51
|
Li Y, Pan Y, Zhao X, Wu S, Li F, Wang Y, Liu B, Zhang Y, Gao X, Wang Y, Zhou H. Peroxisome proliferator-activated receptors: A key link between lipid metabolism and cancer progression. Clin Nutr 2024; 43:332-345. [PMID: 38142478 DOI: 10.1016/j.clnu.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023]
Abstract
Lipids represent the essential components of membranes, serve as fuels for high-energy processes, and play crucial roles in signaling and cellular function. One of the key hallmarks of cancer is the reprogramming of metabolic pathways, especially abnormal lipid metabolism. Alterations in lipid uptake, lipid desaturation, de novo lipogenesis, lipid droplets, and fatty acid oxidation in cancer cells all contribute to cell survival in a changing microenvironment by regulating feedforward oncogenic signals, key oncogenic functions, oxidative and other stresses, immune responses, or intercellular communication. Peroxisome proliferator-activated receptors (PPARs) are transcription factors activated by fatty acids and act as core lipid sensors involved in the regulation of lipid homeostasis and cell fate. In addition to regulating whole-body energy homeostasis in physiological states, PPARs play a key role in lipid metabolism in cancer, which is receiving increasing research attention, especially the fundamental molecular mechanisms and cancer therapies targeting PPARs. In this review, we discuss how cancer cells alter metabolic patterns and regulate lipid metabolism to promote their own survival and progression through PPARs. Finally, we discuss potential therapeutic strategies for targeting PPARs in cancer based on recent studies from the last five years.
Collapse
Affiliation(s)
- Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yujie Pan
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaodong Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Shouwang Wu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Xin Gao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
52
|
Liu J, Yang J, Pan Q, Wang X, Wang X, Chen H, Zheng X, Huang Q. MDM4 was associated with poor prognosis and tumor-immune infiltration of cancers. Eur J Med Res 2024; 29:79. [PMID: 38281029 PMCID: PMC10821240 DOI: 10.1186/s40001-024-01684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/17/2024] [Indexed: 01/29/2024] Open
Abstract
MDM4 is one of the MDM protein family and is generally recognized as the key negative regulator of p53. As a cancer-promoting factor, it plays a non-negligible role in tumorigenesis and development. In this article, we analyzed the expression levels of MDM4 in pan-cancer through multiple databases. We also investigated the correlations between MDM4 expression and prognostic value, immune features, genetic mutation, and tumor-related pathways. We found that MDM4 overexpression is often accompanied by adverse clinical features, poor prognosis, oncogenic mutations, tumor-immune infiltration and aberrant activation of oncogenic signaling pathways. We also conducted transcriptomic sequencing to investigate the effect of MDM4 on transcript levels in colon cancer and performed qPCR to verify this. Finally, we carried out some in vitro experiments including colony formation assay, chemoresistance and senescence-associated β-galactosidase activity assay to study the anti-tumor treatment effect of small molecule MDM4 inhibitor, NSC146109. Our research confirmed that MDM4 is a prognostic biomarker and potential therapeutic target for a variety of malignancies.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Endoscopy, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- The Graduate School of Fujian Medical University, Fuzhou, China
| | - Jie Yang
- Department of Endoscopy, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- The Graduate School of Fujian Medical University, Fuzhou, China
| | - Qilong Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiangyu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Endoscopy, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- The Graduate School of Fujian Medical University, Fuzhou, China
| | - Xinyin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Han Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaoling Zheng
- Department of Endoscopy, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China.
- The Graduate School of Fujian Medical University, Fuzhou, China.
| | - Qingling Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
53
|
Harrer DC, Lüke F, Pukrop T, Ghibelli L, Gerner C, Reichle A, Heudobler D. Peroxisome proliferator-activated receptorα/γ agonist pioglitazone for rescuing relapsed or refractory neoplasias by unlocking phenotypic plasticity. Front Oncol 2024; 13:1289222. [PMID: 38273846 PMCID: PMC10808445 DOI: 10.3389/fonc.2023.1289222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
A series of seven clinical trials on relapsed or refractory (r/r) metastatic neoplasias followed the question: Are networks of ligand-receptor cross-talks that support tumor-specific cancer hallmarks, druggable with tumor tissue editing approaches therapeutically exploiting tumor plasticity? Differential recombinations of pioglitazone, a dual peroxisome-proliferator activated receptorα/γ (PPARα/γ) agonist, with transcriptional modulators, i.e., all-trans retinoic acid, interferon-α, or dexamethasone plus metronomic low-dose chemotherapy (MCT) or epigenetic modeling with azacitidine plus/minus cyclooxygenase-2 inhibition initiated tumor-specific reprogramming of cancer hallmarks, as exemplified by inflammation control in r/r melanoma, renal clear cell carcinoma (RCCC), Hodgkin's lymphoma (HL) and multisystem Langerhans cell histiocytosis (mLCH) or differentiation induction in non-promyelocytic acute myeloid leukemia (non-PML AML). Pioglitazone, integrated in differentially designed editing schedules, facilitated induction of tumor cell death as indicated by complete remission (CR) in r/r non-PML AML, continuous CR in r/r RCCC, mLCH, and in HL by addition of everolimus, or long-term disease control in melanoma by efficaciously controlling metastasis, post-therapy cancer repopulation and acquired cell-resistance and genetic/molecular-genetic tumor cell heterogeneity (M-CRAC). PPARα/γ agonists provided tumor-type agnostic biomodulatory efficacy across different histologic neoplasias. Tissue editing techniques disclose that wide-ranging functions of PPARα/γ agonists may be on-topic focused for differentially unlocking tumor phenotypes. Low-dose MCT facilitates targeted reprogramming of cancer hallmarks with transcriptional modulators, induction of tumor cell death, M-CRAC control and editing of non-oncogene addiction. Thus, pioglitazone, integrated in tumor tissue editing protocols, is an important biomodulatory drug for addressing urgent therapeutic problems, such as M-CRAC in relapsed or refractory tumor disease.
Collapse
Affiliation(s)
- Dennis Christoph Harrer
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| | - Lina Ghibelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
54
|
Xiao L, Xian M, Zhang C, Guo Q, Yi Q. Lipid peroxidation of immune cells in cancer. Front Immunol 2024; 14:1322746. [PMID: 38259464 PMCID: PMC10800824 DOI: 10.3389/fimmu.2023.1322746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Growing evidence indicates that cellular metabolism is a critical determinant of immune cell viability and function in antitumor immunity and lipid metabolism is important for immune cell activation and adaptation to the tumor microenvironment (TME). Lipid peroxidation is a process in which oxidants attack lipid-containing carbon-carbon double bonds and is an important part of lipid metabolism. In the past decades, studies have shown that lipid peroxidation participates in signal transduction to control cell proliferation, differentiation, and cell death, which is essential for cell function execution and human health. More importantly, recent studies have shown that lipid peroxidation affects immune cell function to modulate tumor immunity and antitumor ability. In this review, we briefly overview the effect of lipid peroxidation on the adaptive and innate immune cell activation and function in TME and discuss the effectiveness and sensitivity of the antitumor ability of immune cells by regulating lipid peroxidation.
Collapse
Affiliation(s)
| | | | | | | | - Qing Yi
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston Methodist, Houston, TX, United States
| |
Collapse
|
55
|
Consoli V, Fallica AN, Sorrenti V, Pittalà V, Vanella L. Novel Insights on Ferroptosis Modulation as Potential Strategy for Cancer Treatment: When Nature Kills. Antioxid Redox Signal 2024; 40:40-85. [PMID: 37132605 PMCID: PMC10824235 DOI: 10.1089/ars.2022.0179] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Significance: The multifactorial nature of the mechanisms implicated in cancer development still represents a major issue for the success of established antitumor therapies. The discovery of ferroptosis, a novel form of programmed cell death distinct from apoptosis, along with the identification of the molecular pathways activated during its execution, has led to the uncovering of novel molecules characterized by ferroptosis-inducing properties. Recent advances: As of today, the ferroptosis-inducing properties of compounds derived from natural sources have been investigated and interesting findings have been reported both in vitro and in vivo. Critical Issues: Despite the efforts made so far, only a limited number of synthetic compounds have been identified as ferroptosis inducers, and their utilization is still limited to basic research. In this review, we analyzed the most important biochemical pathways involved in ferroptosis execution, with particular attention to the newest literature findings on canonical and non-canonical hallmarks, together with mechanisms of action of natural compounds identified as novel ferroptosis inducers. Compounds have been classified based on their chemical structure, and modulation of ferroptosis-related biochemical pathways has been reported. Future Directions: The outcomes herein collected represent a fascinating starting point from which to take hints for future drug discovery studies aimed at identifying ferroptosis-inducing natural compounds for anticancer therapies. Antioxid. Redox Signal. 40, 40-85.
Collapse
Affiliation(s)
- Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | | | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Drug and Health Sciences, CERNUT—Research Centre on Nutraceuticals and Health Products, University of Catania, Catania, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Drug and Health Sciences, CERNUT—Research Centre on Nutraceuticals and Health Products, University of Catania, Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Drug and Health Sciences, CERNUT—Research Centre on Nutraceuticals and Health Products, University of Catania, Catania, Italy
| |
Collapse
|
56
|
Low-Calle AM, Ghoneima H, Ortega N, Cuibus AM, Katz C, Prives C, Prywes R. A Non-Canonical Hippo Pathway Represses the Expression of ΔNp63. Mol Cell Biol 2024; 44:27-42. [PMID: 38270135 PMCID: PMC10829837 DOI: 10.1080/10985549.2023.2292037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/28/2023] [Indexed: 01/26/2024] Open
Abstract
The p63 transcription factor, a member of the p53 family, plays an oncogenic role in squamous cell carcinomas, while in breast cancers its expression is often repressed. In the canonical conserved Hippo pathway, known to play a complex role in regulating growth of cancer cells, protein kinases MST1/2 and LATS1/2 act sequentially to phosphorylate and inhibit the YAP/TAZ transcription factors. We found that in MCF10A mammary epithelial cells as well as in squamous and breast cancer cell lines, expression of ΔNp63 RNA and protein is strongly repressed by inhibition of the Hippo pathway protein kinases. While MST1/2 and LATS1 are required for p63 expression, the next step of the pathway, namely phosphorylation and degradation of the YAP/TAZ transcriptional activators is not required for p63 repression. This suggests that regulation of p63 expression occurs by a noncanonical version of the Hippo pathway. We identified similarly regulated genes, suggesting the broader importance of this pathway. Interestingly, lowering p63 expression lead to increased YAP protein levels, indicating crosstalk of the YAP/TAZ-independent and -dependent branches of the Hippo pathway. These results, which reveal the intersection of the Hippo and p63 pathways, may prove useful for the control of their activities in cancer cells.
Collapse
Affiliation(s)
- Ana Maria Low-Calle
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Hana Ghoneima
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Nicholas Ortega
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Adriana M. Cuibus
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Chen Katz
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Ron Prywes
- Department of Biological Sciences, Columbia University, New York, New York, USA
| |
Collapse
|
57
|
Bao T, Zhang X, Xie W, Wang Y, Li X, Tang C, Yang Y, Sun J, Gao J, Yu T, Zhao L, Tong X. Natural compounds efficacy in complicated diabetes: A new twist impacting ferroptosis. Biomed Pharmacother 2023; 168:115544. [PMID: 37820566 DOI: 10.1016/j.biopha.2023.115544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023] Open
Abstract
Ferroptosis, as a way of cell death, participates in the body's normal physiological and pathological regulation. Recent studies have shown that ferroptosis may damage glucose-stimulated islets β Insulin secretion and programmed cell death of T2DM target organs are involved in the pathogenesis of T2DM and its complications. Targeting suppression of ferroptosis with specific inhibitors may provide new therapeutic opportunities for previously untreated T2DM and its target organs. Current studies suggest that natural bioactive compounds, which are abundantly available in drugs, foods, and medicinal plants for the treatment of T2DM and its target organs, have recently received significant attention for their various biological activities and minimal toxicity, and that many natural compounds appear to have a significant role in the regulation of ferroptosis in T2DM and its target organs. Therefore, this review summarized the potential treatment strategies of natural compounds as ferroptosis inhibitors to treat T2DM and its complications, providing potential lead compounds and natural phytochemical molecular nuclei for future drug research and development to intervene in ferroptosis in T2DM.
Collapse
Affiliation(s)
- Tingting Bao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Xiangyuan Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Weinan Xie
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Ying Wang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Jingyue National High-tech Industrial Development Zone, Changchun 130117, China
| | - Xiuyang Li
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China
| | - Cheng Tang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Jingyue National High-tech Industrial Development Zone, Changchun 130117, China
| | - Yingying Yang
- National Center for Integrated Traditional and Western Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jun Sun
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, No. 1478, Gongnong Road, Chaoyang District, Changchun 130021, China
| | - Jiaqi Gao
- School of Qi-Huang Chinese Medicine, Beijing University of Chinese Medicine, No. 11, North 3rd Ring East Roa, Chaoyang Distric, Beijing 10010, China
| | - Tongyue Yu
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China.
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China.
| |
Collapse
|
58
|
Scarpellini C, Klejborowska G, Lanthier C, Hassannia B, Vanden Berghe T, Augustyns K. Beyond ferrostatin-1: a comprehensive review of ferroptosis inhibitors. Trends Pharmacol Sci 2023; 44:902-916. [PMID: 37770317 DOI: 10.1016/j.tips.2023.08.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/30/2023]
Abstract
Ferroptosis is an iron-catalysed form of regulated cell death, which is critically dependent on phospholipid peroxidation of cellular membranes. Ferrostatin 1 was one of the first synthetic radical-trapping antioxidants (RTAs) reported to block ferroptosis and it is widely used as reference compound. Ferroptosis has been linked to multiple diseases and the use of its inhibitors could have therapeutic potential. Although, novel biochemical pathways provide insights for different pharmacological targets, the use of lipophilic RTAs to block ferroptosis remains superior. In this Review, we provide a comprehensive overview of the different classes of ferroptosis inhibitors, focusing on endogenous and synthetic RTAs. A thorough analysis of their chemical, pharmacokinetic, and pharmacological properties and potential for in vivo use is provided.
Collapse
Affiliation(s)
- Camilla Scarpellini
- Laboratory of Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Greta Klejborowska
- Laboratory of Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Caroline Lanthier
- Laboratory of Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Behrouz Hassannia
- Ferroptosis and Inflammation Research Team, VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium; Pathophysiology Lab, Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Tom Vanden Berghe
- Ferroptosis and Inflammation Research Team, VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium; Pathophysiology Lab, Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium.
| |
Collapse
|
59
|
Sun Q, Yang J, Zhang M, Zhang Y, Ma H, Tran NT, Chen X, Zhang Y, Chan KG, Li S. Exosomes drive ferroptosis by stimulating iron accumulation to inhibit bacterial infection in crustaceans. J Biol Chem 2023; 299:105463. [PMID: 37977221 PMCID: PMC10704439 DOI: 10.1016/j.jbc.2023.105463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Ferroptosis, characterized by iron-dependent cell death, has recently emerged as a critical defense mechanism against microbial infections. The present study aims to investigate the involvement of exosomes in the induction of ferroptosis and the inhibition of bacterial infection in crustaceans. Our findings provide compelling evidence for the pivotal role of exosomes in the immune response of crustaceans, wherein they facilitate intracellular iron accumulation and activate the ferroptotic pathways. Using RNA-seq and bioinformatic analysis, we demonstrate that cytochrome P450 (CYP) can effectively trigger ferroptosis. Moreover, by conducting an analysis of exosome cargo proteins, we have identified the participation of six-transmembrane epithelial antigen of prostate 4 in the regulation of hemocyte ferroptotic sensitivity. Subsequent functional investigations unveil that six-transmembrane epithelial antigen of prostate 4 enhances cellular Fe2+ levels, thereby triggering Fenton reactions and accelerating CYP-mediated lipid peroxidation, ultimately culminating in ferroptotic cell death. Additionally, the Fe2+-dependent CYP catalyzes the conversion of arachidonic acid into 20-hydroxyeicosatetraenoic acid, which activates the peroxisome proliferator-activated receptor. Consequently, the downstream target of peroxisome proliferator-activated receptor, cluster of differentiation 36, promotes intracellular fatty acid accumulation, lipid peroxidation, and ferroptosis. These significant findings shed light on the immune defense mechanisms employed by crustaceans and provide potential strategies for combating bacterial infections in this species.
Collapse
Affiliation(s)
- Qian Sun
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China; Institute of Marine Sciences, Shantou University, Shantou, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Jiawen Yang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China; Institute of Marine Sciences, Shantou University, Shantou, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China; Institute of Marine Sciences, Shantou University, Shantou, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Yongsheng Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China; Institute of Marine Sciences, Shantou University, Shantou, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China; Institute of Marine Sciences, Shantou University, Shantou, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China; Institute of Marine Sciences, Shantou University, Shantou, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Xiuli Chen
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Nanning, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China; Institute of Marine Sciences, Shantou University, Shantou, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Kok-Gan Chan
- Institute of Marine Sciences, Shantou University, Shantou, China; Faculty of Science, Division of Genetics and Molecular Biology, Institute of Biological Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China; Institute of Marine Sciences, Shantou University, Shantou, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China.
| |
Collapse
|
60
|
Yu T, Xu-Monette ZY, Yu L, Li Y, Young KH. Mechanisms of ferroptosis and targeted therapeutic approaches in lymphoma. Cell Death Dis 2023; 14:771. [PMID: 38007476 PMCID: PMC10676406 DOI: 10.1038/s41419-023-06295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
Lymphoma is the sixth most common type of cancer worldwide. Under the current treatment standards, patients with lymphoma often fail to respond to treatment or relapse early and require further therapy. Hence, novel therapeutic strategies need to be explored and our understanding of the molecular underpinnings of lymphomas should be expanded. Ferroptosis, a non-apoptotic regulated cell death, is characterized by increased reactive oxygen species and lipid peroxidation due to metabolic dysfunction. Excessive or lack of ferroptosis has been implicated in tumor development. Current preclinical evidences suggest that ferroptosis participates in tumorigenesis, progression, and drug resistance of lymphoma, identifying a potential biomarker and an attractive molecular target. Our review summarizes the core mechanisms and regulatory networks of ferroptosis and discusses existing evidences of ferroptosis induction for the treatment of lymphoma, with intent to provide a framework for understanding the role of ferroptosis in lymphomagenesis and a new perspective of lymphoma treatment.
Collapse
Affiliation(s)
- Tiantian Yu
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Department of Hematology and Oncology, The Second Affiliated Hospital of NanChang University, Nanchang, China
| | - Zijun Y Xu-Monette
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Li Yu
- Department of Hematology and Oncology, The Second Affiliated Hospital of NanChang University, Nanchang, China
| | - Yong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Ken H Young
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, NC, USA.
- Duke Cancer Institute, Durham, NC, USA.
| |
Collapse
|
61
|
Zhao Q, He W, Liu Z, Huang L, Yang X, Liu Y, Chen R, Min X, Yang Y. LASS2 enhances p53 protein stability and nuclear import to suppress liver cancer progression through interaction with MDM2/MDMX. Cell Death Discov 2023; 9:414. [PMID: 37963859 PMCID: PMC10646090 DOI: 10.1038/s41420-023-01709-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023] Open
Abstract
LASS2 functions as a tumor suppressor in hepatocellular carcinoma (HCC), the most common type of primary liver cancer, but the underlying mechanism of its action remains largely unknown. Moreover, details on its role and the downstream mechanisms in Cholangiocarcinoma (CCA) and hepatoblastoma (HB), are rarely reported. Herein, LASS2 overexpression was found to significantly inhibit proliferation, migration, invasion and induce apoptosis in hepatoma cells with wild-type (HB cell line HepG2) and mutated p53 (HCC cell line HCCLM3 and CCA cell line HuCCT1). Gene set enrichment analysis determined the enrichment of the differentially expressed genes caused by LASS2 in the p53 signaling pathway. Moreover, the low expression of LASS2 in HCC and CCA tumor tissues was correlated with the advanced tumor-node-metastasis (TNM) stage, and the protein expression of LASS2 positively correlated with acetylated p53 (Lys373) protein levels. At least to some extent, LASS2 exerts its tumor-suppressive effects in a p53-dependent manner, in which LASS2 interacts with MDM2/MDMX and causes dual inhibition to disrupt p53 degradation by MDM2/MDMX. In addition, LASS2 induces p53 phosphorylation at ser15 and acetylation at lys373 to promote translocation from cytoplasm to nucleus. These findings provide new insights into the LASS2-induced tumor suppression mechanism in liver cancer and suggest LASS2 could serve as a potential therapeutic target for liver cancer.
Collapse
Affiliation(s)
- Qingqing Zhao
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Wei He
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhouheng Liu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Liangliang Huang
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai, China
| | - Xiaoli Yang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yong Liu
- School of Forensic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Center of Forensic Expertise, Affiliated hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Rui Chen
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xun Min
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China.
| | - Yan Yang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China.
- School of Forensic Medicine, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
62
|
Hu C, Zhang B, Zhao S. METTL3-mediated N6-methyladenosine modification stimulates mitochondrial damage and ferroptosis of kidney tubular epithelial cells following acute kidney injury by modulating the stabilization of MDM2-p53-LMNB1 axis. Eur J Med Chem 2023; 259:115677. [PMID: 37542992 DOI: 10.1016/j.ejmech.2023.115677] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 08/07/2023]
Abstract
N6-methyladenosine (m6A) and MELLT3 assume a role in the development of acute kidney injury (AKI). However, their mechanism in AKI remains under-explored. On this basis, this study explored the mechanism of MELLT3 in mitochondrial damage and ferroptosis of kidney tubular epithelial cells after AKI. HK-2 cells were induced by lipopolysaccharide (LPS) to simulate AKI, followed by gain and loss of function of genes, detection of mitochondrial damage and ferroptosis indicators, and analysis of gene interactions. An AKI mouse model was developed using the cecal ligation and puncture (CLP) method to investigate the effect of METTL3 knockdown on kidney injury. MDM2 and LMNB1 were upregulated and p53 was downregulated in LPS-treated HK-2 cells. Mechanistically, the E3 ubiquitin ligase MDM2 increased p53 ubiquitination to activate LMNB1. METTL3 knockdown decreased m6A methylation of MDM2, thus diminishing YTHDF1-mediated MDM2 mRNA stability and translation in LPS-treated HK-2 cells. Knockdown of LMNB1, MDM2, or METTL3 reduced NO, MDA, iron ion, and ROS levels as well as mitochondrial damage and raised SOD, GSH, XCT, GPX4, FPN1, and TFR1 levels in LPS-treated HK-2 cells. The in vivo results showed that METTL3 knockdown reduced renal injury and ferroptosis in CLP mice. METTL3 knockdown prevents mitochondrial damage and ferroptosis of kidney tubular epithelial cells after AKI via the MDM2-p53-LMNB1 axis.
Collapse
Affiliation(s)
- Chenghuan Hu
- Department of Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China; Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.
| | - Buyao Zhang
- Department of Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Shuangping Zhao
- Department of Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China; Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
63
|
Tschuck J, Theilacker L, Rothenaigner I, Weiß SAI, Akdogan B, Lam VT, Müller C, Graf R, Brandner S, Pütz C, Rieder T, Schmitt-Kopplin P, Vincendeau M, Zischka H, Schorpp K, Hadian K. Farnesoid X receptor activation by bile acids suppresses lipid peroxidation and ferroptosis. Nat Commun 2023; 14:6908. [PMID: 37903763 PMCID: PMC10616197 DOI: 10.1038/s41467-023-42702-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
Ferroptosis is a regulated cell death modality that occurs upon iron-dependent lipid peroxidation. Recent research has identified many regulators that induce or inhibit ferroptosis; yet, many regulatory processes and networks remain to be elucidated. In this study, we performed a chemical genetics screen using small molecules with known mode of action and identified two agonists of the nuclear receptor Farnesoid X Receptor (FXR) that suppress ferroptosis, but not apoptosis or necroptosis. We demonstrate that in liver cells with high FXR levels, knockout or inhibition of FXR sensitized cells to ferroptotic cell death, whereas activation of FXR by bile acids inhibited ferroptosis. Furthermore, FXR inhibited ferroptosis in ex vivo mouse hepatocytes and human hepatocytes differentiated from induced pluripotent stem cells. Activation of FXR significantly reduced lipid peroxidation by upregulating the ferroptosis gatekeepers GPX4, FSP1, PPARα, SCD1, and ACSL3. Together, we report that FXR coordinates the expression of ferroptosis-inhibitory regulators to reduce lipid peroxidation, thereby acting as a guardian of ferroptosis.
Collapse
Affiliation(s)
- Juliane Tschuck
- Research Unit Signaling and Translation, Helmholtz Zentrum München, Neuherberg, Germany
| | - Lea Theilacker
- Research Unit Signaling and Translation, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ina Rothenaigner
- Research Unit Signaling and Translation, Helmholtz Zentrum München, Neuherberg, Germany
| | - Stefanie A I Weiß
- Research Unit Signaling and Translation, Helmholtz Zentrum München, Neuherberg, Germany
| | - Banu Akdogan
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Van Thanh Lam
- Institute of Virology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Constanze Müller
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
| | - Roman Graf
- Research Unit Signaling and Translation, Helmholtz Zentrum München, Neuherberg, Germany
| | - Stefanie Brandner
- Research Unit Signaling and Translation, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian Pütz
- Research Unit Signaling and Translation, Helmholtz Zentrum München, Neuherberg, Germany
| | - Tamara Rieder
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Munich, Germany
| | | | | | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Munich, Germany
| | - Kenji Schorpp
- Research Unit Signaling and Translation, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kamyar Hadian
- Research Unit Signaling and Translation, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
64
|
Shi D, Wang J, Deng Q, Kong X, Dong Y, Yang Y, Xu Y, Ling L, Jiao Y, Yu S. KIF15 knockdown inhibits colorectal cancer proliferation and migration through affecting the ubiquitination modification of NRAS. Am J Cancer Res 2023; 13:4944-4960. [PMID: 37970344 PMCID: PMC10636684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 09/15/2023] [Indexed: 11/17/2023] Open
Abstract
As one of the most common malignancies, colorectal cancer (CRC) requires a thorough understanding of the mechanisms that promote its development and the discovery of new therapeutic targets. In this study, immunohistochemical staining confirmed significantly higher expression levels of KIF15 in CRC. qPCR and western blot results demonstrated the effective suppression of KIF15 mRNA and protein expression by shKIF15. Downregulation of KIF15 inhibited the proliferation and migration of CRC cells while promoting apoptosis. In addition, evidence from the xenograft experiments in nude mice demonstrated that KIF15 knockdown also suppressed tumor growth. Through bioinformatics analysis, the downstream molecular NRAS and Rac signaling pathway associated with KIF15 were identified. KIF15 knockdown was found to inhibit NRAS expression and disrupt Rac signaling pathway. Moreover, WB and Co-IP assays revealed that KIF15 reduced the ubiquitination modification of NRAS protein by interacting with the E3 ligase MDM2, thereby enhancing NRAS protein stability. Functionally, NRAS knockdown was shown to inhibit cell proliferation and migration. In conclusion, KIF15 promoted CRC progression by regulating NRAS expression and Rac signaling pathway.
Collapse
Affiliation(s)
- Debing Shi
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center270 Dong’an Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University270 Dong’an Road, Shanghai 200032, China
| | - Jianwei Wang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine88th, Jiefang Road, Hangzhou 310000, Zhejiang, China
| | - Qun Deng
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine88th, Jiefang Road, Hangzhou 310000, Zhejiang, China
| | - Xiangxing Kong
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine88th, Jiefang Road, Hangzhou 310000, Zhejiang, China
| | - Ying Dong
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine88th, Jiefang Road, Hangzhou 310000, Zhejiang, China
| | - Yongzhi Yang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center270 Dong’an Road, Shanghai 200032, China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center270 Dong’an Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University270 Dong’an Road, Shanghai 200032, China
| | - Limian Ling
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine88th, Jiefang Road, Hangzhou 310000, Zhejiang, China
| | - Yurong Jiao
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine88th, Jiefang Road, Hangzhou 310000, Zhejiang, China
| | - Shaojun Yu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine88th, Jiefang Road, Hangzhou 310000, Zhejiang, China
| |
Collapse
|
65
|
Liu M, Wang W, Zhang H, Bi J, Zhang B, Shi T, Su G, Zheng Y, Fan S, Huang X, Chen B, Song Y, Zhao Z, Shi J, Li P, Lu W, Zhang L. Three-Dimensional Gene Regulation Network in Glioblastoma Ferroptosis. Int J Mol Sci 2023; 24:14945. [PMID: 37834393 PMCID: PMC10574000 DOI: 10.3390/ijms241914945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Ferroptosis is an iron-dependent form of cell death, which is reported to be associated with glioma progression and drug sensitivity. Targeting ferroptosis is a potential therapeutic approach for glioma. However, the molecular mechanism of glioma cell ferroptosis is not clear. In this study, we profile the change of 3D chromatin structure in glioblastoma ferroptosis by using HiChIP and study the 3D gene regulation network in glioblastoma ferroptosis. A combination of an analysis of HiChIP and RNA-seq data suggests that change of chromatin loops mediated by 3D chromatin structure regulates gene expressions in glioblastoma ferroptosis. Genes that are regulated by 3D chromatin structures include genes that were reported to function in ferroptosis, like HDM2 and TXNRD1. We propose a new regulatory mechanism governing glioblastoma cell ferroptosis by 3D chromatin structure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Wange Lu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.L.); (W.W.); (H.Z.); (J.B.); (B.Z.); (T.S.); (G.S.); (Y.Z.); (S.F.); (X.H.); (B.C.); (Y.S.); (Z.Z.); (J.S.); (P.L.)
| | - Lei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.L.); (W.W.); (H.Z.); (J.B.); (B.Z.); (T.S.); (G.S.); (Y.Z.); (S.F.); (X.H.); (B.C.); (Y.S.); (Z.Z.); (J.S.); (P.L.)
| |
Collapse
|
66
|
Ferrada L, Barahona MJ, Vera M, Stockwell BR, Nualart F. Dehydroascorbic acid sensitizes cancer cells to system x c- inhibition-induced ferroptosis by promoting lipid droplet peroxidation. Cell Death Dis 2023; 14:637. [PMID: 37752118 PMCID: PMC10522586 DOI: 10.1038/s41419-023-06153-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023]
Abstract
Since the discovery of ferroptosis, it has been postulated that this type of cell death could be utilized in treatments for cancer. Unfortunately, several highly aggressive tumor models are resistant to the pharmacological induction of ferroptosis. However, with the use of combined therapies, it is possible to recover sensitivity to ferroptosis in certain cellular models. Here, we discovered that co-treatment with the metabolically stable ferroptosis inducer imidazole ketone erastin (IKE) and the oxidized form of vitamin C, dehydroascorbic acid (DHAA), is a powerful therapy that induces ferroptosis in tumor cells previously resistant to IKE-induced ferroptosis. We determined that DHAA and IKE + DHAA delocalize and deplete GPX4 in tumor cells, specifically inducing lipid droplet peroxidation, which leads to ferroptosis. Moreover, in vivo, IKE + DHAA has high efficacy with regard to the eradication of highly aggressive tumors such as glioblastomas. Thus, the use of IKE + DHAA could be an effective and safe therapy for the eradication of difficult-to-treat cancers.
Collapse
Affiliation(s)
- Luciano Ferrada
- Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.
| | - María José Barahona
- Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Matías Vera
- Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Francisco Nualart
- Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| |
Collapse
|
67
|
Yan R, Lin B, Jin W, Tang L, Hu S, Cai R. NRF2, a Superstar of Ferroptosis. Antioxidants (Basel) 2023; 12:1739. [PMID: 37760042 PMCID: PMC10525540 DOI: 10.3390/antiox12091739] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Ferroptosis is an iron-dependent and lipid peroxidation-driven cell death cascade, occurring when there is an imbalance of redox homeostasis in the cell. Nuclear factor erythroid 2-related factor 2 (NFE2L2, also known as NRF2) is key for cellular antioxidant responses, which promotes downstream genes transcription by binding to their antioxidant response elements (AREs). Numerous studies suggest that NRF2 assumes an extremely important role in the regulation of ferroptosis, for its various functions in iron, lipid, and amino acid metabolism, and so on. Many pathological states are relevant to ferroptosis. Abnormal suppression of ferroptosis is found in many cases of cancer, promoting their progression and metastasis. While during tissue damages, ferroptosis is recurrently promoted, resulting in a large number of cell deaths and even dysfunctions of the corresponding organs. Therefore, targeting NRF2-related signaling pathways, to induce or inhibit ferroptosis, has become a great potential therapy for combating cancers, as well as preventing neurodegenerative and ischemic diseases. In this review, a brief overview of the research process of ferroptosis over the past decade will be presented. In particular, the mechanisms of ferroptosis and a focus on the regulation of ferroptosis by NRF2 will be discussed. Finally, the review will briefly list some clinical applications of targeting the NRF2 signaling pathway in the treatment of diseases.
Collapse
Affiliation(s)
| | | | | | | | - Shuming Hu
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (R.Y.); (B.L.); (W.J.); (L.T.)
| | - Rong Cai
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (R.Y.); (B.L.); (W.J.); (L.T.)
| |
Collapse
|
68
|
Hadian K, Stockwell BR. The therapeutic potential of targeting regulated non-apoptotic cell death. Nat Rev Drug Discov 2023; 22:723-742. [PMID: 37550363 DOI: 10.1038/s41573-023-00749-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 08/09/2023]
Abstract
Cell death is critical for the development and homeostasis of almost all multicellular organisms. Moreover, its dysregulation leads to diverse disease states. Historically, apoptosis was thought to be the major regulated cell death pathway, whereas necrosis was considered to be an unregulated form of cell death. However, research in recent decades has uncovered several forms of regulated necrosis that are implicated in degenerative diseases, inflammatory conditions and cancer. The growing insight into these regulated, non-apoptotic cell death pathways has opened new avenues for therapeutic targeting. Here, we describe the regulatory pathways of necroptosis, pyroptosis, parthanatos, ferroptosis, cuproptosis, lysozincrosis and disulfidptosis. We discuss small-molecule inhibitors of the pathways and prospects for future drug discovery. Together, the complex mechanisms governing these pathways offer strategies to develop therapeutics that control non-apoptotic cell death.
Collapse
Affiliation(s)
- Kamyar Hadian
- Research Unit Signaling and Translation, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
69
|
Ren Y, Mao X, Xu H, Dang Q, Weng S, Zhang Y, Chen S, Liu S, Ba Y, Zhou Z, Han X, Liu Z, Zhang G. Ferroptosis and EMT: key targets for combating cancer progression and therapy resistance. Cell Mol Life Sci 2023; 80:263. [PMID: 37598126 PMCID: PMC10439860 DOI: 10.1007/s00018-023-04907-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/21/2023]
Abstract
Iron-dependent lipid peroxidation causes ferroptosis, a form of regulated cell death. Crucial steps in the formation of ferroptosis include the accumulation of ferrous ions (Fe2+) and lipid peroxidation, of which are controlled by glutathione peroxidase 4 (GPX4). Its crucial role in stopping the spread of cancer has been shown by numerous studies undertaken in the last ten years. Epithelial-mesenchymal transition (EMT) is the process by which epithelial cells acquire mesenchymal characteristics. EMT is connected to carcinogenesis, invasiveness, metastasis, and therapeutic resistance in cancer. It is controlled by a range of internal and external signals and changes the phenotype from epithelial to mesenchymal like. Studies have shown that mesenchymal cancer cells tend to be more ferroptotic than their epithelial counterparts. Drug-resistant cancer cells are more easily killed by inducers of ferroptosis when they undergo EMT. Therefore, understanding the interaction between ferroptosis and EMT will help identify novel cancer treatment targets. In-depth discussion is given to the regulation of ferroptosis, the potential application of EMT in the treatment of cancer, and the relationships between ferroptosis, EMT, and signaling pathways associated with tumors. Invasion, metastasis, and inflammation in cancer all include ferroptosis and EMT. The goal of this review is to provide suggestions for future research and practical guidance for applying ferroptosis and EMT in clinical practice.
Collapse
Affiliation(s)
- Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiangrong Mao
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shuang Chen
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhaokai Zhou
- Department of Pediatric Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Guojun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
70
|
Park SY, Jeong KJ, Poire A, Zhang D, Tsang YH, Blucher AS, Mills GB. Irreversible HER2 inhibitors overcome resistance to the RSL3 ferroptosis inducer in non-HER2 amplified luminal breast cancer. Cell Death Dis 2023; 14:532. [PMID: 37596261 PMCID: PMC10439209 DOI: 10.1038/s41419-023-06042-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/29/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
Ferroptosis, a form of programed cell death, can be promoted by inhibitors of the xCT transporter (erastin) or GPX4 (RSL3). We found that GPX4, but not the xCT transporter, is selectively elevated in luminal breast cancer. Consistent with this observation, the majority of luminal breast cancer cell lines are exquisitely sensitive to RSL3 with limited sensitivity to erastin. In RSL3-resistant, but not sensitive, luminal breast cancer cell lines, RSL3 induces HER2 pathway activation. Irreversible HER2 inhibitors including neratinib reversed RSL3 resistance in constitutively RSL3-resistant cell lines. Combination treatment with RSL3 and neratinib increases ferroptosis through mitochondrial iron-dependent reactive oxygen species production and lipid peroxidation. RSL3 also activated replication stress and concomitant S phase and G2/M blockade leading to sensitivity to targeting the DNA damage checkpoint. Together, our data support the exploration of RSL3 combined with irreversible HER2 inhibitors in clinical trials.
Collapse
Affiliation(s)
- Soon Young Park
- Division of Oncologic Sciences, Knight Cancer Institute, Oregon Health Sciences University, Portland, OR, USA.
| | - Kang Jin Jeong
- Division of Oncologic Sciences, Knight Cancer Institute, Oregon Health Sciences University, Portland, OR, USA
| | - Alfonso Poire
- Division of Oncologic Sciences, Knight Cancer Institute, Oregon Health Sciences University, Portland, OR, USA
| | - Dong Zhang
- Division of Oncologic Sciences, Knight Cancer Institute, Oregon Health Sciences University, Portland, OR, USA
| | - Yiu Huen Tsang
- Division of Oncologic Sciences, Knight Cancer Institute, Oregon Health Sciences University, Portland, OR, USA
| | - Aurora S Blucher
- Division of Oncologic Sciences, Knight Cancer Institute, Oregon Health Sciences University, Portland, OR, USA
| | - Gordon B Mills
- Division of Oncologic Sciences, Knight Cancer Institute, Oregon Health Sciences University, Portland, OR, USA
| |
Collapse
|
71
|
Rodencal J, Kim N, Li VL, He A, Lange M, He J, Tarangelo A, Schafer ZT, Olzmann JA, Sage J, Long JZ, Dixon SJ. A Cell Cycle-Dependent Ferroptosis Sensitivity Switch Governed by EMP2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549715. [PMID: 37502927 PMCID: PMC10370086 DOI: 10.1101/2023.07.19.549715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Ferroptosis is a non-apoptotic form of cell death characterized by iron-dependent lipid peroxidation. Ferroptosis can be induced by system xc- cystine/glutamate antiporter inhibition or by direct inhibition of the phospholipid hydroperoxidase glutathione peroxidase 4 (GPX4). The regulation of ferroptosis in response to system xc- inhibition versus direct GPX4 inhibition may be distinct. Here, we show that cell cycle arrest enhances sensitivity to ferroptosis triggered by GPX4 inhibition but not system xc- inhibition. Arrested cells have increased levels of oxidizable polyunsaturated fatty acid-containing phospholipids, which drives sensitivity to GPX4 inhibition. Epithelial membrane protein 2 (EMP2) expression is reduced upon cell cycle arrest and is sufficient to enhance ferroptosis in response to direct GPX4 inhibition. An orally bioavailable GPX4 inhibitor increased markers of ferroptotic lipid peroxidation in vivo in combination with a cell cycle arresting agent. Thus, responses to different ferroptosis-inducing stimuli can be regulated by cell cycle state.
Collapse
Affiliation(s)
- Jason Rodencal
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Nathan Kim
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Veronica L. Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew He
- Departments of Pediatrics and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mike Lange
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jianping He
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Amy Tarangelo
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Zachary T. Schafer
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - James A. Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Julien Sage
- Departments of Pediatrics and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jonathan Z. Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Scott J. Dixon
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Lead contact
| |
Collapse
|
72
|
He J, Abikoye AM, McLaughlin BP, Middleton RS, Sheldon R, Jones RG, Schafer ZT. Reprogramming of iron metabolism confers ferroptosis resistance in ECM-detached cells. iScience 2023; 26:106827. [PMID: 37250802 PMCID: PMC10209538 DOI: 10.1016/j.isci.2023.106827] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Cancer cells often acquire resistance to cell death programs induced by loss of integrin-mediated attachment to extracellular matrix (ECM). Given that adaptation to ECM-detached conditions can facilitate tumor progression and metastasis, there is significant interest in effective elimination of ECM-detached cancer cells. Here, we find that ECM-detached cells are remarkably resistant to the induction of ferroptosis. Although alterations in membrane lipid content are observed during ECM detachment, it is instead fundamental changes in iron metabolism that underlie resistance of ECM-detached cells to ferroptosis. More specifically, our data demonstrate that levels of free iron are low during ECM detachment because of changes in both iron uptake and iron storage. In addition, we establish that lowering the levels of ferritin sensitizes ECM-detached cells to death by ferroptosis. Taken together, our data suggest that therapeutics designed to kill cancer cells by ferroptosis may be hindered by lack of efficacy toward ECM-detached cells.
Collapse
Affiliation(s)
- Jianping He
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Boler-Parseghian Center for Rare & Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Abigail M. Abikoye
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Boler-Parseghian Center for Rare & Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Brett P. McLaughlin
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Boler-Parseghian Center for Rare & Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ryan S. Middleton
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Boler-Parseghian Center for Rare & Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ryan Sheldon
- Metabolomics and Bioenergetics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Russell G. Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Zachary T. Schafer
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Boler-Parseghian Center for Rare & Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
73
|
Beretta GL, Zaffaroni N. Radiotherapy-induced ferroptosis for cancer treatment. Front Mol Biosci 2023; 10:1216733. [PMID: 37388241 PMCID: PMC10304297 DOI: 10.3389/fmolb.2023.1216733] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
Ferroptosis is a regulated cell death mechanism controlled by iron, amino acid and reactive oxygen species metabolisms, which is very relevant for cancer therapy. Radiotherapy-induced ferroptosis is critical for tumor suppression and several preclinical studies have demonstrated that the combination of ionizing radiation with small molecules or nano-systems is effective in combating cancer growth and overcoming drug or ionizing radiation resistance. Here, we briefly overview the mechanisms of ferroptosis and the cross-talk existing between the cellular pathways activated by ferroptosis and those induced by radiotherapy. Lastly, we discuss the recently reported combinational studies involving radiotherapy, small molecules as well as nano-systems and report the recent findings achieved in this field for the treatment of tumors.
Collapse
|
74
|
Zou Q, Liu M, Liu K, Zhang Y, North BJ, Wang B. E3 ubiquitin ligases in cancer stem cells: key regulators of cancer hallmarks and novel therapeutic opportunities. Cell Oncol (Dordr) 2023; 46:545-570. [PMID: 36745329 PMCID: PMC10910623 DOI: 10.1007/s13402-023-00777-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Human malignancies are composed of heterogeneous subpopulations of cancer cells with phenotypic and functional diversity. Among them, a unique subset of cancer stem cells (CSCs) has both the capacity for self-renewal and the potential to differentiate and contribute to multiple tumor properties. As such, CSCs are promising cellular targets for effective cancer therapy. At the molecular level, hyper-activation of multiple stemness regulatory signaling pathways and downstream transcription factors play critical roles in controlling CSCs establishment and maintenance. To regulate CSC properties, these stemness pathways are controlled by post-translational modifications including, but not limited to phosphorylation, acetylation, methylation, and ubiquitination. CONCLUSION In this review, we focus on E3 ubiquitin ligases and their roles and mechanisms in regulating essential hallmarks of CSCs, such as self-renewal, invasion and metastasis, metabolic reprogramming, immune evasion, and therapeutic resistance. Moreover, we discuss emerging therapeutic approaches to eliminate CSCs through targeting E3 ubiquitin ligases by chemical inhibitors and proteolysis-targeting chimera (PROTACs) which are currently under development at the discovery, preclinical, and clinical stages. Several outstanding issues such as roles for E3 ubiquitin ligases in heterogeneity and phenotypical/functional evolution of CSCs remain to be studied under pathologically and clinically relevant conditions. With the rapid application of functional genomic and proteomic approaches at single cell, spatiotemporal, and even single molecule levels, we anticipate that more specific and precise functions of E3 ubiquitin ligases will be delineated in dictating CSC properties. Rational design and proper translation of these mechanistic understandings may lead to novel therapeutic modalities for cancer procession medicine.
Collapse
Affiliation(s)
- Qiang Zou
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing University Medical School, Chongqing, 400030, People's Republic of China
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Meng Liu
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing University Medical School, Chongqing, 400030, People's Republic of China
| | - Kewei Liu
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Yi Zhang
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing University Medical School, Chongqing, 400030, People's Republic of China.
| | - Brian J North
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, 68178, USA.
| | - Bin Wang
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China.
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China.
- Jinfeng Laboratory, Chongqing, 401329, People's Republic of China.
| |
Collapse
|
75
|
Sarparast M, Pourmand E, Hinman J, Vonarx D, Reason T, Zhang F, Paithankar S, Chen B, Borhan B, Watts JL, Alan J, Lee KSS. Dihydroxy-Metabolites of Dihomo-γ-linolenic Acid Drive Ferroptosis-Mediated Neurodegeneration. ACS CENTRAL SCIENCE 2023; 9:870-882. [PMID: 37252355 PMCID: PMC10214511 DOI: 10.1021/acscentsci.3c00052] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Indexed: 05/31/2023]
Abstract
Even after decades of research, the mechanism of neurodegeneration remains understudied, hindering the discovery of effective treatments for neurodegenerative diseases. Recent reports suggest that ferroptosis could be a novel therapeutic target for neurodegenerative diseases. While polyunsaturated fatty acid (PUFA) plays an important role in neurodegeneration and ferroptosis, how PUFAs may trigger these processes remains largely unknown. PUFA metabolites from cytochrome P450 and epoxide hydrolase metabolic pathways may modulate neurodegeneration. Here, we test the hypothesis that specific PUFAs regulate neurodegeneration through the action of their downstream metabolites by affecting ferroptosis. We find that the PUFA dihomo-γ-linolenic acid (DGLA) specifically induces ferroptosis-mediated neurodegeneration in dopaminergic neurons. Using synthetic chemical probes, targeted metabolomics, and genetic mutants, we show that DGLA triggers neurodegeneration upon conversion to dihydroxyeicosadienoic acid through the action of CYP-EH (CYP, cytochrome P450; EH, epoxide hydrolase), representing a new class of lipid metabolites that induce neurodegeneration via ferroptosis.
Collapse
Affiliation(s)
- Morteza Sarparast
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Elham Pourmand
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jennifer Hinman
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Derek Vonarx
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tommy Reason
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Fan Zhang
- Department
of Pharmacology and Toxicology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Shreya Paithankar
- Department
of Pediatrics and Human Development, Michigan
State University, Grand Rapids, Michigan 49503, United States
| | - Bin Chen
- Department
of Pharmacology and Toxicology, Michigan
State University, East Lansing, Michigan 48824, United States
- Department
of Pediatrics and Human Development, Michigan
State University, Grand Rapids, Michigan 49503, United States
| | - Babak Borhan
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jennifer L. Watts
- School
of Molecular Biosciences, Washington State
University, Pullman, Washington 99164, United States
| | - Jamie Alan
- Department
of Pharmacology and Toxicology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Kin Sing Stephen Lee
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Pharmacology and Toxicology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
76
|
Zhao D, Yang K, Guo H, Zeng J, Wang S, Xu H, Ge A, Zeng L, Chen S, Ge J. Mechanisms of ferroptosis in Alzheimer's disease and therapeutic effects of natural plant products: A review. Biomed Pharmacother 2023; 164:114312. [PMID: 37210894 DOI: 10.1016/j.biopha.2023.114312] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 05/23/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), are characterized by massive loss of specific neurons. It is a progressive disabling, severe and fatal complex disease. Due to its complex pathogenesis and limitations of clinical treatment strategies, it poses a serious medical challenge and medical burden worldwide. The pathogenesis of AD is not clear, and its potential biological mechanisms include aggregation of soluble amyloid to form insoluble amyloid plaques, abnormal phosphorylation of tau protein and formation of intracellular neurofibrillary tangles (NFT), neuroinflammation, ferroptosis, oxidative stress and metal ion disorders. Among them, ferroptosis is a newly discovered programmed cell death induced by iron-dependent lipid peroxidation and reactive oxygen species. Recent studies have shown that ferroptosis is closely related to AD, but the mechanism remains unclear. It may be induced by iron metabolism, amino acid metabolism and lipid metabolism affecting the accumulation of iron ions. Some iron chelating agents (deferoxamine, deferiprone), chloroiodohydroxyquine and its derivatives, antioxidants (vitamin E, lipoic acid, selenium), chloroiodohydroxyquine and its derivatives Fer-1, tet, etc. have been shown in animal studies to be effective in AD and exert neuroprotective effects. This review summarizes the mechanism of ferroptosis in AD and the regulation of natural plant products on ferroptosis in AD, in order to provide reference information for future research on the development of ferroptosis inhibitors.
Collapse
Affiliation(s)
- Da Zhao
- Hunan University of Chinese Medicine, Changsha, China
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, China
| | - Hua Guo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Shanshan Wang
- Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Hunan University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Liuting Zeng
- Hunan University of Chinese Medicine, Changsha, China
| | - Shaowu Chen
- Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, China.
| |
Collapse
|
77
|
Dong J, Du C, Xu C, Wang Q, Wang Z, Zhu Q, Lv X, Zhang L, Li J, Huang C, Wang H, Ma T. Verbenalin attenuates hepatic damage and mitochondrial dysfunction in alcohol-associated steatohepatitis by regulating MDMX/PPARα-mediated ferroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116227. [PMID: 36739928 DOI: 10.1016/j.jep.2023.116227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/15/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Verbenalin is a major compound in Verbena officinalis L. Verbena officinalis L was first recorded in the 'Supplementary Records of Famous Physicians.' Verbenalin (VE) is its active constituent and has been found to have many biological effects, including anti-obesity, anti-inflammatory, and antioxidant activities, removing jaundice, and treating malaria. It could treat lump accumulation, dysmenorrhea, throat obstruction, edema, jaundice, and malaria. Palmitic acid (PA), oleic acid (OA), ethanol, and acetaminophen liver injuries have been proven to benefit from verbenalin. AIM OF THE STUDY To study the effects of verbenalin on the prevention of alcoholic steatohepatitis (ASH) through the regulation of oxidative stress and mitochondrial dysfunction by regulating MDMX (Murine double minute X)/PPARα (Peroxisome proliferator-activated receptor alpha)-mediated ferroptosis. MATERIAL AND METHODS C57BL/6 mice treated with alcohol followed by the Gao-Binge protocol were administered verbenalin by gavage simultaneously. The mitochondrial mass and morphology were visualized using TEM. AML-12 cells were stimulated with ethanol to mimic ASH in vitro. Western blotting, co-immunoprecipitation, and kit determination were simultaneously performed. The target protein of verbenalin was identified by molecular docking, and cellular thermal shift assay (CETSA) further confirmed its interactions. RESULTS Verbenalin alleviates oxidative stress and ferroptosis in alcohol-associated steatohepatitis. To elucidate the molecular mechanism by which verbenalin inhibits abnormal mitochondrial dysfunction, molecular docking was performed, and MDMX was identified as the target protein of verbenalin. CETSA assays revealed a specific interaction between MDMX and verbenalin. Co-immunoprecipitation demonstrated that PPARα played a critical role in promoting the ability of MDMX to affect ferroptosis. Verbenalin regulates MDMX/PPARα-mediated ferroptosis in AML-12 cells. CONCLUSION Verbenalin regulates ferroptosis and highlights the therapeutic potential of verbenalin and ferroptosis inhibition in reducing alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Jiahui Dong
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Changlin Du
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Chuanting Xu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Qi Wang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Zhonghao Wang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Qian Zhu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xiongwen Lv
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, China
| | - Lei Zhang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Cheng Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230036, China.
| | - Taotao Ma
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, China.
| |
Collapse
|
78
|
Wang X, Zhou Y, Min J, Wang F. Zooming in and out of ferroptosis in human disease. Front Med 2023; 17:173-206. [PMID: 37121959 DOI: 10.1007/s11684-023-0992-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/12/2023] [Indexed: 05/02/2023]
Abstract
Ferroptosis is defined as an iron-dependent regulated form of cell death driven by lipid peroxidation. In the past decade, it has been implicated in the pathogenesis of various diseases that together involve almost every organ of the body, including various cancers, neurodegenerative diseases, cardiovascular diseases, lung diseases, liver diseases, kidney diseases, endocrine metabolic diseases, iron-overload-related diseases, orthopedic diseases and autoimmune diseases. Understanding the underlying molecular mechanisms of ferroptosis and its regulatory pathways could provide additional strategies for the management of these disease conditions. Indeed, there are an expanding number of studies suggesting that ferroptosis serves as a bona-fide target for the prevention and treatment of these diseases in relevant pre-clinical models. In this review, we summarize the progress in the research into ferroptosis and its regulatory mechanisms in human disease, while providing evidence in support of ferroptosis as a target for the treatment of these diseases. We also discuss our perspectives on the future directions in the targeting of ferroptosis in human disease.
Collapse
Affiliation(s)
- Xue Wang
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ye Zhou
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, 315000, China
| | - Junxia Min
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Fudi Wang
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
79
|
Akiyama H, Carter BZ, Andreeff M, Ishizawa J. Molecular Mechanisms of Ferroptosis and Updates of Ferroptosis Studies in Cancers and Leukemia. Cells 2023; 12:1128. [PMID: 37190037 PMCID: PMC10136912 DOI: 10.3390/cells12081128] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Ferroptosis is a mode of cell death regulated by iron-dependent lipid peroxidation. Growing evidence suggests ferroptosis induction as a novel anti-cancer modality that could potentially overcome therapy resistance in cancers. The molecular mechanisms involved in the regulation of ferroptosis are complex and highly dependent on context. Therefore, a comprehensive understanding of its execution and protection machinery in each tumor type is necessary for the implementation of this unique cell death mode to target individual cancers. Since most of the current evidence for ferroptosis regulation mechanisms is based on solid cancer studies, the knowledge of ferroptosis with regard to leukemia is largely lacking. In this review, we summarize the current understanding of ferroptosis-regulating mechanisms with respect to the metabolism of phospholipids and iron as well as major anti-oxidative pathways that protect cells from ferroptosis. We also highlight the diverse impact of p53, a master regulator of cell death and cellular metabolic processes, on the regulation of ferroptosis. Lastly, we discuss recent ferroptosis studies in leukemia and provide a future perspective for the development of promising anti-leukemia therapies implementing ferroptosis induction.
Collapse
Affiliation(s)
| | | | | | - Jo Ishizawa
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (H.A.); (B.Z.C.); (M.A.)
| |
Collapse
|
80
|
Targeting Mitochondrial Metabolic Reprogramming as a Potential Approach for Cancer Therapy. Int J Mol Sci 2023; 24:ijms24054954. [PMID: 36902385 PMCID: PMC10003438 DOI: 10.3390/ijms24054954] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Abnormal energy metabolism is a characteristic of tumor cells, and mitochondria are important components of tumor metabolic reprogramming. Mitochondria have gradually received the attention of scientists due to their important functions, such as providing chemical energy, producing substrates for tumor anabolism, controlling REDOX and calcium homeostasis, participating in the regulation of transcription, and controlling cell death. Based on the concept of reprogramming mitochondrial metabolism, a range of drugs have been developed to target the mitochondria. In this review, we discuss the current progress in mitochondrial metabolic reprogramming and summarized the corresponding treatment options. Finally, we propose mitochondrial inner membrane transporters as new and feasible therapeutic targets.
Collapse
|
81
|
Zhao X, Zhou T, Wang Y, Bao M, Ni C, Ding L, Sun S, Dong H, Li J, Liang C. Trigred motif 36 regulates neuroendocrine differentiation of prostate cancer via HK2 ubiquitination and GPx4 deficiency. Cancer Sci 2023. [PMID: 36799474 DOI: 10.1111/cas.15763] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Neuroendocrine prostate cancer (NEPC), the most lethal subtype of castration-resistant prostate cancer (PCa), may evolve from the neuroendocrine differentiation (NED) of PCa cells. However, the molecular mechanism that triggers NED is unknown. Trigred motif 36 (TRIM36), a member of the TRIM protein family, exhibits oncogenic or anti-oncogenic roles in various cancers. We have previously reported that TRIM36 is highly expressed to inhibit the invasion and proliferation of PCa. In the present study, we first found that TRIM36 was lowly expressed in NEPC and its overexpression suppressed the NED of PCa. Next, based on proteomic analysis, we found that TRIM36 inhibited the glycolysis pathway through suppressing hexokinase 2 (HK2), a crucial glycolytic enzyme catalyzing the conversion of glucose to glucose-6-phosphate. TRIM36 specifically bound to HK2 through lysine 48 (lys48)-mediated ubiquitination of HK2. Moreover, TRIM36-mediated ubiquitination degradation of HK2 downregulated the level of glutathione peroxidase 4 (GPx4), a process that contributed to ferroptosis. In conclusion, TRIM36 can inhibit glycolysis via lys48-mediated HK2 ubiquitination to reduce GPX4 expression and activate ferroptosis, thereby inhibiting the NED in PCa. Targeting TRIM36 might be a promising approach to retard NED and treat NEPC.
Collapse
Affiliation(s)
- Xusong Zhao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, Nanjing, China
| | - Tianren Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, Nanjing, China
| | - Yuhao Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, Nanjing, China
| | - Meiling Bao
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, Nanjing, China
| | - Chenbo Ni
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, Nanjing, China
| | - Lei Ding
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, Nanjing, China
| | - Shengjie Sun
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huiyu Dong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, Nanjing, China
| | - Jie Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, Nanjing, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
82
|
Low-Calle AM, Ghoneima H, Ortega N, Cuibus AM, Katz C, Tong D, Prives C, Prywes R. A non-canonical Hippo pathway represses the expression of ΔNp63. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528336. [PMID: 36824867 PMCID: PMC9949004 DOI: 10.1101/2023.02.13.528336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The p63 transcription factor, a member of the p53 family, plays an oncogenic role in squamous cancers, while in breast cancers its expression is often repressed. In the canonical conserved Hippo pathway, known to play a complex role in regulating growth of cancer cells, the protein kinases MST1/2 and LATS1/2 act sequentially to phosphorylate and inhibit the YAP/TAZ transcription factors. We found that in the MCF10A mammary epithelial cell line as well as in squamous and breast cancer cell lines, expression of ΔNp63 RNA and protein is strongly repressed by inhibition of the Hippo pathway protein kinases in a manner that is independent of p53. While MST1/2 and LATS1 are required for p63 expression, the next step of the pathway, namely phosphorylation and degradation of the YAP/TAZ transcriptional activators is not required for repression of p63. This suggests that regulation of p63 expression occurs by a non-canonical version of the Hippo pathway. We additionally identified additional genes that were similarly regulated suggesting the broader importance of this pathway. Interestingly, we observed that experimentally lowering p63 expression leads to increased YAP protein levels, thereby constituting a feedback loop. These results, which reveal the intersection of the Hippo and p63 pathways, may prove useful for the control of their activities in cancer cells. One Sentence Summary Regulation of p63 expression occurs by a non-canonical version of the Hippo pathway in mammary epithelial, breast carcinoma and head and neck squamous carcinoma cells.
Collapse
|
83
|
Anandhan A, Dodson M, Shakya A, Chen J, Liu P, Wei Y, Tan H, Wang Q, Jiang Z, Yang K, Garcia JGN, Chambers SK, Chapman E, Ooi A, Yang-Hartwich Y, Stockwell BR, Zhang DD. NRF2 controls iron homeostasis and ferroptosis through HERC2 and VAMP8. SCIENCE ADVANCES 2023; 9:eade9585. [PMID: 36724221 PMCID: PMC9891695 DOI: 10.1126/sciadv.ade9585] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/05/2023] [Indexed: 05/26/2023]
Abstract
Enhancing the intracellular labile iron pool (LIP) represents a powerful, yet untapped strategy for driving ferroptotic death of cancer cells. Here, we show that NRF2 maintains iron homeostasis by controlling HERC2 (E3 ubiquitin ligase for NCOA4 and FBXL5) and VAMP8 (mediates autophagosome-lysosome fusion). NFE2L2/NRF2 knockout cells have low HERC2 expression, leading to a simultaneous increase in ferritin and NCOA4 and recruitment of apoferritin into the autophagosome. NFE2L2/NRF2 knockout cells also have low VAMP8 expression, which leads to ferritinophagy blockage. Therefore, deletion of NFE2L2/NRF2 results in apoferritin accumulation in the autophagosome, an elevated LIP, and enhanced sensitivity to ferroptosis. Concordantly, NRF2 levels correlate with HERC2 and VAMP8 in human ovarian cancer tissues, as well as ferroptosis resistance in a panel of ovarian cancer cell lines. Last, the feasibility of inhibiting NRF2 to increase the LIP and kill cancer cells via ferroptosis was demonstrated in preclinical models, signifying the impact of NRF2 inhibition in cancer treatment.
Collapse
Affiliation(s)
- Annadurai Anandhan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Matthew Dodson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Aryatara Shakya
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Jinjing Chen
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Pengfei Liu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Yongyi Wei
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Hui Tan
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Qian Wang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Ziyan Jiang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kevin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - Joe GN Garcia
- Department of Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Setsuko K. Chambers
- Obstetrics and Gynecology, University of Arizona, Tucson, AZ 85724, USA
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Aikseng Ooi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Yang Yang-Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
- Yale Cancer Center, New Haven, CT 06510, USA
| | - Brent R. Stockwell
- Department of Chemistry, Columbia University, New York, NY 10027, USA
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
84
|
Zhou H, Jiang Y, Huang Y, Zhong M, Qin D, Xie C, Pan G, Tan J, Deng M, Zhao H, Zhou Y, Tang Y, Lai Q, Fang Z, Luo Y, Jiang Y, Xu B, Zha J. Therapeutic inhibition of PPARα-HIF1α-PGK1 signaling targets leukemia stem and progenitor cells in acute myeloid leukemia. Cancer Lett 2023; 554:215997. [PMID: 36396101 DOI: 10.1016/j.canlet.2022.215997] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
Treatment of acute myeloid leukemia (AML) with chemotherapeutic agents fails to eliminate leukemia stem cells (LSC),and thus patients remain at high risk for relapse. Therefore, the identification of agents that target LSC is an important consideration for the development of new therapies. Enhanced glycolysis in LSC contributes to the aggressiveness of AML, which is difficult to be targeted. In this study, we showed that targeting peroxisome-proliferator-activated receptor α (PPARα), a ligand-activated transcription factor by chiglitazar provided a promising therapeutic approach. We first identified that chiglitazar reduced cell viability and proliferation of the leukemia stem-like cells population in AML. Treatment with chiglitazar blocked the ubiquitination of PPARα and increased its expression, resulting in the inhibition of glucose metabolism and apoptosis of AML cells. Consistent with its anti-leukemia stem-like cells activity in vitro, chiglitazar treatment in vivo resulted in the significant killing of leukemia stem-like cells as demonstrated in AML patient-derived xenograft (PDX) models. Mechanistically, PPARα overexpression inhibited the expression and promoter activity of PGK1 through blocking HIF1-α interaction on the PGK1 promoter. Thus, we concluded that targeting PPARα may serve as a novel approach for enhancing stem and progenitor cells elimination in AML.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, China
| | - Yuelong Jiang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, China
| | - Yuetin Huang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, China
| | - Mengya Zhong
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, China
| | - Dongmei Qin
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, China
| | - Chendi Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Guangchao Pan
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, China
| | - Jinshui Tan
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, China
| | - Manman Deng
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, China
| | - Haijun Zhao
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, China
| | - Yong Zhou
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, China
| | - Yuanfang Tang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qian Lai
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, China
| | - Zhihong Fang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, China
| | - Yiming Luo
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, China
| | - Yirong Jiang
- Department of Hematology, Affiliated Dongguan People's Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China.
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, China.
| | - Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, China.
| |
Collapse
|
85
|
Wang D, Liang W, Huo D, Wang H, Wang Y, Cong C, Zhang C, Yan S, Gao M, Su X, Tan X, Zhang W, Han L, Zhang D, Feng H. SPY1 inhibits neuronal ferroptosis in amyotrophic lateral sclerosis by reducing lipid peroxidation through regulation of GCH1 and TFR1. Cell Death Differ 2023; 30:369-382. [PMID: 36443440 PMCID: PMC9950139 DOI: 10.1038/s41418-022-01089-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2022] Open
Abstract
Ferroptosis is an iron-dependent cell death with the accumulation of lipid peroxidation and dysfunction of antioxidant systems. As the critical regulator, glutathione peroxidase 4 (GPX4) has been demonstrated to be down-regulated in amyotrophic lateral sclerosis (ALS). However, the mechanism of ferroptosis in ALS remains unclear. In this research, bioinformatics analysis revealed a high correlation between ALS, ferroptosis, and Speedy/RINGO cell cycle regulator family member A (SPY1). Lipid peroxidation of ferroptosis in hSOD1G93A cells and mice was generated by TFR1-imported excess free iron, decreased GSH, mitochondrial membrane dysfunction, upregulated ALOX15, and inactivation of GCH1, GPX4. SPY1 is a "cyclin-like" protein that has been proved to enhance the viability of hSOD1G93A cells by inhibiting DNA damage. In our study, the decreased expression of SPY1 in ALS was resulted from unprecedented ubiquitination degradation mediated by MDM2 (a nuclear-localized E3 ubiquitin ligase). Further, SPY1 was identified as a novel ferroptosis suppressor via alleviating lipid peroxidation produced by dysregulated GCH1/BH4 axis (a resistance axis of ferroptosis) and transferrin receptor protein 1 (TFR1)-induced iron. Additionally, neuron-specific overexpression of SPY1 significantly delayed the occurrence and prolonged the survival in ALS transgenic mice through the above two pathways. These results suggest that SPY1 is a novel target for both ferroptosis and ALS.
Collapse
Affiliation(s)
- Di Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Weiwei Liang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Di Huo
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Hongyong Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Ying Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Chaohua Cong
- Department of Neurology, Shanghai JiaoTong University School of Medicine, Shanghai No. 9 People's Hospital, Shanghai, PR China
| | - Chunting Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei City, Anhui Province, PR China
| | - Shi Yan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Ming Gao
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang Province, PR China
| | - Xiaoli Su
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Xingli Tan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Wenmo Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Ling Han
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Dongmei Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Honglin Feng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China.
| |
Collapse
|
86
|
Han X, Zhang J, Liu J, Wang H, Du F, Zeng X, Guo C. Targeting ferroptosis: a novel insight against myocardial infarction and ischemia-reperfusion injuries. Apoptosis 2023; 28:108-123. [PMID: 36474078 DOI: 10.1007/s10495-022-01785-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2022] [Indexed: 12/12/2022]
Abstract
Ferroptosis, a newly discovered form of regulated cell death dependent on iron and reactive oxygen species, is mainly characterized by mitochondrial shrinkage, increased density of bilayer membranes and the accumulation of lipid peroxidation, causing membrane lipid peroxidation and eventually cell death. Similar with the most forms of regulated cell death, ferroptosis also participated in the pathological metabolism of myocardial infarction and myocardial ischemia/reperfusion injuries, which are still the leading causes of death worldwide. Given the crucial roles ferroptosis played in cardiovascular diseases, such as myocardial infarction and myocardial ischemia/reperfusion injuries, it is considerable to delve into the molecular mechanisms of ferroptosis contributing to the progress of cardiovascular diseases, which might offer the potential role of ferroptosis as a targeted treatment for a wide range of cardiovascular diseases. This review systematically summarizes the process and regulatory metabolisms of ferroptosis, discusses the relationship between ferroptosis and myocardial infarction as well as myocardial ischemia/reperfusion injuries, which might potentially provide novel insights for the pathological metabolism and original ideas for the prevention as well as treatment targeting ferroptosis of cardiovascular diseases such as myocardial infarction and myocardial ischemia/reperfusion injuries.
Collapse
Affiliation(s)
- Xuejie Han
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Jie Zhang
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Jian Liu
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Hongxia Wang
- Department of Physiology and Pathophysiology, Capital Medical University, No. 10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, People's Republic of China
| | - Fenghe Du
- Department of Geriatrics, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4Th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China
| | - Xiangjun Zeng
- Department of Physiology and Pathophysiology, Capital Medical University, No. 10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, People's Republic of China.
| | - Caixia Guo
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing, 100730, People's Republic of China.
| |
Collapse
|
87
|
Chen Z, Sun X, Li X, Liu N. Oleoylethanolamide alleviates hyperlipidaemia-mediated vascular calcification via attenuating mitochondrial DNA stress triggered autophagy-dependent ferroptosis by activating PPARα. Biochem Pharmacol 2023; 208:115379. [PMID: 36525991 DOI: 10.1016/j.bcp.2022.115379] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Vascular calcification, a prevalent pathological alteration in metabolic syndromes, is tightly related with cardiometabolic risk events. Ferroptosis, a newly iron-dependent programmed cell death, induced by palmitic acid (PA), the major saturated free fatty acid in hyperlipidemia, is a vital mechanism of vascular calcification. Recent studies reported that ferroptosis is a distinctive type of cell death dependent on autophagy, with the lipotoxicity of PA on cell viability being closely linked with autophagy. Oleoylethanolamide (OEA), an endogenous bioactive mediator of lipid homeostasis, exerts vascular protection against intimal calcification, atherosclerosis; however, its beneficial effect on vascular smooth muscle cell (VSMC)-associated medial calcification has not been investigated. Our aim was to characterize the effect of OEA on vascular calcification and ferroptosis of VSMCs under hyperlipidaemia/PA exposure. In vivo, vascular calcification model was induced in rats by high-fat diet and vitamin D3 plus nicotine; in vitro, VSMCs ferroptosis was induced by PA or plus β-glycerophosphate mimicking vascular calcification. The calcium deposition in hyperlipidaemia-mediated rat thoracic aortas, the PA-induced ferroptosis and subsequent calcium deposition in VSMCs, were suppressed by OEA treatment. Additionally, CGAS-STING1-induced ferritinophagy, the main molecular mechanism of PA-triggered ferroptosis of VSMCs, was activated by mitochondrial DNA damage; however, early administration of OEA alleviated these phenomena. Intriguingly, overexpression of peroxisome proliferator activated receptor alpha (PPARα) contributed to a decrease in PA-induced ferroptosis, whereas PPARɑ knockdown inhibited the OEA-mediated anti-ferroptotic effects. Collectively, our study demonstrated that OEA serves as a prospective candidate for the prevention and treatment of vascular calcification in metabolic abnormality syndromes.
Collapse
Affiliation(s)
- Zhengdong Chen
- Department of Cardiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, PR China
| | - Xuejiao Sun
- Department of Cardiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, PR China
| | - Xiaoxue Li
- Department of Cardiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, PR China
| | - Naifeng Liu
- Department of Cardiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, PR China.
| |
Collapse
|
88
|
Xu S, Li X, Wang Y. Regulation of the p53‑mediated ferroptosis signaling pathway in cerebral ischemia stroke (Review). Exp Ther Med 2023; 25:113. [PMID: 36793330 PMCID: PMC9922943 DOI: 10.3892/etm.2023.11812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/16/2022] [Indexed: 01/27/2023] Open
Abstract
Stroke is one of the most threatening diseases worldwide, particularly in countries with larger populations; it is associated with high morbidity, mortality and disability rates. As a result, extensive research efforts are being made to address these issues. Stroke can include either hemorrhagic stroke (blood vessel ruptures) or ischemic stroke (blockage of an artery). Whilst the incidence of stroke is higher in the elderly population (≥65), it is also increasing in the younger population. Ischemic stroke accounts for ~85% of all stroke cases. The pathogenesis of cerebral ischemic injury can include inflammation, excitotoxic injury, mitochondrial dysfunction, oxidative stress, ion imbalance and increased vascular permeability. All of the aforementioned processes have been extensively studied, providing insights into the disease. Other clinical consequences observed include brain edema, nerve injury, inflammation, motor deficits and cognitive impairment, which not only cause disabilities obstructing daily life but also increase the mortality rates. Ferroptosis is a type of cell death that is characterized by iron accumulation and increased lipid peroxidation in cells. In particular, ferroptosis has been previously implicated in ischemia-reperfusion injury in the central nervous system. It has also been identified as a mechanism involved in cerebral ischemic injury. The tumor suppressor p53 has been reported to modulate the ferroptotic signaling pathway, which both positively and negatively affects the prognosis of cerebral ischemia injury. The present review summarizes the recent findings on the molecular mechanisms of ferroptosis under the regulation of p53 underlying cerebral ischemia injury. Understanding of the p53/ferroptosis signaling pathway may provide insights into developing methods for improving the diagnosis, treatment and even prevention of stroke.
Collapse
Affiliation(s)
- Shuangli Xu
- Department of Emergency, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Xuewei Li
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Yanqiang Wang
- Department of Neurology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China,Correspondence to: Dr Yanqiang Wang, Department of Neurology, Affiliated Hospital of Weifang Medical University, 2,428 Yuhe Road, Kuiwen, Weifang, Shandong 261031, P.R. China
| |
Collapse
|
89
|
Frangiamone M, Lozano M, Cimbalo A, Font G, Manyes L. AFB1 and OTA Promote Immune Toxicity in Human LymphoBlastic T Cells at Transcriptomic Level. Foods 2023; 12:259. [PMID: 36673351 PMCID: PMC9858301 DOI: 10.3390/foods12020259] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Aflatoxin B1 (AFB1) and ochratoxin A (OTA) are typical contaminants of food and feed, which have serious implications for human and animal health, even at low concentrations. Therefore, a transcriptomic study was carried out to analyze gene expression changes triggered by low doses of AFB1 and OTA (100 nM; 7 days), individually and combined, in human lymphoblastic T cells. RNA-sequencing analysis showed that AFB1-exposure resulted in 99 differential gene expressions (DEGs), while 77 DEGs were obtained in OTA-exposure and 3236 DEGs in the combined one. Overall, 16% of human genome expression was altered. Gene ontology analysis revealed, for all studied conditions, biological processes and molecular functions typically associated with the immune system. PathVisio analysis pointed to ataxia telangiectasia mutated signaling as the most significantly altered pathway in AFB1-exposure, glycolysis in OTA-exposure, and ferroptosis in the mixed condition (Z-score > 1.96; adjusted p-value ≤ 0.05). Thus, the results demonstrated the potential DNA damage caused by AFB1, the possible metabolic reprogramming promoted by OTA, and the plausible cell death with oxidative stress prompted by the mixed exposure. They may be considered viable mechanisms of action to promote immune toxicity in vitro.
Collapse
Affiliation(s)
| | | | - Alessandra Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | | | |
Collapse
|
90
|
Chen J, Meng Y, Huang X, Liao X, Tang X, Xu Y, Li J. Potential effective diagnostic biomarker in patients with primary and metastatic small intestinal neuroendocrine tumors. Front Genet 2023; 14:1110396. [PMID: 37091799 PMCID: PMC10119396 DOI: 10.3389/fgene.2023.1110396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Background: Small intestinal neuroendocrine tumors (SI-NETs) are the most common malignant tumors of the small intestine, with many patients presenting with metastases and their incidence increasing. We aimed to find effective diagnostic biomarkers for patients with primary and metastatic SI-NETs that could be applied for clinical diagnosis. Methods: We downloaded GSE65286 (training set) and GSE98894 (test set) from the GEO database and performed differential gene expression analysis to obtain differentially expressed genes (DEGs) and differentially expressed long non-coding RNAs (DElncRNAs). The functions and pathways involved in these genes were further explored by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. In addition, a global regulatory network involving dysregulated genes in SI-NETs was constructed based on RNAInter and TRRUST v2 databases, and the diagnostic power of hub genes was identified by receiver operating characteristic curve (ROC). Results: A total of 2,969 DEGs and DElncRNAs were obtained in the training set. Enrichment analysis revealed that biological processes (BPs) and KEGG pathways were mainly associated with cancer. Based on gene set enrichment analysis (GSEA), we obtained five BPs (cytokinesis, iron ion homeostasis, mucopolysaccharide metabolic process, platelet degranulation and triglyceride metabolic process) and one KEGG pathway (ppar signaling pathway). In addition, the core set of dysregulated genes obtained included MYL9, ITGV8, FGF2, FZD7, and FLNC. The hub genes were upregulated in patients with primary SI-NETs compared to patients with metastatic SI-NETs, which is consistent with the training set. Significantly, the results of ROC analysis showed that the diagnostic power of the hub genes was strong in both the training and test sets. Conclusion: In summary, we constructed a global regulatory network in SI-NETs. In addition, we obtained the hub genes including MYL9, ITGV8, FGF2, FZD7, and FLNC, which may be useful for the diagnosis of patients with primary and metastatic SI-NETs.
Collapse
|
91
|
Prives C. How Terri Grodzicker transformed Genes & Development. Genes Dev 2023; 37:4-5. [PMID: 37061965 DOI: 10.1101/gad.350474.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
GUEST EDITOR.
Collapse
Affiliation(s)
- Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
92
|
Chi H, Li B, Wang Q, Gao Z, Feng B, Xue H, Li G. Opportunities and challenges related to ferroptosis in glioma and neuroblastoma. Front Oncol 2023; 13:1065994. [PMID: 36937406 PMCID: PMC10021024 DOI: 10.3389/fonc.2023.1065994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
A newly identified form of cell death known as ferroptosis is characterized by the peroxidation of lipids in response to iron. Rapid progress in research on ferroptosis in glioma and neuroblastoma has promoted the exploitation of ferroptosis in related therapy. This manuscript provides a review of the findings on ferroptosis-related therapy in glioblastoma and neuroblastoma and outlines the mechanisms involved in ferroptosis in glioma and neuroblastoma. We summarize some recent data on traditional drugs, natural compounds and nanomedicines used as ferroptosis inducers in glioma and neuroblastoma, as well as some bioinformatic analyses of genes involved in ferroptosis. Moreover, we summarize some data on the associations of ferroptosis with the tumor immunotherapy and TMZ drug resistance. Finally, we discuss future directions for ferroptosis research in glioma and neuroblastoma and currently unresolved issues.
Collapse
Affiliation(s)
- Huizhong Chi
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Boyan Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Qingtong Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Zijie Gao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Bowen Feng
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
- *Correspondence: Hao Xue, ; Gang Li,
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
- *Correspondence: Hao Xue, ; Gang Li,
| |
Collapse
|
93
|
The lipid flippase SLC47A1 blocks metabolic vulnerability to ferroptosis. Nat Commun 2022; 13:7965. [PMID: 36575162 PMCID: PMC9794750 DOI: 10.1038/s41467-022-35707-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Ferroptosis is a type of regulated necrosis caused by unrestricted lipid peroxidation and subsequent plasma membrane rupture. However, the lipid remodeling mechanism that determines sensitivity to ferroptosis remains poorly understood. Here, we report a previously unrecognized role for the lipid flippase solute carrier family 47 member 1 (SLC47A1) as a regulator of lipid remodeling and survival during ferroptosis. Among 49 phospholipid scramblases, flippases, and floppases we analyzed, only SLC47A1 had mRNA that was selectively upregulated in multiple cancer cells exposed to ferroptotic inducers. Large-scale lipidomics and functional analyses revealed that the silencing of SLC47A1 increased RSL3- or erastin-induced ferroptosis by favoring ACSL4-SOAT1-mediated production of polyunsaturated fatty acid cholesterol esters. We identified peroxisome proliferator activated receptor alpha (PPARA) as a transcription factor that transactivates SLC47A1. The depletion of PPARA and SLC47A1 similarly sensitized cells to ferroptosis induction, whereas transfection-enforced re-expression of SLC47A1 restored resistance to ferroptosis in PPARA-deficient cells. Pharmacological or genetic blockade of the PPARA-SLC47A1 pathway increased the anticancer activity of a ferroptosis inducer in mice. These findings establish a direct molecular link between ferroptosis and lipid transporters, which may provide metabolic targets for overcoming drug resistance.
Collapse
|
94
|
MDMX elevation by a novel Mdmx-p53 interaction inhibitor mitigates neuronal damage after ischemic stroke. Sci Rep 2022; 12:21110. [PMID: 36473920 PMCID: PMC9726886 DOI: 10.1038/s41598-022-25427-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Mdmx and Mdm2 are two major suppressor factors for the tumor suppressor gene p53. In central nervous system, Mdmx suppresses the transcriptional activity of p53 and enhances the binding of Mdm2 to p53 for degradation. But Mdmx dynamics in cerebral infarction remained obscure. Here we investigated the role of Mdmx under ischemic conditions and evaluated the effects of our developed small-molecule Protein-Protein Interaction (PPI) inhibitors, K-181, on Mdmx-p53 interactions in vivo and in vitro. We found ischemic stroke decreased Mdmx expression with increased phosphorylation of Mdmx Serine 367, while Mdmx overexpression by AAV-Mdmx showed a neuroprotective effect on neurons. The PPI inhibitor, K-181 attenuated the neurological deficits by increasing Mdmx expression in post-stroke mice brain. Additionally, K-181 selectively inhibited HDAC6 activity and enhanced tubulin acetylation. Our findings clarified the dynamics of Mdmx in cerebral ischemia and provide a clue for the future pharmaceutic development of ischemic stroke.
Collapse
|
95
|
Yang X, Kawasaki NK, Min J, Matsui T, Wang F. Ferroptosis in heart failure. J Mol Cell Cardiol 2022; 173:141-153. [PMID: 36273661 PMCID: PMC11225968 DOI: 10.1016/j.yjmcc.2022.10.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/18/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
With its complicated pathobiology and pathophysiology, heart failure (HF) remains an increasingly prevalent epidemic that threatens global human health. Ferroptosis is a form of regulated cell death characterized by the iron-dependent lethal accumulation of lipid peroxides in the membrane system and is different from other types of cell death such as apoptosis and necrosis. Mounting evidence supports the claim that ferroptosis is mainly regulated by several biological pathways including iron handling, redox homeostasis, and lipid metabolism. Recently, ferroptosis has been identified to play an important role in HF induced by different stimuli such as myocardial infarction, myocardial ischemia reperfusion, chemotherapy, and others. Thus, it is of great significance to deeply explore the role of ferroptosis in HF, which might be a prerequisite to precise drug targets and novel therapeutic strategies based on ferroptosis-related medicine. Here, we review current knowledge on the link between ferroptosis and HF, followed by critical perspectives on the development and progression of ferroptotic signals and cardiac remodeling in HF.
Collapse
Affiliation(s)
- Xinquan Yang
- The Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Nicholas K Kawasaki
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI, USA
| | - Junxia Min
- The Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Takashi Matsui
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI, USA.
| | - Fudi Wang
- The Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
96
|
Chen H, Han Z, Luo Q, Wang Y, Li Q, Zhou L, Zuo H. Radiotherapy modulates tumor cell fate decisions: a review. Radiat Oncol 2022; 17:196. [PMID: 36457125 PMCID: PMC9714175 DOI: 10.1186/s13014-022-02171-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Cancer has always been a worldwide problem, and the application of radiotherapy has greatly improved the survival rate of cancer patients. Radiotherapy can modulate multiple cell fate decisions to kill tumor cells and achieve its therapeutic effect. With the development of radiotherapy technology, how to increase the killing effect of tumor cells and reduce the side effects on normal cells has become a new problem. In this review, we summarize the mechanisms by which radiotherapy induces tumor cell apoptosis, necrosis, necroptosis, pyroptosis, ferroptosis, autophagy, senescence, mitotic catastrophe, and cuproptosis. An in-depth understanding of these radiotherapy-related cell fate decisions can greatly improve the efficiency of radiotherapy for cancer.
Collapse
Affiliation(s)
| | - Zhongyu Han
- Chengdu Xinhua Hospital, Chengdu, China ,grid.411304.30000 0001 0376 205XSchool of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Luo
- Chengdu Xinhua Hospital, Chengdu, China
| | - Yi Wang
- Chengdu Xinhua Hospital, Chengdu, China
| | - Qiju Li
- Chengdu Xinhua Hospital, Chengdu, China
| | | | | |
Collapse
|
97
|
Wang Y, Zhang Z, Jiao W, Wang Y, Wang X, Zhao Y, Fan X, Tian L, Li X, Mi J. Ferroptosis and its role in skeletal muscle diseases. Front Mol Biosci 2022; 9:1051866. [PMID: 36406272 PMCID: PMC9669482 DOI: 10.3389/fmolb.2022.1051866] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Ferroptosis is characterized by the accumulation of iron and lipid peroxidation products, which regulates physiological and pathological processes in numerous organs and tissues. A growing body of research suggests that ferroptosis is a key causative factor in a variety of skeletal muscle diseases, including sarcopenia, rhabdomyolysis, rhabdomyosarcoma, and exhaustive exercise-induced fatigue. However, the relationship between ferroptosis and various skeletal muscle diseases has not been investigated systematically. This review’s objective is to provide a comprehensive summary of the mechanisms and signaling factors that regulate ferroptosis, including lipid peroxidation, iron/heme, amino acid metabolism, and autophagy. In addition, we tease out the role of ferroptosis in the progression of different skeletal muscle diseases and ferroptosis as a potential target for the treatment of multiple skeletal muscle diseases. This review can provide valuable reference for the research on the pathogenesis of skeletal muscle diseases, as well as for clinical prevention and treatment.
Collapse
Affiliation(s)
- Ying Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Weikai Jiao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yanyan Wang
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xiuge Wang
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yunyun Zhao
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xuechun Fan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lulu Tian
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Xiangyan Li, ; Jia Mi,
| | - Jia Mi
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Xiangyan Li, ; Jia Mi,
| |
Collapse
|
98
|
Gnanapradeepan K, Indeglia A, Stieg DC, Clarke N, Shao C, Dougherty JF, Murali N, Murphy ME. PLTP is a p53 target gene with roles in cancer growth suppression and ferroptosis. J Biol Chem 2022; 298:102637. [PMID: 36309086 PMCID: PMC9709240 DOI: 10.1016/j.jbc.2022.102637] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
The tumor suppressor protein p53 suppresses cancer by regulating processes such as apoptosis, cell cycle arrest, senescence, and ferroptosis, which is an iron-mediated and lipid peroxide-induced cell death pathway. Whereas numerous p53 target genes have been identified, only a few appear to be critical for the suppression of tumor growth. Additionally, while ferroptosis is clearly implicated in tumor suppression by p53, few p53 target genes with roles in ferroptosis have been identified. We have previously studied germline missense p53 variants that are hypomorphic or display reduced activity. These hypomorphic variants are associated with increased risk for cancer, but they retain the majority of p53 transcriptional function; as such, study of the transcriptional targets of these hypomorphs has the potential to reveal the identity of other genes important for p53-mediated tumor suppression. Here, using RNA-seq in lymphoblastoid cell lines, we identify PLTP (phospholipid transfer protein) as a p53 target gene that shows impaired transactivation by three different cancer-associated p53 hypomorphs: P47S (Pro47Ser, rs1800371), Y107H (Tyr107His, rs368771578), and G334R (Gly334Arg, rs78378222). We show that enforced expression of PLTP potently suppresses colony formation in human tumor cell lines. We also demonstrate that PLTP regulates the sensitivity of cells to ferroptosis. Taken together, our findings reveal PLTP to be a p53 target gene that is extremely sensitive to p53 transcriptional function and which has roles in growth suppression and ferroptosis.
Collapse
Affiliation(s)
- Keerthana Gnanapradeepan
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia Pennsylvania, USA,Graduate Group in Biochemistry and Molecular Biophysics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alexandra Indeglia
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia Pennsylvania, USA,Graduate Group in Biochemistry and Molecular Biophysics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - David C. Stieg
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia Pennsylvania, USA
| | - Nicole Clarke
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia Pennsylvania, USA
| | - Chunlei Shao
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia Pennsylvania, USA
| | - James F. Dougherty
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia Pennsylvania, USA
| | - Nivitha Murali
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia Pennsylvania, USA
| | - Maureen E. Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia Pennsylvania, USA,For correspondence: Maureen E. Murphy
| |
Collapse
|
99
|
Ferroptosis: Shedding Light on Mechanisms and Therapeutic Opportunities in Liver Diseases. Cells 2022; 11:cells11203301. [PMID: 36291167 PMCID: PMC9600232 DOI: 10.3390/cells11203301] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Cell death is a vital physiological or pathological phenomenon in the development process of the organism. Ferroptosis is a kind of newly-discovered regulated cell death (RCD), which is different from other RCD patterns, such as apoptosis, necrosis and autophagy at the morphological, biochemical and genetic levels. It is a kind of iron-dependent mode of death mediated by lipid peroxides and lipid reactive oxygen species aggregation. Noteworthily, the number of studies focused on ferroptosis has been increasing exponentially since ferroptosis was first found in 2012. The liver is the organ that stores the most iron in the human body. Recently, it was frequently found that there are different degrees of iron metabolism disorder and lipid peroxidation and other ferroptosis characteristics in various liver diseases. Numerous investigators have discovered that the progression of various liver diseases can be affected via the regulation of ferroptosis, which may provide a potential therapeutic strategy for clinical hepatic diseases. This review aims to summarize the mechanism and update research progress of ferroptosis, so as to provide novel promising directions for the treatment of liver diseases.
Collapse
|
100
|
Attenuation by Time-Restricted Feeding of High-Fat and High-Fructose Diet-Induced NASH in Mice Is Related to Per2 and Ferroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8063897. [PMID: 36285301 PMCID: PMC9588383 DOI: 10.1155/2022/8063897] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is a chronic and progressive disease whose treatment strategies are limited. Although time-restricted feeding (TRF) is beneficial for metabolic diseases without influencing caloric intake, the underlying mechanisms of TRF action in NASH and its efficacy have not yet been demonstrated. We herein showed that TRF effectively alleviated NASH, producing a reduction in liver enzymes and improvements in liver pathology. Regarding the mechanisms by which TRF mitigates NASH, we ascertained that TRF inhibited ferroptosis and the expression of the circadian gene Per2. By adopting a hepatocyte-specific Per2-knockout (Per2△hep) mice model, we clarified the critical role of Per2 in exacerbating NASH. According to the results of our RNA-Seq analysis, the knockout of Per2 ameliorated NASH by inhibiting the onset of ferroptosis; this was manifested by diminished lipid peroxidation levels, decreased mRNA and protein levels for ferroptosis-related genes, and alleviated morphologic changes in mitochondria. Furthermore, using a ferroptosis inhibitor, we showed that ferroptosis significantly aggravated NASH and noted that this was likely achieved by regulation of the expression of peroxisome proliferator activated receptor (PPAR)α. Finally, we discerned that TRF and hepatocyte-specific knockout of Per2 promoted the expression of PPARα. Our results revealed a potential for TRF to effectively alleviate high-fat and high-fructose diet-induced NASH via the inhibition of Per2 and depicted the participation of Per2 in the progression of NASH by promoting ferroptosis, which was ultimately related to the expression of PPARα.
Collapse
|