51
|
Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature 2021; 593:266-269. [PMID: 33767447 DOI: 10.1038/s41586-021-03470-x] [Citation(s) in RCA: 756] [Impact Index Per Article: 252.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/18/2021] [Indexed: 12/26/2022]
Abstract
The SARS-CoV-2 lineage B.1.1.7, designated variant of concern (VOC) 202012/01 by Public Health England1, was first identified in the UK in late summer to early autumn 20202. Whole-genome SARS-CoV-2 sequence data collected from community-based diagnostic testing for COVID-19 show an extremely rapid expansion of the B.1.1.7 lineage during autumn 2020, suggesting that it has a selective advantage. Here we show that changes in VOC frequency inferred from genetic data correspond closely to changes inferred by S gene target failures (SGTF) in community-based diagnostic PCR testing. Analysis of trends in SGTF and non-SGTF case numbers in local areas across England shows that B.1.1.7 has higher transmissibility than non-VOC lineages, even if it has a different latent period or generation time. The SGTF data indicate a transient shift in the age composition of reported cases, with cases of B.1.1.7 including a larger share of under 20-year-olds than non-VOC cases. We estimated time-varying reproduction numbers for B.1.1.7 and co-circulating lineages using SGTF and genomic data. The best-supported models did not indicate a substantial difference in VOC transmissibility among different age groups, but all analyses agreed that B.1.1.7 has a substantial transmission advantage over other lineages, with a 50% to 100% higher reproduction number.
Collapse
|
52
|
Majumdar P, Niyogi S. SARS-CoV-2 mutations: the biological trackway towards viral fitness. Epidemiol Infect 2021; 149:e110. [PMID: 33928885 PMCID: PMC8134885 DOI: 10.1017/s0950268821001060] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/26/2021] [Accepted: 04/27/2021] [Indexed: 01/10/2023] Open
Abstract
The outbreak of pneumonia-like respiratory disorder at China and its rapid transmission world-wide resulted in public health emergency, which brought lineage B betacoronaviridae SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) into spotlight. The fairly high mutation rate, frequent recombination and interspecies transmission in betacoronaviridae are largely responsible for their temporal changes in infectivity and virulence. Investigation of global SARS-CoV-2 genotypes revealed considerable mutations in structural, non-structural, accessory proteins as well as untranslated regions. Among the various types of mutations, single-nucleotide substitutions are the predominant ones. In addition, insertion, deletion and frame-shift mutations are also reported, albeit at a lower frequency. Among the structural proteins, spike glycoprotein and nucleocapsid phosphoprotein accumulated a larger number of mutations whereas envelope and membrane proteins are mostly conserved. Spike protein and RNA-dependent RNA polymerase variants, D614G and P323L in combination became dominant world-wide. Divergent genetic variants created serious challenge towards the development of therapeutics and vaccines. This review will consolidate mutations in different SARS-CoV-2 proteins and their implications on viral fitness.
Collapse
Affiliation(s)
| | - Sougata Niyogi
- Dinabandhu Andrews Institute of Technology and Management, Block-S, 1/406A, Patuli, Kolkata, West Bengal700094, India
| |
Collapse
|
53
|
Lythgoe KA, Hall M, Ferretti L, de Cesare M, MacIntyre-Cockett G, Trebes A, Andersson M, Otecko N, Wise EL, Moore N, Lynch J, Kidd S, Cortes N, Mori M, Williams R, Vernet G, Justice A, Green A, Nicholls SM, Ansari MA, Abeler-Dörner L, Moore CE, Peto TEA, Eyre DW, Shaw R, Simmonds P, Buck D, Todd JA, Connor TR, Ashraf S, da Silva Filipe A, Shepherd J, Thomson EC, Bonsall D, Fraser C, Golubchik T. SARS-CoV-2 within-host diversity and transmission. Science 2021; 372:eabg0821. [PMID: 33688063 PMCID: PMC8128293 DOI: 10.1126/science.abg0821] [Citation(s) in RCA: 234] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
Extensive global sampling and sequencing of the pandemic virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have enabled researchers to monitor its spread and to identify concerning new variants. Two important determinants of variant spread are how frequently they arise within individuals and how likely they are to be transmitted. To characterize within-host diversity and transmission, we deep-sequenced 1313 clinical samples from the United Kingdom. SARS-CoV-2 infections are characterized by low levels of within-host diversity when viral loads are high and by a narrow bottleneck at transmission. Most variants are either lost or occasionally fixed at the point of transmission, with minimal persistence of shared diversity, patterns that are readily observable on the phylogenetic tree. Our results suggest that transmission-enhancing and/or immune-escape SARS-CoV-2 variants are likely to arise infrequently but could spread rapidly if successfully transmitted.
Collapse
Affiliation(s)
- Katrina A Lythgoe
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7LF, UK.
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
| | - Matthew Hall
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7LF, UK.
| | - Luca Ferretti
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7LF, UK
| | - Mariateresa de Cesare
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7LF, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Biomedical Research Centre, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
| | - George MacIntyre-Cockett
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7LF, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Biomedical Research Centre, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
| | - Amy Trebes
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Biomedical Research Centre, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
| | - Monique Andersson
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
- Division of Medical Virology, Stellenbosch University, Stellenbosch, South Africa
| | - Newton Otecko
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7LF, UK
| | - Emma L Wise
- Hampshire Hospitals NHS Foundation Trust, Basingstoke and North Hampshire Hospital, Basingstoke RG24 9NA, UK
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Nathan Moore
- Hampshire Hospitals NHS Foundation Trust, Basingstoke and North Hampshire Hospital, Basingstoke RG24 9NA, UK
| | - Jessica Lynch
- Hampshire Hospitals NHS Foundation Trust, Basingstoke and North Hampshire Hospital, Basingstoke RG24 9NA, UK
| | - Stephen Kidd
- Hampshire Hospitals NHS Foundation Trust, Basingstoke and North Hampshire Hospital, Basingstoke RG24 9NA, UK
| | - Nicholas Cortes
- Hampshire Hospitals NHS Foundation Trust, Basingstoke and North Hampshire Hospital, Basingstoke RG24 9NA, UK
- Gibraltar Health Authority, Gibraltar, UK
| | - Matilde Mori
- School of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Rebecca Williams
- Hampshire Hospitals NHS Foundation Trust, Basingstoke and North Hampshire Hospital, Basingstoke RG24 9NA, UK
| | - Gabrielle Vernet
- Hampshire Hospitals NHS Foundation Trust, Basingstoke and North Hampshire Hospital, Basingstoke RG24 9NA, UK
| | - Anita Justice
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Angie Green
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Biomedical Research Centre, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
| | - Samuel M Nicholls
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - M Azim Ansari
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| | - Lucie Abeler-Dörner
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7LF, UK
| | - Catrin E Moore
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7LF, UK
| | - Timothy E A Peto
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - David W Eyre
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
- Big Data Institute, Nuffield Department of Public Health, University of Oxford, Old Road Campus, Oxford OX3 7FL, UK
| | - Robert Shaw
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Peter Simmonds
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| | - David Buck
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Biomedical Research Centre, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
| | - John A Todd
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Biomedical Research Centre, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
| | - Thomas R Connor
- Pathogen Genomics Unit, Public Health Wales Microbiology, Cardiff CF10 4BZ, UK
- Cardiff University School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Shirin Ashraf
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | | | - James Shepherd
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Emma C Thomson
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - David Bonsall
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7LF, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Biomedical Research Centre, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Christophe Fraser
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7LF, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Biomedical Research Centre, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Tanya Golubchik
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7LF, UK.
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
| |
Collapse
|
54
|
Diab AM, Carleton BC, Goralski KB. COVID-19 pathophysiology and pharmacology: what do we know and how did Canadians respond? A review of Health Canada authorized clinical vaccine and drug trials. Can J Physiol Pharmacol 2021; 99:577-588. [PMID: 33852809 DOI: 10.1139/cjpp-2021-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has resulted in the death of over 18 000 Canadians and has impacted the lives of all Canadians. Many Canadian research groups have expanded their research programs to include COVID-19. Over the past year, our knowledge of this novel disease has grown and has led to the initiation of a number of clinical vaccine and drug trials for the prevention and treatment of COVID-19. Here, we review SARS-CoV-2 (the coronavirus that causes COVID-19) and the natural history of COVID-19, including a timeline of disease progression after SARS-CoV-2 exposure. We also review the pathophysiological effects of COVID-19 on the organ systems that have been implicated in the disease, including the lungs, upper respiratory tract, immune system, central nervous system, cardiovascular system, gastrointestinal organs, the liver, and the kidneys. Then we review general therapeutics strategies that are being applied and investigated for the prevention or treatment of COVID-19, including vaccines, antivirals, immune system enhancers, pulmonary supportive agents, immunosuppressants and (or) anti-inflammatories, and cardiovascular system regulators. Finally, we provide an overview of all current Health Canada authorized clinical drug and vaccine trials for the prevention or treatment of COVID-19.
Collapse
Affiliation(s)
- Antonios M Diab
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS, Canada
| | - Bruce C Carleton
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada
| | - Kerry B Goralski
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS, Canada.,Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,Division of Hematology/Oncology, IWK Health Centre, Halifax, NS, Canada
| |
Collapse
|
55
|
Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD, Pearson CAB, Russell TW, Tully DC, Washburne AD, Wenseleers T, Gimma A, Waites W, Wong KLM, van Zandvoort K, Silverman JD, Diaz-Ordaz K, Keogh R, Eggo RM, Funk S, Jit M, Atkins KE, Edmunds WJ. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 2021; 372:science.abg3055. [PMID: 33658326 DOI: 10.1101/2020.12.24.20248822] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/26/2021] [Indexed: 05/23/2023]
Abstract
A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, VOC 202012/01 (lineage B.1.1.7), emerged in southeast England in September 2020 and is rapidly spreading toward fixation. Using a variety of statistical and dynamic modeling approaches, we estimate that this variant has a 43 to 90% (range of 95% credible intervals, 38 to 130%) higher reproduction number than preexisting variants. A fitted two-strain dynamic transmission model shows that VOC 202012/01 will lead to large resurgences of COVID-19 cases. Without stringent control measures, including limited closure of educational institutions and a greatly accelerated vaccine rollout, COVID-19 hospitalizations and deaths across England in the first 6 months of 2021 were projected to exceed those in 2020. VOC 202012/01 has spread globally and exhibits a similar transmission increase (59 to 74%) in Denmark, Switzerland, and the United States.
Collapse
Affiliation(s)
- Nicholas G Davies
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - Sam Abbott
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Rosanna C Barnard
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Christopher I Jarvis
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Adam J Kucharski
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - James D Munday
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Carl A B Pearson
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Timothy W Russell
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Damien C Tully
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Tom Wenseleers
- Lab of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium
| | - Amy Gimma
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - William Waites
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Kerry L M Wong
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Kevin van Zandvoort
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Justin D Silverman
- College of Information Science and Technology, Pennsylvania State University, University Park, PA, USA
| | - Karla Diaz-Ordaz
- Centre for Statistical Methodology and Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Ruth Keogh
- Centre for Statistical Methodology and Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Rosalind M Eggo
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Sebastian Funk
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Mark Jit
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Katherine E Atkins
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Global Health, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - W John Edmunds
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
56
|
Kim YJ, Jang US, Soh SM, Lee JY, Lee HR. The Impact on Infectivity and Neutralization Efficiency of SARS-CoV-2 Lineage B.1.351 Pseudovirus. Viruses 2021; 13:633. [PMID: 33917138 PMCID: PMC8067879 DOI: 10.3390/v13040633] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
A new variant of SARS-CoV-2 B.1.351 lineage (first found in South Africa) has been raising global concern due to its harboring of multiple mutations in the spike that potentially increase transmissibility and yield resistance to neutralizing antibodies. We here tested infectivity and neutralization efficiency of SARS-CoV-2 spike pseudoviruses bearing particular mutations of the receptor-binding domain (RBD) derived either from the Wuhan strains (referred to as D614G or with other sites) or the B.1.351 lineage (referred to as N501Y, K417N, and E484K). The three different pseudoviruses B.1.351 lineage related significantly increased infectivity compared with other mutants that indicated Wuhan strains. Interestingly, K417N and E484K mutations dramatically enhanced cell-cell fusion than N501Y even though their infectivity were similar, suggesting that K417N and E484K mutations harboring SARS-CoV-2 variant might be more transmissible than N501Y mutation containing SARS-CoV-2 variant. We also investigated the efficacy of two different monoclonal antibodies, Casirivimab and Imdevimab that neutralized SARS-CoV-2, against several kinds of pseudoviruses which indicated Wuhan or B.1.351 lineage. Remarkably, Imdevimab effectively neutralized B.1.351 lineage pseudoviruses containing N501Y, K417N, and E484K mutations, while Casirivimab partially affected them. Overall, our results underscore the importance of B.1.351 lineage SARS-CoV-2 in the viral spread and its implication for antibody efficacy.
Collapse
Affiliation(s)
- Yeong Jun Kim
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong 30019, Korea; (Y.J.K.); (U.S.J.); (S.M.S.)
| | - Ui Soon Jang
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong 30019, Korea; (Y.J.K.); (U.S.J.); (S.M.S.)
| | - Sandrine M. Soh
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong 30019, Korea; (Y.J.K.); (U.S.J.); (S.M.S.)
| | - Joo-Youn Lee
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea;
| | - Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong 30019, Korea; (Y.J.K.); (U.S.J.); (S.M.S.)
- Department of Lab Medicine, College of Medicine, Korea University, Seoul 02841, Korea
| |
Collapse
|
57
|
Watanabe C, Okiyama Y, Tanaka S, Fukuzawa K, Honma T. Molecular recognition of SARS-CoV-2 spike glycoprotein: quantum chemical hot spot and epitope analyses. Chem Sci 2021; 12:4722-4739. [PMID: 35355624 PMCID: PMC8892577 DOI: 10.1039/d0sc06528e] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/21/2021] [Indexed: 12/18/2022] Open
Abstract
Due to the COVID-19 pandemic, researchers have attempted to identify complex structures of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (S-protein) with angiotensin-converting enzyme 2 (ACE2) or a blocking antibody. However, the molecular recognition mechanism-critical information for drug and antibody design-has not been fully clarified at the amino acid residue level. Elucidating such a microscopic mechanism in detail requires a more accurate molecular interpretation that includes quantum mechanics to quantitatively evaluate hydrogen bonds, XH/π interactions (X = N, O, and C), and salt bridges. In this study, we applied the fragment molecular orbital (FMO) method to characterize the SARS-CoV-2 S-protein binding interactions with not only ACE2 but also the B38 Fab antibody involved in ACE2-inhibitory binding. By analyzing FMO-based interaction energies along a wide range of binding interfaces carefully, we identified amino acid residues critical for molecular recognition between S-protein and ACE2 or B38 Fab antibody. Importantly, hydrophobic residues that are involved in weak interactions such as CH-O hydrogen bond and XH/π interactions, as well as polar residues that construct conspicuous hydrogen bonds, play important roles in molecular recognition and binding ability. Moreover, through these FMO-based analyses, we also clarified novel hot spots and epitopes that had been overlooked in previous studies by structural and molecular mechanical approaches. Altogether, these hot spots/epitopes identified between S-protein and ACE2/B38 Fab antibody may provide useful information for future antibody design, evaluation of the binding property of the SARS-CoV-2 variants including its N501Y, and small or medium drug design against the SARS-CoV-2.
Collapse
Affiliation(s)
- Chiduru Watanabe
- Center for Biosystems Dynamics Research, RIKEN 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama Kanagawa 230-0045 Japan +81-45-503-9432 +81-45-503-9551
- JST, PRESTO 4-1-8, Honcho Kawaguchi Saitama 332-0012 Japan
| | - Yoshio Okiyama
- Division of Medicinal Safety Science, National Institute of Health Sciences 3-25-26 Tonomachi, Kawasaki-ku Kawasaki Kanagawa 210-9501 Japan
| | - Shigenori Tanaka
- Department of Computational Science, Graduate School of System Informatics, Kobe University 1-1 Rokkodai, Nada-ku Kobe Hyogo 657-8501 Japan
| | - Kaori Fukuzawa
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University 2-4-41 Ebara, Shinagawa-ku Tokyo 142-8501 Japan
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University 6-6-11 Aoba, Aramaki, Aoba-ku Sendai Miyagi 980-8579 Japan
| | - Teruki Honma
- Center for Biosystems Dynamics Research, RIKEN 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama Kanagawa 230-0045 Japan +81-45-503-9432 +81-45-503-9551
| |
Collapse
|
58
|
Widera M, Mühlemann B, Corman VM, Toptan T, Beheim-Schwarzbach J, Kohmer N, Schneider J, Berger A, Veith T, Pallas C, Bleicker T, Goetsch U, Tesch J, Gottschalk R, Jones TC, Ciesek S, Drosten C. Surveillance of SARS-CoV-2 in Frankfurt am Main from October to December 2020 Reveals High Viral Diversity Including Spike Mutation N501Y in B.1.1.70 and B.1.1.7. Microorganisms 2021; 9:748. [PMID: 33918332 PMCID: PMC8065810 DOI: 10.3390/microorganisms9040748] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND International travel is a major driver of the introduction and spread of SARS-CoV-2. AIM To investigate SARS-CoV-2 genetic diversity in the region of a major transport hub in Germany, we characterized the viral sequence diversity of the SARS-CoV-2 variants circulating in Frankfurt am Main, the city with the largest airport in Germany, from the end of October to the end of December 2020. METHODS In total, we recovered 136 SARS-CoV-2 genomes from nasopharyngeal swab samples. We isolated 104 isolates that were grown in cell culture and RNA from the recovered viruses and subjected them to full-genome sequence analysis. In addition, 32 nasopharyngeal swab samples were directly sequenced. RESULTS AND CONCLUSION We found 28 different lineages of SARS-CoV-2 circulating during the study period, including the variant of concern B.1.1.7 (Δ69/70, N501Y). Six of the lineages had not previously been observed in Germany. We detected the spike protein (S) deletion Δ69/Δ70 in 15% of all sequences, a four base pair (bp) deletion (in 2.9% of sequences) and a single bp deletion (in 0.7% of sequences) in ORF3a, leading to ORF3a truncations. In four sequences (2.9%), an amino acid deletion at position 210 in S was identified. In a single sample (0.7%), both a 9 bp deletion in ORF1ab and a 7 bp deletion in ORF7a were identified. One sequence in lineage B.1.1.70 had an N501Y substitution while lacking the Δ69/70 in S. The high diversity of sequences observed over two months in Frankfurt am Main highlights the persisting need for continuous SARS-CoV-2 surveillance using full-genome sequencing, particularly in cities with international airport connections.
Collapse
Affiliation(s)
- Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60596 Frankfurt am Main, Germany; (T.T.); (N.K.); (A.B.); (C.P.); (S.C.)
| | - Barbara Mühlemann
- German Centre for Infection Research (DZIF), Institute of Virology, Charité—Universitätsmedizin Berlin, Humboldt—Universität zu Berlin, 10117 Berlin, Germany; (B.M.); (V.M.C.); (J.B.-S.); (J.S.); (T.V.); (T.B.); (J.T.); (T.C.J.); (C.D.)
| | - Victor M. Corman
- German Centre for Infection Research (DZIF), Institute of Virology, Charité—Universitätsmedizin Berlin, Humboldt—Universität zu Berlin, 10117 Berlin, Germany; (B.M.); (V.M.C.); (J.B.-S.); (J.S.); (T.V.); (T.B.); (J.T.); (T.C.J.); (C.D.)
| | - Tuna Toptan
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60596 Frankfurt am Main, Germany; (T.T.); (N.K.); (A.B.); (C.P.); (S.C.)
| | - Jörn Beheim-Schwarzbach
- German Centre for Infection Research (DZIF), Institute of Virology, Charité—Universitätsmedizin Berlin, Humboldt—Universität zu Berlin, 10117 Berlin, Germany; (B.M.); (V.M.C.); (J.B.-S.); (J.S.); (T.V.); (T.B.); (J.T.); (T.C.J.); (C.D.)
| | - Niko Kohmer
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60596 Frankfurt am Main, Germany; (T.T.); (N.K.); (A.B.); (C.P.); (S.C.)
| | - Julia Schneider
- German Centre for Infection Research (DZIF), Institute of Virology, Charité—Universitätsmedizin Berlin, Humboldt—Universität zu Berlin, 10117 Berlin, Germany; (B.M.); (V.M.C.); (J.B.-S.); (J.S.); (T.V.); (T.B.); (J.T.); (T.C.J.); (C.D.)
| | - Annemarie Berger
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60596 Frankfurt am Main, Germany; (T.T.); (N.K.); (A.B.); (C.P.); (S.C.)
| | - Talitha Veith
- German Centre for Infection Research (DZIF), Institute of Virology, Charité—Universitätsmedizin Berlin, Humboldt—Universität zu Berlin, 10117 Berlin, Germany; (B.M.); (V.M.C.); (J.B.-S.); (J.S.); (T.V.); (T.B.); (J.T.); (T.C.J.); (C.D.)
| | - Christiane Pallas
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60596 Frankfurt am Main, Germany; (T.T.); (N.K.); (A.B.); (C.P.); (S.C.)
| | - Tobias Bleicker
- German Centre for Infection Research (DZIF), Institute of Virology, Charité—Universitätsmedizin Berlin, Humboldt—Universität zu Berlin, 10117 Berlin, Germany; (B.M.); (V.M.C.); (J.B.-S.); (J.S.); (T.V.); (T.B.); (J.T.); (T.C.J.); (C.D.)
| | - Udo Goetsch
- Public Health Department of the City of Frankfurt am Main, 60313 Frankfurt am Main, Germany; (U.G.); (R.G.)
| | - Julia Tesch
- German Centre for Infection Research (DZIF), Institute of Virology, Charité—Universitätsmedizin Berlin, Humboldt—Universität zu Berlin, 10117 Berlin, Germany; (B.M.); (V.M.C.); (J.B.-S.); (J.S.); (T.V.); (T.B.); (J.T.); (T.C.J.); (C.D.)
| | - Rene Gottschalk
- Public Health Department of the City of Frankfurt am Main, 60313 Frankfurt am Main, Germany; (U.G.); (R.G.)
| | - Terry C. Jones
- German Centre for Infection Research (DZIF), Institute of Virology, Charité—Universitätsmedizin Berlin, Humboldt—Universität zu Berlin, 10117 Berlin, Germany; (B.M.); (V.M.C.); (J.B.-S.); (J.S.); (T.V.); (T.B.); (J.T.); (T.C.J.); (C.D.)
- Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, Downing St., Cambridge CB2 3EJ, UK
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60596 Frankfurt am Main, Germany; (T.T.); (N.K.); (A.B.); (C.P.); (S.C.)
- German Center for Infection Research, DZIF, 60596 Braunschweig, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch Translational Medicine and Pharmacology, 60596 Frankfurt am Main, Germany
| | - Christian Drosten
- German Centre for Infection Research (DZIF), Institute of Virology, Charité—Universitätsmedizin Berlin, Humboldt—Universität zu Berlin, 10117 Berlin, Germany; (B.M.); (V.M.C.); (J.B.-S.); (J.S.); (T.V.); (T.B.); (J.T.); (T.C.J.); (C.D.)
- German Center for Infection Research, DZIF, 60596 Braunschweig, Germany
| |
Collapse
|
59
|
Kemp SA, Collier DA, Datir RP, Ferreira IATM, Gayed S, Jahun A, Hosmillo M, Rees-Spear C, Mlcochova P, Lumb IU, Roberts DJ, Chandra A, Temperton N, Sharrocks K, Blane E, Modis Y, Leigh KE, Briggs JAG, van Gils MJ, Smith KGC, Bradley JR, Smith C, Doffinger R, Ceron-Gutierrez L, Barcenas-Morales G, Pollock DD, Goldstein RA, Smielewska A, Skittrall JP, Gouliouris T, Goodfellow IG, Gkrania-Klotsas E, Illingworth CJR, McCoy LE, Gupta RK. SARS-CoV-2 evolution during treatment of chronic infection. Nature 2021. [PMID: 33545711 DOI: 10.1038/s41586-021-03291-y.33545711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for virus infection through the engagement of the human ACE2 protein1 and is a major antibody target. Here we show that chronic infection with SARS-CoV-2 leads to viral evolution and reduced sensitivity to neutralizing antibodies in an immunosuppressed individual treated with convalescent plasma, by generating whole-genome ultra-deep sequences for 23 time points that span 101 days and using in vitro techniques to characterize the mutations revealed by sequencing. There was little change in the overall structure of the viral population after two courses of remdesivir during the first 57 days. However, after convalescent plasma therapy, we observed large, dynamic shifts in the viral population, with the emergence of a dominant viral strain that contained a substitution (D796H) in the S2 subunit and a deletion (ΔH69/ΔV70) in the S1 N-terminal domain of the spike protein. As passively transferred serum antibodies diminished, viruses with the escape genotype were reduced in frequency, before returning during a final, unsuccessful course of convalescent plasma treatment. In vitro, the spike double mutant bearing both ΔH69/ΔV70 and D796H conferred modestly decreased sensitivity to convalescent plasma, while maintaining infectivity levels that were similar to the wild-type virus.The spike substitution mutant D796H appeared to be the main contributor to the decreased susceptibility to neutralizing antibodies, but this mutation resulted in an infectivity defect. The spike deletion mutant ΔH69/ΔV70 had a twofold higher level of infectivity than wild-type SARS-CoV-2, possibly compensating for the reduced infectivity of the D796H mutation. These data reveal strong selection on SARS-CoV-2 during convalescent plasma therapy, which is associated with the emergence of viral variants that show evidence of reduced susceptibility to neutralizing antibodies in immunosuppressed individuals.
Collapse
Affiliation(s)
- Steven A Kemp
- Division of Infection and Immunity, University College London, London, UK
| | - Dami A Collier
- Division of Infection and Immunity, University College London, London, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Rawlings P Datir
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Isabella A T M Ferreira
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Salma Gayed
- Department of Infectious Diseases, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Aminu Jahun
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Myra Hosmillo
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Chloe Rees-Spear
- Division of Infection and Immunity, University College London, London, UK
| | - Petra Mlcochova
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ines Ushiro Lumb
- NHS Blood and Transplant, Oxford and BRC Haematology Theme, University of Oxford, Oxford, UK
| | - David J Roberts
- NHS Blood and Transplant, Oxford and BRC Haematology Theme, University of Oxford, Oxford, UK
| | - Anita Chandra
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Canterbury, UK
| | - Katherine Sharrocks
- Department of Infectious Diseases, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Elizabeth Blane
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Yorgo Modis
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Kendra E Leigh
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - John A G Briggs
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Marit J van Gils
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kenneth G C Smith
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - John R Bradley
- Department of Medicine, University of Cambridge, Cambridge, UK
- NIHR Cambridge Bioresource, Cambridge, UK
| | - Chris Smith
- Department of Virology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge, UK
| | | | - Gabriela Barcenas-Morales
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge, UK
- FES-Cuautitlán, UNAM, Cuautitlán Izcalli, Mexico
| | - David D Pollock
- Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Anna Smielewska
- Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Virology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Jordan P Skittrall
- Department of Infectious Diseases, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
- Clinical Microbiology and Public Health Laboratory, Addenbrooke's Hospital, Cambridge, UK
| | - Theodore Gouliouris
- Department of Infectious Diseases, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | | | | | - Christopher J R Illingworth
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Laura E McCoy
- Division of Infection and Immunity, University College London, London, UK
| | - Ravindra K Gupta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Africa Health Research Institute, Durban, South Africa.
| |
Collapse
|
60
|
Kemp SA, Collier DA, Datir RP, Ferreira IATM, Gayed S, Jahun A, Hosmillo M, Rees-Spear C, Mlcochova P, Lumb IU, Roberts DJ, Chandra A, Temperton N, Sharrocks K, Blane E, Modis Y, Leigh K, Briggs J, van Gils M, Smith KGC, Bradley JR, Smith C, Doffinger R, Ceron-Gutierrez L, Barcenas-Morales G, Pollock DD, Goldstein RA, Smielewska A, Skittrall JP, Gouliouris T, Goodfellow IG, Gkrania-Klotsas E, Illingworth CJR, McCoy LE, Gupta RK. SARS-CoV-2 evolution during treatment of chronic infection. Nature 2021; 592:277-282. [PMID: 33545711 PMCID: PMC7610568 DOI: 10.1038/s41586-021-03291-y] [Citation(s) in RCA: 655] [Impact Index Per Article: 218.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/26/2021] [Indexed: 02/02/2023]
Abstract
The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for virus infection through the engagement of the human ACE2 protein1 and is a major antibody target. Here we show that chronic infection with SARS-CoV-2 leads to viral evolution and reduced sensitivity to neutralizing antibodies in an immunosuppressed individual treated with convalescent plasma, by generating whole-genome ultra-deep sequences for 23 time points that span 101 days and using in vitro techniques to characterize the mutations revealed by sequencing. There was little change in the overall structure of the viral population after two courses of remdesivir during the first 57 days. However, after convalescent plasma therapy, we observed large, dynamic shifts in the viral population, with the emergence of a dominant viral strain that contained a substitution (D796H) in the S2 subunit and a deletion (ΔH69/ΔV70) in the S1 N-terminal domain of the spike protein. As passively transferred serum antibodies diminished, viruses with the escape genotype were reduced in frequency, before returning during a final, unsuccessful course of convalescent plasma treatment. In vitro, the spike double mutant bearing both ΔH69/ΔV70 and D796H conferred modestly decreased sensitivity to convalescent plasma, while maintaining infectivity levels that were similar to the wild-type virus.The spike substitution mutant D796H appeared to be the main contributor to the decreased susceptibility to neutralizing antibodies, but this mutation resulted in an infectivity defect. The spike deletion mutant ΔH69/ΔV70 had a twofold higher level of infectivity than wild-type SARS-CoV-2, possibly compensating for the reduced infectivity of the D796H mutation. These data reveal strong selection on SARS-CoV-2 during convalescent plasma therapy, which is associated with the emergence of viral variants that show evidence of reduced susceptibility to neutralizing antibodies in immunosuppressed individuals.
Collapse
Affiliation(s)
- Steven A Kemp
- Division of Infection and Immunity, University College London, London, UK
| | - Dami A Collier
- Division of Infection and Immunity, University College London, London, UK, Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK,Department of Medicine, University of Cambridge, Cambridge, UK
| | - Rawlings P Datir
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK,Department of Medicine, University of Cambridge, Cambridge, UK
| | - Isabella ATM Ferreira
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK,Department of Medicine, University of Cambridge, Cambridge, UK
| | - Salma Gayed
- Department of Infectious Diseases, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Aminu Jahun
- Department of Pathology, University of Cambridge, Cambridge
| | - Myra Hosmillo
- Department of Pathology, University of Cambridge, Cambridge
| | - Chloe Rees-Spear
- Division of Infection and Immunity, University College London, London, UK
| | - Petra Mlcochova
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK,Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ines Ushiro Lumb
- NHS Blood and Transplant, Oxford and BRC Haematology Theme, University of Oxford, UK
| | - David J Roberts
- NHS Blood and Transplant, Oxford and BRC Haematology Theme, University of Oxford, UK
| | - Anita Chandra
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK,Department of Medicine, University of Cambridge, Cambridge, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, UK
| | - The CITIID-NIHR BioResource COVID-19 Collaboration BakerStephen23Principal InvestigatorsDouganGordon23Principal InvestigatorsHessChristoph232627Principal InvestigatorsKingstonNathalie2012Principal InvestigatorsLehnerPaul J.23Principal InvestigatorsLyonsPaul A.23Principal InvestigatorsMathesonNicholas J.23Principal InvestigatorsOwehandWillem H.20Principal InvestigatorsSaundersCaroline19Principal InvestigatorsSummersCharlotte3242528Principal InvestigatorsThaventhiranJames E.D.2322Principal InvestigatorsToshnerMark32425Principal InvestigatorsWeekesMichael P.2Principal InvestigatorsBuckeAshlea19CRF and Volunteer Research NursesCalderJo19CRF and Volunteer Research NursesCannaLaura19CRF and Volunteer Research NursesDomingoJason19CRF and Volunteer Research NursesElmerAnne19CRF and Volunteer Research NursesFullerStewart19CRF and Volunteer Research NursesHarrisJulie41CRF and Volunteer Research NursesHewittSarah19CRF and Volunteer Research NursesKennetJane19CRF and Volunteer Research NursesJoseSherly19CRF and Volunteer Research NursesKourampaJenny19CRF and Volunteer Research NursesMeadowsAnne19CRF and Volunteer Research NursesO’BrienCriona41CRF and Volunteer Research NursesPriceJane19CRF and Volunteer Research NursesPublicoCherry19CRF and Volunteer Research NursesRastallRebecca19CRF and Volunteer Research NursesRibeiroCarla19CRF and Volunteer Research NursesRowlandsJane19CRF and Volunteer Research NursesRuffoloValentina19CRF and Volunteer Research NursesTordesillasHugo19CRF and Volunteer Research NursesBullmanBen2Sample LogisticsDunmoreBenjamin J3Sample LogisticsFawkeStuart30Sample LogisticsGräfStefan31220Sample LogisticsHodgsonJosh3Sample LogisticsHuangChristopher3Sample LogisticsHunterKelvin23Sample LogisticsJonesEmma29Sample LogisticsLegchenkoEkaterina3Sample LogisticsMataraCecilia3Sample LogisticsMartinJennifer3Sample LogisticsMesciaFederica23Sample LogisticsO’DonnellCiara3Sample LogisticsPointonLinda3Sample LogisticsPondNicole23Sample LogisticsShihJoy3Sample LogisticsSutcliffeRachel3Sample LogisticsTillyTobias3Sample LogisticsTreacyCarmen3Sample LogisticsTongZhen3Sample LogisticsWoodJennifer3Sample LogisticsWylotMarta36Sample LogisticsBergamaschiLaura23Sample Processing and Data AcquisitionBetancourtAriana23Sample Processing and Data AcquisitionBowerGeorgie23Sample Processing and Data AcquisitionCossettiChiara23Sample Processing and Data AcquisitionDe SaAloka3Sample Processing and Data AcquisitionEppingMadeline23Sample Processing and Data AcquisitionFawkeStuart32Sample Processing and Data AcquisitionGleadallNick20Sample Processing and Data AcquisitionGrenfellRichard31Sample Processing and Data AcquisitionHinchAndrew23Sample Processing and Data AcquisitionHuhnOisin32Sample Processing and Data AcquisitionJacksonSarah3Sample Processing and Data AcquisitionJarvisIsobel3Sample Processing and Data AcquisitionLewisDaniel3Sample Processing and Data AcquisitionMarsdenJoe3Sample Processing and Data AcquisitionNiceFrancesca39Sample Processing and Data AcquisitionOkechaGeorgina3Sample Processing and Data AcquisitionOmarjeeOmmar3Sample Processing and Data AcquisitionPereraMarianne3Sample Processing and Data AcquisitionRichozNathan3Sample Processing and Data AcquisitionRomashovaVeronika23Sample Processing and Data AcquisitionYarkoniNatalia Savinykh3Sample Processing and Data AcquisitionSharmaRahul3Sample Processing and Data AcquisitionStefanucciLuca20Sample Processing and Data AcquisitionStephensJonathan20Sample Processing and Data AcquisitionStrezleckiMateusz31Sample Processing and Data AcquisitionTurnerLori23Sample Processing and Data AcquisitionDe BieEckart M.D.D.3Clinical Data CollectionBunclarkKatherine3Clinical Data CollectionJosipovicMasa40Clinical Data CollectionMackayMichael3Clinical Data CollectionMesciaFederica23Clinical Data CollectionMichaelAlice25Clinical Data CollectionRossiSabrina35Clinical Data CollectionSelvanMayurun3Clinical Data CollectionSpencerSarah15Clinical Data CollectionYongCissy35Clinical Data CollectionAnsaripourAli25Royal Papworth Hospital ICUMichaelAlice25Royal Papworth Hospital ICUMwauraLucy25Royal Papworth Hospital ICUPattersonCaroline25Royal Papworth Hospital ICUPolwarthGary25Royal Papworth Hospital ICUPolgarovaPetra28Addenbrooke’s Hospital ICUdi StefanoGiovanni28Addenbrooke’s Hospital ICUFaheyCodie34Cambridge and Peterborough Foundation TrustMichelRachel34Cambridge and Peterborough Foundation TrustBongSze-How21ANPC and Centre for Molecular Medicine and Innovative TherapeuticsCoudertJerome D.33ANPC and Centre for Molecular Medicine and Innovative TherapeuticsHolmesElaine37ANPC and Centre for Molecular Medicine and Innovative TherapeuticsAllisonJohn2012NIHR BioResourceButcherHelen1238NIHR BioResourceCaputoDaniela1238NIHR BioResourceClapham-RileyDebbie1238NIHR BioResourceDewhurstEleanor1238NIHR BioResourceFurlongAnita1238NIHR BioResourceGravesBarbara1238NIHR BioResourceGrayJennifer1238NIHR BioResourceIversTasmin1238NIHR BioResourceKasanickiMary1228NIHR BioResourceLe GresleyEmma1238NIHR BioResourceLingerRachel1238NIHR BioResourceMeloySarah1238NIHR BioResourceMuldoonFrancesca1238NIHR BioResourceOvingtonNigel1220NIHR BioResourcePapadiaSofia1238NIHR BioResourcePhelanIsabel1238NIHR BioResourceStarkHannah1238NIHR BioResourceStirrupsKathleen E1220NIHR BioResourceTownsendPaul1220NIHR BioResourceWalkerNeil1220NIHR BioResourceWebsterJennifer1238NIHR BioResourceCambridge Clinical Research Centre, NIHR Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UKDepartment of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UKAustralian National Phenome Centre, Murdoch University, Murdoch, Western Australia WA 6150, AustraliaMRC Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge CB2 1QR, UKR&D Department, Hycult Biotech, 5405 PD Uden, The NetherlandsHeart and Lung Research Institute, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UKRoyal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UKDepartment of Biomedicine, University and University Hospital Basel, 4031Basel, SwitzerlandBotnar Research Centre for Child Health (BRCCH) University Basel & ETH Zurich, 4058 Basel, SwitzerlandAddenbrooke’s Hospital, Cambridge CB2 0QQ, UKDepartment of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES, UKCambridge Institute for Medical Research, Cambridge Biomedical Campus, Cambridge CB2 0XY, UKCancer Research UK, Cambridge Institute, University of Cambridge CB2 0RE, UKDepartment of Obstetrics & Gynaecology, The Rosie Maternity Hospital, Robinson Way, Cambridge CB2 0SW, UKCentre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, AustraliaCambridge and Peterborough Foundation Trust, Fulbourn Hospital, Fulbourn, Cambridge CB21 5EF, UKDepartment of Surgery, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UKDepartment of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UKCentre of Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, AustraliaDepartment of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UKCancer Molecular Diagnostics Laboratory, Department of Oncology, University of Cambridge, Cambridge CB2 0AH, UKMetabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UKDepartment of Paediatrics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | | | - Katherine Sharrocks
- Department of Infectious Diseases, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Elizabeth Blane
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Yorgo Modis
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Kendra Leigh
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - John Briggs
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Marit van Gils
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Kenneth GC Smith
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK,Department of Medicine, University of Cambridge, Cambridge, UK
| | - John R Bradley
- Department of Medicine, University of Cambridge, Cambridge, UK, NIHR Cambridge Clinical Research Facility, Cambridge, UK
| | - Chris Smith
- Department of Virology, Cambridge University NHS Hospitals Foundation Trust
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Addenbrookes Hospital
| | | | - Gabriela Barcenas-Morales
- Department of Clinical Biochemistry and Immunology, Addenbrookes Hospital, FES-Cuautitlán, UNAM, Mexico
| | - David D Pollock
- Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Anna Smielewska
- Department of Pathology, University of Cambridge, Cambridge,Department of Virology, Cambridge University NHS Hospitals Foundation Trust
| | - Jordan P Skittrall
- Department of Infectious Diseases, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK,Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK,Clinical Microbiology and Public Health Laboratory, Addenbrookes’ Hospital, Cambridge, UK
| | - Theodore Gouliouris
- Department of Infectious Diseases, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | | | | | - Christopher JR Illingworth
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK, MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Laura E McCoy
- Division of Infection and Immunity, University College London, London, UK
| | - Ravindra K Gupta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK,Department of Medicine, University of Cambridge, Cambridge, UK,Africa Health Research Institute, Durban, South Africa
| |
Collapse
|
61
|
Planas D, Bruel T, Grzelak L, Guivel-Benhassine F, Staropoli I, Porrot F, Planchais C, Buchrieser J, Rajah MM, Bishop E, Albert M, Donati F, Prot M, Behillil S, Enouf V, Maquart M, Smati-Lafarge M, Varon E, Schortgen F, Yahyaoui L, Gonzalez M, De Sèze J, Péré H, Veyer D, Sève A, Simon-Lorière E, Fafi-Kremer S, Stefic K, Mouquet H, Hocqueloux L, van der Werf S, Prazuck T, Schwartz O. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nat Med 2021; 27:917-924. [PMID: 33772244 DOI: 10.1038/s41591-021-01318-5] [Citation(s) in RCA: 468] [Impact Index Per Article: 156.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/11/2021] [Indexed: 12/22/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.7 and B.1.351 variants were first identified in the United Kingdom and South Africa, respectively, and have since spread to many countries. These variants harboring diverse mutations in the gene encoding the spike protein raise important concerns about their immune evasion potential. Here, we isolated infectious B.1.1.7 and B.1.351 strains from acutely infected individuals. We examined sensitivity of the two variants to SARS-CoV-2 antibodies present in sera and nasal swabs from individuals infected with previously circulating strains or who were recently vaccinated, in comparison with a D614G reference virus. We utilized a new rapid neutralization assay, based on reporter cells that become positive for GFP after overnight infection. Sera from 58 convalescent individuals collected up to 9 months after symptoms, similarly neutralized B.1.1.7 and D614G. In contrast, after 9 months, convalescent sera had a mean sixfold reduction in neutralizing titers, and 40% of the samples lacked any activity against B.1.351. Sera from 19 individuals vaccinated twice with Pfizer Cominarty, longitudinally tested up to 6 weeks after vaccination, were similarly potent against B.1.1.7 but less efficacious against B.1.351, when compared to D614G. Neutralizing titers increased after the second vaccine dose, but remained 14-fold lower against B.1.351. In contrast, sera from convalescent or vaccinated individuals similarly bound the three spike proteins in a flow cytometry-based serological assay. Neutralizing antibodies were rarely detected in nasal swabs from vaccinees. Thus, faster-spreading SARS-CoV-2 variants acquired a partial resistance to neutralizing antibodies generated by natural infection or vaccination, which was most frequently detected in individuals with low antibody levels. Our results indicate that B1.351, but not B.1.1.7, may increase the risk of infection in immunized individuals.
Collapse
Affiliation(s)
- Delphine Planas
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,CNRS UMR 3569, Paris, France.,Vaccine Research Institute, Créteil, France
| | - Timothée Bruel
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,CNRS UMR 3569, Paris, France.,Vaccine Research Institute, Créteil, France
| | - Ludivine Grzelak
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,CNRS UMR 3569, Paris, France.,Vaccine Research Institute, Créteil, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Florence Guivel-Benhassine
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,CNRS UMR 3569, Paris, France.,Vaccine Research Institute, Créteil, France
| | - Isabelle Staropoli
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,CNRS UMR 3569, Paris, France.,Vaccine Research Institute, Créteil, France
| | - Françoise Porrot
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,CNRS UMR 3569, Paris, France.,Vaccine Research Institute, Créteil, France
| | - Cyril Planchais
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, INSERM U1222, Paris, France
| | - Julian Buchrieser
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,CNRS UMR 3569, Paris, France.,Vaccine Research Institute, Créteil, France
| | - Maaran Michael Rajah
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,CNRS UMR 3569, Paris, France.,Vaccine Research Institute, Créteil, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Elodie Bishop
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,CNRS UMR 3569, Paris, France.,Vaccine Research Institute, Créteil, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Mélanie Albert
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur CNRS UMR 3569, Université de Paris, Paris, France.,National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Flora Donati
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur CNRS UMR 3569, Université de Paris, Paris, France.,National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Matthieu Prot
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Paris, France
| | - Sylvie Behillil
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur CNRS UMR 3569, Université de Paris, Paris, France.,National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Vincent Enouf
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur CNRS UMR 3569, Université de Paris, Paris, France.,National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | | | | | | | | | | | - Maria Gonzalez
- CHU de Strasbourg, Service de Pathologie Professionnelle et Médecine du Travail, Strasbourg, France
| | - Jérôme De Sèze
- Centre d'investigation Clinique INSERM 1434, CHU Strasbourg, France.,CHU de Strasbourg, Service de Neurologie, Strasbourg, France
| | - Hélène Péré
- INSERM, Functional Genomics of Solid Tumors (FunGeST), Centre de Recherche des Cordeliers, Université de Paris and Sorbonne Université, Paris, France
| | - David Veyer
- INSERM, Functional Genomics of Solid Tumors (FunGeST), Centre de Recherche des Cordeliers, Université de Paris and Sorbonne Université, Paris, France.,Hôpital Européen Georges Pompidou, Service de Virologie, Paris, France
| | - Aymeric Sève
- CHR d'Orléans, Service de maladies infectieuses, Orléans, France
| | | | - Samira Fafi-Kremer
- CHU de Strasbourg, Laboratoire de Virologie, Strasbourg, France.,Université de Strasbourg, INSERM, IRM UMR_S 1109, Strasbourg, France
| | - Karl Stefic
- INSERM U1259, Université de Tours, Tours, France.,CHRU de Tours, National Reference Center for HIV-Associated laboratory, Tours, France
| | - Hugo Mouquet
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, INSERM U1222, Paris, France
| | | | - Sylvie van der Werf
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur CNRS UMR 3569, Université de Paris, Paris, France.,National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Thierry Prazuck
- CHR d'Orléans, Service de maladies infectieuses, Orléans, France
| | - Olivier Schwartz
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France. .,CNRS UMR 3569, Paris, France. .,Vaccine Research Institute, Créteil, France.
| |
Collapse
|
62
|
Bispecific IgG neutralizes SARS-CoV-2 variants and prevents escape in mice. Nature 2021; 593:424-428. [PMID: 33767445 DOI: 10.1038/s41586-021-03461-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023]
Abstract
Neutralizing antibodies that target the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein are among the most promising approaches against COVID-191,2. A bispecific IgG1-like molecule (CoV-X2) has been developed on the basis of C121 and C135, two antibodies derived from donors who had recovered from COVID-193. Here we show that CoV-X2 simultaneously binds two independent sites on the RBD and, unlike its parental antibodies, prevents detectable spike binding to the cellular receptor of the virus, angiotensin-converting enzyme 2 (ACE2). Furthermore, CoV-X2 neutralizes wild-type SARS-CoV-2 and its variants of concern, as well as escape mutants generated by the parental monoclonal antibodies. We also found that in a mouse model of SARS-CoV-2 infection with lung inflammation, CoV-X2 protects mice from disease and suppresses viral escape. Thus, the simultaneous targeting of non-overlapping RBD epitopes by IgG-like bispecific antibodies is feasible and effective, and combines the advantages of antibody cocktails with those of single-molecule approaches.
Collapse
|
63
|
|
64
|
Rees-Spear C, Muir L, Griffith SA, Heaney J, Aldon Y, Snitselaar JL, Thomas P, Graham C, Seow J, Lee N, Rosa A, Roustan C, Houlihan CF, Sanders RW, Gupta RK, Cherepanov P, Stauss HJ, Nastouli E, Doores KJ, van Gils MJ, McCoy LE. The effect of spike mutations on SARS-CoV-2 neutralization. Cell Rep 2021; 34:108890. [PMID: 33713594 DOI: 10.1101/2021.01.15.426849] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/17/2021] [Accepted: 03/01/2021] [Indexed: 05/18/2023] Open
Abstract
Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines show protective efficacy, which is most likely mediated by neutralizing antibodies recognizing the viral entry protein, spike. Because new SARS-CoV-2 variants are emerging rapidly, as exemplified by the B.1.1.7, B.1.351, and P.1 lineages, it is critical to understand whether antibody responses induced by infection with the original SARS-CoV-2 virus or current vaccines remain effective. In this study, we evaluate neutralization of a series of mutated spike pseudotypes based on divergence from SARS-CoV and then compare neutralization of the B.1.1.7 spike pseudotype and individual mutations. Spike-specific monoclonal antibody neutralization is reduced dramatically; in contrast, polyclonal antibodies from individuals infected in early 2020 remain active against most mutated spike pseudotypes, but potency is reduced in a minority of samples. This work highlights that changes in SARS-CoV-2 spike can alter neutralization sensitivity and underlines the need for effective real-time monitoring of emerging mutations and their effect on vaccine efficacy.
Collapse
Affiliation(s)
- Chloe Rees-Spear
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | - Luke Muir
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | - Sarah A Griffith
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | - Judith Heaney
- Advanced Pathogens Diagnostic Unit, Department of Clinical Virology, University College London Hospitals NHS Foundation Trust, London W1T 4EU, UK
| | - Yoann Aldon
- Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Jonne L Snitselaar
- Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Peter Thomas
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | - Carl Graham
- School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK
| | - Jeffrey Seow
- School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK
| | - Nayung Lee
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | | | | | - Catherine F Houlihan
- Advanced Pathogens Diagnostic Unit, Department of Clinical Virology, University College London Hospitals NHS Foundation Trust, London W1T 4EU, UK; Research Department of Infection, Division of Infection and Immunity, University College London, London WC1 6BT, UK
| | - Rogier W Sanders
- Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Ravindra K Gupta
- Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | | | - Hans J Stauss
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | - Eleni Nastouli
- Advanced Pathogens Diagnostic Unit, Department of Clinical Virology, University College London Hospitals NHS Foundation Trust, London W1T 4EU, UK; The Francis Crick Institute, London NW1 1AT, UK; Great Ormond Street Institute for Child Health, Infection, Immunity and Inflammation, University College London, London WC1N 1EH, UK
| | - Katie J Doores
- School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK
| | - Marit J van Gils
- Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Laura E McCoy
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK.
| |
Collapse
|
65
|
Dicken SJ, Murray MJ, Thorne LG, Reuschl AK, Forrest C, Ganeshalingham M, Muir L, Kalemera MD, Palor M, McCoy LE, Jolly C, Towers GJ, Reeves MB, Grove J. Characterisation of B.1.1.7 and Pangolin coronavirus spike provides insights on the evolutionary trajectory of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.22.436468. [PMID: 33791702 PMCID: PMC8010729 DOI: 10.1101/2021.03.22.436468] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The recent emergence of SARS-CoV-2 variants with increased transmission, pathogenesis and immune resistance has jeopardised the global response to the COVID-19 pandemic. Determining the fundamental biology of viral variants and understanding their evolutionary trajectories will guide current mitigation measures, future genetic surveillance and vaccination strategies. Here we examine virus entry by the B.1.1.7 lineage, commonly referred to as the UK/Kent variant. Pseudovirus infection of model cell lines demonstrate that B.1.1.7 entry is enhanced relative to the Wuhan-Hu-1 reference strain, particularly under low expression of receptor ACE2. Moreover, the entry characteristics of B.1.1.7 were distinct from that of its predecessor strain containing the D614G mutation. These data suggest evolutionary tuning of spike protein function. Additionally, we found that amino acid deletions within the N-terminal domain (NTD) of spike were important for efficient entry by B.1.1.7. The NTD is a hotspot of diversity across sarbecoviruses, therefore, we further investigated this region by examining the entry of closely related CoVs. Surprisingly, Pangolin CoV spike entry was 50-100 fold enhanced relative to SARS-CoV-2; suggesting there may be evolutionary pathways by which SARSCoV-2 may further optimise entry. Swapping the NTD between Pangolin CoV and SARS-CoV-2 demonstrates that changes in this region alone have the capacity to enhance virus entry. Thus, the NTD plays a hitherto unrecognised role in modulating spike activity, warranting further investigation and surveillance of NTD mutations.
Collapse
Affiliation(s)
- Samuel J Dicken
- Division of Infection and Immunity, University College London, UK
| | - Matthew J Murray
- Division of Infection and Immunity, University College London, UK
| | - Lucy G Thorne
- Division of Infection and Immunity, University College London, UK
| | | | - Calum Forrest
- Division of Infection and Immunity, University College London, UK
| | | | - Luke Muir
- Division of Infection and Immunity, University College London, UK
| | | | - Machaela Palor
- Division of Infection and Immunity, University College London, UK
| | - Laura E McCoy
- Division of Infection and Immunity, University College London, UK
| | - Clare Jolly
- Division of Infection and Immunity, University College London, UK
| | - Greg J Towers
- Division of Infection and Immunity, University College London, UK
| | - Matthew B Reeves
- Division of Infection and Immunity, University College London, UK
| | - Joe Grove
- Division of Infection and Immunity, University College London, UK
| |
Collapse
|
66
|
van der Lubbe JEM, Rosendahl Huber SK, Vijayan A, Dekking L, van Huizen E, Vreugdenhil J, Choi Y, Baert MRM, Feddes-de Boer K, Izquierdo Gil A, van Heerden M, Dalebout TJ, Myeni SK, Kikkert M, Snijder EJ, de Waal L, Stittelaar KJ, Tolboom JTBM, Serroyen J, Muchene L, van der Fits L, Rutten L, Langedijk JPM, Barouch DH, Schuitemaker H, Zahn RC, Wegmann F. Ad26.COV2.S protects Syrian hamsters against G614 spike variant SARS-CoV-2 and does not enhance respiratory disease. NPJ Vaccines 2021; 6:39. [PMID: 33741993 PMCID: PMC7979827 DOI: 10.1038/s41541-021-00301-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
Previously we have shown that a single dose of recombinant adenovirus serotype 26 (Ad26) vaccine expressing a prefusion stabilized SARS-CoV-2 spike antigen (Ad26.COV2.S) is immunogenic and provides protection in Syrian hamster and non-human primate SARS-CoV-2 infection models. Here, we investigated the immunogenicity, protective efficacy, and potential for vaccine-associated enhanced respiratory disease (VAERD) mediated by Ad26.COV2.S in a moderate disease Syrian hamster challenge model, using the currently most prevalent G614 spike SARS-CoV-2 variant. Vaccine doses of 1 × 109 and 1 × 1010 VP elicited substantial neutralizing antibodies titers and completely protected over 80% of SARS-CoV-2 inoculated Syrian hamsters from lung infection and pneumonia but not upper respiratory tract infection. A second vaccine dose further increased neutralizing antibody titers that was associated with decreased infectious viral load in the upper respiratory tract after SARS-CoV-2 challenge. Suboptimal non-protective immune responses elicited by low-dose A26.COV2.S vaccination did not exacerbate respiratory disease in SARS-CoV-2-inoculated Syrian hamsters with breakthrough infection. In addition, dosing down the vaccine allowed to establish that binding and neutralizing antibody titers correlate with lower respiratory tract protection probability. Overall, these preclinical data confirm efficacy of a one-dose vaccine regimen with Ad26.COV2.S in this G614 spike SARS-CoV-2 virus variant Syrian hamster model, show the added benefit of a second vaccine dose, and demonstrate that there are no signs of VAERD under conditions of suboptimal immunity.
Collapse
Affiliation(s)
| | | | - Aneesh Vijayan
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | | | | | | | - Ying Choi
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | | | | | | | | | - Tim J Dalebout
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sebenzile K Myeni
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjolein Kikkert
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Leon de Waal
- Viroclinics Biosciences B.V., Viroclinics Xplore, Schaijk, The Netherlands
| | | | | | - Jan Serroyen
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | - Leacky Muchene
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | | | - Lucy Rutten
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | | | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | | | - Roland C Zahn
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | - Frank Wegmann
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| |
Collapse
|
67
|
Greaney AJ, Starr TN, Barnes CO, Weisblum Y, Schmidt F, Caskey M, Gaebler C, Cho A, Agudelo M, Finkin S, Wang Z, Poston D, Muecksch F, Hatziioannou T, Bieniasz PD, Robbiani DF, Nussenzweig MC, Bjorkman PJ, Bloom JD. Mutational escape from the polyclonal antibody response to SARS-CoV-2 infection is largely shaped by a single class of antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.17.435863. [PMID: 33758856 PMCID: PMC7987015 DOI: 10.1101/2021.03.17.435863] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Monoclonal antibodies targeting a variety of epitopes have been isolated from individuals previously infected with SARS-CoV-2, but the relative contributions of these different antibody classes to the polyclonal response remains unclear. Here we use a yeast-display system to map all mutations to the viral spike receptor-binding domain (RBD) that escape binding by representatives of three potently neutralizing classes of anti-RBD antibodies with high-resolution structures. We compare the antibody-escape maps to similar maps for convalescent polyclonal plasma, including plasma from individuals from whom some of the antibodies were isolated. The plasma-escape maps most closely resemble those of a single class of antibodies that target an epitope on the RBD that includes site E484. Therefore, although the human immune system can produce antibodies that target diverse RBD epitopes, in practice the polyclonal response to infection is dominated by a single class of antibodies targeting an epitope that is already undergoing rapid evolution.
Collapse
Affiliation(s)
- Allison J. Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Tyler N. Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Christopher O. Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yiska Weisblum
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Alice Cho
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Marianna Agudelo
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Shlomo Finkin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Daniel Poston
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | | | - Paul D. Bieniasz
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Davide F. Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Institute for Research in Biomedicine, Universita della Svizzera italiana (USI), 6500 Bellinzona, Switzerland
| | - Michel C. Nussenzweig
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
68
|
First Report of a SARS-CoV-2 Genome Sequence with a Spike His69-Val70 Deletion and an Asn439Lys Mutation in Morocco. Microbiol Resour Announc 2021; 10:10/11/e00027-21. [PMID: 33737349 PMCID: PMC7975867 DOI: 10.1128/mra.00027-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report the nearly complete genome sequence and the genetic variations of a clinical sample of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) collected from a nasopharyngeal swab specimen from a male patient from Harhoura-Rabat, Morocco. The sequence, which was obtained using Ion Torrent technology, is valuable as it carries a recently described deletion (His69-Val70) and substitution (Asn439Lys). We report the nearly complete genome sequence and the genetic variations of a clinical sample of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) collected from a nasopharyngeal swab specimen from a male patient from Harhoura-Rabat, Morocco. The sequence, which was obtained using Ion Torrent technology, is valuable as it carries a recently described deletion (His69-Val70) and substitution (Asn439Lys).
Collapse
|
69
|
Huang SW, Wang SF. SARS-CoV-2 Entry Related Viral and Host Genetic Variations: Implications on COVID-19 Severity, Immune Escape, and Infectivity. Int J Mol Sci 2021; 22:3060. [PMID: 33802729 PMCID: PMC8002537 DOI: 10.3390/ijms22063060] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved to display particular patterns of genetic diversity in the genome across geographical regions. These variations in the virus and genetic variation in human populations can determine virus transmissibility and coronavirus disease 2019 (COVID-19) severity. Genetic variations and immune differences in human populations could be the driving forces in viral evolution. Recently emerged SARS-CoV-2 variants show several mutations at the receptor binding domain in the spike (S) glycoprotein and contribute to immune escape and enhanced binding with angiotensin 1-converting enzyme 2 (ACE2). Since ACE2 and transmembrane protease serine 2 (TMPRSS2) play important roles in SARS-CoV-2 entry into the cell, genetic variation in these host entry-related proteins may be a driving force for positive selection in the SARS-CoV-2 S glycoprotein. Dendritic or liver/lymph cell-specific intercellular adhesion molecule (ICAM)-3-grabbing non-integrin is also known to play vital roles in several pathogens. Genetic variations of these host proteins may affect the susceptibility to SARS-CoV-2. This review summarizes the latest research to describe the impacts of genetic variation in the viral S glycoprotein and critical host proteins and aims to provide better insights for understanding transmission and pathogenesis and more broadly for developing vaccine/antiviral drugs and precision medicine strategies, especially for high risk populations with genetic risk variants.
Collapse
Affiliation(s)
- Szu-Wei Huang
- Model Development Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Clinical Microbiology Laboratory, Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
70
|
McCarthy KR, Rennick LJ, Nambulli S, Robinson-McCarthy LR, Bain WG, Haidar G, Duprex WP. Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape. Science 2021. [PMID: 33536258 DOI: 10.1101/2020.11.19.389916] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Zoonotic pandemics, such as that caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can follow the spillover of animal viruses into highly susceptible human populations. The descendants of these viruses have adapted to the human host and evolved to evade immune pressure. Coronaviruses acquire substitutions more slowly than other RNA viruses. In the spike glycoprotein, we found that recurrent deletions overcome this slow substitution rate. Deletion variants arise in diverse genetic and geographic backgrounds, transmit efficiently, and are present in novel lineages, including those of current global concern. They frequently occupy recurrent deletion regions (RDRs), which map to defined antibody epitopes. Deletions in RDRs confer resistance to neutralizing antibodies. By altering stretches of amino acids, deletions appear to accelerate SARS-CoV-2 antigenic evolution and may, more generally, drive adaptive evolution.
Collapse
Affiliation(s)
- Kevin R McCarthy
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Laboratory of Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Linda J Rennick
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sham Nambulli
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - William G Bain
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, UPMC, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Ghady Haidar
- Division of Infectious Disease, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Infectious Disease, Department of Internal Medicine, UPMC, Pittsburgh, PA, USA
| | - W Paul Duprex
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
71
|
Gómez CE, Perdiguero B, Esteban M. Emerging SARS-CoV-2 Variants and Impact in Global Vaccination Programs against SARS-CoV-2/COVID-19. Vaccines (Basel) 2021; 9:243. [PMID: 33799505 PMCID: PMC7999234 DOI: 10.3390/vaccines9030243] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/23/2022] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants in different continents is causing a major concern in human global health. These variants have in common a higher transmissibility, becoming dominant within populations in a short time, and an accumulation of a high number of mutations in the spike (S) protein, especially within the amino terminal domain (NTD) and the receptor binding domain (RBD). These mutations have direct implications on virus infection rates through higher affinity of S RBD for the cellular angiotensin-converting enzyme-2 (ACE-2) receptor. There are also signs of enhanced virulence, re-infection frequency, and increased resistance to the action of monoclonal and polyclonal antibodies from convalescence sera and in vaccinated individuals in regions where the variants spread dominantly. In this review, we describe the different SARS-CoV-2 variants that have thus far been identified in various parts of the world with mutational changes and biological properties as well as their impact in medical countermeasures and human health.
Collapse
Affiliation(s)
- Carmen Elena Gómez
- Centro Nacional de Biotecnología, Department of Molecular and Cellular Biology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
| | | | - Mariano Esteban
- Centro Nacional de Biotecnología, Department of Molecular and Cellular Biology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
| |
Collapse
|
72
|
Micochova P, Chadha A, Hesseloj T, Fraternali F, Ramsden JJ, Gupta RK. Rapid inactivation of SARS-CoV-2 by titanium dioxide surface coating. Wellcome Open Res 2021; 6:56. [PMID: 34604541 PMCID: PMC8450774 DOI: 10.12688/wellcomeopenres.16577.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 05/08/2024] Open
Abstract
Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission occurs via airborne droplets and surface contamination. Titanium dioxide (TiO 2) coating of surfaces is a promising infection control measure, though to date has not been tested against SARS-CoV-2. Methods: Virus stability was evaluated on TiO 2- and TiO 2-Ag (Ti:Ag atomic ratio 1:0.04)-coated 45 x 45 mm ceramic tiles. After coating the tiles were stored for 2-4 months before use. We tested the stability of both SARS-CoV-2 Spike pseudotyped virions based on a lentiviral system, as well as fully infectious SARS-CoV-2 virus. For the former, tile surfaces were inoculated with SARS-CoV-2 spike pseudotyped HIV-1 luciferase virus. At intervals virus was recovered from surfaces and target cells infected. For live virus, after illuminating tiles for 0-300 min virus was recovered from surfaces followed by infection of Vero E6 cells. % of infected cells was determined by flow cytometry detecting SARS-CoV-2 nucleocapsid protein 24 h post-infection. Results: After 1 h illumination the pseudotyped viral titre was decreased by four orders of magnitude. There was no significant difference between the TiO 2 and TiO 2-Ag coatings. Light alone had no significant effect on viral viability. For live SARS-CoV-2, virus was already significantly inactivated on the TiO 2 surfaces after 20 min illumination. After 5 h no detectable active virus remained. Significantly, SARS-CoV-2 on the untreated surface was still fully infectious at 5 h post-addition of virus. Overall, tiles coated with TiO 2 120 days previously were able to inactivate SARS-CoV-2 under ambient indoor lighting with 87% reduction in titres at 1h and complete loss by 5h exposure. Conclusions: In the context of emerging viral variants with increased transmissibility, TiO 2 coatings could be an important tool in containing SARS-CoV-2, particularly in health care facilities where nosocomial infection rates are high.
Collapse
Affiliation(s)
- Petra Micochova
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge, UK
| | - Ambika Chadha
- University of Cambridge Addenbrooke's Hospital Cambridge, Cambridge, UK
| | - Timi Hesseloj
- Invisismart Technologies, London, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Franca Fraternali
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
- Development and Homeostasis of the Nervous System Laboratory, The Francis Crick Institute, London, UK
| | | | - Ravindra K. Gupta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge, UK
- University of Cambridge Addenbrooke's Hospital Cambridge, Cambridge, UK
| |
Collapse
|
73
|
Bashor L, Gagne RB, Bosco-Lauth A, Bowen R, Stenglein M, VandeWoude S. SARS-CoV-2 evolution in animals suggests mechanisms for rapid variant selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.05.434135. [PMID: 33758844 PMCID: PMC7987003 DOI: 10.1101/2021.03.05.434135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SARS-CoV-2 spillback from humans into domestic and wild animals has been well-documented. We compared variants of cell culture-expanded SARS-CoV-2 inoculum and virus recovered from four species following experimental exposure. Five nonsynonymous changes in nsp12, S, N and M genes were near fixation in the inoculum, but reverted to wild-type sequences in RNA recovered from dogs, cats and hamsters within 1-3 days post-exposure. Fourteen emergent variants were detected in viruses recovered from animals, including substitutions at spike positions H69, N501, and D614, which also vary in human lineages of concern. The rapidity of in vitro and in vivo SARS-CoV-2 selection reveals residues with functional significance during host-switching, illustrating the potential for spillback reservoir hosts to accelerate evolution, and demonstrating plasticity of viral adaptation in animal models. ONE-SENTENCE SUMMARY SARS-CoV-2 variants rapidly arise in non-human hosts, revealing viral evolution and potential risk for human reinfection.
Collapse
Affiliation(s)
- Laura Bashor
- Department of Microbiology, Immunology, and Pathology, Colorado State University; Fort Collins, CO, 80523, USA
| | - Roderick B. Gagne
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine; Kennett Square, PA, 19348, USA
| | - Angela Bosco-Lauth
- Department of Biomedical Sciences, Colorado State University; Fort Collins, CO, 80523, USA
| | - Richard Bowen
- Department of Biomedical Sciences, Colorado State University; Fort Collins, CO, 80523, USA
| | - Mark Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University; Fort Collins, CO, 80523, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University; Fort Collins, CO, 80523, USA
| |
Collapse
|
74
|
De Gasparo R, Pedotti M, Simonelli L, Nickl P, Muecksch F, Cassaniti I, Percivalle E, Lorenzi JCC, Mazzola F, Magrì D, Michalcikova T, Haviernik J, Honig V, Mrazkova B, Polakova N, Fortova A, Tureckova J, Iatsiuk V, Girolamo SD, Palus M, Zudova D, Bednar P, Bukova I, Bianchini F, Mehn D, Nencka R, Strakova P, Pavlis O, Rozman J, Gioria S, Camilla Sammartino J, Giardina F, Gaiarsa S, Hammarström QP, Barnes CO, Bjorkman PJ, Calzolai L, Piralla A, Baldanti F, Nussenzweig MC, Bieniasz PD, Hatziioannou T, Prochazka J, Sedlacek R, Robbiani DF, Ruzek D, Varani L. Bispecific antibody neutralizes circulating SARS-CoV-2 variants, prevents escape and protects mice from disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.22.427567. [PMID: 33501434 PMCID: PMC7836104 DOI: 10.1101/2021.01.22.427567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Neutralizing antibodies targeting the receptor binding domain (RBD) of the SARS-CoV-2 Spike (S) are among the most promising approaches against coronavirus disease 2019 (COVID-19) 1,2 . We developed a bispecific, IgG1-like molecule (CoV-X2) based on two antibodies derived from COVID-19 convalescent donors, C121 and C135 3 . CoV-X2 simultaneously binds two independent sites on the RBD and, unlike its parental antibodies, prevents detectable S binding to Angiotensin-Converting Enzyme 2 (ACE2), the virus cellular receptor. Furthermore, CoV-X2 neutralizes SARS-CoV-2 and its variants of concern, as well as the escape mutants generated by the parental monoclonals. In a novel animal model of SARS-CoV-2 infection with lung inflammation, CoV-X2 protects mice from disease and suppresses viral escape. Thus, simultaneous targeting of non-overlapping RBD epitopes by IgG-like bispecific antibodies is feasible and effective, combining into a single molecule the advantages of antibody cocktails.
Collapse
|
75
|
Ng KT, Mohd-Ismail NK, Tan YJ. Spike S2 Subunit: The Dark Horse in the Race for Prophylactic and Therapeutic Interventions against SARS-CoV-2. Vaccines (Basel) 2021; 9:178. [PMID: 33672450 PMCID: PMC7923282 DOI: 10.3390/vaccines9020178] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
In the midst of the unceasing COVID-19 pandemic, the identification of immunogenic epitopes in the SARS-CoV-2 spike (S) glycoprotein plays a vital role in the advancement and development of intervention strategies. S is expressed on the exterior of the SARS-CoV-2 virion and contains two subunits, namely the N-terminal S1 and C-terminal S2. It is the key element for mediating viral entry as well as a crucial antigenic determinant capable of stimulating protective immune response through elicitation of anti-SARS-CoV-2 antibodies and activation of CD4+ and CD8+ cells in COVID-19 patients. Given that S2 is highly conserved in comparison to the S1, here, we provide a review of the latest findings on the SARS-CoV-2 S2 subunit and further discuss its potential as an attractive and promising target for the development of prophylactic vaccines and therapeutic agents against COVID-19.
Collapse
Affiliation(s)
- Kim Tien Ng
- Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; (K.T.N.); (N.K.M.-I.)
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Nur Khairiah Mohd-Ismail
- Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; (K.T.N.); (N.K.M.-I.)
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Yee-Joo Tan
- Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; (K.T.N.); (N.K.M.-I.)
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore 138673, Singapore
| |
Collapse
|
76
|
Collier DA, De Marco A, Ferreira IATM, Meng B, Datir R, Walls AC, Kemp S SA, Bassi J, Pinto D, Fregni CS, Bianchi S, Tortorici MA, Bowen J, Culap K, Jaconi S, Cameroni E, Snell G, Pizzuto MS, Pellanda AF, Garzoni C, Riva A, Elmer A, Kingston N, Graves B, McCoy LE, Smith KG, Bradley JR, Temperton N, Ceron-Gutierrez L L, Barcenas-Morales G, Harvey W, Virgin HW, Lanzavecchia A, Piccoli L, Doffinger R, Wills M, Veesler D, Corti D, Gupta RK. SARS-CoV-2 B.1.1.7 sensitivity to mRNA vaccine-elicited, convalescent and monoclonal antibodies. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.01.19.21249840. [PMID: 33619509 PMCID: PMC7899479 DOI: 10.1101/2021.01.19.21249840] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) transmission is uncontrolled in many parts of the world, compounded in some areas by higher transmission potential of the B1.1.7 variant now seen in 50 countries. It is unclear whether responses to SARS-CoV-2 vaccines based on the prototypic strain will be impacted by mutations found in B.1.1.7. Here we assessed immune responses following vaccination with mRNA-based vaccine BNT162b2. We measured neutralising antibody responses following a single immunization using pseudoviruses expressing the wild-type Spike protein or the 8 amino acid mutations found in the B.1.1.7 spike protein. The vaccine sera exhibited a broad range of neutralising titres against the wild-type pseudoviruses that were modestly reduced against B.1.1.7 variant. This reduction was also evident in sera from some convalescent patients. Decreased B.1.1.7 neutralisation was also observed with monoclonal antibodies targeting the N-terminal domain (9 out of 10), the Receptor Binding Motif (RBM) (5 out of 31), but not in neutralising mAbs binding outside the RBM. Introduction of the E484K mutation in a B.1.1.7 background to reflect newly emerging viruses in the UK led to a more substantial loss of neutralising activity by vaccine-elicited antibodies and mAbs (19 out of 31) over that conferred by the B.1.1.7 mutations alone. E484K emergence on a B.1.1.7 background represents a threat to the vaccine BNT162b.
Collapse
Affiliation(s)
- Dami A Collier
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Division of Infection and Immunity, University College London, London, UK
| | - Anna De Marco
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Isabella A T M Ferreira
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Bo Meng
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Rawlings Datir
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Division of Infection and Immunity, University College London, London, UK
| | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Steven A Kemp S
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Division of Infection and Immunity, University College London, London, UK
| | - Jessica Bassi
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Dora Pinto
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | - Siro Bianchi
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | - John Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Katja Culap
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Stefano Jaconi
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Elisabetta Cameroni
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | - Matteo S Pizzuto
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | - Christian Garzoni
- Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco, 6900 Lugano, Switzerland
| | - Agostino Riva
- Division of Infectious Diseases, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - Anne Elmer
- NIHR Cambridge Clinical Research Facility, Cambridge, UK
| | | | | | - Laura E McCoy
- Division of Infection and Immunity, University College London, London, UK
| | - Kenneth Gc Smith
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - John R Bradley
- Department of Medicine, University of Cambridge, Cambridge, UK
- NIHR Bioresource, Cambridge, UK
| | | | | | - Gabriela Barcenas-Morales
- Department of Clinical Biochemistry and Immunology, Addenbrookes Hospital, UK
- Laboratorio de Inmunologia, S-Cuautitlán, UNAM, Mexico
| | - William Harvey
- Institute of Biodiversity, University of Glasgow, Glasgow, UK
| | | | - Antonio Lanzavecchia
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Luca Piccoli
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Addenbrookes Hospital, UK
| | - Mark Wills
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Ravindra K Gupta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- University of KwaZulu Natal, Durban, South Africa
- Africa Health Research Institute, Durban, South Africa
- Department of Infectious Diseases, Cambridge University Hospitals NHS Trust, Cambridge UK
| |
Collapse
|
77
|
Liu H, Yuan M, Huang D, Bangaru S, Lee CCD, Peng L, Zhu X, Nemazee D, van Gils MJ, Sanders RW, Kornau HC, Reincke SM, Prüss H, Kreye J, Wu NC, Ward AB, Wilson IA. A combination of cross-neutralizing antibodies synergizes to prevent SARS-CoV-2 and SARS-CoV pseudovirus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.02.11.430866. [PMID: 33594361 PMCID: PMC7885913 DOI: 10.1101/2021.02.11.430866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Coronaviruses have caused several epidemics and pandemics including the ongoing coronavirus disease 2019 (COVID-19). Some prophylactic vaccines and therapeutic antibodies have already showed striking effectiveness against COVID-19. Nevertheless, concerns remain about antigenic drift in SARS-CoV-2 as well as threats from other sarbecoviruses. Cross-neutralizing antibodies to SARS-related viruses provide opportunities to address such concerns. Here, we report on crystal structures of a cross-neutralizing antibody CV38-142 in complex with the receptor binding domains from SARS-CoV-2 and SARS-CoV. Our structural findings provide mechanistic insights into how this antibody can accommodate antigenic variation in these viruses. CV38-142 synergizes with other cross-neutralizing antibodies, in particular COVA1-16, to enhance neutralization of SARS-CoV-2 and SARS-CoV. Overall, this study provides valuable information for vaccine and therapeutic design to address current and future antigenic drift in SARS-CoV-2 and to protect against zoonotic coronaviruses.
Collapse
Affiliation(s)
- Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Deli Huang
- Department of Immunology and Microbiology and Infection Prevention, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sandhya Bangaru
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chang-Chun D. Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linghang Peng
- Department of Immunology and Microbiology and Infection Prevention, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David Nemazee
- Department of Immunology and Microbiology and Infection Prevention, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marit J. van Gils
- Department of Medical Microbiology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rogier W. Sanders
- Department of Medical Microbiology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Hans-Christian Kornau
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Neuroscience Research Center (NWFZ), Cluster NeuroCure, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| | - S. Momsen Reincke
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Helmholtz Innovation Lab BaoBab, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Harald Prüss
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Helmholtz Innovation Lab BaoBab, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jakob Kreye
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Helmholtz Innovation Lab BaoBab, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nicholas C. Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
78
|
Li R, Ma X, Deng J, Chen Q, Liu W, Peng Z, Qiao Y, Lin Y, He X, Zhang H. Differential efficiencies to neutralize the novel mutants B.1.1.7 and 501Y.V2 by collected sera from convalescent COVID-19 patients and RBD nanoparticle-vaccinated rhesus macaques. Cell Mol Immunol 2021; 18:1058-1060. [PMID: 33580167 PMCID: PMC7880638 DOI: 10.1038/s41423-021-00641-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 01/19/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Rong Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Engineering Research Center of Gene Vaccine of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiancai Ma
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Engineering Research Center of Gene Vaccine of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Jieyi Deng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Engineering Research Center of Gene Vaccine of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Qier Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Engineering Research Center of Gene Vaccine of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Weiwei Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Engineering Research Center of Gene Vaccine of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zhilin Peng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Engineering Research Center of Gene Vaccine of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yidan Qiao
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Engineering Research Center of Gene Vaccine of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yingtong Lin
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Engineering Research Center of Gene Vaccine of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xin He
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China. .,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China. .,Engineering Research Center of Gene Vaccine of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China. .,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China. .,Engineering Research Center of Gene Vaccine of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
79
|
Toon K, Bentley EM, Mattiuzzo G. More Than Just Gene Therapy Vectors: Lentiviral Vector Pseudotypes for Serological Investigation. Viruses 2021; 13:217. [PMID: 33572589 PMCID: PMC7911487 DOI: 10.3390/v13020217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Serological assays detecting neutralising antibodies are important for determining the immune responses following infection or vaccination and are also often considered a correlate of protection. The target of neutralising antibodies is usually located in the Envelope protein on the viral surface, which mediates cell entry. As such, presentation of the Envelope protein on a lentiviral particle represents a convenient alternative to handling of a potentially high containment virus or for those viruses with no established cell culture system. The flexibility, relative safety and, in most cases, ease of production of lentiviral pseudotypes, have led to their use in serological assays for many applications such as the evaluation of candidate vaccines, screening and characterization of anti-viral therapeutics, and sero-surveillance. Above all, the speed of production of the lentiviral pseudotypes, once the envelope sequence is published, makes them important tools in the response to viral outbreaks, as shown during the COVID-19 pandemic in 2020. In this review, we provide an overview of the landscape of the serological applications of pseudotyped lentiviral vectors, with a brief discussion on their production and batch quality analysis. Finally, we evaluate their role as surrogates for the real virus and possible alternatives.
Collapse
Affiliation(s)
- Kamilla Toon
- Division of Virology, National Institute for Biological Standards and Control-MHRA, Blanche Lane, South Mimms EN6 3QG, UK;
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Emma M. Bentley
- Division of Virology, National Institute for Biological Standards and Control-MHRA, Blanche Lane, South Mimms EN6 3QG, UK;
| | - Giada Mattiuzzo
- Division of Virology, National Institute for Biological Standards and Control-MHRA, Blanche Lane, South Mimms EN6 3QG, UK;
| |
Collapse
|
80
|
Arena F, Pollini S, Rossolini GM, Margaglione M. Summary of the Available Molecular Methods for Detection of SARS-CoV-2 during the Ongoing Pandemic. Int J Mol Sci 2021; 22:ijms22031298. [PMID: 33525651 PMCID: PMC7865767 DOI: 10.3390/ijms22031298] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022] Open
Abstract
Since early 2020, the COVID-19 pandemic has caused an excess in morbidity and mortality rates worldwide. Containment strategies rely firstly on rapid and sensitive laboratory diagnosis, with molecular detection of the viral genome in respiratory samples being the gold standard. The reliability of diagnostic protocols could be affected by SARS-CoV-2 genetic variability. In fact, mutations occurring during SARS-CoV-2 genomic evolution can involve the regions targeted by the diagnostic probes. Following a review of the literature and an in silico analysis of the most recently described virus variants (including the UK B 1.1.7 and the South Africa 501Y.V2 variants), we conclude that the described genetic variability should have minimal or no effect on the sensitivity of existing diagnostic protocols for SARS-CoV-2 genome detection. However, given the continuous emergence of new variants, the situation should be monitored in the future, and protocols including multiple targets should be preferred.
Collapse
Affiliation(s)
- Fabio Arena
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
- IRCCS Don Carlo Gnocchi Foundation, 50143 Florence, Italy
- Correspondence: ; Tel.: +39-0881-588064
| | - Simona Pollini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.P.); (G.M.R.)
- Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, 50134 Florence, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.P.); (G.M.R.)
- Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, 50134 Florence, Italy
| | - Maurizio Margaglione
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| |
Collapse
|
81
|
Valesano AL, Rumfelt KE, Dimcheff DE, Blair CN, Fitzsimmons WJ, Petrie JG, Martin ET, Lauring AS. Temporal dynamics of SARS-CoV-2 mutation accumulation within and across infected hosts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.19.427330. [PMID: 33501443 PMCID: PMC7836113 DOI: 10.1101/2021.01.19.427330] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Analysis of SARS-CoV-2 genetic diversity within infected hosts can provide insight into the generation and spread of new viral variants and may enable high resolution inference of transmission chains. However, little is known about temporal aspects of SARS-CoV-2 intrahost diversity and the extent to which shared diversity reflects convergent evolution as opposed to transmission linkage. Here we use high depth of coverage sequencing to identify within-host genetic variants in 325 specimens from hospitalized COVID-19 patients and infected employees at a single medical center. We validated our variant calling by sequencing defined RNA mixtures and identified a viral load threshold that minimizes false positives. By leveraging clinical metadata, we found that intrahost diversity is low and does not vary by time from symptom onset. This suggests that variants will only rarely rise to appreciable frequency prior to transmission. Although there was generally little shared variation across the sequenced cohort, we identified intrahost variants shared across individuals who were unlikely to be related by transmission. These variants did not precede a rise in frequency in global consensus genomes, suggesting that intrahost variants may have limited utility for predicting future lineages. These results provide important context for sequence-based inference in SARS-CoV-2 evolution and epidemiology.
Collapse
Affiliation(s)
- Andrew L. Valesano
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Kalee E. Rumfelt
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Derek E. Dimcheff
- Division of Hospital Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Christopher N. Blair
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - William J. Fitzsimmons
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Joshua G. Petrie
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Emily T. Martin
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Adam S. Lauring
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
82
|
Biological and Clinical Consequences of Integrin Binding via a Rogue RGD Motif in the SARS CoV-2 Spike Protein. Viruses 2021; 13:v13020146. [PMID: 33498225 PMCID: PMC7909284 DOI: 10.3390/v13020146] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Although ACE2 (angiotensin converting enzyme 2) is considered the primary receptor for CoV-2 cell entry, recent reports suggest that alternative pathways may contribute. This paper considers the hypothesis that viral binding to cell-surface integrins may contribute to the high infectivity and widespread extra-pulmonary impacts of the SARS-CoV-2 virus. This potential is suggested on the basis of the emergence of an RGD (arginine-glycine-aspartate) sequence in the receptor-binding domain of the spike protein. RGD is a motif commonly used by viruses to bind cell-surface integrins. Numerous signaling pathways are mediated by integrins and virion binding could lead to dysregulation of these pathways, with consequent tissue damage. Integrins on the surfaces of pneumocytes, endothelial cells and platelets may be vulnerable to CoV-2 virion binding. For instance, binding of intact virions to integrins on alveolar cells could enhance viral entry. Binding of virions to integrins on endothelial cells could activate angiogenic cell signaling pathways; dysregulate integrin-mediated signaling pathways controlling developmental processes; and precipitate endothelial activation to initiate blood clotting. Such a procoagulant state, perhaps together with enhancement of platelet aggregation through virions binding to integrins on platelets, could amplify the production of microthrombi that pose the threat of pulmonary thrombosis and embolism, strokes and other thrombotic consequences. The susceptibility of different tissues to virion–integrin interactions may be modulated by a host of factors, including the conformation of relevant integrins and the impact of the tissue microenvironment on spike protein conformation. Patient-specific differences in these factors may contribute to the high variability of clinical presentation. There is danger that the emergence of receptor-binding domain mutations that increase infectivity may also enhance access of the RGD motif for integrin binding, resulting in viral strains with ACE2 independent routes of cell entry and novel integrin-mediated biological and clinical impacts. The highly infectious variant, B.1.1.7 (or VUI 202012/01), includes a receptor-binding domain amino acid replacement, N501Y, that could potentially provide the RGD motif with enhanced access to cell-surface integrins, with consequent clinical impacts.
Collapse
|
83
|
De Maio N, Walker CR, Turakhia Y, Lanfear R, Corbett-Detig R, Goldman N. Mutation rates and selection on synonymous mutations in SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.14.426705. [PMID: 33469589 PMCID: PMC7814826 DOI: 10.1101/2021.01.14.426705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The COVID-19 pandemic has seen an unprecedented response from the sequencing community. Leveraging the sequence data from more than 140,000 SARS-CoV-2 genomes, we study mutation rates and selective pressures affecting the virus. Understanding the processes and effects of mutation and selection has profound implications for the study of viral evolution, for vaccine design, and for the tracking of viral spread. We highlight and address some common genome sequence analysis pitfalls that can lead to inaccurate inference of mutation rates and selection, such as ignoring skews in the genetic code, not accounting for recurrent mutations, and assuming evolutionary equilibrium. We find that two particular mutation rates, G→U and C→U, are similarly elevated and considerably higher than all other mutation rates, causing the majority of mutations in the SARS-CoV-2 genome, and are possibly the result of APOBEC and ROS activity. These mutations also tend to occur many times at the same genome positions along the global SARS-CoV-2 phylogeny (i.e., they are very homoplasic). We observe an effect of genomic context on mutation rates, but the effect of the context is overall limited. While previous studies have suggested selection acting to decrease U content at synonymous sites, we bring forward evidence suggesting the opposite.
Collapse
Affiliation(s)
- Nicola De Maio
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Conor R Walker
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Yatish Turakhia
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Robert Lanfear
- Department of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Nick Goldman
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| |
Collapse
|
84
|
Siniavin AE, Streltsova MA, Nikiforova MA, Kudryavtsev DS, Grinkina SD, Gushchin VA, Mozhaeva VA, Starkov VG, Osipov AV, Lummis SCR, Tsetlin VI, Utkin YN. Snake venom phospholipase A 2s exhibit strong virucidal activity against SARS-CoV-2 and inhibit the viral spike glycoprotein interaction with ACE2. Cell Mol Life Sci 2021; 78:7777-7794. [PMID: 34714362 PMCID: PMC8554752 DOI: 10.1007/s00018-021-03985-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/17/2021] [Accepted: 10/14/2021] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 requires new treatments both to alleviate the symptoms and to prevent the spread of this disease. Previous studies demonstrated good antiviral and virucidal activity of phospholipase A2s (PLA2s) from snake venoms against viruses from different families but there was no data for coronaviruses. Here we show that PLA2s from snake venoms protect Vero E6 cells against SARS-CoV-2 cytopathic effects. PLA2s showed low cytotoxicity to Vero E6 cells with some activity at micromolar concentrations, but strong antiviral activity at nanomolar concentrations. Dimeric PLA2 from the viper Vipera nikolskii and its subunits manifested especially potent virucidal effects, which were related to their phospholipolytic activity, and inhibited cell-cell fusion mediated by the SARS-CoV-2 spike glycoprotein. Moreover, PLA2s interfered with binding both of an antibody against ACE2 and of the receptor-binding domain of the glycoprotein S to 293T/ACE2 cells. This is the first demonstration of a detrimental effect of PLA2s on β-coronaviruses. Thus, snake PLA2s are promising for the development of antiviral drugs that target the viral envelope, and could also prove to be useful tools to study the interaction of viruses with host cells.
Collapse
Affiliation(s)
- Andrei E. Siniavin
- grid.4886.20000 0001 2192 9124Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia ,N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ivanovsky Institute of Virology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Maria A. Streltsova
- grid.4886.20000 0001 2192 9124Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maria A. Nikiforova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ivanovsky Institute of Virology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Denis S. Kudryavtsev
- grid.4886.20000 0001 2192 9124Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana D. Grinkina
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ivanovsky Institute of Virology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir A. Gushchin
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ivanovsky Institute of Virology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vera A. Mozhaeva
- grid.4886.20000 0001 2192 9124Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia ,grid.4886.20000 0001 2192 9124Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Russia
| | - Vladislav G. Starkov
- grid.4886.20000 0001 2192 9124Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexey V. Osipov
- grid.4886.20000 0001 2192 9124Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sarah C. R. Lummis
- grid.5335.00000000121885934Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Victor I. Tsetlin
- grid.4886.20000 0001 2192 9124Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yuri N. Utkin
- grid.4886.20000 0001 2192 9124Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
85
|
Kemp SA, Collier DA, Datir R, Ferreira I, Gayed S, Jahun A, Hosmillo M, Rees-Spear C, Mlcochova P, Lumb IU, Roberts DJ, Chandra A, Temperton N, Sharrocks K, Blane E, Briggs J, van GM, Smith K, Bradley JR, Smith C, Doffinger R, Ceron-Gutierrez L, Barcenas-Morales G, Pollock DD, Goldstein RA, Smielewska A, Skittrall JP, Gouliouris T, Goodfellow IG, Gkrania-Klotsas E, Illingworth C, McCoy LE, Gupta RK. Neutralising antibodies in Spike mediated SARS-CoV-2 adaptation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.12.05.20241927. [PMID: 33398302 PMCID: PMC7781345 DOI: 10.1101/2020.12.05.20241927] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
SARS-CoV-2 Spike protein is critical for virus infection via engagement of ACE2, and amino acid variation in Spike is increasingly appreciated. Given both vaccines and therapeutics are designed around Wuhan-1 Spike, this raises the theoretical possibility of virus escape, particularly in immunocompromised individuals where prolonged viral replication occurs. Here we report chronic SARS-CoV-2 with reduced sensitivity to neutralising antibodies in an immune suppressed individual treated with convalescent plasma, generating whole genome ultradeep sequences by both short and long read technologies over 23 time points spanning 101 days. Although little change was observed in the overall viral population structure following two courses of remdesivir over the first 57 days, N501Y in Spike was transiently detected at day 55 and V157L in RdRp emerged. However, following convalescent plasma we observed large, dynamic virus population shifts, with the emergence of a dominant viral strain bearing D796H in S2 and ΔH69/ΔV70 in the S1 N-terminal domain NTD of the Spike protein. As passively transferred serum antibodies diminished, viruses with the escape genotype diminished in frequency, before returning during a final, unsuccessful course of convalescent plasma. In vitro, the Spike escape double mutant bearing ΔH69/ΔV70 and D796H conferred decreased sensitivity to convalescent plasma, whilst maintaining infectivity similar to wild type. D796H appeared to be the main contributor to decreased susceptibility, but incurred an infectivity defect. The ΔH69/ΔV70 single mutant had two-fold higher infectivity compared to wild type and appeared to compensate for the reduced infectivity of D796H. Consistent with the observed mutations being outside the RBD, monoclonal antibodies targeting the RBD were not impacted by either or both mutations, but a non RBD binding monoclonal antibody was less potent against ΔH69/ΔV70 and the double mutant. These data reveal strong selection on SARS-CoV-2 during convalescent plasma therapy associated with emergence of viral variants with reduced susceptibility to neutralising antibodies.
Collapse
Affiliation(s)
- S A Kemp
- Division of Infection and Immunity, University College London, London, UK
| | - D A Collier
- Division of Infection and Immunity, University College London, London, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - R Datir
- Division of Infection and Immunity, University College London, London, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Iatm Ferreira
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - S Gayed
- Department of Infectious Diseases, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - A Jahun
- Department of Pathology, University of Cambridge, Cambridge
| | - M Hosmillo
- Department of Pathology, University of Cambridge, Cambridge
| | - C Rees-Spear
- Division of Infection and Immunity, University College London, London, UK
| | - P Mlcochova
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ines Ushiro Lumb
- NHS Blood and Transplant, Oxford and BRC Haematology Theme, University of Oxford, UK
| | - David J Roberts
- NHS Blood and Transplant, Oxford and BRC Haematology Theme, University of Oxford, UK
| | - Anita Chandra
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - N Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, UK
| | - K Sharrocks
- Department of Infectious Diseases, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - E Blane
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jag Briggs
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Gils Mj van
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Kgc Smith
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - J R Bradley
- Department of Medicine, University of Cambridge, Cambridge, UK
- NIHR Cambridge Clinical Research Facility, Cambridge, UK
| | - C Smith
- Department of Virology, Cambridge University NHS Hospitals Foundation Trust
| | - R Doffinger
- Department of Clinical Biochemistry and Immunology, Addenbrookes Hospital
| | - L Ceron-Gutierrez
- Department of Clinical Biochemistry and Immunology, Addenbrookes Hospital
| | - G Barcenas-Morales
- Department of Clinical Biochemistry and Immunology, Addenbrookes Hospital
| | - D D Pollock
- Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - R A Goldstein
- Division of Infection and Immunity, University College London, London, UK
| | - A Smielewska
- Department of Pathology, University of Cambridge, Cambridge
- Department of Virology, Cambridge University NHS Hospitals Foundation Trust
| | - J P Skittrall
- Department of Infectious Diseases, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK
- Clinical Microbiology and Public Health Laboratory, Addenbrookes' Hospital, Cambridge, UK
| | - T Gouliouris
- Department of Infectious Diseases, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - I G Goodfellow
- Department of Pathology, University of Cambridge, Cambridge
| | - E Gkrania-Klotsas
- Department of Infectious Diseases, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Cjr Illingworth
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - L E McCoy
- Division of Infection and Immunity, University College London, London, UK
| | - R K Gupta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Africa Health Research Institute, Durban, South Africa
| |
Collapse
|