51
|
Scherzer CR, Landwehrmeyer GB, Kerner JA, Standaert DG, Hollingsworth ZR, Daggett LP, Veliçelebi G, Penney JB, Young AB. Cellular distribution of NMDA glutamate receptor subunit mRNAs in the human cerebellum. Neurobiol Dis 2001; 4:35-46. [PMID: 9258910 DOI: 10.1006/nbdi.1997.0136] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have used a quantitative in situ hybridization method with human ribonucleotide probes to examine the regional and cellular distribution of N-methyl-D-aspartate receptor (NMDAR) subunit mRNAs in the human cerebellum. Purkinje cells showed very dense labeling for NMDAR1 mRNA, dense labeling for NMDAR2A mRNA, and moderate labeling for NMDAR2D mRNA, whereas labeling for NMDAR2C mRNA was low. Granule cells showed high hybridization signals for the NMDAR1 and NMDAR2C mRNAs and moderate signals for the NMDAR2A and NMDAR2D mRNAs. In addition intense labeling with the NMDAR2B probe was observed in medium-sized neurons with chromophilic cell bodies in the upper part of the granule cell layer, most likely representing Golgi cells. Neurons in the molecular layer, i.e., basket cells and stellate cells, showed moderate hybridization signals for NMDAR1 and NMDAR2D and low signal for NMDAR2C. Each type of cerebellar neuron analyzed displayed a distinct NMDAR2 subunit profile, suggesting that they are likely to have NMDA receptors with distinct properties.
Collapse
Affiliation(s)
- C R Scherzer
- Department of Neurology, Massachusetts General Hospital, Boston 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Casado M, Dieudonné S, Ascher P. Presynaptic N-methyl-D-aspartate receptors at the parallel fiber-Purkinje cell synapse. Proc Natl Acad Sci U S A 2000; 97:11593-7. [PMID: 11016958 PMCID: PMC17245 DOI: 10.1073/pnas.200354297] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
At the cerebellar synapse between the parallel fibers (PFs) and the Purkinje cells in the cerebellum, we have found that application of N-methyl-d-aspartate (NMDA) reversibly depresses the postsynaptic current. We present evidence that this depression involves NMDA receptors located on the presynaptic axons and requires that the NMDA application be combined with action potentials in the PFs. Unexpectedly, unlike other modulations mediated by presynaptic receptors, the NMDA-induced inhibition does not involve a depression of transmitter release. Because it is blocked by both nitric oxide synthase and soluble guanylate cyclase inhibitors, we propose that it involves a trans-synaptic mechanism in which NO released by the PFs decreases the glutamate sensitivity of the Purkinje cell.
Collapse
Affiliation(s)
- M Casado
- Laboratoire de Neurobiologie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8544, Ecole Normale Supérieure, 46, rue d'Ulm, 75005 Paris, France.
| | | | | |
Collapse
|
53
|
Hirbec H, Teilhac J, Kamenka J, Privat A, Vignon J. Binding properties of [3H]gacyclidine (cis(pip/me)-1-[1-(2-thienyl)-2-methylcyclohexyl]piperidine) enantiomers in the rat central nervous system. Brain Res 2000; 859:177-92. [PMID: 10719063 DOI: 10.1016/s0006-8993(99)02420-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Gacyclidine (cis(pip/me)-1-[1-(2-thienyl)-2-methylcyclohexyl]piperidine) is a TCP derivative, which exhibits potent neuroprotective properties against glutamate-induced neurotoxicity in vitro and in vivo. In order to better understand gacyclidine pharmacological properties, the binding parameters of its enantiomers ((-) and (+)[3H]GK11) were determined in the rat central nervous system (CNS). An autoradiographic study has shown that their binding distributions are correlated with those of N-methyl-D-aspartate (NMDA) receptors throughout the CNS. Globally, the labeling was the highest with (-)[3H]GK11. In the cerebellum, both radioligands similarly labeled the molecular layer. For both radioligands, on telencephalic, cerebellum and spinal cord homogenates, the association and dissociation kinetics were accounted for by multiphasic process. In all regions, (-)[3H]GK11 exhibited the highest affinity in the nanomolar range. The pharmacological study revealed that both enantiomers labeled both high and low affinity sites in all regions. The pharmacological profile of high affinity sites was correlated with those of NMDA receptors. Those of low affinity sites were different in telencephalic and cerebellar homogenates. Overall, this study showed that low affinity sites might constitute a heterogeneous population, which could include sigma receptors in the cerebellum. The autoradiographic study has shown that these sites may be located in the molecular layer. The contribution of low affinity sites to the neuroprotective properties of gacyclidine remains to be investigated.
Collapse
Affiliation(s)
- H Hirbec
- INSERM U336, DPVSN, ENSC Montpellier, 8 rue de l'école normale, 34296, Montpellier, France
| | | | | | | | | |
Collapse
|
54
|
Takahashi KA, Linden DJ. Cannabinoid receptor modulation of synapses received by cerebellar Purkinje cells. J Neurophysiol 2000; 83:1167-80. [PMID: 10712447 DOI: 10.1152/jn.2000.83.3.1167] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The high density of cannabinoid receptors in the cerebellum and the degradation of motor coordination produced by cannabinoid intoxication suggest that synaptic transmission in the cerebellum may be strongly regulated by cannabinoid receptors. Therefore the effects of exogenous cannabinoids on synapses received by Purkinje cells were investigated in rat cerebellar slices. Parallel fiber-evoked (PF) excitatory postsynaptic currents (EPSCs) were strongly inhibited by bath application of the cannabinoid receptor agonist WIN 55212-2 (5 microM, 12% of baseline EPSC amplitude). This effect was completely blocked by the cannabinoid CB1 receptor antagonist SR 141716. It is unlikely that this was the result of alterations in axonal excitability because fiber volley velocity and kinetics were unchanged and a cannabinoid-induced decrease in fiber volley amplitude was very minor (93% of baseline). WIN 55212-2 had no effect on the amplitude or frequency of spontaneously occurring miniature EPSCs (mEPSCs), suggesting that the effect of CB1 receptor activation on PF EPSCs was presynaptically expressed, but giving no evidence for modulation of release processes after Ca(2+) influx. EPSCs evoked by climbing fiber (CF) stimulation were less powerfully attenuated by WIN 55212-2 (5 microM, 74% of baseline). Large, action potential-dependent, spontaneously occurring inhibitory postsynaptic currents (sIPSCs) were either severely reduced in amplitude (<25% of baseline) or eliminated. Miniature IPSCs (mIPSCs) were reduced in frequency (52% of baseline) but not in amplitude, demonstrating suppression of presynaptic vesicle release processes after Ca(2+) influx and suggesting an absence of postsynaptic modulation. The decrease in mIPSC frequency was not large enough to account for the decrease in sIPSC amplitude, suggesting that presynaptic voltage-gated channel modulation was also involved. Thus, while CB1 receptor activation reduced neurotransmitter release at all major classes of Purkinje cell synapses, this was not accomplished by a single molecular mechanism. At excitatory synapses, cannabinoid suppression of neurotransmitter release was mediated by modulation of voltage-gated channels in the presynaptic axon terminal. At inhibitory synapses, in addition to modulation of presynaptic voltage-gated channels, suppression of the downstream vesicle release machinery also played a large role.
Collapse
Affiliation(s)
- K A Takahashi
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
55
|
Abstract
The complete sequences and expression patterns of the NR1 (aptNR1) subunit of the N-methyl-d-aspartate (NMDA) receptor and its alternative splice isoforms have been determined for the weakly electric fish Apteronotus leptorhynchus. The deduced amino acid sequence of aptNR1 is approximately 88 % identical to the NR1 sequences of other vertebrate. Two of the three alternative splice cassettes previously described for mammalian NR1s, N1 and C1, are present in aptNR1, but the third cassette, C2, is not found. In addition, two teleost-specific splice cassettes occur on the N-terminal side of the C1 sequence. The cellular patterns of aptNR1 expression, including the patterns of N1 and C1 splicing, have been mapped using the in situ hybridization technique. High levels of aptNR1 mRNA were detected throughout the central nervous system including most neurons of the electrosensory system, with the highest levels in electrosensory lateral line lobe pyramidal cells. Expression of the N1 splice isoform was higher in more caudal regions of the brain, and expression of the C1 splice isoform was higher in more rostral regions. The N1 splice isoform was present in almost all NR1-positive cells, in contrast to the C1 splice isoform which was restricted to a subset of NR1-positive cells. These results demonstrate that the NR1 subunit of the NMDA receptor is evolutionarily conserved across species and that regulation of alternative RNA splicing modulates the properties of NR1 in different neurons of the central nervous system of A. leptorhynchus.
Collapse
Affiliation(s)
- R J Dunn
- Center for Research in Neuroscience, Montreal General Hospital Research Institute, Montreal, Quebec, Canada H3G 1A4.
| | | | | |
Collapse
|
56
|
Single-channel properties of synaptic and extrasynaptic GABAA receptors suggest differential targeting of receptor subtypes. J Neurosci 1999. [PMID: 10191314 DOI: 10.1523/jneurosci.19-08-02960.1999] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many neurons express a multiplicity of GABAA receptor subunit isoforms. Despite having only a single source of inhibitory input, the cerebellar granule cell displays, at various stages of development, more than 10 different GABAA subunit types. This subunit diversity would be expected to result in significant receptor heterogeneity, yet the functional consequences of such heterogeneity remain poorly understood. Here we have used single-channel properties to characterize GABAA receptor types in the synaptic and extrasynaptic membrane of granule cells. In the presence of high concentrations of GABA, which induced receptor desensitization, extrasynaptic receptors in outside-out patches from the soma entered long-lived closed states interrupted by infrequent clusters of openings. Each cluster of openings, which is assumed to result from the repeated activation of a single channel, was to one of three main conductance states (28, 17, or 12 pS), the relative frequency of which differed between patches. Such behavior indicates the presence of at least three different receptor types. This heterogeneity was not replicated by individual recombinant receptors (alpha1beta2gamma2S or alpha1beta3gamma2S), which gave rise to clusters of a single type only. By contrast, the conductance of synaptic receptors, determined by fluctuation analysis of the synaptic current or direct resolution of channel events, was remarkably uniform and similar to the highest conductance value seen in extrasynaptic patches. These results suggest that granule cells express multiple GABAA receptor types, but only those with a high conductance, most likely containing a gamma subunit, are activated at the synapse.
Collapse
|
57
|
Abstract
NMDA receptors (NMDARs) are generally believed to mediate exclusively postsynaptic effects at brain synapses. Here we searched for presynaptic effects of NMDA at inhibitory synapses in rat cerebellar slices. In Purkinje cells, application of NMDA enhanced the frequency of miniature IPSCs (mIPSCs) but not that of miniature EPSCs (mEPSCs). This increase in frequency was dependent on the external Mg2+ concentration. In basket and stellate cells, NMDA induced an even larger mIPSC frequency increase than in Purkinje cells, whereas mEPSCs were again not affected. Moreover, NMDA induced an inward current in both types of interneuron, which translated into a small depolarization (approximately 10 mV for 30 microM NMDA) under current-clamp conditions. In paired recordings of connected basket cell-Purkinje cell synapses, depolarizations of 10-30 mV applied to the basket cell soma enhanced the frequency of postsynaptic mIPSCs, suggesting that somatic depolarization was partially transmitted to the terminals in the presence of tetrodotoxin. However, this effect was small and unlikely to account fully for the effects of NMDA on mIPSCs. Consistent with a small number of dendritic NMDARs, evoked EPSCs in interneurons had a remarkably small NMDA component. Evoked IPSCs at interneuron-interneuron synapses were inhibited by NMDA, and the rate of failures was increased, indicating again a presynaptic site of action. We conclude that activation of NMDARs in interneurons exerts complex presynaptic effects, and that the corresponding receptors are most likely located in the axonal domain of the cell.
Collapse
|
58
|
Cull-Candy SG, Brickley SG, Misra C, Feldmeyer D, Momiyama A, Farrant M. NMDA receptor diversity in the cerebellum: identification of subunits contributing to functional receptors. Neuropharmacology 1998; 37:1369-80. [PMID: 9849672 DOI: 10.1016/s0028-3908(98)00119-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent studies of N-methyl-D-aspartate (NMDA) receptors have led to the suggestion that there are two distinct classes of native NMDA receptors, identifiable from their single-channel conductance properties. 'High-conductance' openings arise from NR2A- or NR2B-containing receptors, and 'low-conductance' openings arise from NR2C- or NR2D-containing receptors. In addition, the low-conductance channels show reduced sensitivity to block by Mg2+. The readily identified cell types and simple architecture of the cerebellum make it an ideal model system in which to determine the contribution of specific subunits to functional NMDA receptors. Furthermore, mRNA for all of these four NR2 subunits are represented in this brain region. We have examined NMDA channels in Purkinje cells, deep cerebellar nuclei (DCN) neurons and Golgi cells. First we find that NR2D-containing NMDA receptors give rise to low-conductance openings in cell-attached recordings from Purkinje cells. The characteristic conductance of these events cannot, therefore, be ascribed to patch excision. Second, patches from some DCN neurons exhibit mixed populations of high- and low-conductance openings. Third, Golgi cells also exhibit a mixed population of high- and low-conductance NMDA receptor openings. The features of these low-conductance openings are consistent with the presence of NR2D-containing NMDA receptors, as suggested by in situ hybridization data. On the other hand the existence of high-conductance channels, with properties typical of NR2B-containing receptors, was not expected. Our results provide new evidence about the subunit composition of NMDA receptors in identified cerebellar cells, and suggest that examination of single-channel properties is a potentially powerful approach for determining the possible subunit composition of native NMDA receptors.
Collapse
Affiliation(s)
- S G Cull-Candy
- Department of Pharmacology, University College London, UK.
| | | | | | | | | | | |
Collapse
|
59
|
Ripellino JA, Neve RL, Howe JR. Expression and heteromeric interactions of non-N-methyl-D-aspartate glutamate receptor subunits in the developing and adult cerebellum. Neuroscience 1998; 82:485-97. [PMID: 9466455 DOI: 10.1016/s0306-4522(97)00296-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The localization and expression of ionotropic non-N-methyl-D-aspartate glutamate receptors (GluR) were investigated in the developing and adult rat cerebellum using subunit-specific polyclonal antibodies for immunocytochemical, immunoblot and immunoprecipitation studies. In P7 animals, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor immunoreactivity was detected in all layers of the cerebellar cortex with the exception of the external granule cell layer. Antibodies against the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor subunits GluR1 and GluR4 gave strong immunoreactive staining of Bergmann glia in both young and adult animals, and both antibodies showed prominent staining of the molecular layer in the adult cerebellum. Dense immunoreactive staining of Purkinje cell somata and dendrites was obtained with anti-GluR2/3/4c in both the developing and adult cerebellum. Whereas each of the three alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor antibodies stained the internal, but not the external, granule cell layer, immunostaining for the kainate-type subunits GluR6/7 and KA2 was detected in both the external and internal granule cell layers. as well as in the molecular layer in both P7 and adult cerebellum. Immunoblot analysis of total cerebellar protein indicated that the level of GluR4 expression increased 15-fold from P1 to P18, whereas the expression of the KA2 subunit protein was nine-fold lower in adult cerebellum than it was at P1. The expression of GluR1 increased moderately (two-fold) from P1 to adult. Subunit interactions between GluR1 and GluR4, as well as between GluR6/7 and KA2, were demonstrated in immunoprecipitation experiments; and the GluR4 and KA2 subunits appear to be present exclusively in heteromeric assemblies with GluR1 and GluR6/7, respectively. The results show that the various alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate- and kainate-type subunits are differentially expressed during cerebellar development and further define the possible subunit composition of non-N-methyl-D-aspartate receptors in the major cerebellar cell types.
Collapse
Affiliation(s)
- J A Ripellino
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | | | | |
Collapse
|
60
|
Suárez I, Bodega G, Fernández B. Modulation of AMPA receptor subunits GluR1 and GluR2/3 in the rat cerebellum in an experimental hepatic encephalopathy model. Brain Res 1997; 778:346-53. [PMID: 9459552 DOI: 10.1016/s0006-8993(97)01089-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The immunohistochemical expression and distribution of the AMPA-selective receptor subunits GluR1 and GluR2/3 were investigated in the rat cerebellum following portocaval anastomosis (PCA) at 1 and 6 months. With respect to controls, GluR1 and GluR2/3 immunoreactivities increased over 1 to 6 months following PCA, although immunolabelling patterns for both antibodies were different at the two analysed times. GluR1 immunoreactivity was expressed by Bergmann glial cells, which showed immunoreactive glial processes crossing the molecular layer at 6 months following PCA. The GluR2/3 subunit was expressed by Purkinje neurons and moderately expressed by neurons of the granule cell layer. Immunoreactivity for GluR2/3 was detectable in cell bodies and dendrites of Purkinje cells in young control cerebella, whereas GluR2/3 immunoreactivity was scarce 1 month post PCA. However, despite a lack of immunoreactivity in the Purkinje somata and main processes of adult control rats, GluR2/3 immunoreactivity was strongly enhanced in Purkinje neurons following long-term PCA. These findings suggest that the localization of the GluR2/3 subunit in Purkinje cells undergoes an alteration and/or reorganization as a consequence of long-term PCA. The combination of enhanced GluR immunoreactivity in long-term PCA, both in Bergmann glial cells and in Purkinje neurons, suggests some degree of neuro-glial interaction, possibly through glutamate receptors, in this type of encephalopathy.
Collapse
Affiliation(s)
- I Suárez
- Dpto. Biología Celular y Genética, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.
| | | | | |
Collapse
|
61
|
Bottai D, Dunn RJ, Ellis W, Maler L. N-methyl-D-aspartate receptor 1 mRNA distribution in the central nervous system of the weakly electric fish Apteronotus leptorhynchus. J Comp Neurol 1997; 389:65-80. [PMID: 9390760 DOI: 10.1002/(sici)1096-9861(19971208)389:1<65::aid-cne5>3.0.co;2-c] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have isolated a partial cDNA for the N-methyl-D-aspartate (NMDA) receptor 1 (NMDAR1) subunit from an Apteronotus leptorhynchus brain cDNA library. The A. leptorhynchus cDNA fragment, which corresponds to nucleotides 135-903 within the 5' region of the rat NR1 mRNA, encodes 252 amino acids that are >80% identical to the homologous segments of the rat, human, and duck NR1 proteins. RNAse protection assays revealed that the A. leptorhynchus NR1 mRNA was highly enriched in the forebrain and hypothalamus, with lesser amounts in the brainstem, and very low levels in the cerebellum. In situ hybridization also demonstrated that neurons in the pallial forebrain were highly enriched in NR1 transcripts. High levels of NR1 mRNA were found in pyramidal cells within the optic tectum and octavolateral regions. Pyramidal cells of the electrosensory lateral line lobe had the highest levels of expression, and the NR1 mRNA was found to be selectively enriched in their apical dendrites.
Collapse
Affiliation(s)
- D Bottai
- Center for Research in Neuroscience, Montreal General Hospital Research Institute, Quebec, Canada.
| | | | | | | |
Collapse
|
62
|
Hafidi A, Hillman DE. Distribution of glutamate receptors GluR 2/3 and NR1 in the developing rat cerebellum. Neuroscience 1997; 81:427-36. [PMID: 9300432 DOI: 10.1016/s0306-4522(97)00140-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The distribution of glutamate receptors GluR2/3 and NR1 was analysed immunohistochemically during development of the rat cerebellum. GluR2/3 immunoreactivity appeared by postnatal day P0 in somata of Purkinje cells. Throughout P7, P15, P20 and adulthood, GluR2/3 immunoreactivity was found in the entire Purkinje cell dendritic arbor reaching to the external granular layer and, by P15, the surface of the cerebellum. By P7, the granular layer revealed scattered, mildly reactive, cells. NR-1 immunoreactivity first gained prominence about P7 in the region of the multi-layered Purkinje cell somata. By P15, NR1 was prominent in Purkinje cell somata and Golgi cells. The reaction product extended into the primary main dendrite of Purkinje cells. By P21, stellate and basket cells had intense reactivity throughout the molecular layer and reactive large-diameter dendrites of Golgi cells projected toward the molecular layer. Granule cells remained very weak among strongly reactive Golgi cell somata and dendrites. Ultrastructural immunohistochemistry revealed NR1 reaction product in Purkinje cell somata, in stellate cell somata and dendrites and on postsynaptic membranes of scattered spines throughout the molecular layer. The later appearance and restricted location of NR1 in somata and proximal dendrites of Purkinje cells contrasted markedly with GluR2/3 which appeared before birth and remained prominent throughout Purkinje cell dendritic arbors of adults. The time of NR1 expression correlated with the generation of granule cells, their synaptogenesis on Purkinje cells, the formation of stellate/baske cells and the shift of climbing fibre synapses from distal to proximal dendrites. The developmental appearance of stellate/basket cells and Golgi cells as well as their high reactivity remaining into adulthood suggest that these inhibitory molecular and granular layer interneurons are the principal targets of glutamate axons serving NR1 synaptic properties while Purkinje cells and brush type granule cells are targets for glutamate connections with GluR2/3 characteristics.
Collapse
Affiliation(s)
- A Hafidi
- Laboratoire de Neurobiologie, Universite Blaise-Pascal, Aubiere, France
| | | |
Collapse
|
63
|
Häusser M, Clark BA. Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron 1997; 19:665-78. [PMID: 9331356 DOI: 10.1016/s0896-6273(00)80379-7] [Citation(s) in RCA: 492] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Irregular firing patterns are observed in most central neurons in vivo, but their origin is controversial. Here, we show that two types of inhibitory neurons in the cerebellar cortex fire spontaneously and regularly in the absence of synaptic input but generate an irregular firing pattern in the presence of tonic synaptic inhibition. Paired recordings between synaptically connected neurons revealed that single action potentials in inhibitory interneurons cause highly variable delays in action potential firing in their postsynaptic cells. Activity in single and multiple inhibitory interneurons also significantly reduces postsynaptic membrane time constant and input resistance. These findings suggest that the time window for synaptic integration is a dynamic variable modulated by the level of tonic inhibition, and that rate coding and temporal coding strategies may be used in parallel in the same cell type.
Collapse
Affiliation(s)
- M Häusser
- Laboratoire de Neurobiologie, Ecole Normale Supérieure, Paris, France
| | | |
Collapse
|
64
|
Häusser M, Roth A. Dendritic and somatic glutamate receptor channels in rat cerebellar Purkinje cells. J Physiol 1997; 501 ( Pt 1):77-95. [PMID: 9174996 PMCID: PMC1159506 DOI: 10.1111/j.1469-7793.1997.077bo.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. The properties of glutamate receptor (GluR) channels in outside-out patches from the dendrites and somata of rat cerebellar Purkinje cells in brain slice were studied using fast agonist application techniques. Dendritic patches were isolated 40-130 micronm from the soma. 2. Outside-out patches from both dendrites and somata of Purkinje cells responded to application of glutamate with a current which desensitized rapidly and nearly completely. Currents evoked by glutamate application were blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), were mimicked by L-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), and were modulated by cyclothiazide. Kainate produced small, non-desensitizing currents. No currents were observed in response to aspartate application. Responses characteristic of NMDA receptor activation were not observed. These findings indicate that glutamate-activated currents were mediated by the AMPA subtype of GluR. 3. Deactivation of the GluR channels following 1 ms pulses of glutamate occurred with a time constant of 1.23 +/- 0.07 ms in dendritic and 1.12 +/- 0.04 ms in somatic patches. Desensitization occurred with a time constant of 5.37 +/- 0.26 ms in dendritic and 5.29 +/- 0.29 ms in somatic patches. The time constant of recovery from desensitization caused by a 1 ms application of 1 mM glutamate was 36 ms in dendritic patches and 33 ms in somatic patches. 4. Half-maximal activation of the GluR channels was achieved at a glutamate concentration of 432 microM. Deactivation kinetics were not dependent on the glutamate concentration, while desensitization became slower at lower glutamate concentrations. 5. Pre-equilibration of patches with low concentrations of glutamate reduced the peak current activated by 1 mM glutamate. The IC50 for this effect was 8.7 microM. Equilibrium desensitization did not affect the kinetics of the current activated by 1 mM glutamate. 6. The current-voltage relationship of the peak current was linear in normal Na(+)-rich external solution, with a reversal potential near 0 mV. In Ca(2+) -rich external solution, the reversal potentials were -51.4 +/- 2.9 and -51.5 +/- 2.8 mV for dendritic and somatic patches, respectively, indicating that these glutamate channels have a low permeability to Ca2+ (PCa/PCa = 0.053). 7. The mean single-channel conductance of the GluR channels measured using non-stationary fluctuation analysis was approximately 8 pS in dendritic and somatic patches, and the maximum open probability was at least 0.7 with 5 mM glutamate. 8. GluR channel kinetics in patches excised from the soma of neonatal (postnatal day 4; P4) Purkinje cells, before the development of the dendritic arborization of the Purkinje cell, were similar to those in patches excised from more mature (P12-18) Purkinje cells. 9. Dendritic and somatic GluR channels in Purkinje cells appear to be functionally identical, are AMPA-subtype receptors containing the GluR-B subunit, and have rapid kinetics and low permeability to Ca2+. A kinetic model was constructed which faithfully reproduces the gating characteristics of the GluR channels.
Collapse
Affiliation(s)
- M Häusser
- Abteilung Zellphysiologie, Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany.
| | | |
Collapse
|
65
|
Antkowiak B, Heck D. Effects of the volatile anesthetic enflurane on spontaneous discharge rate and GABA(A)-mediated inhibition of Purkinje cells in rat cerebellar slices. J Neurophysiol 1997; 77:2525-38. [PMID: 9163374 DOI: 10.1152/jn.1997.77.5.2525] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The effects of the volatile anesthetic enflurane on the spontaneous action potential firing and on gamma-aminobutyric acid-A (GABA(A))-mediated synaptic inhibition of Purkinje cells were investigated in sagittal cerebellar slices. The anesthetic shifted the discharge patterns from continuous spiking toward burst firing and decreased the frequency of extracellularly recorded spontaneous action potentials in a concentration-dependent manner. Half-maximal reduction was observed at a concentration corresponding to 2 MAC (1 MAC induces general anesthesia in 50% of patients and rats). When the GABA(A) antagonist bicuculline was present, 2 MAC enflurane reduced action potential firing only by 13 +/- 8% (mean +/- SE). In further experiments, inhibitory postsynaptic currents (IPSCs) were monitored in the whole cell patch-clamp configuration from cells voltage clamped close to -80 mV. At 1 MAC, enflurane attenuated the mean amplitude of IPSCs by 54 +/- 3% while simultaneously prolonging the time courses of monoexponential current decays by 413 +/- 69%. These effects were similar when presynaptic action potentials were suppressed by 1 microM tetrodotoxin. At 1-2 MAC, enflurane increased GABA(A)-mediated inhibition of Purkinje cells by 97 +/- 20% to 159 +/- 38%. During current-clamp recordings, the anesthetic (2 MAC) hyperpolarized the membrane potential by 5.2 +/- 1.1 mV in the absence, but only by 1.6 +/- 1.2 mV in the presence, of bicuculline. These results suggest that enflurane-induced membrane hyperpolarizations, as well as the reduction of spike rates, were partly caused by an increase in synaptic inhibition. Induction of burst firing was related to other actions of the anesthetic, probably an accelerated activation of an inwardly directed cationic current and a depression of spike afterhyperpolarizations.
Collapse
Affiliation(s)
- B Antkowiak
- Max-Planck-Institut für Biologische Kybernetik, Tuebingen, Germany
| | | |
Collapse
|
66
|
Abstract
NMDA and non-NMDA receptors mediate the majority of fast excitatory synaptic transmission in the CNS. AII amacrine cells in the mammalian retina receive glutamatergic input from rod bipolar cells and are known to express non-NMDA receptors. We have investigated the expression of NMDA receptors in these cells by recording responses to exogenously applied NMDA in whole-cell recordings in slices of rat retina. Most cells displayed clear responses to NMDA. The responses could be blocked by a specific NMDA receptor antagonist and were characterized by voltage-dependent block with outward rectification. These results suggest that NMDA receptors could play a role in mediating excitatory synaptic input to AII amacrine cells.
Collapse
Affiliation(s)
- E Hartveit
- University of Oslo, Department of Neurophysiology, Norway
| | | |
Collapse
|
67
|
Abstract
The assumption that synaptic and extrasynaptic glutamate receptors are similar underpins many studies that have sought to relate the behavior of channels in excised patches to the macroscopic properties of the EPSC. We have examined this issue for NMDA receptors in cerebellar granule cells, the small size of which allows the opening of individual synaptic NMDA channels to be resolved directly. We have used whole-cell patch-clamp recordings to determine the conductance and open time of NMDA channels activated during the EPSC and used cell-attached and outside-out recordings to examine NMDA receptors in somatic membrane. Conductance and open time of synaptic channels were indistinguishable from those of extrasynaptic channels in cell-attached patches. However, the channel conductance in outside-out patches was 20% lower than in cell-attached recordings. This change was partially reduced by dantrolene and phalloidin, suggesting that it may involve depolymerization of actin following Ca2+ release from intracellular stores. Our results demonstrate that synaptic and extrasynaptic NMDA receptors have similar microscopic properties. However, NMDA channel conductance is reduced following the formation of an outside-out patch.
Collapse
|
68
|
De Schutter E. A new functional role for cerebellar long-term depression. PROGRESS IN BRAIN RESEARCH 1997; 114:529-42. [PMID: 9193164 DOI: 10.1016/s0079-6123(08)63384-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- E De Schutter
- Born-Bunge Foundation, University of Antwerp-UIA, Belgium
| |
Collapse
|
69
|
Tempia F, Bravin M, Strata P. Postsynaptic currents and short-term synaptic plasticity in Purkinje cells grafted onto an uninjured adult cerebellar cortex. Eur J Neurosci 1996; 8:2690-701. [PMID: 8996819 DOI: 10.1111/j.1460-9568.1996.tb01564.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
It has been shown recently that embryonic Purkinje cells grafted extraparenchymally into an intact cerebellum, in the absence of any sign of damage, are able to migrate into the host molecular layer where they receive a climbing fibre innervation. Using the same technique, we investigated the development of the electrophysiological properties of the synapses between the grafted cells and their main afferents. Purkinje cells either in the graft or having migrated into the molecular layer of the host were recorded using the whole-cell patch-clamp method in acutely prepared slices 17-112 days after grafting. Spontaneous postsynaptic currents with a single-exponential decay and mediated by GABAA receptors were very similar to those described in normal Purkinje cells. Excitatory postsynaptic currents (EPSCs) evoked by climbing fibre and by parallel fibre stimulation were blocked by an alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA)/kainate antagonist, and displayed the linear current-voltage relation typical of postnatal Purkinje cells. The attainment of normal functional properties by the adult axons at the newly formed synaptic sites was shown by the expression of short-term facilitation of parallel fibre EPSCs and of short-term depression of climbing fibre EPSCs. The grafted Purkinje cells showed climbing fibre polyinnervation 17-20 days after grafting which evolved to monoinnervation at 23-45 days, confirming the completion of the developmental programme up to maturation. Our experiments support the view that the adult intact brain is able to accept and integrate an additional number of neurons which show fully mature electrophysiological properties which are electrophysiologically indistinguishable from those of the host neurons.
Collapse
Affiliation(s)
- F Tempia
- Department of Neuroscience, University of Torino, Italy
| | | | | |
Collapse
|
70
|
Functional NMDA receptors are transiently active and support the survival of Purkinje cells in culture. J Neurosci 1996. [PMID: 8764653 DOI: 10.1523/jneurosci.16-15-04651.1996] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Conflicting evidence exists concerning the activity of NMDA receptors (NMDARs) in cerebellar Purkinje cells and their possible functions. To investigate the activity of NMDARS, we used whole-cell recording on immunocytochemically identified Purkinje cells in primary culture. In addition, we used mice with a disrupted NMDAR1 gene that lack functional NMDARs (NR1-/-) to assess the physiological role of NMDARs. In cultures from normal mice, NMDA-medicated currents were detected in all identified Purkinje cells at 4 d in vitro (div). After 14 d, however, NMDA responses were reduced in amplitude, whereas the responses to kainate and glutamate increased steadily in amplitude. In addition, the NMDA-induced current displayed a pronounced desensitization at these later stages; peak current declined to zero during steady application of NMDA. At 7 div, the number of surviving Purkinje cells was less in cultures treated with NMDA antagonists, and their survival was dose-dependent. Purkinje cell survival was correspondingly poorer in cultures from the NR1-/- mice than in wild-type controls, suggesting that NMDAR activity enhances the survival of Purkinje cells in vitro. The addition of moderate doses of NMDA promoted the survival of wild-type Purkinje cells in the presence of tetrodotoxin. Feeder layers of cerebellar granule cells derived from wild-type or NR1-/- mice promoted survival of Purkinje cells to a similar degree, suggesting that the NMDAR in Purkinje cells, but not in other cells, is directly involved in Purkinje cell viability. The results demonstrate that NMDARs transiently produce membrane current in Purkinje cells and may serve as one of the epigenetic factors that support the survival of Purkinje cells in vitro.
Collapse
|
71
|
We know a lot about the cerebellum, but do we know what motor learning is? Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
72
|
Sensorimotor learning in structures “upstream” from the cerebellum. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
73
|
Cerebellar arm ataxia: Theories still have a lot to explain. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
74
|
|
75
|
Resilient cerebellar theory complies with stiff opposition. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00082005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
76
|
The cerebellum and cerebral cortex: Contrasting and converging contributions to spatial navigation and memory. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
77
|
Cerebellum does more than recalibration of movements after perturbations. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
78
|
A cerebellar long-term depression update. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
79
|
What has to be learned in motor learning? Behav Brain Sci 1996. [DOI: 10.1017/s0140525x0008153x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
80
|
Further evidence for the involvement of nitric oxide in trans-ACPD-induced suppression of AMPA responses in cultured chick Purkinje neurons. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
81
|
|
82
|
More models of the cerebellum. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x0008198x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
83
|
Cerebellar rhythms: Exploring another metaphor. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x0008184x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
84
|
The notions of joint stiffness and synaptic plasticity in motor memory. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
85
|
How and what does the cerebellum learn? Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
86
|
Plasticity of cerebro-cerebellar interactions in patients with cerebellar dysfunction. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
87
|
How to link the specificity of cerebellar anatomy to motor learning? Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
88
|
Long-term changes of synaptic transmission: A topic of long-term interest. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
89
|
Nitric oxide is involved in cerebellar long-term depression. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
90
|
No more news from the cerebellum. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
91
|
A bridge between cerebellar long-term depression and discrete motor learning: Studies on gene knockout mice. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
92
|
Cellular mechanisms of long-term depression: From consensus to open questions. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
93
|
How can the cerebellum match “error signal” and “error correction”? Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
94
|
Momiyama A, Feldmeyer D, Cull-Candy SG. Identification of a native low-conductance NMDA channel with reduced sensitivity to Mg2+ in rat central neurones. J Physiol 1996; 494 ( Pt 2):479-92. [PMID: 8842006 PMCID: PMC1160649 DOI: 10.1113/jphysiol.1996.sp021507] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. We have identified a new type of NMDA channel in rat central neurones that express mRNA for the NR2D subunit. We have examined single NMDA channels in cerebellar Purkinje cells (which possess NR1 and 2D), deep cerebellar nuclei (NR1, 2A, 2B and 2D) and spinal cord dorsal horn neurones (NR1, 2B and 2D). 2. In Purkinje cells, NMDA opened channels with a main conductance of 37.9 +/- 1.1 pS and a subconductance of 17.8 +/- 0.7 pS, with frequent transitions between the two levels. 3. NMDA activated low-conductance ('38/18 pS') events (along with high-conductance--'50/40 pS'--openings) in some patches from deep cerebellar nuclei and dorsal horn neurones. Our evidence suggests that 38/18 pS and 50/40 pS events arose from distinct types of NMDA receptors. 4. The transitions for 38/18 pS events were asymmetrical: steps from 38 to 18 pS were more frequent (72.2%) than steps from 18 to 38 pS. This feature appeared common to the 38/18 pS events in all three cell types, suggesting similarity in the low-conductance channels. 5. The 38/18 pS channels in Purkinje cells exhibited characteristic NMDA receptor properties, including requirement for glycine, antagonism by D-2-amino-5-phosphonopentanoic acid (D-AP5) and 7-chlorokynurenic acid, and voltage-dependent block by extracellular Mg2+. 6. The mean open time for the 38 pS state (0.74 +/- 0.07 ms) was significantly briefer than that for the 18 pS state (1.27 +/- 0.18 ms). 7. Mg2+ block of low-conductance NMDA channels in Purkinje cells was less marked than block of 50/40 pS channels in cerebellar granule cells. 8. The time course of appearance of 38/18 pS NMDA channels matched the expression of mRNA for the NR2D subunit. Thus 38/18 pS events were present in > 70% of Purkinje cell patches in 0- to 8-day-old animals, and absent by postnatal day 12. 9. We propose that the 38/18 pS NMDA channels identified here (associated with the NR2D subunit), and the other low-conductance NMDA channel associated with the NR2C subunit, may together constitute a functionally distinct subclass of native NMDA receptors.
Collapse
Affiliation(s)
- A Momiyama
- Department of Pharmacology, University College London, UK.
| | | | | |
Collapse
|
95
|
Developmental changes of inhibitory synaptic currents in cerebellar granule neurons: role of GABA(A) receptor alpha 6 subunit. J Neurosci 1996. [PMID: 8642407 DOI: 10.1523/jneurosci.16-11-03630.1996] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Eye opening and increased motor activity after the second postnatal week in rats imply an extensive development of motor control and coordination. We show a parallel development change in spontaneous IPSC (sIPSC) kinetics in cerebellar granule neurons. sIPSCs were studied by whole-cell recordings in cerebellar slices, prepared from 7-30 postnatal day old rats. Early in development, sIPSCs had slow decay kinetics whereas in older rats faster decaying sIPSCs were found in larger proportion. Currents elicited by 1 mM GABA pulses (GABACs) in nucleated patches excised from cerebellar granule neurons revealed that GABACs kinetics better approximate sIPSC decay in young but not in more developed rats. The expression of alpha 6 subunit of GABAA receptors, unique in cerebellar granule neurons, has been shown to increase during development. Therefore, we took advantage of the recently reported selective inhibition of GABAA receptors by furosemide to characterize the relative contribution of alpha 6 subunits to native receptors in inhibitory synapses of cerebellar granule neurons. Although furosemide inhibition of sIPSCs amplitude was highly variable among distinct granule cells, it increased during development. At the same time, furosemide failed to inhibit sIPSCs recorded from Purkinje neurons. From the comparison of furosemide inhibition and kinetics of sIPSCs with GABACs recorded from mammalian HEK293 cells transfected with combinations of alpha 1 and alpha 6 GABAA receptor subunits together with beta 2 gamma 2 subunits, we propose that an increased alpha 6 subunit contribution in the molecular assembly of postsynaptic receptors in cerebellar glomeruli is responsible for the developmental changes observed.
Collapse
|
96
|
Salin PA, Malenka RC, Nicoll RA. Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron 1996; 16:797-803. [PMID: 8607997 DOI: 10.1016/s0896-6273(00)80099-9] [Citation(s) in RCA: 318] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The N-methyl-D-aspartate receptor-independent form of long-term potentiation (LTP) at hippocampal mossy fiber synapses requires presynaptic Ca(2+)-dependent activation of adenylyl cyclase. To determine whether this form of LTP might occur at other synapses, we examined cerebellar parallel fibers that, like hippocampal mossy fiber synapses, express high levels of the Ca2+/calmodulin-sensitive adenylyl cyclase I. Repetitive stimulation of parallel fibers caused a long-lasting increase in synaptic strength that was associated with a decrease in paired-pulse facilitation. Blockade of glutamate receptors did not prevent LTP induction, nor did loading of Purkinje cells with a Ca2+ chelator. LTP was occluded by forskolin-induced potentiation and blocked by the protein kinase A inhibitor Rp-8-CPT-cAMPS. These findings suggest that parallel fiber synapses express a form of LTP that is dependent on the activation of a presynaptic adenylyl cyclase and is indistinguishable from LTP at hippocampal mossy fiber synapses.
Collapse
Affiliation(s)
- P A Salin
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco 94143-0450, USA
| | | | | |
Collapse
|
97
|
Llano I, Marty A. Presynaptic metabotropic glutamatergic regulation of inhibitory synapses in rat cerebellar slices. J Physiol 1995; 486 ( Pt 1):163-76. [PMID: 7562633 PMCID: PMC1156506 DOI: 10.1113/jphysiol.1995.sp020800] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. The effects of the metabotropic glutamate agonist trans-ACPD (t-ACPD) were investigated in various locations of the inhibitory network made by GABAergic interneurones in the molecular layer of rat cerebellar slices. 2. t-ACPD exerted complex effects on spontaneous IPSCs in Purkinje cells. IPSC frequency was transiently inhibited during short (< 1 min) applications, and enhanced upon washing. During prolonged exposure to t-ACPD, IPSCs became organized in high-frequency bursts interspersed with periods of deep inhibition. 3. In interneurones, the frequency of spontaneous IPSCs was enhanced by t-ACPD. As in Purkinje cells, spontaneous IPSCs had a tendency to cluster in bursts in the presence of t-ACPD. 4. Evoked IPSCs recorded either in interneurones or in Purkinje cells upon stimulation of presynaptic interneurones were reversibly inhibited by t-ACPD. 5. Miniature IPSCs (mIPSCs) were recorded in the presence of tetrodotoxin both in Purkinje cells and in interneurones. t-ACPD did not alter the mean amplitude of mIPSCs in either cell type. It reduced the frequency of mIPSCs in Purkinje cells, but did not alter their rate in interneurones. 6. In cell-attached recordings on interneurone somata, t-ACPD was found to induce clustering of action potentials and to enhance the mean rate of firing. These results apply whether t-ACPD was tested in normal saline, in the presence of glutamatergic ionotrophic blockers, or in the presence of a mixture of glutamatergic and GABAergic blockers. 7. The results suggest that t-ACPD has at least two different modes of action. One effect is to alter the intrinsic firing rate of interneurones, presumably through an action on somatic conductance mechanisms. The other is to decrease the efficacy of the interneurone-interneurone and interneurone-Purkinje cell synapses, presumably through an action on axonal conductance systems and/or vesicle release mechanisms.
Collapse
Affiliation(s)
- I Llano
- Laboratoire de Neurobiologie, Ecole Normale Supérieure, Paris, France
| | | |
Collapse
|
98
|
Abstract
A detailed, light microscopic study on the distribution of the N-methyl- D-aspartate receptor subunit 1 (NMDAR1) was carried out with immunohistochemistry and in situ hybridization on the cerebellar cortex of the mouse. With a monoclonal antibody, labeling of Purkinje cell bodies varied from intense to negative, while heavy dendritic staining was limited to the proximal dendrites (unlike the rat, which also had heavily stained distal dendrites). In the granular layer, the cell bodies and and the dendritic shafts of Golgi II cells were only moderately stained, but very intense labeling was associated with granule cell bodies, and with their dendrites and dendritic endings in the glomeruli. The mossy and climbing fibers were negative. In situ hybridization with a cRNA probe showed levels and spatial distributions of NMDAR1 mRNA consistent with the immunolabeling pattern, in that signals were strongest in the granular and Purkinje cell layers and relatively low or absent in the molecular layer and white matter. The findings are consistent with the hypothesis that NMDAR1 may be especially well concentrated at the synaptic target sites of the mossy and climbing fibers. In the mouse, NMDAR1 at the parallel fiber sites associated with Purkinje cell spiny branchlets may differ from the rat in its level of expression or in its molecular configuration.
Collapse
Affiliation(s)
- S R Bilak
- Department of Anatomy, University of Connecticut Health Center, Farmington 06030, USA
| | | | | |
Collapse
|
99
|
Kaneda M, Farrant M, Cull-Candy SG. Whole-cell and single-channel currents activated by GABA and glycine in granule cells of the rat cerebellum. J Physiol 1995; 485 ( Pt 2):419-35. [PMID: 7545231 PMCID: PMC1158002 DOI: 10.1113/jphysiol.1995.sp020739] [Citation(s) in RCA: 207] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
1. Patch-clamp methods have been used to characterize GABA-and glycine-activated channels and spontaneous synaptic currents in granule cells in thin cerebellar slices from 7- to 20-day-old rats. 2. All granule cells responded to 10 microM GABA, while approximately 60% responded to 100 microM glycine. With repeated against application, whole-cell responses to GABA, but not those to glycine, declined over a period of minutes unless the pipette solution contained Mg-ATP. 3. Whole-cell concentration-response curves gave EC50 values at 45.2 and 99.6 microM and Hill slopes of 0.94 and 2.6 for GABA and glycine, respectively. At saturating concentrations, currents evoked by GABA were fivefold larger than those evoked by glycine. 4. Whole-cell current-voltage (I-V) relationships of GABA- and glycine-activated currents reversed close to the predicted Cl- equilibrium potential. Partial replacement of intracellular Cl- with F- shifted the GABA reversal potential to a more negative value. 'Instantaneous' I-V relationships produced by ionophoretic application of GABA were linear, while 'steady-state' I-V relationships produced by ramp changes in potential showed outward rectification. For glycine, 'steady-state' I-V plots were linear. 5. Responses to GABA were blocked by the GABAA receptor antagonists bicuculline (15 microM), SR-95531 (10 microM) and picrotoxinin (100 microM) while responses to glycine were selectively blocked by strychnine (200 nM), indicating the presence of two separate receptor types. 6. In outside-out membrane patches, GABA opened channels with conductances of 16 and 28 pS. The proportion of openings to each of the conductances varied between patches, possibly indicating the activation of two distinct channel types. Glycine-activated single-channel currents had conductances of 32, 55 and 104 pS. Single-channel I-V relationships were linear. 7. Spontaneous synaptic currents with a rapid rise time and biexponential decay were present in more than half of the cells examined. These currents were eliminated by bicuculline (15 microM) or SR-95331 (10 microM) and were greatly reduced in frequency by tetrodotoxin (TTX; 300 nM), suggesting that they were mediated by GABA and arose from spontaneous activity in Golgi interneurones. In granule cells where this spontaneous synaptic activity was apparent, glycine and low concentrations of GABA increased the frequency of the synaptic currents.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M Kaneda
- Department of Pharmacology, University College London, UK
| | | | | |
Collapse
|
100
|
Abstract
N-methyl-D-aspartate (NMDA)-activated glutamate receptor subunits are invariably expressed in neurons, although NMDA-activated currents have been recently described in Bergmann glia. To date, the NMDA receptor subunit 2B (NMDAR2B) was thought not to be expressed in adult cerebellum. In the present study we provide evidence, from in situ hybridization histochemistry, that Bergmann glial cells in rat brain express mRNA encoding the NMDAR2B subunit, most probably co-expressed with the ubiquitous NMDAR1 subunit, while transcripts for other NMDAR2 subunits (A,C,D) were either not resolved or detected. Our findings suggest that Bergmann glial cells contain the molecular machinary to synthesize the NMDA receptor 2B subunit. The role of physiological NMDA receptors in the interaction between Bergmann glia and Purkinje neurons is not yet known.
Collapse
Affiliation(s)
- J M Luque
- Pharma Division, F. Hoffmann-La Roche Ltd., Basle, Switzerland
| | | |
Collapse
|