51
|
Ramstead MJD, Hesp C, Tschantz A, Smith R, Constant A, Friston K. Neural and phenotypic representation under the free-energy principle. Neurosci Biobehav Rev 2021; 120:109-122. [PMID: 33271162 PMCID: PMC7955287 DOI: 10.1016/j.neubiorev.2020.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 01/19/2023]
Abstract
The aim of this paper is to leverage the free-energy principle and its corollary process theory, active inference, to develop a generic, generalizable model of the representational capacities of living creatures; that is, a theory of phenotypic representation. Given their ubiquity, we are concerned with distributed forms of representation (e.g., population codes), whereby patterns of ensemble activity in living tissue come to represent the causes of sensory input or data. The active inference framework rests on the Markov blanket formalism, which allows us to partition systems of interest, such as biological systems, into internal states, external states, and the blanket (active and sensory) states that render internal and external states conditionally independent of each other. In this framework, the representational capacity of living creatures emerges as a consequence of their Markovian structure and nonequilibrium dynamics, which together entail a dual-aspect information geometry. This entails a modest representational capacity: internal states have an intrinsic information geometry that describes their trajectory over time in state space, as well as an extrinsic information geometry that allows internal states to encode (the parameters of) probabilistic beliefs about (fictive) external states. Building on this, we describe here how, in an automatic and emergent manner, information about stimuli can come to be encoded by groups of neurons bound by a Markov blanket; what is known as the neuronal packet hypothesis. As a concrete demonstration of this type of emergent representation, we present numerical simulations showing that self-organizing ensembles of active inference agents sharing the right kind of probabilistic generative model are able to encode recoverable information about a stimulus array.
Collapse
Affiliation(s)
- Maxwell J D Ramstead
- Division of Social and Transcultural Psychiatry, Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Culture, Mind, and Brain Program, McGill University, Montreal, Quebec, Canada; Wellcome Centre for Human Neuroimaging, University College London, London, WC1N3BG, UK.
| | - Casper Hesp
- Wellcome Centre for Human Neuroimaging, University College London, London, WC1N3BG, UK; Department of Psychology, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands; Amsterdam Brain and Cognition Centre, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands; Institute for Advanced Study, University of Amsterdam, Oude Turfmarkt 147, 1012 GC Amsterdam, the Netherlands.
| | - Alexander Tschantz
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK; Department of Informatics, University of Sussex, Brighton, UK.
| | - Ryan Smith
- Laureate Institute for Brain Research, Tulsa, OK, USA.
| | - Axel Constant
- Culture, Mind, and Brain Program, McGill University, Montreal, Quebec, Canada; Wellcome Centre for Human Neuroimaging, University College London, London, WC1N3BG, UK; Theory and Method in Biosciences, Level 6, Charles Perkins Centre D17, Johns Hopkins Drive, University of Sydney, NSW, 2006, Australia.
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, University College London, London, WC1N3BG, UK.
| |
Collapse
|
52
|
Fields C, Levin M. Why isn't sex optional? Stem-cell competition, loss of regenerative capacity, and cancer in metazoan evolution. Commun Integr Biol 2020; 13:170-183. [PMID: 33403054 PMCID: PMC7746248 DOI: 10.1080/19420889.2020.1838809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022] Open
Abstract
Animals that can reproduce vegetatively by fission or budding and also sexually via specialized gametes are found in all five primary animal lineages (Bilateria, Cnidaria, Ctenophora, Placozoa, Porifera). Many bilaterian lineages, including roundworms, insects, and most chordates, have lost the capability of vegetative reproduction and are obligately gametic. We suggest a developmental explanation for this evolutionary phenomenon: obligate gametic reproduction is the result of germline stem cells winning a winner-take-all competition with non-germline stem cells for control of reproduction and hence lineage survival. We develop this suggestion by extending Hamilton's rule, which factors the relatedness between parties into the cost/benefit analysis that underpins cooperative behaviors, to include similarity of cellular state. We show how coercive or deceptive cell-cell signaling can be used to make costly cooperative behaviors appear less costly to the cooperating party. We then show how competition between stem-cell lineages can render an ancestral combination of vegetative reproduction with facultative sex unstable, with one or the other process driven to extinction. The increased susceptibility to cancer observed in obligately-sexual lineages is, we suggest, a side-effect of deceptive signaling that is exacerbated by the loss of whole-body regenerative abilities. We suggest a variety of experimental approaches for testing our predictions.
Collapse
Affiliation(s)
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, USA
| |
Collapse
|
53
|
Abstract
Meaning has traditionally been regarded as a problem for philosophers and psychologists. Advances in cognitive science since the early 1960s, however, broadened discussions of meaning, or more technically, the semantics of perceptions, representations, and/or actions, into biology and computer science. Here, we review the notion of “meaning” as it applies to living systems, and argue that the question of how living systems create meaning unifies the biological and cognitive sciences across both organizational and temporal scales.
Collapse
|
54
|
Life, death, and self: Fundamental questions of primitive cognition viewed through the lens of body plasticity and synthetic organisms. Biochem Biophys Res Commun 2020; 564:114-133. [PMID: 33162026 DOI: 10.1016/j.bbrc.2020.10.077] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022]
Abstract
Central to the study of cognition is being able to specify the Subject that is making decisions and owning memories and preferences. However, all real cognitive agents are made of parts (such as brains made of cells). The integration of many active subunits into a coherent Self appearing at a larger scale of organization is one of the fundamental questions of evolutionary cognitive science. Typical biological model systems, whether basal or advanced, have a static anatomical structure which obscures important aspects of the mind-body relationship. Recent advances in bioengineering now make it possible to assemble, disassemble, and recombine biological structures at the cell, organ, and whole organism levels. Regenerative biology and controlled chimerism reveal that studies of cognition in intact, "standard", evolved animal bodies are just a narrow slice of a much bigger and as-yet largely unexplored reality: the incredible plasticity of dynamic morphogenesis of biological forms that house and support diverse types of cognition. The ability to produce living organisms in novel configurations makes clear that traditional concepts, such as body, organism, genetic lineage, death, and memory are not as well-defined as commonly thought, and need considerable revision to account for the possible spectrum of living entities. Here, I review fascinating examples of experimental biology illustrating that the boundaries demarcating somatic and cognitive Selves are fluid, providing an opportunity to sharpen inquiries about how evolution exploits physical forces for multi-scale cognition. Developmental (pre-neural) bioelectricity contributes a novel perspective on how the dynamic control of growth and form of the body evolved into sophisticated cognitive capabilities. Most importantly, the development of functional biobots - synthetic living machines with behavioral capacity - provides a roadmap for greatly expanding our understanding of the origin and capacities of cognition in all of its possible material implementations, especially those that emerge de novo, with no lengthy evolutionary history of matching behavioral programs to bodyplan. Viewing fundamental questions through the lens of new, constructed living forms will have diverse impacts, not only in basic evolutionary biology and cognitive science, but also in regenerative medicine of the brain and in artificial intelligence.
Collapse
|
55
|
Rubin S, Parr T, Da Costa L, Friston K. Future climates: Markov blankets and active inference in the biosphere. J R Soc Interface 2020; 17:20200503. [PMID: 33234063 PMCID: PMC7729048 DOI: 10.1098/rsif.2020.0503] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/26/2020] [Indexed: 02/01/2023] Open
Abstract
We formalize the Gaia hypothesis about the Earth climate system using advances in theoretical biology based on the minimization of variational free energy. This amounts to the claim that non-equilibrium steady-state dynamics-that underwrite our climate-depend on the Earth system possessing a Markov blanket. Our formalization rests on how the metabolic rates of the biosphere (understood as Markov blanket's internal states) change with respect to solar radiation at the Earth's surface (i.e. external states), through the changes in greenhouse and albedo effects (i.e. active states) and ocean-driven global temperature changes (i.e. sensory states). Describing the interaction between the metabolic rates and solar radiation as climatic states-in a Markov blanket-amounts to describing the dynamics of the internal states as actively inferring external states. This underwrites climatic non-equilibrium steady-state through free energy minimization and thus a form of planetary autopoiesis.
Collapse
Affiliation(s)
- Sergio Rubin
- Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, Université catholique de Louvain, Louvain, Belgium
| | - Thomas Parr
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Lancelot Da Costa
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
- Department of Mathematics, Imperial College London, London, UK
| | - Karl Friston
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
56
|
Fields C, Glazebrook JF. Information flow in context-dependent hierarchical Bayesian inference. J EXP THEOR ARTIF IN 2020. [DOI: 10.1080/0952813x.2020.1836034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - James F. Glazebrook
- Department of Mathematics and Computer Science Eastern, Illinois University, Charleston, IL, USA
- Adjunct Faculty Department of Mathematics, University of Illinois at Urbana–Champaign, Urbana, IL, USA
| |
Collapse
|
57
|
Levin M. The Biophysics of Regenerative Repair Suggests New Perspectives on Biological Causation. Bioessays 2020; 42:e1900146. [PMID: 31994772 DOI: 10.1002/bies.201900146] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/03/2019] [Indexed: 12/13/2022]
Abstract
Evolution exploits the physics of non-neural bioelectricity to implement anatomical homeostasis: a process in which embryonic patterning, remodeling, and regeneration achieve invariant anatomical outcomes despite external interventions. Linear "developmental pathways" are often inadequate explanations for dynamic large-scale pattern regulation, even when they accurately capture relationships between molecular components. Biophysical and computational aspects of collective cell activity toward a target morphology reveal interesting aspects of causation in biology. This is critical not only for unraveling evolutionary and developmental events, but also for the design of effective strategies for biomedical intervention. Bioelectrical controls of growth and form, including stochastic behavior in such circuits, highlight the need for the formulation of nuanced views of pathways, drivers of system-level outcomes, and modularity, borrowing from concepts in related disciplines such as cybernetics, control theory, computational neuroscience, and information theory. This approach has numerous practical implications for basic research and for applications in regenerative medicine and synthetic bioengineering.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
58
|
Hesp C. Beyond connectionism: A neuronal dance of ephaptic and synaptic interactions: Commentary on "The growth of cognition: Free energy minimization and the embryogenesis of cortical computation" by Wright and Bourke (2020). Phys Life Rev 2020; 36:40-43. [PMID: 32807647 DOI: 10.1016/j.plrev.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Casper Hesp
- Department of Psychology, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands; Amsterdam Brain and Cognition Centre, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands; Institute for Advanced Study, University of Amsterdam, Oude Turfmarkt 147, 1012 GC Amsterdam, Netherlands; Wellcome Centre for Human Neuroimaging, University College London, WC1N 3BG, London, UK.
| |
Collapse
|
59
|
Pezzulo G. Disorders of morphogenesis as disorders of inference: Comment on "Morphogenesis as Bayesian inference: A variational approach to pattern formation and control in complex biological systems" by Michael Levin et al. Phys Life Rev 2020; 33:112-114. [PMID: 32591312 DOI: 10.1016/j.plrev.2020.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/12/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Via S. Martino della Battaglia 44, 00185 Rome, Italy.
| |
Collapse
|
60
|
Scale-free architectures support representational diversity. Behav Brain Sci 2020; 43:e133. [PMID: 32618552 DOI: 10.1017/s0140525x19002966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Gilead et al. propose an ontology of abstract representations based on folk-psychological conceptions of cognitive architecture. There is, however, no evidence that the experience of cognition reveals the architecture of cognition. Scale-free architectural models propose that cognition has the same computational architecture from sub-cellular to whole-organism scales. This scale-free architecture supports representations with diverse functions and levels of abstraction.
Collapse
|
61
|
Fields C, Levin M. Scale-Free Biology: Integrating Evolutionary and Developmental Thinking. Bioessays 2020; 42:e1900228. [PMID: 32537770 DOI: 10.1002/bies.201900228] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/24/2020] [Indexed: 12/16/2022]
Abstract
When the history of life on earth is viewed as a history of cell division, all of life becomes a single cell lineage. The growth and differentiation of this lineage in reciprocal interaction with its environment can be viewed as a developmental process; hence the evolution of life on earth can also be seen as the development of life on earth. Here, in reviewing this field, some potentially fruitful research directions suggested by this change in perspective are highlighted. Variation and selection become, for example, bidirectional information flows between scales, while the notions of "cooperation" and "competition" become scale relative. The language of communication, inference, and information processing becomes more useful than the language of causation to describe the interactions of both homogeneous and heterogeneous living systems at any scale. Emerging scale-free theoretical frameworks such as predictive coding and active inference provide conceptual tools for reconceptualizing biology as the study of a unified, multiscale dynamical system.
Collapse
Affiliation(s)
- Chris Fields
- 23 Rue des Lavandieres, 11160 Caunes Minervois, France
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
62
|
Safron A. An Integrated World Modeling Theory (IWMT) of Consciousness: Combining Integrated Information and Global Neuronal Workspace Theories With the Free Energy Principle and Active Inference Framework; Toward Solving the Hard Problem and Characterizing Agentic Causation. Front Artif Intell 2020; 3:30. [PMID: 33733149 PMCID: PMC7861340 DOI: 10.3389/frai.2020.00030] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/03/2020] [Indexed: 01/01/2023] Open
Abstract
The Free Energy Principle and Active Inference Framework (FEP-AI) begins with the understanding that persisting systems must regulate environmental exchanges and prevent entropic accumulation. In FEP-AI, minds and brains are predictive controllers for autonomous systems, where action-driven perception is realized as probabilistic inference. Integrated Information Theory (IIT) begins with considering the preconditions for a system to intrinsically exist, as well as axioms regarding the nature of consciousness. IIT has produced controversy because of its surprising entailments: quasi-panpsychism; subjectivity without referents or dynamics; and the possibility of fully-intelligent-yet-unconscious brain simulations. Here, I describe how these controversies might be resolved by integrating IIT with FEP-AI, where integrated information only entails consciousness for systems with perspectival reference frames capable of generating models with spatial, temporal, and causal coherence for self and world. Without that connection with external reality, systems could have arbitrarily high amounts of integrated information, but nonetheless would not entail subjective experience. I further describe how an integration of these frameworks may contribute to their evolution as unified systems theories and models of emergent causation. Then, inspired by both Global Neuronal Workspace Theory (GNWT) and the Harmonic Brain Modes framework, I describe how streams of consciousness may emerge as an evolving generation of sensorimotor predictions, with the precise composition of experiences depending on the integration abilities of synchronous complexes as self-organizing harmonic modes (SOHMs). These integrating dynamics may be particularly likely to occur via richly connected subnetworks affording body-centric sources of phenomenal binding and executive control. Along these connectivity backbones, SOHMs are proposed to implement turbo coding via loopy message-passing over predictive (autoencoding) networks, thus generating maximum a posteriori estimates as coherent vectors governing neural evolution, with alpha frequencies generating basic awareness, and cross-frequency phase-coupling within theta frequencies for access consciousness and volitional control. These dynamic cores of integrated information also function as global workspaces, centered on posterior cortices, but capable of being entrained with frontal cortices and interoceptive hierarchies, thus affording agentic causation. Integrated World Modeling Theory (IWMT) represents a synthetic approach to understanding minds that reveals compatibility between leading theories of consciousness, thus enabling inferential synergy.
Collapse
Affiliation(s)
- Adam Safron
- Indiana University, Bloomington, IN, United States
| |
Collapse
|
63
|
Demekas D, Parr T, Friston KJ. An Investigation of the Free Energy Principle for Emotion Recognition. Front Comput Neurosci 2020; 14:30. [PMID: 32390817 PMCID: PMC7189749 DOI: 10.3389/fncom.2020.00030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/23/2020] [Indexed: 01/23/2023] Open
Abstract
This paper offers a prospectus of what might be achievable in the development of emotional recognition devices. It provides a conceptual overview of the free energy principle; including Markov blankets, active inference, and-in particular-a discussion of selfhood and theory of mind, followed by a brief explanation of how these concepts can explain both neural and cultural models of emotional inference. The underlying hypothesis is that emotion recognition and inference devices will evolve from state-of-the-art deep learning models into active inference schemes that go beyond marketing applications and become adjunct to psychiatric practice. Specifically, this paper proposes that a second wave of emotion recognition devices will be equipped with an emotional lexicon (or the ability to epistemically search for one), allowing the device to resolve uncertainty about emotional states by actively eliciting responses from the user and learning from these responses. Following this, a third wave of emotional devices will converge upon the user's generative model, resulting in the machine and human engaging in a reciprocal, prosocial emotional interaction, i.e., sharing a generative model of emotional states.
Collapse
Affiliation(s)
- Daphne Demekas
- Department of Mathematics, University College London, London, United Kingdom
| | - Thomas Parr
- Department of Mathematics, University College London, London, United Kingdom
| | - Karl J. Friston
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
| |
Collapse
|
64
|
Vasil J, Badcock PB, Constant A, Friston K, Ramstead MJD. A World Unto Itself: Human Communication as Active Inference. Front Psychol 2020; 11:417. [PMID: 32269536 PMCID: PMC7109408 DOI: 10.3389/fpsyg.2020.00417] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 02/24/2020] [Indexed: 01/12/2023] Open
Abstract
Recent theoretical work in developmental psychology suggests that humans are predisposed to align their mental states with those of other individuals. One way this manifests is in cooperative communication; that is, intentional communication aimed at aligning individuals' mental states with respect to events in their shared environment. This idea has received strong empirical support. The purpose of this paper is to extend this account by proposing an integrative model of the biobehavioral dynamics of cooperative communication. Our formulation is based on active inference. Active inference suggests that action-perception cycles operate to minimize uncertainty and optimize an individual's internal model of the world. We propose that humans are characterized by an evolved adaptive prior belief that their mental states are aligned with, or similar to, those of conspecifics (i.e., that 'we are the same sort of creature, inhabiting the same sort of niche'). The use of cooperative communication emerges as the principal means to gather evidence for this belief, allowing for the development of a shared narrative that is used to disambiguate interactants' (hidden and inferred) mental states. Thus, by using cooperative communication, individuals effectively attune to a hermeneutic niche composed, in part, of others' mental states; and, reciprocally, attune the niche to their own ends via epistemic niche construction. This means that niche construction enables features of the niche to encode precise, reliable cues about the deontic or shared value of certain action policies (e.g., the utility of using communicative constructions to disambiguate mental states, given expectations about shared prior beliefs). In turn, the alignment of mental states (prior beliefs) enables the emergence of a novel, contextualizing scale of cultural dynamics that encompasses the actions and mental states of the ensemble of interactants and their shared environment. The dynamics of this contextualizing layer of cultural organization feedback, across scales, to constrain the variability of the prior expectations of the individuals who constitute it. Our theory additionally builds upon the active inference literature by introducing a new set of neurobiologically plausible computational hypotheses for cooperative communication. We conclude with directions for future research.
Collapse
Affiliation(s)
- Jared Vasil
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Paul B. Badcock
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Orygen, Melbourne, VIC, Australia
| | - Axel Constant
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- Culture, Mind, and Brain Program, McGill University, Montreal, QC, Canada
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | - Maxwell J. D. Ramstead
- Culture, Mind, and Brain Program, McGill University, Montreal, QC, Canada
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
- Division of Social and Transcultural Psychiatry, Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
65
|
|
66
|
Parr T, Da Costa L, Friston K. Markov blankets, information geometry and stochastic thermodynamics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190159. [PMID: 31865883 PMCID: PMC6939234 DOI: 10.1098/rsta.2019.0159] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 05/21/2023]
Abstract
This paper considers the relationship between thermodynamics, information and inference. In particular, it explores the thermodynamic concomitants of belief updating, under a variational (free energy) principle for self-organization. In brief, any (weakly mixing) random dynamical system that possesses a Markov blanket-i.e. a separation of internal and external states-is equipped with an information geometry. This means that internal states parametrize a probability density over external states. Furthermore, at non-equilibrium steady-state, the flow of internal states can be construed as a gradient flow on a quantity known in statistics as Bayesian model evidence. In short, there is a natural Bayesian mechanics for any system that possesses a Markov blanket. Crucially, this means that there is an explicit link between the inference performed by internal states and their energetics-as characterized by their stochastic thermodynamics. This article is part of the theme issue 'Harmonizing energy-autonomous computing and intelligence'.
Collapse
Affiliation(s)
- Thomas Parr
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, UK
| | | | | |
Collapse
|
67
|
Fields C, Bischof J, Levin M. Morphological Coordination: A Common Ancestral Function Unifying Neural and Non-Neural Signaling. Physiology (Bethesda) 2020; 35:16-30. [DOI: 10.1152/physiol.00027.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nervous systems are traditionally thought of as providing sensing and behavioral coordination functions at the level of the whole organism. What is the evolutionary origin of the mechanisms enabling the nervous systems’ information processing ability? Here, we review evidence from evolutionary, developmental, and regenerative biology suggesting a deeper, ancestral function of both pre-neural and neural cell-cell communication systems: the long-distance coordination of cell division and differentiation required to create and maintain body-axis symmetries. This conceptualization of the function of nervous system activity sheds new light on the evolutionary transition from the morphologically rudimentary, non-neural Porifera and Placazoa to the complex morphologies of Ctenophores, Cnidarians, and Bilaterians. It further allows a sharp formulation of the distinction between long-distance axis-symmetry coordination based on external coordinates, e.g., by whole-organism scale trophisms as employed by plants and sessile animals, and coordination based on body-centered coordinates as employed by motile animals. Thus we suggest that the systems that control animal behavior evolved from ancient mechanisms adapting preexisting ionic and neurotransmitter mechanisms to regulate individual cell behaviors during morphogenesis. An appreciation of the ancient, non-neural origins of bioelectrically mediated computation suggests new approaches to the study of embryological development, including embryological dysregulation, cancer, regenerative medicine, and synthetic bioengineering.
Collapse
Affiliation(s)
- Chris Fields
- 23 Rue des Lavandières, Caunes Minervois, France
| | - Johanna Bischof
- Allen Discovery Center at Tufts University, Medford, Massachusetts
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, Massachusetts
| |
Collapse
|
68
|
Levin M, Selberg J, Rolandi M. Endogenous Bioelectrics in Development, Cancer, and Regeneration: Drugs and Bioelectronic Devices as Electroceuticals for Regenerative Medicine. iScience 2019; 22:519-533. [PMID: 31837520 PMCID: PMC6920204 DOI: 10.1016/j.isci.2019.11.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/15/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
A major frontier in the post-genomic era is the investigation of the control of coordinated growth and three-dimensional form. Dynamic remodeling of complex organs in regulative embryogenesis, regeneration, and cancer reveals that cells and tissues make decisions that implement complex anatomical outcomes. It is now essential to understand not only the genetics that specifies cellular hardware but also the physiological software that implements tissue-level plasticity and robust morphogenesis. Here, we review recent discoveries about the endogenous mechanisms of bioelectrical communication among non-neural cells that enables them to cooperate in vivo. We discuss important advances in bioelectronics, as well as computational and pharmacological tools that are enabling the taming of biophysical controls toward applications in regenerative medicine and synthetic bioengineering.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA.
| | - John Selberg
- Electrical and Computer Engineering Department, University of California, Santa Cruz, CA 95064, USA
| | - Marco Rolandi
- Electrical and Computer Engineering Department, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
69
|
Levin M. The Computational Boundary of a "Self": Developmental Bioelectricity Drives Multicellularity and Scale-Free Cognition. Front Psychol 2019; 10:2688. [PMID: 31920779 PMCID: PMC6923654 DOI: 10.3389/fpsyg.2019.02688] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
All epistemic agents physically consist of parts that must somehow comprise an integrated cognitive self. Biological individuals consist of subunits (organs, cells, and molecular networks) that are themselves complex and competent in their own native contexts. How do coherent biological Individuals result from the activity of smaller sub-agents? To understand the evolution and function of metazoan creatures' bodies and minds, it is essential to conceptually explore the origin of multicellularity and the scaling of the basal cognition of individual cells into a coherent larger organism. In this article, I synthesize ideas in cognitive science, evolutionary biology, and developmental physiology toward a hypothesis about the origin of Individuality: "Scale-Free Cognition." I propose a fundamental definition of an Individual based on the ability to pursue goals at an appropriate level of scale and organization and suggest a formalism for defining and comparing the cognitive capacities of highly diverse types of agents. Any Self is demarcated by a computational surface - the spatio-temporal boundary of events that it can measure, model, and try to affect. This surface sets a functional boundary - a cognitive "light cone" which defines the scale and limits of its cognition. I hypothesize that higher level goal-directed activity and agency, resulting in larger cognitive boundaries, evolve from the primal homeostatic drive of living things to reduce stress - the difference between current conditions and life-optimal conditions. The mechanisms of developmental bioelectricity - the ability of all cells to form electrical networks that process information - suggest a plausible set of gradual evolutionary steps that naturally lead from physiological homeostasis in single cells to memory, prediction, and ultimately complex cognitive agents, via scale-up of the basic drive of infotaxis. Recent data on the molecular mechanisms of pre-neural bioelectricity suggest a model of how increasingly sophisticated cognitive functions emerge smoothly from cell-cell communication used to guide embryogenesis and regeneration. This set of hypotheses provides a novel perspective on numerous phenomena, such as cancer, and makes several unique, testable predictions for interdisciplinary research that have implications not only for evolutionary developmental biology but also for biomedicine and perhaps artificial intelligence and exobiology.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| |
Collapse
|
70
|
Manicka S, Levin M. Modeling somatic computation with non-neural bioelectric networks. Sci Rep 2019; 9:18612. [PMID: 31819119 PMCID: PMC6901451 DOI: 10.1038/s41598-019-54859-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/13/2019] [Indexed: 02/08/2023] Open
Abstract
The field of basal cognition seeks to understand how adaptive, context-specific behavior occurs in non-neural biological systems. Embryogenesis and regeneration require plasticity in many tissue types to achieve structural and functional goals in diverse circumstances. Thus, advances in both evolutionary cell biology and regenerative medicine require an understanding of how non-neural tissues could process information. Neurons evolved from ancient cell types that used bioelectric signaling to perform computation. However, it has not been shown whether or how non-neural bioelectric cell networks can support computation. We generalize connectionist methods to non-neural tissue architectures, showing that a minimal non-neural Bio-Electric Network (BEN) model that utilizes the general principles of bioelectricity (electrodiffusion and gating) can compute. We characterize BEN behaviors ranging from elementary logic gates to pattern detectors, using both fixed and transient inputs to recapitulate various biological scenarios. We characterize the mechanisms of such networks using dynamical-systems and information-theory tools, demonstrating that logic can manifest in bidirectional, continuous, and relatively slow bioelectrical systems, complementing conventional neural-centric architectures. Our results reveal a variety of non-neural decision-making processes as manifestations of general cellular biophysical mechanisms and suggest novel bioengineering approaches to construct functional tissues for regenerative medicine and synthetic biology as well as new machine learning architectures.
Collapse
Affiliation(s)
- Santosh Manicka
- Allen Discovery Center, 200 College Ave., Tufts University, Medford, MA, 02155, USA
| | - Michael Levin
- Allen Discovery Center, 200 College Ave., Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
71
|
Ramstead MJD, Constant A, Badcock PB, Friston KJ. Variational ecology and the physics of sentient systems. Phys Life Rev 2019; 31:188-205. [PMID: 30655223 PMCID: PMC6941227 DOI: 10.1016/j.plrev.2018.12.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 08/03/2018] [Accepted: 12/27/2018] [Indexed: 12/02/2022]
Abstract
This paper addresses the challenges faced by multiscale formulations of the variational (free energy) approach to dynamics that obtain for large-scale ensembles. We review a framework for modelling complex adaptive control systems for multiscale free energy bounding organism-niche dynamics, thereby integrating the modelling strategies and heuristics of variational neuroethology with a broader perspective on the ecological nestedness of biotic systems. We extend the multiscale variational formulation beyond the action-perception loops of individual organisms by appealing to the variational approach to niche construction to explain the dynamics of coupled systems constituted by organisms and their ecological niche. We suggest that the statistical robustness of living systems is inherited, in part, from their eco-niches, as niches help coordinate dynamical patterns across larger spatiotemporal scales. We call this approach variational ecology. We argue that, when applied to cultural animals such as humans, variational ecology enables us to formulate not just a physics of individual minds, but also a physics of interacting minds across spatial and temporal scales - a physics of sentient systems that range from cells to societies.
Collapse
Affiliation(s)
- Maxwell J D Ramstead
- Division of Social and Transcultural Psychiatry, Department of Psychiatry, McGill University, Montreal, QC, H3A 1A1, Canada; Department of Philosophy, McGill University, Montreal, QC, H3A 2T7, Canada; Wellcome Trust Centre for Neuroimaging, University College London, London, WC1N 3BG, UK.
| | - Axel Constant
- Wellcome Trust Centre for Neuroimaging, University College London, London, WC1N 3BG, UK; Amsterdam Brain and Cognition Center, The University of Amsterdam, Amsterdam, 1098 XH, the Netherlands
| | - Paul B Badcock
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, 3010, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, 3052, Australia; Orygen, the National Centre of Excellence in Youth Mental Health, Melbourne, 3052, Australia
| | - Karl J Friston
- Wellcome Trust Centre for Neuroimaging, University College London, London, WC1N 3BG, UK
| |
Collapse
|
72
|
Badcock PB, Friston KJ, Ramstead MJD. The hierarchically mechanistic mind: A free-energy formulation of the human psyche. Phys Life Rev 2019; 31:104-121. [PMID: 30704846 PMCID: PMC6941235 DOI: 10.1016/j.plrev.2018.10.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 09/04/2018] [Accepted: 10/10/2018] [Indexed: 11/29/2022]
Abstract
This article presents a unifying theory of the embodied, situated human brain called the Hierarchically Mechanistic Mind (HMM). The HMM describes the brain as a complex adaptive system that actively minimises the decay of our sensory and physical states by producing self-fulfilling action-perception cycles via dynamical interactions between hierarchically organised neurocognitive mechanisms. This theory synthesises the free-energy principle (FEP) in neuroscience with an evolutionary systems theory of psychology that explains our brains, minds, and behaviour by appealing to Tinbergen's four questions: adaptation, phylogeny, ontogeny, and mechanism. After leveraging the FEP to formally define the HMM across different spatiotemporal scales, we conclude by exploring its implications for theorising and research in the sciences of the mind and behaviour.
Collapse
Affiliation(s)
- Paul B Badcock
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, 3052, Australia; Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, 3010, Australia; Orygen, the National Centre of Excellence in Youth Mental Health, Melbourne, 3052, Australia.
| | - Karl J Friston
- Wellcome Trust Centre for Neuroimaging, University College London, London, WC1N3BG, UK
| | - Maxwell J D Ramstead
- Wellcome Trust Centre for Neuroimaging, University College London, London, WC1N3BG, UK; Department of Philosophy, McGill University, Montreal, Quebec, H3A 2T7, Canada; Division of Social and Transcultural Psychiatry, Department of Psychiatry, McGill University, Montreal, Quebec, H3A 1A1, Canada
| |
Collapse
|
73
|
Palacios ER, Razi A, Parr T, Kirchhoff M, Friston K. On Markov blankets and hierarchical self-organisation. J Theor Biol 2019; 486:110089. [PMID: 31756340 PMCID: PMC7284313 DOI: 10.1016/j.jtbi.2019.110089] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 10/29/2022]
Abstract
Biological self-organisation can be regarded as a process of spontaneous pattern formation; namely, the emergence of structures that distinguish themselves from their environment. This process can occur at nested spatial scales: from the microscopic (e.g., the emergence of cells) to the macroscopic (e.g. the emergence of organisms). In this paper, we pursue the idea that Markov blankets - that separate the internal states of a structure from external states - can self-assemble at successively higher levels of organisation. Using simulations, based on the principle of variational free energy minimisation, we show that hierarchical self-organisation emerges when the microscopic elements of an ensemble have prior (e.g., genetic) beliefs that they participate in a macroscopic Markov blanket: i.e., they can only influence - or be influenced by - a subset of other elements. Furthermore, the emergent structures look very much like those found in nature (e.g., cells or organelles), when influences are mediated by short range signalling. These simulations are offered as a proof of concept that hierarchical self-organisation of Markov blankets (into Markov blankets) can explain the self-evidencing, autopoietic behaviour of biological systems.
Collapse
Affiliation(s)
- Ensor Rafael Palacios
- The Wellcome Centre for Human Neuroimaging, University College London, Queen Square, London WC1N 3BG, UK.
| | - Adeel Razi
- The Wellcome Centre for Human Neuroimaging, University College London, Queen Square, London WC1N 3BG, UK; Monash Institute of Cognitive and Clinical Neurosciences and Monash Biomedical Imaging, Monash University, Clayton, Australia; Department of Electronic Engineering, NED University of Engineering and Technology, Karachi, Pakistan
| | - Thomas Parr
- The Wellcome Centre for Human Neuroimaging, University College London, Queen Square, London WC1N 3BG, UK
| | - Michael Kirchhoff
- Department of Philosophy, Faculty of Law, Humanities and the Arts, University of Wollongong, Wollongong 2500, Australia
| | - Karl Friston
- The Wellcome Centre for Human Neuroimaging, University College London, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
74
|
Isomura T, Parr T, Friston K. Bayesian Filtering with Multiple Internal Models: Toward a Theory of Social Intelligence. Neural Comput 2019; 31:2390-2431. [PMID: 31614100 DOI: 10.1162/neco_a_01239] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
To exhibit social intelligence, animals have to recognize whom they are communicating with. One way to make this inference is to select among internal generative models of each conspecific who may be encountered. However, these models also have to be learned via some form of Bayesian belief updating. This induces an interesting problem: When receiving sensory input generated by a particular conspecific, how does an animal know which internal model to update? We consider a theoretical and neurobiologically plausible solution that enables inference and learning of the processes that generate sensory inputs (e.g., listening and understanding) and reproduction of those inputs (e.g., talking or singing), under multiple generative models. This is based on recent advances in theoretical neurobiology-namely, active inference and post hoc (online) Bayesian model selection. In brief, this scheme fits sensory inputs under each generative model. Model parameters are then updated in proportion to the probability that each model could have generated the input (i.e., model evidence). The proposed scheme is demonstrated using a series of (real zebra finch) birdsongs, where each song is generated by several different birds. The scheme is implemented using physiologically plausible models of birdsong production. We show that generalized Bayesian filtering, combined with model selection, leads to successful learning across generative models, each possessing different parameters. These results highlight the utility of having multiple internal models when making inferences in social environments with multiple sources of sensory information.
Collapse
Affiliation(s)
- Takuya Isomura
- Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Thomas Parr
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, WC1N 3AR, U.K.
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, WC1N 3AR, U.K.
| |
Collapse
|
75
|
Cieri F, Esposito R. Psychoanalysis and Neuroscience: The Bridge Between Mind and Brain. Front Psychol 2019; 10:1790. [PMID: 31555159 PMCID: PMC6724748 DOI: 10.3389/fpsyg.2019.01983] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/13/2019] [Indexed: 01/12/2023] Open
Abstract
In 1895 in the Project for a Scientific Psychology, Freud tried to integrate psychology and neurology in order to develop a neuroscientific psychology. Since 1880, Freud made no distinction between psychology and physiology. His papers from the end of the 1880s to 1890 were very clear on this scientific overlap: as with many of his contemporaries, Freud thought about psychology essentially as the physiology of the brain. Years later he had to surrender, realizing a technological delay, not capable of pursuing its ambitious aim, and until that moment psychoanalysis would have to use its more suitable clinical method. Also, he seemed skeptical about phrenology drift, typical of that time, in which any psychological function needed to be located in its neuroanatomical area. He could not see the progresses of neuroscience and its fruitful dialogue with psychoanalysis, which occurred also thanks to the improvements in the field of neuroimaging, which has made possible a remarkable advance in the knowledge of the mind-brain system and a better observation of the psychoanalytical theories. After years of investigations, deriving from research and clinical work of the last century, the discovery of neural networks, together with the free energy principle, we are observing under a new light psychodynamic neuroscience in its exploration of the mind-brain system. In this manuscript, we summarize the important developments of psychodynamic neuroscience, with particular regard to the free energy principle, the resting state networks, especially the Default Mode Network in its link with the Self, emphasizing our view of a bridge between psychoanalysis and neuroscience. Finally, we suggest a discussion by approaching the concept of Alpha Function, proposed by the psychoanalyst Wilfred Ruprecht Bion, continuing the association with neuroscience.
Collapse
Affiliation(s)
- Filippo Cieri
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States
| | - Roberto Esposito
- Department of Radiology, Azienda Ospedaliera Ospedali Riuniti Marche Nord, Pesaro, Italy
| |
Collapse
|
76
|
Miller WB, Torday JS, Baluška F. The N-space Episenome unifies cellular information space-time within cognition-based evolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 150:112-139. [PMID: 31415772 DOI: 10.1016/j.pbiomolbio.2019.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/26/2019] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
Self-referential cellular homeostasis is maintained by the measured assessment of both internal status and external conditions based within an integrated cellular information field. This cellular field attachment to biologic information space-time coordinates environmental inputs by connecting the cellular senome, as the sum of the sensory experiences of the cell, with its genome and epigenome. In multicellular organisms, individual cellular information fields aggregate into a collective information architectural matrix, termed a N-space Episenome, that enables mutualized organism-wide information management. It is hypothesized that biological organization represents a dual heritable system constituted by both its biological materiality and a conjoining N-space Episenome. It is further proposed that morphogenesis derives from reciprocations between these inter-related facets to yield coordinated multicellular growth and development. The N-space Episenome is conceived as a whole cell informational projection that is heritable, transferable via cell division and essential for the synchronous integration of the diverse self-referential cells that constitute holobionts.
Collapse
Affiliation(s)
| | - John S Torday
- Department of Pediatrics, Harbor-UCLA Medical Center, USA.
| | | |
Collapse
|
77
|
Fields C, Levin M. Somatic multicellularity as a satisficing solution to the prediction-error minimization problem. Commun Integr Biol 2019; 12:119-132. [PMID: 31413788 PMCID: PMC6682261 DOI: 10.1080/19420889.2019.1643666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 11/26/2022] Open
Abstract
Adaptive success in the biosphere requires the dynamic ability to adjust physiological, transcriptional, and behavioral responses to environmental conditions. From chemical networks to organisms to whole communities, biological entities at all levels of organization seek to optimize their predictive power. Here, we argue that this fundamental drive provides a novel perspective on the origin of multicellularity. One way for unicellular organisms to minimize surprise with respect to external inputs is to be surrounded by reproductively-disabled, i.e. somatic copies of themselves - highly predictable agents which in effect reduce uncertainty in their microenvironments. We show that the transition to multicellularity can be modeled as a phase transition driven by environmental threats. We present modeling results showing how multicellular bodies can arise if non-reproductive somatic cells protect their reproductive parents from environmental lethality. We discuss how a somatic body can be interpreted as a Markov blanket around one or more reproductive cells, and how the transition to somatic multicellularity can be represented as a transition from exposure of reproductive cells to a high-uncertainty environment to their protection from environmental uncertainty by this Markov blanket. This is, effectively, a transition by the Markov blanket from transparency to opacity for the variational free energy of the environment. We suggest that the ability to arrest the cell cycle of daughter cells and redirect their resource utilization from division to environmental threat amelioration is the key innovation of obligate multicellular eukaryotes, that the nervous system evolved to exercise this control over long distances, and that cancer is an escape by somatic cells from the control of reproductive cells. Our quantitative model illustrates the evolutionary dynamics of this system, provides a novel hypothesis for the origin of multicellular animal bodies, and suggests a fundamental link between the architectures of complex organisms and information processing in proto-cognitive cellular agents.
Collapse
Affiliation(s)
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA USA
| |
Collapse
|
78
|
Morphogenesis as Bayesian inference: A variational approach to pattern formation and control in complex biological systems. Phys Life Rev 2019; 33:88-108. [PMID: 31320316 DOI: 10.1016/j.plrev.2019.06.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
Abstract
Recent advances in molecular biology such as gene editing [1], bioelectric recording and manipulation [2] and live cell microscopy using fluorescent reporters [3], [4] - especially with the advent of light-controlled protein activation through optogenetics [5] - have provided the tools to measure and manipulate molecular signaling pathways with unprecedented spatiotemporal precision. This has produced ever increasing detail about the molecular mechanisms underlying development and regeneration in biological organisms. However, an overarching concept - that can predict the emergence of form and the robust maintenance of complex anatomy - is largely missing in the field. Classic (i.e., dynamic systems and analytical mechanics) approaches such as least action principles are difficult to use when characterizing open, far-from equilibrium systems that predominate in Biology. Similar issues arise in neuroscience when trying to understand neuronal dynamics from first principles. In this (neurobiology) setting, a variational free energy principle has emerged based upon a formulation of self-organization in terms of (active) Bayesian inference. The free energy principle has recently been applied to biological self-organization beyond the neurosciences [6], [7]. For biological processes that underwrite development or regeneration, the Bayesian inference framework treats cells as information processing agents, where the driving force behind morphogenesis is the maximization of a cell's model evidence. This is realized by the appropriate expression of receptors and other signals that correspond to the cell's internal (i.e., generative) model of what type of receptors and other signals it should express. The emerging field of the free energy principle in pattern formation provides an essential quantitative formalism for understanding cellular decision-making in the context of embryogenesis, regeneration, and cancer suppression. In this paper, we derive the mathematics behind Bayesian inference - as understood in this framework - and use simulations to show that the formalism can reproduce experimental, top-down manipulations of complex morphogenesis. First, we illustrate this 'first principle' approach to morphogenesis through simulated alterations of anterior-posterior axial polarity (i.e., the induction of two heads or two tails) as in planarian regeneration. Then, we consider aberrant signaling and functional behavior of a single cell within a cellular ensemble - as a first step in carcinogenesis as false 'beliefs' about what a cell should 'sense' and 'do'. We further show that simple modifications of the inference process can cause - and rescue - mis-patterning of developmental and regenerative events without changing the implicit generative model of a cell as specified, for example, by its DNA. This formalism offers a new road map for understanding developmental change in evolution and for designing new interventions in regenerative medicine settings.
Collapse
|
79
|
Manicka S, Levin M. The Cognitive Lens: a primer on conceptual tools for analysing information processing in developmental and regenerative morphogenesis. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180369. [PMID: 31006373 PMCID: PMC6553590 DOI: 10.1098/rstb.2018.0369] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2018] [Indexed: 12/31/2022] Open
Abstract
Brains exhibit plasticity, multi-scale integration of information, computation and memory, having evolved by specialization of non-neural cells that already possessed many of the same molecular components and functions. The emerging field of basal cognition provides many examples of decision-making throughout a wide range of non-neural systems. How can biological information processing across scales of size and complexity be quantitatively characterized and exploited in biomedical settings? We use pattern regulation as a context in which to introduce the Cognitive Lens-a strategy using well-established concepts from cognitive and computer science to complement mechanistic investigation in biology. To facilitate the assimilation and application of these approaches across biology, we review tools from various quantitative disciplines, including dynamical systems, information theory and least-action principles. We propose that these tools can be extended beyond neural settings to predict and control systems-level outcomes, and to understand biological patterning as a form of primitive cognition. We hypothesize that a cognitive-level information-processing view of the functions of living systems can complement reductive perspectives, improving efficient top-down control of organism-level outcomes. Exploration of the deep parallels across diverse quantitative paradigms will drive integrative advances in evolutionary biology, regenerative medicine, synthetic bioengineering, cognitive neuroscience and artificial intelligence. This article is part of the theme issue 'Liquid brains, solid brains: How distributed cognitive architectures process information'.
Collapse
Affiliation(s)
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
80
|
Palacios ER, Isomura T, Parr T, Friston K. The emergence of synchrony in networks of mutually inferring neurons. Sci Rep 2019; 9:6412. [PMID: 31040386 PMCID: PMC6491596 DOI: 10.1038/s41598-019-42821-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/08/2019] [Indexed: 01/05/2023] Open
Abstract
This paper considers the emergence of a generalised synchrony in ensembles of coupled self-organising systems, such as neurons. We start from the premise that any self-organising system complies with the free energy principle, in virtue of placing an upper bound on its entropy. Crucially, the free energy principle allows one to interpret biological systems as inferring the state of their environment or external milieu. An emergent property of this inference is synchronisation among an ensemble of systems that infer each other. Here, we investigate the implications of neuronal dynamics by simulating neuronal networks, where each neuron minimises its free energy. We cast the ensuing ensemble dynamics in terms of inference and show that cardinal behaviours of neuronal networks - both in vivo and in vitro - can be explained by this framework. In particular, we test the hypotheses that (i) generalised synchrony is an emergent property of free energy minimisation; thereby explaining synchronisation in the resting brain: (ii) desynchronisation is induced by exogenous input; thereby explaining event-related desynchronisation and (iii) structure learning emerges in response to causal structure in exogenous input; thereby explaining functional segregation in real neuronal systems.
Collapse
Affiliation(s)
- Ensor Rafael Palacios
- The Wellcome Centre for Human Neuroimaging, University College London, Queen Square, London, WC1N 3BG, UK.
| | - Takuya Isomura
- Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Thomas Parr
- The Wellcome Centre for Human Neuroimaging, University College London, Queen Square, London, WC1N 3BG, UK
| | - Karl Friston
- The Wellcome Centre for Human Neuroimaging, University College London, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
81
|
Levin M, Pietak AM, Bischof J. Planarian regeneration as a model of anatomical homeostasis: Recent progress in biophysical and computational approaches. Semin Cell Dev Biol 2019; 87:125-144. [PMID: 29635019 PMCID: PMC6234102 DOI: 10.1016/j.semcdb.2018.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 12/22/2022]
Abstract
Planarian behavior, physiology, and pattern control offer profound lessons for regenerative medicine, evolutionary biology, morphogenetic engineering, robotics, and unconventional computation. Despite recent advances in the molecular genetics of stem cell differentiation, this model organism's remarkable anatomical homeostasis provokes us with truly fundamental puzzles about the origin of large-scale shape and its relationship to the genome. In this review article, we first highlight several deep mysteries about planarian regeneration in the context of the current paradigm in this field. We then review recent progress in understanding of the physiological control of an endogenous, bioelectric pattern memory that guides regeneration, and how modulating this memory can permanently alter the flatworm's target morphology. Finally, we focus on computational approaches that complement reductive pathway analysis with synthetic, systems-level understanding of morphological decision-making. We analyze existing models of planarian pattern control and highlight recent successes and remaining knowledge gaps in this interdisciplinary frontier field.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, United States; Biology Department, Tufts University, Medford, MA 02155, United States.
| | - Alexis M Pietak
- Allen Discovery Center at Tufts University, Medford, MA 02155, United States
| | - Johanna Bischof
- Allen Discovery Center at Tufts University, Medford, MA 02155, United States; Biology Department, Tufts University, Medford, MA 02155, United States
| |
Collapse
|
82
|
Ramstead MJD, Kirchhoff MD, Constant A, Friston KJ. Multiscale integration: beyond internalism and externalism. SYNTHESE 2019; 198:41-70. [PMID: 33627890 PMCID: PMC7873008 DOI: 10.1007/s11229-019-02115-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 01/30/2019] [Indexed: 05/17/2023]
Abstract
We present a multiscale integrationist interpretation of the boundaries of cognitive systems, using the Markov blanket formalism of the variational free energy principle. This interpretation is intended as a corrective for the philosophical debate over internalist and externalist interpretations of cognitive boundaries; we stake out a compromise position. We first survey key principles of new radical (extended, enactive, embodied) views of cognition. We then describe an internalist interpretation premised on the Markov blanket formalism. Having reviewed these accounts, we develop our positive multiscale account. We argue that the statistical seclusion of internal from external states of the system-entailed by the existence of a Markov boundary-can coexist happily with the multiscale integration of the system through its dynamics. Our approach does not privilege any given boundary (whether it be that of the brain, body, or world), nor does it argue that all boundaries are equally prescient. We argue that the relevant boundaries of cognition depend on the level being characterised and the explanatory interests that guide investigation. We approach the issue of how and where to draw the boundaries of cognitive systems through a multiscale ontology of cognitive systems, which offers a multidisciplinary research heuristic for cognitive science.
Collapse
Affiliation(s)
- Maxwell J. D. Ramstead
- Department of Philosophy, McGill University, Montreal, QC Canada
- Division of Social and Transcultural Psychiatry, Department of Psychiatry, McGill University, Montreal, QC Canada
- Wellcome Trust Centre for Neuroimaging, University College London, London, WC1N3BG UK
| | - Michael D. Kirchhoff
- Department of Philosophy, Faculty of Law, Humanities and the Arts, University of Wollongong, Wollongong, Australia
| | - Axel Constant
- Wellcome Trust Centre for Neuroimaging, University College London, London, WC1N3BG UK
- Amsterdam Brain and Cognition Centre, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Karl J. Friston
- Wellcome Trust Centre for Neuroimaging, University College London, London, WC1N3BG UK
| |
Collapse
|
83
|
A Multi-scale View of the Emergent Complexity of Life: A Free-Energy Proposal. EVOLUTION, DEVELOPMENT AND COMPLEXITY 2019. [DOI: 10.1007/978-3-030-00075-2_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
84
|
Gottwald S, Braun DA. Systems of Bounded Rational Agents with Information-Theoretic Constraints. Neural Comput 2018; 31:440-476. [PMID: 30576612 DOI: 10.1162/neco_a_01153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Specialization and hierarchical organization are important features of efficient collaboration in economical, artificial, and biological systems. Here, we investigate the hypothesis that both features can be explained by the fact that each entity of such a system is limited in a certain way. We propose an information-theoretic approach based on a free energy principle in order to computationally analyze systems of bounded rational agents that deal with such limitations optimally. We find that specialization allows a focus on fewer tasks, thus leading to a more efficient execution, but in turn, it requires coordination in hierarchical structures of specialized experts and coordinating units. Our results suggest that hierarchical architectures of specialized units at lower levels that are coordinated by units at higher levels are optimal, given that each unit's information-processing capability is limited and conforms to constraints on complexity costs.
Collapse
Affiliation(s)
- Sebastian Gottwald
- Institute of Neural Information Processing, Faculty of Engineering, Computer Science and Psychology, University of Ulm, Ulm, Baden-Württemberg, 89081 Germany
| | - Daniel A Braun
- Institute of Neural Information Processing, Faculty of Engineering, Computer Science and Psychology, University of Ulm, Ulm, Baden-Württemberg, 89081 Germany
| |
Collapse
|
85
|
Kamm RD, Bashir R, Arora N, Dar RD, Gillette MU, Griffith LG, Kemp ML, Kinlaw K, Levin M, Martin AC, McDevitt TC, Nerem RM, Powers MJ, Saif TA, Sharpe J, Takayama S, Takeuchi S, Weiss R, Ye K, Yevick HG, Zaman MH. Perspective: The promise of multi-cellular engineered living systems. APL Bioeng 2018; 2:040901. [PMID: 31069321 PMCID: PMC6481725 DOI: 10.1063/1.5038337] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022] Open
Abstract
Recent technological breakthroughs in our ability to derive and differentiate induced pluripotent stem cells, organoid biology, organ-on-chip assays, and 3-D bioprinting have all contributed to a heightened interest in the design, assembly, and manufacture of living systems with a broad range of potential uses. This white paper summarizes the state of the emerging field of "multi-cellular engineered living systems," which are composed of interacting cell populations. Recent accomplishments are described, focusing on current and potential applications, as well as barriers to future advances, and the outlook for longer term benefits and potential ethical issues that need to be considered.
Collapse
Affiliation(s)
- Roger D. Kamm
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | - Rashid Bashir
- University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, USA
| | - Natasha Arora
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | - Roy D. Dar
- University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, USA
| | | | - Linda G. Griffith
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | - Melissa L. Kemp
- Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | - Adam C. Martin
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | | | - Robert M. Nerem
- Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Mark J. Powers
- Thermo Fisher Scientific, Frederick, Maryland 21704, USA
| | - Taher A. Saif
- University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, USA
| | - James Sharpe
- EMBL Barcelona, European Molecular Biology Laboratory, Barcelona 08003, Spain
| | | | | | - Ron Weiss
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | - Kaiming Ye
- Binghamton University, Binghamton, New York 13902, USA
| | - Hannah G. Yevick
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | | |
Collapse
|
86
|
Stone R, Portegys T, Mikhailovsky G, Alicea B. Origins of the Embryo: Self-organization through cybernetic regulation. Biosystems 2018; 173:73-82. [DOI: 10.1016/j.biosystems.2018.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
|
87
|
Bruineberg J, Rietveld E, Parr T, van Maanen L, Friston KJ. Free-energy minimization in joint agent-environment systems: A niche construction perspective. J Theor Biol 2018; 455:161-178. [PMID: 30012517 PMCID: PMC6117456 DOI: 10.1016/j.jtbi.2018.07.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The free-energy principle is an attempt to explain the structure of the agent and its brain, starting from the fact that an agent exists (Friston and Stephan, 2007; Friston et al., 2010). More specifically, it can be regarded as a systematic attempt to understand the 'fit' between an embodied agent and its niche, where the quantity of free-energy is a measure for the 'misfit' or disattunement (Bruineberg and Rietveld, 2014) between agent and environment. This paper offers a proof-of-principle simulation of niche construction under the free-energy principle. Agent-centered treatments have so far failed to address situations where environments change alongside agents, often due to the action of agents themselves. The key point of this paper is that the minimum of free-energy is not at a point in which the agent is maximally adapted to the statistics of a static environment, but can better be conceptualized an attracting manifold within the joint agent-environment state-space as a whole, which the system tends toward through mutual interaction. We will provide a general introduction to active inference and the free-energy principle. Using Markov Decision Processes (MDPs), we then describe a canonical generative model and the ensuing update equations that minimize free-energy. We then apply these equations to simulations of foraging in an environment; in which an agent learns the most efficient path to a pre-specified location. In some of those simulations, unbeknownst to the agent, the 'desire paths' emerge as a function of the activity of the agent (i.e. niche construction occurs). We will show how, depending on the relative inertia of the environment and agent, the joint agent-environment system moves to different attracting sets of jointly minimized free-energy.
Collapse
Affiliation(s)
- Jelle Bruineberg
- Department of Philosophy, Institute for Logic, Language and Computation, University of Amsterdam, The Netherlands; Amsterdam Brain and Cognition Centre, University of Amsterdam, The Netherlands.
| | - Erik Rietveld
- Department of Philosophy, Institute for Logic, Language and Computation, University of Amsterdam, The Netherlands; Amsterdam Brain and Cognition Centre, University of Amsterdam, The Netherlands; Academic Medical Center, Department of Psychiatry, University of Amsterdam, The Netherlands; Department of Philosophy, University of Twente, The Netherlands.
| | - Thomas Parr
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London WC1N 3BG, UK.
| | - Leendert van Maanen
- Amsterdam Brain and Cognition Centre, University of Amsterdam, The Netherlands; Department of Psychology, University of Amsterdam, The Netherlands
| | - Karl J Friston
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London WC1N 3BG, UK.
| |
Collapse
|
88
|
Abstract
Multiple sciences have converged, in the past two decades, on a hitherto mostly unremarked question: what is observation? Here, I examine this evolution, focusing on three sciences: physics, especially quantum information theory, developmental biology, especially its molecular and “evo-devo” branches, and cognitive science, especially perceptual psychology and robotics. I trace the history of this question to the late 19th century, and through the conceptual revolutions of the 20th century. I show how the increasing interdisciplinary focus on the process of extracting information from an environment provides an opportunity for conceptual unification, and sketch an outline of what such a unification might look like.
Collapse
|
89
|
Connolly P. Expected Free Energy Formalizes Conflict Underlying Defense in Freudian Psychoanalysis. Front Psychol 2018; 9:1264. [PMID: 30072943 PMCID: PMC6060308 DOI: 10.3389/fpsyg.2018.01264] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/29/2018] [Indexed: 12/02/2022] Open
Abstract
Freud's core interest in the psyche was the dynamic unconscious: that part of the psyche which is unconscious due to conflict (Freud, 1923/1961). Over the course of his career, Freud variously described conflict as an opposition to the discharge of activation (Freud, 1950), opposition to psychic activity due to the release of unpleasure (Freud, 1990/1991), opposition between the primary principle and the reality principle (Freud, 1911/1963), structural conflict between id, ego, and superego (Freud, 1923/1961), and ambivalence (Freud, 1912/1963). Besides this difficulty of the shifting description of conflict, an underlying question remained the specific shared terrain in which emotions, thoughts, intentions or wishes could come into conflict with one another (the neuronal homolog of conflict), and most especially how they may exist as quantities in opposition within that terrain. Friston's free-energy principle (FEP henceforth) connected to the work of Friston (Friston et al., 2006; Friston, 2010) has provided the potential for a powerful unifying theory in psychology, neuroscience, and related fields that has been shown to have tremendous consilience with psychoanalytic concepts (Hopkins, 2012). Hopkins (2016), drawing on a formulation by Hobson et al. (2014), suggests that conflict may be potentially quantifiable as free energy from a FEP perspective. More recently, work by Friston et al. (2017a) has framed the selection of action as a gradient descent of expected free energy under different policies of action. From this perspective, the article describes how conflict could potentially be formalized as a situation where opposing action policies have similar expected free energy, for example between actions driven by competing basic prototype emotion systems as described by Panksepp (1998). This conflict state may be avoided in the future through updating the relative precision of a particular set of prior beliefs about outcomes: this has the result of tending to favor one of the policies of action over others in future instances, a situation analogous to defense. Through acting as a constraint on the further development of the person, the defensive operation can become entrenched, and resistant to alteration. The implications that this formalization has for psychoanalysis is explored.
Collapse
Affiliation(s)
- Patrick Connolly
- Department of Counselling and Psychology, Hong Kong Shue Yan University, Hong Kong, Hong Kong
| |
Collapse
|
90
|
Friston K. Am I Self-Conscious? (Or Does Self-Organization Entail Self-Consciousness?). Front Psychol 2018; 9:579. [PMID: 29740369 PMCID: PMC5928749 DOI: 10.3389/fpsyg.2018.00579] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/05/2018] [Indexed: 12/20/2022] Open
Abstract
Is self-consciousness necessary for consciousness? The answer is yes. So there you have it-the answer is yes. This was my response to a question I was asked to address in a recent AEON piece (https://aeon.co/essays/consciousness-is-not-a-thing-but-a-process-of-inference). What follows is based upon the notes for that essay, with a special focus on self-organization, self-evidencing and self-modeling. I will try to substantiate my (polemic) answer from the perspective of a physicist. In brief, the argument goes as follows: if we want to talk about creatures, like ourselves, then we have to identify the characteristic behaviors they must exhibit. This is fairly easy to do by noting that living systems return to a set of attracting states time and time again. Mathematically, this implies the existence of a Lyapunov function that turns out to be model evidence (i.e., self-evidence) in Bayesian statistics or surprise (i.e., self-information) in information theory. This means that all biological processes can be construed as performing some form of inference, from evolution through to conscious processing. If this is the case, at what point do we invoke consciousness? The proposal on offer here is that the mind comes into being when self-evidencing has a temporal thickness or counterfactual depth, which grounds inferences about the consequences of my action. On this view, consciousness is nothing more than inference about my future; namely, the self-evidencing consequences of what I could do.
Collapse
Affiliation(s)
- Karl Friston
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London (UCL), London, United Kingdom
| |
Collapse
|
91
|
Constant A, Ramstead MJD, Veissière SPL, Campbell JO, Friston KJ. A variational approach to niche construction. J R Soc Interface 2018; 15:20170685. [PMID: 29643221 PMCID: PMC5938575 DOI: 10.1098/rsif.2017.0685] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 03/19/2018] [Indexed: 12/16/2022] Open
Abstract
In evolutionary biology, niche construction is sometimes described as a genuine evolutionary process whereby organisms, through their activities and regulatory mechanisms, modify their environment such as to steer their own evolutionary trajectory, and that of other species. There is ongoing debate, however, on the extent to which niche construction ought to be considered a bona fide evolutionary force, on a par with natural selection. Recent formulations of the variational free-energy principle as applied to the life sciences describe the properties of living systems, and their selection in evolution, in terms of variational inference. We argue that niche construction can be described using a variational approach. We propose new arguments to support the niche construction perspective, and to extend the variational approach to niche construction to current perspectives in various scientific fields.
Collapse
Affiliation(s)
- Axel Constant
- Laboratory of Experimental Psychology, Brain and Cognition Unit, KU Leuven, 3000 Leuven, Belgium
- Institute of Philosophy, KU Leuven, 3000 Leuven, Belgium
- Amsterdam Brain and Cognition Center, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Maxwell J D Ramstead
- Department of Philosophy, McGill University, 855 Sherbrooke Street West, H3A 2T7, Montreal, QC, Canada
- Division of Social and Transcultural Psychiatry, Department of Psychiatry, McGill University, 1033 Pine Avenue, Montreal, QC, Canada
| | - Samuel P L Veissière
- Division of Social and Transcultural Psychiatry, Department of Psychiatry, McGill University, 1033 Pine Avenue, Montreal, QC, Canada
- Department of Anthropology, McGill University, 855 Sherbrooke Street West, H3A 2T7, Montreal, QC, Canada
| | | | - Karl J Friston
- Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
92
|
Linson A, Clark A, Ramamoorthy S, Friston K. The Active Inference Approach to Ecological Perception: General Information Dynamics for Natural and Artificial Embodied Cognition. Front Robot AI 2018; 5:21. [PMID: 33500908 PMCID: PMC7805975 DOI: 10.3389/frobt.2018.00021] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/16/2018] [Indexed: 01/01/2023] Open
Abstract
The emerging neurocomputational vision of humans as embodied, ecologically embedded, social agents—who shape and are shaped by their environment—offers a golden opportunity to revisit and revise ideas about the physical and information-theoretic underpinnings of life, mind, and consciousness itself. In particular, the active inference framework (AIF) makes it possible to bridge connections from computational neuroscience and robotics/AI to ecological psychology and phenomenology, revealing common underpinnings and overcoming key limitations. AIF opposes the mechanistic to the reductive, while staying fully grounded in a naturalistic and information-theoretic foundation, using the principle of free energy minimization. The latter provides a theoretical basis for a unified treatment of particles, organisms, and interactive machines, spanning from the inorganic to organic, non-life to life, and natural to artificial agents. We provide a brief introduction to AIF, then explore its implications for evolutionary theory, ecological psychology, embodied phenomenology, and robotics/AI research. We conclude the paper by considering implications for machine consciousness.
Collapse
Affiliation(s)
- Adam Linson
- Department of Computing Science and Mathematics, University of Stirling, Stirling, United Kingdom.,Department of Philosophy, University of Stirling, Stirling, United Kingdom.,Institute for Advanced Studies in the Humanities, University of Edinburgh, Edinburgh, United Kingdom
| | - Andy Clark
- School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Department of Philosophy, Macquarie University, Sydney, NSW, Australia
| | - Subramanian Ramamoorthy
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom.,Edinburgh Centre for Robotics, Edinburgh, United Kingdom
| | - Karl Friston
- The Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
| |
Collapse
|
93
|
Hierarchical Markov blankets and adaptive active inference. Phys Life Rev 2018; 24:27-28. [DOI: 10.1016/j.plrev.2017.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 12/28/2017] [Indexed: 11/18/2022]
|
94
|
Ramstead MJD, Badcock PB, Friston KJ. Answering Schrödinger's question: A free-energy formulation. Phys Life Rev 2018; 24:1-16. [PMID: 29029962 PMCID: PMC5857288 DOI: 10.1016/j.plrev.2017.09.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 11/29/2022]
Abstract
The free-energy principle (FEP) is a formal model of neuronal processes that is widely recognised in neuroscience as a unifying theory of the brain and biobehaviour. More recently, however, it has been extended beyond the brain to explain the dynamics of living systems, and their unique capacity to avoid decay. The aim of this review is to synthesise these advances with a meta-theoretical ontology of biological systems called variational neuroethology, which integrates the FEP with Tinbergen's four research questions to explain biological systems across spatial and temporal scales. We exemplify this framework by applying it to Homo sapiens, before translating variational neuroethology into a systematic research heuristic that supplies the biological, cognitive, and social sciences with a computationally tractable guide to discovery.
Collapse
Affiliation(s)
- Maxwell James Désormeau Ramstead
- Department of Philosophy, McGill University, Montreal, Quebec, Canada; Division of Social and Transcultural Psychiatry, Department of Psychiatry, McGill University, Montreal, Quebec, Canada.
| | - Paul Benjamin Badcock
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, 3010, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, 3052, Australia; Orygen, the National Centre of Excellence in Youth Mental Health, Melbourne, 3052, Australia
| | - Karl John Friston
- Wellcome Trust Centre for Neuroimaging, University College London, London, WC1N3BG, UK
| |
Collapse
|
95
|
Ramstead MJD, Badcock PB, Friston KJ. Variational neuroethology: Answering further questions: Reply to comments on "Answering Schrödinger's question: A free-energy formulation". Phys Life Rev 2018; 24:59-66. [PMID: 29329942 DOI: 10.1016/j.plrev.2018.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Maxwell J D Ramstead
- Division of Social and Transcultural Psychiatry, Department of Psychiatry, McGill University, 1033 Pine Avenue, Montreal, QC, Canada; Department of Philosophy, McGill University, 855 Sherbrooke Street West, H3A 2T7, Montreal, QC, Canada.
| | - Paul B Badcock
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne 3010, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne 3052, Australia; Orygen, the National Centre of Excellence in Youth Mental Health, Melbourne 3052, Australia.
| | - Karl J Friston
- Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
96
|
Gallagher S, Allen M. Active inference, enactivism and the hermeneutics of social cognition. SYNTHESE 2018; 195:2627-2648. [PMID: 29887648 PMCID: PMC5972154 DOI: 10.1007/s11229-016-1269-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 11/06/2016] [Indexed: 05/13/2023]
Abstract
We distinguish between three philosophical views on the neuroscience of predictive models: predictive coding (associated with internal Bayesian models and prediction error minimization), predictive processing (associated with radical connectionism and 'simple' embodiment) and predictive engagement (associated with enactivist approaches to cognition). We examine the concept of active inference under each model and then ask how this concept informs discussions of social cognition. In this context we consider Frith and Friston's proposal for a neural hermeneutics, and we explore the alternative model of enactivist hermeneutics.
Collapse
Affiliation(s)
- Shaun Gallagher
- Department of Philosophy, University of Memphis, Clement Hall 331, Memphis, TN 38152 USA
- Faculty of Law, Humanities and the Arts, University of Wollongong, Wollongong, Australia
| | - Micah Allen
- Wellcome Trust Center for Neuroimaging, University College London, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
97
|
Kirchhoff M, Parr T, Palacios E, Friston K, Kiverstein J. The Markov blankets of life: autonomy, active inference and the free energy principle. J R Soc Interface 2018; 15:20170792. [PMID: 29343629 PMCID: PMC5805980 DOI: 10.1098/rsif.2017.0792] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 12/14/2017] [Indexed: 11/12/2022] Open
Abstract
This work addresses the autonomous organization of biological systems. It does so by considering the boundaries of biological systems, from individual cells to Home sapiens, in terms of the presence of Markov blankets under the active inference scheme-a corollary of the free energy principle. A Markov blanket defines the boundaries of a system in a statistical sense. Here we consider how a collective of Markov blankets can self-assemble into a global system that itself has a Markov blanket; thereby providing an illustration of how autonomous systems can be understood as having layers of nested and self-sustaining boundaries. This allows us to show that: (i) any living system is a Markov blanketed system and (ii) the boundaries of such systems need not be co-extensive with the biophysical boundaries of a living organism. In other words, autonomous systems are hierarchically composed of Markov blankets of Markov blankets-all the way down to individual cells, all the way up to you and me, and all the way out to include elements of the local environment.
Collapse
Affiliation(s)
- Michael Kirchhoff
- Department of Philosophy, University of Wollongong Faculty of Law Humanities and the Arts, Wollongong, New South Wales, Australia
| | - Thomas Parr
- Wellcome Trust Centre for Neuroimaging, London, UK
| | | | - Karl Friston
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology UCL, London, UK
| | | |
Collapse
|
98
|
McDowell G, Rajadurai S, Levin M. From cytoskeletal dynamics to organ asymmetry: a nonlinear, regulative pathway underlies left-right patterning. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0409. [PMID: 27821521 DOI: 10.1098/rstb.2015.0409] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2016] [Indexed: 12/25/2022] Open
Abstract
Consistent left-right (LR) asymmetry is a fundamental aspect of the bodyplan across phyla, and errors of laterality form an important class of human birth defects. Its molecular underpinning was first discovered as a sequential pathway of left- and right-sided gene expression that controlled positioning of the heart and visceral organs. Recent data have revised this picture in two important ways. First, the physical origin of chirality has been identified; cytoskeletal dynamics underlie the asymmetry of single-cell behaviour and patterning of the LR axis. Second, the pathway is not linear: early disruptions that alter the normal sidedness of upstream asymmetric genes do not necessarily induce defects in the laterality of the downstream genes or in organ situs Thus, the LR pathway is a unique example of two fascinating aspects of biology: the interplay of physics and genetics in establishing large-scale anatomy, and regulative (shape-homeostatic) pathways that correct molecular and anatomical errors over time. Here, we review aspects of asymmetry from its intracellular, cytoplasmic origins to the recently uncovered ability of the LR control circuitry to achieve correct gene expression and morphology despite reversals of key 'determinant' genes. We provide novel functional data, in Xenopus laevis, on conserved elements of the cytoskeleton that drive asymmetry, and comparatively analyse it together with previously published results in the field. Our new observations and meta-analysis demonstrate that despite aberrant expression of upstream regulatory genes, embryos can progressively normalize transcriptional cascades and anatomical outcomes. LR patterning can thus serve as a paradigm of how subcellular physics and gene expression cooperate to achieve developmental robustness of a body axis.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Gary McDowell
- Biology Department, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA.,Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| | - Suvithan Rajadurai
- Biology Department, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA.,Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| | - Michael Levin
- Biology Department, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA .,Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| |
Collapse
|
99
|
Pezzulo G, Levin M. Embodying Markov blankets: Comment on "Answering Schrödinger's question: A free-energy formulation" by Maxwell James Désormeau Ramstead et al. Phys Life Rev 2017; 24:32-36. [PMID: 29191410 DOI: 10.1016/j.plrev.2017.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy.
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, United States
| |
Collapse
|
100
|
Fields C, Levin M. Multiscale memory and bioelectric error correction in the cytoplasm-cytoskeleton-membrane system. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 10. [DOI: 10.1002/wsbm.1410] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/19/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Chris Fields
- 21 Rue des Lavandiéres, 11160 Caunes Minervois; France
| | - Michael Levin
- Allen Discovery Center at Tufts University; Medford MA USA
| |
Collapse
|