51
|
Contreras O, Córdova-Casanova A, Brandan E. PDGF-PDGFR network differentially regulates the fate, migration, proliferation, and cell cycle progression of myogenic cells. Cell Signal 2021; 84:110036. [PMID: 33971280 DOI: 10.1016/j.cellsig.2021.110036] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/22/2022]
Abstract
Platelet-derived growth factors (PDGFs) regulate embryonic development, tissue regeneration, and wound healing through their binding to PDGF receptors, PDGFRα and PDGFRβ. However, the role of PDGF signaling in regulating muscle development and regeneration remains elusive, and the cellular and molecular responses of myogenic cells are understudied. Here, we explore the PDGF-PDGFR gene expression changes and their involvement in skeletal muscle myogenesis and myogenic fate. By surveying bulk RNA sequencing and single-cell profiling data of skeletal muscle stem cells, we show that myogenic progenitors and muscle stem cells differentially express PDGF ligands and PDGF receptors during myogenesis. Quiescent adult muscle stem cells and myoblasts preferentially express PDGFRβ over PDGFRα. Remarkably, cell culture- and injury-induced muscle stem cell activation altered PDGF family gene expression. In myoblasts, PDGF-AB and PDGF-BB treatments activate two pro-chemotactic and pro-mitogenic downstream transducers, RAS-ERK1/2 and PI3K-AKT. PDGFRs inhibitor AG1296 inhibited ERK1/2 and AKT activation, myoblast migration, proliferation, and cell cycle progression induced by PDGF-AB and PDGF-BB. We also found that AG1296 causes myoblast G0/G1 cell cycle arrest. Remarkably, PDGF-AA did not promote a noticeable ERK1/2 or AKT activation, myoblast migration, or expansion. Also, myogenic differentiation reduced the expression of both PDGFRα and PDGFRβ, whereas forced PDGFRα expression impaired myogenesis. Thus, our data highlight PDGF signaling pathway to stimulate satellite cell proliferation aiming to enhance skeletal muscle regeneration and provide a deeper understanding of the role of PDGF signaling in non-fibroblastic cells.
Collapse
Affiliation(s)
- Osvaldo Contreras
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington 2052, Australia; Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile.
| | - Adriana Córdova-Casanova
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
| | - Enrique Brandan
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile; Fundación Ciencia & Vida, 7780272 Santiago, Chile
| |
Collapse
|
52
|
Qiu Y, Ding R, Zhuang Z, Wu J, Yang M, Zhou S, Ye Y, Geng Q, Xu Z, Huang S, Cai G, Wu Z, Yang J. Genome-wide detection of CNV regions and their potential association with growth and fatness traits in Duroc pigs. BMC Genomics 2021; 22:332. [PMID: 33964879 PMCID: PMC8106131 DOI: 10.1186/s12864-021-07654-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/27/2021] [Indexed: 11/19/2022] Open
Abstract
Background In the process of pig breeding, the average daily gain (ADG), days to 100 kg (AGE), and backfat thickness (BFT) are directly related to growth rate and fatness. However, the genetic mechanisms involved are not well understood. Copy number variation (CNV), an important source of genetic diversity, can affect a variety of complex traits and diseases and has gradually been thrust into the limelight. In this study, we reported the genome-wide CNVs of Duroc pigs using SNP genotyping data from 6627 animals. We also performed a copy number variation region (CNVR)-based genome-wide association studies (GWAS) for growth and fatness traits in two Duroc populations. Results Our study identified 953 nonredundant CNVRs in U.S. and Canadian Duroc pigs, covering 246.89 Mb (~ 10.90%) of the pig autosomal genome. Of these, 802 CNVRs were in U.S. Duroc pigs with 499 CNVRs were in Canadian Duroc pigs, indicating 348 CNVRs were shared by the two populations. Experimentally, 77.8% of nine randomly selected CNVRs were validated through quantitative PCR (qPCR). We also identified 35 CNVRs with significant association with growth and fatness traits using CNVR-based GWAS. Ten of these CNVRs were associated with both ADG and AGE traits in U.S. Duroc pigs. Notably, four CNVRs showed significant associations with ADG, AGE, and BFT, indicating that these CNVRs may play a pleiotropic role in regulating pig growth and fat deposition. In Canadian Duroc pigs, nine CNVRs were significantly associated with both ADG and AGE traits. Further bioinformatic analysis identified a subset of potential candidate genes, including PDGFA, GPER1, PNPLA2 and BSCL2. Conclusions The present study provides a necessary supplement to the CNV map of the Duroc genome through large-scale population genotyping. In addition, the CNVR-based GWAS results provide a meaningful way to elucidate the genetic mechanisms underlying complex traits. The identified CNVRs can be used as molecular markers for genetic improvement in the molecular-guided breeding of modern commercial pigs. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07654-7.
Collapse
Affiliation(s)
- Yibin Qiu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.,Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, Guangdong, 527400, People's Republic of China
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Jie Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Ming Yang
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, Guangdong, 527400, People's Republic of China
| | - Shenping Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Yong Ye
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Qian Geng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Zheng Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Sixiu Huang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.,Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, Guangdong, 527400, People's Republic of China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China. .,Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, Guangdong, 527400, People's Republic of China. .,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, People's Republic of China.
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China. .,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
53
|
Buechler MB, Fu W, Turley SJ. Fibroblast-macrophage reciprocal interactions in health, fibrosis, and cancer. Immunity 2021; 54:903-915. [PMID: 33979587 DOI: 10.1016/j.immuni.2021.04.021] [Citation(s) in RCA: 176] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Fibroblasts and macrophages are present in all tissues, and mounting evidence supports that these cells engage in direct communication to influence the overall tissue microenvironment and affect disease outcomes. Here, we review the current understanding of the molecular mechanisms that underlie fibroblast-macrophage interactions in health, fibrosis, and cancer. We present an integrated view of fibroblast-macrophage interactions that is centered on the CSF1-CSF1R axis and discuss how additional molecular programs linking these cell types can underpin disease onset, progression, and resolution. These programs may be tissue and context dependent, affected also by macrophage and fibroblast origin and state, as seen most clearly in cancer. Continued efforts to understand these cells and the means by which they interact may provide therapeutic approaches for the treatment of fibrosis and cancer.
Collapse
Affiliation(s)
- Matthew B Buechler
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA.
| | - Wenxian Fu
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA.
| | - Shannon J Turley
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA.
| |
Collapse
|
54
|
Trim WV, Walhin JP, Koumanov F, Bouloumié A, Lindsay MA, Chen YC, Travers RL, Turner JE, Thompson D. Divergent immunometabolic changes in adipose tissue and skeletal muscle with ageing in healthy humans. J Physiol 2021; 600:921-947. [PMID: 33895996 DOI: 10.1113/jp280977] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/12/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Ageing is associated with increased systemic inflammation and metabolic dysfunction that contributes to the development of age-associated diseases. The role of adipose tissue in immunometabolic alterations that take place with ageing is unknown in humans. We show, in healthy, active and lean older adults, that adipose tissue, but not skeletal muscle, displays considerable pro-inflammatory transcriptomic, cellular and secretory changes, as well as a reduction in insulin signalling proteins compared to younger adults. These findings indicate that adipose tissue undergoes substantial immunometabolic alterations with ageing, and that these changes are tissue-specific and more profound than those observed in skeletal muscle or in the circulation. These results identify adipose tissue as an important tissue in the biological ageing process in humans, which may exhibit signs of immunometabolic dysfunction prior to systemic manifestation. ABSTRACT Ageing and obesity are both characterized by inflammation and a deterioration in metabolic health. It is now clear that adipose tissue plays a major role in inflammation and metabolic control in obesity, although little is known about the role of adipose tissue in human ageing. To understand how ageing impacts adipose tissue, we characterized subcutaneous adipose tissue and skeletal muscle samples from twelve younger (27 ± 4 years [Young]) and twelve older (66 ± 5 years [Old]) active/non-obese males. We performed a wide-range of whole-body and tissue measures, including RNA-sequencing and multicolour flow cytometry. We also measured a range of inflammatory and metabolic proteins in the circulation and their release by adipose tissue, ex vivo. Both adipose tissue and muscle had ∼2-fold more immune cells per gram of tissue with ageing. In adipose tissue, this immune cell infiltration was driven by increased memory/effector T-cells, whereas, in muscle, the accumulation was driven by memory/effector T-cells and macrophages. Transcriptomic analysis revealed that, with ageing, adipose tissue, but not muscle, was enriched for inflammatory transcripts/pathways related to acquired and innate immunity. Ageing also increased the adipose tissue pro-inflammatory secretory profile. Insulin signalling protein content was reduced in adipose tissue, but not muscle. Our findings indicate that adipose tissue undergoes substantial immunometabolic changes with ageing in humans, and that these changes are tissue-specific and more profound than those observed in the circulation and skeletal muscle.
Collapse
Affiliation(s)
- William V Trim
- Department for Health, Centre for Nutrition, Exercise, and Metabolism, University of Bath, Bath, Somerset, UK
| | - Jean-Philippe Walhin
- Department for Health, Centre for Nutrition, Exercise, and Metabolism, University of Bath, Bath, Somerset, UK
| | - Françoise Koumanov
- Department for Health, Centre for Nutrition, Exercise, and Metabolism, University of Bath, Bath, Somerset, UK
| | - Anne Bouloumié
- INSERM UMR1048, Université Paul Sabatier, I2MC, Toulouse, France
| | - Mark A Lindsay
- Department of Pharmacy and Pharmacology, University of Bath, Bath, Somerset, UK
| | - Yung-Chih Chen
- Department for Health, Centre for Nutrition, Exercise, and Metabolism, University of Bath, Bath, Somerset, UK
| | - Rebecca L Travers
- Department for Health, Centre for Nutrition, Exercise, and Metabolism, University of Bath, Bath, Somerset, UK
| | - James E Turner
- Department for Health, Centre for Nutrition, Exercise, and Metabolism, University of Bath, Bath, Somerset, UK
| | - Dylan Thompson
- Department for Health, Centre for Nutrition, Exercise, and Metabolism, University of Bath, Bath, Somerset, UK
| |
Collapse
|
55
|
Guérit E, Arts F, Dachy G, Boulouadnine B, Demoulin JB. PDGF receptor mutations in human diseases. Cell Mol Life Sci 2021; 78:3867-3881. [PMID: 33449152 PMCID: PMC11072557 DOI: 10.1007/s00018-020-03753-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/16/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022]
Abstract
PDGFRA and PDGFRB are classical proto-oncogenes that encode receptor tyrosine kinases responding to platelet-derived growth factor (PDGF). PDGFRA mutations are found in gastrointestinal stromal tumors (GISTs), inflammatory fibroid polyps and gliomas, and PDGFRB mutations drive myofibroma development. In addition, chromosomal rearrangement of either gene causes myeloid neoplasms associated with hypereosinophilia. Recently, mutations in PDGFRB were linked to several noncancerous diseases. Germline heterozygous variants that reduce receptor activity have been identified in primary familial brain calcification, whereas gain-of-function mutants are present in patients with fusiform aneurysms, Kosaki overgrowth syndrome or Penttinen premature aging syndrome. Functional analysis of these variants has led to the preclinical validation of tyrosine kinase inhibitors targeting PDGF receptors, such as imatinib, as a treatment for some of these conditions. This review summarizes the rapidly expanding knowledge in this field.
Collapse
Affiliation(s)
- Emilie Guérit
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Box B1.74.05, 1200, Brussels, Belgium
| | - Florence Arts
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Box B1.74.05, 1200, Brussels, Belgium
| | - Guillaume Dachy
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Box B1.74.05, 1200, Brussels, Belgium
| | - Boutaina Boulouadnine
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Box B1.74.05, 1200, Brussels, Belgium
| | - Jean-Baptiste Demoulin
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Box B1.74.05, 1200, Brussels, Belgium.
| |
Collapse
|
56
|
Shao M, Hepler C, Zhang Q, Shan B, Vishvanath L, Henry GH, Zhao S, An YA, Wu Y, Strand DW, Gupta RK. Pathologic HIF1α signaling drives adipose progenitor dysfunction in obesity. Cell Stem Cell 2021; 28:685-701.e7. [PMID: 33539723 DOI: 10.1016/j.stem.2020.12.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 10/19/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023]
Abstract
Adipose precursor cells (APCs) exhibit regional variation in response to obesity, for unclear reasons. Here, we reveal that HIFα-induced PDGFRβ signaling within murine white adipose tissue (WAT) PDGFRβ+ cells drives inhibitory serine 112 (S112) phosphorylation of PPARγ, the master regulator of adipogenesis. Levels of PPARγ S112 phosphorylation in WAT PDGFRβ+ cells are depot dependent, with levels of PPARγ phosphorylation in PDGFRβ+ cells inversely correlating with their capacity for adipogenesis upon high-fat-diet feeding. HIFα suppression in PDGFRβ+ progenitors promotes subcutaneous and intra-abdominal adipogenesis, healthy WAT remodeling, and improved metabolic health in obesity. These metabolic benefits are mimicked by treatment of obese mice with the PDGFR antagonist Imatinib, which promotes adipocyte hyperplasia and glucose tolerance in a progenitor cell PPARγ-dependent manner. Our studies unveil a mechanism underlying depot-specific responses of APCs to high-fat feeding and highlight the potential for APCs to be targeted pharmacologically to improve metabolic health in obesity.
Collapse
Affiliation(s)
- Mengle Shao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chelsea Hepler
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qianbin Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bo Shan
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lavanya Vishvanath
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gervaise H Henry
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shangang Zhao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu A An
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yibo Wu
- YCI Laboratory for Next-Generation Proteomics, RIKEN Center of Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Douglas W Strand
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rana K Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
57
|
Jiang Z, Feng T, Lu Z, Wei Y, Meng J, Lin CP, Zhou B, Liu C, Zhang H. PDGFRb + mesenchymal cells, but not NG2 + mural cells, contribute to cardiac fat. Cell Rep 2021; 34:108697. [PMID: 33535029 DOI: 10.1016/j.celrep.2021.108697] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/01/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Understanding cellular origins of cardiac adipocytes (CAs) can offer important implications for the treatment of fat-associated cardiovascular diseases. Here, we perform lineage tracing studies by using various genetic models and find that cardiac mesenchymal cells (MCs) contribute to CAs in postnatal development and adult homeostasis. Although PDGFRa+ and PDGFRb+ MCs both give rise to intramyocardial adipocytes, PDGFRb+ MCs are demonstrated to be the major source of intramyocardial adipocytes. Moreover, we find that PDGFRb+ cells are heterogenous, as PDGFRb is expressed not only in pericytes and smooth muscle cells (SMCs) but also in some subendocardial, pericapillary, or adventitial PDGFRa+ fibroblasts. Dual-recombinase-mediated intersectional genetic lineage tracing reveals that PDGFRa+PDGFRb+ double-positive periendothelial fibroblasts contribute to intramyocardial adipocytes. In contrast, SMCs and NG2+ pericytes do not contribute to CAs. These in vivo findings demonstrate that PDGFRb+ MCs, but not NG2+ coronary vascular mural cells, are the major source of intramyocardial adipocytes.
Collapse
Affiliation(s)
- Zhen Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Teng Feng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengkai Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanxin Wei
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jufeng Meng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Bin Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chen Liu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Hui Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
58
|
Inhibition of TGFβ improves hematopoietic stem cell niche and ameliorates cancer-related anemia. Stem Cell Res Ther 2021; 12:65. [PMID: 33461597 PMCID: PMC7814632 DOI: 10.1186/s13287-020-02120-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 12/22/2020] [Indexed: 12/22/2022] Open
Abstract
Background Cancer cachexia is a wasting syndrome that is quite common in terminal-stage cancer patients. Cancer-related anemia is one of the main features of cancer cachexia and mostly results in a poor prognosis. The disadvantages of the current therapies are obvious, but few new treatments have been developed because the pathological mechanism remains unclear. Methods C57BL/6 mice were subcutaneously injected with Lewis lung carcinoma cells to generate a cancer-related anemia model. The treated group received daily intraperitoneal injections of SB505124. Blood parameters were determined with a routine blood counting analyzer. Erythroid cells and hematopoietic stem/progenitor cells were analyzed by flow cytometry. The microarchitecture changes of the femurs were determined by micro-computed tomography scans. Smad2/3 phosphorylation was analyzed by immunofluorescence and Western blotting. The changes in the hematopoietic stem cell niche were revealed by qPCR analysis of both fibrosis-related genes and hematopoietic genes, fibroblastic colony-forming unit assays, and lineage differentiation of mesenchymal stromal cells. Results The mouse model exhibited hematopoietic suppression, marked by a decrease of erythrocytes in the peripheral blood, as well as an increase of immature erythroblasts and reduced differentiation of multipotent progenitors in the bone marrow. The ratio of bone volume/total volume, trabecular number, and cortical wall thickness all appeared to decrease, and the increased osteoclast number has led to the release of latent TGFβ and TGFβ signaling over-activation. Excessive TGFβ deteriorated the hematopoietic stem cell niche, inducing fibrosis of the bone marrow as well as the transition of mesenchymal stromal cells. Treatment with SB505124, a small-molecule inhibitor of TGFβ signaling, significantly attenuated the symptoms of cancer-related anemia in this model, as evidenced by the increase of erythrocytes in the peripheral blood and the normalized proportion of erythroblast cell clusters. Meanwhile, hindered hematopoiesis and deteriorated hematopoietic stem cell niche were also shown to be restored with SB505124 treatment. Conclusion This study investigated the role of TGFβ released by bone remodeling in the progression of cancer-related anemia and revealed a potential therapeutic approach for relieving defects in hematopoiesis.
Collapse
|
59
|
Gao Z, Daquinag AC, Fussell C, Zhao Z, Dai Y, Rivera A, Snyder BE, Eckel-Mahan KL, Kolonin MG. Age-associated telomere attrition in adipocyte progenitors predisposes to metabolic disease. Nat Metab 2020; 2:1482-1497. [PMID: 33324010 DOI: 10.1038/s42255-020-00320-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/04/2020] [Indexed: 01/11/2023]
Abstract
White and beige adipocytes in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) are maintained by proliferation and differentiation of adipose progenitor cells (APCs). Here we use mice with tissue-specific telomerase reverse transcriptase (TERT) gene knockout (KO), which undergo premature telomere shortening and proliferative senescence in APCs, to investigate the effect of over-nutrition on APC exhaustion and metabolic dysfunction. We find that TERT KO in the Pdgfra+ cell lineage results in adipocyte hypertrophy, inflammation and fibrosis in SAT, while TERT KO in the Pdgfrb+ lineage leads to adipocyte hypertrophy in both SAT and VAT. Systemic insulin resistance is observed in both KO models and is aggravated by a high-fat diet. Analysis of human biopsies demonstrates that telomere shortening in SAT is associated with metabolic disease progression after bariatric surgery. Our data indicate that over-nutrition can promote APC senescence and provide a mechanistic link between ageing, obesity and diabetes.
Collapse
Affiliation(s)
- Zhanguo Gao
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, USA
| | - Alexes C Daquinag
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, USA
| | - Cale Fussell
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Brad E Snyder
- Memorial Hermann Texas Medical Center, Houston, TX, USA
| | - Kristin L Eckel-Mahan
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, USA
| | - Mikhail G Kolonin
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
60
|
de las Heras-Saldana S, Chung KY, Kim H, Lim D, Gondro C, van der Werf JHJ. Differential Gene Expression in Longissimus Dorsi Muscle of Hanwoo Steers-New Insight in Genes Involved in Marbling Development at Younger Ages. Genes (Basel) 2020; 11:genes11111381. [PMID: 33233382 PMCID: PMC7700136 DOI: 10.3390/genes11111381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/06/2020] [Accepted: 11/19/2020] [Indexed: 12/25/2022] Open
Abstract
The Korean Hanwoo breed possesses a high capacity to accumulate intramuscular fat, which is measured as a marbling score in the beef industry. Unfortunately, the development of marbling is not completely understood and the identification of differentially expressed genes at an early age is required to better understand this trait. In this study, we took muscle samples from 12 Hanwoo steers at the age of 18 and 30 months. From the contrast between age and marbling score, we identified in total 1883 differentially expressed genes (FDR < 0.05 and logarithm fold change ≥ 1.5) with 782 genes up-regulated and 1101 down-regulated. Differences in gene expression were higher between the ages x marbling groups rather than between high and low marbling groups. At 18 months of age, the genes SLC38A4, ABCA10, APOL6, and two novel genes (ENSBTAG00000015330 and ENSBTAG00000046041) were up-regulated in the high marbling group. From the protein–protein interaction network analysis, we identified unique networks when comparing marbling scores between different ages. Nineteen genes (AGT, SERPINE1, ADORA1, FOS, LEP, FOXO1, FOXO3, ADIPOQ, ITGA1, SDC1, SDC4, ITGB3, ITGB4, CXCL10, ACTG2, MX1, EDN1, ACTA2, and ESPL1) were identified to have an important role in marbling development. Further analyses are needed to better understand the role of these genes.
Collapse
Affiliation(s)
- Sara de las Heras-Saldana
- School of Environmental and Rural Science, University of New England, Armidale 2351, NSW, Australia; (H.K.); (C.G.); (J.H.J.v.d.W.)
- Correspondence:
| | - Ki Yong Chung
- Department of Beef Science, Korea National College of Agriculture and Fisheries, Jeonju 54874, Korea;
| | - Hyounju Kim
- School of Environmental and Rural Science, University of New England, Armidale 2351, NSW, Australia; (H.K.); (C.G.); (J.H.J.v.d.W.)
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang 25340, Korea
| | - Dajeong Lim
- Animal Genomics & Bioinformatics Division, National Institute of Animal Science, Jeonbuk 55365, Korea;
| | - Cedric Gondro
- School of Environmental and Rural Science, University of New England, Armidale 2351, NSW, Australia; (H.K.); (C.G.); (J.H.J.v.d.W.)
- College of Agriculture & Resources, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Julius H. J. van der Werf
- School of Environmental and Rural Science, University of New England, Armidale 2351, NSW, Australia; (H.K.); (C.G.); (J.H.J.v.d.W.)
| |
Collapse
|
61
|
Song K, Qing Y, Guo Q, Peden EK, Chen C, Mitch WE, Truong L, Cheng J. PDGFRA in vascular adventitial MSCs promotes neointima formation in arteriovenous fistula in chronic kidney disease. JCI Insight 2020; 5:137298. [PMID: 33001865 PMCID: PMC7710276 DOI: 10.1172/jci.insight.137298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic kidney disease (CKD) induces the failure of arteriovenous fistulas (AVFs) and promotes the differentiation of vascular adventitial GLI1-positive mesenchymal stem cells (GMCs). However, the roles of GMCs in forming neointima in AVFs remain unknown. GMCs isolated from CKD mice showed increased potential capacity of differentiation into myofibroblast-like cells. Increased activation of expression of PDGFRA and hedgehog (HH) signaling were detected in adventitial cells of AVFs from patients with end-stage kidney disease and CKD mice. PDGFRA was translocated and accumulated in early endosome when sonic hedgehog was overexpressed. In endosome, PDGFRA-mediated activation of TGFB1/SMAD signaling promoted the differentiation of GMCs into myofibroblasts, extracellular matrix deposition, and vascular fibrosis. These responses resulted in neointima formation and AVF failure. KO of Pdgfra or inhibition of HH signaling in GMCs suppressed the differentiation of GMCs into myofibroblasts. In vivo, specific KO of Pdgfra inhibited GMC activation and vascular fibrosis, resulting in suppression of neointima formation and improvement of AVF patency despite CKD. Our findings could yield strategies for maintaining AVF functions.
Collapse
Affiliation(s)
- Ke Song
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Ying Qing
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Qunying Guo
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Eric K Peden
- Department of Vascular Surgery, DeBakey Heart and Vascular Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Changyi Chen
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - William E Mitch
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Luan Truong
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Jizhong Cheng
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
62
|
Response of adult stem cell populations to a high-fat/high-fiber diet in skeletal muscle and adipose tissue of growing pigs divergently selected for feed efficiency. Eur J Nutr 2020; 60:2397-2408. [PMID: 33125577 DOI: 10.1007/s00394-020-02418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE The control of body composition by genetics and dietary nutrients is of the upmost importance for both human and animal physiology. Adult stem cells (aSC) may represent a relevant level of tissue adaptation. The purpose of this study was to determine the impact of macronutrient composition on aSC populations isolated from adipose tissue or muscle in growing pigs. METHODS Pigs from two lines divergently selected for feed efficiency were fed ad libitum either a high-fat/high-fiber (HF) diet or a low-fat/low-fiber (LF) diet (n = 6 per line and diet) from 74 to 132 days of age. Stroma vascular cells were isolated from adipose tissue and muscle and characterized with cell surface markers. RESULTS In both lines, pigs fed the HF diet exhibited a reduced adiposity (P < 0.001) compared with pigs fed the LF diet. In the four groups, CD90 and PDGFRα markers were predominantly expressed in adipose cells, whereas CD90 and CD56 markers were highly expressed in muscle cells. In adipose tissue, the proportions of CD56+/PDGFRα + and of CD90+/PDGFRα + cells were lower (P < 0.05) in HF pigs than in LF pigs. On the opposite, in muscle, these proportions were higher (P < 0.001) in HF pigs. CONCLUSION This study indicates that dietary nutrients affected the relative proportions of CD56+/PDGFRα + cells with opposite effects between muscle and adipose tissue. These cell populations exhibiting adipogenic potential in adipose tissue and myogenic potential in muscle may be a target to modulate body composition.
Collapse
|
63
|
Liu W, Li D, Cao H, Li H, Wang Y. Expansion and inflammation of white adipose tissue - focusing on adipocyte progenitors. Biol Chem 2020; 402:123-132. [PMID: 33544474 DOI: 10.1515/hsz-2019-0451] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 10/01/2020] [Indexed: 12/22/2022]
Abstract
Adipose tissue is an important organ in our body, participating not only in energy metabolism but also immune regulation. It is broadly classified as white (WAT) and brown (BAT) adipose tissues. WAT is highly heterogeneous, composed of adipocytes, various immune, progenitor and stem cells, as well as the stromal vascular populations. The expansion and inflammation of WAT are hallmarks of obesity and play a causal role in the development of metabolic and cardiovascular diseases. The primary event triggering the inflammatory expansion of WAT remains unclear. The present review focuses on the role of adipocyte progenitors (APS), which give rise to specialized adipocytes, in obesity-associated WAT expansion, inflammation and fibrosis.
Collapse
Affiliation(s)
- Wenjing Liu
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Dahui Li
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Handi Cao
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Haoyun Li
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Yu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
64
|
Wang Y, Guerrero-Juarez CF, Qiu Y, Du H, Chen W, Figueroa S, Plikus MV, Nie Q. A multiscale hybrid mathematical model of epidermal-dermal interactions during skin wound healing. Exp Dermatol 2020; 28:493-502. [PMID: 30801791 DOI: 10.1111/exd.13909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/13/2019] [Indexed: 12/18/2022]
Abstract
Following injury, skin activates a complex wound healing programme. While cellular and signalling mechanisms of wound repair have been extensively studied, the principles of epidermal-dermal interactions and their effects on wound healing outcomes are only partially understood. To gain new insight into the effects of epidermal-dermal interactions, we developed a multiscale, hybrid mathematical model of skin wound healing. The model takes into consideration interactions between epidermis and dermis across the basement membrane via diffusible signals, defined as activator and inhibitor. Simulations revealed that epidermal-dermal interactions are critical for proper extracellular matrix deposition in the dermis, suggesting these signals may influence how wound scars form. Our model makes several theoretical predictions. First, basal levels of epidermal activator and inhibitor help to maintain dermis in a steady state, whereas their absence results in a raised, scar-like dermal phenotype. Second, wound-triggered increase in activator and inhibitor production by basal epidermal cells, coupled with fast re-epithelialization kinetics, reduces dermal scar size. Third, high-density fibrin clot leads to a raised, hypertrophic scar phenotype, whereas low-density fibrin clot leads to a hypotrophic phenotype. Fourth, shallow wounds, compared to deep wounds, result in overall reduced scarring. Taken together, our model predicts the important role of signalling across dermal-epidermal interface and the effect of fibrin clot density and wound geometry on scar formation. This hybrid modelling approach may be also applicable to other complex tissue systems, enabling the simulation of dynamic processes, otherwise computationally prohibitive with fully discrete models due to a large number of variables.
Collapse
Affiliation(s)
- Yangyang Wang
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California.,Center for Complex Biological Systems, University of California, Irvine, Irvine, California.,Department of Mathematics, University of California, Irvine, Irvine, California
| | - Christian F Guerrero-Juarez
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California.,Center for Complex Biological Systems, University of California, Irvine, Irvine, California.,Department of Mathematics, University of California, Irvine, Irvine, California.,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California.,Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California
| | - Yuchi Qiu
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California.,Center for Complex Biological Systems, University of California, Irvine, Irvine, California.,Department of Mathematics, University of California, Irvine, Irvine, California
| | - Huijing Du
- Department of Mathematics, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Weitao Chen
- Department of Mathematics, University of California, Riverside, Riverside, California
| | - Seth Figueroa
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California.,Center for Complex Biological Systems, University of California, Irvine, Irvine, California.,Department of Mathematics, University of California, Irvine, Irvine, California
| | - Maksim V Plikus
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California.,Center for Complex Biological Systems, University of California, Irvine, Irvine, California.,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California.,Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California
| | - Qing Nie
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California.,Center for Complex Biological Systems, University of California, Irvine, Irvine, California.,Department of Mathematics, University of California, Irvine, Irvine, California.,Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California
| |
Collapse
|
65
|
Feeley BT, Liu M, Ma CB, Agha O, Aung M, Lee C, Liu X. Human Rotator Cuff Tears Have an Endogenous, Inducible Stem Cell Source Capable of Improving Muscle Quality and Function After Rotator Cuff Repair. Am J Sports Med 2020; 48:2660-2668. [PMID: 32730704 PMCID: PMC9262007 DOI: 10.1177/0363546520935855] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The muscle quality of the rotator cuff (RC), measured by atrophy and fatty infiltration (FI), is a key determinant of outcomes in RC injury and repair. The ability to regenerate muscle after repair has been shown to be limited. PURPOSE To determine if there is a source of resident endogenous stem cells, fibroadipogenic progenitor cells (FAPs), within RC injury patients, and if these cells are capable of adipogenic, fibrogenic, and pro-myogenic differentiation. STUDY DESIGN Controlled laboratory study. METHODS A total of 20 patients between the ages of 40 and 75 years with partial- or full-thickness RC tears of the supraspinatus and evidence of atrophy and FI Goutallier grade 1, 2, or 3 were selected from 2 surgeons at an orthopaedic center. During the surgical repair procedure, supraspinatus muscle biopsy specimens were obtained for analysis as were deltoid muscle biopsy specimens to serve as the control. FAPs and satellite cells were quantified using fluorescence-activated cell sorting. Muscle FI and fibrosis was quantified using Oil Red O and Masson trichrome staining. FAP differentiation and gene expression profiles were compared across tear sizes after culture in adipogenic, fibrogenic, and beta-3 agonist (amibegron) conditions. Analysis of variance was used for statistical comparisons between groups, with P < .05 as statistically significant. RESULTS Histologic analysis confirmed the presence of fat in biopsy specimens from patients with full-thickness tears. There were more FAPs in the full-thickness tear group compared with the partial-thickness tear group (9.43% ± 4.25% vs 3.84% ± 2.54%; P < .01). Full-thickness tears were divided by tear size, with patients with larger tears having significantly more FAPs than those with smaller tears. FAPs from muscles with full-thickness tendon tears had more adipogenic and fibrogenic potential than those with partial tears. Induction of a beige adipose tissue (BAT) phenotype in FAPs was possible, as demonstrated by increased expression of BAT markers and pro-myogenic genes including insulin-like growth factor 1 and follistatin. CONCLUSION Endogenous FAPs are present within the RC and likely are the source of FI. These FAPs were increased in muscles with in larger tears but are capable of adopting a pro-myogenic BAT phenotype that could be utilized to improve muscle quality and patient function after RC repair.
Collapse
Affiliation(s)
- Brian T. Feeley
- San Francisco Veteran Affairs Health Care System, San Francisco, California, USA.,Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, California, USA.,Address correspondence to Brian T. Feeley, MD, Department of Orthopedic Surgery, University of California, San Francisco, 1700 Owens Street, San Francisco, CA 94158, USA ()
| | - Mengyao Liu
- San Francisco Veteran Affairs Health Care System, San Francisco, California, USA.,Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - C. Benjamin Ma
- San Francisco Veteran Affairs Health Care System, San Francisco, California, USA.,Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Obiajulu Agha
- San Francisco Veteran Affairs Health Care System, San Francisco, California, USA.,Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Mya Aung
- San Francisco Veteran Affairs Health Care System, San Francisco, California, USA
| | - Carlin Lee
- San Francisco Veteran Affairs Health Care System, San Francisco, California, USA.,Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Xuhui Liu
- San Francisco Veteran Affairs Health Care System, San Francisco, California, USA.,Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
66
|
DeBari MK, Abbott RD. Adipose Tissue Fibrosis: Mechanisms, Models, and Importance. Int J Mol Sci 2020; 21:ijms21176030. [PMID: 32825788 PMCID: PMC7503256 DOI: 10.3390/ijms21176030] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Increases in adipocyte volume and tissue mass due to obesity can result in inflammation, further dysregulation in adipose tissue function, and eventually adipose tissue fibrosis. Like other fibrotic diseases, adipose tissue fibrosis is the accumulation and increased production of extracellular matrix (ECM) proteins. Adipose tissue fibrosis has been linked to decreased insulin sensitivity, poor bariatric surgery outcomes, and difficulty in weight loss. With the rising rates of obesity, it is important to create accurate models for adipose tissue fibrosis to gain mechanistic insights and develop targeted treatments. This article discusses recent research in modeling adipose tissue fibrosis using in vivo and in vitro (2D and 3D) methods with considerations for biomaterial selections. Additionally, this article outlines the importance of adipose tissue in treating other fibrotic diseases and methods used to detect and characterize adipose tissue fibrosis.
Collapse
Affiliation(s)
- Megan K. DeBari
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Correspondence:
| |
Collapse
|
67
|
Kothari C, Diorio C, Durocher F. The Importance of Breast Adipose Tissue in Breast Cancer. Int J Mol Sci 2020; 21:ijms21165760. [PMID: 32796696 PMCID: PMC7460846 DOI: 10.3390/ijms21165760] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue is a complex endocrine organ, with a role in obesity and cancer. Adipose tissue is generally linked to excessive body fat, and it is well known that the female breast is rich in adipose tissue. Hence, one can wonder: what is the role of adipose tissue in the breast and why is it required? Adipose tissue as an organ consists of adipocytes, an extracellular matrix (ECM) and immune cells, with a significant role in the dynamics of breast changes throughout the life span of a female breast from puberty, pregnancy, lactation and involution. In this review, we will discuss the importance of breast adipose tissue in breast development and its involvement in breast changes happening during pregnancy, lactation and involution. We will focus on understanding the biology of breast adipose tissue, with an overview on its involvement in the various steps of breast cancer development and progression. The interaction between the breast adipose tissue surrounding cancer cells and vice-versa modifies the tumor microenvironment in favor of cancer. Understanding this mutual interaction and the role of breast adipose tissue in the tumor microenvironment could potentially raise the possibility of overcoming breast adipose tissue mediated resistance to therapies and finding novel candidates to target breast cancer.
Collapse
Affiliation(s)
- Charu Kothari
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1T 1C2, Canada;
- Cancer Research Centre, CHU de Quebec Research Centre, Quebec, QC G1V 4G2, Canada;
| | - Caroline Diorio
- Cancer Research Centre, CHU de Quebec Research Centre, Quebec, QC G1V 4G2, Canada;
- Department of Preventive and Social Medicine, Faculty of Medicine, Laval University, Quebec, QC G1T 1C2, Canada
| | - Francine Durocher
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1T 1C2, Canada;
- Cancer Research Centre, CHU de Quebec Research Centre, Quebec, QC G1V 4G2, Canada;
- Correspondence: ; Tel.: +1-(418)-525-4444 (ext. 48508)
| |
Collapse
|
68
|
Pyrina I, Chung KJ, Michailidou Z, Koutsilieris M, Chavakis T, Chatzigeorgiou A. Fate of Adipose Progenitor Cells in Obesity-Related Chronic Inflammation. Front Cell Dev Biol 2020; 8:644. [PMID: 32760729 PMCID: PMC7372115 DOI: 10.3389/fcell.2020.00644] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022] Open
Abstract
Adipose progenitor cells, or preadipocytes, constitute a small population of immature cells within the adipose tissue. They are a heterogeneous group of cells, in which different subtypes have a varying degree of commitment toward diverse cell fates, contributing to white and beige adipogenesis, fibrosis or maintenance of an immature cell phenotype with proliferation capacity. Mature adipocytes as well as cells of the immune system residing in the adipose tissue can modulate the function and differentiation potential of preadipocytes in a contact- and/or paracrine-dependent manner. In the course of obesity, the accumulation of immune cells within the adipose tissue contributes to the development of a pro-inflammatory microenvironment in the tissue. Under such circumstances, the crosstalk between preadipocytes and immune or parenchymal cells of the adipose tissue may critically regulate the differentiation of preadipocytes into white adipocytes, beige adipocytes, or myofibroblasts, thereby influencing adipose tissue expansion and adipose tissue dysfunction, including downregulation of beige adipogenesis and development of fibrosis. The present review will outline the current knowledge about factors shaping cell fate decisions of adipose progenitor cells in the context of obesity-related inflammation.
Collapse
Affiliation(s)
- Iryna Pyrina
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Technische Universität Dresden, Dresden, Germany
| | - Kyoung-Jin Chung
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Technische Universität Dresden, Dresden, Germany
| | - Zoi Michailidou
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Technische Universität Dresden, Dresden, Germany.,Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Antonios Chatzigeorgiou
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Technische Universität Dresden, Dresden, Germany.,Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
69
|
Pakshir P, Noskovicova N, Lodyga M, Son DO, Schuster R, Goodwin A, Karvonen H, Hinz B. The myofibroblast at a glance. J Cell Sci 2020; 133:133/13/jcs227900. [DOI: 10.1242/jcs.227900] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ABSTRACT
In 1971, Gabbiani and co-workers discovered and characterized the “modification of fibroblasts into cells which are capable of an active spasm” (contraction) in rat wound granulation tissue and, accordingly, named these cells ‘myofibroblasts’. Now, myofibroblasts are not only recognized for their physiological role in tissue repair but also as cells that are key in promoting the development of fibrosis in all organs. In this Cell Science at a Glance and the accompanying poster, we provide an overview of the current understanding of central aspects of myofibroblast biology, such as their definition, activation from different precursors, the involved signaling pathways and most widely used models to study their function. Myofibroblasts will be placed into context with their extracellular matrix and with other cell types communicating in the fibrotic environment. Furthermore, the challenges and strategies to target myofibroblasts in anti-fibrotic therapies are summarized to emphasize their crucial role in disease progression.
Collapse
Affiliation(s)
- Pardis Pakshir
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Nina Noskovicova
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Monika Lodyga
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Dong Ok Son
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Ronen Schuster
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Amanda Goodwin
- Nottingham NIHR Respiratory Biomedical Research Unit, University of Nottingham, Nottingham NG7 2UH, UK
| | - Henna Karvonen
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- Respiratory Medicine, Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, POB 20, 90029 Oulu, Finland
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
70
|
Shin S, Pang Y, Park J, Liu L, Lukas BE, Kim SH, Kim KW, Xu P, Berry DC, Jiang Y. Dynamic control of adipose tissue development and adult tissue homeostasis by platelet-derived growth factor receptor alpha. eLife 2020; 9:56189. [PMID: 32553115 PMCID: PMC7338051 DOI: 10.7554/elife.56189] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Adipocytes arise from distinct progenitor populations during developmental and adult stages but little is known about how developmental progenitors differ from adult progenitors. Here, we investigate the role of platelet-derived growth factor receptor alpha (PDGFRα) in the divergent regulation of the two different adipose progenitor cells (APCs). Using in vivo adipose lineage tracking and deletion mouse models, we found that developmental PDGFRα+ cells are adipogenic and differentiated into mature adipocytes, and the deletion of Pdgfra in developmental adipose lineage disrupted white adipose tissue (WAT) formation. Interestingly, adult PDGFRα+ cells do not significantly contribute to adult adipogenesis, and deleting Pdgfra in adult adipose lineage did not affect WAT homeostasis. Mechanistically, embryonic APCs require PDGFRα for fate maintenance, and without PDGFRα, they underwent fate change from adipogenic to fibrotic lineage. Collectively, our findings indicate that PDGFRα+ cells and Pdgfra gene itself are differentially required for WAT development and adult WAT homeostasis.
Collapse
Affiliation(s)
- Sunhye Shin
- Department of Physiology and Biophysics, College of Medicine, The University of Illinois, Chicago, United States
| | - Yiyu Pang
- Department of Physiology and Biophysics, College of Medicine, The University of Illinois, Chicago, United States
| | - Jooman Park
- Department of Physiology and Biophysics, College of Medicine, The University of Illinois, Chicago, United States
| | - Lifeng Liu
- Department of Physiology and Biophysics, College of Medicine, The University of Illinois, Chicago, United States
| | - Brandon E Lukas
- Department of Physiology and Biophysics, College of Medicine, The University of Illinois, Chicago, United States
| | - Seung Hyeon Kim
- Department of Pharmacology, College of Medicine, The University of Illinois, Chicago, United States
| | - Ki-Wook Kim
- Department of Pharmacology, College of Medicine, The University of Illinois, Chicago, United States
| | - Pingwen Xu
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, United States
| | - Daniel C Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, United States
| | - Yuwei Jiang
- Department of Physiology and Biophysics, College of Medicine, The University of Illinois, Chicago, United States
| |
Collapse
|
71
|
Perivascular Fibro-Adipogenic Progenitor Tracing during Post-Traumatic Osteoarthritis. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1909-1920. [PMID: 32533926 DOI: 10.1016/j.ajpath.2020.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/03/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022]
Abstract
Perivascular mural cells surround capillaries and microvessels and have diverse regenerative or fibrotic functions after tissue injury. Subsynovial fibrosis is a well-known pathologic feature of osteoarthritis, yet transgenic animals for use in visualizing perivascular cell contribution to fibrosis during arthritic changes have not been developed. Here, inducible Pdgfra-CreERT2 reporter mice were subjected to joint-destabilization surgery to induce arthritic changes, and cell lineage was traced over an 8-week period with a focus on the joint-associated fat pad. Results showed that, at baseline, inducible Pdgfra reporter activity highlighted adventitial and, to a lesser extent, pericytic cells within the infrapatellar fat pad. Joint-destabilization surgery was associated with marked fibrosis of the infrapatellar fat pad, accompanied by an expansion of perivascular Pdgfra-expressing cellular descendants, many of which adopted α-smooth muscle actin expression. Gene expression analysis of microdissected infrapatellar fat pad confirmed enrichment in membrane-bound green fluorescent protein/Pdgfra-expressing cells, along with a gene signature that corresponded with injury-associated fibro-adipogenic progenitors. Our results highlight dynamic changes in joint-associated perivascular fibro-adipogenic progenitors during osteoarthritis.
Collapse
|
72
|
Marcelin G, Silveira ALM, Martins LB, Ferreira AV, Clément K. Deciphering the cellular interplays underlying obesity-induced adipose tissue fibrosis. J Clin Invest 2020; 129:4032-4040. [PMID: 31498150 DOI: 10.1172/jci129192] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Obesity originates from an imbalance between caloric intake and energy expenditure that promotes adipose tissue expansion, which is necessary to buffer nutrient excess. Patients with higher visceral fat mass are at a higher risk of developing severe complications such as type 2 diabetes and cardiovascular and liver diseases. However, increased fat mass does not fully explain obesity's propensity to promote metabolic diseases. With chronic obesity, adipose tissue undergoes major remodeling, which can ultimately result in unresolved chronic inflammation leading to fibrosis accumulation. These features drive local tissue damage and initiate and/or maintain multiorgan dysfunction. Here, we review the current understanding of adipose tissue remodeling with a focus on obesity-induced adipose tissue fibrosis and its relevance to clinical manifestations.
Collapse
Affiliation(s)
- Geneviève Marcelin
- Nutrition and Obesities: Systemic Approaches (NutriOmics, UMRS U1269), INSERM, Sorbonne Université, Paris, France
| | - Ana Letícia M Silveira
- Nutrition and Obesities: Systemic Approaches (NutriOmics, UMRS U1269), INSERM, Sorbonne Université, Paris, France.,Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Laís Bhering Martins
- Nutrition and Obesities: Systemic Approaches (NutriOmics, UMRS U1269), INSERM, Sorbonne Université, Paris, France.,Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adaliene Vm Ferreira
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Karine Clément
- Nutrition and Obesities: Systemic Approaches (NutriOmics, UMRS U1269), INSERM, Sorbonne Université, Paris, France.,Nutrition Department, Hôpital Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, Paris, France
| |
Collapse
|
73
|
Lee C, Agha O, Liu M, Davies M, Bertoy L, Kim HT, Liu X, Feeley BT. Rotator Cuff Fibro-Adipogenic Progenitors Demonstrate Highest Concentration, Proliferative Capacity, and Adipogenic Potential Across Muscle Groups. J Orthop Res 2020; 38:1113-1121. [PMID: 31799698 PMCID: PMC9262119 DOI: 10.1002/jor.24550] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/30/2019] [Indexed: 02/04/2023]
Abstract
Fatty infiltration (FI) of rotator cuff (RC) muscles is common in patients with RC tears. Studies have demonstrated that fibro-adipogenic progenitors (FAPs), a population of resident muscle stem cells, are the main contributors of FI, which adversely affects muscle quality and RC repair success. Although FI is common in RC injuries, it is not frequently reported after other musculotendinous injuries. Additionally, studies have shown the development of different pathology patterns across muscle groups suggestive of intrinsic differences in cellular composition and behavior. This study evaluates FAP distribution and differentiation properties across anatomic locations in mice. Muscles from seven different anatomic locations were harvested from PDGFRα-eGFP FAP reporter mice. FAPs were quantified using histology and FACS sorting with BD Aria II with CD31- /CD45- /Integrinα7- /Sca-1+ and PDGFRα reporter signal (n = 3 per muscle). The cells were analyzed for adipogenesis using immunocytochemistry and for proliferation properties with Brdu-Ki67 staining. In a separate group of mice, RC and tibialis anterior muscles received glycerol injection and were harvested after 2 weeks for FI quantification (n = 4). One-way analysis of variance was used for statistical comparisons among groups, with significance at p < 0.05. FAPs from the RC, masseter, and paraspinal muscles were more numerous and demonstrated greater proliferative capacity and adipogenic potency than those from the tibialis anterior and gastrocnemius. The RC demonstrated significantly greater levels of FI than the tibialis anterior after glycerol-injection injury. Clinical Significance: This study suggests differences in FAP distribution and differentiation characteristics may account for the propensity to develop FI in RC tears as compared with other musculotendinous injuries. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:1113-1121, 2020.
Collapse
Affiliation(s)
- Carlin Lee
- San Francisco Veteran Affairs Health Care System, San Francisco, California, 94158,Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, 94158
| | - Obiajulu Agha
- San Francisco Veteran Affairs Health Care System, San Francisco, California, 94158,Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, 94158
| | - Mengyao Liu
- San Francisco Veteran Affairs Health Care System, San Francisco, California, 94158,Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, 94158
| | - Michael Davies
- San Francisco Veteran Affairs Health Care System, San Francisco, California, 94158,Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, 94158
| | - Lauren Bertoy
- San Francisco Veteran Affairs Health Care System, San Francisco, California, 94158,Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, 94158
| | - Hubert T. Kim
- San Francisco Veteran Affairs Health Care System, San Francisco, California, 94158,Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, 94158
| | - Xuhui Liu
- San Francisco Veteran Affairs Health Care System, San Francisco, California, 94158,Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, 94158
| | - Brian T. Feeley
- San Francisco Veteran Affairs Health Care System, San Francisco, California, 94158,Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, 94158
| |
Collapse
|
74
|
Clemente-Postigo M, Tinahones A, El Bekay R, Malagón MM, Tinahones FJ. The Role of Autophagy in White Adipose Tissue Function: Implications for Metabolic Health. Metabolites 2020; 10:metabo10050179. [PMID: 32365782 PMCID: PMC7281383 DOI: 10.3390/metabo10050179] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
White adipose tissue (WAT) is a highly adaptive endocrine organ that continuously remodels in response to nutritional cues. WAT expands to store excess energy by increasing adipocyte number and/or size. Failure in WAT expansion has serious consequences on metabolic health resulting in altered lipid, glucose, and inflammatory profiles. Besides an impaired adipogenesis, fibrosis and low-grade inflammation also characterize dysfunctional WAT. Nevertheless, the precise mechanisms leading to impaired WAT expansibility are yet unresolved. Autophagy is a conserved and essential process for cellular homeostasis, which constitutively allows the recycling of damaged or long-lived proteins and organelles, but is also highly induced under stress conditions to provide nutrients and remove pathogens. By modulating protein and organelle content, autophagy is also essential for cell remodeling, maintenance, and survival. In this line, autophagy has been involved in many processes affected during WAT maladaptation, including adipogenesis, adipocyte, and macrophage function, inflammatory response, and fibrosis. WAT autophagy dysregulation is related to obesity and diabetes. However, it remains unclear whether WAT autophagy alteration in obese and diabetic patients are the cause or the consequence of WAT malfunction. In this review, current data regarding these issues are discussed, focusing on evidence from human studies.
Collapse
Affiliation(s)
- Mercedes Clemente-Postigo
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)-Reina Sofia University Hospital, University of Cordoba, Edificio IMIBIC, Av. Menéndez Pidal s/n, 14004 Córdoba, Spain;
- Correspondence: (M.C.-P.); (F.J.T.); Tel.: +34-957213728 (M.C.-P.); +34-951032648 (F.J.T.)
| | - Alberto Tinahones
- Unidad de Gestión Clínica de Endocrinología y Nutrición (Hospital Universitario Virgen de la Victoria), Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Campus Teatinos s/n, 29010 Málaga, Spain;
| | - Rajaa El Bekay
- Unidad de Gestión Clínica de Endocrinología y Nutrición (Hospital Universitario Regional de Málaga), Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Campus Teatinos s/n, 29010 Málaga, Spain;
- Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - María M. Malagón
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)-Reina Sofia University Hospital, University of Cordoba, Edificio IMIBIC, Av. Menéndez Pidal s/n, 14004 Córdoba, Spain;
- Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Francisco J. Tinahones
- Unidad de Gestión Clínica de Endocrinología y Nutrición (Hospital Universitario Virgen de la Victoria), Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Campus Teatinos s/n, 29010 Málaga, Spain;
- Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: (M.C.-P.); (F.J.T.); Tel.: +34-957213728 (M.C.-P.); +34-951032648 (F.J.T.)
| |
Collapse
|
75
|
Yin J, Qian Z, Chen Y, Li Y, Zhou X. MicroRNA regulatory networks in the pathogenesis of sarcopenia. J Cell Mol Med 2020; 24:4900-4912. [PMID: 32281300 PMCID: PMC7205827 DOI: 10.1111/jcmm.15197] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/25/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is an age‐related disease characterized by disturbed homeostasis of skeletal muscle, leading to a decline in muscle mass and function. Loss of muscle mass and strength leads to falls and fracture, and is often accompanied by other geriatric diseases, including osteoporosis, frailty and cachexia, resulting in a general decrease in quality of life and an increase in mortality. Although the underlying mechanisms of sarcopenia are still not completely understood, there has been a marked improvement in the understanding of the pathophysiological changes leading to sarcopenia in recent years. The role of microRNAs (miRNAs), especially, has been clearer in skeletal muscle development and homeostasis. miRNAs form part of a gene regulatory network and have numerous activities in many biological processes. Intervention based on miRNAs may develop into an innovative treatment strategy to conquer sarcopenia. This review is divided into three sections: firstly, the latest understanding of the pathogenesis of sarcopenia is summarized; secondly, increasing evidence for the involvement of miRNAs in the regulation of muscle quantity or quality and muscle homeostasis is highlighted; and thirdly, the possibilities and limitations of miRNAs as a treatment for sarcopenia are explored.
Collapse
Affiliation(s)
- Jiayu Yin
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiyuan Qian
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuqi Chen
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Li
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Zhou
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
76
|
Eckel-Mahan K, Ribas Latre A, Kolonin MG. Adipose Stromal Cell Expansion and Exhaustion: Mechanisms and Consequences. Cells 2020; 9:cells9040863. [PMID: 32252348 PMCID: PMC7226766 DOI: 10.3390/cells9040863] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue (AT) is comprised of a diverse number of cell types, including adipocytes, stromal cells, endothelial cells, and infiltrating leukocytes. Adipose stromal cells (ASCs) are a mixed population containing adipose progenitor cells (APCs) as well as fibro-inflammatory precursors and cells supporting the vasculature. There is growing evidence that the ability of ASCs to renew and undergo adipogenesis into new, healthy adipocytes is a hallmark of healthy fat, preventing disease-inducing adipocyte hypertrophy and the spillover of lipids into other organs, such as the liver and muscles. However, there is building evidence indicating that the ability for ASCs to self-renew is not infinite. With rates of ASC proliferation and adipogenesis tightly controlled by diet and the circadian clock, the capacity to maintain healthy AT via the generation of new, healthy adipocytes appears to be tightly regulated. Here, we review the contributions of ASCs to the maintenance of distinct adipocyte pools as well as pathogenic fibroblasts in cancer and fibrosis. We also discuss aging and diet-induced obesity as factors that might lead to ASC senescence, and the consequences for metabolic health.
Collapse
Affiliation(s)
- Kristin Eckel-Mahan
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Aleix Ribas Latre
- Helmholtz Institute for Metabolic, Obesity and Vascular Research Center, D-04103 Leipzig, Germany;
| | - Mikhail G. Kolonin
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, TX 77030, USA;
- Correspondence:
| |
Collapse
|
77
|
Sun C, Sakashita H, Kim J, Tang Z, Upchurch GM, Yao L, Berry WL, Griffin TM, Olson LE. Mosaic Mutant Analysis Identifies PDGFRα/PDGFRβ as Negative Regulators of Adipogenesis. Cell Stem Cell 2020; 26:707-721.e5. [PMID: 32229310 DOI: 10.1016/j.stem.2020.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 11/26/2019] [Accepted: 03/06/2020] [Indexed: 01/01/2023]
Abstract
Adipocyte progenitors (APs) express platelet-derived growth factor receptors (PDGFRs), PDGFRα and PDGFRβ. Elevated PDGFRα signaling inhibits adipogenesis and promotes fibrosis; however, the function of PDGFRs in APs remains unclear. We combined lineage tracing and functional analyses in a sequential dual-recombinase approach that creates mosaic Pdgfr mutant cells by Cre/lox recombination with a linked Flp/frt reporter to track individual cell fates. Using mosaic lineage labeling, we show that adipocytes are derived from the Pdgfra lineage during postnatal growth and adulthood. In contrast, adipocytes are only derived from the mosaic Pdgfrb lineage during postnatal growth. Functionally, postnatal mosaic deletion of PDGFRα enhances adipogenesis and adult deletion enhances β3-adrenergic-receptor-induced beige adipocyte formation. Mosaic deletion of PDGFRβ also enhances white, brown, and beige adipogenesis. These data show that both PDGFRs are cell-autonomous inhibitors of adipocyte differentiation and implicate downregulation of PDGF signaling as a critical event in the transition from AP to adipocyte.
Collapse
Affiliation(s)
- Chengyi Sun
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Hiromi Sakashita
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Jang Kim
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Zifeng Tang
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - G Michael Upchurch
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Longbiao Yao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - William L Berry
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Timothy M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Lorin E Olson
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| |
Collapse
|
78
|
Yamakawa M, Santosa SM, Chawla N, Ivakhnitskaia E, Del Pino M, Giakas S, Nadel A, Bontu S, Tambe A, Guo K, Han KY, Cortina MS, Yu C, Rosenblatt MI, Chang JH, Azar DT. Transgenic models for investigating the nervous system: Currently available neurofluorescent reporters and potential neuronal markers. Biochim Biophys Acta Gen Subj 2020; 1864:129595. [PMID: 32173376 DOI: 10.1016/j.bbagen.2020.129595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Recombinant DNA technologies have enabled the development of transgenic animal models for use in studying a myriad of diseases and biological states. By placing fluorescent reporters under the direct regulation of the promoter region of specific marker proteins, these models can localize and characterize very specific cell types. One important application of transgenic species is the study of the cytoarchitecture of the nervous system. Neurofluorescent reporters can be used to study the structural patterns of nerves in the central or peripheral nervous system in vivo, as well as phenomena involving embryologic or adult neurogenesis, injury, degeneration, and recovery. Furthermore, crucial molecular factors can also be screened via the transgenic approach, which may eventually play a major role in the development of therapeutic strategies against diseases like Alzheimer's or Parkinson's. This review describes currently available reporters and their uses in the literature as well as potential neural markers that can be leveraged to create additional, robust transgenic models for future studies.
Collapse
Affiliation(s)
- Michael Yamakawa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Samuel M Santosa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Neeraj Chawla
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Evguenia Ivakhnitskaia
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Matthew Del Pino
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Sebastian Giakas
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Arnold Nadel
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Sneha Bontu
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Arjun Tambe
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Kai Guo
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Maria Soledad Cortina
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Charles Yu
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America.
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America.
| |
Collapse
|
79
|
Gay D, Ghinatti G, Guerrero-Juarez CF, Ferrer RA, Ferri F, Lim CH, Murakami S, Gault N, Barroca V, Rombeau I, Mauffrey P, Irbah L, Treffeisen E, Franz S, Boissonnas A, Combadière C, Ito M, Plikus MV, Romeo PH. Phagocytosis of Wnt inhibitor SFRP4 by late wound macrophages drives chronic Wnt activity for fibrotic skin healing. SCIENCE ADVANCES 2020; 6:eaay3704. [PMID: 32219160 PMCID: PMC7083618 DOI: 10.1126/sciadv.aay3704] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/20/2019] [Indexed: 05/20/2023]
Abstract
Human and murine skin wounding commonly results in fibrotic scarring, but the murine wounding model wound-induced hair neogenesis (WIHN) can frequently result in a regenerative repair response. Here, we show in single-cell RNA sequencing comparisons of semi-regenerative and fibrotic WIHN wounds, increased expression of phagocytic/lysosomal genes in macrophages associated with predominance of fibrotic myofibroblasts in fibrotic wounds. Investigation revealed that macrophages in the late wound drive fibrosis by phagocytizing dermal Wnt inhibitor SFRP4 to establish persistent Wnt activity. In accordance, phagocytosis abrogation resulted in transient Wnt activity and a more regenerative healing. Phagocytosis of SFRP4 was integrin-mediated and dependent on the interaction of SFRP4 with the EDA splice variant of fibronectin. In the human skin condition hidradenitis suppurativa, phagocytosis of SFRP4 by macrophages correlated with fibrotic wound repair. These results reveal that macrophages can modulate a key signaling pathway via phagocytosis to alter the skin wound healing fate.
Collapse
Affiliation(s)
- Denise Gay
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
| | - Giulia Ghinatti
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
- Université Paris-Sud, Paris 11, France
| | - Christian F. Guerrero-Juarez
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, NSF-Simons Center for Multiscale Cell Fate Research, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Rubén A. Ferrer
- Department of Dermatology, University Leipzig Medical Center, Leipzig, Germany
| | - Federica Ferri
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
- Université Paris-Sud, Paris 11, France
| | - Chae Ho Lim
- Ronald O. Perelman Department of Dermatology and Cell Biology, School of Medicine, New York University, New York, NY 10016, USA
| | - Shohei Murakami
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
- Université Paris-Sud, Paris 11, France
| | - Nathalie Gault
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
- Université Paris-Sud, Paris 11, France
| | - Vilma Barroca
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
- Université Paris-Sud, Paris 11, France
| | - Isabelle Rombeau
- Charles River Laboratories, 169 Bois des Oncins, 69210 Saint-Germain-Nuelles, France
| | - Philippe Mauffrey
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
| | - Lamya Irbah
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
| | - Elsa Treffeisen
- Department of Pediatrics, Cohen Children's Medical Center Northwell Health, New Hyde Park, NY 11040, USA
| | - Sandra Franz
- Department of Dermatology, University Leipzig Medical Center, Leipzig, Germany
- DFG-German Research Council Transregio 67, Leipzig-Dresden, Germany
| | - Alexandre Boissonnas
- Sorbonne Université, Inserm, CNRS, Centre d’Immunologie et des Maladies Infectieuses, Cimi-Paris, F-75013, Paris, France
| | - Christophe Combadière
- Sorbonne Université, Inserm, CNRS, Centre d’Immunologie et des Maladies Infectieuses, Cimi-Paris, F-75013, Paris, France
| | - Mayumi Ito
- Ronald O. Perelman Department of Dermatology and Cell Biology, School of Medicine, New York University, New York, NY 10016, USA
| | - Maksim V. Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, NSF-Simons Center for Multiscale Cell Fate Research, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Paul-Henri Romeo
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
- Université Paris-Sud, Paris 11, France
| |
Collapse
|
80
|
Marcelin G, Da Cunha C, Gamblin C, Suffee N, Rouault C, Leclerc A, Lacombe A, Sokolovska N, Gautier EL, Clément K, Dugail I. Autophagy inhibition blunts PDGFRA adipose progenitors' cell-autonomous fibrogenic response to high-fat diet. Autophagy 2020; 16:2156-2166. [PMID: 31992125 DOI: 10.1080/15548627.2020.1717129] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adipose tissue (AT) fibrosis in obesity compromises adipocyte functions and responses to intervention-induced weight loss. It is driven by AT progenitors with dual fibro/adipogenic potential, but pro-fibrogenic pathways activated in obesity remain to be deciphered. To investigate the role of macroautophagy/autophagy in AT fibrogenesis, we used Pdgfra-CreErt2 transgenic mice to create conditional deletion of Atg7 alleles in AT progenitor cells (atg7 cKO) and examined sex-dependent, depot-specific AT remodeling in high-fat diet (HFD)-fed mice. Mice with atg7 cKO had markedly decreased extracellular matrix (ECM) gene expression in visceral, subcutaneous, and epicardial adipose depots compared to Atg7lox/lox littermates. ECM gene program regulation by autophagy inhibition occurred independently of changes in the mass of fat tissues or adipocyte numbers of specific depots, and cultured preadipocytes treated with pharmacological or siRNA-mediated autophagy disruptors could mimic these effects. We found that autophagy inhibition promotes global cell-autonomous remodeling of the paracrine TGF-BMP family landscape, whereas ECM gene modulation was independent of the autophagic regulation of GTF2IRD1. The progenitor-specific mouse model of ATG7 inhibition confirms the requirement of autophagy for white/beige adipocyte turnover, and combined to in vitro experiments, reveal progenitor autophagy dependence for AT fibrogenic response to HFD, through the paracrine remodeling of TGF-BMP factors balance. Abbreviations: CQ: chloroquine; ECM: extracellular matrix; EpiAT: epididymal adipose tissue; GTF2IRD1: general transcription factor II I repeat domain-containing 1; HFD: high-fat diet; KO: knockout; OvAT: ovarian adipose tissue; PDGFR: platelet derived growth factor receptor; ScAT: subcutaneous adipose tissue; TGF-BMP: transforming growth factor-bone morphogenic protein.
Collapse
Affiliation(s)
| | - Carla Da Cunha
- UMRS1269 INSERM/Sorbonne University, Nutriomics , Paris, France
| | - Camille Gamblin
- UMRS1269 INSERM/Sorbonne University, Nutriomics , Paris, France
| | | | | | - Arnaud Leclerc
- UMRS1269 INSERM/Sorbonne University, Nutriomics , Paris, France
| | - Amelie Lacombe
- Institute of Cardiometabolism and Nutrition (ICAN) , Paris, France
| | | | | | - Karine Clément
- UMRS1269 INSERM/Sorbonne University, Nutriomics , Paris, France.,Pitié-Salpêtrière hospital, Nutrition department, Asssistance Publique-Hôpitaux de Paris , Paris, France
| | - Isabelle Dugail
- UMRS1269 INSERM/Sorbonne University, Nutriomics , Paris, France
| |
Collapse
|
81
|
Abstract
Obesity and associated metabolic complications, including diabetes, cardiovascular and hepatic diseases, and certain types of cancers, create a major socioeconomic burden. Obesity is characterized by excessive expansion of white adipose tissue resulting from increased adipocyte size, and enhanced adipocyte precursor cells proliferation and differentiation into mature adipocytes, a process well-defined as adipogenesis. Efforts to develop therapeutically potent strategies to circumvent obesity are impacted by our limited understanding of molecular mechanisms regulating adipogenesis. In this review, we discuss recently discovered molecular mechanisms restraining adipogenesis. In this perspective, the discoveries of white adipose tissue endogenous adipogenesis-regulatory cells (Aregs) that negatively regulate adipocyte differentiation, platelet-derived growth factor receptor isoform α (PDGFRα) activation and downstream signaling that hinder adipocyte precursors differentiation, and a group of obesity-associated non-coding RNAs (ncRNAs) that regulate adipogenesis open up promising therapeutic avenues to prevent and/or treat obesity.
Collapse
Affiliation(s)
- Nida Haider
- Division of Experimental Medicine, Department of Medicine, McGill University and The Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Louise Larose
- Division of Experimental Medicine, Department of Medicine, McGill University and The Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
82
|
Hwang I, Kim JB. Two Faces of White Adipose Tissue with Heterogeneous Adipogenic Progenitors. Diabetes Metab J 2019; 43:752-762. [PMID: 31902145 PMCID: PMC6943255 DOI: 10.4093/dmj.2019.0174] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/28/2019] [Indexed: 12/25/2022] Open
Abstract
Chronic energy surplus increases body fat, leading to obesity. Since obesity is closely associated with most metabolic complications, pathophysiological roles of adipose tissue in obesity have been intensively studied. White adipose tissue is largely divided into subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT). These two white adipose tissues are similar in their appearance and lipid storage functions. Nonetheless, emerging evidence has suggested that SAT and VAT have different characteristics and functional roles in metabolic regulation. It is likely that there are intrinsic differences between VAT and SAT. In diet-induced obese animal models, it has been reported that adipogenic progenitors in VAT rapidly proliferate and differentiate into adipocytes. In obesity, VAT exhibits elevated inflammatory responses, which are less prevalent in SAT. On the other hand, SAT has metabolically beneficial effects. In this review, we introduce recent studies that focus on cellular and molecular components modulating adipogenesis and immune responses in SAT and VAT. Given that these two fat depots show different functions and characteristics depending on the nutritional status, it is feasible to postulate that SAT and VAT have different developmental origins with distinct adipogenic progenitors, which would be a key determining factor for the response and accommodation to metabolic input for energy homeostasis.
Collapse
Affiliation(s)
- Injae Hwang
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Jae Bum Kim
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul, Korea.
| |
Collapse
|
83
|
Exploring the roles of MACIT and multiplexin collagens in stem cells and cancer. Semin Cancer Biol 2019; 62:134-148. [PMID: 31479735 DOI: 10.1016/j.semcancer.2019.08.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/20/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is ubiquitously involved in neoplastic transformation, tumour growth and metastatic dissemination, and the interplay between tumour and stromal cells and the ECM is now considered crucial for the formation of a tumour-supporting microenvironment. The 28 different collagens (Col) form a major ECM protein family and display extraordinary functional diversity in tissue homeostasis as well as in pathological conditions, with functions ranging from structural support for tissues to regulatory binding activities and storage of biologically active cryptic domains releasable through ECM proteolysis. Two subfamilies of collagens, namely the plasma membrane-associated collagens with interrupted triple-helices (MACITs, including ColXIII, ColXXIII and ColXXV) and the basement membrane-associated collagens with multiple triple-helix domains with interruptions (multiplexins, including ColXV and ColXVIII), have highly interesting regulatory functions in tissue and organ development, as well as in various diseases, including cancer. An increasing, albeit yet sparse, data suggest that these collagens play crucial roles in conveying regulatory signals from the extracellular space to cells. We summarize here the current knowledge about MACITs and multiplexins as regulators of stemness and oncogenic processes, as well as their roles in influencing cell fate decisions in healthy and cancerous tissues. In addition, we present a bioinformatic analysis of the impacts of MACITs and multiplexins transcript levels on the prognosis of patients representing a wide array of malignant diseases, to aid future diagnostic and therapeutic efforts.
Collapse
|
84
|
Abstract
Activating triggers, selective markers, and the residual regenerative potential of scar-forming myofibroblasts are largely determined by their origin. In this issue of Cell Stem Cell, Schneider et al. report that bone marrow myofibroblasts derive from Gli1+ mesenchymal stromal cells and that a Gli inhibitor targets them for elimination in mice and humans, ameliorating fibrosis.
Collapse
Affiliation(s)
- Christian F Guerrero-Juarez
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
85
|
GABA-stimulated adipose-derived stem cells suppress subcutaneous adipose inflammation in obesity. Proc Natl Acad Sci U S A 2019; 116:11936-11945. [PMID: 31160440 DOI: 10.1073/pnas.1822067116] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence suggests that subcutaneous and visceral adipose tissues are differentially associated with metabolic disorders. In obesity, subcutaneous adipose tissue is beneficial for metabolic homeostasis because of repressed inflammation. However, the underlying mechanism remains unclear. Here, we demonstrate that γ-aminobutyric acid (GABA) sensitivity is crucial in determining fat depot-selective adipose tissue macrophage (ATM) infiltration in obesity. In diet-induced obesity, GABA reduced monocyte migration in subcutaneous inguinal adipose tissue (IAT), but not in visceral epididymal adipose tissue (EAT). Pharmacological modulation of the GABAB receptor affected the levels of ATM infiltration and adipose tissue inflammation in IAT, but not in EAT, and GABA administration ameliorated systemic insulin resistance and enhanced insulin-dependent glucose uptake in IAT, accompanied by lower inflammatory responses. Intriguingly, compared with adipose-derived stem cells (ADSCs) from EAT, IAT-ADSCs played key roles in mediating GABA responses that repressed ATM infiltration in high-fat diet-fed mice. These data suggest that selective GABA responses in IAT contribute to fat depot-selective suppression of inflammatory responses and protection from insulin resistance in obesity.
Collapse
|
86
|
Sannicandro AJ, Soriano-Arroquia A, Goljanek-Whysall K. Micro(RNA)-managing muscle wasting. J Appl Physiol (1985) 2019; 127:619-632. [PMID: 30991011 DOI: 10.1152/japplphysiol.00961.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Progressive skeletal muscle wasting is a natural consequence of aging and is common in chronic and acute diseases. Loss of skeletal muscle mass and function (strength) often leads to frailty, decreased independence, and increased risk of hospitalization. Despite progress made in our understanding of the mechanisms underlying muscle wasting, there is still no treatment available, with exercise training and dietary supplementation improving, but not restoring, muscle mass and/or function. There has been slow progress in developing novel therapies for muscle wasting, either during aging or disease, partially due to the complex nature of processes underlying muscle loss. The mechanisms of muscle wasting are multifactorial, with a combination of factors underlying age- and disease-related functional muscle decline. These factors include well-characterized changes in muscle such as changes in protein turnover and more recently described mechanisms such as autophagy or satellite cell senescence. Advances in transcriptomics and other high-throughput approaches have highlighted significant deregulation of skeletal muscle gene and protein levels during aging and disease. These changes are regulated at different levels, including posttranscriptional gene expression regulation by microRNAs. microRNAs, potent regulators of gene expression, modulate many processes in muscle, and microRNA-based interventions have been recently suggested as a promising new therapeutic strategy against alterations in muscle homeostasis. Here, we review recent developments in understanding the aging-associated mechanisms of muscle wasting and explore potential microRNA-based therapeutic avenues.
Collapse
Affiliation(s)
- Anthony J Sannicandro
- Department of Physiology, School of Medicine, National University of Ireland, Galway, Ireland
| | - Ana Soriano-Arroquia
- Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom
| | - Katarzyna Goljanek-Whysall
- Department of Physiology, School of Medicine, National University of Ireland, Galway, Ireland.,Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom
| |
Collapse
|
87
|
Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 2019; 20:163-172. [PMID: 30643263 PMCID: PMC6340744 DOI: 10.1038/s41590-018-0276-y] [Citation(s) in RCA: 2183] [Impact Index Per Article: 436.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 11/09/2018] [Indexed: 02/07/2023]
Abstract
Tissue fibrosis is a major cause of mortality that results from the deposition of matrix proteins by an activated mesenchyme. Macrophages accumulate in fibrosis, but the role of specific subgroups in supporting fibrogenesis has not been investigated in vivo. Here we used single-cell RNA sequencing (scRNA-seq) to characterize the heterogeneity of macrophages in bleomycin-induced lung fibrosis in mice. A novel computational framework for the annotation of scRNA-seq by reference to bulk transcriptomes (SingleR) enabled the subclustering of macrophages and revealed a disease-associated subgroup with a transitional gene expression profile intermediate between monocyte-derived and alveolar macrophages. These CX3CR1+SiglecF+ transitional macrophages localized to the fibrotic niche and had a profibrotic effect in vivo. Human orthologues of genes expressed by the transitional macrophages were upregulated in samples from patients with idiopathic pulmonary fibrosis. Thus, we have identified a pathological subgroup of transitional macrophages that are required for the fibrotic response to injury.
Collapse
|
88
|
Contreras O, Cruz-Soca M, Theret M, Soliman H, Tung LW, Groppa E, Rossi FM, Brandan E. The cross-talk between TGF-β and PDGFRα signaling pathways regulates stromal fibro/adipogenic progenitors’ fate. J Cell Sci 2019; 132:jcs.232157. [DOI: 10.1242/jcs.232157] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Abstract
Fibro/adipogenic progenitors (FAPs) are tissue-resident mesenchymal stromal cells (MSCs) required for proper skeletal muscle development, regeneration, and maintenance. However, FAPs are also responsible for fibro-fatty scar deposition following chronic damage. We aimed to study a functional cross-talk between TGF-β and PDGFRα signaling pathways in FAPs’ fate. Here, we show that the number of FAPs correlates with TGF-β levels and with extracellular matrix deposition during regeneration and repair. Interestingly, the expression of PDGFRα changed dynamically in the stromal/fibroblast lineage after injury. Furthermore, PDGFRα-dependent immediate early gene expression changed during regeneration and repair. We also found that TGF-β signaling reduces PDGFRα expression in FAPs, mouse dermal fibroblasts, and in two related mesenchymal/fibroblast cell lines. Moreover, TGF-β promotes myofibroblast differentiation of FAPs but inhibits their adipogenicity. Accordingly, TGF-β impairs the expression of PDGFRα-dependent immediate early genes in a TGF-BR1-dependent manner. Finally, pharmacological inhibition of PDGFRα activity with AG1296 impaired TGF-β-induced extracellular matrix remodeling, Smad2 signaling, myofibroblast differentiation, and migration of MSCs. Thus, our work establishes a functional cross-talk between TGF-β and PDGFRα signaling pathways that is involved in regulating the biology of FAPs/MSCs.
Collapse
Affiliation(s)
- Osvaldo Contreras
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Biomedical Research Centre, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Meilyn Cruz-Soca
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marine Theret
- Biomedical Research Centre, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Hesham Soliman
- Biomedical Research Centre, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Lin Wei Tung
- Biomedical Research Centre, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Elena Groppa
- Biomedical Research Centre, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Fabio M. Rossi
- Biomedical Research Centre, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Enrique Brandan
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
89
|
Adipocyte-secreted BMP8b mediates adrenergic-induced remodeling of the neuro-vascular network in adipose tissue. Nat Commun 2018; 9:4974. [PMID: 30478315 PMCID: PMC6255810 DOI: 10.1038/s41467-018-07453-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 10/22/2018] [Indexed: 01/01/2023] Open
Abstract
Activation of brown adipose tissue-mediated thermogenesis is a strategy for tackling obesity and promoting metabolic health. BMP8b is secreted by brown/beige adipocytes and enhances energy dissipation. Here we show that adipocyte-secreted BMP8b contributes to adrenergic-induced remodeling of the neuro-vascular network in adipose tissue (AT). Overexpression of bmp8b in AT enhances browning of the subcutaneous depot and maximal thermogenic capacity. Moreover, BMP8b-induced browning, increased sympathetic innervation and vascularization of AT were maintained at 28 °C, a condition of low adrenergic output. This reinforces the local trophic effect of BMP8b. Innervation and vascular remodeling effects required BMP8b signaling through the adipocytes to 1) secrete neuregulin-4 (NRG4), which promotes sympathetic axon growth and branching in vitro, and 2) induce a pro-angiogenic transcriptional and secretory profile that promotes vascular sprouting. Thus, BMP8b and NRG4 can be considered as interconnected regulators of neuro-vascular remodeling in AT and are potential therapeutic targets in obesity. Enhancing thermogenesis is a promising therapeutic strategy for promoting metabolic health. Here the authors show that adipocyte-secreted BMP8b contributes to optimizing the thermogenic response by remodeling of the neuro-vascular networks in brown and white adipose tissue.
Collapse
|
90
|
Shook BA, Wasko RR, Rivera-Gonzalez GC, Salazar-Gatzimas E, López-Giráldez F, Dash BC, Muñoz-Rojas AR, Aultman KD, Zwick RK, Lei V, Arbiser JL, Miller-Jensen K, Clark DA, Hsia HC, Horsley V. Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair. Science 2018; 362:eaar2971. [PMID: 30467144 PMCID: PMC6684198 DOI: 10.1126/science.aar2971] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 07/20/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022]
Abstract
During tissue repair, myofibroblasts produce extracellular matrix (ECM) molecules for tissue resilience and strength. Altered ECM deposition can lead to tissue dysfunction and disease. Identification of distinct myofibroblast subsets is necessary to develop treatments for these disorders. We analyzed profibrotic cells during mouse skin wound healing, fibrosis, and aging and identified distinct subpopulations of myofibroblasts, including adipocyte precursors (APs). Multiple mouse models and transplantation assays demonstrate that proliferation of APs but not other myofibroblasts is activated by CD301b-expressing macrophages through insulin-like growth factor 1 and platelet-derived growth factor C. With age, wound bed APs and differential gene expression between myofibroblast subsets are reduced. Our findings identify multiple fibrotic cell populations and suggest that the environment dictates functional myofibroblast heterogeneity, which is driven by fibroblast-immune interactions after wounding.
Collapse
Affiliation(s)
- Brett A Shook
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| | - Renee R Wasko
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | | | | | | | - Biraja C Dash
- Department of Surgery (Plastic), Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Krystal D Aultman
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Rachel K Zwick
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Vivian Lei
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Jack L Arbiser
- Department of Dermatology, Atlanta Veterans Administration Health Center, Emory University, Atlanta, GA 30322, USA
| | - Kathryn Miller-Jensen
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Damon A Clark
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Henry C Hsia
- Department of Surgery (Plastic), Yale School of Medicine, New Haven, CT 06510, USA
| | - Valerie Horsley
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA.
- Department of Dermatology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
91
|
The Effects of Platelet-Derived Growth Factor-BB on Bone Marrow Stromal Cell-Mediated Vascularized Bone Regeneration. Stem Cells Int 2018; 2018:3272098. [PMID: 30515221 PMCID: PMC6234453 DOI: 10.1155/2018/3272098] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 08/09/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022] Open
Abstract
Regenerative medicine for bone tissue mainly depends on efficient recruitment of endogenous or transplanted stem cells to guide bone regeneration. Platelet-derived growth factor (PDGF) is a functional factor that has been widely used in tissue regeneration and repair. However, the short half-life of PDGF limits its efficacy, and the mechanism by which PDGF regulates stem cell-based bone regeneration still needs to be elucidated. In this study, we established genetically modified PDGF-B-overexpressing bone marrow stromal cells (BMSCs) using a lentiviral vector and then explored the mechanism by which PDGF-BB regulates BMSC-based vascularized bone regeneration. Our results demonstrated that PDGF-BB increased osteogenic differentiation but inhibited adipogenic differentiation of BMSCs via the extracellular signal-related kinase 1/2 (ERK1/2) signaling pathway. In addition, secreted PDGF-BB significantly enhanced human umbilical vein endothelial cell (HUVEC) migration and angiogenesis via the phosphatidylinositol 3 kinase (PI3K)/AKT and ERK1/2 signaling pathways. We evaluated the effect of PDGF-B-modified BMSCs on bone regeneration using a critical-sized rat calvarial defect model. Radiography, micro-CT, and histological analyses revealed that PDGF-BB overexpression improved BMSC-mediated angiogenesis and osteogenesis during bone regeneration. These results suggest that PDGF-BB facilitates BMSC-based bone regeneration by enhancing the osteogenic and angiogenic abilities of BMSCs.
Collapse
|
92
|
Haider N, Dusseault J, Larose L. Nck1 Deficiency Impairs Adipogenesis by Activation of PDGFRα in Preadipocytes. iScience 2018; 6:22-37. [PMID: 30240612 PMCID: PMC6137712 DOI: 10.1016/j.isci.2018.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/22/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023] Open
Abstract
Obesity results from an excessive expansion of white adipose tissue (WAT), which is still poorly understood from an etiologic-mechanistic perspective. Here, we report that Nck1, a Src homology domain-containing adaptor, is upregulated during WAT expansion and in vitro adipogenesis. In agreement, Nck1 mRNA correlates positively with peroxisome proliferator-activated receptor (PPAR) γ and adiponectin mRNAs in the WAT of obese humans, whereas Nck1-deficient mice display smaller WAT depots with reduced number of adipocyte precursors and accumulation of extracellular matrix. Furthermore, silencing Nck1 in 3T3-L1 preadipocytes increases the proliferation and expression of genes encoding collagen, whereas it decreases the expression of adipogenic markers and impairs adipogenesis. Silencing Nck1 in 3T3-L1 preadipocytes also promotes the expression of platelet-derived growth factor (PDGF)-A and platelet-derived growth factor receptor (PDGFR) α activation and signaling. Preventing PDGFRα activation using imatinib, or through PDGF-A or PDGFRα deficiency, inhibits collagen expression in Nck1-deficient preadipocytes. Finally, imatinib rescues differentiation of Nck1-deficient preadipocytes. Altogether, our findings reveal that Nck1 modulates WAT development through PDGFRα-dependent remodeling of preadipocytes.
Collapse
Affiliation(s)
- Nida Haider
- Division of Experimental Medicine, Department of Medicine, McGill University and The Research Institute of McGill University Health Centre, Glen Site, Bloc E, Rm E02-7244, 1001 Decarie Boulevard, Montreal, QC H4A 3J1 Canada
| | - Julie Dusseault
- Division of Experimental Medicine, Department of Medicine, McGill University and The Research Institute of McGill University Health Centre, Glen Site, Bloc E, Rm E02-7244, 1001 Decarie Boulevard, Montreal, QC H4A 3J1 Canada
| | - Louise Larose
- Division of Experimental Medicine, Department of Medicine, McGill University and The Research Institute of McGill University Health Centre, Glen Site, Bloc E, Rm E02-7244, 1001 Decarie Boulevard, Montreal, QC H4A 3J1 Canada.
| |
Collapse
|
93
|
Sponton CH, Kajimura S. Multifaceted Roles of Beige Fat in Energy Homeostasis Beyond UCP1. Endocrinology 2018; 159:2545-2553. [PMID: 29757365 PMCID: PMC6692864 DOI: 10.1210/en.2018-00371] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/05/2018] [Indexed: 02/07/2023]
Abstract
Beige adipocytes are an inducible form of thermogenic adipose cells that emerge within the white adipose tissue in response to a variety of environmental stimuli, such as chronic cold acclimation. Similar to brown adipocytes that reside in brown adipose tissue depots, beige adipocytes are also thermogenic; however, beige adipocytes possess unique, distinguishing characteristics in their developmental regulation and biological function. This review highlights recent advances in our understanding of beige adipocytes, focusing on the diverse roles of beige fat in the regulation of energy homeostasis that are independent of the canonical thermogenic pathway via uncoupling protein 1.
Collapse
Affiliation(s)
- Carlos Henrique Sponton
- Diabetes Center, University of California, San Francisco, San Francisco, California
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, San Francisco, California
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California
| | - Shingo Kajimura
- Diabetes Center, University of California, San Francisco, San Francisco, California
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, San Francisco, California
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California
- Correspondence: Shingo Kajimura, PhD, Department of Cell and Tissue Biology, University of California, San Francisco, 35 Medical Center Way, RMB1023, Box 0669, San Francisco, California 94143. E-mail:
| |
Collapse
|
94
|
Jager M, Lee MJ, Li C, Farmer SR, Fried SK, Layne MD. Aortic carboxypeptidase-like protein enhances adipose tissue stromal progenitor differentiation into myofibroblasts and is upregulated in fibrotic white adipose tissue. PLoS One 2018; 13:e0197777. [PMID: 29799877 PMCID: PMC5969754 DOI: 10.1371/journal.pone.0197777] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/08/2018] [Indexed: 02/06/2023] Open
Abstract
White adipose tissue expands through both adipocyte hypertrophy and hyperplasia and it is hypothesized that fibrosis or excess accumulation of extracellular matrix within adipose tissue may limit tissue expansion contributing to metabolic dysfunction. The pathways that control adipose tissue remodeling are only partially understood, however it is likely that adipose tissue stromal and perivascular progenitors participate in fibrotic remodeling and also serve as adipocyte progenitors. The goal of this study was to investigate the role of the secreted extracellular matrix protein aortic carboxypeptidase-like protein (ACLP) on adipose progenitor differentiation in the context of adipose tissue fibrosis. Treatment of 10T1/2 mouse cells with recombinant ACLP suppressed adipogenesis and enhanced myofibroblast differentiation, which was dependent on transforming growth factor-β receptor kinase activity. Mice fed a chronic high fat diet exhibited white adipose tissue fibrosis with elevated ACLP expression and cellular fractionation of these depots revealed that ACLP was co-expressed with collagens primarily in the inflammatory cell depleted stromal-vascular fraction (SVF). SVF cells isolated from mice fed a high fat diet secreted increased amounts of ACLP compared to low fat diet control SVF. These cells also exhibited reduced adipogenic differentiation capacity in vitro. Importantly, differentiation studies in primary human adipose stromal cells revealed that mature adipocytes do not express ACLP and exogenous ACLP administration blunted their differentiation potential while upregulating myofibroblastic markers. Collectively, these studies identify ACLP as a stromal derived mediator of adipose progenitor differentiation that may limit adipocyte expansion during white adipose tissue fibrosis.
Collapse
Affiliation(s)
- Mike Jager
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Mi-Jeong Lee
- Section of Endocrinology, Diabetes, and Nutrition, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Chendi Li
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Stephen R. Farmer
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Susan K. Fried
- Section of Endocrinology, Diabetes, and Nutrition, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Matthew D. Layne
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
95
|
Gulyaeva O, Dempersmier J, Sul HS. Genetic and epigenetic control of adipose development. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:3-12. [PMID: 29704660 DOI: 10.1016/j.bbalip.2018.04.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/22/2018] [Accepted: 04/19/2018] [Indexed: 01/14/2023]
Abstract
White adipose tissue (WAT) is the primary energy storage organ and its excess contributes to obesity, while brown adipose tissue (BAT) and inducible thermogenic (beige/brite) adipocytes in WAT dissipate energy via Ucp1 to maintain body temperature. BAT and subcutaneous WAT develop perinatally while visceral WAT forms after birth from precursors expressing distinct markers, such as Myf5, Pref-1, Wt1, and Prx1, depending on the anatomical location. In addition to the embryonic adipose precursors, a pool of endothelial cells or mural cells expressing Pparγ, Pdgfrβ, Sma and Zfp423 may become adipocytes during WAT expansion in adults. Several markers, such as Cd29, Cd34, Sca1, Cd24, Pdgfrα and Pref-1 are detected in adult WAT SVF cells that can be differentiated into adipocytes. However, potential heterogeneity and differences in developmental stage of these cells are not clear. Beige cells form in a depot- and condition-specific manner by de novo differentiation of precursors or by transdifferentiation. Thermogenic gene activation in brown and beige adipocytes relies on common transcriptional machinery that includes Prdm16, Zfp516, Pgc1α and Ebf2. Moreover, through changing the chromatin landscape, histone methyltransferases, such as Mll3/4 and Ehmt1, as well as demethylases, such as Lsd1, play an important role in regulating the thermogenic gene program. With the presence of BAT and beige/brite cells in human adults, increasing thermogenic activity of BAT and BAT-like tissues may help promote energy expenditure to combat obesity.
Collapse
Affiliation(s)
- Olga Gulyaeva
- Endocrinology Program, University of California, Berkeley, CA 94720, USA; Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Jon Dempersmier
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Hei Sook Sul
- Endocrinology Program, University of California, Berkeley, CA 94720, USA; Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
96
|
Householder LA, Comisford R, Duran-Ortiz S, Lee K, Troike K, Wilson C, Jara A, Harberson M, List EO, Kopchick JJ, Berryman DE. Increased fibrosis: A novel means by which GH influences white adipose tissue function. Growth Horm IGF Res 2018; 39:45-53. [PMID: 29279183 PMCID: PMC5858978 DOI: 10.1016/j.ghir.2017.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 01/10/2023]
Abstract
OBJECTIVE White adipose tissue (WAT) fibrosis - the buildup of extracellular matrix (ECM) proteins, primarily collagen - is now a recognized hallmark of tissue dysfunction and is increased with obesity and lipodystrophy. While growth hormone (GH) is known to increase collagen in several tissues, no previous research has addressed its effect on ECM in WAT. Thus, the purpose of this study is to determine if GH influences WAT fibrosis. DESIGN This study examined WAT from four distinct strains of GH-altered mice (bGH and GHA transgenic mice as well as two tissue specific GH receptor gene disrupted lines, fat growth hormone receptor knockout or FaGHRKO and liver growth hormone receptor knockout or LiGHRKO mice). Collagen content and adipocyte size were studied in all cohorts and compared to littermate controls. In addition, mRNA expression of fibrosis-associated genes was assessed in one cohort (6month old male bovine GH transgenic and WT mice) and cultured 3T3-L1 adipocytes treated with GH. RESULTS Collagen stained area was increased in WAT from bGH mice, was depot-dependent, and increased with age. Furthermore, increased collagen content was associated with decreased adipocyte size in all depots but more dramatic changes in the subcutaneous fat pad. Notably, the increase in collagen was not associated with an increase in collagen gene expression or other genes known to promote fibrosis in WAT, but collagen gene expression was increased with acute GH administration in 3T3-LI cells. In contrast, evaluation of 6month old GH antagonist (GHA) male mice showed significantly decreased collagen in the subcutaneous depot. Lastly, to assess if GH induced collagen deposition directly or indirectly (via IGF-1), fat (Fa) and liver (Li) specific GHRKO mice were evaluated. Decreased fibrosis in FaGHRKO and increased fibrosis in LiGHRKO mice suggest GH is primarily responsible for the alterations in collagen. CONCLUSIONS Our results show that GH action is positively associated with an increase in WAT collagen content as well as a decrease in adipocyte size, particularly in the subcutaneous depot. This effect appears to be due to GH and not IGF-1 and reveals a novel means by which GH regulates WAT accumulation.
Collapse
Affiliation(s)
- Lara A Householder
- The Diabetes Institute, Ohio University, Athens, OH, United States; Edison Biotechnology Institute, Ohio University, Athens, OH, United States; School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, United States
| | - Ross Comisford
- The Diabetes Institute, Ohio University, Athens, OH, United States; Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | - Silvana Duran-Ortiz
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States; School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, United States
| | - Kevin Lee
- The Diabetes Institute, Ohio University, Athens, OH, United States; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States
| | - Katie Troike
- The Diabetes Institute, Ohio University, Athens, OH, United States; Edison Biotechnology Institute, Ohio University, Athens, OH, United States; School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, United States
| | - Cody Wilson
- The Diabetes Institute, Ohio University, Athens, OH, United States; Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | - Adam Jara
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | - Mitchell Harberson
- The Diabetes Institute, Ohio University, Athens, OH, United States; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | - John J Kopchick
- The Diabetes Institute, Ohio University, Athens, OH, United States; Edison Biotechnology Institute, Ohio University, Athens, OH, United States; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States
| | - Darlene E Berryman
- The Diabetes Institute, Ohio University, Athens, OH, United States; Edison Biotechnology Institute, Ohio University, Athens, OH, United States; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States.
| |
Collapse
|
97
|
McGowan SE, McCoy DM. Neuropilin-1 and platelet-derived growth factor receptors cooperatively regulate intermediate filaments and mesenchymal cell migration during alveolar septation. Am J Physiol Lung Cell Mol Physiol 2018. [PMID: 29543041 DOI: 10.1152/ajplung.00511.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Generation of secondary alveolar septa occurs primarily after birth in humans and is complete in mice postnatally, when mechanical stresses vary as air space pressure oscillates. Alveolar mesenchymal cells deposit elastic fibers, which limit cell strain; although when the elastic fiber network is incomplete, this function is also served by the intracellular cytoskeleton. Intermediate filament proteins support deformation during cell division and migration, which occur during septal elongation. Because platelet-derived growth factor receptor-α (PDGFRα) signaling is essential for alveolar septation, we hypothesized that neuropilin-1 (NRP1) may link PDGFRα to cytoskeletal deformation. During cell migration, NRP1 links receptor tyrosine kinase signaling to cytoskeletal and focal adhesion remodeling. Therefore, we examined the consequences of nrp1 gene deletion in alveolar mesenchymal cells (myofibroblasts and pericytes). NRP1 depletion reduced the proportion of mesenchymal cells that contain nestin and desmin within the subpopulation that lacked PDGFRα but contained PDGFRβ. Desmin was reduced at alveolar entry rings, air spaces were enlarged, and surface area was reduced after NRP1 depletion. PDGFRα and NRP1 colocalized to membrane lipid rafts, which are known to contain Src kinase. NRP1 depletion reduced alveolar mesenchymal cell migration and PDGF-A-mediated activation of Src kinase, which may limit accumulation of desmin at septal tips (alveolar entry rings). Cooperation between NRP1 and PDGF signaling is required for secondary septation, and manipulation of NRP1 could promote alveolar regeneration without producing fibrosis.
Collapse
Affiliation(s)
- Stephen E McGowan
- Department of Veterans Affairs Research Service and Department of Internal Medicine, University of Iowa Carver College of Medicine , Iowa City, Iowa
| | - Diann M McCoy
- Department of Veterans Affairs Research Service and Department of Internal Medicine, University of Iowa Carver College of Medicine , Iowa City, Iowa
| |
Collapse
|
98
|
Tanaka M, Itoh M, Ogawa Y, Suganami T. Molecular mechanism of obesity-induced 'metabolic' tissue remodeling. J Diabetes Investig 2018; 9:256-261. [PMID: 29086488 PMCID: PMC5835451 DOI: 10.1111/jdi.12769] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 10/25/2017] [Indexed: 12/26/2022] Open
Abstract
Chronic inflammation is a common molecular basis underlying a variety of chronic diseases. Accumulating evidence has also suggested that chronic inflammation contributes to the pathogenesis of obesity and diabetes, which have been considered as metabolic diseases. For the past several decades, there has been dramatic progress in understanding the underlying mechanism of adipose tissue dysfunction induced by obesity. Tissue remodeling is one of the histological features of chronic inflammation, in which stromal cells dramatically change in number and cell type. Indeed, adipose tissue remodeling is induced by various stromal cells, and results in the impairment of adipose tissue function, such as adipocytokine production and lipid storage, which leads to systemic metabolic disorder. In addition to adipose tissue, the liver is another example of obesity-induced tissue remodeling. In the present review, we discuss how obesity induces interstitial fibrosis in adipose tissue and the liver, particularly focusing on the role of macrophages.
Collapse
Affiliation(s)
- Miyako Tanaka
- Department of Molecular Medicine and MetabolismResearch Institute of Environmental MedicineNagoya UniversityNagoyaJapan
| | - Michiko Itoh
- Department of Organ Network and MetabolismGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Yoshihiro Ogawa
- Department of Molecular Medicine and MetabolismResearch Institute of Environmental MedicineNagoya UniversityNagoyaJapan
- Department of Molecular Endocrinology and MetabolismGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
- Department of Molecular and Cellular MetabolismGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
- Department of Medicine and Bioregulatory ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Japan Agency for Medical Research and DevelopmentCRESTTokyoJapan
| | - Takayoshi Suganami
- Department of Molecular Medicine and MetabolismResearch Institute of Environmental MedicineNagoya UniversityNagoyaJapan
| |
Collapse
|
99
|
Guimarães-Camboa N, Evans SM. Are Perivascular Adipocyte Progenitors Mural Cells or Adventitial Fibroblasts? Cell Stem Cell 2018; 20:587-589. [PMID: 28475883 DOI: 10.1016/j.stem.2017.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2017] [Indexed: 12/24/2022]
Abstract
In their reply, Sylvia Evans and colleagues argue that their lineage-labeling approach gives more precise tracing of the lineage contribution of mural cells in vivo than previous versions.
Collapse
Affiliation(s)
- Nuno Guimarães-Camboa
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Sylvia M Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
100
|
Hasegawa Y, Ikeda K, Chen Y, Alba DL, Stifler D, Shinoda K, Hosono T, Maretich P, Yang Y, Ishigaki Y, Chi J, Cohen P, Koliwad SK, Kajimura S. Repression of Adipose Tissue Fibrosis through a PRDM16-GTF2IRD1 Complex Improves Systemic Glucose Homeostasis. Cell Metab 2018; 27:180-194.e6. [PMID: 29320702 PMCID: PMC5765755 DOI: 10.1016/j.cmet.2017.12.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 09/25/2017] [Accepted: 12/05/2017] [Indexed: 01/15/2023]
Abstract
Adipose tissue fibrosis is a hallmark of malfunction that is linked to insulin resistance and type 2 diabetes; however, what regulates this process remains unclear. Here we show that the PRDM16 transcriptional complex, a dominant activator of brown/beige adipocyte development, potently represses adipose tissue fibrosis in an uncoupling protein 1 (UCP1)-independent manner. By purifying the PRDM16 complex, we identified GTF2IRD1, a member of the TFII-I family of DNA-binding proteins, as a cold-inducible transcription factor that mediates the repressive action of the PRDM16 complex on fibrosis. Adipocyte-selective expression of GTF2IRD1 represses adipose tissue fibrosis and improves systemic glucose homeostasis independent of body-weight loss, while deleting GTF2IRD1 promotes fibrosis in a cell-autonomous manner. GTF2IRD1 represses the transcription of transforming growth factor β-dependent pro-fibrosis genes by recruiting PRDM16 and EHMT1 onto their promoter/enhancer regions. These results suggest a mechanism by which repression of obesity-associated adipose tissue fibrosis through the PRDM16 complex leads to an improvement in systemic glucose homeostasis.
Collapse
Affiliation(s)
- Yutaka Hasegawa
- UCSF Diabetes Center, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA; Division of Diabetes and Metabolism, Department of Internal Medicine, Iwate Medical University, Morioka, Uchimaru, Japan
| | - Kenji Ikeda
- UCSF Diabetes Center, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Yong Chen
- UCSF Diabetes Center, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Diana L Alba
- UCSF Diabetes Center, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel Stifler
- UCSF Diabetes Center, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Kosaku Shinoda
- UCSF Diabetes Center, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Takashi Hosono
- UCSF Diabetes Center, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA; Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Tokyo, Japan
| | - Pema Maretich
- UCSF Diabetes Center, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Yangyu Yang
- UCSF Diabetes Center, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Yasushi Ishigaki
- Division of Diabetes and Metabolism, Department of Internal Medicine, Iwate Medical University, Morioka, Uchimaru, Japan
| | - Jingyi Chi
- The Rockefeller University, Laboratory of Molecular Metabolism, New York, NY, USA
| | - Paul Cohen
- The Rockefeller University, Laboratory of Molecular Metabolism, New York, NY, USA
| | - Suneil K Koliwad
- UCSF Diabetes Center, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | - Shingo Kajimura
- UCSF Diabetes Center, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|