety, tolerability, pharmacokinetics and pharmacodynamics of ACT-389949 at different doses and dosing regimens. Drug exposure was correlated with target engagement markers such as receptor internalization and cytokine measurements. The effect of FPR2/ALX agonism on neutrophil migration was studied in a lipopolysaccharide (LPS) inhalation model. RESULTS ACT-389949 was well tolerated. Maximum concentrations were reached around 2 h after dosing, with a mean terminal half-life of 29.3 h [95% confidence interval (CI) 25.5, 33.7]. After multiple-dose administration, exposure increased by 111% (95% CI 89, 136), indicating drug accumulation. Administration of ACT-389949 resulted in a dose-dependent, long-lasting internalization of FPR2/ALX into leukocytes. Pro- and anti-inflammatory cytokines were dose-dependently but transiently upregulated only after the first dose. No pharmacological effect on neutrophil count was observed in the LPS challenge test performed at steady state. CONCLUSIONS FPR2/ALX agonism with ACT-389949 was shown to be safe and well tolerated in healthy subjects. Receptor internalization and downstream mediators pointed towards a desensitization of the system, which may explain the lack of effect on neutrophil recruitment in the LPS challenge model.
Collapse
Affiliation(s)
- Anna K Stalder
- Translational Science, Drug Discovery Biology, Actelion Pharmaceuticals Ltd, 4123, Allschwil, Switzerland
| | - Dominik Lott
- Clinical Pharmacology, Actelion Pharmaceuticals Ltd, 4123, Allschwil, Switzerland
| | - Daniel S Strasser
- Translational Science, Drug Discovery Biology, Actelion Pharmaceuticals Ltd, 4123, Allschwil, Switzerland
| | - Hans G Cruz
- Clinical Pharmacology, Actelion Pharmaceuticals Ltd, 4123, Allschwil, Switzerland
| | - Andreas Krause
- Clinical Pharmacology, Actelion Pharmaceuticals Ltd, 4123, Allschwil, Switzerland
| | - Peter M A Groenen
- Translational Science, Drug Discovery Biology, Actelion Pharmaceuticals Ltd, 4123, Allschwil, Switzerland
| | - Jasper Dingemanse
- Clinical Pharmacology, Actelion Pharmaceuticals Ltd, 4123, Allschwil, Switzerland
| |
Collapse
|
94
|
Tan JL, Tan YZ, Muljadi R, Chan ST, Lau SN, Mockler JC, Wallace EM, Lim R. Amnion Epithelial Cells Promote Lung Repair via Lipoxin A 4. Stem Cells Transl Med 2016; 6:1085-1095. [PMID: 28371562 PMCID: PMC5442827 DOI: 10.5966/sctm.2016-0077] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 08/15/2016] [Indexed: 12/18/2022] Open
Abstract
Human amnion epithelial cells (hAECs) have been shown to possess potent immunomodulatory properties across a number of disease models. Recently, we reported that hAECs influence macrophage polarization and activity, and that this step was dependent on regulatory T cells. In this study, we aimed to assess the effects of hAEC-derived proresolution lipoxin-A4 (LXA4) on T-cell, macrophage, and neutrophil phenotype and function during the acute phase of bleomycin-induced lung injury. Using C57Bl6 mice, we administered 4 million hAECs intraperitoneally 24 hours after bleomycin challenge. Outcomes were measured at days 3, 5, and 7. hAEC administration resulted in significant changes to T-cell, macrophage, dendritic cell, and monocyte/macrophage infiltration and phenotypes. Endogenous levels of lipoxygenases, LXA4, and the lipoxin receptor FPR2 were elevated in hAEC-treated animals. Furthermore, we showed that the effects of hAECs on macrophage phagocytic activity and T-cell suppression are LXA4 dependent, whereas the inhibition of neutrophil-derived myleoperoxidase by hAECs is independent of LXA4. This study provides the first evidence that lipid-based mediators contribute to the immunomodulatory effects of hAECs and further supports the growing body of evidence that LXA4 is proresolutionary in lung injury. This discovery of LXA4-dependent communication between hAECs, macrophages, T cells, and neutrophils is important to the understanding of hAEC biodynamics and would be expected to inform future clinical applications. Stem Cells Translational Medicine 2017;6:1085-1095.
Collapse
Affiliation(s)
- Jean L. Tan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Yan Z. Tan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Ruth Muljadi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Siow T. Chan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Sin N. Lau
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Joanne C. Mockler
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| | - Euan M. Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
95
|
Hakim FT, Memon S, Jin P, Imanguli MM, Wang H, Rehman N, Yan XY, Rose J, Mays JW, Dhamala S, Kapoor V, Telford W, Dickinson J, Davis S, Halverson D, Naik HB, Baird K, Fowler D, Stroncek D, Cowen EW, Pavletic SZ, Gress RE. Upregulation of IFN-Inducible and Damage-Response Pathways in Chronic Graft-versus-Host Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:3490-3503. [PMID: 27694491 PMCID: PMC5101132 DOI: 10.4049/jimmunol.1601054] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/06/2016] [Indexed: 12/29/2022]
Abstract
Although chronic graft-versus-host disease (CGVHD) is the primary nonrelapse complication of allogeneic transplantation, understanding of its pathogenesis is limited. To identify the main operant pathways across the spectrum of CGVHD, we analyzed gene expression in circulating monocytes, chosen as in situ systemic reporter cells. Microarrays identified two interrelated pathways: 1) IFN-inducible genes, and 2) innate receptors for cellular damage. Corroborating these with multiplex RNA quantitation, we found that multiple IFN-inducible genes (affecting lymphocyte trafficking, differentiation, and Ag presentation) were concurrently upregulated in CGVHD monocytes compared with normal subjects and non-CGVHD control patients. IFN-inducible chemokines were elevated in both lichenoid and sclerotic CGHVD plasma and were linked to CXCR3+ lymphocyte trafficking. Furthermore, the levels of the IFN-inducible genes CXCL10 and TNFSF13B (BAFF) were correlated at both the gene and the plasma levels, implicating IFN induction as a factor in elevated BAFF levels in CGVHD. In the second pathway, damage-/pathogen-associated molecular pattern receptor genes capable of inducing type I IFN were upregulated. Type I IFN-inducible MxA was expressed in proportion to CGVHD activity in skin, mucosa, and glands, and expression of TLR7 and DDX58 receptor genes correlated with upregulation of type I IFN-inducible genes in monocytes. Finally, in serial analyses after transplant, IFN-inducible and damage-response genes were upregulated in monocytes at CGVHD onset and declined upon therapy and resolution in both lichenoid and sclerotic CGVHD patients. This interlocking analysis of IFN-inducible genes, plasma analytes, and tissue immunohistochemistry strongly supports a unifying hypothesis of induction of IFN by innate response to cellular damage as a mechanism for initiation and persistence of CGVHD.
Collapse
Affiliation(s)
- Frances T Hakim
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892;
| | - Sarfraz Memon
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ping Jin
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Matin M Imanguli
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Huan Wang
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Najibah Rehman
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Xiao-Yi Yan
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jeremy Rose
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jacqueline W Mays
- Clinical Research Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Susan Dhamala
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Veena Kapoor
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - William Telford
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - John Dickinson
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Sean Davis
- Cancer Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - David Halverson
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Haley B Naik
- Dermatology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Kristin Baird
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Daniel Fowler
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - David Stroncek
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Edward W Cowen
- Dermatology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Steven Z Pavletic
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ronald E Gress
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
96
|
Annexin A1 and the Resolution of Inflammation: Modulation of Neutrophil Recruitment, Apoptosis, and Clearance. J Immunol Res 2016; 2016:8239258. [PMID: 26885535 PMCID: PMC4738713 DOI: 10.1155/2016/8239258] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 12/01/2015] [Indexed: 12/13/2022] Open
Abstract
Neutrophils (also named polymorphonuclear leukocytes or PMN) are essential components of the immune system, rapidly recruited to sites of inflammation, providing the first line of defense against invading pathogens. Since neutrophils can also cause tissue damage, their fine-tuned regulation at the inflammatory site is required for proper resolution of inflammation. Annexin A1 (AnxA1), also known as lipocortin-1, is an endogenous glucocorticoid-regulated protein, which is able to counterregulate the inflammatory events restoring homeostasis. AnxA1 and its mimetic peptides inhibit neutrophil tissue accumulation by reducing leukocyte infiltration and activating neutrophil apoptosis. AnxA1 also promotes monocyte recruitment and clearance of apoptotic leukocytes by macrophages. More recently, some evidence has suggested the ability of AnxA1 to induce macrophage reprogramming toward a resolving phenotype, resulting in reduced production of proinflammatory cytokines and increased release of immunosuppressive and proresolving molecules. The combination of these mechanisms results in an effective resolution of inflammation, pointing to AnxA1 as a promising tool for the development of new therapeutic strategies to treat inflammatory diseases.
Collapse
|
97
|
Abstract
The immune reactions that regulate atherosclerotic plaque inflammation involve chemokines, lipid mediators and costimulatory molecules. Chemokines are a family of chemotactic cytokines that mediate immune cell recruitment and control cell homeostasis and activation of different immune cell types and subsets. Chemokine production and activation of chemokine receptors form a positive feedback mechanism to recruit monocytes, neutrophils and lymphocytes into the atherosclerotic plaque. In addition, chemokine signalling affects immune cell mobilization from the bone marrow. Targeting several of the chemokines and/or chemokine receptors reduces experimental atherosclerosis, whereas specific chemokine pathways appear to be involved in plaque regression. Leukotrienes are lipid mediators that are formed locally in atherosclerotic lesions from arachidonic acid. Leukotrienes mediate immune cell recruitment and activation within the plaque as well as smooth muscle cell proliferation and endothelial dysfunction. Antileukotrienes decrease experimental atherosclerosis, and recent observational data suggest beneficial clinical effects of leukotriene receptor antagonism in cardiovascular disease prevention. By contrast, other lipid mediators, such as lipoxins and metabolites of omega-3 fatty acids, have been associated with the resolution of inflammation. Costimulatory molecules play a central role in fine-tuning immunological reactions and mediate crosstalk between innate and adaptive immunity in atherosclerosis. Targeting these interactions is a promising approach for the treatment of atherosclerosis, but immunological side effects are still a concern. In summary, targeting chemokines, leukotriene receptors and costimulatory molecules could represent potential therapeutic strategies to control atherosclerotic plaque inflammation.
Collapse
Affiliation(s)
- M Bäck
- Translational Cardiology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - C Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, The Netherlands
| | - E Lutgens
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
98
|
Abstract
An effective host defense mechanism involves inflammation to eliminate pathogens from the site of infection, followed by the resolution of inflammation and the restoration of tissue homeostasis. Lipoxins are endogenous anti-inflammatory, pro-resolving molecules that play a vital role in reducing excessive tissue injury and chronic inflammation. In this review, the mechanisms of action of lipoxins at the site of inflammation and their interaction with other cellular signaling molecules and transcription factors are discussed. Emphasis has also been placed on immune modulatory role(s) of lipoxins. Lipoxins regulate components of both the innate and adaptive immune systems including neutrophils, macrophages, T-, and B-cells. Lipoxins also modulate levels of various transcription factors such as nuclear factor κB, activator protein-1, nerve growth factor-regulated factor 1A binding protein 1, and peroxisome proliferator activated receptor γ and control the expression of many inflammatory genes. Since lipoxins and aspirin-triggered lipoxins have clinical relevance, we discuss their important role in clinical research to treat a wide range of diseases like inflammatory disorders, renal fibrosis, cerebral ischemia, and cancer. A brief overview of lipoxins in viral malignancies and viral pathogenesis especially the unexplored role of lipoxins in Kaposi’s sarcoma-associated herpes virus biology is also presented.
Collapse
Affiliation(s)
- Jayashree A Chandrasekharan
- HM Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Neelam Sharma-Walia
- HM Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
99
|
Petri MH, Thul S, Ovchinnikova O, Bäck M. Differential regulation of monocytic expression of leukotriene and lipoxin receptors. Prostaglandins Other Lipid Mediat 2015; 121:138-43. [PMID: 26248046 DOI: 10.1016/j.prostaglandins.2015.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/23/2015] [Accepted: 07/28/2015] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Lipoxygenase pathway yields both pro-inflammatory leukotrienes and pro-resolving lipoxins. The aim of the present study was to determine the effects of T-lymphocytes and pro-inflammatory stimuli on the expression levels of the lipoxin FPR2/ALX receptor, and the leukotriene BLT1 receptor in monocytes and macrophages, and to characterize LXA4-induced effects on pro-inflammatory mediators. METHODS Human macrophages were co-cultured with activated CD4(+) cells. THP-1 cells were stimulated with different cytokines, LXA4 and supernatant from activated CD4(+) cells. mRNA was extracted for qPCR experiments and protein was analyzed by flow cytometry. RESULTS Co-culture of macrophages with activated CD4(+) cells or their supernatants up-regulated macrophage FPR2/ALX expression but did not alter BLT1 receptor expression. Monocyte stimulation with IFN-γ up-regulated FPR2/ALX mRNA and protein levels, whereas BLT1 mRNA was down-regulated. Finally, LXA4 decreased mRNA levels of MMP-9, CXCL16, IL-1β, and IL-8 in THP-1 cells. CONCLUSION The present study shows that pro-inflammatory stimuli lead to FPR2/ALX expression. LXA4 induces an anti-inflammatory response, which could participate in the resolution of inflammation.
Collapse
Affiliation(s)
- Marcelo Heron Petri
- Department of Medicine, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden.
| | - Silke Thul
- Department of Medicine, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Olga Ovchinnikova
- Department of Medicine, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Bäck
- Department of Medicine, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
100
|
Fang X, Abbott J, Cheng L, Colby JK, Lee JW, Levy BD, Matthay MA. Human Mesenchymal Stem (Stromal) Cells Promote the Resolution of Acute Lung Injury in Part through Lipoxin A4. THE JOURNAL OF IMMUNOLOGY 2015; 195:875-81. [PMID: 26116507 DOI: 10.4049/jimmunol.1500244] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/23/2015] [Indexed: 01/08/2023]
Abstract
Previous studies demonstrated that bone marrow-derived mesenchymal stem (stromal) cells (MSCs) reduce the severity of acute lung injury in animal models and in an ex vivo perfused human lung model. However, the mechanisms by which MSCs reduce lung injury are not well understood. In the present study, we tested the hypothesis that human MSCs promote the resolution of acute lung injury in part through the effects of a specialized proresolving mediator lipoxin A4 (LXA4). Human alveolar epithelial type II cells and MSCs expressed biosynthetic enzymes and receptors for LXA4. Coculture of human MSCs with alveolar epithelial type II cells in the presence of cytomix significantly increased the production of LXA4 by 117%. The adoptive transfer of MSCs after the onset of LPS-induced acute lung injury (ALI) in mice led to improved survival (48 h), and blocking the LXA4 receptor with WRW4, a LXA4 receptor antagonist, significantly reversed the protective effect of MSCs on both survival and the accumulation of pulmonary edema. LXA4 alone improved survival in mice, and it also significantly decreased the production of TNF-α and MIP-2 in bronchoalveolar lavage fluid. In summary, these experiments demonstrated two novel findings: human MSCs promote the resolution of lung injury in mice in part through the proresolving lipid mediator LXA4, and LXA4 itself should be considered as a therapeutic for acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Xiaohui Fang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143;
| | - Jason Abbott
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143
| | - Linda Cheng
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143
| | - Jennifer K Colby
- Pulmonary and Critical Care Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Jae Woo Lee
- Department of Anesthesia, University of California, San Francisco, San Francisco, CA 94143; and
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Michael A Matthay
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143; Department of Anesthesia, University of California, San Francisco, San Francisco, CA 94143; and Department of Medicine, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|