51
|
Kashuba Benson CM, Benson JD, Critser JK. An improved cryopreservation method for a mouse embryonic stem cell line. Cryobiology 2007; 56:120-30. [PMID: 18191827 DOI: 10.1016/j.cryobiol.2007.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 11/27/2007] [Accepted: 12/03/2007] [Indexed: 11/29/2022]
Abstract
Embryonic stem (ES) cell lines including the C57BL/6 genetic background are central to projects such as the Knock-Out Mouse Project, North American Conditional Mouse Mutagenesis Program, and European Conditional Mouse Mutagenesis Program, which seek to create thousands of mutant mouse strains using ES cells for the production of human disease models in biomedical research. Crucial to the success of these programs is the ability to efficiently cryopreserve these mutant cell lines for storage and transport. Although the ability to successfully cryopreserve mouse ES cells is often assumed to be adequate, the percent post-thaw recovery of viable cells varies greatly among genetic backgrounds and individual cell lines within a genetic background. Therefore, there is a need to improve the efficiency and reduce the variability of current mouse ES cell cryopreservation methods. To address this need, we employed the principles of fundamental cryobiology to improve the cryopreservation protocol of a C57BL/6 mouse ES cell line by characterizing the membrane permeability characteristics and osmotic tolerance limits. These values were used to predict optimal cooling rates, warming rates, and type of cryoprotectant, which were then verified experimentally. The resulting protocol, generated through this hypothesis-driven approach, resulted in a 2-fold increase in percent post-thaw recovery of membrane-intact ES cells as compared to the standard freezing protocol, as measured by propidium iodide exclusion. Additionally, our fundamental cryobiological approach to improving cryopreservation protocols provides a model system by which additional cryopreservation protocols may be improved in future research for both mouse and human ES cell lines.
Collapse
Affiliation(s)
- Corinna M Kashuba Benson
- Comparative Medicine Center, Research Animal Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA
| | | | | |
Collapse
|
52
|
Namati E, Chon D, Thiesse J, Hoffman EA, de Ryk J, Ross A, McLennan G. In vivo micro-CT lung imaging via a computer-controlled intermittent iso-pressure breath hold (IIBH) technique. Phys Med Biol 2006; 51:6061-75. [PMID: 17110770 DOI: 10.1088/0031-9155/51/23/008] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Respiratory research with mice using micro-computed tomography (micro-CT) has been predominantly hindered by the limited resolution and signal-to-noise ratio (SNR) as a result of respiratory motion artefacts. In this study, we develop a novel technique for capturing the lung microstructure in vivo using micro-CT, through a computer-controlled intermittent iso-pressure breath hold (IIBH), to reduce respiratory motion, increasing resolution and SNR of reconstructed images. We compare four gating techniques, i.e. no gating, late expiratory (LE) gating, late inspiratory (LI) gating and finally intermittent iso-pressure breath hold (IIBH) gating. Quantitatively, we compare several common image analysis methods used to extract valuable physiologic and anatomic information from the respiratory system, and show that the IIBH technique produces the most representative and repeatable results.
Collapse
Affiliation(s)
- E Namati
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
Gurley KA, Chen H, Guenther C, Nguyen ET, Rountree RB, Schoor M, Kingsley DM. Mineral formation in joints caused by complete or joint-specific loss of ANK function. J Bone Miner Res 2006; 21:1238-47. [PMID: 16869722 DOI: 10.1359/jbmr.060515] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED To reveal the ANK complete loss of function phenotype in mice, we generated conditional and null alleles. Mice homozygous for the null allele exhibited widespread joint mineralization, similar in severity to animals harboring the original ank allele. A delayed yet similar phenotype was observed in mice with joint-specific loss of ANK function. INTRODUCTION The ANK pyrophosphate regulator was originally identified and proposed to play a key role in articular cartilage maintenance based on a single spontaneous mouse mutation (ank) that causes severe generalized arthritis. A number of human mutations have subsequently been reported in the human ortholog (ANKH), some of which produce skull and long bone defects with no apparent defects in joints or articular cartilage. None of the currently known mouse or human mutations clearly eliminate the function of the endogenous gene. MATERIALS AND METHODS Two new Ank alleles were generated using homologous recombination in mouse embryonic stem (ES) cells. Joint range of motion assays and muCT studies were used to quantitatively assess phenotypic severity in wildtype, heterozygous, and homozygous mice carrying either the null (Anknull) or original (Ankank) allele. A Gdf5-Cre expressing line was crossed to mice harboring the conditional (Ankfloxp) allele to eliminate ANK function specifically in the joints. Histological stains and beta-galactosidase (LACZ) activity were used to determine the correlation between local loss of ANK function and defective joint phenotypes. RESULTS Anknull/Anknull mice develop severe ectopic postnatal crystal deposition in almost every joint of the body, leading to eventual joint fusion and loss of mobility. The severity of phenotype in these mice is indistinguishable from that of Ankank/Ankank mice. In addition, despite the widespread expression of Ank in many tissues, the specific deletion of Ank in joints also produces joint mineralization and ankylosis. CONCLUSIONS These studies show that ANK function is required locally in joints to inhibit mineral formation and that the Ank gene plays a key role in postnatal maintenance of joint mobility and function.
Collapse
Affiliation(s)
- Kyle A Gurley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
54
|
Roy D, Breen M, Salvado O, Heinzel M, McKinley E, Wilson D. Imaging System for Creating 3D Block-Face Cryo-Images Of Whole Mice. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2006; 6143:nihpa112282. [PMID: 19802364 DOI: 10.1117/12.655617] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We developed a cryomicrotome/imaging system that provides high resolution, high sensitivity block-face images of whole mice or excised organs, and applied it to a variety of biological applications. With this cryo-imaging system, we sectioned cryo-preserved tissues at 2-40 μm thickness and acquired high resolution brightfield and fluorescence images with microscopic in-plane resolution (as good as 1.2 μm). Brightfield images of normal and pathological anatomy show exquisite detail, especially in the abdominal cavity. Multi-planar reformatting and 3D renderings allow one to interrogate 3D structures. In this report, we present brightfield images of mouse anatomy, as well as 3D renderings of organs. For BPK mice model of polycystic kidney disease, we compared brightfield cryo-images and kidney volumes to MRI. The color images provided greater contrast and resolution of cysts as compared to in vivo MRI. We note that color cryo-images are closer to what a researcher sees in dissection, making it easier for them to interpret image data. The combination of field of view, depth of field, ultra high resolution and color/fluorescence contrast enables cryo-image volumes to provide details that cannot be found through in vivo imaging or other ex vivo optical imaging approaches. We believe that this novel imaging system will have applications that include identification of mouse phenotypes, characterization of diseases like blood vessel disease, kidney disease, and cancer, assessment of drug and gene therapy delivery and efficacy and validation of other imaging modalities.
Collapse
Affiliation(s)
- Debashish Roy
- Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | | | | | | | | | | |
Collapse
|
55
|
Abstract
Sequencing of whole genomes has provided new perspectives into the blueprints of diverse organisms. Knowing the sequences, however, does not always tell us much about the function of the genes that regulate development and homeostasis. RNA interference (RNAi) is becoming the method of choice for gene function analysis in cells and whole organisms. Here we review the approaches available to perform RNAi experiments in mammalian cells and in mice. We discuss usage of RNAi in cancer research and as a possible therapeutic tool for cancer treatment.
Collapse
Affiliation(s)
- Ralf Kittler
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauer Strasse 108, D-01307 Dresden, Germany
| | | |
Collapse
|
56
|
Moustafa ME, Kumaraswamy E, Zhong N, Rao M, Carlson BA, Hatfield DL. Models for assessing the role of selenoproteins in health. J Nutr 2003; 133:2494S-2496S. [PMID: 12840229 DOI: 10.1093/jn/133.7.2494s] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Two model systems for examining the role of selenoproteins in health are discussed. One utilizes transgenic mice that carry mutant selenocysteine (Sec) tRNA transgenes that result in the reduction of selenoprotein expression in a protein- and tissue-specific manner. The other utilizes loxP-Cre technology to selectively remove the Sec tRNA gene in mammary epithelium that results in the reduction of only certain selenoproteins in this tissue. Both approaches provide important tools for examining the role of selenoproteins in health.
Collapse
Affiliation(s)
- Mohamed E Moustafa
- Section on the Molecular Biology of Selenium, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
57
|
Thyagarajan T, Totey S, Danton MJS, Kulkarni AB. Genetically altered mouse models: the good, the bad, and the ugly. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2003; 14:154-74. [PMID: 12799320 DOI: 10.1177/154411130301400302] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Targeted gene disruption in mice is a powerful tool for generating murine models for human development and disease. While the human genome program has helped to generate numerous candidate genes, few genes have been characterized for their precise in vivo functions. Gene targeting has had an enormous impact on our ability to delineate the functional roles of these genes. Many gene knockout mouse models faithfully mimic the phenotypes of the human diseases. Because some models display an unexpected or no phenotype, controversy has arisen about the value of gene-targeting strategies. We argue in favor of gene-targeting strategies, provided they are used with caution, particularly in interpreting phenotypes in craniofacial and oral biology, where many genes have pleiotropic roles. The potential pitfalls are outweighed by the unique opportunities for developing and testing different therapeutic strategies before they are introduced into the clinic. In the future, we believe that genetically engineered animal models will be indispensable for gaining important insights into the molecular mechanisms underlying development, as well as disease pathogenesis, diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Tamizchelvi Thyagarajan
- Functional Genomics Unit and Gene Targeting Facility, National Institute of Dental and Craniofacial Research, National Institutes of Health, Building 30, Room 527, 30 Convent Drive, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
58
|
Kumaraswamy E, Carlson BA, Morgan F, Miyoshi K, Robinson GW, Su D, Wang S, Southon E, Tessarollo L, Lee BJ, Gladyshev VN, Hennighausen L, Hatfield DL. Selective removal of the selenocysteine tRNA [Ser]Sec gene (Trsp) in mouse mammary epithelium. Mol Cell Biol 2003; 23:1477-88. [PMID: 12588969 PMCID: PMC151713 DOI: 10.1128/mcb.23.5.1477-1488.2003] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mice homozygous for an allele encoding the selenocysteine (Sec) tRNA [Ser]Sec gene (Trsp) flanked by loxP sites were generated. Cre recombinase-dependent removal of Trsp in these mice was lethal to embryos. To investigate the role of Trsp in mouse mammary epithelium, we deleted this gene by using transgenic mice carrying the Cre recombinase gene under control of the mouse mammary tumor virus (MMTV) long terminal repeat or the whey acidic protein promoter. While both promoters target Cre gene expression to mammary epithelium, MMTV-Cre is also expressed in spleen and skin. Sec tRNA [Ser]Sec amounts were reduced by more than 70% in mammary tissue with either transgene, while in skin and spleen, levels were reduced only with MMTV-Cre. The selenoprotein population was selectively affected with MMTV-Cre in breast and skin but not in the control tissue, kidney. Moreover, within affected tissues, expression of specific selenoproteins was regulated differently and often in a contrasting manner, with levels of Sep15 and the glutathione peroxidases GPx1 and GPx4 being substantially reduced. Expression of the tumor suppressor genes BRCA1 and p53 was also altered in a contrasting manner in MMTV-Cre mice, suggesting greater susceptibility to cancer and/or increased cell apoptosis. Thus, the conditional Trsp knockout mouse allows tissue-specific manipulation of Sec tRNA and selenoprotein expression, suggesting that this approach will provide a useful tool for studying the role of selenoproteins in health.
Collapse
MESH Headings
- Alleles
- Animals
- Blotting, Northern
- Blotting, Western
- Breast/metabolism
- Chromatography
- Crosses, Genetic
- Epithelium/metabolism
- Gene Deletion
- Genes, BRCA1
- Genes, p53/genetics
- Genetic Vectors
- Glutathione Peroxidase/metabolism
- Heterozygote
- Kidney/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Models, Genetic
- Phenotype
- Promoter Regions, Genetic
- Proteins/metabolism
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- Recombination, Genetic
- Selenoproteins
- Tissue Distribution
- Transgenes
Collapse
Affiliation(s)
- Easwari Kumaraswamy
- Section on Molecular Biology of Selenium, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Fitch KR, McGowan KA, van Raamsdonk CD, Fuchs H, Lee D, Puech A, Hérault Y, Threadgill DW, Hrabé de Angelis M, Barsh GS. Genetics of dark skin in mice. Genes Dev 2003; 17:214-28. [PMID: 12533510 PMCID: PMC195979 DOI: 10.1101/gad.1023703] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Chemical mutagenesis in the mouse is a powerful approach for phenotype-driven genetics, but questions remain about the efficiency with which new mutations ascertained by their phenotype can be localized and identified, and that knowledge applied to a specific biological problem. During a global screen for dominant phenotypes in about 30,000 animals, a novel class of pigmentation mutants were identified by dark skin (Dsk). We determined the genetic map location, homozygous phenotype, and histology of 10 new Dsk and 2 new dark coat (Dcc) mutations, and identified mutations in Agouti (Met1Leu, Dcc4), Sox18 (Leu220ter, Dcc1), Keratin 2e (Thr500Pro, Dsk2), and Egfr (Leu863Gln, Dsk5). Cutaneous effects of most Dsk mutations are limited to melanocytes, except for the Keratin 2e and Egfr mutations, in which hyperkeratosis and epidermal thickening precede epidermal melanocytosis by 3-6 wk. The Dsk2 mutation is likely to impair intermediate filament assembly, leading to cytolysis of suprabasal keratinocytes and secondary hyperkeratosis and melanocytosis. The Dsk5 mutation causes increased tyrosine kinase activity and a decrease in steady-state receptor levels in vivo. The Dsk mutations represent genes or map locations not implicated previously in pigmentation, and delineate a developmental pathway in which mutations can be classified on the basis of body region, microscopic site, and timing of pigment accumulation.
Collapse
Affiliation(s)
- Karen R Fitch
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Abstract
Stem cells are currently at the center of both controversy and notoriety. The harvest of human embryonic or fetal stem cells, at least with methods available now, necessarily involves the sacrifice of the embryo or fetus. This critical step in the procurement of stem cells has stimulated intense discussion at all levels of academia, government, and society in general. What societal benefits, if any, justify such a strategy for obtaining these stem cells? In other species it has been possible to generate virtually all cell types found in adult organs from embryonic stem cells. This ability has opened endless clinical possibilities for tissue and organ replacement through the transplantation of cells derived from embryonic stem cells. Luckily, there may be an alternative to this ethical dilemma. It is becoming increasingly clear that stem cells exist in many, if not all, adult tissues. Adult stem cells normally replenish tissue cells lost through the wear and tear of aging or damage from injury or disease. With the proper coaxing in tissue culture and when transplanted, these stem cells may regenerate the full repertoire of organotypic cells and thus may therapeutically regenerate tissues in vivo in much the same way as embryonic stem cells do. For several reasons, the best-studied stem cells are those of the blood-forming system. Mature blood cells generally have short functional life spans, usually measured in days, and therefore require replenishment at a steady pace throughout one's lifetime. Stem cells are intimately involved in this renewal and, because of the relative ease of access to the bone marrow, stem cells have been well studied. Second, bone marrow transplantation following radiation or high-dose chemotherapy in the treatment of cancer has fostered research on the basic biology and therapeutic uses of hematopoietic stem cells over the more than 30 years stem cell transplantation has been used clinically. It is my aim to review what is known about the genes controlling hematopoietic stem cell function. Identifying, and ultimately manipulating, the genes that regulate stem cell number, replication rate, and self-renewal capacity may have important clinical benefits. I discuss evidence suggesting that the characterization of least some of these stem cell genes will shed light on mechanisms important in the aging process. I advance the hypothesis that stem cells accumulate cellular damage during aging that diminishes their developmental potency and ability to replenish blood cells, particularly after hematopoietic stress. In this view, the impaired function of stem cells in hematopoietic and in other self-renewing tissues limits the longevity of animals, and perhaps of humans.
Collapse
Affiliation(s)
- Gary Van Zant
- Department of Internal Medicine, Markey Cancer Center, Division of Hematology/Oncology, University of Kentucky, Lexington, Kentucky 40536-0093, USA.
| |
Collapse
|
61
|
Shen L, Pichel JG, Mayeli T, Sariola H, Lu B, Westphal H. Gdnf haploinsufficiency causes Hirschsprung-like intestinal obstruction and early-onset lethality in mice. Am J Hum Genet 2002; 70:435-47. [PMID: 11774071 PMCID: PMC384918 DOI: 10.1086/338712] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2001] [Accepted: 11/15/2001] [Indexed: 01/19/2023] Open
Abstract
Hirschsprung disease (HSCR) is a common congenital disorder that results in intestinal obstruction and lethality, as a result of defective innervation of the gastrointestinal (GI) tract. Despite its congenital origin, the molecular etiology of HSCR remains elusive for >70% of patients. Although mutations in the c-RET receptor gene are frequently detected in patients with HSCR, mutations in the gene encoding its ligand (glial cell line-derived neurotrophic factor [GDNF]), are rarely found. In an effort to establish a possible link between human HSCR and mutations affecting the Gdnf locus, we studied a large population of mice heterozygous for a Gdnf null mutation. This Gdnf(+/-) mutant cohort recapitulates complex features characteristic of HSCR, including dominant inheritance, incomplete penetrance, and variable severity of symptoms. The lack of one functioning Gdnf allele causes a spectrum of defects in gastrointestinal motility and predisposes the mutant mice to HSCR-like phenotypes. As many as one in five Gdnf(+/-) mutant mice die shortly after birth. Using a transgenic marking strategy, we identified hypoganglionosis of the gastrointestinal tract as a developmental defect that renders the mutant mice susceptible to clinical symptoms of HSCR. Our findings offer a plausible way to link an array of seemingly disparate features characteristic of a complex disease to a much more narrowly defined genetic cause. These findings may have general implications for the genetic analysis of cause and effect in complex human diseases.
Collapse
Affiliation(s)
- Liya Shen
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda; Unidad de Investigación, Hospital de Mérida, Mérida, Spain; and Institute of Biotechnology, University of Helsinki, Helsinki
| | - José G. Pichel
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda; Unidad de Investigación, Hospital de Mérida, Mérida, Spain; and Institute of Biotechnology, University of Helsinki, Helsinki
| | - Thomas Mayeli
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda; Unidad de Investigación, Hospital de Mérida, Mérida, Spain; and Institute of Biotechnology, University of Helsinki, Helsinki
| | - Hannu Sariola
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda; Unidad de Investigación, Hospital de Mérida, Mérida, Spain; and Institute of Biotechnology, University of Helsinki, Helsinki
| | - Bai Lu
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda; Unidad de Investigación, Hospital de Mérida, Mérida, Spain; and Institute of Biotechnology, University of Helsinki, Helsinki
| | - Heiner Westphal
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda; Unidad de Investigación, Hospital de Mérida, Mérida, Spain; and Institute of Biotechnology, University of Helsinki, Helsinki
| |
Collapse
|
62
|
|
63
|
Abstract
Although at least 35,000 human genes have been sequenced and mapped, adequate expression or functional information is available for only approximately 15% of them. Gene-trap mutagenesis is a technique that randomly generates loss-of-function mutations and reports the expression of many mouse genes. At present, several large-scale, gene-trap screens are being carried out with various new vectors, which aim to generate a public resource of mutagenized embryonic stem (ES) cells. This resource now includes more than 8,000 mutagenized ES-cell lines, which are freely available, making it an appropriate time to evaluate the recent advances in this area of genomic technology and the technical hurdles it has yet to overcome.
Collapse
MESH Headings
- Animals
- Chimera/genetics
- DNA, Recombinant/administration & dosage
- DNA, Recombinant/genetics
- Drosophila melanogaster/genetics
- Electroporation
- Embryo, Mammalian/cytology
- Embryo, Nonmammalian
- Enhancer Elements, Genetic/genetics
- Forecasting
- Gene Library
- Gene Targeting
- Genes/drug effects
- Genes/radiation effects
- Genes, Reporter
- Genetic Vectors/administration & dosage
- Genetic Vectors/genetics
- Lac Operon
- Mice
- Mice, Mutant Strains/genetics
- Mice, Transgenic
- Microinjections
- Mutagenesis, Insertional/methods
- Mutagenesis, Site-Directed
- Mutagens/pharmacology
- Promoter Regions, Genetic/genetics
- Retroviridae/genetics
- Stem Cells
Collapse
Affiliation(s)
- W L Stanford
- Programme in Development and Fetal Health, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Room 983, Toronto, Ontario, Canada M5G 1X5.
| | | | | |
Collapse
|
64
|
Affiliation(s)
- F Sangiorgi
- Department of Human Genetics, University of California-Los Angeles School of Medicine, Gonda Research Center, Los Angeles, CA 90095, USA.
| |
Collapse
|
65
|
|
66
|
Iakoubova OA, Olsson CL, Dains KM, Ross DA, Andalibi A, Lau K, Choi J, Kalcheva I, Cunanan M, Louie J, Nimon V, Machrus M, Bentley LG, Beauheim C, Silvey S, Cavalcoli J, Lusis AJ, West DB. Genome-tagged mice (GTM): two sets of genome-wide congenic strains. Genomics 2001; 74:89-104. [PMID: 11374905 DOI: 10.1006/geno.2000.6497] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An important approach for understanding complex disease risk using the mouse is to map and ultimately identify the genes conferring risk. Genes contributing to complex traits can be mapped to chromosomal regions using genome scans of large mouse crosses. Congenic strains can then be developed to fine-map a trait and to ascertain the magnitude of the genotype effect in a chromosomal region. Congenic strains are constructed by repeated backcrossing to the background strain with selection at each generation for the presence of a donor chromosomal region, a time-consuming process. One approach to accelerate this process is to construct a library of congenic strains encompassing the entire genome of one strain on the background of the other. We have employed marker-assisted breeding to construct two sets of overlapping congenic strains, called genome-tagged mice (GTMs), that span the entire mouse genome. Both congenic GTM sets contain more than 60 mouse strains, each with on average a 23-cM introgressed segment (range 8 to 58 cM). C57BL/6J was utilized as a background strain for both GTM sets with either DBA/2J or CAST/Ei as the donor strain. The background and donor strains are genetically and phenotypically divergent. The genetic basis for the phenotypic strain differences can be rapidly mapped by simply screening the GTM strains. Furthermore, the phenotype differences can be fine-mapped by crossing appropriate congenic mice to the background strain, and complex gene interactions can be investigated using combinations of these congenics.
Collapse
Affiliation(s)
- O A Iakoubova
- Pfizer Global Research and Development, 1501 Harbor Bay Parkway, Alameda, California 94502, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Harris S. Transgenic knockouts as part of high-throughput, evidence-based target selection and validation strategies. Drug Discov Today 2001; 6:628-636. [PMID: 11408199 DOI: 10.1016/s1359-6446(01)01794-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The worldwide genome sequencing projects are helping to define the size and complexity of the expressed genome and are thereby identifying an unprecedented number of genes of uncertain disease alignment and unknown function. It is widely recognized that, within the pharmaceutical industry, a significant commercial advantage will accrue to those companies that most effectively gather and integrate additional biological information into their therapeutic target selection and drug progression strategies. This article presents the rationale for including comparative phenotypic information obtained from transgenic gene knockouts as an integral part of any future therapeutic target selection strategy.
Collapse
Affiliation(s)
- S Harris
- Technical Evaluation (Europe), GlaxoSmithKline Research & Development, Medicines Research Centre, Gunnels Wood Road, SG1 2NY, Stevenage, UK
| |
Collapse
|
68
|
Abstract
Much of the advancement in mouse models for cancer during the past 2 decades can be attributed to our increasing capacity to specifically modify the mouse germ line. The first generations of oncomice and tumor-suppressor gene knockouts are now being succeeded by regulatable or conditional mouse tumor models, which can be utilized more effectively to establish correlations between distinct genetic lesions and specific tumor characteristics and to design and improve therapeutic intervention strategies. In this review we try to give the reader a flavor of how the latest reagents can be utilized.
Collapse
Affiliation(s)
- R Meuwissen
- Division of Molecular Genetics and Center of Biomedical Genetics, The Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands
| | | | | |
Collapse
|
69
|
Moore KJ, Nagle DL. Complex trait analysis in the mouse: The strengths, the limitations and the promise yet to come. Annu Rev Genet 2001; 34:653-686. [PMID: 11092842 DOI: 10.1146/annurev.genet.34.1.653] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In 1990, David Baltimore predicted that the 1990s would be the decade of the mouse (). This certainly proved to be true: The mouse has contributed immensely to biological research through transgenic, embryonic stem cell (ES) knockout, and classical genetic technologies. But its usefulness as a model organism is by no means over; indeed it is still rising to its peak: The mouse as a model mammalian organism still has much to offer. This article reviews use of the mouse to dissect complex genetic traits using quantitative trait analysis, with a particular emphasis on medically important diseases.
Collapse
Affiliation(s)
- K J Moore
- Hypnion Inc, Five Biotech, 381 Plantation Street, Worcester, Massachusetts 01605, USA.
| | | |
Collapse
|
70
|
Abstract
Genetic studies using mutants have led to a greater understanding of the mechanisms underlying the physiology, biochemistry and development of organisms. The increasing availability of complete genome sequences has stimulated genome-wide mutagenesis approaches in model organisms. In an ideal model system, it would be possible to choose from a series of mutations in any given gene to study its function, regulation and interaction with other genes; flies and worms with their rich mutant resources provide such models. Because the mouse is a powerful vertebrate model for human disease, it would be advantageous to have an equally comprehensive mutant collection. Recently, much to the joy of the mouse community, two papers, describe screens to generate such a collection. In an ongoing screen, the groups of Brown and Balling have generated over 40,000 F1 mutant mice by treating males with the super mutagen N-ethyl-N-nitrosourea. 300-500 mice are being screened each week using various objective tests and paradigms for morphological, developmental, clinical and behavioral abnormalities. In combination, these analyses have produced an unbiased set of about 700 new dominant, semidominant and recessive mutations.
Collapse
Affiliation(s)
- M S Inamdar
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO Bangalore 560 064, India.
| |
Collapse
|
71
|
Harris S, Foord SM. Transgenic gene knock-outs: functional genomics and therapeutic target selection. Pharmacogenomics 2000; 1:433-43. [PMID: 11257927 DOI: 10.1517/14622416.1.4.433] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The completion of the first draft of the human genome presents both a tremendous opportunity and enormous challenge to the pharmaceutical industry since the whole community, with few exceptions, will soon have access to the same pool of candidate gene sequences from which to select future therapeutic targets. The commercial imperative to select and pursue therapeutically relevant genes from within the overall content of the genome will be particularly intense for those gene families that currently represent the chemically tractable or 'drugable' gene targets. As a consequence the emphasis within exploratory research has shifted towards the evaluation and adoption of technology platforms that can add additional value to the gene selection process, either through functional studies or direct/indirect measures of disease alignment e.g., genetics, differential gene expression, proteomics, tissue distribution, comparative species data etc. The selection of biological targets for the development of potential new medicines relies, in part, on the quality of the in vivo biological data that correlates a particular molecular target with the underlying pathophysiology of a disease. Within the pharmaceutical industry, studies employing transgenic animals and, in particular, animals with specific gene deletions are playing an increasingly important role in the therapeutic target gene selection, drug candidate selection and product development phases of the overall drug discovery process. The potential of phenotypic information from gene knock-outs to contribute to a high-throughput target selection/validation strategy has hitherto been limited by the resources required to rapidly generate and characterise a large number of knock-out transgenics in a timely fashion. The offerings of several companies that provide an opportunity to overcome these hurdles, albeit at a cost, are assessed with respect to the strategic business needs of the pharmaceutical industry.
Collapse
Affiliation(s)
- S Harris
- Glaxo Wellcome Research & Development, Gunnels Wood Road, Stevenage, Herts, SG1 2NY, UK.
| | | |
Collapse
|
72
|
West DB, Iakougova O, Olsson C, Ross D, Ohmen J, Chatterjee A. Mouse genetics/genomics: an effective approach for drug target discovery and validation. Med Res Rev 2000; 20:216-30. [PMID: 10797467 DOI: 10.1002/(sici)1098-1128(200005)20:3<216::aid-med6>3.0.co;2-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mouse has become the premier mammalian system for the identification of the genetic basis of both mono- and oligogenic disorders, as well as the understanding of complex diseases with gene-gene and gene-environment interactions. The similarity between human and mouse genetic disease is sometimes striking, while in other cases the phenotypes are less similar. The ability to genetically map and then clone single gene disorders rapidly, and the emerging technologies that will allow the economical identification of the polygenes controlling quantitative traits further demonstrate the utility of the mouse as a model for gene discovery. Additionally, the ability to genetically manipulate the mouse through transgenesis and gene targeting allows for the testing of hypotheses regarding specific gene function and their role in disease. The utility of the mouse extends beyond being just a gene discovery tool to provide prevalidated targets. It can also be used for the development of animal models, and the testing of compounds in specifically constructed transgenic and knockout strains to further define the target and pathway of a therapeutic compound.
Collapse
Affiliation(s)
- D B West
- Parke-Davis Laboratory for Molecular Genetics, 1501 Harbor Bay Parkway, Alameda, CA 94502, USA.
| | | | | | | | | | | |
Collapse
|
73
|
Brewster JL, Martin SL, Toms J, Goss D, Wang K, Zachrone K, Davis A, Carlson G, Hood L, Coffin JD. Deletion ofDad1 in mice induces an apoptosis-associated embryonic death. Genesis 2000. [DOI: 10.1002/(sici)1526-968x(200004)26:4<271::aid-gene90>3.0.co;2-e] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
74
|
|
75
|
Boyd Y, Blair HJ, Cunliffe P, Masson WK, Reed V. A phenotype map of the mouse X chromosome: models for human X-linked disease. Genome Res 2000; 10:277-92. [PMID: 10720569 DOI: 10.1101/gr.10.3.277] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The identification of many of the transcribed genes in man and mouse is being achieved by large scale sequencing of expressed sequence tags (ESTs). Attention is now being turned to elucidating gene function and many laboratories are looking to the mouse as a model system for this phase of the genome project. Mouse mutants have long been used as a means of investigating gene function and disease pathogenesis, and recently, several large mutagenesis programs have been initiated to fulfill the burgeoning demand of functional genomics research. Nevertheless, there is a substantial existing mouse mutant resource that can be used immediately. This review summarizes the available information about the loci encoding X-linked phenotypic mutants and variants, including 40 classical mutants and 40 that have arisen from gene targeting.
Collapse
Affiliation(s)
- Y Boyd
- Medical Research Council (MRC) Mammalian Genetics Unit, Harwell, Oxon OX11 0RD UK.
| | | | | | | | | |
Collapse
|
76
|
Nadeau JH, Singer JB, Matin A, Lander ES. Analysing complex genetic traits with chromosome substitution strains. Nat Genet 2000; 24:221-5. [PMID: 10700173 DOI: 10.1038/73427] [Citation(s) in RCA: 352] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many valuable animal models of human disease are known and new models are continually being generated in existing inbred strains,. Some disease models are simple mendelian traits, but most have a polygenic basis. The current approach to identifying quantitative trait loci (QTLs) that underlie such traits is to localize them in crosses, construct congenic strains carrying individual QTLs, and finally map and clone the genes. This process is time-consuming and expensive, requiring the genotyping of large crosses and many generations of breeding. Here we describe a different approach in which a panel of chromosome substitution strains (CSSs) is used for QTL mapping. Each of these strains has a single chromosome from the donor strain substituting for the corresponding chromosome in the host strain. We discuss the construction, applications and advantages of CSSs compared with conventional crosses for detecting and analysing QTLs, including those that have weak phenotypic effects.
Collapse
Affiliation(s)
- J H Nadeau
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| | | | | | | |
Collapse
|
77
|
Crawley JN. Behavioral Phenotyping of Transgenic and Knockout Mice: Experimental Design and Evaluation of General Health, Sensory Functions, Motor Abilities, and Specific Behavioral Tests. ILAR J 2000. [DOI: 10.1093/ilar.41.3.136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
78
|
Hidaka M, Caruana G, Stanford WL, Sam M, Correll PH, Bernstein A. Gene trapping of two novel genes, Hzf and Hhl, expressed in hematopoietic cells. Mech Dev 2000; 90:3-15. [PMID: 10585558 DOI: 10.1016/s0925-4773(99)00234-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Using an expression gene trapping strategy, we have identified and characterized two novel hematopoietic genes, Hzf and Hhl. Embryonic stem (ES) cells containing a gene trap vector insertion were cultured on OP9 stromal cells to induce hematopoietic differentiation and screened for lacZ reporter gene expression. Two ES clones displaying lacZ expression within hematopoietic cells in vitro were used to generate mice containing the gene trap integrations. Paralleling this in vitro expression pattern, both Hzf and Hhl were expressed in a tissue-specific manner during hematopoietic development in vivo. Hzf encodes a novel protein containing three C(2)H(2)-type zinc fingers predominantly expressed in megakaryocytes and CFU-GEMM. Hhl encodes a novel protein containing a putative phosphotyrosine binding (PTB) domain expressed in megakaryocytes, CFU-GEMM and BFU-E. These results demonstrate the utility of expression trapping to identify novel hematopoietic genes. Future studies of Hzf and Hhl should provide valuable information on the role these genes play during megakaryocytopoiesis.
Collapse
Affiliation(s)
- M Hidaka
- Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
79
|
Crawley JN. Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res 1999; 835:18-26. [PMID: 10448192 DOI: 10.1016/s0006-8993(98)01258-x] [Citation(s) in RCA: 570] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Rigorous experimental design can minimize the high risk of false positives and false negatives in the behavioral phenotyping of a new transgenic or knockout mouse. Use of well established, quantitative, reproducible behavioral tasks, appropriate Ns, correct statistical methods, consideration of background genes contributed by the parental strains, and attention to litter and gender issues, will maximize meaningful comparisons of -/-, +/-, and +/+ genotypes. Strategies developed and used by our laboratory are described in this review. Preliminary observations evaluate general health and neurological reflexes. Sensory abilities and motor functions are extensively quantitated. Specific tests include observations of home cage behaviors, body weight, body temperature, appearance of the fur and whiskers, righting reflex, acoustic startle, eye blink, pupil constriction, vibrissae reflex, pinna reflex, Digiscan open field locomotion, rotarod motor coordination, hanging wire, footprint pathway, visual cliff, auditory threshold, pain threshold, and olfactory acuity. Hypothesis testing then focuses on at least three well-validated tasks within each relevant behavioral domain. Specific tests for mice are described herein for the domains of learning and memory, feeding, nociception, and behaviors relevant to discrete symptoms of human anxiety, depression, schizophrenia, and drug addiction. An example of our approach is illustrated in the behavioral phenotyping of C/EBPdelta knockout mice, which appear to be normal on general health, neurological reflexes, sensory and motor tasks, and the Morris water task, but show remarkably enhanced performance on contextual fear conditioning.
Collapse
Affiliation(s)
- J N Crawley
- Section on Behavioral Neuropharmacology, Experimental Therapeutics Branch, National Institute of Mental Health, Building 10, Room 4D11, Bethesda, MD 20892-1375, USA.
| |
Collapse
|
80
|
Murphy DL, Wichems C, Li Q, Heils A. Molecular manipulations as tools for enhancing our understanding of 5-HT neurotransmission. Trends Pharmacol Sci 1999; 20:246-52. [PMID: 10366867 DOI: 10.1016/s0165-6147(99)01325-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A developing trend in exploring the sites at which drugs act is to use molecular rather than chemical agents to alter receptors, intracellular signalling mechanisms or gene expression. The 5-HT neurotransmission system is targeted by drugs useful in many behavioural disorders, including anxiety, depression, psychosis and eating disorders. It also regulates many physiological functions and provides some examples of the potential use of these new molecular approaches. This article reviews the progress made in the molecular manipulation of 5-HT receptors and discusses the potential of such tools for the treatment of diseases associated with the 5-HT transmission system.
Collapse
Affiliation(s)
- D L Murphy
- Laboratory of Clinical Science, National Institute of Mental Health, Building 10, Room 3D41, 10 Center Drive, MSC 1264, Bethesda, MD 20892-1264, USA
| | | | | | | |
Collapse
|
81
|
Abstract
Since the recent discovery of selenocysteine as the 21st amino acid in protein, the field of selenium biology has rapidly expanded. Twelve mammalian selenoproteins have been characterized to date and each contains selenocysteine that is incorporated in response to specific UGA code words. These selenoproteins have different cellular functions, but in those selenoproteins for which the function is known, selenocysteine is located at the active center. The presence of selenocysteine at critical sites in naturally occurring selenoproteins provides an explanation for the important role of selenium in human health and development. This review describes known mammalian selenoproteins and discusses recent developments and future directions in the selenium field.
Collapse
Affiliation(s)
- V N Gladyshev
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA.
| | | |
Collapse
|
82
|
Chrast R, Scott HS, Antonarakis SE. Linearization and purification of BAC DNA for the development of transgenic mice. Transgenic Res 1999; 8:147-50. [PMID: 10481314 DOI: 10.1023/a:1008858014473] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Bacterial artificial chromosome (BAC) vectors are increasingly used for generation of transgenic mice due to the relatively large size and the stability of their inserts compared to YACs. We have compared methods for purification and linearization of BACs, and describe an optimised protocol for preparation of high quality linear BAC DNA based on lambda terminase digestion, electroelution of linearized DNA together with simple preliminary multiplex PCR screening to detect transgenic mice. Linearized BAC DNA purified this way was successfully used for the development of transgenic mice containing 2-4 copies of the transgene.
Collapse
Affiliation(s)
- R Chrast
- Department of Medical Genetics, Geneva University Medical School, Switzerland.
| | | | | |
Collapse
|
83
|
Qureshi ST, Skamene E, Malo D. Comparative genomics and host resistance against infectious diseases. Emerg Infect Dis 1999; 5:36-47. [PMID: 10081670 PMCID: PMC2627707 DOI: 10.3201/eid0501.990105] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The large size and complexity of the human genome have limited the identification and functional characterization of components of the innate immune system that play a critical role in front-line defense against invading microorganisms. However, advances in genome analysis (including the development of comprehensive sets of informative genetic markers, improved physical mapping methods, and novel techniques for transcript identification) have reduced the obstacles to discovery of novel host resistance genes. Study of the genomic organization and content of widely divergent vertebrate species has shown a remarkable degree of evolutionary conservation and enables meaningful cross-species comparison and analysis of newly discovered genes. Application of comparative genomics to host resistance will rapidly expand our understanding of human immune defense by facilitating the translation of knowledge acquired through the study of model organisms. We review the rationale and resources for comparative genomic analysis and describe three examples of host resistance genes successfully identified by this approach.
Collapse
|
84
|
Expression Trapping: Identification of Novel Genes Expressed in Hematopoietic and Endothelial Lineages by Gene Trapping in ES Cells. Blood 1998. [DOI: 10.1182/blood.v92.12.4622] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractWe have developed a large-scale, expression-based gene trap strategy to perform genome-wide functional analysis of the murine hematopoietic and vascular systems. Using two different gene trap vectors, we have isolated embryonic stem (ES) cell clones containing lacZreporter gene insertions in genes expressed in blood island and vascular cells, muscle, stromal cells, and unknown cell types. Of 79 clones demonstrating specific expression patterns, 49% and 16% were preferentially expressed in blood islands and/or the vasculature, respectively. The majority of ES clones that expressedlacZ in blood islands also expressed lacZ upon differentiation into hematopoietic cells on OP9 stromal layers. Importantly, the in vivo expression of the lacZ fusion products accurately recapitulated the observed in vitro expression patterns. Expression and sequence analysis of representative clones suggest that this approach will be useful for identifying and mutating novel genes expressed in the developing hematopoietic and vascular systems.
Collapse
|
85
|
Expression Trapping: Identification of Novel Genes Expressed in Hematopoietic and Endothelial Lineages by Gene Trapping in ES Cells. Blood 1998. [DOI: 10.1182/blood.v92.12.4622.424k23_4622_4631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a large-scale, expression-based gene trap strategy to perform genome-wide functional analysis of the murine hematopoietic and vascular systems. Using two different gene trap vectors, we have isolated embryonic stem (ES) cell clones containing lacZreporter gene insertions in genes expressed in blood island and vascular cells, muscle, stromal cells, and unknown cell types. Of 79 clones demonstrating specific expression patterns, 49% and 16% were preferentially expressed in blood islands and/or the vasculature, respectively. The majority of ES clones that expressedlacZ in blood islands also expressed lacZ upon differentiation into hematopoietic cells on OP9 stromal layers. Importantly, the in vivo expression of the lacZ fusion products accurately recapitulated the observed in vitro expression patterns. Expression and sequence analysis of representative clones suggest that this approach will be useful for identifying and mutating novel genes expressed in the developing hematopoietic and vascular systems.
Collapse
|
86
|
Jordan CT, Van Zant G. Recent progress in identifying genes regulating hematopoietic stem cell function and fate. Curr Opin Cell Biol 1998; 10:716-20. [PMID: 9914177 DOI: 10.1016/s0955-0674(98)80112-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Significant advances in the use of genetic and molecular biology strategies have recently begun to identify genes that have a major impact on the determination, commitment and developmental potential of hematopoietic stem cells. Using a variety of experimental strategies, genes such as SCL, GATA-2, HoxB4, Flk-2, c-mpl, dlk, and others have been implicated as important regulators of stem cell growth. In addition, genetic mapping has identified several loci that correlate strongly with stem cell numbers and proliferation.
Collapse
Affiliation(s)
- C T Jordan
- Blood and Marrow Transplantation Program Markey Cancer Center University of Kentucky Medical Center 800 Rose Street Room CC405 Lexington KY 40536 USA.
| | | |
Collapse
|
87
|
Shashikant CS, Carr JL, Bhargava J, Bentley KL, Ruddle FH. Recombinogenic targeting: a new approach to genomic analysis--a review. Gene X 1998; 223:9-20. [PMID: 9858667 DOI: 10.1016/s0378-1119(98)00369-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Currently, recombinational cloning procedures based upon methods developed for yeast, Saccharomyces cerevisiae, are being exploited for targeted cloning and in-vivo modification of genomic clones. In this review, we will discuss the development of large-insert vectors, homologous recombination-based techniques for cloning and modification, and their application towards functional analysis of genes using transgenic mouse model systems.
Collapse
Affiliation(s)
- C S Shashikant
- Department of Molecular, Cellular and Developmental Biology, Yale University, Kline Biology Tower, PO Box 208103, New Haven, CT 06520,
| | | | | | | | | |
Collapse
|
88
|
Luo G, Ivics Z, Izsvák Z, Bradley A. Chromosomal transposition of a Tc1/mariner-like element in mouse embryonic stem cells. Proc Natl Acad Sci U S A 1998; 95:10769-73. [PMID: 9724779 PMCID: PMC27970 DOI: 10.1073/pnas.95.18.10769] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/1998] [Indexed: 11/18/2022] Open
Abstract
Mouse has become an increasingly important organism for modeling human diseases and for determining gene function in a mammalian context. Unfortunately, transposon-tagged mutagenesis, one of the most valuable tools for functional genomics, still is not available in this organism. On the other hand, it has long been speculated that members of the Tc1/mariner-like elements may be less dependent on host factors and, hence, can be introduced into heterologous organisms. However, this prediction has not been realized in mice. We report here the chromosomal transposition of the Sleeping Beauty (SB) element in mouse embryonic stem cells, providing evidence that it can be used as an in vivo mutagen in mice.
Collapse
Affiliation(s)
- G Luo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
89
|
Qu S, Tucker SC, Ehrlich JS, Levorse JM, Flaherty LA, Wisdom R, Vogt TF. Mutations in mouse Aristaless-like4 cause Strong's luxoid polydactyly. Development 1998; 125:2711-21. [PMID: 9636085 DOI: 10.1242/dev.125.14.2711] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations that affect vertebrate limb development provide insight into pattern formation, evolutionary biology and human birth defects. Patterning of the limb axes depends on several interacting signaling centers; one of these, the zone of polarizing activity (ZPA), comprises a group of mesenchymal cells along the posterior aspect of the limb bud that express sonic hedgehog (Shh) and plays a key role in patterning the anterior-posterior (AP) axis. The mechanisms by which the ZPA and Shh expression are confined to the posterior aspect of the limb bud mesenchyme are not well understood. The polydactylous mouse mutant Strong's luxoid (lst) exhibits an ectopic anterior ZPA and expression of Shh that results in the formation of extra anterior digits. Here we describe a new chlorambucil-induced deletion allele, lstAlb, that uncovers the lst locus. Integration of the lst genetic and physical maps suggested the mouse Aristaless-like4 (Alx4) gene, which encodes a paired-type homeodomain protein that plays a role in limb patterning, as a strong molecular candidate for the Strong's luxoid gene. In genetic crosses, the three lst mutant alleles fail to complement an Alx4 gene-targeted allele. Molecular and biochemical characterization of the three lst alleles reveal mutations of the Alx4 gene that result in loss of function. Alx4 haploinsufficiency and the importance of strain-specific modifiers leading to polydactyly are indicative of a critical threshold requirement for Alx4 in a genetic program operating to restrict polarizing activity and Shh expression in the anterior mesenchyme of the limb bud, and suggest that mutations in Alx4 may also underlie human polydactyly.
Collapse
Affiliation(s)
- S Qu
- Departments of Biochemistry and Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|
90
|
Kuang W, Xu H, Vachon PH, Engvall E. Disruption of the lama2 gene in embryonic stem cells: laminin alpha 2 is necessary for sustenance of mature muscle cells. Exp Cell Res 1998; 241:117-25. [PMID: 9633519 DOI: 10.1006/excr.1998.4025] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in the gene coding for the alpha 2 chain of laminin-2 and -4 (merosin) cause a severe form of congenital muscular dystrophy in humans and mice. To establish a defined model for in vitro and in vivo studies of the role of laminin alpha 2/merosin in development and cell and tissue function, we generated several lines of mutant embryonic stem (ES) cell with disruption of the laminin alpha 2 chain gene. We find that homozygous mutant ES cells differentiate normally in vitro, giving rise to cardiomyocytes, myotubes, and smooth muscle cells in addition to many other cell types. However, the myotubes that are formed are unstable. They detach, collapse, and degenerate, a process which is initiated at the appearance of the mature, contractile phenotype of the cells. We propose that the detachment and death of contracting myotubes in vitro has its counterpart in vivo and that contraction-induced myofiber damage, along with the lack of survival cues provided by laminin alpha 2/merosin, is a significant contribution to muscle degeneration in merosin-deficient muscular dystrophy.
Collapse
MESH Headings
- Animals
- Cell Death/physiology
- Cell Differentiation/genetics
- Cell Line
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Gene Expression/genetics
- Gene Targeting
- Genes/genetics
- Laminin/genetics
- Laminin/physiology
- Mice
- Mice, Inbred CBA
- Mice, Inbred Strains
- Muscle Contraction/physiology
- Muscle Development
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/physiology
- Muscle, Skeletal/cytology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/physiology
- Muscle, Smooth/cytology
- Muscle, Smooth/growth & development
- Muscle, Smooth/physiology
- Muscles/cytology
- Muscles/physiology
- Mutagenesis, Site-Directed/genetics
- Mutation/genetics
- Myocardium/cytology
- Stem Cells/cytology
- Stem Cells/metabolism
Collapse
Affiliation(s)
- W Kuang
- Department of Developmental Biology, Wenner-Gren Institute, Stockholm University, Sweden
| | | | | | | |
Collapse
|
91
|
Schwenk F, Kuhn R, Angrand PO, Rajewsky K, Stewart AF. Temporally and spatially regulated somatic mutagenesis in mice. Nucleic Acids Res 1998; 26:1427-32. [PMID: 9490788 PMCID: PMC147429 DOI: 10.1093/nar/26.6.1427] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In mice transgenesis through oocyte injection or DNA recombination in embryonal stem (ES) cells allows mutations to be introduced into the germline. However, the earliest phenotype of the introduced mutation can eclipse later effects. We show in mice that site-specific genomic recombination can be induced in a selected cell type, B lymphocytes, at a chosen time. This precision of somatic mutagenesis was accomplished by limiting expression of a Cre recombinase-estrogen receptor fusion protein to B lymphocytes by use of tissue-specific elements in the promoter of the transgene employed. The expressed fusion protein remained inactive until derepressed by systemic administration of an exogenous ligand for the estrogen receptor, 4-OH-tamoxifen. Upon derepression the Cre recombinase enzyme deleted specific DNA segments, flanked by loxP sites, in B lymphocytes only. The efficiency of recombination in cells expressing the fusion protein could be varied from low levels to >80%, depending on the dose of ligand administered. Our work presents a paradigm applicable to other uses of site-specific recombination in somatic mutagenesis where both temporal and spatial regulation are desired.
Collapse
Affiliation(s)
- F Schwenk
- Institute for Genetics, University of Cologne, Weyertal 121, 50931 Cologne, Germany
| | | | | | | | | |
Collapse
|
92
|
Abstract
This article provides an introduction to genetic mapping for scientists who wish to map specific genes or mutant phenotypes in the mouse. The basic principles of genetic mapping and the different types of genetic markers available are described in the first two sections of the chapter. The theoretical and empirical principles necessary to consider when designing mapping experiments are reviewed in the third section. Protocols for mapping phenotypic traits and cloned genes are detailed in the fourth and fifth sections.
Collapse
Affiliation(s)
- Y Boyd
- MRC Mammalian Genetics Unit, Harwell, Oxon, United Kingdom
| |
Collapse
|
93
|
Botta A, Lindsay EA, Jurecic V, Baldini A. Comparative mapping of the DiGeorge syndrome region in mouse shows inconsistent gene order and differential degree of gene conservation. Mamm Genome 1997; 8:890-5. [PMID: 9383280 DOI: 10.1007/s003359900606] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have constructed a comparative map in mouse of the critical region of human 22q11 deleted in DiGeorge (DGS) and Velocardiofacial (VCFS) syndromes. The map includes 11 genes potentially haploinsufficient in these deletion syndromes. We have localized all the conserved genes to mouse Chromosome (Chr) 16, bands B1-B3. The determination of gene order shows the presence of two regions (distal and proximal), containing two groups of conserved genes. The gene order in the two regions is not completely conserved; only in the proximal group is the gene order identical to human. In the distal group the gene order is inverted. These two regions are separated by a DNA segment containing at least one gene which, in the human DGS region, is the most proximal of the known deleted genes. In addition, the gene order within the distal group of genes is inverted relative to the human gene order. Furthermore, a clathrin heavy chain-like gene was not found in the mouse genome by DNA hybridization, indicating that there is an inconsistent level of gene conservation in the region. These and other independent data obtained in our laboratory clearly show a complex evolutionary history of the DGS-VCFS region. Our data provide a framework for the development of a mouse model for the 22q11 deletion with chromosome engineering technologies.
Collapse
Affiliation(s)
- A Botta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
94
|
Romerio F, Gabriel MN, Margolis DM. Repression of human immunodeficiency virus type 1 through the novel cooperation of human factors YY1 and LSF. J Virol 1997; 71:9375-82. [PMID: 9371597 PMCID: PMC230241 DOI: 10.1128/jvi.71.12.9375-9382.1997] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A subpopulation of stably infected CD4+ cells capable of producing virus upon stimulation has been identified in human immunodeficiency virus (HIV)-positive individuals (T.-W. Chun, D. Finzi, J. Margolick, K. Chadwick, D. Schwartz, and R. F. Siliciano, Nat. Med. 1:1284-1290, 1995). Few host factors that directly limit HIV-1 transcription and could support this state of nonproductive HIV-1 infection have been described. YY1, a widely distributed human transcription factor, is known to inhibit HIV-1 long terminal repeat (LTR) transcription and virus production. LSF (also known as LBP-1, UBP, and CP-2) has been shown to repress LTR transcription in vitro, but transient expression of LSF has no effect on LTR activity in vivo. We report that both YY1 and LSF participate in the formation of a complex that recognizes the initiation region of the HIV-1 LTR. Further, we have found that these factors cooperate in the repression of LTR expression and viral replication. This cooperative function may account for the divergent effects of LSF previously observed in vitro and in vivo. Thus, the cooperation of two general cellular transcription factors may allow for the selective downregulation of HIV transcription. Through this mechanism of gene regulation, YY1 and LSF could contribute to the establishment and maintenance of a population of cells stably but nonproductively infected with HIV-1.
Collapse
Affiliation(s)
- F Romerio
- Institute of Human Virology, Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore 21201, USA
| | | | | |
Collapse
|
95
|
Lesche R, Peetz A, van der Hoeven F, Rüther U. Ft1, a novel gene related to ubiquitin-conjugating enzymes, is deleted in the Fused toes mouse mutation. Mamm Genome 1997; 8:879-83. [PMID: 9383278 DOI: 10.1007/s003359900604] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The dominant mouse mutation Fused toes is characterized by partial syndactyly of the limbs and thymic hyperplasia. Both morphological abnormalities were shown to be related to impaired regulation of programmed cell death. Ft/Ft embryos die in midgestation showing severe malformations of fore- and midbrain as well as randomized situs. In Ft mice a large chromosomal deletion (about 300 kb) occurred after insertional mutagenesis. In this report we describe the identification of the first gene that has been mutated by Fused toes. The expression of the novel gene Ft1 is reduced in Ft/+ mice and completely absent in Ft/Ft embryos. Analysis of the Ft1 cDNA revealed an open reading frame that could code for a 32-kDa protein with similarities to ubiquitin-conjugating enzymes. Ft1 transcripts with alternative 5' UTR sequences as well as differential usage of polyadenylation sites were found. Interestingly, the 3' parts of the longest Ft1 transcripts are identical to the reverse complement of the 3'-most sequences of the Rb-related p130 gene. Both genes are transcribed in opposite directions and overlap in their 3' UTRs. Despite the close linkage, p130 expression appeared not to be affected by the Ft mutation. In wild type mice, Ft1 expression levels were found to be high in brain, kidney, and testes and detectable in all other adult organs and throughout embryonic development. Finally, we show that Ft1 is conserved among mammals and identify the human homolog.
Collapse
|
96
|
Abstract
The process of gastrulation is a pivotal step in the formation of the vertebrate body plan. The primary function of gastrulation is the correct placement of precursor tissues for subsequent morphogenesis. There is now mounting evidence that the body plan is established through inductive interactions between germ layer tissues and by the global patterning activity emanating from embryonic organizers. An increasing number of mouse mutants have been described that have gastrulation defects, providing important insights into the molecular mechanisms that regulate this complex process. In this review, we explore the mouse embryo before and during gastrulation, highlighting its similarities with other vertebrate embryos and its unique characteristics.
Collapse
Affiliation(s)
- P P Tam
- Embryology Unit, Children's Medical Research Institute, Wentworthville, NSW, Australia.
| | | |
Collapse
|
97
|
Affiliation(s)
- E M Rubin
- Human Genome Center, Lawrence Berkeley National Laboratory, University of California, Berkeley 94720, USA.
| | | |
Collapse
|
98
|
|
99
|
|
100
|
Bedell MA, Largaespada DA, Jenkins NA, Copeland NG. Mouse models of human disease. Part II: recent progress and future directions. Genes Dev 1997; 11:11-43. [PMID: 9000048 DOI: 10.1101/gad.11.1.11] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- M A Bedell
- Mammalian Genetics Laboratory, ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Frederick, Maryland 21702-1201, USA
| | | | | | | |
Collapse
|