51
|
Shakerley NL, Chandrasekaran A, Trebak M, Miller BA, Melendez JA. Francisella tularensis Catalase Restricts Immune Function by Impairing TRPM2 Channel Activity. J Biol Chem 2016; 291:3871-81. [PMID: 26679996 PMCID: PMC4759167 DOI: 10.1074/jbc.m115.706879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 12/16/2015] [Indexed: 12/12/2022] Open
Abstract
As an innate defense mechanism, macrophages produce reactive oxygen species that weaken pathogens and serve as secondary messengers involved in immune function. The Gram-negative bacterium Francisella tularensis utilizes its antioxidant armature to limit the host immune response, but the mechanism behind this suppression is not defined. Here we establish that F. tularensis limits Ca(2+) entry in macrophages, thereby limiting actin reorganization and IL-6 production in a redox-dependent fashion. Wild type (live vaccine strain) or catalase-deficient F. tularensis (ΔkatG) show distinct profiles in their H2O2 scavenging rates, 1 and 0.015 pm/s, respectively. Murine alveolar macrophages infected with ΔkatG display abnormally high basal intracellular Ca(2+) concentration that did not increase further in response to H2O2. Additionally, ΔkatG-infected macrophages displayed limited Ca(2+) influx in response to ionomycin, as a result of ionophore H2O2 sensitivity. Exogenously added H2O2 or H2O2 generated by ΔkatG likely oxidizes ionomycin and alters its ability to transport Ca(2+). Basal increases in cytosolic Ca(2+) and insensitivity to H2O2-mediated Ca(2+) entry in ΔkatG-infected cells are reversed by the Ca(2+) channel inhibitors 2-aminoethyl diphenylborinate and SKF-96365. 2-Aminoethyl diphenylborinate but not SKF-96365 abrogated ΔkatG-dependent increases in macrophage actin remodeling and IL-6 secretion, suggesting a role for H2O2-mediated Ca(2+) entry through the transient receptor potential melastatin 2 (TRPM2) channel in macrophages. Indeed, increases in basal Ca(2+), actin polymerization, and IL-6 production are reversed in TRPM2-null macrophages infected with ΔkatG. Together, our findings provide compelling evidence that F. tularensis catalase restricts reactive oxygen species to temper macrophage TRPM2-mediated Ca(2+) signaling and limit host immune function.
Collapse
Affiliation(s)
- Nicole L Shakerley
- From the Colleges of Nanoscale Science, State University of New York, Polytechnic Institute, Albany, New York 12203 and
| | - Akshaya Chandrasekaran
- From the Colleges of Nanoscale Science, State University of New York, Polytechnic Institute, Albany, New York 12203 and
| | - Mohamed Trebak
- From the Colleges of Nanoscale Science, State University of New York, Polytechnic Institute, Albany, New York 12203 and the Departments of Cellular & Molecular Physiology and
| | - Barbara A Miller
- Pediatrics and Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - J Andrés Melendez
- From the Colleges of Nanoscale Science, State University of New York, Polytechnic Institute, Albany, New York 12203 and
| |
Collapse
|
52
|
Lo KY, Visram S, Vogl AW, Shen CLJ, Guttman JA. Morphological analysis of Francisella novicida epithelial cell infections in the absence of functional FipA. Cell Tissue Res 2016; 363:449-59. [PMID: 26239909 DOI: 10.1007/s00441-015-2246-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 06/22/2015] [Indexed: 12/16/2022]
Abstract
Francisella novicida is a surrogate pathogen commonly used to study infections by the potential bioterrorism agent, Francisella tularensis. One of the primary sites of Francisella infections is the liver where >90% of infected cells are hepatocytes. It is known that once Francisella enter cells it occupies a membrane-bound compartment, the Francisella-containing vacuole (FCV), from which it rapidly escapes to replicate in the cytosol. Recent work examining the Francisella disulfide bond formation (Dsb) proteins, FipA and FipB, have demonstrated that these proteins are important during the Francisella infection process; however, details as to how the infections are altered in epithelial cells have remained elusive. To identify the stage of the infections where these Dsbs might act during epithelial infections, we exploited a hepatocyte F. novicida infection model that we recently developed. We found that F. novicida ΔfipA-infected hepatocytes contained bacteria clustered within lysosome-associated membrane protein 1-positive FCVs, suggesting that FipA is involved in the escape of F. novicida from its vacuole. Our morphological evidence provides a tangible link as to how Dsb FipA can influence Francisella infections.
Collapse
Affiliation(s)
- Karen Y Lo
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Shyanne Visram
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - A Wayne Vogl
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, 2350 Health Sciences Mall, Vancouver, V6T 1Z3, British Columbia, Canada
| | - Chiao Ling Jennifer Shen
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Julian A Guttman
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.
| |
Collapse
|
53
|
Park YD, Williamson PR. Masking the Pathogen: Evolutionary Strategies of Fungi and Their Bacterial Counterparts. J Fungi (Basel) 2015; 1:397-421. [PMID: 29376918 PMCID: PMC5753132 DOI: 10.3390/jof1030397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 11/21/2022] Open
Abstract
Pathogens reduce immune recognition of their cell surfaces using a variety of inert structural polysaccharides. For example, capsular polysaccharides play critical roles in microbial survival strategies. Capsules are widely distributed among bacterial species, but relatively rare in eukaryotic microorganisms, where they have evolved considerable complexity in structure and regulation and are exemplified by that of the HIV/AIDS-related fungus Cryptococcus neoformans. Endemic fungi that affect normal hosts such as Histoplasma capsulatum and Blastomyces dermatitidis have also evolved protective polysaccharide coverings in the form of immunologically inert α-(1,3)-glucan polysaccharides to protect their more immunogenic β-(1,3)-glucan-containing cell walls. In this review we provide a comparative update on bacterial and fungal capsular structures and immunogenic properties as well as the polysaccharide masking strategies of endemic fungal pathogens.
Collapse
Affiliation(s)
- Yoon-Dong Park
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Building 10, Rm 11N222, MSC 1888, Bethesda, MD 20892, USA.
| | - Peter R Williamson
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Building 10, Rm 11N222, MSC 1888, Bethesda, MD 20892, USA.
| |
Collapse
|
54
|
Pavelka MS. One of these is not like the others. Trends Microbiol 2015; 23:668-670. [PMID: 26439291 DOI: 10.1016/j.tim.2015.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 02/01/2023]
Abstract
A Mycobacterium tuberculosis metA mutant that is auxotrophic for methionine is unlike other auxotrophic mutants of this important species as methionine starvation results in rapid death instead of cessation of growth. Evidence suggests that this phenotype results from starvation affecting essential pathways that utilize S-adenosylmethionine in addition to methionine.
Collapse
Affiliation(s)
- Martin S Pavelka
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
55
|
Shabbir MZ, Jamil T, Ali AA, Ahmad A, Naeem M, Chaudhary MH, Bilal M, Ali MA, Muhammad K, Yaqub T, Bano A, Mirza AI, Shabbir MAB, McVey WR, Patel K, Francesconi S, Jayarao BM, Rabbani M. Prevalence and distribution of soil-borne zoonotic pathogens in Lahore district of Pakistan. Front Microbiol 2015; 6:917. [PMID: 26441860 PMCID: PMC4564694 DOI: 10.3389/fmicb.2015.00917] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/21/2015] [Indexed: 12/15/2022] Open
Abstract
A multidisciplinary, collaborative project was conducted to determine the prevalence and distribution of soil-borne zoonotic pathogens in Lahore district of Pakistan and ascertain its Public Health Significance. Using a grid-based sampling strategy, soil samples (n = 145) were collected from villages (n = 29, 5 samples/village) and examined for Bacillus anthracis, Burkholderia mallei/pseudomallei, Coxiella burnetii, Francisella tularensis, and Yersinia pestis using real time PCR assays. Chemical analysis of soil samples was also performed on these samples. The relationship between soil composition and absence or presence of the pathogen, and seven risk factors was evaluated. DNA of B. anthracis (CapB), B. mallei/pseudomallei (chromosomal gene), C. burnetii (IS1111, transposase gene), and F. tularensis (lipoprotein/outer membrane protein) was detected in 9.6, 1.4, 4.8, and 13.1% of soil samples, respectively. None of the samples were positive for protective antigen plasmid (PA) of B. anthracis and Y. pestis (plasminogen activating factor, pPla gene). The prevalence of B. anthracis (CapB) was found to be associated with organic matter, magnesium (Mg), copper (Cu), chromium (Cr), manganese (Mn), cobalt (Co), cadmium (Cd), sodium (Na), ferrous (Fe), calcium (Ca), and potassium (K). Phosphorous (P) was found to be associated with prevalence of F. tularensis while it were Mg, Co, Na, Fe, Ca, and K for C. burnetii. The odds of detecting DNA of F. tularensis were 2.7, 4.1, and 2.7 higher when soil sample sites were >1 km from animal markets, >500 m from vehicular traffic roads and animal density of < 1000 animals, respectively. While the odds of detecting DNA of C. burnetii was 32, 11.8, and 5.9 higher when soil sample sites were >500 m from vehicular traffic roads, presence of ground cover and animal density of < 1000 animals, respectively. In conclusion, the distribution pattern of the soil-borne pathogens in and around the areas of Lahore district puts both human and animal populations at a high risk of exposure. Further studies are needed to explore the genetic nature and molecular diversity of prevailing pathogens together with their seroconversion in animals and humans.
Collapse
Affiliation(s)
| | - Tariq Jamil
- University of Veterinary and Animal Sciences Lahore, Pakistan
| | - Asad A Ali
- University of Veterinary and Animal Sciences Lahore, Pakistan
| | - Arfan Ahmad
- University of Veterinary and Animal Sciences Lahore, Pakistan
| | | | | | - Muhammad Bilal
- University of Veterinary and Animal Sciences Lahore, Pakistan
| | - Muhammad A Ali
- University of Veterinary and Animal Sciences Lahore, Pakistan
| | - Khushi Muhammad
- University of Veterinary and Animal Sciences Lahore, Pakistan
| | - Tahir Yaqub
- University of Veterinary and Animal Sciences Lahore, Pakistan
| | | | - Ali I Mirza
- Government College University Lahore, Pakistan
| | | | - Walter R McVey
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University University Park, PA, USA
| | - Ketan Patel
- Naval Medical Research Unit Frederick, MA, USA
| | | | - Bhushan M Jayarao
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University University Park, PA, USA
| | - Masood Rabbani
- University of Veterinary and Animal Sciences Lahore, Pakistan
| |
Collapse
|
56
|
Development of a Multivalent Subunit Vaccine against Tularemia Using Tobacco Mosaic Virus (TMV) Based Delivery System. PLoS One 2015; 10:e0130858. [PMID: 26098553 PMCID: PMC4476615 DOI: 10.1371/journal.pone.0130858] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/26/2015] [Indexed: 11/21/2022] Open
Abstract
Francisella tularensis is a facultative intracellular pathogen, and is the causative agent of a fatal human disease known as tularemia. F. tularensis is classified as a Category A Biothreat agent by the CDC based on its use in bioweapon programs by several countries in the past and its potential to be used as an agent of bioterrorism. No licensed vaccine is currently available for prevention of tularemia. In this study, we used a novel approach for development of a multivalent subunit vaccine against tularemia by using an efficient tobacco mosaic virus (TMV) based delivery platform. The multivalent subunit vaccine was formulated to contain a combination of F. tularensis protective antigens: OmpA-like protein (OmpA), chaperone protein DnaK and lipoprotein Tul4 from the highly virulent F. tularensis SchuS4 strain. Two different vaccine formulations and immunization schedules were used. The immunized mice were challenged with lethal (10xLD100) doses of F. tularensis LVS on day 28 of the primary immunization and observed daily for morbidity and mortality. Results from this study demonstrate that TMV can be used as a carrier for effective delivery of multiple F. tularensis antigens. TMV-conjugate vaccine formulations are safe and multiple doses can be administered without causing any adverse reactions in immunized mice. Immunization with TMV-conjugated F. tularensis proteins induced a strong humoral immune response and protected mice against respiratory challenges with very high doses of F. tularensis LVS. This study provides a proof-of-concept that TMV can serve as a suitable platform for simultaneous delivery of multiple protective antigens of F. tularensis. Refinement of vaccine formulations coupled with TMV-targeting strategies developed in this study will provide a platform for development of an effective tularemia subunit vaccine as well as a vaccination approach that may broadly be applicable to many other bacterial pathogens.
Collapse
|
57
|
Rasmussen JA, Fletcher JR, Long ME, Allen LAH, Jones BD. Characterization of Francisella tularensis Schu S4 mutants identified from a transposon library screened for O-antigen and capsule deficiencies. Front Microbiol 2015; 6:338. [PMID: 25999917 PMCID: PMC4419852 DOI: 10.3389/fmicb.2015.00338] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/06/2015] [Indexed: 02/02/2023] Open
Abstract
The lipopolysaccharide (LPS) and O-antigen polysaccharide capsule structures of Francisella tularensis play significant roles in helping these highly virulent bacteria avoid detection within a host. We previously created pools of F. tularensis mutants that we screened to identify strains that were not reactive to a monoclonal antibody to the O-antigen capsule. To follow up previously published work, we characterize further seven of the F. tularensis Schu S4 mutant strains identified by our screen. These F. tularensis strains carry the following transposon mutations: FTT0846::Tn5, hemH::Tn5, wbtA::Tn5, wzy::Tn5, FTT0673p/prsA::Tn5, manB::Tn5, or dnaJ::Tn5. Each of these strains displayed sensitivity to human serum, to varying degrees, when compared to wild-type F. tularensis Schu S4. By Western blot, only FTT0846::Tn5, wbtA::Tn5, wzy::Tn5, and manB::Tn5 strains did not react to the capsule and LPS O-antigen antibody 11B7, although the wzy::Tn5 strain did have a single O-antigen reactive band that was detected by the FB11 monoclonal antibody. Of these strains, manB::Tn5 and FTT0846 appear to have LPS core truncations, whereas wbtA::Tn5 and wzy::Tn5 had LPS core structures that are similar to the parent F. tularensis Schu S4. These strains were also shown to have poor growth within human monocyte derived macrophages (MDMs) and bone marrow derived macrophages (BMDMs). We examined the virulence of these strains in mice, following intranasal challenge, and found that each was attenuated compared to wild type Schu S4. Our results provide additional strong evidence that LPS and/or capsule are F. tularensis virulence factors that most likely function by providing a stealth shield that prevents the host immune system from detecting this potent pathogen.
Collapse
Affiliation(s)
- Jed A Rasmussen
- Department of Microbiology, University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Joshua R Fletcher
- Genetics Program, University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Matthew E Long
- Molecular and Cellular Biology Program, University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Lee-Ann H Allen
- Department of Microbiology, University of Iowa Carver College of Medicine Iowa City, IA, USA ; Molecular and Cellular Biology Program, University of Iowa Carver College of Medicine Iowa City, IA, USA ; Department of Internal Medicine, University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Bradley D Jones
- Department of Microbiology, University of Iowa Carver College of Medicine Iowa City, IA, USA ; Genetics Program, University of Iowa Carver College of Medicine Iowa City, IA, USA
| |
Collapse
|
58
|
Brudal E, Lampe EO, Reubsaet L, Roos N, Hegna IK, Thrane IM, Koppang EO, Winther-Larsen HC. Vaccination with outer membrane vesicles from Francisella noatunensis reduces development of francisellosis in a zebrafish model. FISH & SHELLFISH IMMUNOLOGY 2015; 42:50-57. [PMID: 25449706 DOI: 10.1016/j.fsi.2014.10.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/17/2014] [Accepted: 10/17/2014] [Indexed: 06/04/2023]
Abstract
Infection of fish with the facultative intracellular bacterium Francisella noatunensis remains an unresolved problem for aquaculture industry worldwide as it is difficult to vaccinate against without using live attenuated vaccines. Outer membrane vesicles (OMVs) are biological structures shed by Gram-negative bacteria in response to various environmental stimuli. OMVs have successfully been used to vaccinate against both intracellular and extracellular pathogens, due to an ability to stimulate innate, cell-mediated and humoral immune responses. We show by using atomic force and electron microscopy that the fish pathogenic bacterium F. noatunensis subspecies noatunensis (F.n.n.) shed OMVs both in vitro into culture medium and in vivo in a zebrafish infection model. The main protein constituents of the OMV are IglC, PdpD and PdpA, all known Francisella virulence factors, in addition to the outer membrane protein FopA and the chaperonin GroEL, as analyzed by mass spectrometry. The vesicles, when used as a vaccine, reduced proliferation of the bacterium and protected zebrafish when subsequently challenged with a high dose of F.n.n. without causing adverse effects for the host. Also granulomatous responses were reduced in F.n.n.-challenged zebrafish after OMV vaccination. Taken together, the data support the possible use of OMVs as vaccines against francisellosis in fish.
Collapse
Affiliation(s)
- Espen Brudal
- Section for Microbiology, Immunology and Parasitology, Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, PO Box 8146 Dep, 0033 Oslo, Norway; Laboratory for Microbial Dynamics (LaMDa), School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Elisabeth O Lampe
- Laboratory for Microbial Dynamics (LaMDa), School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Léon Reubsaet
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Norbert Roos
- Department of Biosciences, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Ida K Hegna
- Laboratory for Microbial Dynamics (LaMDa), School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Ida Marie Thrane
- Laboratory for Microbial Dynamics (LaMDa), School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Erling O Koppang
- Section for Anatomy and Pathology, Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, PO Box 8146 Dep, 0033 Oslo, Norway
| | - Hanne C Winther-Larsen
- Laboratory for Microbial Dynamics (LaMDa), School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway.
| |
Collapse
|
59
|
Gillard JJ, Laws TR, Lythe G, Molina-París C. Modeling early events in Francisella tularensis pathogenesis. Front Cell Infect Microbiol 2014; 4:169. [PMID: 25566509 PMCID: PMC4263195 DOI: 10.3389/fcimb.2014.00169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/17/2014] [Indexed: 11/24/2022] Open
Abstract
Computational models can provide valuable insights into the mechanisms of infection and be used as investigative tools to support development of medical treatments. We develop a stochastic, within-host, computational model of the infection process in the BALB/c mouse, following inhalational exposure to Francisella tularensis SCHU S4. The model is mechanistic and governed by a small number of experimentally verifiable parameters. Given an initial dose, the model generates bacterial load profiles corresponding to those produced experimentally, with a doubling time of approximately 5 h during the first 48 h of infection. Analytical approximations for the mean number of bacteria in phagosomes and cytosols for the first 24 h post-infection are derived and used to verify the stochastic model. In our description of the dynamics of macrophage infection, the number of bacteria released per rupturing macrophage is a geometrically-distributed random variable. When combined with doubling time, this provides a distribution for the time taken for infected macrophages to rupture and release their intracellular bacteria. The mean and variance of these distributions are determined by model parameters with a precise biological interpretation, providing new mechanistic insights into the determinants of immune and bacterial kinetics. Insights into the dynamics of macrophage suppression and activation gained by the model can be used to explore the potential benefits of interventions that stimulate macrophage activation.
Collapse
Affiliation(s)
- Joseph J Gillard
- Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - Thomas R Laws
- Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - Grant Lythe
- Department of Applied Mathematics, School of Mathematics, University of Leeds Leeds, UK
| | - Carmen Molina-París
- Department of Applied Mathematics, School of Mathematics, University of Leeds Leeds, UK
| |
Collapse
|
60
|
Ulu-Kilic A, Doganay M. An overview: tularemia and travel medicine. Travel Med Infect Dis 2014; 12:609-16. [PMID: 25457302 DOI: 10.1016/j.tmaid.2014.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 08/13/2014] [Accepted: 10/09/2014] [Indexed: 12/15/2022]
Abstract
Tularemia is a bacterial zoonotic infection. The disease is endemic in most parts of the world, has been reported through the northern hemisphere between 30 and 71° N latitude. Francisella tularensis causes infection in a wide range of vertebrates (rodents, lagomorphs) and invertebrates (ticks, mosquitoes and other arthropods). Humans can acquire this infection through several routes including; a bite from an infected tick, deerfly or mosquito, contact with an infected animal or its dead body. It can also be spread to human by drinking contaminated water or breathing contaminated dirt or aerosol. Clinical manifestation of this disease varies depending on the biotype, inoculum and port of entry. Infection is potentially life threatening, but can effectively be treated with antibiotics. Travelers visiting rural and agricultural areas in endemic countries may be at greater risk. Appropriate clothing and use of insect repellants is essential to prevent tick borne illness. Travelers also should be aware of food and waterborne disease; avoid consuming potentially contaminated water and uncooked meat. Physicians should be aware of any clinical presentation of tularemia in the patients returning from endemic areas.
Collapse
Affiliation(s)
- Aysegul Ulu-Kilic
- Department of Infectious Diseases, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| | - Mehmet Doganay
- Department of Infectious Diseases, Faculty of Medicine, Erciyes University, Kayseri, Turkey; Zoonoses Working Group of International Society of Chemotherapy (ZWG-ISC), United Kingdom.
| |
Collapse
|
61
|
Feld GK, El-Etr S, Corzett MH, Hunter MS, Belhocine K, Monack DM, Frank M, Segelke BW, Rasley A. Structure and function of REP34 implicates carboxypeptidase activity in Francisella tularensis host cell invasion. J Biol Chem 2014; 289:30668-30679. [PMID: 25231992 DOI: 10.1074/jbc.m114.599381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Francisella tularensis is the etiological agent of tularemia, or rabbit fever. Although F. tularensis is a recognized biothreat agent with broad and expanding geographical range, its mechanism of infection and environmental persistence remain poorly understood. Previously, we identified seven F. tularensis proteins that induce a rapid encystment phenotype (REP) in the free-living amoeba, Acanthamoeba castellanii. Encystment is essential to the pathogen's long term intracellular survival in the amoeba. Here, we characterize the cellular and molecular function of REP34, a REP protein with a mass of 34 kDa. A REP34 knock-out strain of F. tularensis has a reduced ability to both induce encystment in A. castellanii and invade human macrophages. We determined the crystal structure of REP34 to 2.05-Å resolution and demonstrate robust carboxypeptidase B-like activity for the enzyme. REP34 is a zinc-containing monomeric protein with close structural homology to the metallocarboxypeptidase family of peptidases. REP34 possesses a novel topology and substrate binding pocket that deviates from the canonical funnelin structure of carboxypeptidases, putatively resulting in a catalytic role for a conserved tyrosine and distinct S1' recognition site. Taken together, these results identify REP34 as an active carboxypeptidase, implicate the enzyme as a potential key F. tularensis effector protein, and may help elucidate a mechanistic understanding of F. tularensis infection of phagocytic cells.
Collapse
Affiliation(s)
- Geoffrey K Feld
- Biosciences and Biotechnology and Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Sahar El-Etr
- Biosciences and Biotechnology and Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Michele H Corzett
- Biosciences and Biotechnology and Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Mark S Hunter
- Physics Divisions, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 and
| | - Kamila Belhocine
- Stanford University School of Medicine, Stanford, California 94305
| | - Denise M Monack
- Stanford University School of Medicine, Stanford, California 94305
| | - Matthias Frank
- Physics Divisions, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 and
| | - Brent W Segelke
- Biosciences and Biotechnology and Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Amy Rasley
- Biosciences and Biotechnology and Lawrence Livermore National Laboratory, Livermore, California 94550.
| |
Collapse
|
62
|
Wood RM, Egan JR, Hall IM. A dose and time response Markov model for the in-host dynamics of infection with intracellular bacteria following inhalation: with application to Francisella tularensis. J R Soc Interface 2014; 11:20140119. [PMID: 24671937 PMCID: PMC4006251 DOI: 10.1098/rsif.2014.0119] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In a novel approach, the standard birth–death process is extended to incorporate a fundamental mechanism undergone by intracellular bacteria, phagocytosis. The model accounts for stochastic interaction between bacteria and cells of the immune system and heterogeneity in susceptibility to infection of individual hosts within a population. Model output is the dose–response relation and the dose-dependent distribution of time until response, where response is the onset of symptoms. The model is thereafter parametrized with respect to the highly virulent Schu S4 strain of Francisella tularensis, in the first such study to consider a biologically plausible mathematical model for early human infection with this bacterium. Results indicate a median infectious dose of about 23 organisms, which is higher than previously thought, and an average incubation period of between 3 and 7 days depending on dose. The distribution of incubation periods is right-skewed up to about 100 organisms and symmetric for larger doses. Moreover, there are some interesting parallels to the hypotheses of some of the classical dose–response models, such as independent action (single-hit model) and individual effective dose (probit model). The findings of this study support experimental evidence and postulations from other investigations that response is, in fact, influenced by both in-host and between-host variability.
Collapse
Affiliation(s)
- R M Wood
- Bioterrorism and Emerging Disease Analysis, Microbial Risk Assessment and Behavioural Science, Public Health England, , Porton Down SP4 0JG, UK
| | | | | |
Collapse
|
63
|
Nguyen JQ, Gilley RP, Zogaj X, Rodriguez SA, Klose KE. Lipidation of the FPI protein IglE contributes to Francisella tularensis ssp. novicida intramacrophage replication and virulence. Pathog Dis 2014; 72:10-8. [PMID: 24616435 DOI: 10.1111/2049-632x.12167] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/24/2014] [Accepted: 02/24/2014] [Indexed: 12/13/2022] Open
Abstract
Francisella tularensis is a Gram-negative bacterium responsible for the human disease tularemia. The Francisella pathogenicity island (FPI) encodes a secretion system related to type VI secretion systems (T6SS) which allows F. tularensis to escape the phagosome and replicate within the cytosol of infected macrophages and ultimately cause disease. A lipoprotein is typically found encoded within T6SS gene clusters and is believed to anchor portions of the secretion apparatus to the outer membrane. We show that the FPI protein IglE is a lipoprotein that incorporates (3)H-palmitate and localizes to the outer membrane. A C22G IglE mutant failed to be lipidated and failed to localize to the outer membrane, consistent with C22 being the site of lipidation. Francisella tularensis ssp. novicida expressing IglE C22G is defective for replication in macrophages and unable to cause disease in mice. Bacterial two-hybrid analysis demonstrated that IglE interacts with the C-terminal portion of the FPI inner membrane protein PdpB, and PhoA fusion analysis indicated the PdpB C-terminus is located within the periplasm. We predict this interaction facilitates channel formation to allow secretion through this system.
Collapse
Affiliation(s)
- Jesse Q Nguyen
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | | | | | | | | |
Collapse
|
64
|
Siddaramappa S, Challacombe JF, Petersen JM, Pillai S, Kuske CR. Comparative analyses of a putative Francisella conjugative element. Genome 2014; 57:137-44. [PMID: 24884689 DOI: 10.1139/gen-2013-0231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A large circular plasmid detected in Francisella novicida-like strain PA10-7858, designated pFNPA10, was sequenced completely and analyzed. This 41,013-bp plasmid showed no homology to any of the previously sequenced Francisella plasmids and was 8-10 times larger in size than them. A total of 57 ORFs were identified within pFNPA10 and at least 9 of them encoded putative proteins with homology to different conjugal transfer proteins. The presence of iteron-like direct repeats and an ORF encoding a putative replication protein within pFNPA10 suggested that it replicated by the theta mode. Phylogenetic analyses indicated that pFNPA10 had no near neighbors in the databases and that it may have originated within an environmental Francisella lineage. Based on its features, pFNPA10 appears to be a novel extra-chromosomal genetic element within the genus Francisella. The suitability of pFNPA10 as a vector for transformation of species of Francisella by conjugation remains to be explored.
Collapse
|
65
|
Carvalho CL, Lopes de Carvalho I, Zé-Zé L, Núncio MS, Duarte EL. Tularaemia: a challenging zoonosis. Comp Immunol Microbiol Infect Dis 2014; 37:85-96. [PMID: 24480622 PMCID: PMC7124367 DOI: 10.1016/j.cimid.2014.01.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/28/2013] [Accepted: 01/04/2014] [Indexed: 01/21/2023]
Abstract
In recent years, several emerging zoonotic vector-borne infections with potential impact on human health have been identified in Europe, including tularaemia, caused by Francisella tularensis. This remarkable pathogen, one of the most virulent microorganisms currently known, has been detected in increasingly new settings and in a wide range of wild species, including lagomorphs, rodents, carnivores, fish and invertebrate arthropods. Also, a renewed concern has arisen with regard to F. tularensis: its potential use by bioterrorists. Based on the information published concerning the latest outbreaks, the aim of this paper is to review the main features of the agent, its biology, immunology and epidemiology. Moreover, special focus will be given to zoonotic aspects of the disease, as tularaemia outbreaks in human populations have been frequently associated with disease in animals.
Collapse
Affiliation(s)
- C L Carvalho
- Institute of Mediterranean Agricultural and Environmental Science (ICAAM), School of Science and Technology ECT, University of Évora, Portugal; Centre for Vectors and Infectious Diseases Research, National Health Institute Doutor Ricardo Jorge, Águas de Moura, Portugal
| | - I Lopes de Carvalho
- Emergency Response and Bio-preparedness Unit, National Health Institute Doutor Ricardo Jorge, Lisbon, Portugal
| | - L Zé-Zé
- Centre for Vectors and Infectious Diseases Research, National Health Institute Doutor Ricardo Jorge, Águas de Moura, Portugal
| | - M S Núncio
- Centre for Vectors and Infectious Diseases Research, National Health Institute Doutor Ricardo Jorge, Águas de Moura, Portugal
| | - E L Duarte
- Institute of Mediterranean Agricultural and Environmental Science (ICAAM), School of Science and Technology ECT, University of Évora, Portugal.
| |
Collapse
|
66
|
Rossow H, Sissonen S, Koskela KA, Kinnunen PM, Hemmilä H, Niemimaa J, Huitu O, Kuusi M, Vapalahti O, Henttonen H, Nikkari S. Detection of Francisella tularensis in voles in Finland. Vector Borne Zoonotic Dis 2014; 14:193-8. [PMID: 24575824 DOI: 10.1089/vbz.2012.1255] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Francisella tularensis is a highly virulent intracellular bacterium causing the zoonotic disease tularemia. It recurrently causes human and animal outbreaks in northern Europe, including Finland. Although F. tularensis infects several mammal species, only rodents and lagomorphs seem to have importance in its ecology. Peak densities of rodent populations may trigger tularemia outbreaks in humans; however, it is still unclear to which extent rodents or other small mammals maintain F. tularensis in nature. The main objective of this study was to obtain information about the occurrence of F. tularensis in small mammals in Finland. We snap-trapped 547 wild small mammals representing 11 species at 14 locations around Finland during 6 years and screened them for the presence of F. tularensis DNA using PCR analysis. High copy number of F. tularensis-specific DNA was detected in tissue samples of five field voles (Microtus agrestis) originating from one location and 2 years. According to DNA sequences of the bacterial 23S ribosomal RNA gene amplified from F. tularensis-infected voles, the infecting agent belongs to the subspecies holarctica. To find out the optimal tissue for tularemia screening in voles, we compared the amounts of F. tularensis DNA in lungs, liver, spleen, and kidney of the infected animals. F. tularensis DNA was detectable in high levels in all four organs except for one animal, whose kidney was F. tularensis DNA-negative. Thus, at least liver, lung, and spleen seem suitable for F. tularensis screening in voles. Thus, liver, lung, and spleen all seem suitable for F. tularensis screening in voles. In conclusion, field voles can be heavily infected with F. tularensis subsp. holarctica and thus potentially serve as the source of infection in humans and other mammals.
Collapse
Affiliation(s)
- Heidi Rossow
- 1 Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki , Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Schmitt DM, O'Dee DM, Cowan BN, Birch JWM, Mazzella LK, Nau GJ, Horzempa J. The use of resazurin as a novel antimicrobial agent against Francisella tularensis. Front Cell Infect Microbiol 2013; 3:93. [PMID: 24367766 PMCID: PMC3853850 DOI: 10.3389/fcimb.2013.00093] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 11/20/2013] [Indexed: 11/13/2022] Open
Abstract
The highly infectious and deadly pathogen, Francisella tularensis, is classified by the CDC as a Category A bioterrorism agent. Inhalation of a single bacterium results in an acute pneumonia with a 30-60% mortality rate without treatment. Due to the prevalence of antibiotic resistance, there is a strong need for new types of antibacterial drugs. Resazurin is commonly used to measure bacterial and eukaryotic cell viability through its reduction to the fluorescent product resorufin. When tested on various bacterial taxa at the recommended concentration of 44 μM, a potent bactericidal effect was observed against various Francisella and Neisseria species, including the human pathogens type A F. tularensis (Schu S4) and N. gonorrhoeae. As low as 4.4 μM resazurin was sufficient for a 10-fold reduction in F. tularensis growth. In broth culture, resazurin was reduced to resorufin by F. tularensis. Resorufin also suppressed the growth of F. tularensis suggesting that this compound is the biologically active form responsible for decreasing the viability of F. tularensis LVS bacteria. Replication of F. tularensis in primary human macrophages and non-phagocytic cells was abolished following treatment with 44 μM resazurin indicating this compound could be an effective therapy for tularemia in vivo.
Collapse
Affiliation(s)
- Deanna M Schmitt
- Department of Natural Sciences and Mathematics, West Liberty University West Liberty, WV, USA
| | - Dawn M O'Dee
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Brianna N Cowan
- Department of Natural Sciences and Mathematics, West Liberty University West Liberty, WV, USA
| | - James W-M Birch
- Department of Natural Sciences and Mathematics, West Liberty University West Liberty, WV, USA
| | - Leanne K Mazzella
- Department of Natural Sciences and Mathematics, West Liberty University West Liberty, WV, USA
| | - Gerard J Nau
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine Pittsburgh, PA, USA ; Department of Medicine - Division of Infectious Diseases, University of Pittsburgh School of Medicine Pittsburgh, PA, USA ; Center for Vaccine Research, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Joseph Horzempa
- Department of Natural Sciences and Mathematics, West Liberty University West Liberty, WV, USA
| |
Collapse
|
68
|
Risk factors for pneumonic and ulceroglandular tularaemia in Finland: a population-based case-control study. Epidemiol Infect 2013; 142:2207-16. [PMID: 24289963 DOI: 10.1017/s0950268813002999] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Few population-based data are available on factors associated with pneumonic and ulceroglandular type B tularaemia. We conducted a case-control study during a large epidemic in 2000. Laboratory-confirmed case patients were identified through active surveillance and matched control subjects (age, sex, residency) from the national population information system. Data were collected using a self-administered questionnaire. A conditional logistic regression model addressing missing data with Bayesian full-likelihood modelling included 227 case patients and 415 control subjects; reported mosquito bites [adjusted odds ratio (aOR) 9·2, 95% confidence interval (CI) 4·4-22, population-attributable risk (PAR) 82%] and farming activities (aOR 4·3, 95% CI 2·5-7·2, PAR 32%) were independently associated with ulceroglandular tularaemia, whereas exposure to hay dust (aOR 6·6, 95% CI 1·9-25·4, PAR 48%) was associated with pneumonic tularaemia. Although the bulk of tularaemia type B disease burden is attributable to mosquito bites, risk factors for ulceroglandular and pneumonic forms of tularaemia are different, enabling targeting of prevention efforts accordingly.
Collapse
|
69
|
Vatansever F, Ferraresi C, de Sousa MVP, Yin R, Rineh A, Sharma SK, Hamblin MR. Can biowarfare agents be defeated with light? Virulence 2013; 4:796-825. [PMID: 24067444 PMCID: PMC3925713 DOI: 10.4161/viru.26475] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/10/2013] [Accepted: 09/12/2013] [Indexed: 02/08/2023] Open
Abstract
Biological warfare and bioterrorism is an unpleasant fact of 21st century life. Highly infectious and profoundly virulent diseases may be caused in combat personnel or in civilian populations by the appropriate dissemination of viruses, bacteria, spores, fungi, or toxins. Dissemination may be airborne, waterborne, or by contamination of food or surfaces. Countermeasures may be directed toward destroying or neutralizing the agents outside the body before infection has taken place, by destroying the agents once they have entered the body before the disease has fully developed, or by immunizing susceptible populations against the effects. A range of light-based technologies may have a role to play in biodefense countermeasures. Germicidal UV (UVC) is exceptionally active in destroying a wide range of viruses and microbial cells, and recent data suggests that UVC has high selectivity over host mammalian cells and tissues. Two UVA mediated approaches may also have roles to play; one where UVA is combined with titanium dioxide nanoparticles in a process called photocatalysis, and a second where UVA is combined with psoralens (PUVA) to produce "killed but metabolically active" microbial cells that may be particularly suitable for vaccines. Many microbial cells are surprisingly sensitive to blue light alone, and blue light can effectively destroy bacteria, fungi, and Bacillus spores and can treat wound infections. The combination of photosensitizing dyes such as porphyrins or phenothiaziniums and red light is called photodynamic therapy (PDT) or photoinactivation, and this approach cannot only kill bacteria, spores, and fungi, but also inactivate viruses and toxins. Many reports have highlighted the ability of PDT to treat infections and stimulate the host immune system. Finally pulsed (femtosecond) high power lasers have been used to inactivate pathogens with some degree of selectivity. We have pointed to some of the ways light-based technology may be used to defeat biological warfare in the future.
Collapse
Affiliation(s)
- Fatma Vatansever
- Wellman Center for Photomedicine; Massachusetts General Hospital; Boston MA USA
- Harvard Medical School; Department of Dermatology; Boston, MA USA
| | - Cleber Ferraresi
- Wellman Center for Photomedicine; Massachusetts General Hospital; Boston MA USA
- Laboratory of Electro-thermo-phototherapy; Department of Physical Therapy; Federal University of São Carlos; São Paulo, Brazil
- Post-Graduation Program in Biotechnology; Federal University of São Carlos; São Paulo, Brazil
- Optics Group; Physics Institute of Sao Carlos; University of São Paulo; São Carlos, Brazil
| | - Marcelo Victor Pires de Sousa
- Wellman Center for Photomedicine; Massachusetts General Hospital; Boston MA USA
- Laboratory of Radiation Dosimetry and Medical Physics; Institute of Physics, São Paulo University, São Paulo, Brazil
| | - Rui Yin
- Wellman Center for Photomedicine; Massachusetts General Hospital; Boston MA USA
- Harvard Medical School; Department of Dermatology; Boston, MA USA
- Department of Dermatology; Southwest Hospital; Third Military Medical University; Chongqing, PR China
| | - Ardeshir Rineh
- Wellman Center for Photomedicine; Massachusetts General Hospital; Boston MA USA
- School of Chemistry; University of Wollongong; Wollongong, NSW Australia
| | - Sulbha K Sharma
- Wellman Center for Photomedicine; Massachusetts General Hospital; Boston MA USA
- Raja Ramanna Centre for Advanced Technology; Indore, India
| | - Michael R Hamblin
- Wellman Center for Photomedicine; Massachusetts General Hospital; Boston MA USA
- Harvard Medical School; Department of Dermatology; Boston, MA USA
- Harvard-MIT Division of Health Sciences and Technology; Cambridge, MA USA
| |
Collapse
|
70
|
Bent ZW, Brazel DM, Tran-Gyamfi MB, Hamblin RY, VanderNoot VA, Branda SS. Use of a capture-based pathogen transcript enrichment strategy for RNA-Seq analysis of the Francisella tularensis LVS transcriptome during infection of murine macrophages. PLoS One 2013; 8:e77834. [PMID: 24155975 PMCID: PMC3796476 DOI: 10.1371/journal.pone.0077834] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/09/2013] [Indexed: 12/17/2022] Open
Abstract
Francisella tularensis is a zoonotic intracellular pathogen that is capable of causing potentially fatal human infections. Like all successful bacterial pathogens, F. tularensis rapidly responds to changes in its environment during infection of host cells, and upon encountering different microenvironments within those cells. This ability to appropriately respond to the challenges of infection requires rapid and global shifts in gene expression patterns. In this study, we use a novel pathogen transcript enrichment strategy and whole transcriptome sequencing (RNA-Seq) to perform a detailed characterization of the rapid and global shifts in F. tularensis LVS gene expression during infection of murine macrophages. We performed differential gene expression analysis on all bacterial genes at two key stages of infection: phagosomal escape, and cytosolic replication. By comparing the F. tularensis transcriptome at these two stages of infection to that of the bacteria grown in culture, we were able to identify sets of genes that are differentially expressed over the course of infection. This analysis revealed the temporally dynamic expression of a number of known and putative transcriptional regulators and virulence factors, providing insight into their role during infection. In addition, we identified several F. tularensis genes that are significantly up-regulated during infection but had not been previously identified as virulence factors. These unknown genes may make attractive therapeutic or vaccine targets.
Collapse
Affiliation(s)
- Zachary W. Bent
- Sandia National Laboratories, Livermore, California, United States of America
- * E-mail:
| | - David M. Brazel
- Sandia National Laboratories, Livermore, California, United States of America
| | - Mary B. Tran-Gyamfi
- Sandia National Laboratories, Livermore, California, United States of America
| | - Rachelle Y. Hamblin
- Sandia National Laboratories, Livermore, California, United States of America
| | | | - Steven S. Branda
- Sandia National Laboratories, Livermore, California, United States of America
| |
Collapse
|
71
|
Dieppedale J, Gesbert G, Ramond E, Chhuon C, Dubail I, Dupuis M, Guerrera IC, Charbit A. Possible links between stress defense and the tricarboxylic acid (TCA) cycle in Francisella pathogenesis. Mol Cell Proteomics 2013; 12:2278-92. [PMID: 23669032 PMCID: PMC3734585 DOI: 10.1074/mcp.m112.024794] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 05/01/2013] [Indexed: 12/16/2022] Open
Abstract
Francisella tularensis is a highly infectious bacterium causing the zoonotic disease tularemia. In vivo, this facultative intracellular bacterium survives and replicates mainly in the cytoplasm of infected cells. We have recently identified a genetic locus, designated moxR that is important for stress resistance and intramacrophage survival of F. tularensis. In the present work, we used tandem affinity purification coupled to mass spectrometry to identify in vivo interacting partners of three proteins encoded by this locus: the MoxR-like ATPase (FTL_0200), and two proteins containing motifs predicted to be involved in protein-protein interactions, bearing von Willebrand A (FTL_0201) and tetratricopeptide (FTL_0205) motifs. The three proteins were designated here for simplification, MoxR, VWA1, and TPR1, respectively. MoxR interacted with 31 proteins, including various enzymes. VWA1 interacted with fewer proteins, but these included the E2 component of 2-oxoglutarate dehydrogenase and TPR1. The protein TPR1 interacted with one hundred proteins, including the E1 and E2 subunits of both oxoglutarate and pyruvate dehydrogenase enzyme complexes, and their common E3 subunit. Remarkably, chromosomal deletion of either moxR or tpr1 impaired pyruvate dehydrogenase and oxoglutarate dehydrogenase activities, supporting the hypothesis of a functional role for the interaction of MoxR and TPR1 with these complexes. Altogether, this work highlights possible links between stress resistance and metabolism in F. tularensis virulence.
Collapse
Affiliation(s)
- Jennifer Dieppedale
- From the ‡Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche. 96 rue Didot 75993 Paris Cedex 14 – France
- §INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | - Gael Gesbert
- From the ‡Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche. 96 rue Didot 75993 Paris Cedex 14 – France
- §INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | - Elodie Ramond
- From the ‡Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche. 96 rue Didot 75993 Paris Cedex 14 – France
- §INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | - Cerina Chhuon
- From the ‡Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche. 96 rue Didot 75993 Paris Cedex 14 – France
- ¶Plateau Protéome Necker, PPN, IFR94, Université Paris-Descartes, Faculté de Médecine René Descartes, Paris 75015 France
| | - Iharilalao Dubail
- From the ‡Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche. 96 rue Didot 75993 Paris Cedex 14 – France
- §INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | - Marion Dupuis
- From the ‡Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche. 96 rue Didot 75993 Paris Cedex 14 – France
- §INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | - Ida Chiara Guerrera
- From the ‡Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche. 96 rue Didot 75993 Paris Cedex 14 – France
- ¶Plateau Protéome Necker, PPN, IFR94, Université Paris-Descartes, Faculté de Médecine René Descartes, Paris 75015 France
| | - Alain Charbit
- From the ‡Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche. 96 rue Didot 75993 Paris Cedex 14 – France
- §INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| |
Collapse
|
72
|
Abstract
Francisella tularensis is a gram-negative bacterium that causes the zoonotic disease tularemia. Francisella is highly infectious via the respiratory route (~10 CFUs) and pulmonary infections due to type A strains of F. tularensis are highly lethal in untreated patients (>30%). In addition, no vaccines are licensed to prevent tularemia in humans. Due to the high infectivity and mortality of pulmonary tularemia, F. tularensis has been weaponized, including via the introduction of antibiotic resistance, by several countries. Because of the lack of efficacious vaccines, and concerns about F. tularensis acquiring resistance to antibiotics via natural or illicit means, augmentation of host immunity, and humoral immunotherapy have been investigated as countermeasures against tularemia. This manuscript will review advances made and challenges in the field of immunotherapy against tularemia.
Collapse
Affiliation(s)
- Jerod A Skyberg
- Department of Veterinary Pathobiology and Laboratory for Infectious Disease Research; University of Missouri; Columbia, MO USA
| |
Collapse
|
73
|
Interleukin-17 protects against the Francisella tularensis live vaccine strain but not against a virulent F. tularensis type A strain. Infect Immun 2013; 81:3099-105. [PMID: 23774604 DOI: 10.1128/iai.00203-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Francisella tularensis is a highly infectious intracellular bacterium that causes the zoonotic infection tularemia. While much literature exists on the host response to F. tularensis infection, the vast majority of work has been conducted using attenuated strains of Francisella that do not cause disease in humans. However, emerging data indicate that the protective immune response against attenuated F. tularensis versus F. tularensis type A differs. Several groups have recently reported that interleukin-17 (IL-17) confers protection against the live vaccine strain (LVS) of Francisella. While we too have found that IL-17Rα(-/-) mice are more susceptible to F. tularensis LVS infection, our studies, using a virulent type A strain of F. tularensis (SchuS4), indicate that IL-17Rα(-/-) mice display organ burdens and pulmonary gamma interferon (IFN-γ) responses similar to those of wild-type mice following infection. In addition, oral LVS vaccination conferred equivalent protection against pulmonary challenge with SchuS4 in both IL-17Rα(-/-) and wild-type mice. While IFN-γ was found to be critically important for survival in a convalescent model of SchuS4 infection, IL-17 neutralization from either wild-type or IFN-γ(-/-) mice had no effect on morbidity or mortality in this model. IL-17 protein levels were also higher in the lungs of mice infected with the LVS rather than F. tularensis type A, while IL-23p19 mRNA expression was found to be caspase-1 dependent in macrophages infected with LVS but not SchuS4. Collectively, these results demonstrate that IL-17 is dispensable for host immunity to type A F. tularensis infection, and that induced and protective immunity differs between attenuated and virulent strains of F. tularensis.
Collapse
|
74
|
The Francisella tularensis migR, trmE, and cphA genes contribute to F. tularensis pathogenicity island gene regulation and intracellular growth by modulation of the stress alarmone ppGpp. Infect Immun 2013; 81:2800-11. [PMID: 23716606 DOI: 10.1128/iai.00073-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Francisella tularensis pathogenicity island (FPI) encodes many proteins that are required for virulence. Expression of these genes depends upon the FevR (PigR) regulator and its interactions with the MglA/SspA and RNA polymerase transcriptional complex. Experiments to identify how transcription of the FPI genes is activated have led to identification of mutations within the migR, trmE, and cphA genes that decrease FPI expression. Recent data demonstrated that the small alarmone ppGpp, produced by RelA and SpoT, is important for stabilizing MglA/SspA and FevR (PigR) interactions in Francisella. Production of ppGpp is commonly known to be activated by cellular and nutritional stress in bacteria, which indicates that cellular and nutritional stresses act as important signals for FPI activation. In this work, we demonstrate that mutations in migR, trmE, or cphA significantly reduce ppGpp accumulation. The reduction in ppGpp levels was similar for each of the mutants and correlated with a corresponding reduction in iglA reporter expression. In addition, we observed that there were differences in the ability of each of these mutants to replicate within various mammalian cells, indicating that the migR, trmE, and cphA genes are likely parts of different cellular stress response pathways in Francisella. These results also indicate that different nutritional and cellular stresses exist in different mammalian cells. This work provides new information to help understand how Francisella regulates its virulence genes in response to host cell environments, and it contributes to our growing knowledge of this highly successful bacterial pathogen.
Collapse
|
75
|
Role of NK cells in host defense against pulmonary type A Francisella tularensis infection. Microbes Infect 2012; 15:201-11. [PMID: 23211929 DOI: 10.1016/j.micinf.2012.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/25/2012] [Accepted: 11/15/2012] [Indexed: 01/16/2023]
Abstract
Pneumonic tularemia is a potentially fatal disease caused by the Category A bioterrorism agent Francisella tularensis. Understanding the pulmonary immune response to this bacterium is necessary for developing effective vaccines and therapeutics. In this study, characterization of immune cell populations in the lungs of mice infected with the type A strain Schu S4 revealed a significant loss in natural killer (NK) cells over time. Since this decline in NK cells correlated with morbidity and mortality, we hypothesized these cells contribute to host defense against Schu S4 infection. Depletion of NK cells prior to Schu S4 challenge significantly reduced IFN-γ and granzyme B in the lung but had no effect on bacterial burden or disease progression. Conversely, increasing NK cell numbers with the anti-apoptotic cytokine IL-15 and soluble receptor IL-15Rα had no significant impact on Schu S4 growth in vivo. A modest decrease in median time to death, however, was observed in live vaccine strain (LVS)-vaccinated mice depleted of NK1.1+ cells and challenged with Schu S4. Therefore, NK cells do not appear to contribute to host defense against acute respiratory infection with type A F. tularensis in vivo, but they play a minor role in protection elicited by LVS vaccination.
Collapse
|
76
|
Abstract
UNLABELLED The study of many important intracellular bacterial pathogens requires an understanding of how specific virulence factors contribute to pathogenesis during the infection of host cells. This requires tools to dissect gene function, but unfortunately, there is a lack of such tools for research on many difficult-to-study, or understudied, intracellular pathogens. Riboswitches are RNA-based genetic control elements that directly modulate gene expression upon ligand binding. Here we report the application of theophylline-sensitive synthetic riboswitches to induce protein expression in the intracellular pathogen Francisella. We show that this system can be used to activate the bacterial expression of the reporter β-galactosidase during growth in rich medium. Furthermore, we applied this system to control the expression of green fluorescent protein during intracellular infection by the addition of theophylline directly to infected macrophages. Importantly, we could control the expression of a novel endogenous protein required for growth under nutrient-limiting conditions and replication in macrophages, FTN_0818. Riboswitch-mediated control of FTN_0818 rescued the growth of an FTN_0818 mutant in minimal medium and during macrophage infection. This is the first demonstration of the use of a synthetic riboswitch to control an endogenous gene required for a virulence trait in an intracellular bacterium. Since this system can be adapted to diverse bacteria, the ability to use riboswitches to regulate intracellular bacterial gene expression will likely facilitate the in-depth study of the virulence mechanisms of numerous difficult-to-study intracellular pathogens such as Ehrlichia chaffeensis, Anaplasma phagocytophilum, and Orientia tsutsugamushi, as well as future emerging pathogens. IMPORTANCE Determining how specific bacterial genes contribute to virulence during the infection of host cells is critical to understanding how pathogens cause disease. This can be especially challenging with many difficult-to-study intracellular pathogens. Riboswitches are RNA-based genetic control elements that can be used to help dissect gene function, especially since they can be used in a broad range of bacteria. We demonstrate the utility of riboswitches, and for the first time show that riboswitches can be used to functionally control a bacterial gene that is critical to the ability of a pathogen to cause disease, during intracellular infection. Since this system can be adapted to diverse bacteria, riboswitches will likely facilitate the in-depth study of the virulence mechanisms of numerous difficult-to-study intracellular pathogens, as well as future emerging pathogens.
Collapse
|
77
|
Cyclic di-GMP stimulates biofilm formation and inhibits virulence of Francisella novicida. Infect Immun 2012; 80:4239-47. [PMID: 22988021 DOI: 10.1128/iai.00702-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis is a gram-negative bacterium that is highly virulent in humans, causing the disease tularemia. F. novicida is closely related to F. tularensis and exhibits high virulence in mice, but it is avirulent in healthy humans. An F. novicida-specific gene cluster (FTN0451 to FTN0456) encodes two proteins with diguanylate cyclase (DGC) and phosphodiesterase (PDE) domains that modulate the synthesis and degradation of cyclic di-GMP (cdGMP). No DGC- or PDE-encoding protein genes are present in the F. tularensis genome. F. novicida strains lacking either the two DGC/PDE genes (cdgA and cdgB) or the entire gene cluster (strain KKF457) are defective for biofilm formation. In addition, expression of CdgB or a heterologous DGC in strain KKF457 stimulated F. novicida biofilms, even in a strain lacking the biofilm regulator QseB. Genetic evidence suggests that CdgA is predominantly a PDE, while CdgB is predominantly a DGC. The F. novicida qseB strain showed reduced cdgA and cdgB transcript levels, demonstrating an F. novicida biofilm signaling cascade that controls cdGMP levels. Interestingly, KKF457 with elevated cdGMP levels exhibited a decrease in intramacrophage replication and virulence in mice, as well as increased growth yields and biofilm formation in vitro. Microarray analyses revealed that cdGMP stimulated the transcription of a chitinase (ChiB) known to contribute to biofilm formation. Our results indicate that elevated cdGMP in F. novicida stimulates biofilm formation and inhibits virulence. We suggest that differences in human virulence between F. novicida and F. tularensis may be due in part to the absence of cdGMP signaling in F. tularensis.
Collapse
|
78
|
Barel M, Meibom K, Dubail I, Botella J, Charbit A. Francisella tularensis regulates the expression of the amino acid transporter SLC1A5 in infected THP-1 human monocytes. Cell Microbiol 2012; 14:1769-83. [PMID: 22804921 DOI: 10.1111/j.1462-5822.2012.01837.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/03/2012] [Accepted: 07/06/2012] [Indexed: 01/14/2023]
Abstract
Francisella tularensis, a Gram-negative bacterium that causes the disease tularemia in a large number of animal species, is thought to reside preferentially within macrophages in vivo. F. tularensis has developed mechanisms to rapidly escape from the phagosome into the cytoplasm of infected cells, a habitat with a rich supply of nutrients, ideal for multiplication. SLC1A5 is a neutral amino acid transporter expressed by human cells, which serves, along with SLC7A5 to equilibrate cytoplasmic amino acid pools. We herein analysed whether SLC1A5 was involved in F. tularensis intracellular multiplication. We demonstrate that expression of SLC1A5 is specifically upregulated by F. tularensis in infected THP-1 human monocytes. Furthermore, we show that SLC1A5 downregulation decreases intracellular bacterial multiplication, supporting the involvement of SLC1A5 in F. tularensis infection. Notably, after entry of F. tularensis into cells and during the whole infection, the highly glycosylated form of SLC1A5 was deglycosylated only by bacteria capable of cytosolic multiplication. These data suggest that intracellular replication of F. tularensis depends on the function of host cell SLC1A5. Our results are the first, which show that Francisella intracellular multiplication in human monocyte cytoplasm is associated with a post-translational modification of a eukaryotic amino acid transporter.
Collapse
Affiliation(s)
- Monique Barel
- INSERM U1002, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | | | | | | | | |
Collapse
|
79
|
Identification of a novel small RNA modulating Francisella tularensis pathogenicity. PLoS One 2012; 7:e41999. [PMID: 22848684 PMCID: PMC3405028 DOI: 10.1371/journal.pone.0041999] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/28/2012] [Indexed: 01/21/2023] Open
Abstract
Francisella tularensis is a highly virulent bacterium responsible for the zoonotic disease tularemia. It is a facultative intracellular pathogen that replicates in the cytoplasm of host cells, particularly in macrophages. Here we show that F. tularensis live vaccine strain (LVS) expresses a novel small RNA (sRNA), which modulates the virulence capacities of the bacterium. When this sRNA, designated FtrC (for Francisella tularensisRNA C), is expressed at high levels, F. tularensis replicates in macrophages less efficiently than the wild-type parent strain. Similarly, high expression of FtrC reduces the number of viable bacteria recovered from the spleen and liver of infected mice. Our data demonstrate that expression of gene FTL_1293 is regulated by FtrC. Furthermore, we show by in vitro gel shift assays that FtrC interacts specifically with FTL_1293 mRNA and that this happens independently of the RNA chaperone Hfq. Remarkably, FtrC interacts only with full-length FTL_1293 mRNA. These results, combined with a bioinformatic analysis, indicate that FtrC interacts with the central region of the mRNA and hence does not act by sterically hindering access of the ribosome to the mRNA. We further show that gene FTL_1293 is not required for F. tularensis virulence in vitro or in vivo, which indicates that another unidentified FtrC target modulates the virulence capacity of the bacterium.
Collapse
|
80
|
Silva MT, Pestana NTS. The in vivo extracellular life of facultative intracellular bacterial parasites: role in pathogenesis. Immunobiology 2012; 218:325-37. [PMID: 22795971 DOI: 10.1016/j.imbio.2012.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/23/2012] [Accepted: 05/16/2012] [Indexed: 01/14/2023]
Abstract
Classically labeled facultative intracellular pathogens are characterized by the ability to have an intracellular phase in the host, which is required for pathogenicity, while capable of extracellular growth in vitro. The ability of these bacteria to replicate in cell-free conditions is usually assessed by culture in artificial bacteriological media. However, the extracellular growth ability of these pathogens may also be expressed by a phase of extracellular infection in the natural setting of the host with pathologic consequences, an ability that adds to the pathogenic potential of the infectious agent. This infective capability to grow in the extracellular sites of the host represents an additional virulence attribute of those pathogens which may lead to severe outcomes. Here we discuss examples of infectious diseases where the in vivo infective extracellular life is well documented, including infections by Francisella tularensis, Yersinia pestis, Burkholderia pseudomallei, Burkholderia cenocepacia, Salmonella enterica serovar Typhimurium and Edwardsiella tarda. The occurrence of a phase of systemic dissemination with extracellular multiplication during progressive infections by facultative intracellular bacterial pathogens has been underappreciated, with most studies exclusively centered on the intracellular phase of the infections. The investigation of the occurrence of a dual lifestyle in the host among bacterial pathogens in general should be extended and likely will reveal more cases of infectious diseases with a dual infective intracellular/extracellular pattern.
Collapse
Affiliation(s)
- Manuel T Silva
- Institute for Molecular and Cell Biology, University of Porto, Porto, Portugal
| | | |
Collapse
|
81
|
Skyberg JA, Rollins MF, Holderness JS, Marlenee NL, Schepetkin IA, Goodyear A, Dow SW, Jutila MA, Pascual DW. Nasal Acai polysaccharides potentiate innate immunity to protect against pulmonary Francisella tularensis and Burkholderia pseudomallei Infections. PLoS Pathog 2012; 8:e1002587. [PMID: 22438809 PMCID: PMC3305411 DOI: 10.1371/journal.ppat.1002587] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 01/30/2012] [Indexed: 01/28/2023] Open
Abstract
Pulmonary Francisella tularensis and Burkholderia pseudomallei infections are highly lethal in untreated patients, and current antibiotic regimens are not always effective. Activating the innate immune system provides an alternative means of treating infection and can also complement antibiotic therapies. Several natural agonists were screened for their ability to enhance host resistance to infection, and polysaccharides derived from the Acai berry (Acai PS) were found to have potent abilities as an immunotherapeutic to treat F. tularensis and B. pseudomallei infections. In vitro, Acai PS impaired replication of Francisella in primary human macrophages co-cultured with autologous NK cells via augmentation of NK cell IFN-γ. Furthermore, Acai PS administered nasally before or after infection protected mice against type A F. tularensis aerosol challenge with survival rates up to 80%, and protection was still observed, albeit reduced, when mice were treated two days post-infection. Nasal Acai PS administration augmented intracellular expression of IFN-γ by NK cells in the lungs of F. tularensis-infected mice, and neutralization of IFN-γ ablated the protective effect of Acai PS. Likewise, nasal Acai PS treatment conferred protection against pulmonary infection with B. pseudomallei strain 1026b. Acai PS dramatically reduced the replication of B. pseudomallei in the lung and blocked bacterial dissemination to the spleen and liver. Nasal administration of Acai PS enhanced IFN-γ responses by NK and γδ T cells in the lungs, while neutralization of IFN-γ totally abrogated the protective effect of Acai PS against pulmonary B. pseudomallei infection. Collectively, these results demonstrate Acai PS is a potent innate immune agonist that can resolve F. tularensis and B. pseudomallei infections, suggesting this innate immune agonist has broad-spectrum activity against virulent intracellular pathogens.
Collapse
Affiliation(s)
- Jerod A Skyberg
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Schmitt DM, O'Dee DM, Horzempa J, Carlson PE, Russo BC, Bales JM, Brown MJ, Nau GJ. A Francisella tularensis live vaccine strain that improves stimulation of antigen-presenting cells does not enhance vaccine efficacy. PLoS One 2012; 7:e31172. [PMID: 22355343 PMCID: PMC3280287 DOI: 10.1371/journal.pone.0031172] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 01/04/2012] [Indexed: 11/25/2022] Open
Abstract
Vaccination is a proven strategy to mitigate morbidity and mortality of infectious diseases. The methodology of identifying and testing new vaccine candidates could be improved with rational design and in vitro testing prior to animal experimentation. The tularemia vaccine, Francisella tularensis live vaccine strain (LVS), does not elicit complete protection against lethal challenge with a virulent type A Francisella strain. One factor that may contribute to this poor performance is limited stimulation of antigen-presenting cells. In this study, we examined whether the interaction of genetically modified LVS strains with human antigen-presenting cells correlated with effectiveness as tularemia vaccine candidates. Human dendritic cells infected with wild-type LVS secrete low levels of proinflammatory cytokines, fail to upregulate costimulatory molecules, and activate human T cells poorly in vitro. One LVS mutant, strain 13B47, stimulated higher levels of proinflammatory cytokines from dendritic cells and macrophages and increased costimulatory molecule expression on dendritic cells compared to wild type. Additionally, 13B47-infected dendritic cells activated T cells more efficiently than LVS-infected cells. A deletion allele of the same gene in LVS displayed similar in vitro characteristics, but vaccination with this strain did not improve survival after challenge with a virulent Francisella strain. In vivo, this mutant was attenuated for growth and did not stimulate T cell responses in the lung comparable to wild type. Therefore, stimulation of antigen-presenting cells in vitro was improved by genetic modification of LVS, but did not correlate with efficacy against challenge in vivo within this model system.
Collapse
Affiliation(s)
- Deanna M. Schmitt
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Dawn M. O'Dee
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Joseph Horzempa
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America
| | - Paul E. Carlson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Brian C. Russo
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jacqueline M. Bales
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Matthew J. Brown
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Gerard J. Nau
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Medicine – Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
83
|
Shanmugam M, Parasuraman S. Evolutionarily Conserved Essential Genes from Arctic Bacteria: A Tool for Vaccination. J Young Pharm 2012; 4:55-7. [PMID: 22523463 PMCID: PMC3326785 DOI: 10.4103/0975-1483.93569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
84
|
Sarkar-Tyson M, Atkins HS. Antimicrobials for bacterial bioterrorism agents. Future Microbiol 2011; 6:667-76. [PMID: 21707313 DOI: 10.2217/fmb.11.50] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The limitations of current antimicrobials for highly virulent pathogens considered as potential bioterrorism agents drives the requirement for new antimicrobials that are suitable for use in populations in the event of a deliberate release. Strategies targeting bacterial virulence offer the potential for new countermeasures to combat bacterial bioterrorism agents, including those active against a broad spectrum of pathogens. Although early in the development of antivirulence approaches, inhibitors of bacterial type III secretion systems and cell division mechanisms show promise for the future.
Collapse
Affiliation(s)
- Mitali Sarkar-Tyson
- Biomedical Sciences Department, Defence Science & Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | | |
Collapse
|
85
|
Macrophage replication screen identifies a novel Francisella hydroperoxide resistance protein involved in virulence. PLoS One 2011; 6:e24201. [PMID: 21915295 PMCID: PMC3167825 DOI: 10.1371/journal.pone.0024201] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 08/02/2011] [Indexed: 11/25/2022] Open
Abstract
Francisella tularensis is a Gram-negative facultative intracellular pathogen and the causative agent of tularemia. Recently, genome-wide screens have identified Francisella genes required for virulence in mice. However, the mechanisms by which most of the corresponding proteins contribute to pathogenesis are still largely unknown. To further elucidate the roles of these virulence determinants in Francisella pathogenesis, we tested whether each gene was required for replication of the model pathogen F. novicida within macrophages, an important virulence trait. Fifty-three of the 224 genes tested were involved in intracellular replication, including many of those within the Francisella pathogenicity island (FPI), validating our results. Interestingly, over one third of the genes identified are annotated as hypothetical, indicating that F. novicida likely utilizes novel virulence factors for intracellular replication. To further characterize these virulence determinants, we selected two hypothetical genes to study in more detail. As predicted by our screen, deletion mutants of FTN_0096 and FTN_1133 were attenuated for replication in macrophages. The mutants displayed differing levels of attenuation in vivo, with the FTN_1133 mutant being the most attenuated. FTN_1133 has sequence similarity to the organic hydroperoxide resistance protein Ohr, an enzyme involved in the bacterial response to oxidative stress. We show that FTN_1133 is required for F. novicida resistance to, and degradation of, organic hydroperoxides as well as resistance to the action of the NADPH oxidase both in macrophages and mice. Furthermore, we demonstrate that F. holarctica LVS, a strain derived from a highly virulent human pathogenic species of Francisella, also requires this protein for organic hydroperoxide resistance as well as replication in macrophages and mice. This study expands our knowledge of Francisella's largely uncharacterized intracellular lifecycle and demonstrates that FTN_1133 is an important novel mediator of oxidative stress resistance.
Collapse
|
86
|
Tancred L, Telepnev MV, Golovliov I, Andersson B, Andersson H, Lindgren H, Sjöstedt A. Administration of a nitric oxide donor inhibits mglA expression by intracellular Francisella tularensis and counteracts phagosomal escape and subversion of TNF-α secretion. J Med Microbiol 2011; 60:1570-1583. [PMID: 21700740 DOI: 10.1099/jmm.0.032870-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Francisella tularensis is a highly virulent intracellular bacterium capable of rapid multiplication in phagocytic cells. Previous studies have revealed that activation of F. tularensis-infected macrophages leads to control of infection and reactive nitrogen and oxygen species make important contributions to the bacterial killing. We investigated the effects of adding S-nitroso-acetyl-penicillamine (SNAP), which generates nitric oxide, or 3-morpholinosydnonimine hydrochloride, which indirectly leads to formation of peroxynitrite, to J774 murine macrophage-like cell cultures infected with F. tularensis LVS. Addition of SNAP led to significantly increased colocalization between LAMP-1 and bacteria, indicating containment of F. tularensis in the phagosome within 2 h, although no killing occurred within 4 h. A specific inhibitory effect on bacterial transcription was observed since the gene encoding the global regulator MglA was inhibited 50-100-fold. F. tularensis-infected J774 cells were incapable of secreting TNF-α in response to Escherichia coli LPS but addition of SNAP almost completely reversed the suppression. Similarly, infection with an MglA mutant did not inhibit LPS-induced TNF-α secretion of J774 cells. Strong staining of nitrotyrosine was observed in SNAP-treated bacteria, and MS identified nitration of two ribosomal 50S proteins, a CBS domain pair protein and bacterioferritin. The results demonstrated that addition of SNAP initially did not affect the viability of intracellular F. tularensis LVS but led to containment of the bacteria in the phagosome. Moreover, the treatment resulted in modification by nitration of several F. tularensis proteins.
Collapse
Affiliation(s)
- Linda Tancred
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 85 Umeå, Sweden
| | - Maxim V Telepnev
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 85 Umeå, Sweden
| | - Igor Golovliov
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 85 Umeå, Sweden
| | - Blanka Andersson
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 85 Umeå, Sweden
| | - Henrik Andersson
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 85 Umeå, Sweden
| | - Helena Lindgren
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 85 Umeå, Sweden
| | - Anders Sjöstedt
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 85 Umeå, Sweden
| |
Collapse
|
87
|
D'Elia R, Jenner DC, Laws TR, Stokes MGM, Jackson MC, Essex-Lopresti AE, Atkins HS. Inhibition of Francisella tularensis LVS infection of macrophages results in a reduced inflammatory response: evaluation of a therapeutic strategy for intracellular bacteria. ACTA ACUST UNITED AC 2011; 62:348-61. [PMID: 21569124 DOI: 10.1111/j.1574-695x.2011.00817.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Francisella tularensis is an intracellular pathogen and is able to invade several different cell types, in particular macrophages, most commonly through phagocytosis. A flow cytometric assay was developed to measure bacterial uptake, using a fluorescein isothiocyanate-labelled anti-F. tularensis lipopolysaccharide antibody in conjunction with antibodies to cell surface markers, in order to determine the specific cell phenotypes that were positive for the bacteria. Several phagocytic inhibitors were evaluated in macrophage cell lines and a lung homogenate assay to determine whether the uptake of F. tularensis strain LVS could be altered. Our data show that cytochalasin B, LY294002, wortmannin, nocodazole, MG132 and XVA143 inhibitors reduced LVS uptake by >50% in these assays without having significant cytotoxic effects. Furthermore, a reduction in the inflammatory cytokines monocyte chemoattractant protein-1, interleukin-6 and tumour necrosis factor-α was found in the supernatant of lung tissue infected with LVS when the inhibitory compounds were present. Similarly, there was an alteration in bacterial uptake and a reduction in the inflammatory cytokine response following the administration of wortmannin to LVS-infected mice. Although wortmannin treatment alone did not correlate with the enhanced survival of LVS-infected mice, these inhibitors may have utility in combination therapeutic approaches or against other intracellular pathogens that use phagocytic mechanisms to enter their optimal niche.
Collapse
Affiliation(s)
- Riccardo D'Elia
- Defence Science and Technology Laboratory, Biomedical Sciences Department, Salisbury, Wiltshire, UK.
| | | | | | | | | | | | | |
Collapse
|
88
|
Dauphin LA, Walker RE, Petersen JM, Bowen MD. Comparative evaluation of automated and manual commercial DNA extraction methods for detection of Francisella tularensis DNA from suspensions and spiked swabs by real-time polymerase chain reaction. Diagn Microbiol Infect Dis 2011; 70:299-306. [PMID: 21546201 DOI: 10.1016/j.diagmicrobio.2011.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 12/08/2010] [Accepted: 02/28/2011] [Indexed: 01/27/2023]
Abstract
This study evaluated commercial automated and manual DNA extraction methods for the isolation of Francisella tularensis DNA suitable for real-time polymerase chain reaction (PCR) analysis from cell suspensions and spiked cotton, foam, and polyester swabs. Two automated methods, the MagNA Pure Compact and the QIAcube, were compared to 4 manual methods, the IT 1-2-3 DNA sample purification kit, the MasterPure Complete DNA and RNA purification kit, the QIAamp DNA blood mini kit, and the UltraClean Microbial DNA isolation kit. The methods were compared using 6 F. tularensis strains representing the 2 subspecies which cause the majority of reported cases of tularemia in humans. Cell viability testing of the DNA extracts showed that all 6 extraction methods efficiently inactivated F. tularensis at concentrations of ≤10⁶ CFU/mL. Real-time PCR analysis using a multitarget 5' nuclease assay for F. tularensis revealed that the PCR sensitivity was equivalent using DNA extracted by the 2 automated methods and the manual MasterPure and QIAamp methods. These 4 methods resulted in significantly better levels of detection from bacterial suspensions and performed equivalently for spiked swab samples than the remaining 2. This study identifies optimal DNA extraction methods for processing swab specimens for the subsequent detection of F. tularensis DNA using real-time PCR assays. Furthermore, the results provide diagnostic laboratories with the option to select from 2 automated DNA extraction methods as suitable alternatives to manual methods for the isolation of DNA from F. tularensis.
Collapse
Affiliation(s)
- Leslie A Dauphin
- Bioterrorism Rapid Response and Advanced Technology (BRRAT) Laboratory, Laboratory Preparedness and Response Branch (LPRB), Division of Preparedness and Emerging Infections (DPEI), Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA.
| | | | | | | |
Collapse
|
89
|
Eschar and neck lymphadenopathy caused by Francisella tularensis after a tick bite: a case report. J Med Case Rep 2011; 5:108. [PMID: 21418587 PMCID: PMC3069950 DOI: 10.1186/1752-1947-5-108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 03/19/2011] [Indexed: 11/15/2022] Open
Abstract
Introduction In 25 to 35% of cases, the aetiological agent of scalp eschar and neck lymphadenopathy after a tick bite remains undetermined. To date, Rickettsia slovaca, Rickettsia raoultii and more recently Bartonella henselae have been associated with this syndrome. Case presentation A four-year-old Caucasian boy was admitted to hospital with fever, vomiting and abdominal pain. On physical examination, an inflammatory and suppurating eschar was seen on the scalp, with multiple enlarged cervical lymph nodes on both sides. Although no tick was found in this scalp lesion, a diagnosis of tick-borne lymphadenopathy was suggested, and explored by serology testing and polymerase chain reaction of a biopsy from the eschar. Francisella tularensis DNA was found in the skin biopsy and the serology showed titres consistent with tularaemia. Conclusion This is, to the best of our knowledge, the first reported case of scalp eschar and neck lymphadenopathy after tick bite infection caused by F. tularensis.
Collapse
|
90
|
Gavrilin MA, Wewers MD. Francisella Recognition by Inflammasomes: Differences between Mice and Men. Front Microbiol 2011; 2:11. [PMID: 21687407 PMCID: PMC3109362 DOI: 10.3389/fmicb.2011.00011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 01/19/2011] [Indexed: 12/31/2022] Open
Abstract
Pathogen recognition by intracellular sensors involves the assembly of a caspase-1 activation machine termed the inflammasome. Intracellular pathogens like Francisella that gain access to the cytosolic detection systems are useful tools to uncover the details of caspase-1 activation events. This review overviews Francisella function in the mononuclear phagocyte with particular attention to inflammasome versus pyroptosome roles and outlines differences between mouse and human caspase-1 activation pathways. Specific attention is placed on functional differences between human and murine pyrin as an intracellular recognition molecule for Francisella.
Collapse
Affiliation(s)
- Mikhail A Gavrilin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, The Center for Microbial Interface Biology, The Ohio State University Columbus, OH, USA
| | | |
Collapse
|
91
|
Identification of a putative chaperone involved in stress resistance and virulence in Francisella tularensis. Infect Immun 2011; 79:1428-39. [PMID: 21245269 DOI: 10.1128/iai.01012-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis is a highly infectious bacterium causing the zoonotic disease tularemia. This facultative intracellular bacterium replicates in vivo mainly inside macrophages and therefore has developed strategies to resist this stressful environment. Here, we identified a novel genetic locus that is important for stress resistance and intracellular survival of F. tularensis. In silico and transcriptional analyses suggest that this locus (genes FTL_0200 to FTL_0209 in the live vaccine strain [LVS]) constitutes an operon controlled by the alternative sigma factor σ³². The first gene, FTL_0200, encodes a putative AAA+ ATPase of the MoxR subfamily. Insertion mutagenesis into genes FTL_0200, FTL_0205, and FTL_0206 revealed a role for the locus in both intracellular multiplication and in vivo survival of F. tularensis. Deletion of gene FTL_0200 led to a mutant bacterium with increased vulnerability to various stress conditions, including oxidative and pH stresses. Proteomic analyses revealed a pleiotropic impact of the ΔFTL_0200 deletion, supporting a role as a chaperone for FTL_0200. This is the first report of a role for a MoxR family member in bacterial pathogenesis. This class of proteins is remarkably conserved among pathogenic species and may thus constitute a novel player in bacterial virulence.
Collapse
|
92
|
Kloesges T, Popa O, Martin W, Dagan T. Networks of gene sharing among 329 proteobacterial genomes reveal differences in lateral gene transfer frequency at different phylogenetic depths. Mol Biol Evol 2010; 28:1057-74. [PMID: 21059789 PMCID: PMC3021791 DOI: 10.1093/molbev/msq297] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Lateral gene transfer (LGT) is an important mechanism of natural variation among prokaryotes. Over the full course of evolution, most or all of the genes resident in a given prokaryotic genome have been affected by LGT, yet the frequency of LGT can vary greatly across genes and across prokaryotic groups. The proteobacteria are among the most diverse of prokaryotic taxa. The prevalence of LGT in their genome evolution calls for the application of network-based methods instead of tree-based methods to investigate the relationships among these species. Here, we report networks that capture both vertical and horizontal components of evolutionary history among 1,207,272 proteins distributed across 329 sequenced proteobacterial genomes. The network of shared proteins reveals modularity structure that does not correspond to current classification schemes. On the basis of shared protein-coding genes, the five classes of proteobacteria fall into two main modules, one including the alpha-, delta-, and epsilonproteobacteria and the other including beta- and gammaproteobacteria. The first module is stable over different protein identity thresholds. The second shows more plasticity with regard to the sequence conservation of proteins sampled, with the gammaproteobacteria showing the most chameleon-like evolutionary characteristics within the present sample. Using a minimal lateral network approach, we compared LGT rates at different phylogenetic depths. In general, gene evolution by LGT within proteobacteria is very common. At least one LGT event was inferred to have occurred in at least 75% of the protein families. The average LGT rate at the species and class depth is about one LGT event per protein family, the rate doubling at the phylum level to an average of two LGT events per protein family. Hence, our results indicate that the rate of gene acquisition per protein family is similar at the level of species (by recombination) and at the level of classes (by LGT). The frequency of LGT per genome strongly depends on the species lifestyle, with endosymbionts showing far lower LGT frequencies than free-living species. Moreover, the nature of the transferred genes suggests that gene transfer in proteobacteria is frequently mediated by conjugation.
Collapse
Affiliation(s)
- Thorsten Kloesges
- Institute of Botany III, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | | | | | | |
Collapse
|
93
|
Pelletier N, La Scola B. Détection moléculaire et immunologique des bactéries dans le cadre du bioterrorisme. Med Mal Infect 2010; 40:506-16. [DOI: 10.1016/j.medmal.2010.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 02/04/2010] [Accepted: 03/08/2010] [Indexed: 12/18/2022]
|
94
|
Michell SL, Dean RE, Eyles JE, Hartley MG, Waters E, Prior JL, Titball RW, Oyston PCF. Deletion of the Bacillus anthracis capB homologue in Francisella tularensis subspecies tularensis generates an attenuated strain that protects mice against virulent tularaemia. J Med Microbiol 2010; 59:1275-1284. [PMID: 20651039 DOI: 10.1099/jmm.0.018911-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
As there is currently no licensed vaccine against Francisella tularensis, the causative agent of tularaemia, the bacterium is an agent of concern as a potential bioweapon. Although F. tularensis has a low infectious dose and high associated mortality, it possesses few classical virulence factors. An analysis of the F. tularensis subspecies tularensis genome sequence has revealed the presence of a region containing genes with low sequence homology to part of the capBCADE operon of Bacillus anthracis. We have generated an isogenic capB mutant of F. tularensis subspecies tularensis SchuS4 and shown it to be attenuated. Furthermore, using BALB/c mice, we have demonstrated that this capB strain affords protection against significant homologous challenge with the wild-type strain. These data have important implications for the development of a defined and efficacious tularaemia vaccine.
Collapse
Affiliation(s)
- Stephen L Michell
- Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Rachel E Dean
- Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Jim E Eyles
- Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Margaret Gill Hartley
- Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Emma Waters
- Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Joann L Prior
- Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Richard W Titball
- Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Petra C F Oyston
- Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| |
Collapse
|
95
|
Essential genes from Arctic bacteria used to construct stable, temperature-sensitive bacterial vaccines. Proc Natl Acad Sci U S A 2010; 107:13456-60. [PMID: 20624965 DOI: 10.1073/pnas.1004119107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
All bacteria share a set of evolutionarily conserved essential genes that encode products that are required for viability. The great diversity of environments that bacteria inhabit, including environments at extreme temperatures, place adaptive pressure on essential genes. We sought to use this evolutionary diversity of essential genes to engineer bacterial pathogens to be stably temperature-sensitive, and thus useful as live vaccines. We isolated essential genes from bacteria found in the Arctic and substituted them for their counterparts into pathogens of mammals. We found that substitution of nine different essential genes from psychrophilic (cold-loving) bacteria into mammalian pathogenic bacteria resulted in strains that died below their normal-temperature growth limits. Substitution of three different psychrophilic gene orthologs of ligA, which encode NAD-dependent DNA ligase, resulted in bacterial strains that died at 33, 35, and 37 degrees C. One ligA gene was shown to render Francisella tularensis, Salmonella enterica, and Mycobacterium smegmatis temperature-sensitive, demonstrating that this gene functions in both Gram-negative and Gram-positive lineage bacteria. Three temperature-sensitive F. tularensis strains were shown to induce protective immunity after vaccination at a cool body site. About half of the genes that could be tested were unable to mutate to temperature-resistant forms at detectable levels. These results show that psychrophilic essential genes can be used to create a unique class of bacterial temperature-sensitive vaccines for important human pathogens, such as S. enterica and Mycobacterium tuberculosis.
Collapse
|
96
|
Bublitz DC, Noah CE, Benach JL, Furie MB. Francisella tularensis suppresses the proinflammatory response of endothelial cells via the endothelial protein C receptor. THE JOURNAL OF IMMUNOLOGY 2010; 185:1124-31. [PMID: 20543103 DOI: 10.4049/jimmunol.0902429] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Various bacterial pathogens activate the endothelium to secrete proinflammatory cytokines and recruit circulating leukocytes. In contrast, there is a distinct lack of activation of these cells by Francisella tularensis, the causative agent of tularemia. Given the importance of endothelial cells in facilitating innate immunity, we investigated the ability of the attenuated live vaccine strain and virulent Schu S4 strain of F. tularensis to inhibit the proinflammatory response of HUVECs. Living F. tularensis live vaccine strain and Schu S4 did not stimulate secretion of the chemokine CCL2 by HUVECs, whereas material released from heat-killed bacteria did. Furthermore, the living bacteria suppressed secretion in response to heat-killed F. tularensis. This phenomenon was dose and contact dependent, and it occurred rapidly upon infection. The living bacteria did not inhibit the activation of HUVECs by Escherichia coli LPS, highlighting the specificity of this suppression. The endothelial protein C receptor (EPCR) confers anti-inflammatory properties when bound by activated protein C. When the EPCR was blocked, F. tularensis lost the ability to suppress activation of HUVECs. To our knowledge, this is the first report that a bacterial pathogen inhibits the host immune response via the EPCR. Endothelial cells are a critical component of the innate immune response to infection, and suppression of their activation by F. tularensis is likely a mechanism that aids in bacterial dissemination and evasion of host defenses.
Collapse
Affiliation(s)
- DeAnna C Bublitz
- Center for Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
97
|
Mohapatra NP, Soni S, Rajaram MVS, Dang PMC, Reilly TJ, El-Benna J, Clay CD, Schlesinger LS, Gunn JS. Francisella acid phosphatases inactivate the NADPH oxidase in human phagocytes. THE JOURNAL OF IMMUNOLOGY 2010; 184:5141-50. [PMID: 20348422 DOI: 10.4049/jimmunol.0903413] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Francisella tularensis contains four putative acid phosphatases that are conserved in Francisella novicida. An F. novicida quadruple mutant (AcpA, AcpB, AcpC, and Hap [DeltaABCH]) is unable to escape the phagosome or survive in macrophages and is attenuated in the mouse model. We explored whether reduced survival of the DeltaABCH mutant within phagocytes is related to the oxidative response by human neutrophils and macrophages. F. novicida and F. tularensis subspecies failed to stimulate reactive oxygen species production in the phagocytes, whereas the F. novicida DeltaABCH strain stimulated a significant level of reactive oxygen species. The DeltaABCH mutant, but not the wild-type strain, strongly colocalized with p47(phox) and replicated in phagocytes only in the presence of an NADPH oxidase inhibitor or within macrophages isolated from p47(phox) knockout mice. Finally, purified AcpA strongly dephosphorylated p47(phox) and p40(phox), but not p67(phox), in vitro. Thus, Francisella acid phosphatases play a major role in intramacrophage survival and virulence by regulating the generation of the oxidative burst in human phagocytes.
Collapse
Affiliation(s)
- Nrusingh P Mohapatra
- Department of Molecular Virology, Immunology and Medical Genetics, Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Straskova A, Pavkova I, Link M, Forslund AL, Kuoppa K, Noppa L, Kroca M, Fucikova A, Klimentova J, Krocova Z, Forsberg A, Stulik J. Proteome analysis of an attenuated Francisella tularensis dsbA mutant: identification of potential DsbA substrate proteins. J Proteome Res 2010; 8:5336-46. [PMID: 19799467 DOI: 10.1021/pr900570b] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Francisella tularensis (F. tularensis) is highly infectious for humans via aerosol route and untreated infections with the highly virulent subsp. tularensis can be fatal. Our knowledge regarding key virulence determinants has increased recently but is still somewhat limited. Surface proteins are potential virulence factors and therapeutic targets, and in this study, we decided to target three genes encoding putative membrane lipoproteins in F. tularensis LVS. One of the genes encoded a protein with high homology to the protein family of disulfide oxidoreductases DsbA. The two other genes encoded proteins with homology to the VacJ, a virulence determinant of Shigella flexneri. The gene encoding the DsbA homologue was verified to be required for survival and replication in macrophages and importantly also for in vivo virulence in the mouse infection model for tularemia. Using a combination of classical and shotgun proteome analyses, we were able to identify several proteins that accumulated in fractions enriched for membrane-associated proteins in the dsbA mutant. These proteins are substrate candidates for the DsbA disulfide oxidoreductase as well as being responsible for the virulence attenuation of the dsbA mutant.
Collapse
Affiliation(s)
- Adela Straskova
- Center of Advanced Studies, Faculty of Military Health Science UO, 500 01 Hradec Kralove, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
|
100
|
The unraveling panoply of Francisella tularensis virulence attributes. Curr Opin Microbiol 2009; 13:11-7. [PMID: 20034843 DOI: 10.1016/j.mib.2009.11.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 11/24/2009] [Accepted: 11/28/2009] [Indexed: 01/02/2023]
Abstract
Francisella tularensis is a highly infectious Gram-negative bacterium causing the zoonotic disease tularemia. This facultative intracellular pathogen multiplies in vivo mainly inside macrophages, but has the capacity to infect and survive in many other cell types, including other phagocytic and nonphagocytic cells. In vitro, F. tularensis escapes rapidly from the phagosomal compartment and replicates in the cytoplasm of infected cells. An impressive number of novel genes related to F. tularensis pathogenesis have been identified recently. However, the information on biological functions still remains limited to a few of them. In this review, we will try to provide a comprehensive overview of the bacterial attributes, currently known-or suspected-to participate in F. tularensis virulence and will highlight the future challenges in F. tularensis research.
Collapse
|