51
|
Zhou D, Mei Y, Song C, Cheng K, Cai W, Guo D, Gao S, Lv J, Liu T, Zhou Y, Wang L, Liu B, Liu Z. Exploration of the mode of death and potential death mechanisms of nucleus pulposus cells. Eur J Clin Invest 2024; 54:e14226. [PMID: 38632688 DOI: 10.1111/eci.14226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/16/2024] [Accepted: 04/06/2024] [Indexed: 04/19/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a common chronic orthopaedic disease in orthopaedics that imposes a heavy economic burden on people and society. Although it is well established that IVDD is associated with genetic susceptibility, ageing and obesity, its pathogenesis remains incompletely understood. Previously, IVDD was thought to occur because of excessive mechanical loading leading to destruction of nucleus pulposus cells (NPCs), but studies have shown that IVDD is a much more complex process associated with inflammation, metabolic factors and NPCs death and can involve all parts of the disc, characterized by causing NPCs death and extracellular matrix (ECM) degradation. The damage pattern of NPCs in IVDD is like that of some programmed cell death, suggesting that IVDD is associated with programmed cell death. Although apoptosis and pyroptosis of NPCs have been studied in IVDD, the pathogenesis of intervertebral disc degeneration can still not be fully elucidated by using only traditional cell death modalities. With increasing research, some new modes of cell death, PANoptosis, ferroptosis and senescence have been found to be closely related to intervertebral disc degeneration. Among these, PANoptosis combines essential elements of pyroptosis, apoptosis and necroptosis to form a highly coordinated and dynamically balanced programmed inflammatory cell death process. Furthermore, we believe that PANoptosis may also crosstalk with pyroptosis and senescence. Therefore, we review the progress of research on multiple deaths of NPCs in IVDD to provide guidance for clinical treatment.
Collapse
Affiliation(s)
- Daqian Zhou
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yongliang Mei
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Chao Song
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Kang Cheng
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Weiye Cai
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Daru Guo
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Silong Gao
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jiale Lv
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Tao Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yang Zhou
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Liquan Wang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Bing Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Zongchao Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Luzhou Longmatan District People's Hospital, Luzhou, Sichuan, China
| |
Collapse
|
52
|
Muthamil S, Kim HY, Jang HJ, Lyu JH, Shin UC, Go Y, Park SH, Lee HG, Park JH. Biomarkers of Cellular Senescence and Aging: Current State-of-the-Art, Challenges and Future Perspectives. Adv Biol (Weinh) 2024; 8:e2400079. [PMID: 38935557 DOI: 10.1002/adbi.202400079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Population aging has increased the global prevalence of aging-related diseases, including cancer, sarcopenia, neurological disease, arthritis, and heart disease. Understanding aging, a fundamental biological process, has led to breakthroughs in several fields. Cellular senescence, evinced by flattened cell bodies, vacuole formation, and cytoplasmic granules, ubiquitously plays crucial roles in tissue remodeling, embryogenesis, and wound repair as well as in cancer therapy and aging. The lack of universal biomarkers for detecting and quantifying senescent cells, in vitro and in vivo, constitutes a major limitation. The applications and limitations of major senescence biomarkers, including senescence-associated β-galactosidase staining, telomere shortening, cell-cycle arrest, DNA methylation, and senescence-associated secreted phenotypes are discussed. Furthermore, explore senotherapeutic approaches for aging-associated diseases and cancer. In addition to the conventional biomarkers, this review highlighted the in vitro, in vivo, and disease models used for aging studies. Further, technologies from the current decade including multi-omics and computational methods used in the fields of senescence and aging are also discussed in this review. Understanding aging-associated biological processes by using cellular senescence biomarkers can enable therapeutic innovation and interventions to improve the quality of life of older adults.
Collapse
Affiliation(s)
- Subramanian Muthamil
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Hyun-Yong Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Ji-Hyo Lyu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Ung Cheol Shin
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Younghoon Go
- Korean Medicine (KM)-application Center, Korea Institute of Oriental Medicine, Daegu, 41062, Republic of Korea
| | - Seong-Hoon Park
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
- Korean Convergence Medicine Major, University of Science & Technology (UST), KIOM Campus, Daejeon, 34054, Republic of Korea
| |
Collapse
|
53
|
Feng H, Li J, Wang H, Wei Z, Feng S. Senescence- and Immunity-Related Changes in the Central Nervous System: A Comprehensive Review. Aging Dis 2024:AD.2024.0755. [PMID: 39325939 DOI: 10.14336/ad.2024.0755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Senescence is a cellular state characterized by an irreversible halt in the cell cycle, accompanied by alterations in cell morphology, function, and secretion. Senescent cells release a plethora of inflammatory and growth factors, extracellular matrix proteins, and other bioactive substances, collectively known as the senescence-associated secretory phenotype (SASP). These excreted substances serve as crucial mediators of senescent tissues, while the secretion of SASP by senescent neurons and glial cells in the central nervous system modulates the activity of immune cells. Senescent immune cells also influence the physiological activities of various cells in the central nervous system. Further, the interaction between cellular senescence and immune regulation collectively affects the physiological and pathological processes of the central nervous system. Herein, we explore the role of senescence in the physiological and pathological processes underlying embryonic development, aging, degeneration, and injury of the central nervous system, through the immune response. Further, we elucidate the role of senescence in the physiological and pathological processes of the central nervous system, proposing a new theoretical foundation for treating central nervous system diseases.
Collapse
Affiliation(s)
- Haiwen Feng
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Junjin Li
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Hongda Wang
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Zhijian Wei
- Orthopedic Research Center of Shandong University and Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shiqing Feng
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
- Orthopedic Research Center of Shandong University and Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
54
|
Hajimohammadebrahim-Ketabforoush M, Zali A, Shahmohammadi M, Hamidieh AA. Metformin and its potential influence on cell fate decision between apoptosis and senescence in cancer, with a special emphasis on glioblastoma. Front Oncol 2024; 14:1455492. [PMID: 39267853 PMCID: PMC11390356 DOI: 10.3389/fonc.2024.1455492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Despite reaching enormous achievements in therapeutic approaches worldwide, GBM still remains the most incurable malignancy among various cancers. It emphasizes the necessity of adjuvant therapies from the perspectives of both patients and healthcare providers. Therefore, most emerging studies have focused on various complementary and adjuvant therapies. Among them, metabolic therapy has received special attention, and metformin has been considered as a treatment in various types of cancer, including GBM. It is clearly evident that reaching efficient approaches without a comprehensive evaluation of the key mechanisms is not possible. Among the studied mechanisms, one of the more challenging ones is the effect of metformin on apoptosis and senescence. Moreover, metformin is well known as an insulin sensitizer. However, if insulin signaling is facilitated in the tumor microenvironment, it may result in tumor growth. Therefore, to partially resolve some paradoxical issues, we conducted a narrative review of related studies to address the following questions as comprehensively as possible: 1) Does the improvement of cellular insulin function resulting from metformin have detrimental or beneficial effects on GBM cells? 2) If these effects are detrimental to GBM cells, which is more important: apoptosis or senescence? 3) What determines the cellular decision between apoptosis and senescence?
Collapse
Affiliation(s)
- Melika Hajimohammadebrahim-Ketabforoush
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Shahmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
55
|
Yang R, Kwan W, Du Y, Yan R, Zang L, Li C, Zhu Z, Cheong IH, Kozlakidis Z, Yu Y. Drug-induced senescence by aurora kinase inhibitors attenuates innate immune response of macrophages on gastric cancer organoids. Cancer Lett 2024; 598:217106. [PMID: 38992487 PMCID: PMC11364160 DOI: 10.1016/j.canlet.2024.217106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Diffuse-type gastric cancer (DGC) is a subtype of gastric cancer with aggressiveness and poor prognosis. It is of great significance to find sensitive drugs for DGC. In the current study, a total of 20 patient-derived organoids (PDOs) were analyzed for screening the therapeutic efficacy of small molecule kinases inhibitors on gastric cancers, especially the therapeutic difference between intestinal-type gastric cancer (IGCs) and DGCs. The IGCs are sensitive to multiple kinases inhibitors, while DGCs are resistant to most of these kinases inhibitors. It was found that DGCs showed drug-induced senescent phenotype after treatment by aurora kinases inhibitors (AURKi) Barasertib-HQPA and Danusertib. The cell diameter of cancer cells are increased with stronger staining of senescence-associated β-galactosidase (SA-β-GAL), and characteristic appearance of multinucleated giant cells. The senescent cancer cells secrete large amounts of chemokine MCP-1/CCL2, which recruit and induce macrophage to M2-type polarization in PDOs of DGC (DPDOs)-macrophage co-culture system. The up-regulation of local MCP-1/CCL2 can interact with MCP-1/CCL2 receptor (CCR2) expressed on macrophages and suppress their innate immunity to cancer cells. Overall, the special response of DGC to AURKi suggests that clinicians should select a sequential therapy with senescent cell clearance after AURKi treatment for DGC.
Collapse
Affiliation(s)
- Ruixin Yang
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Wingyan Kwan
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yutong Du
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Ranlin Yan
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Lu Zang
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Chen Li
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Zhenggang Zhu
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Io Hong Cheong
- Healthy Macau New-Generation Association, 999078, Macau, China
| | - Zisis Kozlakidis
- Laboratory Services and Biobank Group of International Agency for Research on Cancer, World Health Organization, 25 avenue Tony Garnier, CS 90627, 69366, LYON, CEDEX 07, France.
| | - Yingyan Yu
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
56
|
López-Polo V, Maus M, Zacharioudakis E, Lafarga M, Attolini CSO, Marques FDM, Kovatcheva M, Gavathiotis E, Serrano M. Release of mitochondrial dsRNA into the cytosol is a key driver of the inflammatory phenotype of senescent cells. Nat Commun 2024; 15:7378. [PMID: 39191740 DOI: 10.1038/s41467-024-51363-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
The escape of mitochondrial double-stranded dsRNA (mt-dsRNA) into the cytosol has been recently linked to a number of inflammatory diseases. Here, we report that the release of mt-dsRNA into the cytosol is a general feature of senescent cells and a critical driver of their inflammatory secretome, known as senescence-associated secretory phenotype (SASP). Inhibition of the mitochondrial RNA polymerase, the dsRNA sensors RIGI and MDA5, or the master inflammatory signaling protein MAVS, all result in reduced expression of the SASP, while broadly preserving other hallmarks of senescence. Moreover, senescent cells are hypersensitized to mt-dsRNA-driven inflammation due to their reduced levels of PNPT1 and ADAR1, two proteins critical for mitigating the accumulation of mt-dsRNA and the inflammatory potency of dsRNA, respectively. We find that mitofusin MFN1, but not MFN2, is important for the activation of the mt-dsRNA/MAVS/SASP axis and, accordingly, genetic or pharmacologic MFN1 inhibition attenuates the SASP. Finally, we report that senescent cells within fibrotic and aged tissues present dsRNA foci, and inhibition of mitochondrial RNA polymerase reduces systemic inflammation associated to senescence. In conclusion, we uncover the mt-dsRNA/MAVS/MFN1 axis as a key driver of the SASP and we identify novel therapeutic strategies for senescence-associated diseases.
Collapse
Affiliation(s)
- Vanessa López-Polo
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Mate Maus
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Emmanouil Zacharioudakis
- Department of Biochemistry, Department of Medicine, Department of Oncology, Montefiore Einstein Comprehensive Cancer Center, Institute for Aging Research, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IDIVAL, Santander, Spain
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Francisco D M Marques
- Department of Biochemistry, Department of Medicine, Department of Oncology, Montefiore Einstein Comprehensive Cancer Center, Institute for Aging Research, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marta Kovatcheva
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Evripidis Gavathiotis
- Department of Biochemistry, Department of Medicine, Department of Oncology, Montefiore Einstein Comprehensive Cancer Center, Institute for Aging Research, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Altos Labs, Cambridge Institute of Science, Granta Park, UK.
| |
Collapse
|
57
|
Han Y, Zheng D, Ji Y, Feng Y, Chen Z, Chen L, Li H, Jiang X, Shen H, Tao B, Zhuang H, Bu W. Active Magnesium Boride/Alginate Hydrogels Rejuvenate Senescent Cells. ACS NANO 2024; 18:23566-23578. [PMID: 39145584 DOI: 10.1021/acsnano.4c07833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The clearance of senescent cells may be detrimental to low cell density diseases, such as intervertebral disc degeneration (IVDD), and rejuvenating these cells presents a formidable obstacle. In this study, we investigate a mild-alkalization strategy employing magnesium boride-alginate (MB-ALG) hydrogels to rejuvenate senescent cells associated with age-related diseases. MB-ALG hydrogels proficiently ensnare senescent cells owing to their surface roughness. The hydrolysis of MB-ALG hydrogels liberates hydroxide ions (OH-), effecting a transition from an acidic microenvironment (pH ∼ 6.2) to a mildly alkaline state (pH ∼ 8.0), thereby fostering senescent cell proliferation via activation of the PI3K/Akt/mTOR pathway. Additionally, H2 aids in ROS clearance, which reduces cellular oxidative stress. And, Mg2+ rejuvenates senescent cells by inhibiting Ca2+ influx and fine-tuning the sirt1-p53 signaling pathways. Both in vitro and in vivo experiments conducted on rat intervertebral discs corroborate the sustained antisenescence and rejuvenation properties of MB-ALG hydrogels, with effects persisting for up to 12 weeks postoperation. These discoveries elucidate the role of mild-alkalization in dictating cellular destiny and provide key insights for addressing age-related diseases.
Collapse
Affiliation(s)
- Yingchao Han
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai 200433, P. R. China
| | - Dandan Zheng
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
| | - Yucheng Ji
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
| | - Yubo Feng
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
| | - Zhanyi Chen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
| | - Lijie Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai 200433, P. R. China
| | - Huiyan Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai 200433, P. R. China
| | - Xingwu Jiang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai 200433, P. R. China
| | - Hongxing Shen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
| | - Bangbao Tao
- Department of Neurosurgery, Xinhua Hospital School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P. R. China
| | - Hongjun Zhuang
- Research Center for Translational Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, P. R. China
- Department of Rehabilitation, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Wenbo Bu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
58
|
Etoh K, Araki H, Koga T, Hino Y, Kuribayashi K, Hino S, Nakao M. Citrate metabolism controls the senescent microenvironment via the remodeling of pro-inflammatory enhancers. Cell Rep 2024; 43:114496. [PMID: 39043191 DOI: 10.1016/j.celrep.2024.114496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/22/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024] Open
Abstract
The senescent microenvironment and aged cells per se contribute to tissue remodeling, chronic inflammation, and age-associated dysfunction. However, the metabolic and epigenomic bases of the senescence-associated secretory phenotype (SASP) remain largely unknown. Here, we show that ATP-citrate lyase (ACLY), a key enzyme in acetyl-coenzyme A (CoA) synthesis, is essential for the pro-inflammatory SASP, independent of persistent growth arrest in senescent cells. Citrate-derived acetyl-CoA facilitates the action of SASP gene enhancers. ACLY-dependent de novo enhancers augment the recruitment of the chromatin reader BRD4, which causes SASP activation. Consistently, specific inhibitions of the ACLY-BRD4 axis suppress the STAT1-mediated interferon response, creating the pro-inflammatory microenvironment in senescent cells and tissues. Our results demonstrate that ACLY-dependent citrate metabolism represents a selective target for controlling SASP designed to promote healthy aging.
Collapse
Affiliation(s)
- Kan Etoh
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Hirotaka Araki
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Tomoaki Koga
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yuko Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kanji Kuribayashi
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan.
| |
Collapse
|
59
|
Falvino A, Gasperini B, Cariati I, Bonanni R, Chiavoghilefu A, Gasbarra E, Botta A, Tancredi V, Tarantino U. Cellular Senescence: The Driving Force of Musculoskeletal Diseases. Biomedicines 2024; 12:1948. [PMID: 39335461 PMCID: PMC11429507 DOI: 10.3390/biomedicines12091948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
The aging of the world population is closely associated with an increased prevalence of musculoskeletal disorders, such as osteoporosis, sarcopenia, and osteoarthritis, due to common genetic, endocrine, and mechanical risk factors. These conditions are characterized by degeneration of bone, muscle, and cartilage tissue, resulting in an increased risk of fractures and reduced mobility. Importantly, a crucial role in the pathophysiology of these diseases has been proposed for cellular senescence, a state of irreversible cell cycle arrest induced by factors such as DNA damage, telomere shortening, and mitochondrial dysfunction. In addition, senescent cells secrete pro-inflammatory molecules, called senescence-associated secretory phenotype (SASP), which can alter tissue homeostasis and promote disease progression. Undoubtedly, targeting senescent cells and their secretory profiles could promote the development of integrated strategies, including regular exercise and a balanced diet or the use of senolytics and senomorphs, to improve the quality of life of the aging population. Therefore, our review aimed to highlight the role of cellular senescence in age-related musculoskeletal diseases, summarizing the main underlying mechanisms and potential anti-senescence strategies for the treatment of osteoporosis, sarcopenia, and osteoarthritis.
Collapse
Affiliation(s)
- Angela Falvino
- Department of Biomedicine and Prevention, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Beatrice Gasperini
- Department of Biomedicine and Prevention, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Ida Cariati
- Department of Systems Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Roberto Bonanni
- Department of Biomedicine and Prevention, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Angela Chiavoghilefu
- Department of Orthopaedics and Traumatology, "Policlinico Tor Vergata" Foundation, Viale Oxford 81, 00133 Rome, Italy
| | - Elena Gasbarra
- Department of Orthopaedics and Traumatology, "Policlinico Tor Vergata" Foundation, Viale Oxford 81, 00133 Rome, Italy
| | - Annalisa Botta
- Department of Biomedicine and Prevention, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Virginia Tancredi
- Department of Systems Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Umberto Tarantino
- Department of Orthopaedics and Traumatology, "Policlinico Tor Vergata" Foundation, Viale Oxford 81, 00133 Rome, Italy
- Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Department of Clinical Sciences and Translational Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
60
|
Sivasubramanian MK, Monteiro R, Jagadeesh M, Balasubramanian P, Subramanian M. Palmitic Acid Induces Oxidative Stress and Senescence in Human Brainstem Astrocytes, Downregulating Glutamate Reuptake Transporters-Implications for Obesity-Related Sympathoexcitation. Nutrients 2024; 16:2852. [PMID: 39275168 PMCID: PMC11397225 DOI: 10.3390/nu16172852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024] Open
Abstract
Obesity has been associated with a chronic increase in sympathetic nerve activity, which can lead to hypertension and other cardiovascular diseases. Preliminary studies from our lab found that oxidative stress and neuroinflammation in the brainstem contribute to sympathetic overactivity in high-fat-diet-induced obese mice. However, with glial cells emerging as significant contributors to various physiological processes, their role in causing these changes in obesity remains unknown. In this study, we wanted to determine the role of palmitic acid, a major form of saturated fatty acid in the high-fat diet, in regulating sympathetic outflow. Human brainstem astrocytes (HBAs) were used as a cell culture model since astrocytes are the most abundant glial cells and are more closely associated with the regulation of neurons and, hence, sympathetic nerve activity. In the current study, we hypothesized that palmitic acid-mediated oxidative stress induces senescence and downregulates glutamate reuptake transporters in HBAs. HBAs were treated with palmitic acid (25 μM for 24 h) in three separate experiments. After the treatment period, the cells were collected for gene expression and protein analysis. Our results showed that palmitic acid treatment led to a significant increase in the mRNA expression of oxidative stress markers (NQO1, SOD2, and CAT), cellular senescence markers (p21 and p53), SASP factors (TNFα, IL-6, MCP-1, and CXCL10), and a downregulation in the expression of glutamate reuptake transporters (EAAT1 and EAAT2) in the HBAs. Protein levels of Gamma H2AX, p16, and p21 were also significantly upregulated in the treatment group compared to the control. Our results showed that palmitic acid increased oxidative stress, DNA damage, cellular senescence, and SASP factors, and downregulated the expression of glutamate reuptake transporters in HBAs. These findings suggest the possibility of excitotoxicity in the neurons of the brainstem, sympathoexcitation, and increased risk for cardiovascular diseases in obesity.
Collapse
Affiliation(s)
- Mahesh Kumar Sivasubramanian
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Raisa Monteiro
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Manoj Jagadeesh
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Priya Balasubramanian
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Madhan Subramanian
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
61
|
Konstantinou E, Longange E, Kaya G. Mechanisms of Senescence and Anti-Senescence Strategies in the Skin. BIOLOGY 2024; 13:647. [PMID: 39336075 PMCID: PMC11428750 DOI: 10.3390/biology13090647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024]
Abstract
The skin is the layer of tissue that covers the largest part of the body in vertebrates, and its main function is to act as a protective barrier against external environmental factors, such as microorganisms, ultraviolet light and mechanical damage. Due to its important function, investigating the factors that lead to skin aging and age-related diseases, as well as understanding the biology of this process, is of high importance. Indeed, it has been reported that several external and internal stressors contribute to skin aging, similar to the aging of other tissues. Moreover, during aging, senescent cells accumulate in the skin and express senescence-associated factors, which act in a paracrine manner on neighboring healthy cells and tissues. In this review, we will present the factors that lead to skin aging and cellular senescence, as well as ways to study senescence in vitro and in vivo. We will further discuss the adverse effects of the accumulation of chronic senescent cells and therapeutic agents and tools to selectively target and eliminate them.
Collapse
Affiliation(s)
- Evangelia Konstantinou
- Department of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1206 Geneva, Switzerland; (E.K.); (E.L.)
| | - Eliane Longange
- Department of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1206 Geneva, Switzerland; (E.K.); (E.L.)
| | - Gürkan Kaya
- Department of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1206 Geneva, Switzerland; (E.K.); (E.L.)
- Departments of Dermatology and Clinical Pathology, Geneva University Hospitals, Rue Gabrielle Perret-Gentil 4, CH-1205 Geneva, Switzerland
| |
Collapse
|
62
|
Hu J, Huang B, Chen K. The impact of physical exercise on neuroinflammation mechanism in Alzheimer's disease. Front Aging Neurosci 2024; 16:1444716. [PMID: 39233828 PMCID: PMC11371602 DOI: 10.3389/fnagi.2024.1444716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Alzheimer's disease (AD), a major cause of dementia globally, imposes significant societal and personal costs. This review explores the efficacy of physical exercise as a non-pharmacological intervention to mitigate the impacts of AD. Methods This review draws on recent studies that investigate the effects of physical exercise on neuroinflammation and neuronal enhancement in individuals with AD. Results Consistent physical exercise alters neuroinflammatory pathways, enhances cognitive functions, and bolsters brain health among AD patients. It favorably influences the activation states of microglia and astrocytes, fortifies the integrity of the blood-brain barrier, and attenuates gut inflammation associated with AD. These changes are associated with substantial improvements in cognitive performance and brain health indicators. Discussion The findings underscore the potential of integrating physical exercise into comprehensive AD management strategies. Emphasizing the necessity for further research, this review advocates for the refinement of exercise regimens to maximize their enduring benefits in decelerating the progression of AD.
Collapse
Affiliation(s)
- Junhui Hu
- School of Physical Education, West Anhui University, Lu'an, China
| | - Baiqing Huang
- School of Physical Education, Yunnan Minzu University, Kunming, China
| | - Kang Chen
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| |
Collapse
|
63
|
Kumaran G, Carroll L, Muirhead N, Bottomley MJ. How Can Spatial Transcriptomic Profiling Advance Our Understanding of Skin Diseases? J Invest Dermatol 2024:S0022-202X(24)01926-2. [PMID: 39177547 DOI: 10.1016/j.jid.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/23/2024] [Accepted: 07/04/2024] [Indexed: 08/24/2024]
Abstract
Spatial transcriptomic (ST) profiling is the mapping of gene expression within cell populations with preservation of positional context and represents an exciting new approach to develop our understanding of local and regional influences upon skin biology in health and disease. With the ability to probe from a few hundred transcripts to the entire transcriptome, multiple ST approaches are now widely available. In this paper, we review the ST field and discuss its application to dermatology. Its potential to advance our understanding of skin biology in health and disease is highlighted through the illustrative examples of 3 research areas: cutaneous aging, tumorigenesis, and psoriasis.
Collapse
Affiliation(s)
- Girishkumar Kumaran
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Liam Carroll
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Matthew J Bottomley
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
64
|
Wei Y, Mou S, Yang Q, Liu F, Cooper ME, Chai Z. To target cellular senescence in diabetic kidney disease: the known and the unknown. Clin Sci (Lond) 2024; 138:991-1007. [PMID: 39139135 PMCID: PMC11327223 DOI: 10.1042/cs20240717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/07/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
Cellular senescence represents a condition of irreversible cell cycle arrest, characterized by heightened senescence-associated beta-galactosidase (SA-β-Gal) activity, senescence-associated secretory phenotype (SASP), and activation of the DNA damage response (DDR). Diabetic kidney disease (DKD) is a significant contributor to end-stage renal disease (ESRD) globally, with ongoing unmet needs in terms of current treatments. The role of senescence in the pathogenesis of DKD has attracted substantial attention with evidence of premature senescence in this condition. The process of cellular senescence in DKD appears to be associated with mitochondrial redox pathways, autophagy, and endoplasmic reticulum (ER) stress. Increasing accumulation of senescent cells in the diabetic kidney not only leads to an impaired capacity for repair of renal injury, but also the secretion of pro-inflammatory and profibrotic cytokines and growth factors causing inflammation and fibrosis. Current treatments for diabetes exhibit varying degrees of renoprotection, potentially via mitigation of senescence in the diabetic kidney. Targeting senescent cell clearance through pharmaceutical interventions could emerge as a promising strategy for preventing and treating DKD. In this paper, we review the current understanding of senescence in DKD and summarize the possible therapeutic interventions relevant to senescence in this field.
Collapse
Affiliation(s)
- Yuehan Wei
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, Australia
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Mou
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Yang
- Department of Nephrology, Laboratory of Diabetic Kidney Disease, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Liu
- Department of Nephrology, Laboratory of Diabetic Kidney Disease, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Mark E Cooper
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Zhonglin Chai
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
65
|
Gontarz M, Bargiel J, Gąsiorowski K, Marecik T, Szczurowski P, Hramyka A, Kuczera J, Wieczorkiewicz A, Wyszyńska-Pawelec G. Could Obesity Be Related to the Increasing Incidence of Warthin Tumors? J Clin Med 2024; 13:4935. [PMID: 39201077 PMCID: PMC11355748 DOI: 10.3390/jcm13164935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Background: The number of patients diagnosed with Warthin tumors (WTs) has increased significantly in recent years. The association of obesity as measured by body mass index (BMI) with the incidence of WTs remains unclear. This retrospective study aims to compare the BMI and other clinical factors of patients diagnosed with WTs to those with other benign epithelial parotid gland tumors. Methods: Over a 24-year period, 465 cases of benign epithelial parotid gland tumors were treated in our department. Of these, 155 (33.3%) were diagnosed as WTs. The results of the WT group were compared with those of another benign epithelial parotid gland tumor. Results: The mean BMI of WT patients was 27.3, which was significantly higher than in other benign tumors (25.52; p < 0.001). Furthermore, statistically significant correlations were observed, including a higher incidence of WT in males (p < 0.001), in the elderly (p < 0.001), and in cigarette smokers (p < 0.001). Additionally, a higher prevalence of other head and neck cancers was confirmed in patients with WTs (p = 0.004); Conclusions: This study supports the multifactorial etiology of WT development. Among these factors, smoking, advanced age, and obesity have been identified as factors associated with the development of WT, which might be due to chronic inflammation linked to obesity.
Collapse
Affiliation(s)
- Michał Gontarz
- Department of Cranio-Maxillofacial Surgery, Jagiellonian University Medical College, 30-688 Cracow, Poland; (J.B.); (K.G.); (T.M.); (P.S.); (G.W.-P.)
| | - Jakub Bargiel
- Department of Cranio-Maxillofacial Surgery, Jagiellonian University Medical College, 30-688 Cracow, Poland; (J.B.); (K.G.); (T.M.); (P.S.); (G.W.-P.)
| | - Krzysztof Gąsiorowski
- Department of Cranio-Maxillofacial Surgery, Jagiellonian University Medical College, 30-688 Cracow, Poland; (J.B.); (K.G.); (T.M.); (P.S.); (G.W.-P.)
| | - Tomasz Marecik
- Department of Cranio-Maxillofacial Surgery, Jagiellonian University Medical College, 30-688 Cracow, Poland; (J.B.); (K.G.); (T.M.); (P.S.); (G.W.-P.)
| | - Paweł Szczurowski
- Department of Cranio-Maxillofacial Surgery, Jagiellonian University Medical College, 30-688 Cracow, Poland; (J.B.); (K.G.); (T.M.); (P.S.); (G.W.-P.)
| | - Andrei Hramyka
- Students’ Scientific Group of the Department of Cranio-Maxillofacial Surgery, Jagiellonian University Medical College, 30-688 Cracow, Poland; (A.H.); (J.K.); (A.W.)
| | - Joanna Kuczera
- Students’ Scientific Group of the Department of Cranio-Maxillofacial Surgery, Jagiellonian University Medical College, 30-688 Cracow, Poland; (A.H.); (J.K.); (A.W.)
| | - Agata Wieczorkiewicz
- Students’ Scientific Group of the Department of Cranio-Maxillofacial Surgery, Jagiellonian University Medical College, 30-688 Cracow, Poland; (A.H.); (J.K.); (A.W.)
| | - Grażyna Wyszyńska-Pawelec
- Department of Cranio-Maxillofacial Surgery, Jagiellonian University Medical College, 30-688 Cracow, Poland; (J.B.); (K.G.); (T.M.); (P.S.); (G.W.-P.)
| |
Collapse
|
66
|
Bai L, Wang Y. Mesenchymal stem cells-derived exosomes alleviate senescence of retinal pigment epithelial cells by activating PI3K/AKT-Nrf2 signaling pathway in early diabetic retinopathy. Exp Cell Res 2024; 441:114170. [PMID: 39019426 DOI: 10.1016/j.yexcr.2024.114170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/22/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Diabetic retinopathy (DR) is a major cause of vision loss and blindness in adults. Cellular senescence was involved in the pathogenesis of early-stage DR and is positively correlated with progression. Thus, our study aimed at exploring the effect and potential mechanism of Mesenchymal stem cells-derived exosomes (MSCs-EXOs) on Retinal Pigment Epithelial (RPE) cells senescence at an early stage of DR in vivo and in vitro. ARPE-19 cells were incubated in high glucose (HG) medium mixed with MSCs-EXOs to observe the changes in cell viability. Senescence-associated β-galactosidase (SA-β-gal) staining, Western blot and qRT-PCR were used to assess the expression of senescence-related genes and antioxidant mediators. Quantitative Real-Time polymerase chain reaction (qRT-PCR), Optical coherence tomography (OCT) Hematoxylin and eosin (HE) staining and Electroretinogram (ERG) were respectively used to verify cellular senescence, the structure and function of the retina. Our findings demonstrated that MSCs-EXOs inhibited HG-induced senescence in ARPE-19 cells. Furthermore, MSCs-EXOs reduced HG-induced cell apoptosis and oxidative stress levels while promoting cell proliferation. Mechanistically, HG suppressed PI3K/AKT phosphorylation as well as nuclear factor erythroid 2-related factor 2 (Nrf2) expression along with its downstream target gene expression in ARPE-19 cells. However, MSCs-EXOs reversed these changes by alleviating cellular senescence while enhancing antioxidant activity. In line with our results in vitro, MSCs-EXOs significantly ameliorated hyperglycemia-induced senescence in DR mice by downregulating mRNA expression of P53, P21, P16, and SASP. Additionally, MSCs-EXOs improved the functional and structural integrity of the retina in DR mice. Our study revealed the protective effect of MSCs-EXOs on cellular senescence, offering new insights for the treatment of DR.
Collapse
Affiliation(s)
- Lifang Bai
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, PR China
| | - Ying Wang
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, PR China; Liaoning Aier Eye Hospital, Shenyang, Liaoning Province, China.
| |
Collapse
|
67
|
Di Giorgio E, Dalla E, Tolotto V, D’Este F, Paluvai H, Ranzino L, Brancolini C. HDAC4 influences the DNA damage response and counteracts senescence by assembling with HDAC1/HDAC2 to control H2BK120 acetylation and homology-directed repair. Nucleic Acids Res 2024; 52:8218-8240. [PMID: 38874468 PMCID: PMC11317144 DOI: 10.1093/nar/gkae501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024] Open
Abstract
Access to DNA is the first level of control in regulating gene transcription, a control that is also critical for maintaining DNA integrity. Cellular senescence is characterized by profound transcriptional rearrangements and accumulation of DNA lesions. Here, we discovered an epigenetic complex between HDAC4 and HDAC1/HDAC2 that is involved in the erase of H2BK120 acetylation. The HDAC4/HDAC1/HDAC2 complex modulates the efficiency of DNA repair by homologous recombination, through dynamic deacetylation of H2BK120. Deficiency of HDAC4 leads to accumulation of H2BK120ac, impaired recruitment of BRCA1 and CtIP to the site of lesions, accumulation of damaged DNA and senescence. In senescent cells this complex is disassembled because of increased proteasomal degradation of HDAC4. Forced expression of HDAC4 during RAS-induced senescence reduces the genomic spread of γH2AX. It also affects H2BK120ac levels, which are increased in DNA-damaged regions that accumulate during RAS-induced senescence. In summary, degradation of HDAC4 during senescence causes the accumulation of damaged DNA and contributes to the activation of the transcriptional program controlled by super-enhancers that maintains senescence.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Laboratory of Biochemistry, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Emiliano Dalla
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Vanessa Tolotto
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Francesca D’Este
- Laboratory of Biochemistry, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Harikrishnareddy Paluvai
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Liliana Ranzino
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Claudio Brancolini
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy
| |
Collapse
|
68
|
Yoshihara K, Horiguchi M. Drug Delivery Strategies for Age-Related Diseases. Int J Mol Sci 2024; 25:8693. [PMID: 39201377 PMCID: PMC11354581 DOI: 10.3390/ijms25168693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Drug delivery systems (DDSs) enable the controlled release of drugs in the body. DDSs have attracted increasing attention for the treatment of various disorders, including cancer, inflammatory diseases, and age-related diseases. With recent advancements in our understanding of the molecular mechanisms of aging, new target molecules and drug delivery carriers for age-related diseases have been reported. In this review, we will summarize the recent research on DDSs for age-related diseases and identify DDS strategies in the treatment of age-related diseases.
Collapse
Affiliation(s)
| | - Michiko Horiguchi
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigaku-Dori, Sanyo Onoda 756-0884, Japan
| |
Collapse
|
69
|
Arias C, Álvarez-Indo J, Cifuentes M, Morselli E, Kerr B, Burgos PV. Enhancing adipose tissue functionality in obesity: senotherapeutics, autophagy and cellular senescence as a target. Biol Res 2024; 57:51. [PMID: 39118171 PMCID: PMC11312694 DOI: 10.1186/s40659-024-00531-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Obesity, a global health crisis, disrupts multiple systemic processes, contributing to a cascade of metabolic dysfunctions by promoting the pathological expansion of visceral adipose tissue (VAT). This expansion is characterized by impaired differentiation of pre-adipocytes and an increase in senescent cells, leading to a pro-inflammatory state and exacerbated oxidative stress. Particularly, the senescence-associated secretory phenotype (SASP) and adipose tissue hypoxia further impair cellular function, promoting chronic disease development. This review delves into the potential of autophagy modulation and the therapeutic application of senolytics and senomorphics as novel strategies to mitigate adipose tissue senescence. By exploring the intricate mechanisms underlying adipocyte dysfunction and the emerging role of natural compounds in senescence modulation, we underscore the promising horizon of senotherapeutics in restoring adipose health. This approach not only offers a pathway to combat the metabolic complications of obesity, but also opens new avenues for enhancing life quality and managing the global burden of obesity-related conditions. Our analysis aims to bridge the gap between current scientific progress and clinical application, offering new perspectives on preventing and treating obesity-induced adipose dysfunction.
Collapse
Affiliation(s)
- Consuelo Arias
- Escuela de Kinesiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, 7500922, Chile.
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
| | - Javiera Álvarez-Indo
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Mariana Cifuentes
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| | - Bredford Kerr
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Patricia V Burgos
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
- Centro Basal Ciencia & Vida, Universidad San Sebastián, Santiago, Chile.
| |
Collapse
|
70
|
Ogrodnik M, Carlos Acosta J, Adams PD, d'Adda di Fagagna F, Baker DJ, Bishop CL, Chandra T, Collado M, Gil J, Gorgoulis V, Gruber F, Hara E, Jansen-Dürr P, Jurk D, Khosla S, Kirkland JL, Krizhanovsky V, Minamino T, Niedernhofer LJ, Passos JF, Ring NAR, Redl H, Robbins PD, Rodier F, Scharffetter-Kochanek K, Sedivy JM, Sikora E, Witwer K, von Zglinicki T, Yun MH, Grillari J, Demaria M. Guidelines for minimal information on cellular senescence experimentation in vivo. Cell 2024; 187:4150-4175. [PMID: 39121846 DOI: 10.1016/j.cell.2024.05.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 08/12/2024]
Abstract
Cellular senescence is a cell fate triggered in response to stress and is characterized by stable cell-cycle arrest and a hypersecretory state. It has diverse biological roles, ranging from tissue repair to chronic disease. The development of new tools to study senescence in vivo has paved the way for uncovering its physiological and pathological roles and testing senescent cells as a therapeutic target. However, the lack of specific and broadly applicable markers makes it difficult to identify and characterize senescent cells in tissues and living organisms. To address this, we provide practical guidelines called "minimum information for cellular senescence experimentation in vivo" (MICSE). It presents an overview of senescence markers in rodent tissues, transgenic models, non-mammalian systems, human tissues, and tumors and their use in the identification and specification of senescent cells. These guidelines provide a uniform, state-of-the-art, and accessible toolset to improve our understanding of cellular senescence in vivo.
Collapse
Affiliation(s)
- Mikolaj Ogrodnik
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, 1200 Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| | - Juan Carlos Acosta
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK; Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), C/ Albert Einstein 22, 39011 Santander, Spain
| | - Peter D Adams
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Fabrizio d'Adda di Fagagna
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy; Institute of Molecular Genetics IGM-CNR "Luigi Luca Cavalli-Sforza," Pavia, Italy
| | - Darren J Baker
- Department of Biochemistry and Molecular Biology, Department of Pediatric and Adolescent Medicine, Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Steet SW, Rochester, MN 55905, USA
| | - Cleo L Bishop
- Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Tamir Chandra
- MRC Human Generics Unit, University of Edinburgh, Edinburgh, UK
| | - Manuel Collado
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Department of Immunology and Oncology (DIO), Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Jesus Gil
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Vassilis Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK; Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE, Vienna, Austria
| | - Eiji Hara
- Research Institute for Microbial Diseases (RIMD), Osaka University, Suita 565-0871, Japan; Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, and Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| | - Diana Jurk
- Mayo Clinic, Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Sundeep Khosla
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Valery Krizhanovsky
- Department of Molecular Cell Biology, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN 55455, USA
| | - João F Passos
- Mayo Clinic, Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Nadja A R Ring
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, 1200 Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, 1200 Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN 55455, USA
| | - Francis Rodier
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Institut du cancer de Montréal, Montreal, QC, Canada; Université de Montréal, Département de radiologie, radio-oncologie et médicine nucléaire, Montreal, QC, Canada
| | - Karin Scharffetter-Kochanek
- Department f Dermatology and Allergic Diseases, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - John M Sedivy
- Department of Molecular, Cellular Biology and Biochemistry, Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Ewa Sikora
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Kenneth Witwer
- The Johns Hopkins University School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, MD, USA; The Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA
| | - Thomas von Zglinicki
- Newcastle University Biosciences Institute, Ageing Biology Laboratories, Newcastle upon Tyne, UK
| | - Maximina H Yun
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany; Max Planck Institute of Molecular Cellular Biology and Genetics, Dresden, Germany; Physics of Life Excellence Cluster, Dresden, Germany
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; Institute of Molecular Biotechnology, BOKU University, Vienna, Austria.
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, the Netherlands.
| |
Collapse
|
71
|
Mikawa T, Yoshida K, Kondoh H. Senotherapy preserves resilience in aging. Geriatr Gerontol Int 2024. [PMID: 39098000 DOI: 10.1111/ggi.14949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 08/06/2024]
Abstract
In aging societies, social and economic burdens of aging-related diseases are increasing significantly. Senotherapy, which targets aging by eliminating senescent cells (senolytics) or removing sources of chronic inflammation (senostatics), are proposed as novel strategies for aging-related diseases. Aged or frail people suffer a decline of tissue reserve capacity during aging. Resilience, which is much reduced in older people, is essential for recovery from diseases, stresses or crises. Impaired resilience is one of the reasons why aged people experience a gradual waning of their daily activity and an increase of multimorbidity. Calorie restriction results in senostatic alleviation of chronic inflammation, whereas senolytic drugs induce apoptosis of senescent cells, which exacerbate aging by excreting inflammatory factors. Thus, both senolytics and senostatics are expected to reduce sterile inflammation, originating from senescent cells. Geriatr Gerontol Int 2024; ••: ••-••.
Collapse
Affiliation(s)
- Takumi Mikawa
- Geriatric Unit, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery, Shiga University of Medical Science, Otsu, Japan
| | - Hiroshi Kondoh
- Geriatric Unit, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
72
|
Cvekl A, Vijg J. Aging of the eye: Lessons from cataracts and age-related macular degeneration. Ageing Res Rev 2024; 99:102407. [PMID: 38977082 DOI: 10.1016/j.arr.2024.102407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Aging is the greatest risk factor for chronic human diseases, including many eye diseases. Geroscience aims to understand the effects of the aging process on these diseases, including the genetic, molecular, and cellular mechanisms that underlie the increased risk of disease over the lifetime. Understanding of the aging eye increases general knowledge of the cellular physiology impacted by aging processes at various biological extremes. Two major diseases, age-related cataract and age-related macular degeneration (AMD) are caused by dysfunction of the lens and retina, respectively. Lens transparency and light refraction are mediated by lens fiber cells lacking nuclei and other organelles, which provides a unique opportunity to study a single aging hallmark, i.e., loss of proteostasis, within an environment of limited metabolism. In AMD, local dysfunction of the photoreceptors/retinal pigmented epithelium/Bruch's membrane/choriocapillaris complex in the macula leads to the loss of photoreceptors and eventually loss of central vision, and is driven by nearly all the hallmarks of aging and shares features with Alzheimer's disease, Parkinson's disease, cardiovascular disease, and diabetes. The aging eye can function as a model for studying basic mechanisms of aging and, vice versa, well-defined hallmarks of aging can be used as tools to understand age-related eye disease.
Collapse
Affiliation(s)
- Ales Cvekl
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Jan Vijg
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
73
|
Kim Y, Jang Y, Kim MS, Kang C. Metabolic remodeling in cancer and senescence and its therapeutic implications. Trends Endocrinol Metab 2024; 35:732-744. [PMID: 38453603 DOI: 10.1016/j.tem.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
Cellular metabolism is a flexible and plastic network that often dictates physiological and pathological states of the cell, including differentiation, cancer, and aging. Recent advances in cancer metabolism represent a tremendous opportunity to treat cancer by targeting its altered metabolism. Interestingly, despite their stable growth arrest, senescent cells - a critical component of the aging process - undergo metabolic changes similar to cancer metabolism. A deeper understanding of the similarities and differences between these disparate pathological conditions will help identify which metabolic reprogramming is most relevant to the therapeutic liabilities of senescence. Here, we compare and contrast cancer and senescence metabolism and discuss how metabolic therapies can be established as a new modality of senotherapy for healthy aging.
Collapse
Affiliation(s)
- Yeonju Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea
| | - Yeji Jang
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea
| | - Mi-Sung Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea
| | - Chanhee Kang
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
74
|
Zhang M, Zhong J, Song Z, Xu Q, Chen Y, Zhang Z. Regulatory mechanisms and potential therapeutic targets in precancerous lesions of gastric cancer: A comprehensive review. Biomed Pharmacother 2024; 177:117068. [PMID: 39018877 DOI: 10.1016/j.biopha.2024.117068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024] Open
Abstract
Precancerous lesions of gastric cancer (PLGC) represent a critical pathological stage in the transformation from normal gastric mucosa to gastric cancer (GC). The global incidence of PLGC has been rising over the past few decades, with a trend towards younger onset ages. Increasing evidence suggests that early prevention and treatment of PLGC can effectively reverse the malignant development of gastric mucosal epithelial cells. However, there is currently a lack of effective therapeutic drugs and methods. Recent years have witnessed substantial advancements in PLGC research, with the elucidation of novel regulatory mechanisms offering promising avenues for clinical intervention and drug development. This review aims to delineate potential targets for early prevention and diagnosis of GC while exploring innovative approaches to PLGC management. This article focuses on elucidating the regulatory mechanisms of the inflammatory microenvironment, bile acids (BA), glycolysis, autophagy, apoptosis, ferroptosis, and cellular senescence. We pay particular attention to potential therapeutic targets for PLGC, with the goal of providing insights and theoretical basis for clinical research on PLGC.
Collapse
Affiliation(s)
- Maofu Zhang
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Jialin Zhong
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Zhongyang Song
- Department of Oncology, Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730020, China
| | - Qian Xu
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Yuchan Chen
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Zhiming Zhang
- Department of Oncology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, Gansu 730050, China.
| |
Collapse
|
75
|
Bientinesi E, Ristori S, Lulli M, Monti D. Quercetin induces senolysis of doxorubicin-induced senescent fibroblasts by reducing autophagy, preventing their pro-tumour effect on osteosarcoma cells. Mech Ageing Dev 2024; 220:111957. [PMID: 38909661 DOI: 10.1016/j.mad.2024.111957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
Cellular senescence contributes to ageing and age-related diseases, and multiple therapeutic strategies are being developed to counteract it. Senolytic drugs are being tested in clinical trials to eliminate senescent cells selectively, but their effects and mechanisms are still unclear. Several studies reveal that the upregulation of senescence-associated secretory phenotype (SASP) factors in senescent cells is accompanied by increased autophagic activity to counteract the endoplasmic reticulum (ER) stress. Our study shows that Doxo-induced senescent fibroblasts yield several SASP factors and exhibit increased autophagy. Interestingly, Quercetin, a bioactive flavonoid, reduces autophagy, increases ER stress, and partially triggers senescent fibroblast death. Given the role of senescent cells in cancer progression, we tested the effect of conditioned media from untreated and quercetin-treated senescent fibroblasts on osteosarcoma cells to determine whether senolytic treatment affected tumour cell behaviour. We report that the partial senescent fibroblast clearance, achieved by quercetin, reduced osteosarcoma cell invasiveness, curbing the pro-tumour effects of senescent cells. The reduction of cell autophagic activity and increased ER stress, an undescribed effect of quercetin, emerges as a new vulnerability of Doxo-induced senescent fibroblasts and may provide a potential therapeutic target for cancer treatment, suggesting novel drug combinations as a promising strategy against the tumour.
Collapse
Affiliation(s)
- Elisa Bientinesi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence 50134, Italy.
| | - Sara Ristori
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence 50134, Italy.
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence 50134, Italy.
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence 50134, Italy.
| |
Collapse
|
76
|
Tanaka H, Sugawara S, Tanaka Y, Loo TM, Tachibana R, Abe A, Kamiya M, Urano Y, Takahashi A. Dipeptidylpeptidase-4-targeted activatable fluorescent probes visualize senescent cells. Cancer Sci 2024; 115:2762-2773. [PMID: 38802068 PMCID: PMC11309953 DOI: 10.1111/cas.16229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Senescent cells promote cancer development and progression through chronic inflammation caused by a senescence-associated secretory phenotype (SASP). Although various senotherapeutic strategies targeting senescent cells have been developed for the prevention and treatment of cancers, technology for the in vivo detection and evaluation of senescent cell accumulation has not yet been established. Here, we identified activatable fluorescent probes targeting dipeptidylpeptidase-4 (DPP4) as an effective probe for detecting senescent cells through an enzymatic activity-based screening of fluorescent probes. We also determined that these probes were highly, selectively, and rapidly activated in senescent cells during live cell imaging. Furthermore, we successfully visualized senescent cells in the organs of mice using DPP4-targeted probes. These results are expected to lead to the development of a diagnostic technology for noninvasively detecting senescent cells in vivo and could play a role in the application of DPP4 prodrugs for senotherapy.
Collapse
Affiliation(s)
- Hisamichi Tanaka
- Division of Cellular SenescenceCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
- Department of JFCR Cancer Biology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Sho Sugawara
- Division of Cellular SenescenceCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Yoko Tanaka
- Division of Cellular SenescenceCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Tze Mun Loo
- Division of Cellular SenescenceCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Ryo Tachibana
- Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Atsuki Abe
- Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Mako Kamiya
- Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
- Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Akiko Takahashi
- Division of Cellular SenescenceCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
- Cancer Cell Communication Project, NEXT‐Ganken ProgramJapanese Foundation for Cancer ResearchTokyoJapan
| |
Collapse
|
77
|
Wang Y, Kuca K, You L, Nepovimova E, Heger Z, Valko M, Adam V, Wu Q, Jomova K. The role of cellular senescence in neurodegenerative diseases. Arch Toxicol 2024; 98:2393-2408. [PMID: 38744709 PMCID: PMC11272704 DOI: 10.1007/s00204-024-03768-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Increasing evidence has revealed that cellular senescence drives NDs, including Alzheimer's disease (AD) and Parkinson's disease. Different senescent cell populations secrete senescence-associated secretory phenotypes (SASP), including matrix metalloproteinase-3, interleukin (IL)-1α, IL-6, and IL-8, which can harm adjacent microglia. Moreover, these cells possess high expression levels of senescence hallmarks (p16 and p21) and elevated senescence-associated β-galactosidase activity in in vitro and in vivo ND models. These senescence phenotypes contribute to the deposition of β-amyloid and tau-protein tangles. Selective clearance of senescent cells and SASP regulation by inhibiting p38/mitogen-activated protein kinase and nuclear factor kappa B signaling attenuate β-amyloid load and prevent tau-protein tangle deposition, thereby improving cognitive performance in AD mouse models. In addition, telomere shortening, a cellular senescence biomarker, is associated with increased ND risks. Telomere dysfunction causes cellular senescence, stimulating IL-6, tumor necrosis factor-α, and IL-1β secretions. The forced expression of telomerase activators prevents cellular senescence, yielding considerable neuroprotective effects. This review elucidates the mechanism of cellular senescence in ND pathogenesis, suggesting strategies to eliminate or restore senescent cells to a normal phenotype for treating such diseases.
Collapse
Affiliation(s)
- Yating Wang
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, 500 05, Hradec Kralove, Czech Republic
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, 401520, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
| | - Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74, Nitra, Slovakia.
| |
Collapse
|
78
|
Chu JCH, Escriche‐Navarro B, Xiong J, García‐Fernández A, Martínez‐Máñez R, Ng DKP. β-Galactosidase-Triggered Photodynamic Elimination of Senescent Cells with a Boron Dipyrromethene-Based Photosensitizer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401012. [PMID: 38884205 PMCID: PMC11336962 DOI: 10.1002/advs.202401012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/16/2024] [Indexed: 06/18/2024]
Abstract
Senescence is a cellular response having physiological and reparative functions to preserve tissue homeostasis and suppress tumor growth. However, the accumulation of senescent cells would cause deleterious effects that lead to age-related dysfunctions and cancer progression. Hence, selective detection and elimination of senescent cells are crucial yet remain a challenge. A β-galactosidase (β-gal)-activated boron dipyrromethene (BODIPY)-based photosensitizer (compound 1) is reported here that can selectively detect and eradicate senescent cells. It contains a galactose moiety connected to a pyridinium BODIPY via a self-immolative nitrophenylene linker, of which the photoactivity is effectively quenched. Upon interactions with the senescence-associated β-gal, it undergoes enzymatic hydrolysis followed by self-immolation, leading to the release of an activated BODIPY moiety by which the fluorescence emission and singlet oxygen generation are restored. The ability of 1 to detect and eliminate senescent cells is demonstrated in vitro and in vivo, using SK-Mel-103 tumor-bearing mice treated with senescence-inducing therapy. The results demonstrate that 1 can be selectively activated in senescent cells to trigger a robust senolytic effect upon irradiation. This study breaks new ground in the design and application of new senolytic agents based on photodynamic therapy.
Collapse
Affiliation(s)
- Jacky C. H. Chu
- Department of ChemistryThe Chinese University of Hong KongShatin, N.T.Hong KongChina
| | - Blanca Escriche‐Navarro
- Instituto Interuniversitario de Investigación de ReconocimientoMolecular y Desarrollo TecnológicoUniversitat Politècnica de ValènciaUniversitat de ValènciaValencia46022Spain
- Unidad Mixta de Investigación en Nanomedicina y SensoresUniversitat Politècnica e València, Instituto de Investigación Sanitaria La Fe (IIS La Fe)Valencia46026Spain
- Unidad Mixta UPV‐CIPF de Investigación en Mecanismos de Enfermedades y NanomedicinaUniversitat Politècnica de València, Centro de Investigación Príncipe FelipeValencia46012Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER‐BBN)Instituto de Salud Carlos IIIMadrid28029Spain
| | - Junlong Xiong
- Department of ChemistryThe Chinese University of Hong KongShatin, N.T.Hong KongChina
- Department of PharmacyThe Affiliated Luohu Hospital of Shenzhen UniversityShenzhen UniversityShenzhen518001China
| | - Alba García‐Fernández
- Instituto Interuniversitario de Investigación de ReconocimientoMolecular y Desarrollo TecnológicoUniversitat Politècnica de ValènciaUniversitat de ValènciaValencia46022Spain
- Unidad Mixta UPV‐CIPF de Investigación en Mecanismos de Enfermedades y NanomedicinaUniversitat Politècnica de València, Centro de Investigación Príncipe FelipeValencia46012Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER‐BBN)Instituto de Salud Carlos IIIMadrid28029Spain
| | - Ramón Martínez‐Máñez
- Instituto Interuniversitario de Investigación de ReconocimientoMolecular y Desarrollo TecnológicoUniversitat Politècnica de ValènciaUniversitat de ValènciaValencia46022Spain
- Unidad Mixta de Investigación en Nanomedicina y SensoresUniversitat Politècnica e València, Instituto de Investigación Sanitaria La Fe (IIS La Fe)Valencia46026Spain
- Unidad Mixta UPV‐CIPF de Investigación en Mecanismos de Enfermedades y NanomedicinaUniversitat Politècnica de València, Centro de Investigación Príncipe FelipeValencia46012Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER‐BBN)Instituto de Salud Carlos IIIMadrid28029Spain
| | - Dennis K. P. Ng
- Department of ChemistryThe Chinese University of Hong KongShatin, N.T.Hong KongChina
| |
Collapse
|
79
|
Huo S, Tang X, Chen W, Gan D, Guo H, Yao Q, Liao R, Huang T, Wu J, Yang J, Xiao G, Han X. Epigenetic regulations of cellular senescence in osteoporosis. Ageing Res Rev 2024; 99:102235. [PMID: 38367814 DOI: 10.1016/j.arr.2024.102235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/27/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Osteoporosis (OP) is a prevalent age-related disease that is characterized by a decrease in bone mineral density (BMD) and systemic bone microarchitectural disorders. With age, senescent cells accumulate and exhibit the senescence-associated secretory phenotype (SASP) in bone tissue, leading to the imbalance of bone homeostasis, osteopenia, changes in trabecular bone structure, and increased bone fragility. Cellular senescence in the bone microenvironment involves osteoblasts, osteoclasts, and bone marrow mesenchymal stem cells (BMSCs), whose effects on bone homeostasis are regulated by epigenetics. Therefore, the epigenetic regulatory mechanisms of cellular senescence have received considerable attention as potential targets for preventing and treating osteoporosis. In this paper, we systematically review the mechanisms of aging-associated epigenetic regulation in osteoporosis, emphasizing the impact of epigenetics on cellular senescence, and summarize three current methods of targeting cellular senescence, which is helpful better to understand the pathogenic mechanisms of cellular senescence in osteoporosis and provides strategies for the development of epigenetic drugs for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Shaochuan Huo
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China; Shenzhen Research Institute of Guangzhou University of Traditional Medicine (Futian), Shenzhen 518000, China
| | - Xinzheng Tang
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China; Shenzhen Research Institute of Guangzhou University of Traditional Medicine (Futian), Shenzhen 518000, China
| | - Weijian Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Donghao Gan
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hai Guo
- Liuzhou Traditional Chinese Medicine Hospital (Liuzhou Zhuang Medical Hospital), Liuzhou 545001, China
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Rongdong Liao
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Tingting Huang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Junxian Wu
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China
| | - Junxing Yang
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China; Shenzhen Research Institute of Guangzhou University of Traditional Medicine (Futian), Shenzhen 518000, China.
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xia Han
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China; Shenzhen Research Institute of Guangzhou University of Traditional Medicine (Futian), Shenzhen 518000, China.
| |
Collapse
|
80
|
Katsube M, Ishimoto T, Fukushima Y, Kagami A, Shuto T, Kato Y. Ergothioneine promotes longevity and healthy aging in male mice. GeroScience 2024; 46:3889-3909. [PMID: 38446314 PMCID: PMC11226696 DOI: 10.1007/s11357-024-01111-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Healthy aging has emerged as a crucial issue with the increase in the geriatric population worldwide. Food-derived sulfur-containing amino acid ergothioneine (ERGO) is a potential dietary supplement, which exhibits various beneficial effects in experimental animals although the preventive effects of ERGO on aging and/or age-related impairments such as frailty and cognitive impairment are unclear. We investigated the effects of daily oral supplementation of ERGO dissolved in drinking water on lifespan, frailty, and cognitive impairment in male mice from 7 weeks of age to the end of their lives. Ingestion of 4 ~ 5 mg/kg/day of ERGO remarkably extended the lifespan of male mice. The longevity effect of ERGO was further supported by increase in life and non-frailty spans of Caenorhabditis elegans in the presence of ERGO. Compared with the control group, the ERGO group showed significantly lower age-related declines in weight, fat mass, and average and maximum movement velocities at 88 weeks of age. This was compatible with dramatical suppression by ERGO of the age-related increments in plasma biomarkers (BMs) such as the chemokine ligand 9, creatinine, symmetric dimethylarginine, urea, asymmetric dimethylarginine, quinolinic acid, and kynurenine. The oral intake of ERGO also rescued age-related impairments in learning and memory ability, which might be associated with suppression of the age-related decline in hippocampal neurogenesis and TDP43 protein aggregation and promotion of microglial shift to the M2 phenotype by ERGO ingestion. Ingestion of ERGO may promote longevity and healthy aging in male mice, possibly through multiple biological mechanisms.
Collapse
Affiliation(s)
- Makoto Katsube
- Faculty of Pharmacy, Kanazawa University, Kanazawa, 920-1192, Japan
| | | | - Yutaro Fukushima
- Department of Molecular Medicine, Graduate School of Pharmaceutical Science, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Asuka Kagami
- Department of Molecular Medicine, Graduate School of Pharmaceutical Science, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Science, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
81
|
Zhou Q, Yi G, Chang M, Li N, Bai Y, Li H, Yao S. Activation of Sirtuin3 by honokiol ameliorates alveolar epithelial cell senescence in experimental silicosis via the cGAS-STING pathway. Redox Biol 2024; 74:103224. [PMID: 38865904 PMCID: PMC11215422 DOI: 10.1016/j.redox.2024.103224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Silicosis, characterized by interstitial lung inflammation and fibrosis, poses a significant health threat. ATII cells play a crucial role in alveolar epithelial repair and structural integrity maintenance. Inhibiting ATII cell senescence has shown promise in silicosis treatment. However, the mechanism behind silica-induced senescence remains elusive. METHODS The study employed male C57BL/6 N mice and A549 human alveolar epithelial cells to investigate silicosis and its potential treatment. Silicosis was induced in mice via intratracheal instillation of crystalline silica particles, with honokiol administered intraperitoneally for 14 days. Silica-induced senescence in A549 cells was confirmed, and SIRT3 knockout and overexpression cell lines were generated. Various analyses were conducted, including immunoblotting, qRT-PCR, histology, and transmission electron microscopy. Statistical significance was determined using one-way ANOVA with Tukey's post-hoc test. RESULTS This study elucidates how silica induces ATII cell senescence, emphasizing mtDNA damage. Notably, honokiol (HKL) emerges as a promising anti-senescence and anti-fibrosis agent, acting through sirt3. honokiol effectively attenuated senescence in ATII cells, dependent on sirt3 expression, while mitigating mtDNA damage. Sirt3, a class III histone deacetylase, regulates senescence and mitochondrial stress. HKL activates sirt3, protecting against pulmonary fibrosis and mitochondrial damage. Additionally, HKL downregulated cGAS expression in senescent ATII cells induced by silica, suggesting sirt3's role as an upstream regulator of the cGAS/STING signaling pathway. Moreover, honokiol treatment inhibited the activation of the NF-κB signaling pathway, associated with reduced oxidative stress and mtDNA damage. Notably, HKL enhanced the activity of SOD2, crucial for mitochondrial function, through sirt3-mediated deacetylation. Additionally, HKL promoted the deacetylation activity of sirt3, further safeguarding mtDNA integrity. CONCLUSIONS This study uncovers a natural compound, HKL, with significant anti-fibrotic properties through activating sirt3, shedding light on silicosis pathogenesis and treatment avenues.
Collapse
Affiliation(s)
- Qiang Zhou
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China; School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Guan Yi
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China.
| | - Meiyu Chang
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China.
| | - Ning Li
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China.
| | - Yichun Bai
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Haibin Li
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China; School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Sanqiao Yao
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China; School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
82
|
Wang W, Chen Y, Shen Y, Chen J, Yao X, Cheng Y, Xu J, Ma L, Chen Y, Zhang C. Secretory Phenotype in Peripheral Blood Mononuclear Cells of Elderly Patients with Rheumatoid Arthritis. Rejuvenation Res 2024; 27:122-130. [PMID: 38814828 DOI: 10.1089/rej.2024.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
This study aims to investigate the expression differences of peripheral blood mononuclear cells (PBMCs) in patients with elderly rheumatoid arthritis (ERA). Differentially expressed genes (DEGs) of PBMCs between young patients with RA (RA_Y) and elderly patients with RA (RA_A) were identified by RNA sequencing using the DESeq2 package, followed by bioinformatics analysis. The overlapped targets of the current DEGs and proteomic differentially expressed proteins (another set of unpublished data) were identified and further validated. The bioinformatics analysis revealed significant transcriptomic heterogeneity between RA_A and RA_Y. A total of 348 upregulated and 363 downregulated DEGs were identified. Gene functional enrichment analysis indicated that the DEGs, which represented senescence phenotype for patients with ERA, were enriched in pathways such as Phosphatidylinositol3 kinase/AKT serine-threonine protein kinase (PI3K/Akt) signaling, Mitogen-activated protein kinases (MAPK) signaling, toll-like receptor family, neutrophil degranulation, and immune-related pathways. Gene set enrichment analysis further confirmed the activation of humoral immune response pathways in RA_A. Quantitative polymerase chain reaction validated the expression of five representative DEGs such as SPTA1, SPTB, VNN1, TNXB, and KRT1 in PBMCs of patients with ERA. Patients with ERA have significant senescence phenotype differences versus the young patients. The DEGs identified may facilitate exploring the biomarkers of senescence in RA.
Collapse
Affiliation(s)
- Wenlong Wang
- Department of Rheumatology and Immunology, First People's Hospital of Wenling, Wenling, P.R. China
| | - Yanjuan Chen
- Department of Geriatrics and Division of Rheumatology and Research, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, P.R. China
| | - Yidi Shen
- Department of Rheumatology and Immunology, Seventh People's Hospital of ShangHai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Jian Chen
- Division of Traditional Medicine and Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Xiaoyang Yao
- Department of Clinical Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yongjun Cheng
- Department of Rheumatology and Immunology, First People's Hospital of Wenling, Wenling, P.R. China
| | - Jinzhong Xu
- Department of Clinical Pharmacy, First People's Hospital of Wenling, Wenling, P.R. China
| | - Lisha Ma
- Department of Clinical Laboratory, First People's Hospital of Wenling, Wenling, P.R. China
| | - Yong Chen
- Department of Rheumatology and Immunology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chuanfu Zhang
- Department of Rheumatology and Immunology, Seventh People's Hospital of ShangHai University of Traditional Chinese Medicine, Shanghai, P.R. China
| |
Collapse
|
83
|
Yan X, Ding JY, Zhang RJ, Zhang HQ, Kang L, Jia CY, Liu XY, Shen CL. FSTL1 Accelerates Nucleus Pulposus Cell Senescence and Intervertebral Disc Degeneration Through TLR4/NF-κB Pathway. Inflammation 2024; 47:1229-1247. [PMID: 38316670 DOI: 10.1007/s10753-024-01972-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 02/07/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a major contributor to low back pain (LBP), and inflammatory factors play crucial roles in its pathogenesis. Follistatin-like 1 (FSTL1) has been reported to induce an inflammatory response in chondrocytes, microglia and preadipocytes, but its role in the pathogenesis of nucleus pulposus cell (NPC) degeneration remains unclear. In this study, we mainly utilized an acidosis-induced NPC degeneration model and a rabbit puncture IVDD model to investigate the role of FSTL1 in IVDD both in vitro and in vivo. We confirmed that FSTL1 expression significantly increased in nucleus pulposus (NP) tissues from IVDD patients and rabbit puncture IVDD models. The expression levels of FSTL1 were significantly increased in all three models of NPC degeneration under harsh microenvironments. In addition, recombinant human FSTL1 (rh-FSTL1) was found to upregulate the expression of p16 and p21, increase the number of senescence-associated β-galactosidase (SA-β-gal)-positive cells, induce senescence-related secretory phenotypes (SASP), and downregulate extracellular matrix (ECM) protein expressions, leading to an imbalance in ECM metabolism destructions. Conversely, silencing of FSTL1 by small interfering RNA (siRNA) ameliorated senescence of NPCs associated with inflammation in IVDD. Furthermore, Toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) pathway plays a crucial role in regulating NPC senescence through FSTL1 regulation. Inhibition of TLR4 expression partly reversed the effects of rh-FSTL1 on NPC senescence-associated inflammation. Finally, rabbit IVDD model experiments demonstrated that the specific FSTL1 siRNA markedly repressed the development of IVDD. These findings may offer a therapeutic approach for mitigating inflammation-induced senescence associated with IVDD.
Collapse
Affiliation(s)
- Xu Yan
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Jing-Yu Ding
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Ren-Jie Zhang
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Hua-Qing Zhang
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Liang Kang
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Chong-Yu Jia
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Xiao-Ying Liu
- School of Life Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Cai-Liang Shen
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
84
|
Cunha S, Bicker J, Sereno J, Falcão A, Fortuna A. Blood brain barrier dysfunction in healthy aging and dementia: Why, how, what for? Ageing Res Rev 2024; 99:102395. [PMID: 38950867 DOI: 10.1016/j.arr.2024.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/03/2024] [Accepted: 06/23/2024] [Indexed: 07/03/2024]
Abstract
The blood brain barrier (BBB) is an indispensable structure that maintains the central nervous system (CNS) microenvironment for a correct neuronal function. It is composed by highly specialized microvessels, surrounded by astrocytes, pericytes, neurons and microglia cells, which tightly control the influx and efflux of substances to the brain parenchyma. During aging, the BBB becomes impaired, and it may contribute to the development of neurodegenerative and neurological disorders including Alzheimer's disease and other dementias. Restoring the BBB can be a strategy to prevent disease onset and development, reducing the symptoms of these conditions. This work critically reviews the major mechanisms underlying BBB breakdown in healthy and unhealthy aging, as well as biomarkers and methodologies that accurately assess its impairment. Complementarily, potential therapeutic targets are discussed as new strategies to restore the normal function of the BBB in aging.
Collapse
Affiliation(s)
- Susana Cunha
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Joana Bicker
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - José Sereno
- CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Ana Fortuna
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
85
|
Khan T, McFall DJ, Hussain AI, Frayser LA, Casilli TP, Steck MC, Sanchez-Brualla I, Kuehn NM, Cho M, Barnes JA, Harris BT, Vicini S, Forcelli PA. Senescent cell clearance ameliorates temporal lobe epilepsy and associated spatial memory deficits in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605784. [PMID: 39211239 PMCID: PMC11360968 DOI: 10.1101/2024.07.30.605784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Current therapies for the epilepsies only treat the symptoms, but do not prevent epileptogenesis (the process in which epilepsy develops). Many cellular responses during epileptogenesis are also common hallmarks of cellular senescence , which halts proliferation of damaged cells. Clearing senescent cells (SCs) restores function in several age-associated and neurodegenerative disease models. It is unknown whether SC accumulation contributes to epileptogenesis and associated cognitive impairments. To address this question, we used a mouse model of temporal lobe epilepsy (TLE) and characterized the senescence phenotype throughout epileptogenesis. SCs accumulated 2 weeks after SE and were predominantly microglia. We ablated SCs and reduced (and in some cases prevented) the emergence of spontaneous seizures and normalized cognitive function in mice. Suggesting that this is a translationally-relevant target we also found SC accumulation in resected hippocampi from patients with TLE. These findings indicate that SC ablation after an epileptogenic insult is a potential anti-epileptogenic therapy.
Collapse
|
86
|
Ya J, Bayraktutan U. Senolytics and Senomorphics Targeting p38MAPK/NF-κB Pathway Protect Endothelial Cells from Oxidative Stress-Mediated Premature Senescence. Cells 2024; 13:1292. [PMID: 39120322 PMCID: PMC11311971 DOI: 10.3390/cells13151292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
Oxidative stress is a prominent causal factor in the premature senescence of microvascular endothelial cells and the ensuing blood-brain barrier (BBB) dysfunction. Through the exposure of an in vitro model of human BBB, composed of brain microvascular endothelial cells (BMECs), astrocytes, and pericytes to H2O2, this study examined whether a specific targeting of the p38MAPK/NF-κB pathway and/or senescent cells could delay oxidative stress-mediated EC senescence and protect the BBB. Enlarged BMECs, displaying higher β-galactosidase activity, γH2AX staining, p16 expression, and impaired tubulogenic capacity, were regarded as senescent. The BBB established with senescent BMECs had reduced transendothelial electrical resistance and increased paracellular flux, which are markers of BBB integrity and function, respectively. Premature senescence disrupted plasma-membrane localization of the tight junction protein, zonula occludens-1, and elevated basement membrane-degrading matrix metalloproteinase-2 activity and pro-inflammatory cytokine release. Inhibition of p38MAPK by BIRB796 and NF-κB by QNZ and the elimination of senescent cells by a combination of dasatinib and quercetin attenuated the effects of H2O2 on senescence markers; suppressed release of the pro-inflammatory cytokines interleukin-8, monocyte chemoattractant protein-1, and intercellular adhesion molecule-1; restored tight junctional unity; and improved BBB function. In conclusion, therapeutic approaches that mitigate p38MAPK/NF-κB activity and senescent cell accumulation in the cerebrovasculature may successfully protect BBB from oxidative stress-induced BBB dysfunction.
Collapse
Affiliation(s)
| | - Ulvi Bayraktutan
- Academic Stroke, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
87
|
Kawakami S, Johmura Y, Nakanishi M. Intracellular acidification and glycolysis modulate inflammatory pathway in senescent cells. J Biochem 2024; 176:97-108. [PMID: 38564227 PMCID: PMC11289320 DOI: 10.1093/jb/mvae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Senescent cells accumulate in various organs with ageing, and its accumulation induces chronic inflammation and age-related physiological dysfunctions. Several remodelling of intracellular environments have been identified in senescent cells, including enlargement of cell/nuclear size and intracellular acidification. Although these alterations of intracellular environments were reported to be involved in the unique characteristics of senescent cells, the contribution of intracellular acidification to senescence-associated cellular phenotypes is poorly understood. Here, we identified that the upregulation of TXNIP and its paralog ARRDC4 as a hallmark of intracellular acidification in addition to KGA-type GLS1. These genes were also upregulated in response to senescence-associated intracellular acidification. Neutralization of the intracellular acidic environment ameliorated not only senescence-related upregulation of TXNIP, ARRDC4 and KGA but also inflammation-related genes, possibly through suppression of PDK-dependent anaerobic glycolysis. Furthermore, we found that expression of the intracellular acidification-induced genes, TXNIP and ARRDC4, correlated with inflammatory gene expression in heterogeneous senescent cell population in vitro and even in vivo, implying that the contribution of intracellular pH to senescence-associated cellular features, such as SASP.
Collapse
Affiliation(s)
- Satoshi Kawakami
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshikazu Johmura
- Division of Cancer and Senescence Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
88
|
Liu Y, Lomeli I, Kron SJ. Therapy-Induced Cellular Senescence: Potentiating Tumor Elimination or Driving Cancer Resistance and Recurrence? Cells 2024; 13:1281. [PMID: 39120312 PMCID: PMC11312217 DOI: 10.3390/cells13151281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Cellular senescence has been increasingly recognized as a hallmark of cancer, reflecting its association with aging and inflammation, its role as a response to deregulated proliferation and oncogenic stress, and its induction by cancer therapies. While therapy-induced senescence (TIS) has been linked to resistance, recurrence, metastasis, and normal tissue toxicity, TIS also has the potential to enhance therapy response and stimulate anti-tumor immunity. In this review, we examine the Jekyll and Hyde nature of senescent cells (SnCs), focusing on how their persistence while expressing the senescence-associated secretory phenotype (SASP) modulates the tumor microenvironment through autocrine and paracrine mechanisms. Through the SASP, SnCs can mediate both resistance and response to cancer therapies. To fulfill the unmet potential of cancer immunotherapy, we consider how SnCs may influence tumor inflammation and serve as an antigen source to potentiate anti-tumor immune response. This new perspective suggests treatment approaches based on TIS to enhance immune checkpoint blockade. Finally, we describe strategies for mitigating the detrimental effects of senescence, such as modulating the SASP or targeting SnC persistence, which may enhance the overall benefits of cancer treatment.
Collapse
Affiliation(s)
| | | | - Stephen J. Kron
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
89
|
Wang X, Zhang C, Su J, Ren S, Wang X, Zhang Y, Yuan Z, He X, Wu X, Li M, Du F, Chen Y, Deng S, Zhao Y, Wang X, Sun Y, Shen J, Ji H, Hou Y, Xiao Z. Rejuvenation Strategy for Inducing and Enhancing Autoimmune Response to Eliminate Senescent Cells. Aging Dis 2024:AD.2024.0579. [PMID: 39122450 DOI: 10.14336/ad.2024.0579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
The process of aging, which involves progressive changes in the body over time, is closely associated with the development of age-related diseases. Cellular senescence is a pivotal hallmark and mechanism of the aging process. The accumulation of senescent cells can significantly contribute to the onset of age-related diseases, thereby compromising overall health. Conversely, the elimination of senescent cells enhances the body's regenerative and reparative capacity, thereby retarding the aging process. Here, we present a brief overview of 12 Hallmarks of aging and subsequently emphasize the potential of immune checkpoint blockade, innate immune cell therapy (including T cells, iNKT cells, macrophages, and NK cells), as well as CAR-T cell therapy for inducing and augmenting immune responses aimed at eliminating senescent cells. In addition to CAR-T cells, we also explore the possibility of engineered immune cells such as CAR-NK and CAR-M cells to eliminate senescent cells. In summary, immunotherapy, as an emerging strategy for the treatment of aging, offers new prospects for age-related research.
Collapse
Affiliation(s)
- Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Chengyu Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Siqi Ren
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yinping Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zijun Yuan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xinyu He
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Xiaodong Wang
- Department of Hepatobiliary Disease, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Huijiao Ji
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yunqing Hou
- LongmaTan District People's Hospital of Luzhou City, Luzhou 646600, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
- Department of Pharmacology, School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang 621000, China
| |
Collapse
|
90
|
Sun R, Wang F, Zhong C, Shi H, Peng X, Gao JW, Wu XT. The regulatory mechanism of cyclic GMP-AMP synthase on inflammatory senescence of nucleus pulposus cell. J Orthop Surg Res 2024; 19:421. [PMID: 39034400 PMCID: PMC11265083 DOI: 10.1186/s13018-024-04919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Cellular senescence features irreversible growth arrest and secretion of multiple proinflammatory cytokines. Cyclic GMP-AMP synthase (cGAS) detects DNA damage and activates the DNA-sensing pathway, resulting in the upregulation of inflammatory genes and induction of cellular senescence. This study aimed to investigate the effect of cGAS in regulating senescence of nucleus pulposus (NP) cells under inflammatory microenvironment. METHODS The expression of cGAS was evaluated by immunohistochemical staining in rat intervertebral disc (IVD) degeneration model induced by annulus stabbing. NP cells were harvested from rat lumbar IVD and cultured with 10ng/ml IL-1β for 48 h to induce premature senescence. cGAS was silenced by cGAS specific siRNA in NP cells and cultured with IL-1β. Cellular senescence was evaluated by senescence-associated beta-galactosidase (SA-β-gal) staining and flow cytometry. The expression of senescence-associated secretory phenotype including IL-6, IL-8, and TNF-a was evaluated by ELISA and western blotting. RESULTS cGAS was detected in rat NP cells in cytoplasm and the expression was significantly increased in degenerated IVD. Culturing in 10ng/ml IL-1β for 48 h induced cellular senescence in NP cells with attenuation of G1-S phase transition. In senescent NP cells the expression of cGAS, p53, p16, NF-kB, IL-6, IL-8, TNF-α was significantly increased while aggrecan and collagen type II was reduced than in normal NP cells. In NP cells with silenced cGAS, the expression of p53, p16, NF-kB, IL-6, IL-8, and TNF-α was reduced in inflammatory culturing with IL-1β. CONCLUSION cGAS was increased by NP cells in degenerated IVD promoting cellular senescence and senescent inflammatory phenotypes. Targeting cGAS may alleviate IVD degeneration by reducing NP cell senescence.
Collapse
Affiliation(s)
- Rui Sun
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210003, China
| | - Feng Wang
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China
| | - Cong Zhong
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China
| | - Hang Shi
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China
| | - Xin Peng
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210003, China
| | - Jia-Wei Gao
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210003, China
| | - Xiao-Tao Wu
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China.
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210003, China.
| |
Collapse
|
91
|
Shi L, Deng J, He J, Zhu F, Jin Y, Zhang X, Ren Y, Du X. Integrative transcriptomics and proteomics analysis reveal the protection of Astragaloside IV against myocardial fibrosis by regulating senescence. Eur J Pharmacol 2024; 975:176632. [PMID: 38718959 DOI: 10.1016/j.ejphar.2024.176632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
Myocardial fibrosis (MF) is a pivotal pathological process implicated in various cardiovascular diseases, particularly heart failure. Astragaloside IV (AS-IV), a natural compound derived from Astragalus membranaceus, possesses potent cardioprotective properties. However, the precise molecular mechanisms underlying its anti-MF effects, particularly in relation to senescence, remain elusive. Thus, this study aimed to investigate the therapeutic potential and underlying molecular mechanisms of AS-IV in treating ISO-induced MF in mice, employing transcriptomics, proteomics, in vitro, and in vivo experiments. We assessed the positive effects of AS-IV on ISO-induced MF using HE staining, Masson staining, ELISA, immunohistochemical staining, transthoracic echocardiography, transmission electron microscopy, and DHE fluorescence staining. Additionally, we elucidated the regulatory role of AS-IV in MF through comprehensive transcriptomics and proteomics analyses, complemented by Western blotting and RT-qPCR validation of pertinent molecular pathways. Our findings demonstrated that AS-IV treatment markedly attenuated ISO-induced myocardial injury and oxidative stress, concomitantly inhibiting the release of SASPs. Furthermore, integrated transcriptomics and proteomics analyses revealed that the anti-MF mechanism of AS-IV was associated with regulating cellular senescence and the p53 signaling pathway. These results highlight AS-IV exerts its anti-MF effects not only by inhibiting oxidative stress but also by modulating senescence through the p53 signaling pathway.
Collapse
Affiliation(s)
- Lipeng Shi
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400020, China
| | - Jingwei Deng
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jun He
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Feng Zhu
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Yuxia Jin
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Xi Zhang
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Yi Ren
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400020, China.
| | - Xuqin Du
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China.
| |
Collapse
|
92
|
Phillips PCA, de Sousa Loreto Aresta Branco M, Cliff CL, Ward JK, Squires PE, Hills CE. Targeting senescence to prevent diabetic kidney disease: Exploring molecular mechanisms and potential therapeutic targets for disease management. Diabet Med 2024:e15408. [PMID: 38995865 DOI: 10.1111/dme.15408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND/AIMS As a microvascular complication, diabetic kidney disease is the leading cause of chronic kidney disease and end-stage renal disease worldwide. While the underlying pathophysiology driving transition of diabetic kidney disease to renal failure is yet to be fully understood, recent studies suggest that cellular senescence is central in disease development and progression. Consequently, understanding the molecular mechanisms which initiate and drive senescence in response to the diabetic milieu is crucial in developing targeted therapies that halt progression of renal disease. METHODS To understand the mechanistic pathways underpinning cellular senescence in the context of diabetic kidney disease, we reviewed the literature using PubMed for English language articles that contained key words related to senescence, inflammation, fibrosis, senescence-associated secretory phenotype (SASP), autophagy, and diabetes. RESULTS Aberrant accumulation of metabolically active senescent cells is a notable event in the progression of diabetic kidney disease. Through autocrine- and paracrine-mediated mechanisms, resident senescent cells potentiate inflammation and fibrosis through increased expression and secretion of pro-inflammatory cytokines, chemoattractants, recruitment of immune cells, myofibroblast activation, and extracellular matrix remodelling. Compounds that eliminate senescent cells and/or target the SASP - including senolytic and senomorphics drugs - demonstrate promising results in reducing the senescent cell burden and associated pro-inflammatory effect. CONCLUSIONS Here we evidence the link between senescence and diabetic kidney disease and highlight underlying molecular mechanisms and potential therapeutic targets that could be exploited to delay disease progression and improve outcomes for individuals with the disease. Trials are now required to translate their therapeutic potential to a clinical setting.
Collapse
Affiliation(s)
| | | | | | - Joanna Kate Ward
- Joseph Banks Laboratories, College of Health and Science, Lincoln, UK
| | | | | |
Collapse
|
93
|
Li L, Yang L, Shen L, Zhao Y, Wang L, Zhang H. Fat Mass and Obesity-Associated Protein Regulates Granulosa Cell Aging by Targeting Matrix Metalloproteinase-2 Gene Via an N6-Methyladenosine-YT521-B Homology Domain Family Member 2-Dependent Pathway in Aged Mice. Reprod Sci 2024:10.1007/s43032-024-01632-6. [PMID: 38995602 DOI: 10.1007/s43032-024-01632-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/22/2024] [Indexed: 07/13/2024]
Abstract
In this study, we aimed to investigate the molecular mechanisms of RNA N6-methyladenosine (m6A) modification and how its associated proteins affect granulosa cell aging. A granulosa cell senescence model was constructed to detect the differences in total RNA m6A modification levels and the expression of related enzymes. Changes in downstream molecular expression and the effects on the cellular senescence phenotype were explored by repeatedly knocking down and overexpressing the key genes fat mass and obesity-associated protein (FTO), YT521-B homology domain family member 2 (YTHDF2), and matrix metalloproteinase-2 (MMP2). There was an increased total RNA m6A modification and decreased expression of the demethylase FTO and target gene MMP2 in senescent granulosa cells. FTO and MMP2 knockdown promoted granulosa cell senescence, whereas FTO and MMP2 overexpression retarded it. YTHDF2 and FTO can bind to the messenger RNA of MMP2. The extracellular signal-regulated kinase (ERK) pathway, which is downstream of MMP2, retarded the process of granulosa cell senescence through ERK activators. In granulosa cells, FTO can regulate the expression of MMP2 in an m6A-YTHDF2-dependent manner, influencing the activation status of the ERK pathway and contributing to the aging process of granulosa cells.
Collapse
Affiliation(s)
- Linshuang Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Le Yang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Lin Shen
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Yiqing Zhao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Lan Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China.
| | - Hanwang Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
94
|
Villacampa A, Shamoon L, Valencia I, Morales C, Figueiras S, de la Cuesta F, Sánchez-Niño D, Díaz-Araya G, Sánchez-Pérez I, Lorenzo Ó, Sánchez-Ferrer CF, Peiró C. SARS-CoV-2 S Protein Reduces Cytoprotective Defenses and Promotes Human Endothelial Cell Senescence. Aging Dis 2024:AD.2024.0405. [PMID: 39012668 DOI: 10.14336/ad.2024.0405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024] Open
Abstract
Premature vascular aging and endothelial cell senescence are major risk factors for cardiovascular diseases and atherothrombotic disturbances, which are main complications of both acute and long COVID-19. The S protein of SARS-CoV2, which acts as the receptor binding protein for the viral infection, is able to induce endothelial cells inflammation and it has been found as an isolated element in the circulation and in human tissues reservoirs months after infection. Here, we investigated whether the S protein is able to directly induce endothelial cell senescence and deciphered some of the mechanisms involved. In primary cultures of human umbilical vein endothelial cells (HUVEC), SARS-CoV-2 S protein enhanced in a concentration-dependent manner the cellular content of senescence and DNA damage response markers (senescence-associated-β galactosidase, γH2AX), as well as growth-arrest effectors (p53, p21, p16). In parallel, the S protein reduced the availability of cytoprotective proteins, such as the anti-aging protein klotho, Nrf2 or heme oxygenase-1, and caused functional harm by impairing ex vivo endothelial-dependent vasorelaxation in murine microvessels. These effects were prevented by the pharmacological inhibition of the NLRP3 inflammasome with MCC950. Furthermore, the supplementation with either recombinant klotho or angiotensin-(1-7), equally protected against the pro-senescence, pro-inflammatory and pro-oxidant action of the S protein. Globally, this study proposes novel mechanisms of disease in the context of COVID-19 and its vascular sequelae and provides pharmacological clues in order to prevent such complications.
Collapse
Affiliation(s)
- Alicia Villacampa
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain
- Vascular Pharmacology and Metabolism (FARMAVASM) group, IdiPAZ, Madrid, Spain
| | - Licia Shamoon
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain
- Vascular Pharmacology and Metabolism (FARMAVASM) group, IdiPAZ, Madrid, Spain
| | - Inés Valencia
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, IIS Hospital Universitario de La Princesa, Madrid, Spain
| | - Cristina Morales
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain
| | - Sofía Figueiras
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, Spain
| | - Fernando de la Cuesta
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain
- Vascular Pharmacology and Metabolism (FARMAVASM) group, IdiPAZ, Madrid, Spain
| | - Dolores Sánchez-Niño
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain
- Nephrology and Hypertension Lab, IIS-Fundación Jimenez Diaz, Madrid, Spain
| | - Guillermo Díaz-Araya
- Department of Pharmacological &;amp Toxicological Chemistry, Faculty of Chemical &;amp Pharmaceutical Sciences &;amp Faculty of Medicine, University of Chile, Santiago, Chile
| | - Isabel Sánchez-Pérez
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group. Area 3 Cancer -Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Biomedical Research Networking Centre on Rare Diseases, CIBERER, ISCIII, Madrid, Spain
| | - Óscar Lorenzo
- Department of Medicine, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Laboratory of Diabetes and Vascular pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- Biomedical Research Networking Centre on Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Carlos Félix Sánchez-Ferrer
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain
- Vascular Pharmacology and Metabolism (FARMAVASM) group, IdiPAZ, Madrid, Spain
| | - Concepción Peiró
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain
- Vascular Pharmacology and Metabolism (FARMAVASM) group, IdiPAZ, Madrid, Spain
| |
Collapse
|
95
|
Drzewiecka B, Wessely-Szponder J, Świeca M, Espinal P, Fusté E, Fernández-De La Cruz E. Bioactive Peptides and Other Immunomodulators of Mushroom Origin. Biomedicines 2024; 12:1483. [PMID: 39062056 PMCID: PMC11274834 DOI: 10.3390/biomedicines12071483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
For centuries, humans have used mushrooms as both food and pro-health supplements. Mushrooms, especially those related to the functions of the human immune system, are rich in dietary fiber, minerals, essential amino acids, and various bioactive compounds and have significant health-promoting properties. Immunoregulatory compounds in mushrooms include lectins, terpenes, terpenoids, polysaccharides, and fungal immunomodulatory proteins (FIPs). The distribution of these compounds varies from one species of mushroom to another, and their immunomodulatory activities depend on the core structures and chemical modifications in the composition of the fractions. In this review, we describe active compounds from medical mushrooms. We summarize potential mechanisms for their in vitro and in vivo activities and detail approaches used in developing and applying bioactive compounds from mushrooms. Finally, we discuss applications of fungal peptides and highlight areas that require improvement before the widespread use of those compounds as therapeutic agents and explore the status of clinical studies on the immunomodulatory activities of mushrooms and their products, as well as the prospect of clinical application of AMPs as 'drug-like' compounds with great potential for treatment of non-healing chronic wounds and multiresistant infections.
Collapse
Affiliation(s)
- Beata Drzewiecka
- Sub-Department of Pathophysiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, 20-033 Lublin, Poland;
| | - Joanna Wessely-Szponder
- Sub-Department of Pathophysiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, 20-033 Lublin, Poland;
| | - Michał Świeca
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland;
| | - Paula Espinal
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain; (P.E.); (E.F.); (E.F.-D.L.C.)
| | - Ester Fusté
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain; (P.E.); (E.F.); (E.F.-D.L.C.)
- Department Public Health, Mental Health and Perinatal Nursing, School of Nursing, University of Barcelona, 08907 Barcelona, Spain
| | - Eric Fernández-De La Cruz
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain; (P.E.); (E.F.); (E.F.-D.L.C.)
| |
Collapse
|
96
|
Liu F, Han R, Nie S, Cao Y, Zhang X, Gao F, Wang Z, Xing L, Ouyang Z, Sui L, Mi W, Wu X, Sun L, Hu M, Liu D. Metformin rejuvenates Nap1l2-impaired immunomodulation of bone marrow mesenchymal stem cells via metabolic reprogramming. Cell Prolif 2024; 57:e13612. [PMID: 38348888 PMCID: PMC11216924 DOI: 10.1111/cpr.13612] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 07/03/2024] Open
Abstract
Ageing and cell senescence of mesenchymal stem cells (MSCs) limited their immunomodulation properties and therapeutic application. We previously reported that nucleosome assembly protein 1-like 2 (Nap1l2) contributes to MSCs senescence and osteogenic differentiation. Here, we sought to evaluate whether Nap1l2 impairs the immunomodulatory properties of MSCs and find a way to rescue the deficient properties. We demonstrated that metformin could rescue the impaired migration properties and T cell regulation properties of OE-Nap1l2 BMSCs. Moreover, metformin could improve the impaired therapeutic efficacy of OE-Nap1l2 BMSCs in the treatment of colitis and experimental autoimmune encephalomyelitis in mice. Mechanistically, metformin was capable of upregulating the activation of AMPK, synthesis of l-arginine and expression of inducible nitric oxide synthase in OE-Nap1l2 BMSCs, leading to an increasing level of nitric oxide. This study indicated that Nap1l2 negatively regulated the immunomodulatory properties of BMSCs and that the impaired functions could be rescued by metformin pretreatment via metabolic reprogramming. This strategy might serve as a practical therapeutic option to rescue impaired MSCs functions for further application.
Collapse
Affiliation(s)
- Fan Liu
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjinChina
| | - Ruohui Han
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjinChina
| | - Shaochen Nie
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjinChina
| | - Yuxin Cao
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjinChina
| | - Xinming Zhang
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjinChina
| | - Feng Gao
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjinChina
| | - Zhengyang Wang
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjinChina
| | - Liangyu Xing
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjinChina
| | - Zhaoguang Ouyang
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjinChina
| | - Lei Sui
- Department of ProsthodonticsTianjin Medical University School of StomatologyTianjinChina
| | - Wenyi Mi
- Tianjin Institute of Immunology, The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease of the Ministry of EducationTianjin Medical University General Hospital, Tianjin Medical UniversityTianjinChina
| | - Xudong Wu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell BiologyTianjin Medical UniversityTianjinChina
| | - Lu Sun
- Department of Periodontics and Oral MedicineUniversity of Michigan School of DentistryAnn ArborMichiganUSA
- Periodontal and Implant Microsurgery Academy (PiMA)University of Michigan School of DentistryAnn ArborMichiganUSA
| | - Meilin Hu
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjinChina
| | - Dayong Liu
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjinChina
| |
Collapse
|
97
|
Magits W, Steklov M, Jang H, Sewduth RN, Florentin A, Lechat B, Sheryazdanova A, Zhang M, Simicek M, Prag G, Nussinov R, Sablina A. K128 ubiquitination constrains RAS activity by expanding its binding interface with GAP proteins. EMBO J 2024; 43:2862-2877. [PMID: 38858602 PMCID: PMC11251195 DOI: 10.1038/s44318-024-00146-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/13/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
The RAS pathway is among the most frequently activated signaling nodes in cancer. However, the mechanisms that alter RAS activity in human pathologies are not entirely understood. The most prevalent post-translational modification within the GTPase core domain of NRAS and KRAS is ubiquitination at lysine 128 (K128), which is significantly decreased in cancer samples compared to normal tissue. Here, we found that K128 ubiquitination creates an additional binding interface for RAS GTPase-activating proteins (GAPs), NF1 and RASA1, thus increasing RAS binding to GAP proteins and promoting GAP-mediated GTP hydrolysis. Stimulation of cultured cancer cells with growth factors or cytokines transiently induces K128 ubiquitination and restricts the extent of wild-type RAS activation in a GAP-dependent manner. In KRAS mutant cells, K128 ubiquitination limits tumor growth by restricting RAL/ TBK1 signaling and negatively regulating the autocrine circuit induced by mutant KRAS. Reduction of K128 ubiquitination activates both wild-type and mutant RAS signaling and elicits a senescence-associated secretory phenotype, promoting RAS-driven pancreatic tumorigenesis.
Collapse
Affiliation(s)
- Wout Magits
- VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium
| | - Mikhail Steklov
- VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunoMetabolism, National Cancer Institute, Frederick, MD, 21702, USA
| | - Raj N Sewduth
- VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium
- Department of Oncology, KU Leuven, 3000, Leuven, Belgium
| | - Amir Florentin
- School of Neurobiology, Biochemistry & Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Benoit Lechat
- VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium
| | | | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunoMetabolism, National Cancer Institute, Frederick, MD, 21702, USA
| | - Michal Simicek
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Gali Prag
- School of Neurobiology, Biochemistry & Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunoMetabolism, National Cancer Institute, Frederick, MD, 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Anna Sablina
- VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium.
- Department of Oncology, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
98
|
Zhang S, Chen S, Sun D, Li S, Sun J, Gu Q, Liu P, Wang X, Zhu H, Xu X, Li H, Wei F. TIN2-mediated reduction of mitophagy induces RPE senescence under high glucose. Cell Signal 2024; 119:111188. [PMID: 38657846 DOI: 10.1016/j.cellsig.2024.111188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/04/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
The telomere-associated protein TIN2 localizes to both telomeres and mitochondria. Nevertheless, the impact of TIN2 on retinal pigment epithelial (RPE) cells in diabetic retinopathy (DR) remains unclear. This research aims to examine the role of TIN2 in the senescence of RPE and its potential as a therapeutic target. Western blotting and immunofluorescence staining were utilized to identify TIN2 expression and mitophagy. RT-qPCR was employed to identify senescent associated secretory phenotype (SASP) in ARPE-19 cells infected with TIN2 overexpression. To examine mitochondria and the cellular senescence of RPE, TEM, SA-β-gal staining, and cell cycle analysis were used. The impact of TIN2 was examined using OCT and immunohistochemistry in mice. DHE staining and ZO-1 immunofluorescence were applied to detect RPE oxidative stress and tight junctions. Our research revealed that increased mitochondria-localized TIN2 aggravated the cellular senescence of RPE cells both in vivo and in vitro under hyperglycemia. TIN2 overexpression stimulated the mTOR signaling pathway in ARPE-19 cells and exacerbated the inhibition of mitophagy levels under high glucose, which can be remedied through the mTOR inhibitor, rapamycin. Knockdown of TIN2 significantly reduced senescence and mitochondrial oxidative stress in ARPE-19 cells under high glucose and restored retinal thickness and RPE cell tight junctions in DR mice. Our study indicates that increased mitochondria-localized TIN2 induced cellular senescence in RPE via compromised mitophagy and activated mTOR signaling. These results propose that targeting TIN2 could potentially serve as a therapeutic strategy in the treatment of DR.
Collapse
Affiliation(s)
- Shuchang Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Shimei Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Dandan Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Shenping Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Jun Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Qing Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Peiyu Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Xiaoqian Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Hong Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Huiming Li
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fang Wei
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.
| |
Collapse
|
99
|
Dong Y, Liu G, Situ X, Xia L, Zhang T, Zhu X, Jin H, Liu Y, Shou S. Non-Canonical STING-PERK Pathway Modulation of Cellular Senescence and Therapeutic Response in Sepsis-Associated Acute Kidney Injury. Inflammation 2024:10.1007/s10753-024-02081-8. [PMID: 38913144 DOI: 10.1007/s10753-024-02081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024]
Abstract
Abstract-This study explored the role of the non-canonical STING-PERK signaling pathway in sepsis-associated acute kidney injury (SA-AKI). Gene expression data from the GEO database and serum STING protein levels in patients with SA-AKI were analyzed. An LPS-induced mouse model and an in vitro model using HK-2 cells were used to investigate the role of STING in SA-AKI. STING expression was suppressed using shRNA silencing technology and the STING inhibitor C176. Kidney function, inflammatory markers, apoptosis, and senescence were measured. The role of the STING-PERK pathway was investigated by silencing PERK in HK-2 cells and administering the PERK inhibitor GSK2606414. STING mRNA expression and serum STING protein levels were significantly higher in patients with SA-AKI. Suppressing STING expression improved kidney function, reduced inflammation, and inhibited apoptosis and senescence. Silencing PERK or administering GSK2606414 suppressed the inflammatory response, cell apoptosis, and senescence, suggesting that PERK is a downstream effector in the STING signaling pathway. The STING-PERK signaling pathway exacerbates cell senescence and apoptosis in SA-AKI. Inhibiting this pathway could provide potential therapeutic targets for SA-AKI treatment.
Collapse
Affiliation(s)
- Yuxin Dong
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Guanghe Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Xiaonan Situ
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Lei Xia
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Tianyi Zhang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Xiangxi Zhu
- Zunyi Medical University, No. 368 Jinwan Road, Jinhaian Community, Sanzao Town, Jinwan District, Zhuhai, 519041, Guangdong, China
| | - Heng Jin
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Yancun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Songtao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
100
|
Wang YQ, Chen WJ, Zhou W, Dong KQ, Zuo L, Xu D, Chen JX, Chen WJ, Li WY, Liu ZC, Jiang ZY, Tang YF, Qin YX, Wang LH, Pan XW, Cui XG. Integrated analysis of tertiary lymphoid structures and immune infiltration in ccRCC microenvironment revealed their clinical significances: a multicenter cohort study. J Immunother Cancer 2024; 12:e008613. [PMID: 38908856 PMCID: PMC11331356 DOI: 10.1136/jitc-2023-008613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Tertiary lymphoid structures (TLSs) serve as organized lymphoid aggregates that influence immune responses within the tumor microenvironment. This study aims to investigate the characteristics and clinical significance of TLSs and tumor-infiltrating lymphocytes (TILs) in clear cell renal cell carcinoma (ccRCC). METHODS TLSs and TILs were analyzed comprehensively in 754 ccRCC patients from 6 academic centers and 532 patients from The Cancer Genome Atlas. Integrated analysis was performed based on single-cell RNA-sequencing datasets from 21 ccRCC patients to investigate TLS heterogeneity in ccRCC. Immunohistochemistry and multiplex immunofluorescence were applied. Cox regression and Kaplan-Meier analyses were used to reveal the prognostic significance. RESULTS The study demonstrated the existence of TLSs and TILs heterogeneities in the ccRCC microenvironment. TLSs were identified in 16% of the tumor tissues in 113 patients. High density (>0.6/mm2) and maturation of TLSs predicted good overall survival (OS) (p<0.01) in ccRCC patients. However, high infiltration (>151) of scattered TILs was an independent risk factor of poor ccRCC prognosis (HR=14.818, p<0.001). The presence of TLSs was correlated with improved progression-free survival (p=0.002) and responsiveness to therapy (p<0.001). Interestingly, the combination of age and TLSs abundance had an impact on OS (p<0.001). Higher senescence scores were detected in individuals with immature TLSs (p=0.003). CONCLUSIONS The study revealed the contradictory features of intratumoral TLSs and TILs in the ccRCC microenvironment and their impact on clinical prognosis, suggesting that abundant and mature intratumoral TLSs were associated with decreased risks of postoperative ccRCC relapse and death as well as favorable therapeutic response. Distinct spatial distributions of immune infiltration could reflect effective antitumor or protumor immunity in ccRCC.
Collapse
Affiliation(s)
- Yu-Qi Wang
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wen-Jin Chen
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Urology, The Third Affiliated Hospital of the Second Military Medical University, Shanghai, China
| | - Wang Zhou
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ke-Qin Dong
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Urology, PLA Central Military Command General Hospital, Wuhan, Hubei, China
| | - Li Zuo
- Department of Urology, Changzhou No 2 People's Hospital, Changzhou, Jiangsu, China
| | - Da Xu
- Department of Urology, The Third Affiliated Hospital of the Second Military Medical University, Shanghai, China
| | - Jia-Xin Chen
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Urology, The Third Affiliated Hospital of the Second Military Medical University, Shanghai, China
| | - Wei-Jie Chen
- Department of Urology, The Third Affiliated Hospital of the Second Military Medical University, Shanghai, China
| | - Wen-Yan Li
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zi-Chang Liu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zheng-Yu Jiang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yi-Fan Tang
- Department of Urology, Wuxi No 2 People's Hospital, Wuxi, Jiangsu, China
| | - Yu-Xuan Qin
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lin-Hui Wang
- Department of Urology, The First Affiliated Hospital of the Second Military Medical University, Shanghai, China
| | - Xiu-Wu Pan
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xin-Gang Cui
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|